A peak-clustering method for MEG group analysis to minimise artefacts due to smoothness

Abstract

Magnetoencephalography (MEG), a non-invasive technique for characterizing brain electrical activity, is gaining popularity as a tool for assessing group-level differences between experimental conditions. One method for assessing task-condition effects involves beamforming, where a weighted sum of field measurements is used to tune activity on a voxel-by-voxel basis. However, this method has been shown to produce inhomogeneous smoothness differences as a function of signal-to-noise across a volumetric image, which can then produce false positives at the group level. Here we describe a novel method for group-level analysis with MEG beamformer images that utilizes the peak locations within each participant's volumetric image to assess group-level effects. We compared our peak-clustering algorithm with SnPM using simulated data. We found that our method was immune to artefactual group effects that can arise as a result of inhomogeneous smoothness differences across a volumetric image. We also used our peak-clustering algorithm on experimental data and found that regions were identified that corresponded with task-related regions identified in the literature. These findings suggest that our technique is a robust method for group-level analysis with MEG beamformer images.

Publication DOI: https://doi.org/10.1371/journal.pone.0045084
Divisions: College of Health & Life Sciences
College of Health & Life Sciences > School of Psychology
College of Health & Life Sciences > Clinical and Systems Neuroscience
Aston University (General)
Additional Information: © Gilbert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Publication ISSN: 1932-6203
Last Modified: 06 Jan 2025 08:31
Date Deposited: 11 Jan 2013 12:33
Full Text Link: http://www.plos ... al.pone.0045084
Related URLs: http://www.scop ... tnerID=8YFLogxK (Scopus URL)
PURE Output Type: Article
Published Date: 2012-09-14
Authors: Gilbert, Jessica R.
Shapiro, Laura R. (ORCID Profile 0000-0002-3276-457X)
Barnes, Gareth R.

Download

[img]

Version: Published Version

License: Creative Commons Attribution


Export / Share Citation


Statistics

Additional statistics for this record