Brine utilisation for cooling and salt production in wind-driven seawater greenhouses:Design and modelling

Abstract

Brine disposal is a major challenge facing the desalination industry. Discharged brines pollute the oceans and aquifers. Here is it proposed to reduce the volume of brines by means of evaporative coolers in seawater greenhouses, thus enabling the cultivation of high-value crops and production of sea salt. Unlike in typical greenhouses, only natural wind is used for ventilation, without electric fans. We present a model to predict the water evaporation, salt production, internal temperature and humidity according to ambient conditions. Predictions are presented for three case studies: (a) the Horn of Africa (Berbera) where a seawater desalination plant will be coupled to salt production; (b) Iran (Ahwaz) for management of hypersaline water from the Gotvand dam; (c) Gujarat (Ahmedabad) where natural seawater is fed to the cooling process, enhancing salt production in solar salt works. Water evaporation per face area of evaporator pad is predicted in the range 33 to 83 m3/m2·yr, and salt production up to 5.8 tonnes/m2·yr. Temperature is lowest close to the evaporator pad, increasing downwind, such that the cooling effect mostly dissipates within 15 m of the cooling pad. Depending on location, peak temperatures reduce by 8–16 °C at the hottest time of year.

Publication DOI: https://doi.org/10.1016/j.desal.2017.10.025
Divisions: College of Engineering & Physical Sciences > Systems analytics research institute (SARI)
College of Engineering & Physical Sciences
College of Engineering & Physical Sciences > School of Engineering and Technology > Mechanical, Biomedical & Design
College of Engineering & Physical Sciences > Sustainable environment research group
College of Engineering & Physical Sciences > Aston Institute of Materials Research (AIMR)
Additional Information: © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/). Funding: Innovate UK and the Department for International Development, under the Agri-Tech Catalyst programme, project number: 102275.
Uncontrolled Keywords: Brine management; Salt works; Zero liquid discharge; Greenhouse cooling; Seawater greenhouse
Publication ISSN: 1873-4464
Last Modified: 18 Dec 2024 08:12
Date Deposited: 07 Nov 2017 14:25
Full Text Link:
Related URLs: http://linkingh ... 011916417302400 (Publisher URL)
PURE Output Type: Article
Published Date: 2018-01-15
Published Online Date: 2017-11-02
Accepted Date: 2017-10-14
Authors: Akinaga, T. (ORCID Profile 0000-0001-7402-5436)
Generalis, S.C. (ORCID Profile 0000-0001-7660-0633)
Paton, C.
Igobo, O.N.
Davies, P.A. (ORCID Profile 0000-0003-4783-1234)

Download

[img]

Version: Published Version

License: Creative Commons Attribution

| Preview

Export / Share Citation


Statistics

Additional statistics for this record