Enhanced text spacing improves reading performance in individuals with macular disease

Abstract

The search by many investigators for a solution to the reading problems encountered by individuals with no central vision has been long and, to date, not very fruitful. Most textual manipulations, including font size, have led to only modest gains in reading speed. Previous work on spatial integrative properties of peripheral retina suggests that 'visual crowding' may be a major factor contributing to inefficient reading. Crowding refers to the fact that juxtaposed targets viewed eccentrically may be difficult to identify. The purpose of this study was to assess the combined effects of line spacing and word spacing on the ability of individuals with age-related macular degeneration (ARMD) to read short passages of text that were printed with either high (87.5%) or low contrast (17.5%) letters. Low contrast text was used to avoid potential ceiling effects and to mimic a possible reduction in letter contrast with light scatter from media opacities. For both low and high contrast text, the fastest reading speeds we measured were for passages of text with double line and double word spacing. In comparison with standard single spacing, double word/line spacing increased reading speed by approximately 26% with high contrast text (p < 0.001), and by 46% with low contrast text (p < 0.001). In addition, double line/word spacing more than halved the number of reading errors obtained with single spaced text. We compare our results with previous reading studies on ARMD patients, and conclude that crowding is detrimental to reading and that its effects can be reduced with enhanced text spacing. Spacing is particularly important when the contrast of the text is reduced, as may occur with intraocular light scatter or poor viewing conditions. We recommend that macular disease patients should employ double line spacing and double-character word spacing to maximize their reading efficiency. © 2013 Blackmore-Wright et al.

Publication DOI: https://doi.org/10.1371/journal.pone.0080325
Divisions: College of Health & Life Sciences > School of Optometry > Optometry
College of Health & Life Sciences > School of Optometry > Optometry & Vision Science Research Group (OVSRG)
College of Health & Life Sciences > Clinical and Systems Neuroscience
College of Health & Life Sciences
College of Health & Life Sciences > School of Optometry > Centre for Vision and Hearing Research
Aston University (General)
Additional Information: © 2013 Blackmore-Wright et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Uncontrolled Keywords: General Agricultural and Biological Sciences,General Biochemistry,Genetics and Molecular Biology,General Medicine
Publication ISSN: 1932-6203
Last Modified: 13 Jan 2025 08:14
Date Deposited: 03 Feb 2014 14:36
Full Text Link: http://www.plos ... al.pone.0080325
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2013-11-11
Authors: Blackmore-Wright, Sally
Georgeson, Mark A. (ORCID Profile 0000-0002-8173-9522)
Anderson, Stephen J. (ORCID Profile 0000-0002-5719-2846)

Download

[img]

Version: Published Version

License: Creative Commons Attribution


Export / Share Citation


Statistics

Additional statistics for this record