Effects of environmental temperature on members of the mucorales


The following investigation characterises the interaction between temperature and growth in psychrophilic, mesophilic and thermophilic fungi in order to gain further insight into the physiological mechanisms underlying fungal growth at extreme temperatures. In the first part of the investigation, the effect of environmental temperature on the growth of vegetative mycelium and sporangiospore production and germination was considered in order to determine the cardinal temperatures of these activities in different thermal groups. Subsequent investigations of plasma membrane permeability suggested that plasma membrane structure and function may be significant in establishing both the upper and lower growth temperature limits characteristic of psychrophiles, mesophiles and thermophiles. Analysis of the plasma membrane fractions revealed significant differences in membrane phospholipid composition between these thermal groups and it is suggested that the differing cardinal growth temperatures characteristic of psychrophilic, mesophilic and thermophilic fungi reflect the temperature ranges over which these organisms exhibit levels of plasma membrane fluidity sufficient to maintain membrane-associated growth processes. In contrast, the membrane protein components appear uniform in both character and thermostability and are therefore unlikely to contribute to this phenomenon.

Divisions: College of Health & Life Sciences > School of Biosciences
Additional Information: If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our takedown policy and contact the service immediately
Institution: Aston University
Uncontrolled Keywords: environmental temperature,mucorales,Plasma Membrane,Phospholipids,Fungal Growth
Last Modified: 08 Dec 2023 08:16
Date Deposited: 10 Jan 2011 13:40
Completed Date: 1984
Authors: Hammonds, Peter


Export / Share Citation


Additional statistics for this record