Instabilities, pattern formation, localized solutions, mode-locking and stochastic effects in nonlinear optical systems and beyond

Abstract

In this thesis the results of scientific research about dierent nonlinear phenomena with particular emphasis to photonic systems are presented. Works about dissipation induced modulation instabilities with applications for signal amplification in nonlinear optics and mode-locking in lasers constitute the main part of the thesis. The dissipa-tive instabilities studied are of two kinds, parametric instabilities induced by a periodic variation of spectral losses and instabilities induced by non varying but spectrally asym-metric losses. Although the main achievements are theoretical successful collaboration with experimentalists are reported too. Other results presented in this thesis concern a new fundamental theory of active mode-locking in lasers having a more general validity than Haus’ one and hence useful for describing mode-locked lasers with a fast gain dynamics such as semiconductor or quantum cascade lasers; the prediction of the novel theoretical model have been successfully compared with experimental findings. Theo-retical studies are also presented about collective phenomena, such as synchronization and localization, in coupled excitable lasers with saturable absorber and localized so-lutions on the non-vanishing background of the two-dimensional nonlinear Schr¨odinger equation with periodic potential: the Bogoliubov-de Gennes bullets.

Divisions: College of Engineering & Physical Sciences
Aston University (General)
Additional Information: Some pages of this thesis may have been removed for copyright restrictions. If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown policy and contact the service immediately (openaccess@aston.ac.uk)
Institution: Aston University
Uncontrolled Keywords: nonlinear optics,pulsed lasers,modulation instability ,excitability
Last Modified: 08 Dec 2023 08:54
Date Deposited: 02 May 2018 14:05
Completed Date: 2018
Authors: Perego, Auro (ORCID Profile 0000-0001-5211-6513)

Export / Share Citation


Statistics

Additional statistics for this record