Optical bottle versus acoustic bottle and antibottle resonators

Abstract

The theory of slow acoustic modes propagating along the optical fiber and being controlled by the nanoscale variation of the effective fiber radius (analogous to the theory of slow optical whispering gallery modes) is developed. Surprisingly, it is shown that, in addition to acoustic bottle resonators (which are similar to optical bottle resonators), there exist antibottle resonators, the neck-shaped deformations of the fiber that can fully confine acoustic modes. It is also shown that an eigenfrequency of the mechanical vibrations of a silica parabolic bottle resonator can match the separation between the eigenfrequencies of a series of its optical modes, thereby enabling the resonant mechanical excitation of these series. The developed theory paves the groundwork for slow-mode optomechanics in an optical fiber.

Publication DOI: https://doi.org/10.1364/OL.42.000923
Divisions: College of Engineering & Physical Sciences > Aston Institute of Photonics Technology (AIPT)
Additional Information: © 2017 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibited. Funding: Funding. Royal Society (WM130110). Horizon 2020 (H2020-EU.1.3.3, 691011).
Uncontrolled Keywords: Atomic and Molecular Physics, and Optics
Publication ISSN: 1539-4794
Last Modified: 01 Jan 2025 08:13
Date Deposited: 04 Apr 2017 11:50
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2017-03-01
Published Online Date: 2017-02-20
Accepted Date: 2017-01-27
Submitted Date: 2017-01-06
Authors: Sumetsky, M. (ORCID Profile 0000-0001-7289-3547)

Download

[img]

Version: Accepted Version

| Preview

Export / Share Citation


Statistics

Additional statistics for this record