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In this thesis the results of scientific research about different nonlinear phenomena
with particular emphasis to photonic systems are presented. Works about dissipation
induced modulation instabilities with applications for signal amplification in nonlinear
optics and mode-locking in lasers constitute the main part of the thesis. The dissipa-
tive instabilities studied are of two kinds, parametric instabilities induced by a periodic
variation of spectral losses and instabilities induced by non varying but spectrally asym-
metric losses. Although the main achievements are theoretical successful collaboration
with experimentalists are reported too. Other results presented in this thesis concern a
new fundamental theory of active mode-locking in lasers having a more general validity
than Haus’ one and hence useful for describing mode-locked lasers with a fast gain
dynamics such as semiconductor or quantum cascade lasers; the prediction of the novel
theoretical model have been successfully compared with experimental findings. Theo-
retical studies are also presented about collective phenomena, such as synchronization
and localization, in coupled excitable lasers with saturable absorber and localized so-
lutions on the non-vanishing background of the two-dimensional nonlinear Schrödinger
equation with periodic potential: the Bogoliubov-de Gennes bullets.
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Something to keep in mind

Le savant n’étudie pas la nature parce que cela est utile; il l’étudie parce qu’il y prend
plaisir et il y prend plaisir parce qu’elle est belle. Si la nature n’était pas belle, elle ne
vaudrait pas la peine d’être connue, la vie ne vaudrait pas la peine d’être vécue. Je ne

parle pas ici, bien entendu, de cette beauté qui frappe les sens, de la beauté des
qualités et des apparences; non que j’en fasse fi, loin de là, mais elle n’a rien à faire

avec la science; je veux parler de cette beauté plus intime qui vient de l’ordre
harmonieux des parties, et qu’une intelligence pure peut saisir.

H. Poincaré

Physics is like sex, sure it may give some practical results but that’s not why we do it.
R. Feynman
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mode is optimum. Parameters used are the same as in Fig.2.2. . . . . . 35
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3.3 a) The instability power gain obtained from the linear Floquet stabil-

ity analysis G = 2ln(Fm)/Λ being Fm the maximum Floquet multiplier

absolute value and Λ, equal twice the cavity length L, the period of dis-

sipation modulation: colored area corresponds to unstable modes while
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from numerical simulations. c) A comparison of the instability scal-

ing for experimental, numerical and stability analysis predictions. Full

numerical simulations agree well with the experiment while the stability
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3.4 a) a pulse train recorded experimentally after the interaction with the

right hand side FBG: in the inset the autocorrelation function of the
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pulses; in the inset neighbor excited cavity modes are highlighted. . . . 47
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is achieved. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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configurations: detuned and non chirped gratings a), non detuned but

chirped gratings b) and nor detuned neither chirped gratings c). Apart

from those variations, parameters used in the calculations are the same

as those used in Fig.3.3 a). . . . . . . . . . . . . . . . . . . . . . . . . . 49
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4.1 Laser setup; the unidirectional ring resonator consists of two normal

dispersion passive fibres (in black) and of two active ones (in green)

joined in alternate way. At the end of each passive fibre, spectral filters

are located with transmissivity profile respectively positively/negatively

detuned from the amplifiers frequency ωa (indicated with black vertical

arrows in the filter transmission function schematic). . . . . . . . . . . . 52

4.2 Spatio-temporal representation of a stable pulse train a): the power pic-

tures are taken at every round trip before interaction with one of the

spectral filters. In b) the pulse train is showed respectively before the

interaction with the spectral filter (blue line), after the filter (red line)

and after the amplifier (black line). c) A single pulse before the inter-

action with a spectral filter, parabolic and 2nd order Supergaussian fits

are denoted with dashed and dotted lines respectively. d) A single pulse

after the filter, a Gaussian fit is denoted with dashed line. Parameters

used for both active and passive fibres are α =0.046 km−1, while β2=2

ps2/km in the passive fibre and 65 ps2/km in the amplifier and γ = 1.2

W−1km−1 in the passive and 1 W−1km−1 in the active fibre. Remaining

parameters are g0 = 1011.3 km−1, Ωg ≈ 6 THz, Es=2 nJ, ∆ν = 115

GHz, σ = 127.3 GHz and T = 1. . . . . . . . . . . . . . . . . . . . . . . 53

4.3 a) The spatio-temporal dynamics in the collision regime; b) collision

among pulses (zoom from panel a) ). c) The spatio-temporal dynamics

of pulses stabilized by a detuning increment. Parameters in a) and b)

are as in Fig. 4.2 except for β2=28 ps2/km in the passive fibre, while

∆ν = 95.5 GHz. In c) and d) parameters are identical as in a) and b),

except for ∆ν = 102.6 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Spatio-temporal representation of the random operation regime: the in-

tracavity power is plotted for ∆ν = 124.5 GHz in a) and ∆ν = 125.4 in

GHz b) showing the random operation regime. Remaining parameters

are as in Fig.4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
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5.1 The concept of the gain through losses is summarized schematically here:

a CW radiation at frequency Ωp is injected in an optical fibre whose

attenuation profile depends on the frequency and is maximum around

Ω = Ωa in such a way that losses are not symmetric for signal and idler

waves. At the fibre output the field spectrum develops two sidebands

one centered at the frequency where losses are strong (Ωs ≈ Ωa) the

other one located around the symmetric mode Ωi ≈ −Ωa (idler). . . . . 59

5.2 The instability increment λm is plotted in a) and shows that spectral

modes damped by the distributed frequency dependent losses centered

at frequency Ωa/(2π) experience exponential gain, the process is more

efficient if losses are applied close to the pump frequency Ω=0. In b)

three spectra obtained from numerical simulations of Eq.5.46 for filters

having respectively Ωa=2π 0.9 (B), 2π 1.2 (R) and 2π 1.5 rad/ps (G)

are depicted. In the inset of b) the real part of the 2LS-filter suscepti-

bility is depicted with colours corresponding to the associated spectrum.

Parameters common to all the simulations are: P = 5W, fibre length

L=4 km, γ=15 (W km)−1, β2=1 ps2km−1, g = 5km−1 and γ⊥= 0.5

ps−1. In c) the spectral evolution along the fibre shows that the gain is

obtained for the spectral region where losses are applied (dashed white

line) and for the symmetrically located idler wave; higher harmonics ap-

pear when signal’s and idler’s amplitudes have grown substantially. In

c) parameters used are the same as for the blue spectrum in b). . . . . . 70

5.3 If losses are applied symmetrically to both signal and idler waves the

well known stabilization takes place. In a) the results of numerical sim-

ulations are shown: the spectrum |A(Ω/(2π))2| exhibits two “holes” in

correspondence to the losses maxima (losses profiles corresponding to 2

symmetrically located 2LSs is shown in the inset). In b) the prediction

of the stability analysis is shown. Parameters used are L = 4 km, P= 5

W, γ=15 (km W)−1 and β2=1 ps2km−1. The losses are described by 2

2LSs each one having g=3 km−1, γ⊥=0.5 ps−1 and Ωa = ±2π rad/ps. . 71
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5.4 The instability increment is plotted versus pump power a): the GTL

process is more efficient in the higher the pump power, this fact is con-

firmed by full numerical simulations; b): the three different plots of the

spectrum |A(Ω/(2π))2| have been obtained for the values of P indicated

with the corresponding colored dots on a). The same dynamics can be

observed by increasing the losses strength g: c)-d). Parameters used in

a) and b) are: fibre length L=4 km, γ=15 (km W)−1, β2=1 ps2km−1,

g = 8 km−1, Ωa=2π rad/ps and γ⊥ = 0.5 ps−1. Parameters used in

c) and d) are: fibre length L=8 km, γ=15 (km W)−1, β2=1 ps2km−1,

P = 5 W, Ωa=2π rad/ps and γ⊥ = 0.5 ps−1. . . . . . . . . . . . . . . . 72

5.5 The imaging of losses into gain: the recorded spectra after the evolution

of an input CW radiation propagating through a chain of identical fibre

spans each one followed by a filter. Three kind of filters, differing in

shape and spectral position have been considered and their reflectivity

profiles are shown in the inset. Spectra are related to the corresponding

filter by the same color convention. The shape of the filter is mapped

into a gain profile. Parameters used are the following: for the Gaussian

filter ωf=2π· 1.3 rad/ps, σf=2π·0.075 rad/ps; for the triangular filter

ωf=2π· 1.3 rad/ps, σf=2π·0.075 rad/ps; while for the Supergaussian

one ωf=2π· 1.3 rad/ps, σf=2π·0.075 rad/ps. Parameters common to all

three simulations are filter strength gf=0.2, P= 5 W, γ=15 (km W)−1

and β2=1 ps2km−1; the fibre span length between consecutive filters has

been chosen to be equal to 5 m and a propagation of 180 spans have

been simulated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Real and imaginary parts of the filters susceptibilities corresponding to

the filters used in Fig.5.5 are shown with continuous and dashed lines

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
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5.7 Pattern formation in the generalised Lugiato-Lefever equation: a) The

spectrum |Ψ(ω)|2 in log scale in the stationary state: peaks are separated

by ∆ω = 1 equal to the filter frequency shift from the pump. The first

excited mode is highlighted with a red dashed line, while the filter’s

profile is shown in the inset. b) the stable temporal pattern: a train

of pulses on the finite field background with a repetition rate given by

the frequency position of the filter ωf/(2π). In c) the stability of the

temporal pattern is shown: only a drift is present but the structures are

robust over the slow-time evolution. Parameters used are µ = 20, S=40,

∆=0, ωf=1 and σf=0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.8 a) The growth exponent λ is plotted versus mismatch parameter ∆k for

different values of the losses αs. By increasing losses strength we see

that gain decreases in the phase matched region but becomes possible

and increases outside the phase-matched area. In b) it is shown how the

amount of losses that maximizes the out of phase-matching gain depends

on the wavenumber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 The concept of self-induced Faraday instability laser is illustrated schemat-

ically: The spatially inhomogeneous gain profile arises naturally from the

solutions of the nonlinear laser equations a gives rise to an effective pe-

riodic gain (and consequently nonlinearity) landscape profile b) seen by

the generated photons that travel back and forth in the linear cavity.

The periodic gain and nonlinearity variations results in a parametric

forcing leading to self-pulsing with high repetition rate c). . . . . . . . . 81
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6.2 a) the instability G is plotted in the ω − δm plane instability takes place

for G > 0. In b) and c) G is plotted in the ω−Lm and in the ω− c plane

respectively. In d) an example of a stable pattern -pulse train- is shown:

blue and red lines correspond to the field modulus squared plotted at

even (blue) an odd (red) modulation periods respectively (this is similar

to what observed in longitudinally modulated ring resonators). Common

parameters used in all subplots are c = 5, s = 0.1, d = 1.18 · 10−4,

µav = 0.4, δµ = 5µav, Lm = 1.5 and b = 0. In a) δµ has been varied from

0 to 10µav, in b) Lm has been varied from 1 to 4 and in c) c has been

varied from 0 to 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3 a) The coexistence of Faraday patterns with spatiotemporal chaos; b)

a section of a); parameters used are: c=5, s = 0.2, d = 1.18 · 10−4,

µav = 0.8, δµ = 5µav, Lm = 1.5, b = 1.97 ·10−5 . In c) we can appreciate

the stabilization of the patterns by setting b = 0. . . . . . . . . . . . . . 83

6.4 a) The spatial inhomogeneity in the pump field increases by increment-

ing the input pump power Pin. b) The Faraday instability gain: in-

stability corresponds to the colored area. Black dots denote the peak

position of the power spectrum in the stationary state obtained in nu-

merical simulations. c) The field spectrum modulus squared. Faraday

instability induced self-pulsing obtained from numerical simulations of

Eqs.6.2: stable d) and collision dynamics e). Parameters used are γp=3

(W km)−1, γs=2.57 (W km)−1, gp=1.51 (W km)−1, gs=1.3 (W km)−1,

αs=0.8 km−1, αp=0.5 km−1, fibre length L = 0.37 km. The cavity mir-

rors are modeled as having Supergaussian profile of order 3 (without

chirp) reflecting at the Stokes wavelength, with a width of about 1nm.

For subplots c), d) and e) the pump power used is Pin=1.5 W. . . . . . 85
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7.1 In a) the pulses obtain from the coherent master equation are compared

with HME for different values of TG showing an asymmetry arising for

small TG. In b) the corresponding value of the fast gain is shown: g(τ)

increases in magnitude for fast gain media, e.g. by decreasing TG. In c)

applying a detuning we can optimize the pulse intensity counteracting

the gain medium force that pushes the pulse away from the modulator

minimum losses position; a very slight asymmetry in the pulses still

persists. Parameters used are ΩG = 1.1 · 1012 s−1, tR = 1.155 · 10−9s,

l = 0.6, M = 1.2, r = 1.3. The detuning ∆ applied in c) to center the

pulses is respectively 283.32 kHz for TG = 10−9 s, 69.5 kHz for TG = 10−8

s, 5.75 kHz for TG = 10−7s and 0 for TG = 10−6s. . . . . . . . . . . . . . 98

7.2 The experimental setup: a semiconductor gain medium (OA) is used as

gain medium and the extended cavity is provided by an optical fibre for

a total cavity length of 9 m, the modulator is denoted by the acronym

(MZM). An isolator guarantees the unidirectionality of the ring cavity. . 99

7.3 The intensity of the stable pulse in the stationary state obtained nu-

merically a) is depicted for different values of the modulators detuning

∆ and is compared with experimental results b). In both cases only

the detuning range where stable pulses exist has been plotted showing

a good agreement between theory and experiment. The theory captures

the essential features of mode-locking observed in experiment: asymmet-

ric effect of the detuning, pulse with the bump, typical pulse duration

and range of detuning where pulses are stable. Parameters used in the

simulations are ΩG = 1.1 · 1012 s−1, tR = 1.155 · 10−9s, l = 0.6, M = 1.2,

r = 1.3 and TG = 10−9 s. . . . . . . . . . . . . . . . . . . . . . . . . . . 101
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7.4 Three paradigmatic pulse shapes observed experimentally a), b) and c)

are compared with their theoretically predicted counterparts: d), e) and

f). A good agreement is present concerning the shape of the pulses,

while the duration is overestimated in theory in d) and e). The ordinate

axes in experimental data refer to the photocurrent measured by the

detector and the deep after the right pulse tail in c) is an effect due to

the detector. Parameters used in the simulations are ΩG = 1.1 · 1012

s−1, tR = 1.155 · 10−9s, l = 0.6, M = 1.2, r = 1.3 and TG = 10−9 s; ∆

has been taken equal to -115.03, 57.512 and 283.32 kHz in d), e) and f)

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5 The normalized intensity of the most symmetric experimental pulse with

Gaussian and hyperbolic secant fit is depicted in a): the hyperbolic se-

cant fits better the experimental results, but cannot account for the

skewness. In b) the normalized intensity calculated theoretically is fit-

ted by an hyperbolic secant function. In c) the normalized intensities

obtained in experiment and in the theory are compared (plot in linear

scale). In d) the same quantities plotted in c) are represented in loga-

rithmic scale to emphasize the skewness. The data used correspond to

Fig.7.4 c) and f). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.1 Excitability in semiconductor laser with saturable absorber: a quasi-

periodic spiking activity is observed. Increasing the noise strength the

repetition rate is enhanced and the intensity of the pulses is reduced.

Parameters used are A=6.5, B=5.8, a=1.8, γ = 10−3 while D=0.004,

0.015 e 0.04 in a), b) and c) respectively. . . . . . . . . . . . . . . . . . . 106

8.2 The intensity I is plotted versus gainG for many firing events: after firing

(large value of I) the refractory time is determined by the recovery time

of the gain. For stronger noise intensity D (values shown in the inset),

the refractory time is reduced and the pulses peak intensity exhibit larger

fluctuations. Parameters used are A=6.5, B=5.8, a=1.8 and γ = 10−3. . 106

8.3 The normalized jitter R exhibits a minimum when plotted versus noise

strength D. Parameters used are A=6.5, B=5.8, a=1.8 and γ = 10−3 . 107
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8.4 a): an example of intensity evolution for 5 uncoupled lasers, different

colors correspond to different lasers, obtained for D = 0.015 and K = 0.

