Exploring oxidative modifications of tyrosine:an update on mechanisms of formation, advances in analysis and biological consequences


Protein oxidation is increasingly recognised as an important modulator of biochemical pathways controlling both physiological and pathological processes. While much attention has focused on cysteine modifications in reversible redox signalling, there is increasing evidence that other protein residues are oxidised in vivo with impact on cellular homeostasis and redox signalling pathways. A notable example is tyrosine, which can undergo a number of oxidative post-translational modifications to form 3-hydroxy-tyrosine, tyrosine crosslinks, 3-nitrotyrosine and halogenated tyrosine, with different effects on cellular functions. Tyrosine oxidation has been studied extensively in vitro, and this has generated detailed information about the molecular mechanisms that may occur in vivo. An important aspect of studying tyrosine oxidation both in vitro and in biological systems is the ability to monitor the formation of oxidised derivatives, which depends on a variety of analytical techniques. While antibody-dependent techniques such as ELISAs are commonly used, these have limitations, and more specific assays based on spectroscopic or spectrometric techniques are required to provide information on the exact residues modified and the nature of the modification. These approaches have helped understanding of the consequences of tyrosine oxidation in biological systems, especially its effects on cell signalling and cell dysfunction, linking to roles in disease. There is mounting evidence that tyrosine oxidation processes are important in vivo and can contribute to cellular pathology.

Publication DOI: https://doi.org/10.3109/10715762.2015.1007968
Divisions: College of Health & Life Sciences > School of Biosciences
College of Health & Life Sciences > Chronic and Communicable Conditions
College of Health & Life Sciences
Additional Information: This is an Accepted Manuscript of an article published by Taylor & Francis in Free Radical Research on 27/3/15, available online: http://www.tandfonline.com/10.3109/10715762.2015.1007968 Funding: EPSRC (EP/I017887/1).
Uncontrolled Keywords: antibody-dependent techniques,mass spectrometry,oxidising free radicals,Redox balance,time resolved techniques,tyrosine nitration,tyrosine oxidation,Biochemistry
Publication ISSN: 1029-2470
Last Modified: 27 May 2024 07:13
Date Deposited: 26 Aug 2015 20:36
Full Text Link: http://www.tand ... 62.2015.1007968
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2015
Published Online Date: 2015-03-27
Authors: Houée-Lévin, C.
Bobrowski, K.
Horakova, L.
Karademir, B.
Schöneich, C.
Davies, M.J.
Spickett, C.M. (ORCID Profile 0000-0003-4054-9279)



Version: Accepted Version

Export / Share Citation


Additional statistics for this record