The development of an expert system for the identification anodic coating process defects as a contribution to the dissemination of anodizing technology


Initially this thesis examines the various mechanisms by which technology is acquired within anodizing plants. In so doing the history of the evolution of anodizing technology is recorded, with particular reference to the growth of major markets and to the contribution of the marketing efforts of the aluminium industry. The business economics of various types of anodizing plants are analyzed. Consideration is also given to the impact of developments in anodizing technology on production economics and market growth. The economic costs associated with work rejected for process defects are considered. Recent changes in the industry have created conditions whereby information technology has a potentially important role to play in retaining existing knowledge. One such contribution is exemplified by the expert system which has been developed for the identification of anodizing process defects. Instead of using a "rule-based" expert system, a commercial neural networks program has been adapted for the task. The advantages of neural networks over 'rule-based' systems is that they are better suited to production problems, since the actual conditions prevailing when the defect was produced are often not known with certainty. In using the expert system, the user first identifies the process stage at which the defect probably occurred and is then directed to a file enabling the actual defects to be identified. After making this identification, the user can consult a database which gives a more detailed description of the defect, advises on remedial action and provides a bibliography of papers relating to the defect. The database uses a proprietary hypertext program, which also provides rapid cross-referencing to similar types of defect. Additionally, a graphics file can be accessed which (where appropriate) will display a graphic of the defect on screen. A total of 117 defects are included, together with 221 literature references, supplemented by 48 cross-reference hyperlinks. The main text of the thesis contains 179 literature references. (DX186565)

Divisions: College of Engineering & Physical Sciences > School of Engineering and Technology > Mechanical, Biomedical & Design
Additional Information: Department: Department of Mechanical and Electrical Engineering If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either theirs or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: anodizing ,business economics,defects,hypertext,information technology,marketing ,neural networks
Last Modified: 08 Dec 2023 08:28
Date Deposited: 13 Sep 2011 07:36
Completed Date: 1995-01
Authors: Brace, A.W.


Export / Share Citation


Additional statistics for this record