Producing carbon nanotubes from thermochemical conversion of waste plastics using Ni/ceramic based catalyst


As the amount of waste plastic increases, thermo-chemical conversion of plastics provides an economic flexible and environmental friendly method to manage recycled plastics, and generate valuable materials, such as carbon nanotubes (CNTs). The choice of catalysts and reaction parameters are critical to improving the quantity and quality of CNTs production. In this study, a ceramic membrane catalyst (Ni/Al2O3) was studied to control the CNTs growth, with reaction parameters, including catalytic temperature and Ni content investigated. A fixed two-stage reactor was used for thermal pyrolysis of plastic waste, with the resulting CNTs characterized by various techniques including scanning electronic microscopy (SEM), transmitted electronic microscopy (TEM), temperature programmed oxidation (TPO), and X-ray diffraction (XRD). It is observed that different loadings of Ni resulted in the formation of metal particles with various sizes, which in turn governs CNTs production with varying degrees of quantity and quality, with an optimal catalytic temperature at 700 °C.

Publication DOI:
Divisions: College of Engineering & Physical Sciences
College of Engineering & Physical Sciences > Aston Institute of Materials Research (AIMR)
College of Engineering & Physical Sciences > Energy and Bioproducts Research Institute (EBRI)
Additional Information: © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Publication ISSN: 1873-4405
Last Modified: 27 May 2024 07:24
Date Deposited: 25 Sep 2018 11:46
Full Text Link:
Related URLs: https://www.sci ... 5426?via%3Dihub (Publisher URL)
PURE Output Type: Article
Published Date: 2018-12-31
Published Online Date: 2018-08-18
Accepted Date: 2018-07-19
Authors: Liu, Xiaotong
Shen, Boxiong
Wu, Zhentao (ORCID Profile 0000-0002-4934-8046)
Parlett, Christopher M.a. (ORCID Profile 0000-0002-3651-7314)
Han, Zhenan
George, Adwek
Yuan, Peng
Patel, Dipesh
Wu, Chunfei

Export / Share Citation


Additional statistics for this record