In b) the simulation results obtained with the same parameters as in a)

but with K = 0.2 shows a clear example of temporal synchronization.

c) and d): zooms of the regions indicated by a dashed-line box for the

uncoupled a) and coupled b) configuration respectively. . . . . . . . . . 109

8.5 log10(S) is plotted in the (K-D) plane for various values of n, panels a)-

d). The minimum synchronization theoretically achievable corresponds

to log10(S) ≈ −0.69. The intensity linear correlation coefficient ρI is

depicted, panels in panels e)-h). . . . . . . . . . . . . . . . . . . . . . . . 110

8.6 The analogous of Fig.8.5 but for a population of nonidentical lasers.

The large inhomogeneity among different lasers implies, as intuitively

expected, the necessity of a stronger coupling in order to achieve the

same degree of synchronization compared to the case of identical lasers. 111

8.7 The normalized jitter R, panels a)-d), and intensity peak standard de-

viation σI , panels e)-h), are plotted as function of coupling strength K

and noise intensity D in left and right column respectively for values of n

indicated on the figures. Array-enhanced coherence resonance is observed.112

8.8 The spatiotemporal dynamics corresponding to the diffusive regime: the

excitability wave emanates from the center of the array where the noise

is added. Field intensity is plotted versus laser (x-axis) and time (y-axis)

in (a). In (b) the corresponding phase evolution is shown: a strong phase

locking occurs in correspondence to every firing event. Parameters used

are D = 0.1 and Ki,i±1 = K0 = 0.1 ∀i. . . . . . . . . . . . . . . . . . . . 114

8.9 When the disorder is turned on with a sufficient strength in the laser

array, excitability becomes localized as the spatio-temporal dynamics

depicted in (a) shows. The average intensity across the array averaged

over the “firing-events” of 150 multiple realizations of the disorder in

the coupled lasers’ system, is fitted by an exponential function (Eq.8.7),

dashed red line in (b). Parameters used are r = 0.4, D = 0.1 and K0 = 0.5.115
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8.10 The phase transition from diffusive to localized regime is illustrated by

plotting the average localization exponent 〈α〉 and relative standard de-

viation versus the randomness strength r, for laser chains having different

number of elements n (see legend). The amount of randomness necessary

to achieve localization decreases by increasing the array size. Each point

has been calculated averaging over five values of α. Each α has been

obtained from 150 different realizations of the disorder with the same

strength r. The remaining parameters used are the same as in Fig.8.9. . 116

8.11 The average localization exponent is plotted versus the noise strength D

for n = 150 coupled lasers. Each point, and relative standard deviation,

is the result of an average over 20 different values of 〈α〉 each one obtained

through 150 realizations of the disorder and with the same value of D.

Parameters used are K0 = 0.5 and r = 0.4. . . . . . . . . . . . . . . . . 117

9.1 In a) the isofrequency lines of the Bogoliubov excitations are presented

for different values of ω (indicated on the plot). Increasing ω we have

first the diffracting regime (ω = ωu), then the aparence of the bandgaps

with the flattening of the isofrequency curves for ω = ωsc and later

on the change of curvature of the isofrequency lines with corresponding

focussing regime (ω = ωf ). The suffix sc stands for self-collimation and

wave-packets with a wavevector corresponding to this value experience

no diffraction upon propagation. In b) the dispersion relation ω versus

k|| is shown: the red arrow indicates the longitudinal inflection point,

wave-packets with wavevectors centered around this point experience no

dispersion. The parameters used are m = 1, qx = qy = 6.67, c = −0.05

and A0 = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
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9.2 In a) the snapshots of the temporal evolution of the linear Bogoliubov-de

Gennes excitations are shown (the black arrows denote the propagation

direction). The bullet width, both in the longitudinal and transverse

direction, remains unchanged upon propagation, while if the wavevector

is not choosing to satisfy the bullet condition then excitations wave-

packets broaden significantly in time b). In c) a 1-D section of the

initial conditions of the simulations and the results after an evolution for

t = 150 in both cases of spreading pulse and linear bullet. Parameters

used are: m = 1, qx = qy = 6.67, A0 = 0.5, c = −0.05, a0 = 0.05 and

initial widths w⊥ = w|| = 18.5. The spreading pulse has wavevector

~k0 = 1.45(x̂+ ŷ), while for the linear bullet ~k0 = 2.45(x̂+ ŷ). . . . . . . 124

9.3 In a) the spreading pulse at t = 0 and after temporal evolution (2-D

plot and 1-D section) is compared with the linear Bogoliubov-de Gennes

bullet b). The latter remains unchanged. Parameters considered are

A0 = 0.5, m = 1, qx = qy = 6.67, c = −0.05, a0 = 0.05, and w⊥ = w|| =

18.5; ~k0 = 1.45(x̂+ ŷ) and ~k0 = 2.45(x̂+ ŷ) for the spreading pulse and

the linear bullet respectively. . . . . . . . . . . . . . . . . . . . . . . . . 124

9.4 In a) the intensity peaks values of the nonlinear bullets are depicted

as a function of the bullet width for various values of the nonlinearity

coefficient c depicted above. In b) the same results are shown in log-

arithmic scale. In c) the snapshots of the temporal evolution of one

nonlinear bullet are shown, the white arrows denote the propagation di-

rection. Parameters used in the simulations are: a0 = 0.2, c = −0.15,

w⊥ = w|| = 21, m = 1, qx = qy = 6.67, A0 = 0.5 and ~k0 = 2.48(x̂+ ŷ). . 125

9.5 In a) a spreading pulse at t = 0 and after temporal evolution (2-D plot

and 1-D section) is compared with the nonlinear Bogoliubov-de Gennes

bullet b). The latter remains unchanged upon propagation. Simulations

have been performed with the following set of parameters: A0 = 0.5,

m = 1, qx = qy = 6.67, c = −0.15, a0 = 0.2, and w⊥ = w|| = 19;

~k0 = 1.45(x̂+ ŷ) and ~k0 = 2.48(x̂+ ŷ) for spreading pulse and nonlinear

bullet respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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9.6 The variance of the peak intensity V ar(Ip) of the bullet for long intervals

of propagation (t ≈ 100) is plotted as a function of the initial noise

intensity n2 both in the case of linear bullets a), and for nonlinear bullets

b). The respective insets show the cross-section of the bullets intensity

before propagation (blue) and after propagation (red). The parameters

for the bullets are the same as in Fig.9.2 and Fig.9.4 for the linear and

nonlinear bullets respectively. Dashed lines correspond to linear fits.

Dashed black arrows indicate the bullets at the initial (blue plots) and

final (red plots) stage of the evolution for the corresponding value of

added noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.7 The variance of the peak intensity of the bullets, V ar(Ip), in the pres-

ence of a continuously added noise of constant amplitude, averaged over

regular subintervals of the propagation time t. The amplitudes for the

noise were n = 0.0002 and n = 0.001 for the linear and nonlinear bullets

respectively. The total propagation time in both cases is t ≈ 95 and

the dots in the plots correspond to the variance calculated on temporal

intervals having length ∆t = 4.75. All the parameters for the bullets

are the same as in Fig.9.2 (linear) and Fig.9.4 (nonlinear). Dashed lines

correspond to linear fits. . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.8 Focussing dynamics of a Bogoliubov-de Gennes excitations wave-packet,

the white arrows denote the propagation direction. Parameters used are

m = 1, qx = qy = 6.67, c = −0.1, A0 = 0.5, a0 = 1.1 and ~k0 = 2.7(x̂+ ŷ);

the initial widths are w⊥ = 10 and w|| = 14 respectively. . . . . . . . . . 129
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1 Introduction

In this thesis the results of three years of active research in nonlinear dynamics in

general and in photonic systems in particular, with special interest to localized and

pulsed solutions in lasers are presented. Such research activity has been carried out

analytically and with help of numerical simulations; in some cases joint research works

with experimentalists have been done too. The core of the thesis consists in a series

of works on modulation instabilities induced by dissipative effects, the key feature of

these instabilities is that, due to nontrivial nonlinear dynamics, the damped modes,

counterintuitively exhibit exponential amplification. Dissipation induced modulation

instabilities can occur both in presence of suitable modulation of the losses as well as

in the case of stationary losses profile. Potential impact of those instabilities and of the

associated pattern formation processes, both concerning signal amplification as well as

mode-locking in lasers, will be discussed. To mode-locking is linked another research

path I undertook concerning the derivation of a more fundamental theory for active

mode-locking in lasers which accounts properly for coherent effects due to the atomic

polarization and leads to a novel mathematical model more general than Haus’ master

equation. The predictions of the new coherent master equation have been verified ex-

perimentally and the results are summarized in a dedicated Chapter.

Pulsed solutions in lasers are not only due to mode-locking dynamics, some spontaneous

Q-switching instabilities can lead to self-pulsations in lasers with saturable absorber due

to the action of external perturbations. Lasers exhibiting those properties are said to be

excitable in close analogy with the spiking activity of the neuronal cells. Excitable lasers

are driving an emerging research direction closely linked to neuromorphic photonics.

Here some preliminary results concerning collective phenomena in coupled excitable
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lasers, ranging from synchronization to exponential localization of excitability due to

disorder are discussed.

Finally, as the title of the thesis suggests, contributions extending “beyond” nonlinear

optics are present too. In a first sense some of the works on modulation instabilities,

despite I focussed on their nonlinear optics contextualization, may have applications

outside of such research field due to the mathematical isomorphism that links evolution

equation for dispersive and weakly nonlinear wave interaction across the most diverse

areas of physics.

In a second sense some contributions presented here are about spatiotemporally local-

ized solutions in nonlinear systems described by a two dimensional nonlinear Schrödinger

equation. Such solutions can be potentially observed in Bose-Einstein condensates,

however the analogue of a candidate system in photonics should still be individuated.

If we want to find a way to classify the results presented in this thesis, we can say

that the topics investigated mathematically orbitate around generalised and more or

less complicated forms of the nonlinear Schrödinger equation with special emphasis on

instabilities, generation of pulses and localized solutions.

Since many different works and research topics are presented in this thesis, in order

not to employ cumbersome notations, the meaning of the symbols used are defined

consistently within each Chapter.
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2 Dissipative Faraday instability in the
complex Ginzburg-Landau equation

2.1 General introduction to modulation instabilities

Modulation instabilities are ubiquitous processes occurring in a great variety of natu-

ral and engineering systems. Under certain conditions homogeneous stationary states

are unstable and the amplitudes of modulation modes experience exponential growth

starting from noise. In this linear stage the amplitudes of the modulation modes are

still much smaller than the amplitude of the homogeneous mode and the dynamics

can be described by the linearized equations. When the modulation modes amplitudes

become comparable in magnitude with the homogeneous mode, then the dynamics be-

comes nonlinear and when the growth saturates pattern formation can occur.

In the linear regime of the instabilities, is in general much easier to obtain an analytical

description of the dynamics, while things become more complicated in the nonlinear

stage, there numerical simulations are of great help.

It is also important to mention that, thanks to the existence of universal models that

describe weakly nonlinear dynamics independently on the particular systems, results

obtained in those paradigmatic models have widespread validity and impact in many

physical systems. The latter fact also suggests a potential fruitful collaboration be-

tween different research areas.

It is probably very difficult to provide a rigorous mathematical classification of mod-

ulation instabilities in physics. It is however instructive to mention at least some

paradigmatic instabilities that are both relevant in themselves but also are important

to better emphasize and understand distinctive features of the novel modulation insta-

bilities that are described in this thesis.

Faraday instability is probably the oldest pattern forming instability ever studied and
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occurs when one parameter of a spatially extended system is periodically modulated

in time. Originally it was observed in a vertically shaken mercury layer, where the

excitation of surface waves was achieved as a consequence of the periodic modulation

of the gravitational force [1, 2].

It has been generalised to nonlinear fibre optics where the parametric modulation is

applied in space exploiting the fact that for optical fibres we have the evolution in space

of a field defined in time, which is the exact opposite of what happens in spatially ex-

tended systems. Hence Faraday instabilities in optical fibres lead in general to pattern

formation in time.

The Benjamin-Feir instability is probably one of the most known examples of modu-

lation instabilities: it occurs for the homogeneous state of the nonlinear Schrödinger

equation when phase matching conditions between the homogeneous mode wave and

two spectral sidebands are satisfied [3, 4, 5]. Due to the universality of the nonlinear

Schrödinger equation the Benjamin-Feir instability also sometimes simply called “mod-

ulation instability”, has been observed in a great variety of physical systems: fluids,

plasmas, Bose-Einstein condensates and nonlinear optics. In fibre optics, it occurs due

to the interplay of Kerr effect and anomalous dispersion. Such instability has a partic-

ular relevance also in connection to the formation of solitons.

Another paradigmatic example that is worth mentioning is constituted by the Tur-

ing instability[6]: Alan Turing showed that such instability occurs in reaction-diffusion

models for two coupled nonlinear equations describing spatially extended systems where

the two key ingredients are present: local self-enhancement and lateral inhibition. Local

self-enhancement is provided by a presence of nonlinearity that enhances the concen-

tration of one the two fields in space, while the second field needs to be fast diffusing.

Turing instability was particularly relevant in understanding morphogenesis process

and pattern formation in biological systems. There have been attempts to generalise

Turing instability to nonlinear optics. Lugiato and Lefever in the seminal paper where

they presented for the first time the equation that bears their name, mentioned that

the short wavelength instability (instability spectrum detached from the zero mode)

exhibited by the homogenous state of such equation is the nonlinear optics analogous

of the Turing instability[7]. In the Lugiato-Lefever equation diffusion is replaced by

diffraction and nonlinearity is due to a self-phase modulation effect; a temporal Turing
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instability has been predicted [8] and observed experimentally too [9]. Other attempts

of finding analogies of the Turing instability in nonlinear optics have been performed

[10], for instance considering a laser where the carrier diffusion in the gain medium

plays the role of the lateral inhibiting field [11].

In nonlinear optics, modulation instabilities have attracted great interest. This in-

terest is motivated by the following reasons: from the fundamental research point of

view studying modulation instabilities is a paramount important topic because they are

the key and necessary ingredients for the pattern formation and self-organization pro-

cesses in nonlinear systems. Furthermore modulation instability is in general associated

to soliton formation in integrable equations. From the more practical and technological

point of view, instabilities are sometimes seen as detrimental effects that impair the de-

sired operation of some optical systems, understanding their genesis and development

paves the way to their suppression and control. However only a limited vision will con-

sider instabilities as purely detrimental effects. An important research paradigm sees

instabilities as important resources for solving practical problems in photonics tech-

nologies. Some reasons in this sense are the following: In the linear stage modulation

instabilities are associated to exponential amplification of certain parts of the spectrum,

controlling and engineering those spontaneous growth processes is of interest in the de-

sign of amplifiers of optical signals. The latter is relevant in various fields of applied

optics, among others in optical communications where flexible and broadband amplifi-

cation schemes are currently required. Some examples in this sense are the fibre optics

parametric amplifier that exploits the Benjamin-Feir instability to amplify a broad band

spectral region much larger than the one covered by the Erbium doped amplifiers cur-

rently used in optical telecommunications[12, 13]. In the nonlinear stage of modulation

instabilities the formation of stable coherent structures can occur: periodic pulse trains

are temporal patterns that beside the purely theoretical and scientific understanding

of self-organization process are relevant for applications. In this respect modulation

instabilities could be practically used as key ingredients for achieving mode-locking or

generation of pulses. Among some of the fruits of this research direction is worth men-

tioning the “modulation instability laser” (again based on the Benjamin-Feir instability)

[14, 15], and the spontaneous mode-locking induced by the Risken-Nummedal-Graham-

Haken instability [16]. The Risken-Nummedal-Graham-Haken instability is due to the
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coherent light-matter interaction in the laser gain medium. The coherent dynamics

properly leads to the so called Rabi-splitting of the otherwise lorentzian gain curve.

