Nelson, Shona M. (1993). Studies on biofilm growth of Pseudomonas aeruginosa PAO1. PHD thesis, Aston University.
Abstract
The development of in vitro techniques to model the surface-associated mode of growth is a prerequisite to understanding more fully the physiological changes involved in such a growth strategy. Key factors believed to influence bacterial persistence in chronic infections are those of the biofilm mode of growth and slow growth rate. Methods for controlling Pseudomonas aeruginosa biofilm population growth rates were investigated in this project. This microorganism was incompatible with the in vitro 47mm diameter membrane filter-based biofilm technique developed for the study of Escherichia coli and Staphylococcus epidermidis by Gilbert et al (Appl. Environ. Microbiol. 1989, 55, 1308-1311). Two alternative methods were designed. The first comprised a 25mm diameter cellulose acetate membrane filter supported in an integral holder. This was found to be limited to the study of low microbial population densities with low flow rates. The second, based on a cylindrical cellulose fibre depth filter, permitted rapid flow rates to be studied and allowed growth rate control of biofilm and eluted cells. Model biofilms released cells to the perfusing medium as they grew and divided. The viability of released cells was reduced during, and shortly after, inclusion of ciprofloxacin in the perfusate. Outer membrane profiles of biofilm populations exhibited at least two bands not apparent in planktonic cells grown in batch and chemostat culture, and LPS profiles of biofilm populations showed variation with growth rate. Cell surface hydrophobicity of resuspended biofilm cells varied little with growth rate, whilst it decreased markedly for cells released from the biofilms as growth rate increased. Cells released from the biofilm were more hydrophilic than their sessile counterparts. Differing growth rates, LPS profiles and hydrophobicity are proposed to have a bearing on the release of cells from the adherent population.
Divisions: | College of Health & Life Sciences |
---|---|
Additional Information: | Department: Pharmaceutical Sciences If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately. |
Institution: | Aston University |
Uncontrolled Keywords: | biofilm growth,Pseudomonas aeruginosa PAO1,growth rate,outer membrane,cell surface hydrophobicity |
Last Modified: | 30 Sep 2024 07:53 |
Date Deposited: | 24 Jan 2011 11:06 |
Completed Date: | 1993 |
Authors: |
Nelson, Shona M.
|