Analysis of the intraocular pressure pulse


This thesis was concerned with investigating methods of improving the IOP pulse’s potential as a measure of clinical utility. There were three principal sections to the work. 1. Optimisation of measurement and analysis of the IOP pulse. A literature review, covering the years 1960 – 2002 and other relevant scientific publications, provided a knowledge base on the IOP pulse. Initial studies investigated suitable instrumentation and measurement techniques. Fourier transformation was identified as a promising method of analysing the IOP pulse and this technique was developed. 2. Investigation of ocular and systemic variables that affect IOP pulse measurements In order to recognise clinically important changes in IOP pulse measurement, studies were performed to identify influencing factors. Fourier analysis was tested against traditional parameters in order to assess its ability to detect differences in IOP pulse. In addition, it had been speculated that the waveform components of the IOP pulse contained vascular characteristic analogous to those components found in arterial pulse waves. Validation studies to test this hypothesis were attempted. 3. The nature of the intraocular pressure pulse in health and disease and its relation to systemic cardiovascular variables. Fourier analysis and traditional parameters were applied to the IOP pulse measurements taken on diseased and healthy eyes. Only the derived parameter, pulsatile ocular blood flow (POBF) detected differences in diseased groups. The use of an ocular pressure-volume relationship may have improved the POBF measure’s variance in comparison to the measurement of the pulse’s amplitude or Fourier components. Finally, the importance of the driving force of pulsatile blood flow, the arterial pressure pulse, is highlighted. A method of combining the measurements of pulsatile blood flow and pulsatile blood pressure to create a measure of ocular vascular impedance is described along with its advantages for future studies.

Divisions: College of Health & Life Sciences
Additional Information: Department: Neurosciences Research Institute If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: intraocular pressure pulse
Last Modified: 08 Dec 2023 08:34
Date Deposited: 22 Feb 2011 10:56
Completed Date: 2003
Authors: Morgan, Andrew J.


Export / Share Citation


Additional statistics for this record