Bashir, Amreen (2016). Exploring the biological basis for Salmonella persistence in food manufacturing environments. PHD thesis, Aston University.
Abstract
The persistence of Salmonella spp. in low moisture foods is a challenge for the food industry as despite control strategies already in place, notable outbreaks still occur. The aim of this study was to characterise isolates of Salmonella, known to be persistent in the food manufacturing environment, by comparing their microbiological characteristics with a panel of matched clinical and veterinary isolates. The gross morphology of the challenge panel was phenotypically characterised in terms of cellular size, shape and motility. In all the parameters measured, the factory isolates were indistinguishable from the human, clinical and veterinary strains. Further detailed metabolic profiling was undertaken using the biolog Microbial ID system. Multivariate analysis of the metabolic microarray revealed differences in metabolism of the factory isolate of S.Montevideo, based on its upregulated ability to utilise glucose and the sugar alcohol groups. The remainder of the serotype-matched isolates were metabolically indistinguishable. Temperature and humidity are known to influence bacterial survival and through environmental monitoring experimental parameters were defined. The results revealed Salmonella survival on stainless steel was affected by environmental temperatures that may be experienced in a food processing environment; with higher survival rates (D25=35.4) at temperatures at 25°C and lower humidity levels of 15% RH, however a rapid decline in cell count (D10=3.4) with lower temperatures of 10°C and higher humidity of 70% RH. Several resident factories strains survived in higher numbers on stainless steel (D25=29.69) compared to serotype matched clinical and veterinary isolates (D25=22.98). Factory isolates of Salmonella did not show an enhanced growth rate in comparison to serotype matched solates grown in Luria broth, Nutrient broth and M9 minimal media indicating that as an independent factor, growth was unlikely to be a major factor driving Salmonella persistence. Using a live / dead stain coupled with fluorescence microscopy revealed that when no longer culturable, isolates of S.Schwarzengrund entered into a viable nonculturable state. The biofilm forming capacity of the panel was characterised and revealed that all were able to form biofilms. None of the factory isolates showed an enhanced capability to form biofilms in comparison to serotype-matched isolates. In disinfection studies, planktonic cells were more susceptible to disinfectants than cells in biofilm and all the disinfectants tested were successful in reducing bacterial load. Contact time was one of the most important factors for reducing bacterial populations in a biofilm. The genomes of eight strains were sequenced. At the nucleotide and amino acid level the food factory isolates were similar to those of isolates from other environments; no major genomic rearrangements were observed, supporting the conclusions of the phenotypic and metabolic analysis. In conclusion, having investigated a variety of morphological, biochemical and genomic factors, it is unlikely that the persistence of Salmonella in the food manufacturing environment is attributable to a single phenotypic, metabolic or genomic factor. Whilst a combination of microbiological factors may be involved it is also possible that strain persistence in the factory environment is a consequence of failure to apply established hygiene management principles.
Divisions: | College of Health & Life Sciences > School of Biosciences |
---|---|
Additional Information: | If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately. |
Institution: | Aston University |
Uncontrolled Keywords: | Salmonella,persistence,food-manufacturing,survival,temperature |
Last Modified: | 30 Sep 2024 08:26 |
Date Deposited: | 04 Aug 2016 14:20 |
Completed Date: | 2016-02-23 |
Authors: |
Bashir, Amreen
|