Hughes, Nicholas P. and Lowe, David (2003). Artefactual structure from least squares multidimensional scaling. IN: Advances in Neural Information Processing Systems. Becker, S.; Thrun, S. and Obermeyer, K. (eds) GBR: Neural information processing systems foundation.
Abstract
We consider the problem of illusory or artefactual structure from the visualisation of high-dimensional structureless data. In particular we examine the role of the distance metric in the use of topographic mappings based on the statistical field of multidimensional scaling. We show that the use of a squared Euclidean metric (i.e. the SSTRESs measure) gives rise to an annular structure when the input data is drawn from a high-dimensional isotropic distribution, and we provide a theoretical justification for this observation.
Divisions: | College of Engineering & Physical Sciences > Systems analytics research institute (SARI) |
---|---|
Event Title: | 16th Annual Neural Information Processing Systems Conference, NIPS 2002 |
Event Type: | Other |
Event Dates: | 2002-12-09 - 2002-12-14 |
Uncontrolled Keywords: | Problem of illusory,artefactual structure,visualisation,high-dimensional structureless data,topographic mappings,squared Euclidean metric,high-dimensional isotropic distribution,Computer Networks and Communications,Information Systems,Signal Processing |
ISBN: | 0262025507, 9780262025508 |
Last Modified: | 05 Aug 2024 16:54 |
Date Deposited: | 11 Sep 2009 09:31 |
Full Text Link: | |
Related URLs: |
http://www.scop ... tnerID=8YFLogxK
(Scopus URL) |
PURE Output Type: | Conference contribution |
Published Date: | 2003 |
Authors: |
Hughes, Nicholas P.
Lowe, David |