Elasto-plastic impact of fine particles and fragmentation of small agglomerates


Surface deposition of dense aerosol particles is of major concern in the nuclear industry for safety assessment. This study presents theoretical investigations and computer simulations of single gas-born U3O8 particles impacting with the in-reactor surface and the fragmentation of small agglomerates. A theoretical model for elasto-plastic spheres has been developed and used to analyse the force-displacement and force-time relationships. The impulse equations, based on Newton's second law, are applied to govern the tangential bouncing behaviour. The theoretical model is then incorporated into the Distinct Element Method code TRUBAL in order to perform computer simulated tests of particle collisions. A comparison of simulated results with both theoretical predictions and experimental measurements is provided. For oblique impacts, the results in terms of the force-displacement relationship, coefficients of restitution, trajectory of the impacting particle, and distribution of kinetic energy and work done during the process of impact are presented. The effects of Poisson's ratio, friction, plastic deformation and initial particle rotation on the bouncing behaviour are also discussed. In the presence of adhesion an elasto-plastic collision model, which is an extension to the JKR theory, is developed. Based on an energy balance equation the critical sticking velocity is obtained. For oblique collisions computer simulated results are used to establish a set of criteria determining whether or not the particle bounces off the target plate. For impact velocities above the critical sticking value, computer simulated results for the coefficients of restitution and rebound angles of the particle are presented. Computer simulations of fracture/fragmentation resulting from agglomerate-wall impact have also been performed, where two randomly generated agglomerates (one monodisperse, the other polydisperse), each consisting of 50 primary particles are used. The effects of impact angle, local structural arrangements close to the impact point, and plastic deformation at the contacts on agglomerate damage are examined. The simulated results show a significant difference in agglomerate strength between the two assemblies. The computer data also shows that agglomerate damage resulting from an oblique impact is determined by the normal velocity component rather than the impact speed.

Divisions: College of Engineering & Physical Sciences
Additional Information: Department: Civil Engineering If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: elasto-plastic impact,fine particles,fragmentation of small agglomerates,elasto-plastic defonnation,surface adhesion,distinct element method,agglomerates
Last Modified: 08 Dec 2023 08:28
Date Deposited: 01 Jul 2011 08:07
Completed Date: 1995
Authors: Ning, Zemin


Export / Share Citation


Additional statistics for this record