The generated spectral sidebands lead in this case to a spontaneous self-pulsing (har-

monic mode-locking) [17]. A small remark on the notation is necessary here: across

this thesis the expression “self-pulsing” will be used generically, meaning that certain

pulsations arise spontaneously in a given optical system, this will not be linked to any

particular case of pulsations generated precisely through Hopf bifurcations or to the

phenomenon of optical bistability.

In this thesis some results will be presented about three novel kinds of modulation

instabilities that are relevant both for signal amplifications as well for the generation

of pulses in lasers. The trait-d’union of those works is the central role played by the

dissipation as instability mechanism. Despite the results presented in this thesis are

mainly related to the concept of Faraday instability and we will expand the discussion

in this direction, we will also from time to time comment more in detail about the other

instabilities we have briefly mentioned in this introduction when it will be useful for

the clarification and explanation of the main results.

2.2 Classical Faraday instability: from the pendulum to

spatially extended systems and optical fibres

The aim of this section is to provide the description of the dissipative Faraday (paramet-

ric) instability induced by periodic zig-zag modulation of spectral losses in the complex

Ginzburg-Landau equation. It is at first however necessary to introduce the concept of

parametric instability in spatially extended systems and in nonlinear fibre optics and

to review the main results obtained up to now in this stimulating research field.

Parametric instabilities are a well known phenomenon that has been studied extensively

for more than one century in the most diverse research areas in physics and beyond.

They are instabilities developing thanks to the periodic modulation of one system’s

parameter. Their first study is due to Michael Faraday [1] back in 1831. As it has been

briefly mentioned in the previous section, he verified experimentally that the surface

of vertically shaken mercury layer exhibits the formation of waves oscillating with half

the forcing frequency. In this particular case, gravity is the periodic in time modulated
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parameter that destabilizes the homogeneous state of the system giving rise to the

generation of the wave-pattern on top of the fluid. For this historical reason we will

use interchangeably the denominations parametric instability and Faraday instability

across the manuscript.

The instability generated by the external forcing is indeed related to the existence of

the so-called parametric resonance. The most simple system where parametric reso-

nance occurs is probably the pendulum. Let’s consider a pendulum whose length is

periodically modulated in time with angular frequency ωp. Then it is possible to show

that the pendulum will start to oscillate with a frequency equal to ωp/2. Oscillations

with frequencies nωp/2, with n integer, will also be excited but with amplitudes mono-

tonically decreasing for increasing n. The synchronization actually occurs not for a

single frequency but for a band whose width is proportional to the the strength of the

forcing [18]. Faraday instabilities have been studied extensively in spatially extended

systems, including fluids [1, 2], granular media [19], plasmas [20], chemical reactions

[21], and Bose-Einstein Condensates [22, 23]. Those spatially extended systems can be

considered in general as sets of nonlinear oscillators coupled to their neighbors through

nonlocal terms which are in general differential operators (the Laplacian being probably

a paradigmatic example being very generally related to diffusion processes). In spa-

tially extended systems, the parametric resonance condition determines the frequency

of the amplified modulation modes via the dispersion relation of the mode which will

depend on the various parameters of the particular system considered [24].

We will now introduce the concept of parametric instabilities in fibre optics and later

comment on how the parametric resonance condition can be applied to characterize the

excited modes.

The propagation of light in single mode optical fibres is described by the nonlinear

Schrödinger equation (NLSE) [25] (a full derivation will be given in Chapter 5):

∂A

∂z
= −iβ2

2
∂2A

∂t2
+ iγ|A|2A (2.1)

where A is the electric field slowly varying envelope, β2 the group velocity dispersion

coefficient, γ the nonlinearity coefficient, z is the spatial coordinate along the fibre and
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t is time in a reference frame co-moving with a radiation pulse. It is evident that the

mathematical structure of Eq.2.1 is identical with that of the Gross-Pitaevskii equation

for a Bose-Einstein condensate in the mean-field limit [26]:

i~
∂ψ(r, t)
∂t

= − ~2

2m∇
2ψ(r, t) + a|ψ(r, t)|2ψ(r, t) + V (r)ψ(r, t). (2.2)

In Eq.2.2 ψ is the macroscopic wave function of the condensate defined in space r and

evolving in time t, m is the mass of the atom specie the condensate is made of, a mea-

sures the atomic interaction, V is a potential and ~ is the reduced Planck’s constant.

Now by analogy, if the periodic in time modulation of one parameter of Eq.2.2, for

instance the interaction a, could be a sinusoidal function with angular frequency ωf

and hence a = a0cos(ωf t), will trigger the growth of modulation modes with wavenum-

ber k and the corresponding pattern formation in space, then a periodic modulation

of one parameter of Eq.2.1 in space with periodicity given by kf , say for instance

β2 = βav + βmcos(kfz), where βav and βm are respectively the average dispersion and

the dispersion modulation depth, will generate the formation of a pattern in time with

angular frequency ω determined by the dispersion relation.

A first order approximation of the scaling of the Faraday instability excited frequencies

for the NLSE in average normal dispersion can be obtained by applying the parametric

resonance condition in the following way: the weak amplitude excitations (Bogoliubov-

de Gennes modes) oscillating on top of the continuous wave (CW) solution with am-

plitude A0, in the stable NLSE obey the following dispersion relation which connects

their frequency ω to the wavenumber k:

k2 = β2avω
2

2

(
β2avω

2

2 + 2γ|A0|2
)

(2.3)

being β2av the average group velocity dispersion [27, 28]. Let’s consider a parametric

forcing that occurs with spatial period Lf and wavenumber kf = 2π/Lf . Imposing the

parametric resonance condition means assuming that modes of the electric field having

k = kn = n
kf
2 , with n integer, will synchronize with the forcing and hence start to

oscillate. Actually the oscillation with the strongest amplitude corresponds to k1 = kf
2

(n = 1) and substituting this expression into Eq.2.3 gives, under the long wavelength

approximation i.e. neglecting the small term
(
β2avω2

2

)2
the frequency of the first excited
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mode:

ω1 ≈
π

Lf
√
β2avγ|A0|2

. (2.4)

Another possibility to estimate the instability frequency is to use an argument based

on quasi phase-matching relations [27, 28].

The first example of Faraday instability in nonlinear fibre optics was presented by

Matera and co-workers [29]. They showed that the periodic power variation experienced

by the electric field propagating in a fibre transmission link in presence of attenuation

and periodic lumped amplification leads to a spectral sidebands growth associated to

the modulation instability. Later it was showed independently in three separate works

that indeed the periodic variation of group velocity dispersion is able to excite the

Faraday instability [30, 31, 32].

More recently the concept has been developed in several works and it has been proposed

as a mechanism to generate pulses in an externally driven ring fibre resonator. Again

both cases of modulated nonlinearity coefficient [33] and modulated group velocity dis-

persion [34] have been considered. The latter has been observed also experimentally

thanks to the fabrication of suitable dispersion oscillating fibres, that thanks to their

periodically (along the longitudinal coordinate) varying diameter exhibit and oscillating

β2 coefficient. The characteristic Faraday MI spectrum has been observed for disper-

sion oscillating fibres both for the simple propagation case as well as for the externally

driven passive fibre resonator[34, 35]. Interestingly the competition between Faraday

and temporal Turing instabilities in fibre resonators have demonstrated and charac-

terized too [9]. Despite the considerable effort spent in this direction, the temporal

Faraday pattern formation in modulated optical fibres has not been characterized yet

experimentally to the best of my knowledge.

2.3 Dissipative Faraday instability

The above mentioned cases of Faraday instability in fibre optics rely on the periodic

modulation of one parameter of the system which is connected to the dispersive property

of the light waves (nonlinearity or dispersion). However, very recently, we have shown
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that a suitable periodic modulation of spectral losses, a genuinely dissipative parameter

of the system, can induce a modulation instability [36]. The scaling of such dissipative

Faraday instability can be inferred from a parametric resonance condition.

This novel instability that will be discussed now is a general feature of the complex

Ginzburg-Landau equation (CGLE), such equation is a universal form for nonlinear

oscillations in a variety of nonlinear systems throughout the most diverse scientific

disciplines [37]. We will introduce the novel dissipative Faraday instability at first in

the framework of spatially extended systems and then, in the next Chapter, generalise

it to fibre optics and in particular in the case of the Raman fibre laser, where its first

experimental observation has been achieved.

Let’s consider the following CGLE that describes the dynamics of the complex field

amplitude A(t, x) defined in space x and evolving in time t:

∂A

∂t
= µA+ (b− id) ∂

2A

∂x2 + (ic− s) |A|2A. (2.5)

µ is the gain coefficient, b, d, c and s describe diffusion and diffraction, self-phase

modulation and saturation respectively. Let’s impose that all those coefficients are

positive, in this case the homogeneous solution is Benjamin-Feir stable. Let’s now

consider the following modulation scheme. A spatially homogeneous field undergoes

nonlinear evolution according to Eq.2.5 for a time interval of length Tf/2, then we damp

spectral modes in the wavenumber region centered around +k0 by using a lumped filter

which transmits mainly in the spectral region around wavenumber −k0, we let again

the field evolve as described by Eq.2.5 for another time interval of length Tf/2 and after

such evolution we damp spectral modes in the spectral region around −k0 this time

using a lumped filter that transmits mainly in the spectral region around wavenumber

+k0. If we repeat the procedure many times we have a system where spectral losses

are modulated periodically in time with period Tf and in a zig-zag fashion in spectral

domain. The modulation scheme is summarized in Fig. 2.1.

The periodic zig-zag modulation of spectral losses triggers an average exponential

amplification of spectral modes symmetrically located with respect to the homogeneous

mode (k = 0). The modulation has been realized by using spectral filters having the
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Figure 2.1: The concept of periodic, in time, and zig-zag, in frequency domain, modu-
lation of spectral losses is illustrated here schematically: the long arrow indicates time
evolution, the transmittance profile T (k) of the two spectral filters used are plotted in
orange and in blue respectively.

following transmission profile:

f1,2(k) = e−
(k±k0)8

σ8 (2.6)

where σ and k0 are respectively the filters width and position in wavenumber domain.

Mathematically we can express adding to Eq.2.5 the following term:

−
∑

n even

δ(t− nTf/2)F1 ? A−
∑
n odd

δ(t− nTf/2)F2 ? A. (2.7)

where F1,2 are the inverse Fourier transfoms of f1,2 and the ? denotes convolution:

filters act as a multiplication operator on the field spectrum.

The growth of the modulation modes exhibits both an average amplification as well

a periodic oscillation due to the lumped losses. Such oscillations occur in anti-phase

for spectral modes having opposite wavenumbers ±k within the instability area. The

latter anti-phase dynamics follows from the fact that when the spectral region located

around wavenumber −k0 suffers losses, then the spectral region around wavenumber

+k0 is basically unaffected (or affected only in a minor way depending on the width of

the filters used).

Being the forcing considered here not described by a continuous parameter modula-
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tion but by a lumped one, analytical study of the process is in principle very difficult.

However some numerical tools could help to get insight on the instability and to char-

acterize its dependence on the parameters of the system. Since we are dealing with

a periodic system the stability of the homogeneous solution can be checked by simply

considering the evolution of small perturbations for one single modulation period and

to verify their possible growth or damping. This approach is called Floquet linear sta-

bility analysis and it is routinely applied in many studies of modulation instabilities. It

consists in the following procedure: the homogeneous solution of the evolution equation

of interest is computed by neglecting the parametric modulation. Then, for spectral

mode with wavenumber +k we add a very small real perturbation to the amplitude of

one spectral mode and integrate the evolution equation in presence of the parametric

modulation for a time interval corresponding to one period of the modulation. We

record now the evolved amplitude of spectral mode with wavenumber +k and normal-

ize it to the modulus of the added perturbations and repeat the procedure this time

adding an imaginary perturbation with wavenumber +k to the homogeneous solution.

We repeat this procedure by perturbing the spectral mode with wavenumber −k again

by adding to it first a real amplitude perturbation and then an imaginary amplitude

perturbation. We can build now a stability matrix M whose entries are respectively:

first and second row entries are the real and imaginary parts of the modes +k and

−k amplitudes after the evolution of real and imaginary perturbations to mode +k.

The third and fourth rows of M contain the real and imaginary parts of +k and −k

mode amplitudes, respectively, after the evolution of real and imaginary perturbations

of mode −k.

We then diagonalize the matrix M and obtain a set of eigenvalues: the Floquet mul-

tipliers. The logarithms of those eigenvalues are called the Floquet exponents. If, for

a mode with wavenumber k, at least one of the Floquet exponents is greater than zero

(or equivalently one of the Floquet multiplier is greater than 1) than the mode with

wavenunumber +k and its symmetric (-k) are unstable and their growth exponent is

the Floquet exponent with largest absolute value. It is worth stressing that the 4-by-4

stability matrix gives 2 degenerate eigenvalues. In this sense most likely a simple 2-by-2

matrix could be used.
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Figure 2.2: The basic features of the Benjamin-Feir and of the dispersive Faraday
instability are summarized here: a) the Benjamin-Feir gain spectrum which is long-
wavelength in the NLSE and in the CGLE and the monotonic growth of an unstable
mode b); in c) is plotted the Faraday gain spectrum which is short-wavelength and
exhibits high order harmonics, in d) the oscillatory growth dynamics of the Faraday
unstable mode is depicted. The parameters used are µ=1, s = 0.3, b = 0.1 · 10−6, with
full integration time T = 1. In a) and b) c = 1 and d = −3 ·10−6. In c) and d) c = 4.85,
diffraction has been modulated piecewise: d = d1 = 5 · 10−6 for 0 < t < 0.2 orange line
on d), d = d2 = 1 · 10−6 for 0.2 < t < 0.4 red line and so on.

Figure 2.3: The growth of symmetric modes (k = ±200π) and the generalised phase
is depicted for Benjamin-Feir a) and b) and dispersive Faraday instability c) and d).
Blue and red dashed lines represent the modes amplitudes absolute values while the
black dashed lines in b) and d) represent the values at which synchronization of the
sidebands with the homogeneous mode is optimum. Parameters used are the same as
in Fig.2.2.

