Murdoch, Colin E., Shuler, Michaela, Haeussler, Dagmar J.F., Kikuchi, Ryosuke, Bearelly, Priyanka, Han, Jingyan, Watanabe, Yosuke, Fuster, José J., Walsh, Kenneth, Ho, Ye-Shih, Bachschmid, Markus M., Cohen, Richard A. and Matsui, Reiko (2014). Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization. Journal of Biological Chemistry, 289 (12), pp. 8633-8644.
Abstract
Glutaredoxin-1 (Glrx) is a cytosolic enzyme that regulates diverse cellular function by removal of GSH adducts from S-glutathionylated proteins including signaling molecules and transcription factors. Glrx is up-regulated during inflammation and diabetes. Glrx overexpression inhibits VEGF-induced endothelial cell (EC) migration. The aim was to investigate the role of up-regulated Glrx in EC angiogenic capacities and in vivo revascularization in the setting of hind limb ischemia. Glrx overexpressing EC from Glrx transgenic mice (TG) showed impaired migration and network formation and secreted higher level of soluble VEGF receptor 1 (sFlt), an antagonizing factor to VEGF. After hind limb ischemia surgery Glrx TG mice demonstrated impaired blood flow recovery, associated with lower capillary density and poorer limb motor function compared to wild type littermates. There were also higher levels of anti-angiogenic sFlt expression in the muscle and plasma of Glrx TG mice after surgery. Non-canonical Wnt5a is known to induce sFlt. Wnt5a was highly expressed in ischemic muscles and EC from Glrx TG mice, and exogenous Wnt5a induced sFlt expression and inhibited network formation in human microvascular EC. Adenoviral Glrx-induced sFlt in EC was inhibited by a competitive Wnt5a inhibitor. Furthermore, Glrx overexpression removed GSH adducts on p65 in ischemic muscle and EC, and enhanced nuclear factor kappa B (NF-kB) activity which was responsible for Wnt5a-sFlt induction. Taken together, up-regulated Glrx induces sFlt in EC via NF-kB -dependent Wnt5a, resulting in attenuated revascularization in hind limb ischemia. The Glrx-induced sFlt may be a part of mechanism of redox regulated VEGF signaling.
Publication DOI: | https://doi.org/10.1074/jbc.M113.517219 |
---|---|
Divisions: | College of Health & Life Sciences > School of Biosciences College of Health & Life Sciences > Aston Medical School |
Additional Information: | This research was originally published in Journal of Biological Chemistry. Murdoch, Colin E.; Shuler, Michaela; Haeussler, Dagmar J.F.; Kikuchi, Ryosuke; Bearelly, Priyanka; Han, Jingyan; Watanabe, Yosuke; Fuster, José J.; Walsh, Kenneth; Ho, Ye-Shih; Bachschmid, Markus M.; Cohen, Richard A.; Matsui, Reiko. Glutaredoxin-1 up-regulation induces soluble vascular endothelial growth factor receptor 1, attenuating post-ischemia limb revascularization. Journal of biological chemistry. 2014; 289:8633-8644. © the American Society for Biochemistry and Molecular Biology. Funding: National Institutes of Health Grants PO1 HL 068758, R37 HL104017, and NHLBI contract number HHSN268201000031C (RAC), and HL081587 (KW). |
Uncontrolled Keywords: | angiogenesis,animal models,glutathionylation,ischemia,NF-kappa B (NF-KB),Redox regulation,vascular endothelial growth factor |
Publication ISSN: | 1083-351X |
Last Modified: | 04 Nov 2024 08:35 |
Date Deposited: | 25 Nov 2014 15:30 |
Full Text Link: |
http://www.jbc. ... ent/289/12/8633 |
Related URLs: | PURE Output Type: | Article |
Published Date: | 2014-03-21 |
Published Online Date: | 2014-01-30 |
Authors: |
Murdoch, Colin E.
(
0000-0002-0274-819X)
Shuler, Michaela Haeussler, Dagmar J.F. Kikuchi, Ryosuke Bearelly, Priyanka Han, Jingyan Watanabe, Yosuke Fuster, José J. Walsh, Kenneth Ho, Ye-Shih Bachschmid, Markus M. Cohen, Richard A. Matsui, Reiko |