Real-time temperature estimation for power MOSFETs considering thermal ageing effects


This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.

Publication DOI:
Divisions: College of Engineering & Physical Sciences
Additional Information: © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Uncontrolled Keywords: circuit topology,converters,monitoring,MOSFET switches,prognostics and health management,reliability testing,thermal management
Publication ISSN: 1558-2574
Last Modified: 13 May 2024 07:14
Date Deposited: 30 Jun 2016 12:15
Full Text Link: http://ieeexplo ... rnumber=6674100
Related URLs:
PURE Output Type: Article
Published Date: 2014-03
Published Online Date: 2013-11-22
Accepted Date: 2013-11-15
Submitted Date: 2013-05-08
Authors: Chen, Huifeng
Ji, Bing
Pickert, Volker
Cao, Wenping (ORCID Profile 0000-0002-8133-3020)



Version: Accepted Version

Export / Share Citation


Additional statistics for this record