Hague, Robert A. (1998). The pre-treatment and pyrolysis of biomass for the production of liquids for fuels and speciality chemicals. PHD thesis, Aston University.
Abstract
Fast pyrolysis of biomass is a significant technology for producing pyrolysis liquids [also known as bio-oil], which contain a number of chemicals. The pyrolysis liquid can be used as a fuel, can be produced solely as a source of chemicals or can have some of the chemicals extracted and the residue used as a fuel. There were two primary objectives of this work. The first was to determine the fast pyrolysis conditions required to maximise the pyrolysis liquid yield from a number of biomass feedstocks. The second objective was to selectively increase the yield of certain chemicals in the pyrolysis liquid by pre-treatment of the feedstock prior to pyrolysis. For a particular biomass feedstock the pyrolysis liquid yield is affected by the reactor process parameters. It has been found that, providing the other process parameters are restricted to the values shown below, reactor temperature is the controlling parameter. The maximum pyrolysis liquid yield and the temperature at which it occurs has been found by a series of pyrolysis experiments over the temperature range 400-600°C. high heating rates > 1000°C/s; pyrolysis vapour residence times <2 seconds; pyrolysis vapour temperatures >400 but <500°C; rapid quenching of the product vapours. Pre-treatment techniques have been devised to modify the chemical composition and/or structure of the biomass in such a way as to influence the chemical composition of the pyrolysis liquid product. The pre-treatments were divided into two groups, those that remove material from the biomass and those which add material to the biomass. Component removal techniques have selectively increased the yield of levoglucosan from 2.45 to 18.58 mf wt.% [dry feedstock basis]. Additive techniques have selectively increased the yield of hydroxyacetaldehyde from 7.26 to 11.63 mf w.% [dry feedstock basis]. Techno-economic assessment has been carried out on an integrated levoglucosan production process [incorporating pre-treatment, pyrolysis and chemical extraction stages] to assess which method of chemical production is the more cost effective. It has been found that it is better to pre-treat the biomass in order to increase the yield of specific chemicals in the pyrolysis liquid and hence improve subsequent chemicals extraction.
Divisions: | College of Engineering & Physical Sciences > School of Infrastructure and Sustainable Engineering > Chemical Engineering & Applied Chemistry |
---|---|
Additional Information: | Department: Chemical Engineering If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately. |
Institution: | Aston University |
Uncontrolled Keywords: | pre-treatment and pyrolysis of biomass,production of liquids for fuels and speciality chemicals |
Last Modified: | 30 Sep 2024 07:59 |
Date Deposited: | 24 Nov 2010 12:01 |
Completed Date: | 1998 |
Authors: |
Hague, Robert A.
|