d’Alessandro, Angelo, Nemkov, Travis, Sun, Kaiqi, Liu, Hong, Song, Anren, Monte, Andrew A., Subudhi, Andrew W., Lovering, Andrew T., Dvorkin, Daniel, Julian, Colleen G., Kevil, Christopher G., Kolluru, Gopi K., Shiva, Sruti, Gladwin, Mark T., Xia, Yang, Hansen, Kirk C. and Roach, Robert C. (2016). AltitudeOmics: Red Blood Cell metabolic adaptation to high altitude hypoxia. Journal of Proteome Research, 15 (10), pp. 3883-3895.
Abstract
Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been completely elucidated. Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following reascent after 7days at 1525m. UHPLC-MS metabolomics results were correlated to physiological and athletic performance parameters. Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000m, and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism. Metabolic adaptations were preserved one week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory.
Publication DOI: | https://doi.org/10.1021/acs.jproteome.6b00733 |
---|---|
Divisions: | College of Health & Life Sciences > Aston Medical School |
Additional Information: | This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Proteome Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://dx.doi.org/10.1021/acs.jproteome.6b00733 |
Publication ISSN: | 1535-3907 |
Last Modified: | 30 Oct 2024 08:07 |
Date Deposited: | 26 Sep 2016 13:35 | PURE Output Type: | Article |
Published Date: | 2016-10-07 |
Published Online Date: | 2016-09-20 |
Accepted Date: | 2016-09-20 |
Submitted Date: | 2016-08-11 |
Authors: |
d’Alessandro, Angelo
Nemkov, Travis Sun, Kaiqi Liu, Hong Song, Anren Monte, Andrew A. Subudhi, Andrew W. Lovering, Andrew T. Dvorkin, Daniel Julian, Colleen G. Kevil, Christopher G. Kolluru, Gopi K. ( 0000-0002-6774-2020) Shiva, Sruti Gladwin, Mark T. Xia, Yang Hansen, Kirk C. Roach, Robert C. |