The linear Floquet stability analysis allows to characterize the modulation insta-

bility spectrum by showing its dependence on some key parameters of the system.
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In Fig.2.2 and 2.3 the features of the known Benjamin-Feir and dispersive Faraday

instability are depicted, while the dynamics of the novel dissipative Faraday instabil-

ity is reported in Fig.2.4. The both Faraday instabilities, besides the average growth

of spectral sidebands exhibit an oscillatory dynamics induced by the periodic forc-

ing. Oscillations are in phase for the symmetrically located spectral modes, at ±k,

for the dispersive Faraday instability and in anti-phase for the dissipative one. With

the Benjamin-Feir instability, the dissipative Faraday instability shares the feature of

being a long wavelength instability (instability spectrum attached to the k = 0 mode),

while like the dispersive Faraday it can exhibit multiple instability tongues generated

by the synchronization of the forcing with higher harmonics of the fundamentally ex-

cited mode. An analytical estimation of the dissipative Faraday instability first excited

mode scaling versus other parameters of the system can be obtained. We plug the

following ansatz into Eq.2.5

A(x, t) = A0e
icA2

0t
[
1 + a+(t)eikx + a−(t)e−ikx

]
(2.8)

where A2
0 = µ/s; and, linearizing with respect to the small perturbations amplitudes

a±, we obtain two coupled equations:

∂a+
∂t

= µa+ − bk2a+ + idk2a+ + ic(a+ + a∗−)A2
0 − s(2a+ + a∗−)A2

0 (2.9)

∂a∗−
∂t

= µa∗− − bk2a∗− − idk2a∗− − ic(a+ + a∗−)A2
0 − s(2a∗− + a+)A2

0. (2.10)

From these equations, by diagonalizing the coefficients matrix, it is possible to calculate

the eigenvalues which are linked to the oscillation frequency and damping/amplification

of the sidebands, they read:

λ± = −µ− bk2 ±
√
−d2k4 − 2cdk2µ/s+ µ2. (2.11)

For d2k4 + 2cdk2µ/s > µ2 the perturbations on top of the homogeneous state oscillate

with frequency given by the imaginary part of the eigenvalues:

ωB =
√
d2k4 + 2cdk2µ/s− µ2 (2.12)
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and their amplitude decays with rate given by the real part:

D = −µ− bk2. (2.13)

In the long wavelength limit, d2k4 << 2cdk2µ/s and assuming the parametric resonance

condition, implying synchronization of the excitations with the external forcing

ωf
2 = ωB, (2.14)

since ωf = 2π
Tf

, where Tf is the forcing period, we have that the maximally unstable

wavenumber kinst (first excited mode) can be approximated as:

kinst ≈
π

Tf
√

2cdµ/s
. (2.15)

In order to compare the analytical results with the Floquet analysis, since the

detuned filters partially damp the homogeneous mode, hence making its amplitude

different from the theoretical one, it is important to substitute the ratio µ/s in Eq.2.15

with the the average intensity 〈|A0|2〉 computed along one modulation period, otherwise

an underestimation error is made. The result is quite good and it is represented in

Fig.2.4 d) (dashed black line).
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Figure 2.4: a) the dissipative Faraday instability spectrum for Tf = 2; b) the antiphase
growth of two symmetric spectral modes amplitudes |a+| (in red) and |a−| (in blue); c)
the looping in phase space of the complex amplitude. In both b) and c) the yellow dots
denote respectively the action of the two filters (f1 and f2). In d) the instability map
(Floquet multipliers with largest absolute value) is plotted in the plane “wavenumber-
modulation period”: colored region corresponds to instability. Beside the low frequency
tongue, higher order harmonics are excited too. The horizontal black line denotes the
section plotted in a). In e) the generalised phase Φ0 = φ1 + φ−1− 2φ0 is plotted where
φ0 is the phase of the homogeneous mode while φ±1 those of the two sidebands. The
stable spatial pattern associated to the instability for parameters corresponding to the
instability spectrum shown in a) is depicted in f): the intensity pattern is taken just
after the action of one spectral filter on the field. Parameters used are the following:
µ = 1, s = 0.2, c = 3.5, b = 0.1 · 10−6, d = 5 · 10−6, k0 = 1822.1 and σ = 1885. Tf = 2
in all panels except for d) where Tf has been varied from 1 to 5.

In the nonlinear stage of the dissipative Faraday instability pattern formation can

occur (See Fig.2.4 f)). The generated patterns, when they are stable, are oscillating

periodically in time. But a stroboscopic collection of intensity distributions taken at

time intervals equal to the period of the forcing can provide insight on their features

and dynamics. The results are depicted in Fig.2.5.

The detuning between spectral filters is a key parameter in determining the stability of

the generated patterns, if the detuning is too weak the patterns are not very stable and

undergo a dynamics which sees creation and annihilation of the coherent structures.

An increase in the filter’s detuning allows the patterns’ stabilization. In general the
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Figure 2.5: a) The slow dynamics of a stable pattern induced by the dissipative Faraday
instability for the same set of parameters as Fig.2.4 f): intensity snapshots are taken
every modulation period after filtering. b) reducing the filters detuning k0 = 1570.8 we
enter a regime where patterns are not stable anymore, but creation, destruction and
merging of structures occur.

filters shape doesn’t matter concerning the excitation of the instability, however it was

observed that filters with steeper tails (high order supergaussian for instance) allow a

more stable pattern formation.

The dissipative Faraday instability and the associated pattern formation take place

in two-dimensional spatially extended systems too. Interestingly in this case more

freedom is given in the choice of the filters. This allows a greater possibility concerning

the choice of the patterns’ features such as for instance their spatial orientation. Some

examples in this respect are depicted in Figs.2.6 and 2.7. In the latter case gaussian

filters with the following transmission profile have been used:

f1,2(kx,y) = e−
(kx,y±k0x,y)2

σ2 . (2.16)

We remark that the patterns are stable, but they undergo a periodic dynamics in time.

The individual coherent structures have a Gaussian shape after the filters, but after

a temporal evolution in presence of gain and normal diffraction they develop a quasi-

parabolic shape, with a dynamics resembling in this respect to that of similaritons in

fibre amplifiers. Furthermore, intrapulse noise and prelude of optical wave-breaking

become visible. Interestingly enough despite the fact that those waveform seem to

be close to destruction, the interaction with the shifted spectral filters restores their

original shape cleaning suppressing the noise. In this case we can say that the shifted

spectral filters not just play the role of destabilizing the homogeneous solution leading

to the pattern formation, they also play a fundamental role in keeping the patterns

stable. It is worth mentioning briefly now that such a regeneration effect caused by
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detuned filters is indeed known in the field of fibre optics communications and we will

comment later on more in detail on this point. Results concerning the broadening of

the patterns for the one- and two-dimensional case are reported in Figs.2.8 and 2.9.

Figure 2.6: a) Filters used for exciting 2D dissipative Faraday instability, b) the un-
stable modes from Floquet analysis (colored area) . c) a stable intensity pattern and
an unstable one d). Instability of the pattern is due to removal of diffusion (present in
c) that reduces high frequency noise). Parameters used are µ = 1, d = 0.05, c = 0.35,
s = 0.3, Tf = 5π, σ = 1.0905. Filters are as in the 1D case Supergaussian and they
are centered at (k0x, k0y) = (−1, 1) and (1,−1) respectively. In c) b = 0.08 while in d)
b = 0.

We can expect that the two-dimensional patterns could be observed for instance

in polaritonic Bose-Einstein condensates where the dynamics of the quasi-particles,

coherent superpositions of excitons and photons, is described by a Ginzburg-Landau

equation. Such polaritonic condensates can be realized in semiconductor microcavities

where a quantum well is enclosed between two Bragg mirrors [38]. The necessary

zig-zag modulation of spectral losses could be potentially implemented by a suitable

engineering of the Bragg mirrors reflectivity profiles.
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Figure 2.7: An example of 2D patterns achieved with different kind of filters compared
to Fig.2.6. In a) Gaussian filters oriented parallel to the ky axes and in b) the corre-
sponding patterns are depicted. In c) and d) again filters and patterns are shown, but
filter are rotated by π/2 in the kx − ky plane compared to a). Parameters used are the
following: µ = 0.2, d = 0.05, b = 0.001, c = 0.35, s = 0.3, Tf = 5π and σ = 1. In a)-b)
filters of the form f1,2 = e−(kx±kx0)2/σ2 with k0x = 1 are used. In c)-d) filters have the
form f1,2 = e−(ky±k0y)2/σ2 with k0y = 1.

Figure 2.8: Here one- and two-dimensional patterns before the action of the filter are
shown. A substantial broadening is clearly visible due to the combined action of gain,
diffraction and self-phase modulation, see Figs.2.4 f), 2.6 and 2.7 for a comparison with
the situation before filtering. In the 1D case a substantial amount of noise associated
to optical wave breaking develops, but is later “cleaned” by the filter.
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Figure 2.9: a) The comparison of 1D patterns before (blue line) and after (red line)
filtering. Single structures composing the pattern are fitted by Gaussian and parabolic
functions respectively after b) and before filtering c).
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3 Mode-locking via Dissipative Faraday
instability in a Raman laser

3.1 Experimental setup and theoretical model

Due to the mathematical isomorphism between the evolution equations describing the

dynamics of spatially extended systems and fibre lasers discussed in the previous Chap-

ter, it is natural to generalise the results obtained about the dissipative Faraday in-

stability in the CGLE to fibre optics. In case of fibre lasers, due to the exchange of

spatial and temporal coordinates in the evolution equations, the modulation of dissi-

pation should be periodic in space and zigzagging in the temporal angular frequency

ω. The associated pattern formation would then take place in time.

A very natural scheme for observing the dissipative Faraday instability in fibre optics is

a linear cavity fibre laser where the cavity mirrors are fibre Bragg gratings (FBGs) with

detuned reflectivity profiles in spectral domain. The photons traveling back and forth

along the cavity will experience periodic lumped spectrally dependent losses for modes

around ω+ and ω− in alternating fashion (here ω = 0 is defined as the frequency of

the CW solution). The modulation period of the forcing would be than equal to twice

the cavity length. We have studied theoretically, numerically and experimentally (the

experiment was performed by Dr. Nikita Tarasov) the dissipative Faraday instability

in a linear cavity Raman laser [39]. The experimental setup, schematically depicted in

Fig.3.1, consists in a 2.2 km long normal dispersion fibre. The FBGs, whose reflectivity

profile in frequency domain can be controlled by Peltier elements hence achieving the

necessary detuning to trigger the instability. The pump field at 1455 nm is injected in

correspondence to the first cavity mirror and the first Stokes is then generated at 1550

nm along the fibre. The Bragg gratings with transmission width of 1 nm, have been

detuned by about 0.75 nm. Both gratings have a chirp of -53 ps2. Despite this fact the
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Figure 3.1: The experimental setup of the Raman laser with shifted FBG gratings.

Figure 3.2: The transmission spectrum of the the gratings used experimentally is plot-
ted in blue and green. In red is plotted instead the average transmission of the laser
cavity.

net cavity dispersion remains normal due to the fact that for the Stokes wave the group

velocity dispersion β2s=25.49 ps2km−1. Once the pump field is turned on (correspond-

ing to pump power of about 0.8 W) the laser crosses the threshold and emits a regular

pulse train self-starting from noise. It has been observed that the pulse train had a

repetition rate ranging from about 10 to 6 GHz depending on the pump power. The

laser is described by the following coupled generalised nonlinear Schrödinger equations

±∂A
±
s

∂z
= −iβ2s

2
∂2A±s
∂t2

− αs
2 A

±
s + iγs

(
|A±s |2 + 2|A±p |2

)
A±s + gs

2
(
|A±p |2 + |A∓p |2

)
A±s

±
∂A±p
∂z

= −β1p
∂A±p
∂t
− iβ2p

2
∂2A±p
∂t2

− αp
2 A±p + iγp

(
|A±p |2 + 2|A±s |2

)
A±p − (3.1)

− gp
2
(
|A±s |2 + |A∓s |2

)
A±p

where A±p,s(z, t) are the pump and Stokes fields slowly varying envelopes defined in time

t and propagating in space z, ± denotes the propagation direction of the fields in the
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cavity: + from left to right and - from right to left. β2p,s, γp,s, αp,s and gp,s denote

group velocity dispersion, Kerr nonlinearity, attenuation and Raman gain coefficient

respectively, while β1p accounts for the group velocity mismatch between Stokes and

pump field. The suffixes, p, s indicate wether the parameter refers to pump or Stokes

field respectively.

It is possible to solve numerically Eqs.3.1 in an iterative way: first the equations for

the forward propagating fields are integrated with a split-step Fourier method and

their intensity values along z saved, then, after computing the initial condition for

the backward propagating fields after interaction of the forward propagating ones at

z = L with the gratings reflection functions, the equations for the backward propagating

fields are integrated from z = L to z = 0 using the previously saved values of the

forward propagating fields in the cross-phase modulation terms. The values of the

backward propagating fields along z are saved and used for computing the cross-phase

modulation terms in the next forward propagation, that will start with initial condition

given by the backward propagating fields at z = 0 after interaction with the grating

and new injection for the pump field. Such method have been proved to be able to

capture well the dynamics of Raman fibre lasers even where complex phenomena are

involved[40]. For the numerical simulations and the Floquet linear stability analysis we

have considered the following values of the parameters: β2p=25.78 ps2km−1, β2s=25.49

ps2km−1, γp= 8 km−1W−1, γs= 6.5 km−1W−1, αp=0.6 km−1, αs= 0.6 km−1, gp=2.5

km−1W−1, gs=2.32 km−1W−1 and cavity length L = 2.2 km. Note that the attenuation

coefficients account for both distributed and lumped losses, the latter being due to the

presence of connectors. The filters have Supergaussian reflectivity profile and posses a

linear chirp β2c = −53ps2; they are described by the following function acting on the

Stokes field, while they are transparent for the pump:

f± = Re
− (ω±ω±)6

Ω6
f eiβ2cω2

. (3.2)

where R = 0.98, ω± = ±150 rad/ns is the detuning and Ωf=190 rad/ns the filters’

width.

Note that, as mentioned before, despite the anomalous dispersion contribution due

the gratings the net cavity dispersion remains normal, hence Benjamin-Feir instability
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cannot develop.

3.2 Numerical and experimental results: stability analysis

and pulses

The Floquet stability analysis of Eqs.3.1 shows the dissipative Faraday instability spec-

trum for such laser with parameters corresponding to the experimental ones. The self-

pulsing dynamics is confirmed in the case of full numerical simulations of Eqs.3.1 and

the results are depicted in Fig.3.3b).

Figure 3.3: a) The instability power gain obtained from the linear Floquet stability
analysis G = 2ln(Fm)/Λ being Fm the maximum Floquet multiplier absolute value and
Λ, equal twice the cavity length L, the period of dissipation modulation: colored area
corresponds to unstable modes while the black line denotes the maximally unstable
frequency for each value of the input pump power. b) The analogous of Fig. a) but
obtained from numerical simulations. c) A comparison of the instability scaling for
experimental, numerical and stability analysis predictions. Full numerical simulations
agree well with the experiment while the stability analysis captures well the trend but
overestimates slightly the instability frequency. The Floquet linear stability analysis
for the Raman laser has been obtained following the procedure sketched in the previous
chapter.

If we compare the scaling of the pulses repetition rate obtained in experiment

(3.3c)), with that obtained from numerical simulations and with the prediction of the

Floquet analysis, we observe that the Floquet analysis predicts an instability frequency

that slightly overestimates the results from the experiment and from the numerical

simulations. The discrepancy, though being a small one, is probably due to the fact

that the linear stability analysis is indeed valid rigorously only in the linear regime of

the instability when the spectral sidebands are still small compared to the homoge-

neous mode. When the modulation modes have amplitude comparable to that of the

homogeneous mode than the linearized approach in general is not anymore correct and

a nonlinear analysis is needed, nonlinear resonances could cause frequency shift of the
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Figure 3.4: a) a pulse train recorded experimentally after the interaction with the right
hand side FBG: in the inset the autocorrelation function of the single pulse shows a
duration of about 9-10 ps at FWHM an it is well fitted by a Gaussian function close
to the maximum. In b) the optical spectrum is depicted both for experiment and
numerical simulations: there is a qualitative good agreement, despite the fact that
in experiment some of the peaks observed numerically are averaged out. c) The RF
spectrum shows a peak at around 11 GHz, the repetition rate of the pulses; in the inset
neighbor excited cavity modes are highlighted.

modulation modes. Despite those limitations of the Floquet analysis we can still say

that its predictions, despite being rigorously valid only in the linearized regime, are

sufficiently accurate and informative about the behavior of the system in the nonlinear

regime too. The inverse scaling of the instability frequency versus pump power is a

distinctive feature of Faraday instabilities in normal dispersion regime, at least in a

first approximation. Despite the fact that the Raman laser is described by complicated

version of the generalised nonlinear Schrödinger equation we can still assume that the

first mode excited mode by the Faraday instability obeys a scaling of the form:

ω1Raman ≈
π

Lf
√
β2γ|As|2

. (3.3)

where |As|2 ∝ Pin being Pin the input pump power. We are hence justified to expect

an inverse scaling of the instability frequency versus pump power.

As far as the breathing dynamics of the pulses is concerned: the pulses broaden sub-

stantially upon propagation in presence of gain, normal dispersion and nonlinear phase

shift. This fact is observed with remarkably good agreement between experiment and

numerical simulations (See Fig.3.5). It is also important to mention that the mode-

locking regime achieved here can be most-likely described as quasi mode-locking or

partial mode-locking since the cavity modes are periodically strongly damped in zig-

zag fashion: the strong losses may put at risk the strict definition of cavity modes. But

in any case it is also worth stressing that some form of strong phase coherence among
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Figure 3.5: Pulses from the laser cavity just before the interaction with the gratings
show the substantial broadening towards quasi-parabolic shape due to the combined
effect of gain, normal dispersion and self-phase modulation. Good agreement between
experimental results and numerical simulations is achieved.

the modes should exist, otherwise it would not possible to explain the regular pulse

train observed.

