The time dimension of neural network models

Abstract

This review attempts to provide an insightful perspective on the role of time within neural network models and the use of neural networks for problems involving time. The most commonly used neural network models are defined and explained giving mention to important technical issues but avoiding great detail. The relationship between recurrent and feedforward networks is emphasised, along with the distinctions in their practical and theoretical abilities. Some practical examples are discussed to illustrate the major issues concerning the application of neural networks to data with various types of temporal structure, and finally some highlights of current research on the more difficult types of problems are presented.

Publication DOI: https://doi.org/10.1145/181911.181917
Divisions: Aston University (General)
Uncontrolled Keywords: time,neural network model,recurrent and feedforward networks
Publication ISSN: 0163-5719
Last Modified: 29 Oct 2024 12:15
Date Deposited: 06 Jul 2009 11:22
Full Text Link:
Related URLs: https://dl.acm. ... d=181911.181917 (Publisher URL)
PURE Output Type: Article
Published Date: 1994-07
Authors: Rohwer, Richard

Download

[img]

Version: Accepted Version


Export / Share Citation


Statistics

Additional statistics for this record