A techno-economic analysis of energy recovery from organic fraction of municipal solid waste (MSW) by an integrated intermediate pyrolysis and combined heat and power (CHP) plant

Abstract

The increasing environmental concerns and the significant growth of the waste to energy market calls for innovative and flexible technology that can effectively process and convert municipal solid waste into fuels and power at high efficiencies. To ensure the technical and economic feasibility of new technology, a sound understanding of the characteristics of the integrated energy system is essential. In this work, a comprehensive techno-economic analysis of a waste to power and heat plant based on integrated intermediate pyrolysis and CHP (Pyro-CHP) system was performed. The overall plant CHP efficiency was found to be nearly 60% defined as heat and power output compared to feedstock fuel input. By using an established economic evaluation model, the capital investment of a 5 tonne per hour plant was calculated to be £27.64 million and the Levelised Cost of Electricity was £0.063/kWh. This agrees the range of cost given by the UK government. To maximise project viability, technology developers should endeavour to seek ways to reduce the energy production cost. Particular attention should be given to the factors with the greatest influence on the profitability, such as feedstock cost (or gate fee for waste), maintaining plant availability, improving energy productivity and reducing capital cost.

Publication DOI: https://doi.org/10.1016/j.enconman.2018.08.033
Dataset DOI: https://doi.org/10.17036/researchdata.aston.ac.uk.00000374
Divisions: College of Engineering & Physical Sciences > Energy and Bioproducts Research Institute (EBRI)
College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
College of Engineering & Physical Sciences
Additional Information: © 2018, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
Uncontrolled Keywords: municipal solid waste,energy from waste,combined heat and power (CHP),intermediate pyrolysis,techno-economic analysis
Publication ISSN: 1879-2227
Last Modified: 17 Jan 2025 08:12
Date Deposited: 25 Sep 2018 10:45
Full Text Link:
Related URLs: https://www.sci ... 196890418308823 (Publisher URL)
PURE Output Type: Article
Published Date: 2018-10-15
Published Online Date: 2018-08-20
Accepted Date: 2018-08-10
Authors: Yang, Yang (ORCID Profile 0000-0003-2075-3803)
Wang, Jiawei (ORCID Profile 0000-0001-5690-9107)
Chong, Katie J (ORCID Profile 0000-0002-3800-8302)
Bridgwater, Anthony V (ORCID Profile 0000-0001-7362-6205)

Export / Share Citation


Statistics

Additional statistics for this record