Su, Shi, Li, Jiangling, Lee, Graham, Sugden, Kate, Webb, David and Ye, Haitao (2013). Femtosecond laser-induced microstructures on diamond for microfluidic sensing devices applications. Applied physics letters, 102 (23),
Abstract
This paper reported a three-dimensional microfluidic channel structure, which was fabricated by Yb:YAG 1026?nm femtosecond laser irradiation on a single-crystalline diamond substrate. The femtosecond laser irradiation energy level was optimized at 100?kHz repetition rate with a sub-500 femtosecond pulse duration. The morphology and topography of the microfluidic channel were characterized by a scanning electron microscope and an atomic force microscope. Raman spectroscopy indicated that the irradiated area was covered by graphitic materials. By comparing the cross-sectional profiles before/after removing the graphitic materials, it could be deduced that the microfluidic channel has an average depth of ~410?nm with periodical ripples perpendicular to the irradiation direction. This work proves the feasibility of using ultra-fast laser inscription technology to fabricate microfluidic channels on biocompatible diamond substrates, which offers a great potential for biomedical sensing applications.
Uncontrolled Keywords: | atomic force microscopy, surface topography, surface morphology, scanning electron microscopy, Raman spectra, microfluidics, microfabrication, laser beam effects, high-speed optical techniques, crystal microstructure, diamond |
---|---|
Publication ISSN: | 0003-6951 |
Last Modified: | 17 Oct 2024 15:05 |
Date Deposited: | 01 Jul 2013 14:42 |
Published Date: | 2013-07-01 |
Authors: |
Su, Shi
Li, Jiangling Lee, Graham Sugden, Kate Webb, David Ye, Haitao |