Some aspects of the microbiological properties of polymers and composite materials


The interaction of microorganisms with glass-reinforced polyester resins(GRP), both under laboratory and simulated operating conditions, has been examined following reports of severl! fungal biodeterioration. Although GRP was not previously associated with substantial microbial growth, small amounts of microbial activity would pose problems for products associated with comestible materials. The microbiology of the raw materials was investigated, two ingredients were supportive to microbial populations whilst five materials were biostatic or inhibitory in their action. Production laminate was not susceptible to microbial deterioration or inhibitory to microbes. Incorporation of zinc stearate, one of the supportive ingredients, at 300% manufacturing level or drastic undercuring produced laminate capable of supporting microbial growth but only after a non-biotic stage of degradation. Study of the long-term population dynamics of cisterns of GRP and competitive materials under conditions simulating in-service conditions, monitoring microbial numbers within the experimental vessels and comparing with the populations of the supply water, suggests that the performance of GRP cisterns is slightly superior to conventional competitive materials. An investigation of the biological performance of GRP cisterns in an isolated area of known microbiological hazard was conducted. Severe biodeterioration had been experienced with Preform GRP articles moulded using different production techniques, but substitution of current GRP articles resulted in no recurrence of the problem. All attempts to establish the fungal isolate responsible for the phenomena in cisterns under controlled conditions failed. Scanning Electron Microscopy of GRP surfaces showed that although differences exist between current and Preform laminates, these could not satisfactorily explain the differences in service behaviour. These results and the results of the British Plastics Federation Expert Working Group interlaboratory study are discussed in relation to the original report of gross fungal biodeterioration and, to the design of future testing programmes for the products of industrial concerns.

Divisions: College of Health & Life Sciences > School of Biosciences
Additional Information: If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our takedown policy and contact the service immediately
Institution: Aston University
Uncontrolled Keywords: microbiological properties,polymers,composite materials,Biodeterioration , Polyester
Last Modified: 28 Jun 2024 07:13
Date Deposited: 10 Jan 2011 13:59
Completed Date: 1978
Authors: Waite, John


Export / Share Citation


Additional statistics for this record