The chemistry of some organotellurium compounds

Abstract

Tbe formation of Pd(TeR)n and (CuTeR)n from the reaction between telluroesters and Pd(II)or Cu(II) suggested that these organa­tellurium reagents may be useful precursors of RTe- ligands in reactions with transition-metal substrates. Also the formation of telluronium salts Me2RTeI- from the reaction between telluroesters and methyl iodide, together with the above, confirm the cleavage of -cõ-Te bonds rather than -C-Te bonds. The formation of a carboxylic acid from the toluene solution of a ditelluride d palladium(O) complex in the presence of light oxygen (from air) is demonstrated. When the solvent employed is p-xylene an aldehyde is formed.The reaction proceeds via the free radical, RTeO, with Pd(PPh3)4 as a catalyst.It has also been shown that the oxidation of aldehydes to carboxylic acids is catalysed by ditelluride. Spin trapping experiments with PhCH=N(O)But (phenyl-t-butyl-nitrone) have provided evidence that the oxidative addition of an alkyl halide (RX=Mei, BunBr, BusecBr, ButBr, BrCH2-CH=CHCH2Br, and Br(CH2)4Br) to diphenyltelluride and reductive elimination of CH3SCN from Ph2(CH3)Te(NCS) proceeds via radical pathways. A mechanism is proposed for oxidative addition which involves the preformation of a charge transfer complex of alkyl halide and diphenyltelluride.The first step is the formation of a charge transfer complex, and the initial product of the oxidative addition is a "covalent" form of the tellurium(IV)compound. When the radical R is more stable, Ph2TeX2 may be the major tellurium(IV)product. The reaction of RTeNa (R=p-EtOC6H4, Ph) with organic dihalides X2(CH2)n (n=1,2,3,4) affords telluronium salts (n=3,4; X=Cl, Br) the nature of which is discussed.For n=l (X=Br, I)the products are formulated as charge transfer complexes of stoichiometry (RTe)2(CH2).CH2X2• For n=2, elimination of ditelluride occurs with the formation of an alkene. Some 125’Te Mõssbauer data are discussed and it is suggested that the unusually low value of 6 (7.58 mm.s-1 ) for  p-EtO.C6H4.Te)2(cH2)cH2Br2 relates to removal of 5's electronsfrom the spare pair orbltal via the charge transfer interaction. 125Te Mossbauer data for (p-EtO.C6H4)Te(CH2)4Br are typical of a tellurium (IV) compound and in particular ∇ is in the expected range for a telluronium salt. The product of the reaction of Na Te (C6H4.OEt), with 1,3-dibromopropane is, from the Mössbauer data, also a telluronium salt.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our takedown policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: chemistry,organotellurium compounds
Last Modified: 30 Sep 2024 07:36
Date Deposited: 13 Jan 2011 12:02
Completed Date: 1982
Authors: Monsef-Mirzai, Zahra

Download

Export / Share Citation


Statistics

Additional statistics for this record