3.3 Analysis of the coexisting instabilities

One may ask wether the phenomena observed are indeed caused by the periodic disper-

sion variation induced by the chirped gratings, instead of the dissipative modulation,

as claimed before.

In order to understand which of the different modulations is responsible for the insta-

bility we can perform a study based on the Floquet linear stability analysis. Intuitively,

since the dispersion is modulated at twice the spatial frequency of the dissipation we

can expect it to excite a higher frequency instability tongue.

A first check can be done by computing the instability map, removing the chirp in

the gratings (Fig.3.6 a)), in this case we don’t observe any substantial difference with

respect to the realistic experimental case depicted in Fig.3.3 a). As a second step we

have considered non detuned chirped gratings. We can observe that the long-wavelength

instability disappears and that only short wavelength (dispersive-Faraday) instability

tongues survive (Fig.3.6b)). In this case the tongue due to dispersion modulation ap-

pears at around 30 GHz, close to it we see a lower frequency and weaker instability

tongue. If the chirp is removed from the gratings we still see two instability tongues,

one stronger at around 15 GHz the other one weaker around 30 GHz (Fig.3.6c)). Such

instability is due to the periodic power variation seen by the signal and caused by the
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external injection, which is taking place asymmetrically in the cavity (in correspondence

to the first mirror). This last instability, is the object of a dedicated study presented

in Chapter 5 and it is the equivalent for a laser of the boundary conditions induced

modulation instability already studied theoretically and experimentally in externally

driven passive fibre resonators [8, 41]. What happens in presence of chirped non de-

tuned gratings (Fig.3.6b)) is that the the first excited dispersion modulation induced

instability tongue overlaps with the second harmonic of the power-variation induced

instability whose forcing takes place at half the frequency.

In case when dissipation only is modulated (Fig.3.6a)) a second harmonic instability

tongue appears around 30 GHz. Such tongue overlaps with the first harmonic in-

duced by dispersion modulation when both dispersion and dissipation are modulated

(Fig.3.3 a)). It should also be noted that third harmonics are triggered too with both

the chirped and the non chirped detuned gratings. It is important to stress that if

the numerical simulations are performed with detuned unchirped gratings, pulses are

observed without modifications as in the case of chirped detuned gratings; while non

detuned but chirped gratings are not able to excite pulses. We can hence rule out the

periodic dispersion variation as the pulse generating mechanism in the system stud-

ied here. It is left for future studies to understand if pulses from classical dispersive

Faraday instability can be observed in a similar experimental configuration.

Figure 3.6: Instability spectrum dependence on pump power is plotted for different
configurations: detuned and non chirped gratings a), non detuned but chirped gratings
b) and nor detuned neither chirped gratings c). Apart from those variations, parameters
used in the calculations are the same as those used in Fig.3.3 a).

Summarizing, the results presented in this Chapter demonstrate successfully the

findings described in the previous Chapter in a realistic laser system, both theoreti-

cally and experimentally. Despite the fact that the system considered is described by a

more complicated model, the dynamical equations have an underlying CGLE structure

49



and the laser operates in a regime where the gain, despite being not exactly uniform

in space it can still be considered substantially distributed.
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4 Faraday instability mode-locking with
lumped amplification

4.1 Laser setup and mathematical model

In this Chapter a discussion on the flexibility and versatility of the dissipative Faraday

instability induced mode-locking is presented, with particular emphasis to its imple-

mentation in fibre lasers with lumped amplification [42]. It is indeed an open scientific

and engineering task understanding wether the dissipative Faraday instability could

become a routinely used mode-locking technique for lasers or not. The previously dis-

cussed work on the Raman lasers constitutes a proof of principle of the concept and

optimization should be performed in order to improve the quality of the mode-locking

in that particular setup. It is however worth considering also different setups where

such self-pulsing phenomena can be potentially achieved and practically used.

A first natural candidate setup is a fibre laser with lumped amplification, where the al-

ready existing and well developed rare-earths (Erbium and Ytterbium) amplifiers could

be successfully employed.

Let us consider a ring cavity resonator where two long spans of passive normal disper-

sion fibres are alternated with two short active fibres which can be hence considered

lumped. Before each amplifier a spectral filter is located. We consider the two spectral

filters to have frequency detuned transmission profile where such detuning is needed

to provide the periodic in space zig-zag in frequency modulation of spectral losses that

initiates the Faraday instability. The filters have the following transmission profile:

f±(ω ±∆ω) = Te−
(ω±∆ω)4

σ4 (4.1)
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where ∆ω is the angular frequency detuning which is related as follows to the frequency

detuning ∆ν = ∆ω/(2π), while σ is the filter width. Note that the choice of the second

order supergaussian shape is not crucial for obtaining the results, other orders could

be chosen as well. The field spectrum after interacting with one of the lumped filters is

given simply as a function of the input spectrum Ãin(ω) and of the filter transmission

function f± by Ãout(ω) = f±Ãin(ω). 4% of the power is lost from the cavity due to the

presence of the output coupler.

Figure 4.1: Laser setup; the unidirectional ring resonator consists of two normal disper-
sion passive fibres (in black) and of two active ones (in green) joined in alternate way.
At the end of each passive fibre, spectral filters are located with transmissivity profile
respectively positively/negatively detuned from the amplifiers frequency ωa (indicated
with black vertical arrows in the filter transmission function schematic).

A study of this setup through numerical simulations reveals indeed that self pulsing

can be excited in such laser and that the generated pulse train can be stable. We

have considered the following generalised NLSE to be the master model describing the

dynamics of the electric field:

∂A

∂z
= gA− α

2 +
(

1
Ω2
g

− iβ2
2

)
∂2A

∂t2
+ iγ|A|2A (4.2)

where γ, α, β2 denote the nonlinearity, losses and group velocity dispersion coeffi-

cients. The saturable gain reads g = g0
1+
∫
|A|2dt/Es

, being g0 the small signal gain and

Es the saturation energy (g 6= 0 only in the active fibre sections); the term proportional

to Ω−2
g in Eq.4.2 describes the effect of the finite gain bandwidth and is absent in the

passive fibre sections.
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4.2 Regular pulse train: stabilization and dispersion

The results depicted in Fig.4.2 show indeed both the stable dynamical evolution by

means of spatio-temporal representation, as well as the different shape assumed by

the pulses depending on the position in the cavity: before and after the filter and

after the amplifier. A typical quasi-parabolic shape of the pulses after propagation

in normal dispersion fibre is observed. The filters’ detuning is crucial in determining
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Figure 4.2: Spatio-temporal representation of a stable pulse train a): the power pictures
are taken at every round trip before interaction with one of the spectral filters. In b) the
pulse train is showed respectively before the interaction with the spectral filter (blue
line), after the filter (red line) and after the amplifier (black line). c) A single pulse
before the interaction with a spectral filter, parabolic and 2nd order Supergaussian fits
are denoted with dashed and dotted lines respectively. d) A single pulse after the filter,
a Gaussian fit is denoted with dashed line. Parameters used for both active and passive
fibres are α =0.046 km−1, while β2=2 ps2/km in the passive fibre and 65 ps2/km in
the amplifier and γ = 1.2 W−1km−1 in the passive and 1 W−1km−1 in the active fibre.
Remaining parameters are g0 = 1011.3 km−1, Ωg ≈ 6 THz, Es=2 nJ, ∆ν = 115 GHz,
σ = 127.3 GHz and T = 1.

the stability of the pulse train: a minimum detuning is needed in order to trigger the

instability, however the resulting pulses could be unstable. Stabilization can be induced

by a simple increment of the filters’ detuning. The latter fact is illustrated in Fig.4.3

where a transition from a collision to a stable regime is obtained. It is important to

stress that here the parabolic pulses are not wave-breaking free, since their propagation
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occurs mainly in normal dispersion passive fibres where no gain is present, hence wave-

breaking-free solutions are not available in such case and the pulses stability must be

ensured by the filters action. Note also the fact that in Fig.4.3 a much larger value of the

group velocity dispersion compared to Fig.4.2 has been used: this leads to a decreasing

repetition rate according to the theory of parametric instabilities. The instability first

excited mode has frequency:

νp ∝
1

2Lf
√
β2γ〈|A|2〉

(4.3)

being Lf the period of the spatial forcing (total cavity length) and 〈|A|2〉 is the power

averaged along the laser cavity. Eq.4.3 is valid for a laser with distributed amplification

but it results useful in estimating the dependence on the fibre parameters in the lumped

case too.
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Figure 4.3: a) The spatio-temporal dynamics in the collision regime; b) collision among
pulses (zoom from panel a) ). c) The spatio-temporal dynamics of pulses stabilized by
a detuning increment. Parameters in a) and b) are as in Fig. 4.2 except for β2=28
ps2/km in the passive fibre, while ∆ν = 95.5 GHz. In c) and d) parameters are identical
as in a) and b), except for ∆ν = 102.6 GHz.
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4.3 The transition from regular pulse train to random

self-pulsing

It is important to contextualize the results discussed here and in the previous Chap-

ter, comparing them with previous studies about lasers with detuned spectral filters.

Two normal dispersion gain fibres each one followed by a spectral filter (being the two

filters reflectivity profiles detuned in frequency) constitute a device called Mamyshev

regenerator [43]. It has been shown by Pitois and collaborators that a series of con-

catenated Mamyshev regenerators can generate a train of random pulses starting from

a highly incoherent light wave [44]. Later on, other authors observed experimentally

the generation of random pulses in the chain of concatenated Mamyshev regenerators

[45]. More recently the authors of a numerical study on a similar setup, called this laser

source: regenerative similariton laser [46]. There seems to be a contradiction between

the phenomenology described in this Chapter and the one described in [45, 46]. How-

ever the contradiction is only an apparent one. The random pulses regime bifurcates

from the Faraday instability one by simply increasing the filters’ detuning. The results

are shown in Fig.4.4. In this sense we can ascribe the regular pulsation regime to the

dissipative Faraday instability that occurs at moderate filters’ detuning, while the ran-

dom pulses occur in what we can call the “Mamyshev” regime corresponding to large

filter detuning. In principle both regimes can be observed in the same experimental

setup using the filters’ detuning as control parameter. To complete the discussion it is

Figure 4.4: Spatio-temporal representation of the random operation regime: the intra-
cavity power is plotted for ∆ν = 124.5 GHz in a) and ∆ν = 125.4 in GHz b) showing
the random operation regime. Remaining parameters are as in Fig.4.2.

also worth remembering that a laser with detuned spectral filters can support a single

stable, high peak power pulse. This behavior has been proposed in the same work by
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Pitois and collaborators [44]. Two recent papers have reported on the experimental

observation of such single pulse regime [47, 48]. The authors of [48] have called such

laser Mamyshev oscillator and have demonstrated that in the stationary state the laser

emits a stable pulse with peak power of the order of the Mega Watt. It is important

to stress that this laser operates with a repetition rate of the order of the MHz given

by the inverse of the cavity round trip time and the pulsed operational mode is not

self-starting; furthermore, unlike the regime presented in this Chapter, it requires an

appropriate seeding of the input field. Summarizing, the dissipative Faraday instability

induced self-pulsing can be observed in all-normal dispersion fibre lasers with lumped

amplification too. This fact opens potentially the way to the design of all-normal dis-

persion lasers, harmonically mode-locked with a repetition rate of some tens of GHz

where the amplification is achieved by means of lumped gain media. This fact is a

complete novelty for all-normal dispersion fibre lasers.

Another important result presented in this Chapter is the established connection be-

tween the regular and random self-pulsing regimes that can be achieved in fibre lasers

with detuned filters. This fact has been shown to be due to the degree of filters’ detun-

ing, which in the extreme regime leads to the single pulse Mamyshev oscillator. A next

natural step along this research line will be to experimentally study the self-pulsing

dynamics excited by the dissipative Faraday instability in fibre lasers with lumped am-

plification in order to have more details about the practical feasibility and limitations.

Furthermore it is worth stressing the practical value of the this peculiar technique for

the generation of pulses: it could be particularly useful to build pulsed lasers operating

at wavelengths where semiconductor based saturable absorbers are not available for

instance in the mid-infrared region of the electromagnetic spectrum.
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5 Gain through losses: modulation
instabilities and patterns

5.1 The concept of gain through losses

There is a widespread and intuitive believe that dissipation plays a stabilizing role in

dynamical systems, for instance reducing noise and hence increasing the threshold of

modulation instabilities. This believe is indeed well motivated by some paradigmatic

examples. Karlsson has for instance shown that the Benjamin-Feir instability gain in

the nonlinear Schrödinger equation with frequency independent losses the gain is re-

duced for unstable modes, while the gain spectrum can slightly broaden proportionally

to the amount of applied losses [49]. Another example in this direction is the study that

shows how losses can suppress the onset of the coherent Risken-Nummedal-Graham-

Haken instability in lasers [50].

What this Chapter wants to demonstrate is that dissipation, very counterintuitively,

can destabilize homogenous solutions of nonlinear systems, provided that some specific

conditions are satisfied. Here we will even simplify the action of dissipation, reducing

furthermore the complexity of the (already simple) periodic zigzag modulation scheme

discussed in Chapters 2, 3 and 4.

The topic we are considering here is something substantially different from what has

been up to now understood about dissipation induced instabilities, both in nonlinear

optics and other fields of physics.

Dissipation induced instabilities have been studied especially in classical mechanics

where friction or viscosity forces cause instability of certain otherwise stationary states.

An extensive review of such dissipation induced instabilities in classical mechanics has

been written by Krechetnikov and Mardsen [51]. Some paradigmatic examples in this

sense are the Lagrangian top that interrupts its rotation and “falls down” in presence

57



of friction, or a rocket that deviates from its orbit due to loss of rotational energy. In

nonlinear optics one could be tempted to say that dissipation induced instabilities occur

for instance by modulating the cavity losses as in case of Q-switching or active mode-

locking with amplitude modulation. In this case of course the laser’s off-solution and

the continuous wave solution become unstable and pulses are formed in the resonator.

Periodic modulation of spectral losses is also able to excite parametric instabilities and

indeed some of those instabilities have been discussed in previous Chapters of this thesis.

However we are concerned, in the present Chapter, with a different concept of dis-

sipation induced modulation instabilities, e.g. with inststabilities induced by unmod-

ulated, unbalanced spectral losses for signal and idler waves in some nonlinear wave

equations relevant to describe very popular optical systems with a wealth of applica-

tions both in fundamental and applied research. We generalise the results obtained for

the first time by Tanemura and co-authors [52]. Using a 3-waves model for coupled

pump, signal and idler they showed that in a normal dispersion fibre, the CW solution

is unstable with respect to modulation modes if losses are applied selectively on the

signal or on the idler wave. They also realized a first proof-of-principle experiment by

injecting a counterpropagating probe field, shifted in frequency from the pump by an

amount corresponding to the Brillouin shift (∼ 9 GHz). Such probe field stimulates

Brillouin scattering inducing the modulation instability of the CW solution: a signal

at frequency symmetrically located with respect to the pump frequency experiences

amplification.

We will show that under certain conditions, otherwise stable nonlinear optical sys-

tems could develop a modulation instability induced by spectrally unbalanced losses in

a variety of nonlinear optical systems hence generalizing the original results by Tane-

mura and co-authors and highlighting explicitly various potential applications. The

results discussed here are very general and it is most likely that similar effects could be

easily predicted about (and observed in) a wealth of other nonlinear systems described

by the most diverse evolution equations, even outside nonlinear optics. We define the

amplification dynamics where damped mode experience amplification in virtue of the

damping acting on them as gain through losses (GTL) process.

58



Conceptually we aim at considering an optical fibre with a strong frequency de-

pendent attenuation such that given an input CW radiation field, having a quasi-

monochromatic spectrum, the output will ideally result in an amplification of spectral

modes where strong dissipation is present (signal) and of its symmetric ones with respect

to the pump frequency (idler). The concept is summarized schematically in Fig.5.1.

