Convection induced by instabilities in the presence of a transverse seepage


The transition of laterally heated flows in a vertical layer and in the presence of a streamwise pressure gradient is examined numerically for the case of different values Prandtl number. The stability analysis of the basic flow for the pure hydrodynamic case ( Pr = 0 ) was reported in [1]. We find that in the absence of transverse pumping the previously known critical parameters are recovered [2], while as the strength of the Poiseuille flow component is increased the convective motion is delayed considerably. Following the linear stability analysis for the vertical channel flow our attention is focused on a study of the finite am- plitude secondary travelling-wave (TW) solutions that develop from the perturbations of the transverse roll type imposed on the basic flow and temperature profiles. The linear stability of the secondary TWs against three-dimensional perturbations is also examined and it is shown that the bifurcating tertiary flows are phase-locked to the secondary TWs.

Publication DOI:
Divisions: College of Engineering & Physical Sciences > Systems analytics research institute (SARI)
Additional Information: © 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
Uncontrolled Keywords: non-linear fluid dynamics,Floquet theory,stability,bifurcation theory,Mathematics(all)
Publication ISSN: 0960-0779
Last Modified: 15 Apr 2024 07:18
Date Deposited: 04 Aug 2016 08:35
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2016-10
Published Online Date: 2016-08-04
Accepted Date: 2016-07-23
Submitted Date: 2016-02-27
Authors: Akinaga, Takeshi (ORCID Profile 0000-0001-7402-5436)
Itano, Tomoaki
Generalis, Sotirios (ORCID Profile 0000-0001-7660-0633)

Export / Share Citation


Additional statistics for this record