Characterisation of a cavity transfer mixer as a chemical reactor


This research project examined the feasibility of using a cavity transfer mixer (CTM) as a continuous reactor to perform reactions between either solid or liquid reagents and polymer melt; reactions which have previously been typically carried out in batch reactor systems. Equipment has been developed to allow uniform and reproducible introduction of reagents into the polymer melt. Reactions have also been performed using batch processing equipment to enable comparison with the performance of the CTM. It was concluded that: a) there are certain reactions which cannot be carried out in a CTM, but which can be performed in a batch system such as a mill or a sigma blade mixer. This was found to be the case for some neutralisation reactions where the product was quasi crosslinked. b) the reactions that can be carried out in a CTM are performed more efficiently in a CTM than on a batch process. For example, when monomers were to be grafted onto polymers, this was more safely and efficiently performed in the CTM than in a mill or a sigma blade mixer. Residence time distributions (RTDs) for three CTMs were studied in order to gain an insight into the effect of CTM geometry on RTD, polymer melt flow pattern and reactor performance. A mathematical model has been developed to predict the influence of process parameters on RTD and the results compared with experimentally observed trends. The comparison was good. A programme of research has been drawn up to form the basis of an industrially based sponsored development project of the CTM reactor. This work programme was successfully marketed to companies with commercial interest in modified rubber and plastics as an integral part of the research programme of this thesis and the sponsored research programme has paralleled the work reported here.

Divisions: Aston University (General)
Additional Information: Department: Interdisciplinary Higher Degree. If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: cavity transfer mixer,chemical reactor
Last Modified: 28 Jun 2024 07:32
Date Deposited: 30 Jun 2011 08:13
Completed Date: 1989-10
Authors: Wall, R.R.


Export / Share Citation


Additional statistics for this record