Figure 5.1: The concept of the gain through losses is summarized schematically here: a
CW radiation at frequency Ωp is injected in an optical fibre whose attenuation profile
depends on the frequency and is maximum around Ω = Ωa in such a way that losses
are not symmetric for signal and idler waves. At the fibre output the field spectrum
develops two sidebands one centered at the frequency where losses are strong (Ωs ≈ Ωa)
the other one located around the symmetric mode Ωi ≈ −Ωa (idler).

Let’s consider, without loss of generality, those filters to be complex lorentzian func-

tions, lorentzian complex susceptibilities satisfy Kramers-Kronig relations and arise

naturally as the characterizing response function of two-level atomic systems. We can

indeed consider the propagation of the electric field in an optical fibre which has been

doped with a set of identical homogeneously broadened two-level systems uniformly

distributed along the spatial coordinate. We derive now the evolution equation for the

electric field from first principles, i.e. from the Arecchi-Bonifacio (Maxwell-Bloch) equa-

tions arising from the density matrix describing the interaction of the electromagnetic

field with an atomic two-level system.
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5.2 The nonlinear Schrödinger equation coupled to a two-

level-system

We start from the Maxwell equations in absence of free charges and current density

and material magnetization, for the electric field ~E and the magnetic field ~H = ~B/µ0.

∇× ~E = −µ0
∂ ~H

∂t
(5.1)

∇ · ~H = 0 (5.2)

∇ · ~D = 0 (5.3)

∇× ~H = ∂ ~D

∂t
(5.4)

The displacement field ~D and the electric field ~E are related by means of the con-

stitutive relation to the medium polarization density ~P :

~D = ε0 ~E + ~P . (5.5)

By taking the rotor of Eq.5.1, using 5.3, 5.4 and 5.5, remembering the operator’s

identity ∇× (∇×) = ∇(∇·)−∇2 and the link between the vacuum permittivity ε0, the

vacuum permeability µ0 and the speed of light c, ε0µ0 = 1/c2; we have the following

wave equation:

∇2 ~E −∇(∇ · ~E)− 1
c2
∂2 ~E

∂t2
= 1
ε0c2

∂2 ~P

∂t2
. (5.6)

It is now worth to express the three distinct contributions to the medium polarization

density:

~P = ~PBL + ~PBNL + ~P2LS . (5.7)

~PBL and ~PBNL describe respectively the linear and nonlinear polarization of the fibre

background material (the material of which the fibre core is made), while ~P2LS is the

contribution coming from the two-level system (2LS) coupled to the fibre. We can
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assume for instance that we have doped our fibre with some atoms or ions which can

be modeled as an ensemble of two level systems. The remaining contributions to the

medium polarization can be expressed in term of the linear and nonlinear susceptibilities

χL and χ(3) in the following way to the temporal response function of the material RL

and RNL [53] (the˜denotes Fourier transformed fields):

~PBL(~r, t) = ε0

∫ ∞
0

dt1RL(t1) ~E(~r, t− t1) (5.8)

χL(ω) =
∫ ∞

0
dt′RL(t1)eiωt1 (5.9)

~PBNL(~r, t) = ε0

∫ ∞
0

∫ ∞
0

∫ ∞
0

dt1dt2dt3RNL(t1, t2, t3) ·

~E(~r, t− t1) ~E(~r, t− t2) ~E(~r, t− t3) (5.10)

χ(3)(ω) =
∫ ∞

0
dt1

∫ ∞
0

dt2

∫ ∞
0

dt3RNL(t1, t2, t3)ei(ω1t1+ω2t2+ω3t3). (5.11)

We now consider the electric field to be a plane wave having a slowly varying (with

respect to carrier frequency ω0 in time and wavenumber k0 in space) envelope E0(z, t),

propagating along the z-coordinate (we omit the unit vector indicating the polarization

direction assuming that the field is linearly polarized):

~E(~r, t) = 1
2
[
E0(z, t)ei(k0z−ω0t) + c.c.

]
. (5.12)

This assumption allows to neglect the field divergence in Eq.5.6, which by the way can

be shown to be negligible in the slowly varying envelope approximation (SVEA) also if

the field is not a plane wave (See [17] for more details). In the Fourier domain the field

can be written as:

Ẽ(z, ω) = 1
2
[
Ẽ0(z, ω − ω0)eik0z + Ẽ0(z, ω + ω0)e−ik0z

]
≈

≈ 1
2
[
Ẽ0(z, ω − ω0)

]
eik0z = 1

2Ẽ0(z, ω − ω0)eik0z (5.13)

where Ẽ0(z, ω − ω0) = Ẽ0(z, ω)e−iω0t and Ẽ0(z, ω + ω0) = Ẽ0(z, ω)e+iω0t. Terms pro-

portional to ω+ω0 are rapidly oscillating and hence can be dropped [53]. Consistently

with Eq.5.13 we assume that also the medium polarization obeys the SVEA and hence
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reads:

~P (~r, t) = 1
2
[
P0(z, t)ei(k0z−ω0t) + c.c.

]
, (5.14)

where P0(z, t) is the slowly varying envelope. In the Fourier domain:

P̃ (z, ω) = 1
2
[
P̃0(z, ω − ω0)eik0z + P̃0(z, ω + ω0)e−ik0z

]
≈

≈ 1
2
[
P̃0(z, ω − ω0)eik0z

]
= 1

2 P̃0(z, ω − ω0)eik0z. (5.15)

By assuming that the nonlinear medium response is instantaneous, then for the

forward propagating electric field we have:

P0BNL = 3
4χ

(3)|E0|2E0 exp[i(k0z − ωt)]. (5.16)

Then we recast Eq.5.6 which we rewrite here after neglecting the divergence (as said

before):

∇2 ~E − 1
c2
∂2 ~E

∂t2
= 1
ε0c2

∂2 ~P

∂t2
(5.17)

into a form

∇2 ~̃E(~r, ω) +
(
ω2

c2 + ω2

c2 χB(ω)
)
~̃E(~r, ω) = − ω2

0
ε0c2

~̃P0−2LS

∇2 ~̃E(~r, ω) + kB(ω)2 ~̃E(~r, ω) = − ω2
0

ε0c2
~̃P0−2LS (5.18)

where χB(ω) = χBL(ω) + χBNL(ω) accounts for the material “background” response

to the electric field. A “background” dielectric constant can be defined as εB(ω) = 1 +

χB(ω) similarly we can define a frequency dependent wavenumber kB(ω) = ω/c
√
εB(ω)

and a frequency dependent refractive index nB(ω) = √εB(ω).

It may look arbitrary the fact that we assume that also the nonlinear response of the

material carrying contributions from χBNL(ω) provide a response proportional to ~̃E(ω).

Concerning the χBNL(ω) contribution, we know the effect in time domain (see Eq. 5.16)

hence in frequency domain we can express χBNL(ω) as a convolution operator acting
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on ~̃E(ω). We will keep such an implicit definition since then Eq.5.18 will be rewritten

in the time domain. To be specific we can determine kBNL in the following way taking

into account the intensity dependent refractive index. The propagation constant reads

ωnB(ω)/c = ω
√
εB(ω)/c. We have that, considering the χ(3) effects perturbatively with

respect to the background linear dispersive effects:

√
εB =

√
1 + χBL + 3

4χ
(3)|E0|2 =

√
1 + χBL

√
1 + 3χ(3)|E0|2

4(1 + χBL) ≈

≈
√

1 + χBL

(
1 + 3χ(3)|E0|2

8(1 + χBL)

)
=

= nBL + 3χ(3)|E0|2

8nBL(ω) (5.19)

hence the propagation constant reads:

kB = kBL + kBNL = ωnBL(ω)
c

+ ω

c

3χ(3)|E0|2

8 ≈

≈ ωnBL(ω)
c

+ ω0
c

3χ(3)|E0|2

8 + i
α

2 (5.20)

where we have assumed, consistently with the perturbative approach, that the nonlinear

contribution to the propagation constant can be considered constant, and depending

only on the carrier frequency ω0. We have also added phenomenologically the frequency

independent damping damping α. Furthermore we recall that whenever the expression

kBNL appears multiplied, in the frequency domain, by the field Fourier transform one

should consider such product as a convolution of both terms in frequency, however we

leave it tacitly assumed, in order to have a more compact notation. At the end of the

derivation, the evolution equation will be expressed in time domain and in this case

we will have a simple product between the field and kBNL defined as a function of time.

We see that the SVEA and plane wave approximation allow to simplify the evolu-

tion equation for the electric field (Eq.5.18). While ∇2
⊥ = ∂2

x + ∂2
y acting on the field

gives “zero” due to plane wave approximation, the SVEA allows to approximate

∂2E0(z, t)ei(k0z−ω0t)

∂z2 ≈
[
2ik0

∂E0(z, t)
∂z

− k2
0E0(z, t)

]
ei(k0z−ω0t) (5.21)
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or analogously in frequency domain:

∂2Ẽ0(z, ω − ω0)
∂z2 ≈

[
2ik0

∂Ẽ0(z, ω − ω0)
∂z

− k2
0Ẽ0(z, ω − ω0)

]
eik0z; (5.22)

and the “nonlinear” Helmholtz equation (Eq.5.18) after dividing left hand side and

right hand side by ei(k0z−ω0t) reads:

2ik0
∂Ẽ0(z, ω − ω0)

∂z
− k2

0Ẽ0(z, ω − ω0) + kB(ω)2Ẽ0(z, ω − ω0) =

= − ω2
0

ε0c2 P̃0−2LS(z, ω − ω0). (5.23)

Assuming that in a perturbative approximation the actual wavenumber k(ω) differs only

slightly from the carrier wavenumber k0, we can write kB(ω)2 − k2
0 ≈ 2k0(kB(ω)− k0)

and hence we arrive at:

i
∂Ẽ0(z, ω − ω0)

∂z
+ (kB(ω)− k0)Ẽ0(z, ω − ω0) = − ω2

0
2k0ε0c2 P̃0−2LS(z, ω − ω0). (5.24)

Indeed, mathematically, the SVEA means assuming that for a given field A (|∂tA|) <<

ω|A| and (|∂xA|) << k|A|. Before determining explicitly the wavenumber kB(ω) we

calculate now P̃2LS(ω − ω0).

The propagation equation for the electric field is coupled via ~P2LS to the equations,

which describe respectively the population inversion and the polarization of the two-

level system. Let’s define the transition frequency of the two-level system

ωa = E1 − E2
~

(5.25)

where E1 and E2 are respectively the energies of the upper and lower state and ~ is the

Planck’s constant divided by 2π. Starting from the interaction hamiltonian in the dipole

approximation it is possible to write down the Liouville-Von Neumann equation for the

density operator ρ describing the temporal evolution of the two-level system interacting

with an external electric field, a two-by-two matrix whose diagonal elements describe

respectively the population of the upper and lower state while the off-diagonal ones

describe the coherence, i.e. the average polarization of the atomic population which

oscillates coherently with the electric field. It is assumed that the atomic dipoles get the
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spatial dependence of the electric field interacting with them and oscillate at the same

frequency. Consistently with the derivation of the NLSE the electric field is assumed

to be a quasi monochromatic plane wave having an envelope which varies in time and

space much more slowly than its carrier wave. Under the plane wave approximation,

the slowly varying envelope approximation and the rotating-wave approximation which

consists in neglect rapidly varying material terms that oscillate much faster then the

carrier frequency of the electric field slowly varying envelope, the equations governing

the matter dynamical evolution read (see Appendix for more details):

∂r

∂t
= −iδr − i

2Ωr3 − γ⊥r (5.26)

∂r3
∂t

= i(Ωr∗ − Ω∗r)− γ||(r3 − σ). (5.27)

The actual atomic polarization describing the density of dipoles oscillating in phase

with the field reads in reality P2LS = 2Ndr(z, t) where N is the number of atoms per

unit volume. Similarly r3N has the meaning of population inversion per unit volume

and δ = ωa − ω0 is a detuning between the atomic and the electric field frequency ω0.

Ω = dE0(z, t)/~ is the so called Rabi frequency which is indeed proportional to the

electric field slowly varying envelope E0(z, t) times the dipole moment of the atomic

transition d and divided by ~. γ|| is the population inversion decay rate, γ⊥ is the

dipoles dephasing rate, which determines the HWHM of the atomic transition line.

The non dimensional parameter σ, can assume values between 1 and -1. In case of

the two level medium acting as absorber (which will be the case we are interested in)

σ ≈ −1, while if the two-level medium acts as an amplifier σ assumes values between

0 and 1.

We leave for the moment the equations for the matter fields expressed in such a compact

form, but later on in the derivation we will make the notation coherent to the classic

NLSE one. It is important to stress that Eq.5.26 and Eq.5.27 are obtained within

approximations (the SVEA, the rotating wave approximation and the plane wave ap-

proximation) which are fully consistent with the assumptions which are made to derive

the NLSE. The exact details of their derivation from the Liouville-Von Neumann equa-

tion can be found in [16, 53] or in other classical textbooks or, as mentioned before, in

the Appendix.
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We proceed now to obtain χ2LS(ω). Apart for very short transient dynamics where

coherent exchange of energy between the field and the two-level atoms, atomic polar-

ization and inversion relax to an equilibrium value [16, 54]. We study this equilibrium

state by setting ∂tr = ∂tr3 = 0. From Eqs.5.26 and 5.27 we obtain the stationary

solution:

r3s = σ(1 + ∆2)
1 + ∆2 + |F |2 ≈ σ = −1 (5.28)

where F = Ω/√γ||γ⊥, ∆ = δ/γ⊥ = (ωa − ω0)/γ⊥ is the normalized detuning and the

limit 1 + ∆2 << |F |2 has been taken. Note that within this approximation we neglect

saturation of the two-level system, however since we aim to describe the effect of the

losses on weak sidebands and not on the strong pump field, the approximation is well

justified and allows considerable simplifications in the stability analysis.

From Eq.?? and recalling the relation 2Ndr = P0−2LS we obtain multiplying left and

right by 2Nd:

∂P0−2LS
∂t

= −iδP0−2LS − iNdΩσ − γ⊥P0−2LS (5.29)

I recall now that according to the SVEA we have the following Fourier transform

relation:

P0−2LS(z, t) = 1
2π

∫ +∞

−∞
d(ω − ω0)e−i(ω−ω0)tP̃0−2LS(z, ω − ω0). (5.30)

In the Fourier domain and dividing left and right by γ⊥ Eq.5.30 reads:

− i (ω − ω0)
γ⊥

P̃0−2LS = −i∆P̃0−2LS − i
Ndσ

γ⊥
Ω̃− P̃0−2LS . (5.31)

Solving Eq.5.31 with respect to P̃0−2LS and recalling the definition of Ω(z, t) in terms

of E0(z, t) yields:

P̃0−2LS(ω − ω0) = −iNd
2σ

~γ⊥
γ⊥

γ⊥ + i(ωa − ω)Ẽ0(ω − ω0). (5.32)
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Eq.5.32 can be rewritten more conveniently as a function of the two “frequency shifts”:

Ω = (ω − ω0) (5.33)

Ωa = (ωa − ω0) (5.34)

as:

P̃0−2LS(Ω) = −iNd
2σ

~γ⊥
γ⊥

γ⊥ + i(Ωa − Ω)Ẽ0(Ω). (5.35)

We substitute now Eq.5.32 into Eq.5.24 which becomes now

∂Ẽ0(z,Ω)
∂z

= i(kBL(ω) + kBNL − k0)Ẽ0(z,Ω)− ω2
0Nd

2

2k0ε0c2~γ⊥
χ2LS(Ω)Ẽ0(z,Ω) (5.36)

where we have recalled that σ ≈ −1 and split kB(ω) into its linear frequency depen-

dent part k(ω)BL and the Kerr contribution kBNLwhich we assume realistically to be

independent on frequency over the field spectrum considered. We also define a coupling

parameter between the electric field and the two-level system

g = ω2
0Nd

2

2k0ε0c2~γ⊥
(5.37)

and a susceptibility for the two-level system:

χ2LS(Ω) = γ⊥
γ⊥ + i(Ωa − Ω) = Re(χ2LS(Ω)) + iIm(χ2LS(Ω)) =

= γ2
⊥

γ2
⊥ + (Ωa − Ω)2 − i

(Ωa − Ω)γ2
⊥

γ2
⊥ + (Ωa − Ω)2 . (5.38)

We observe that the two level system gives both a dispersive and a dissipative con-

tribution to the field. Absorption takes place in a frequencies range of FWHM given

by 2γ⊥ in the vicinity of Ωa (ωa in terms of absolute frequency) with a strength g.

