Stochastic effects in a discretized kinetic model of economic exchange


Linear stochastic models and discretized kinetic theory are two complementary analytical techniques used for the investigation of complex systems of economic interactions. The former employ Langevin equations, with an emphasis on stock trade; the latter is based on systems of ordinary differential equations and is better suited for the description of binary interactions, taxation and welfare redistribution. We propose a new framework which establishes a connection between the two approaches by introducing random fluctuations into the kinetic model based on Langevin and Fokker–Planck formalisms. Numerical simulations of the resulting model indicate positive correlations between the Gini index and the total wealth, that suggest a growing inequality with increasing income. Further analysis shows, in the presence of a conserved total wealth, a simultaneous decrease in inequality as social mobility increases, in conformity with economic data.

Publication DOI:
Divisions: College of Engineering & Physical Sciences > Systems analytics research institute (SARI)
Additional Information: © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Uncontrolled Keywords: discretized Boltzmann equation,stochastic differential equations,income distributions,economic inequality,social mobility,Statistics and Probability,Condensed Matter Physics
Publication ISSN: 1873-2119
Last Modified: 22 May 2024 07:13
Date Deposited: 17 Jan 2017 08:30
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2017-04-01
Published Online Date: 2016-12-26
Accepted Date: 2016-11-20
Submitted Date: 2016-08-31
Authors: Bertotti, M.L.
Chattopadhyay, A.K. (ORCID Profile 0000-0001-5499-6008)
Modanese, G.

Export / Share Citation


Additional statistics for this record