Hierarchized block wise image approximation by greedy pursuit strategies


An approach for effective implementation of greedy selection methodologies, to approximate an image partitioned into blocks, is proposed. The method is specially designed for approximating partitions on a transformed image. It evolves by selecting, at each iteration step, i) the elements for approximating each of the blocks partitioning the image and ii) the hierarchized sequence in which the blocks are approximated to reach the required global condition on sparsity.

Publication DOI: https://doi.org/10.1109/LSP.2013.2283510
Divisions: College of Engineering & Physical Sciences > School of Informatics and Digital Engineering > Mathematics
College of Engineering & Physical Sciences > Systems analytics research institute (SARI)
College of Engineering & Physical Sciences > School of Informatics and Digital Engineering > Computer Science
Additional Information: © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. Software for implementing the approach is available on http://www.nonlinear-approx.info/examples/node0.html Funding: EPSRC
Uncontrolled Keywords: high quality sparse image approximation with separable dictionaries,orthogonal matching pursuit for sparse representation of partitions in the wavelet domain
Publication ISSN: 1558-2361
Full Text Link:
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
http://ieeexplo ... rnumber=6624141 (Publisher URL)
PURE Output Type: Article
Published Date: 2013-12
Published Online Date: 2013-10-08
Authors: Rebollo-Neira, Laura (ORCID Profile 0000-0002-7420-8977)
MacIoł, Ryszard
Bibi, Shabnam



Version: Accepted Version

Export / Share Citation


Additional statistics for this record