Dispersion and group velocity of the wave packet are also affected and are described

by the imaginary part of the susceptibility.

We now expand kBL(ω) in Taylor series around the carrier frequency ω0:
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kBL(ω) ≈ k0 + (ω − ω0)
(
∂kBL(ω)
∂ω

)
ω=ω0

+ (ω − ω0)2 1
2

(
∂2kBL(ω)
∂ω2

)
ω=ω0

. (5.39)

The coefficient at the first order of the expansion is the inverse of the group velocity

(vg) of the wavepacket

β1 =
(
∂kBL(ω)
∂ω

)
ω=ω0

= 1
vg

(5.40)

while the coefficient at the second order of the expansion is the group velocity dispersion

β2 =
(
∂2kBL(ω)
∂ω2

)
ω=ω0

. (5.41)

Taking the inverse Fourier transform of Eq.5.36 and taking into account Eqs.5.20,5.38

and 5.39 we obtain the evolution equation:

∂E0(z, t)
∂z

+ 1
vg

∂E0(z, t)
∂t

= (5.42)

= −iβ2
2
∂2E0(z, t)

∂t2
+ iγ|E0(z, t)|2E0(z, t)− gF−1 {E0(z,Ω)χ2LS(Ω)} − α

2E0(z, t)

where we leave the term responsible for the coupling with the two-level system

written implicitly as a function of the inverse Fourier transform operator

F−1 = (2π)−1 ∫+∞
−∞ dΩe−iΩτ and the coefficient γ = ω0

c
3χ(3)

8nBL(ω0) describes the Kerr

nonlinearity.

By performing a change of variable we can consider the evolution of the electric field

in a reference frame co-moving with the field itself and traveling at velocity vg. We

introduce the retarded time

τ = t− z

vg
(5.43)

a new spatial variable z′ = z and a new field A(z′, τ) which depends on the new
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variables. According to the chain rule we have that:

∂E0(z, t)
∂z

= ∂A(z′, τ)
∂z′

∂z′

∂z
+ ∂A(z′, τ)

∂τ

∂τ

∂z
= ∂A(z′, τ)

∂z′
− 1
vg

∂A(z′, τ)
∂τ

∂E0(z, t)
∂t

= ∂A(z′, τ)
∂z′

∂z′

∂t
+ ∂A(z′, τ)

∂τ

∂τ

∂t
= ∂A(z′, τ)

∂τ
= ∂A(z′, τ)

∂τ
. (5.44)

In this way, removing the primes on the spatial variable in order not to overburden

the notation, the evolution equation finally reads:

∂A

∂z
= −iβ2

2
∂2A

∂τ2 + iγ|A|2A− gF−1 {A(Ω)χ2LS(Ω)} − α

2A. (5.45)

5.3 Gain through losses in a passive fibre: the amplifier

Let’s consider the evolution equation

∂A

∂z
= −iβ2

2
∂2A

∂τ2 + iγ|A|2A− θ ? A (5.46)

where θ = F−1 {χ2LS(Ω)} and frequency independent losses have been neglected for

simplicity. A linear stability analysis of the nonlinear Schrödinger equation with filter

can be performed by inserting the following ansatz:

A(z, τ) = As
[
1 + a+(z)e−iΩt + a−(z)eiΩt

]
(5.47)

into Eq.5.46. As =
√
PeiγPz where P is the power of the homogeneous solution.

Linearizing with respect to the perturbation amplitudes a± we obtain the evolution

equations for the sidebands:

∂a±
∂z

= iΩ2β2
2 a± + iγP

(
a± + a∗∓

)
− g γ⊥

γ⊥ + i (Ωa ∓ Ω)a±. (5.48)

From Eqs. 5.48 it is possible to build a stability matrix whose rows entries are the

coefficients which multiply the amplitudes a+ and a∗− in the equation for a+ and the

coefficients multiplying the amplitudes a+ and a∗− in the equation for a∗− (obtained from

conjugation of the a− one). The largest real part of the stability matrix’ eigenvalues is

the so called instability increment λm. The spectral modes whose stability increment is

larger than zero experience exponential amplification with a rate given by the instability
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increment. Indeed, by plotting λm we can verify that the damped frequencies and the

corresponding symmetric idler waves experience exponential growth. The process is

more efficient for modes close to the pump frequency; however, gain can take place

for a large frequency interval. Theoretical results are confirmed by the full numerical

simulations of Eq.5.46 and are depicted in Fig. 5.2.

Figure 5.2: The instability increment λm is plotted in a) and shows that spectral modes
damped by the distributed frequency dependent losses centered at frequency Ωa/(2π)
experience exponential gain, the process is more efficient if losses are applied close to
the pump frequency Ω=0. In b) three spectra obtained from numerical simulations of
Eq.5.46 for filters having respectively Ωa=2π 0.9 (B), 2π 1.2 (R) and 2π 1.5 rad/ps (G)
are depicted. In the inset of b) the real part of the 2LS-filter susceptibility is depicted
with colours corresponding to the associated spectrum. Parameters common to all the
simulations are: P = 5W, fibre length L=4 km, γ=15 (W km)−1, β2=1 ps2km−1,
g = 5km−1 and γ⊥= 0.5 ps−1. In c) the spectral evolution along the fibre shows that
the gain is obtained for the spectral region where losses are applied (dashed white line)
and for the symmetrically located idler wave; higher harmonics appear when signal’s
and idler’s amplitudes have grown substantially. In c) parameters used are the same
as for the blue spectrum in b).

From the results of numerical simulations we can observe the amplification of higher

harmonics of the damped frequencies too. As far as the technical aspect of numerical

simulations is concerned, the convolution appearing in time in domain in Eq.5.46 can

be easily computed in the Fourier domain as a simple multiplication using the standard

split-step integration method. It is important to stress that in case where the filters

are applied symmetrically to both signal and idler waves simultaneously, then the well

known stabilizing effect of dissipation is observed as expected. The results of both
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theory and numerical simulations for symmetric losses are depicted in Fig.5.3

Figure 5.3: If losses are applied symmetrically to both signal and idler waves the well
known stabilization takes place. In a) the results of numerical simulations are shown:
the spectrum |A(Ω/(2π))2| exhibits two “holes” in correspondence to the losses maxima
(losses profiles corresponding to 2 symmetrically located 2LSs is shown in the inset).
In b) the prediction of the stability analysis is shown. Parameters used are L = 4 km,
P= 5 W, γ=15 (km W)−1 and β2=1 ps2km−1. The losses are described by 2 2LSs each
one having g=3 km−1, γ⊥=0.5 ps−1 and Ωa = ±2π rad/ps.

The dependence of the instability gain on other fibre parameters has been investi-

gated and some results are depicted in Fig.5.4. We can observe that the GTL process

is enhanced by increasing the input pump power or increasing the losses strength. We

also mention the fact that lower dispersion favors the process too. Note that frequency

independent losses can also be included in Eq.5.46 if it is needed for accurate modeling

of some real world system. However the results will not be qualitatively affected, fre-

quency independent losses would just reduce the instability gain as one could naturally

expect. It is important to stress that the process is of purely dissipative origin. If the

dispersive part of the 2LS susceptibility is neglected, than the results are not affected.

A fundamental understanding of the ultimate cause of such fascinating phenomenon is

still missing, possibly an analysis at the quantum level could be of help in this sense.
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Figure 5.4: The instability increment is plotted versus pump power a): the GTL process
is more efficient in the higher the pump power, this fact is confirmed by full numeri-
cal simulations; b): the three different plots of the spectrum |A(Ω/(2π))2| have been
obtained for the values of P indicated with the corresponding colored dots on a). The
same dynamics can be observed by increasing the losses strength g: c)-d). Parameters
used in a) and b) are: fibre length L=4 km, γ=15 (km W)−1, β2=1 ps2km−1, g = 8
km−1, Ωa=2π rad/ps and γ⊥ = 0.5 ps−1. Parameters used in c) and d) are: fibre length
L=8 km, γ=15 (km W)−1, β2=1 ps2km−1, P = 5 W, Ωa=2π rad/ps and γ⊥ = 0.5 ps−1.

5.4 Imaging of losses into gain

The GTL process is naturally linked to another interesting phenomenon: the imaging

of the spectral losses profile into the modulation instability gain spectrum. Indeed

through numerical simulations we can observe that it is indeed possible to achieve a

mapping between the shape of the filter used and the resulting shape of the spectral

sidebands. In order to perform this observation we consider the case where we have a

set of identical normal dispersion fibre spans; at the end of each span we put a filter,

being the filters identical at the end of each span. Now we can join such fibre spans

with filters to form a long chain. We inject a CW pump field at the beginning of the

chain ad record the spectrum at the output. We can see that by varying the shape

and frequency position of the filter we get a a mapping of the filter profile into the

modulation instability gain curve. We have verified the imaging of losses into gain for

three different filters’ shapes: Gaussian, Supergaussian and triangular (See Fig.5.5).

It is important to stress that in order to guarantee physical validity to our results the
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Figure 5.5: The imaging of losses into gain: the recorded spectra after the evolution
of an input CW radiation propagating through a chain of identical fibre spans each
one followed by a filter. Three kind of filters, differing in shape and spectral position
have been considered and their reflectivity profiles are shown in the inset. Spectra are
related to the corresponding filter by the same color convention. The shape of the filter
is mapped into a gain profile. Parameters used are the following: for the Gaussian filter
ωf=2π· 1.3 rad/ps, σf=2π·0.075 rad/ps; for the triangular filter ωf=2π· 1.3 rad/ps,
σf=2π·0.075 rad/ps; while for the Supergaussian one ωf=2π· 1.3 rad/ps, σf=2π·0.075
rad/ps. Parameters common to all three simulations are filter strength gf=0.2, P=
5 W, γ=15 (km W)−1 and β2=1 ps2km−1; the fibre span length between consecutive
filters has been chosen to be equal to 5 m and a propagation of 180 spans have been
simulated.

filters’ transmission functions includes together with the dissipative part a dispersive

contribution calculated using the Kramers-Kronig relations [55]. After each fibre span,

the field amplitude Fourier transform is multiplied by the complex filter susceptibility

χf .
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Figure 5.6: Real and imaginary parts of the filters susceptibilities corresponding to the
filters used in Fig.5.5 are shown with continuous and dashed lines respectively.

5.5 Gain through losses in a ring fibre resonator: tempo-

ral patterns and frequency combs

Up to now we have focussed on linear stage of the dissipation induced modulation

instability that results in the amplification of the damped spectral modes. It is also

interesting and instructive to study the associated pattern formation. We perform this

investigation in a different physical setup which is more suitable for the observation of

stable patterns. Stable patterns are not possible in the NLSE coupled to a 2LS due to

the fact that energy is gradually depleted from the field due to the presence of losses

and the absence of any source or gain term.

We now study the GTL process in an externally driven passive fibre ring cavity res-

onator. It is well known that the temporal Lugiato-Lefever equation is the mean-field

description of such kind of resonator. It is worth mentioning that the Lugiato-Lefever

equation has been originally derived for a passive Kerr medium located in a cavity with

external monochromatic driving in the context of spatial pattern formation [7, 56].

Later on Haelterman, Trillo and Wabnitz derived the temporal version of the Lugiato-

Lefever equation for fibre resonators [8]. Despite its simplicity it captures a wealth of

nonlinear phenomena both concerning spatial and temporal phenomena, among them

cavity solitons and frequency combs play surely the lion’ share [56]. The mean field

approximation assumes that changes suffered by the electric field per cavity roundtrip
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due to various physical effects and intracavity elements are small.

Since we want to study the impact of spectrally dependent losses in such system, we

should derive a generalised Lugiato-Lefever equation that also includes the effect of the

spectral filter. Let’s consider an unidirectional ring fibre resonator of length L with the

electric field envelope E(z, t) defined in space z and time t whose propagation along the

fibre is described by a nonlinear Schrödinger equation with group velocity dispersion

β2 and Kerr nonlinearity coefficient γ:

∂E

∂z
= −iβ2

2
∂2E

∂t2
+ iγ|E|2E. (5.49)

We also assume that the injection takes place very close in space to the position where

the spectral filter is located, then the Fourier transform of the field Ẽ(z, ω) obeys the

following boundary conditions:

Ẽ(n+1)(0, ω) =
√

1− αL
√

1− θ
√

1− F̃ (ω)Ẽ(n)(L, ω − δ0) +
√
θPinδ(ω) (5.50)

where θ describes the resonator output coupler defining the fraction of power that

leaves the cavity at each round trip, α accounts for the remaining cavity losses, Pin is the

power of the monochromatic external injection while F̃ (ω) = f0e
−(ω−ωf )2/σ2

f describes

the spectral dependent reflectivity profile of a lumped filter ideally located close to the

coupler where the injection takes place and having width σf and strength f0 (a real

number between 0 and 1) that is maximum around the frequency ωf (from previous

considerations about the dissipative origin of the gain through losses process we exclude

here for simplicity the dispersive contribution of the filter). δ0 describes the detuning

between the monochromatic injection frequency and the closest cavity resonance and

n is an integer valued index that stands for the cavity round trip number. We assume

now a first order approximation such that the boundary conditions become:

Ẽ(n+1)(0, ω) =
[
1− α0 −

1
2 F̃ (ω)

]
Ẽ(n)(L, ω − δ0) +

√
θPinδ(ω) (5.51)

where α0 = (αL + θ)/2. Now we can express the field envelope at the end of each

cavity round trip as follows:
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E(n)(L, t) = E(n)(0, t) + L
dE

dz
|z=0 =

= E(n)(0, t) +
[
−iLβ2

2
∂2

∂t2
+ iLγ|E(n)|2

]
E(n)(0, t) +

√
θPin (5.52)

By using Eq.5.52 into the inverse Fourier transform of Eq.5.51, discarding high

order terms and approximating the term e−iδ0 ≈ 1− iδ0, we end up with the following

difference equation:

E(n)(L, t)− E(n)(0, t) =

=
[
α0 − iδ0 −

1
2F (t) ?−iLβ2

2
∂2

∂t2
+ iLγ|E(n)|2

]
E(n)(0, t) +

√
θPin (5.53)

where ? denotes convolution and F (t) is the inverse Fourier transform of F̃ (ω). Now

we replace the discrete map index n with a continuous slow time T ′ in this way we can

define a new mean field E(ntR, t) = E(n)(0, t) such that:

E(n)(L, t)− E(n)(0, t) = tR
∂E

∂T ′
(5.54)

where tR is the round trip time. In this way we end up with the generalised Lugiato-

Lefever mean-field equation:

tR
∂E

∂T ′
=
[
α0 − iδ0 −

1
2F (t) ?−iLβ2

2
∂2

∂t2
+ iLγ|E|2

]
E +

√
θPin. (5.55)

It is possible to express Eq.5.55 in a normalized form:

∂Ψ
∂T

= −Ψ− i∆Ψ− i∂
2Ψ
∂τ2 + i|Ψ|2Ψ + f ?Ψ + S (5.56)

where we have defined the slow time T = α0T
′/tR, the fast time τ = t

√
(2α0)/(|β2|L),

the normalized field envelope Ψ = E
√

(γL/α0), the normalized detuning ∆ = δ0/α0

and the injection S =
√

(γθPinL)/(α3
0). We have furthermore considered that the fibre

has normal dispersion. The spectral filter is described now by the Fourier transform

of f(t) which reads f̃(ω) = µe−(ω−ωf )2/σ2
f where the term µ = f0/(2α0) measures the

filter’s strength. We will consider here only the normal dispersion case; the anomalous
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dispersion fibre can be described by changing to plus the minus sign in front of the

second derivative with respect to τ .

