The surface of Pseudomonas aeruginosa in cystic fibrosis lung infection


Chronic experimental lung infection in rats was induced by intratracheal inoculation of agar beads containing Pseudomonas aeruginosa. Bacteria were recovered directly without subculture from the lungs of rats at 14 days post-infection and the outer membrane (OM) antigens were studied. The results indicated that bacteria grew under iron-restricted conditions as revealed by the expression of several iron-regulated membrane proteins (IRMPs) which could also be observed when the isolate was grown under iron-depleted conditions in laboratory media. The antibody response to P. aeruginosa OM protein antigens was investigated by immunoblotting with serum and lung fluid from infected rats. These fluids contained antibodies to all the major OM proteins, including the IRMPs, and protein H1. Results obtained using immunoblotting and enzyme-linked immunosorbent assay indicated that lipopolysaccharide (LPS) was the major antigen recognised by antibodies in sera from infected rats. The animal model was used to follow the development of the immune response to P. aeruginosa protein and LPS antigens. Immunoblotting was used to investigate the antigens recognised by antibodies in sequential serum samples. An antibody response to the IRMPs and OM proteins D, E, G and H1 and alao to rough LPS was detected as early as 4 days post-infection. Results obtained using immunoblotting and crossed immunoelectrophoresis techniques indicated that there was a progressive increase in the number of P. aeruginosa antigens recognised by antibodies in these sera. Both iron and magnesium depletion influenced protein H1 production. Antibodies in sera from patients with infections due to P. aeruginosa reacted with this antigen. Results obtained using quantitative gas-liquid chromatographic analysis indicated that growth phase and magnesium and iron depletion also affected the amount of LPS fatty acids, produced by P. aeruginosa. The silver stained SDS-polyacrylamide gels of proteinase K digested whole cell lysates of P. aeruginosa indicated that the O-antigen and core LPS were both affected by growth phase and specific nutrient depletion.

Divisions: College of Health & Life Sciences
Additional Information: If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: Pseudomonas aeruginosa,lung infection,iron,outer membrane proteins,lipopolysaccharide
Last Modified: 08 Dec 2023 08:20
Date Deposited: 24 Jan 2011 11:26
Completed Date: 1987
Authors: Cochrane, Doreen M.G.


Export / Share Citation


Additional statistics for this record