A note on the propagation of quantized vortex rings through a quantum turbulence tangle:energy transport or energy dissipation?


We investigate quantum vortex ring dynamics at scales smaller than the inter-vortex spacing in quantum turbulence. Through geometrical arguments and high-resolution numerical simulations, we examine the validity of simple estimates for the mean free path and the structure of vortex rings post-reconnection. We find that a large proportion of vortex rings remain coherent objects where approximately 75% of their energy is preserved. This leads us to consider the effectiveness of energy transport in turbulent tangles. Moreover, we show that in low density tangles, appropriate for the ultra-quantum regime, ring emission cannot be ruled out as an important mechanism for energy dissipation. However at higher vortex line densities, typically associated with the quasi-classical regime, loop emission is expected to make a negligible contribution to energy dissipation, even allowing for the fact that our work shows rings can survive multiple reconnection events. Hence the Kelvin wave cascade seems the most plausible mechanism leading to energy dissipation

Publication DOI: https://doi.org/10.1007/s10909-015-1287-9
Divisions: College of Engineering & Physical Sciences
College of Engineering & Physical Sciences > Systems analytics research institute (SARI)
Additional Information: The final publication is available at Springer via http://dx.doi.org/10.1007/s10909-015-1287-9
Publication ISSN: 1573-7357
Full Text Link: http://link.spr ... 0909-015-1287-9
Related URLs:
PURE Output Type: Article
Published Date: 2015-07
Published Online Date: 2015-03-20
Authors: Laurie, Jason (ORCID Profile 0000-0002-3621-6052)
Baggaley, Andrew W.



Version: Accepted Version

Export / Share Citation


Additional statistics for this record