Evaluating techniques to improve visual performance with and assessment of premium intraocular lenses

Abstract

Premium Intraocular Lenses (IOLs) such as toric IOLs, multifocal IOLs (MIOLs) and accommodating IOLs (AIOLs) can provide better refractive and visual outcomes compared to standard monofocal designs, leading to greater levels of post-operative spectacle independence. The principal theme of this thesis relates to the development of new assessment techniques that can help to improve future premium IOL design. IOLs designed to correct astigmatism form the focus of the first part of the thesis. A novel toric IOL design was devised to decrease the effect of toric rotation on patient visual acuity, but found to have neither a beneficial or detrimental impact on visual acuity retention. IOL tilt, like rotation, may curtail visual performance; however current IOL tilt measurement techniques require the use of specialist equipment not readily available in most ophthalmological clinics. Thus a new idea that applied Pythagoras’s theory to digital images of IOL optic symmetricality in order to calculate tilt was proposed, and shown to be both accurate and highly repeatable. A literature review revealed little information on the relationship between IOL tilt, decentration and rotation and so this was examined. A poor correlation between these factors was found, indicating they occur independently of each other. Next, presbyopia correcting IOLs were investigated. The light distribution of different MIOLs and an AIOL was assessed using perimetry, to establish whether this could be used to inform optimal IOL design. Anticipated differences in threshold sensitivity between IOLs were not however found, thus perimetry was concluded to be ineffective in mapping retinal projection of blur. The observed difference between subjective and objective measures of accommodation, arising from the influence of pseudoaccommodative factors, was explored next to establish how much additional objective power would be required to restore the eye’s focus with AIOLs. Blur tolerance was found to be the key contributor to the ocular depth of focus, with an approximate dioptric influence of 0.60D. Our understanding of MIOLs may be limited by the need for subjective defocus curves, which are lengthy and do not permit important additional measures to be undertaken. The use of aberrometry to provide faster objective defocus curves was examined. Although subjective and objective measures related well, the peaks of the MIOL defocus curve profile were not evident with objective prediction of acuity, indicating a need for further refinement of visual quality metrics based on ocular aberrations. The experiments detailed in the thesis evaluate methods to improve visual performance with toric IOLs. They also investigate new techniques to allow more rapid post-operative assessment of premium IOLs, which could allow greater insights to be obtained into several aspects of visual quality, in order to optimise future IOL design and ultimately enhance patient satisfaction.

Divisions: College of Health & Life Sciences > School of Optometry > Optometry
Additional Information: If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: premium IOL,misalignment,retinal projection,objective accommodation,aberrometry
Last Modified: 30 Sep 2024 08:25
Date Deposited: 22 Oct 2015 12:45
Completed Date: 2015-06-18
Authors: Dhallu, Sandeep

Download

Export / Share Citation


Statistics

Additional statistics for this record