The effects of changes in recycling patterns on United Kingdom resource consumption

Abstract

Recycling, substitution and product life extension are identified as significant factors contributing to an extension of the time to exhaustion of industrially Dnportant materials. A quantitative assessment of the significance of virtually all materials to the U.K. is made. Copper is identified as one of the most important materials deserving of further investigation into potential resource savings through increased recycling. The other factors listed above are accounted for in the modelling technique employed. United Kingdom copper flows are qualitatively and statistically described for the years 1949 - 1976. Less accurate statistics are developed for 1922 - 1948. Adaptive expectations type causal models of total, unalloyed, and alloyed copper demand are successfully constructed and are used to generate future scenarios. Evidence is demonstrated for a break in the historical link between U.K. copper demand and industrial production. Simple causal models of potential copper scrap supply are constructed and a comparison made with actual old scrap withdrawals. Accurate adaptive expectations type models of total scrap demand are developed, but no conclusion is reached about the price elasticity of scrap demand. Various scenarios of copper goods demand are forecast and their effect on copper scrap demand. The potential to recover up to an extra 100.000 tonnes/year of generally lower grade old scrap is identified. Policy options are examined and the following recommendations made: 1) A total investment of up to £67 million in secondary refining capacity by the year 2000 is needed. 2) The copper scrap content of copper bearing goods should be specified to aid recovery. 3) A U.K. copper scrap buffer stock scheme would be advantageous for the secondary copper industry. Finally the methodology used is summarised for potential application to other materials.

Divisions: College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry
Additional Information: Department: Chemical Engineering If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either theirs or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: recycling,scrap,modelling,policies
Last Modified: 30 Sep 2024 07:34
Date Deposited: 08 Dec 2010 10:10
Completed Date: 1981-11
Authors: Nott, Michael V.

Download

Export / Share Citation


Statistics

Additional statistics for this record