A numerical simulation of Eq.5.56 leads to the observation that indeed the GTL

process can potentially take place in externally driven passive fibre resonators too.

The results are summarized in Fig.5.7, where spectrum (Fig.5.7a)), an intensity trace

(Fig.5.7b)) and the slow evolution of the patterns along the coordinate T (Fig.5.7c))

have been plotted once the field has reached a stable stationary state. The resulting

Figure 5.7: Pattern formation in the generalised Lugiato-Lefever equation: a) The
spectrum |Ψ(ω)|2 in log scale in the stationary state: peaks are separated by ∆ω = 1
equal to the filter frequency shift from the pump. The first excited mode is highlighted
with a red dashed line, while the filter’s profile is shown in the inset. b) the stable
temporal pattern: a train of pulses on the finite field background with a repetition
rate given by the frequency position of the filter ωf/(2π). In c) the stability of the
temporal pattern is shown: only a drift is present but the structures are robust over
the slow-time evolution. Parameters used are µ = 20, S=40, ∆=0, ωf=1 and σf=0.5.

spectrum (Fig.5.7a)), in semilogarithmic scale, exhibits the characteristic triangular

shape typical frequency combs associated to periodic multisolitonic temporal dynamics

[57]. The frequency separation between nearest neighbors spectral modes is given by

the frequency shift of the filter’s position from the pump field and the field configura-

tion in the time domain consists of a stable train of pulses on the finite background.

Those results stress the potentiality of the GTL process both for frequency comb gen-

eration as well as mechanism for the production of high repetition rate pulse trains.

The dynamics of the Lugiato-Lefever equation is known to be very rich in terms of

multistability, pattern formation and dynamical instabilities [56], the investigation of

the coexistence of those phenomena with the GTL process appears to be an interesting

research direction for future studies.

Some of the possible issues that need to be addressed in the first place are the following:

estimation of the differences in predictions between the mean field model derived here
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and the Ikeda map approach for the resonator modelling; experimental study of the

phenomena discussed here in ring fibre resonators and consideration of the feasibility

of observing some analogous dynamics in the spatial Lugiato-Lefever equation.

5.6 Gain through losses in an optical parametric oscillator

The GTL principle may have potentially relevant impact in a wealth on systems where

nonlinear wave dynamics is involved. As a simple example of its far reaching conse-

quences I illustrate here the simple case of an optical parametric oscillator (OPO) for a

χ2 medium. Such a device can be described by the coupled evolution equations for sig-

nal As and conjugate idler wave A∗i conjugate, in the regime of strong and undepleted

pump [53]:

∂As
∂z

= −αsAs − i∆ksAs +MsA
∗
i (5.57)

∂A∗i
∂z

= −αiA∗i + i∆kiA∗i +MiAs. (5.58)

Where αs,i are the signal and idler losses respectively and ∆ks,i represent here the

detunings that for simplicity we consider satisfying ∆ks = ∆ki = ∆k/2, being ∆k =

kp − ks − ki a mismatch parameter (kp,s,i are the pump, signal and idler wavenumbers

respectively). The coupling constants Ms,i depend on the pump intensity |Ap|2 through

the following relation MsMi = ρ|Ap|2 being ρ a proportionality factor. If one performs

the linear stability analysis of Eqs.5.57 and 5.58 obtains the following eigenvalues:

λ± = 1
2

[
− (αs + αi)±

√
(αs − αi − i∆k)2 + 4ρ|Ap|2

]
. (5.59)

If losses are neglected then gain occurs for modes satisfying the standard phase-matching

conditions ∆k2 = 4ρ|Ap|2. If losses are symmetric (αs = αi) then the OPO gain is sim-

ply reduced. It is however not trivial what happens if losses are different for signal and

idler waves (αs 6= αi). For simplicity we will focus from now on, on the case where

αi = 0 and αs 6= 0. We also define the growth exponent which quantifies the amount

of gain λ = max [Re(λ±)]. We observe that unbalanced losses lead to amplification of
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waves outside the phase-matched area. In Fig.5.8, the results are presented. The facts

Figure 5.8: a) The growth exponent λ is plotted versus mismatch parameter ∆k for
different values of the losses αs. By increasing losses strength we see that gain decreases
in the phase matched region but becomes possible and increases outside the phase-
matched area. In b) it is shown how the amount of losses that maximizes the out of
phase-matching gain depends on the wavenumber.

presented here have the goal to illustrate the essence of a new physical phenomenon and

to motivate a further and more detailed investigation of the GTL principle in OPOs,

which of course should be undertaken taking carefully into account the experimental

constraints and conditions. It remains however clear that the GTL principle could po-

tentially be used to achieve gain in OPOs in the case when obtaining phase matching

is difficult, or to enhance the gain bandwidth of phase matched OPOs.
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6 Self-induced Faraday instability in lasers

6.1 Self-induced Faraday instability in the complex Ginzburg-

Landau equation

We discuss in this Chapter another kind of dissipative Faraday instability that could

be engineered to achieve generation of pulses in lasers. As we have already mentioned

in Chapter 2, the first example of Faraday instability in nonlinear fibre optics was

discussed by Matera and co-authors [29], in the case where periodic amplification along

an optical fibre communication link due to the periodically induced variation of the

effective nonlinearity.

Let’s consider now the case of a linear laser cavity where the gain, for some reasons,

exhibits a non homogeneous profile along the propagation direction of the light in the

resonator. Such inhomogeneity could arise due to the attenuation of the pump field or

due to its partial depletion during the process of stimulated emission. It is evident in

this case that the laser field traveling back and forth in the cavity experiences a periodic

gain profile. Such periodic gain profile corresponds to a periodic nonlinearity landscape

seen by the propagating electric field as it is schematically illustrated in Fig.6.1. In the

first place we study this dynamics with a simplified but paradigmatic model: the CGLE

with a periodically varying gain coefficient; which mimics the periodic gain variation

that may spontaneously arise due to the internal dynamics of the laser. It is important

to stress that we choose such simplified model with periodically varying gain in order to

obtain an insight into the problem, I’ll later comment on a system where such periodic

gain variation arises spontaneously due to the intrinsic dynamics of the laser solutions.

The CGLE for a fibre laser, describing the evolution along the space coordinate z of
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Figure 6.1: The concept of self-induced Faraday instability laser is illustrated schemat-
ically: The spatially inhomogeneous gain profile arises naturally from the solutions of
the nonlinear laser equations a gives rise to an effective periodic gain (and consequently
nonlinearity) landscape profile b) seen by the generated photons that travel back and
forth in the linear cavity. The periodic gain and nonlinearity variations results in a
parametric forcing leading to self-pulsing with high repetition rate c).

the electric field envelope A defined in time t reads:

∂A

∂z
= µ(z)A+ (b− id) ∂

2A

∂t2
+ (ic− s) |A|2A (6.1)

where d and b account respectively for dispersion and diffusion (finite gain bandwidth),

c describes self-phase modulation and s the gain saturation. µ = µav+δµcos(kmz) is the

gain coefficient that is constituted by an average part µav and an oscillating one with

modulation depth δµ and modulation wavenumber km = 2π/Lm being Lm the spatial

modulation period. A Floquet stability analysis of the continuous wave solution helps

us in understanding that indeed a Faraday-like instability is taking place in the system;

in particular if δµ exceeds µav (i.e. there are spatial regions along the cavity where

gain dominates and other where losses dominate) certain spectral modes experience

exponential growth (G > 0). The power gain coefficient is defined as G = 2ln(|λm|)/Lm

where λm is the Floquet multiplier with the largest absolute value while the procedure

for the Floquet analysis has been described already in Chapter 2. Two typical features

of Faraday instability are observed: the synchronization area increases with increasing

modulation depth (Fig.6.2a); furthermore there is an inverse scaling of the frequency of
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unstable modes versus the modulation period Lm and versus the nonlinearity coefficient

c. The instability leads to a pattern formation: stable patterns are generated. They are

periodic with a period double to the forcing one as in the Faraday instability induced

by dispersion modulation [34]. The results are summarized in Fig. 6.2.

Figure 6.2: a) the instability G is plotted in the ω − δm plane instability takes place
for G > 0. In b) and c) G is plotted in the ω − Lm and in the ω − c plane respectively.
In d) an example of a stable pattern -pulse train- is shown: blue and red lines cor-
respond to the field modulus squared plotted at even (blue) an odd (red) modulation
periods respectively (this is similar to what observed in longitudinally modulated ring
resonators). Common parameters used in all subplots are c = 5, s = 0.1, d = 1.18·10−4,
µav = 0.4, δµ = 5µav, Lm = 1.5 and b = 0. In a) δµ has been varied from 0 to 10µav,
in b) Lm has been varied from 1 to 4 and in c) c has been varied from 0 to 7.

Interestingly we can observe that under certain conditions the Faraday patterns can

coexist with spatiotemporal chaos. If the gain bandwidth b is different from zero, from

an initially Faraday patterns dominated regime spatiotemporal chaos develops: islands

of Faraday patterns appear and disappear along the slow dynamics of the system (see

Fig. 6.3a)). Very counterintuitively, the patterns are stabilized by reducing the value

of b (see Fig. 6.3c)). If diffusion is reduced to below b = 10−6 (for the set of parameters

chosen Fig.6.3), the dynamics is dominated by stable Faraday patterns without any

signature of turbulence. The latter fact is quite unexpected since in general diffusion

helps the stabilization in pattern formation processes, by suppressing high frequency

noise and has to be considered in case of real world laser design operating in self-pulsing
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regime caused by the self-induced Faraday instability.

Figure 6.3: a) The coexistence of Faraday patterns with spatiotemporal chaos; b) a
section of a); parameters used are: c=5, s = 0.2, d = 1.18 · 10−4, µav = 0.8, δµ = 5µav,
Lm = 1.5, b = 1.97 · 10−5 . In c) we can appreciate the stabilization of the patterns by
setting b = 0.
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6.2 Self-induced Faraday instability in a Raman fibre laser

We have verified indeed that periodic gain variation can lead to a Faraday instability

in the CGLE, let’s now enter in more details about a possible candidate for the experi-

mental realization of the Faraday instability laser. Let’s consider a linear cavity Raman

fibre laser such as the one described in Chapter 2 but this time without detuning in

frequency the cavity mirrors (See Fig.6.4a). The cavity is pumped in correspondence

of the first mirror at 1455 nm and lasing occurs at 1555 nm. The dynamics of the laser

is described by the following coupled generalised nonlinear Schrödinger equations for

the Stokes As and pump Ap slowly varying envelopes:

±∂A
±
s

∂z
= −iβ2s

2
∂2A±s
∂t2

− αs
2 A

±
s + iγs|A±s |2A±s + gs

2
(
|A±p |2 + |A∓p |2

)
A±s (6.2)

±
∂A±p
∂z

= −β1p
∂A±p
∂t
− iβ2p

2
∂2A±p
∂t2

− αp
2 A±p + iγp|A±p |2A±p −

gp
2
(
|A±s |2 + |A∓s |2

)
A±p

where β2p,s, γp,s, αp,s and gp,s denote group velocity dispersion, Kerr nonlinearity, at-

tenuation and Raman gain coefficient respectively. ± denotes the propagation direction

in the cavity: + from left to right and - from right to left, while β1p accounts for the

group velocity mismatch between Stokes and pump field.

Due to the combined action of pump depletion and attenuation the pump field exhibits

a non homogeneous distribution along the spatial coordinate z. Such inhomogeneity

increases proportionally to the pump input power as it is shown in Fig.6.4a), where the

gain profile experienced by the laser field upon a four cavity round trip propagation is

depicted. A Floquet stability analysis of the Raman lasers CW solution shows that for

a pump power exceeding a certain threshold a Faraday instability appears (Fig.6.4b).

We observe that such instability triggers the generation of a pulse train (Fig.6.4d) and

e)). Note that at variance with results reported in Chapter 3 the repetition rate of the

pulses is almost 10 times higher since the cavity length is about 10 times shorter.
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Figure 6.4: a) The spatial inhomogeneity in the pump field increases by incrementing
the input pump power Pin. b) The Faraday instability gain: instability corresponds
to the colored area. Black dots denote the peak position of the power spectrum in
the stationary state obtained in numerical simulations. c) The field spectrum modulus
squared. Faraday instability induced self-pulsing obtained from numerical simulations
of Eqs.6.2: stable d) and collision dynamics e). Parameters used are γp=3 (W km)−1,
γs=2.57 (W km)−1, gp=1.51 (W km)−1, gs=1.3 (W km)−1, αs=0.8 km−1, αp=0.5 km−1,
fibre length L = 0.37 km. The cavity mirrors are modeled as having Supergaussian
profile of order 3 (without chirp) reflecting at the Stokes wavelength, with a width of
about 1nm. For subplots c), d) and e) the pump power used is Pin=1.5 W.

The self-induced Faraday instability has been discussed in its basic features and

some preliminary steps towards its potential observation in real-world systems have

been presented too. Of course future studies, specially experimental ones, will help

clarifying wether it could result in a technologically relevant tool for achieving mode-

locking with high repetition rates in lasers. Further effort is needed also for establishing

a mathematically rigorous theory of such modulation instability.
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7 A new master equation for active
mode-locking in lasers

7.1 Haus theory for active mode-locking: is it the end of

the story?

An example of mode-locking was discussed before, concerning the dissipative Faraday

instability in a Raman fibre laser. In this Chapter some more fundamental results about

the theory of mode-locking in lasers will be presented. It is a well known fact that the

paradigmatic mathematical model which describes the dynamics of mode-locked lasers

is the so-called Haus master equation (HME), a milestone in laser physics. Derived

in 1975 by Hermann Haus for active mode-locking induced by modulation of losses

with a period equal to the cavity roundtrip time [58], HME can be generalised to a

variety of mode-locking techniques: active mode-locking by phase modulation, passive

mode-locking with a saturable absorber, Kerr-lens mode-locking, soliton-mode-locking,

additive pulse mode-locking etc [59]. We distinguish between active and passive mode-

locking techniques for the following reason, the first ones do require the presence of a

device, in general an electro-optic or an acusto-optic modulator, that is driven by an

external source of energy (different from the laser medium itself) while the latter don’t.

Since we will focus in this Chapter on active mode-locking by amplitude modulation it is

worth remembering that it is based on the periodic modulation of the cavity losses. Such

modulation is preformed either using an electro-optic or an acusto-optic modulator that

periodically reflect light out of the cavity. If the period of losses modulation corresponds

to about the cavity round trip time we have the so-called fundamental mode-locking

and only one pulse is circulating in the cavity, if instead the modulator is driven with

the frequency which is an integer multiple of the cavity free-spectral range, than we
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have harmonic mode-locking and many pulses are present in the cavity. Before Haus’

work there have been attempts to estimate features of pulses in active mode-locking,

for instance, Siegman and Kuizenga [60, 61] developed a self-consistent approach that

allows to calculate the stationary state pulse features such as duration, spectral width

and chirp as a function of the modulator’s and active medium parameters. However such

an approach is not very useful when the dynamics of pulses is of interest, for instance

when the modulator frequency is detuned with respect to the cavity free spectral range,

or when other physical effects are involved.

HME is derived under the hypothesis that the electric field envelope inside the cav-

ity suffers only from a smooth variation at each interaction with the optical elements

present in the cavity and that its net change per roundtrip is small. The dynamical

equation for the field is coupled with an equation describing the gain dynamics. Before

entering into details about our new model it is worth reporting a brief and phenomeno-

logical derivation of HME.

The most general solution for the electric field in a laser cavity is a sum over all the

longitudinal cavity modes:

E(z, t′) =
n=∞∑
n=0

En exp i(Ωnt
′ −Knz). (7.1)

We consider modes propagating only in one direction and with a small frequency spacing

so that we can pass to the continuum and replace the sum with an integral:

E(z, t′) =
∫ +∞

0
E(K) exp i(Ω(K)t′ −Kz)dK (7.2)

Since we are interested in pulsed solutions we introduce a slowly varying envelope. In

order to do this we define a central frequency ω0, a central wave number k0 and we

make the following changes of variable:

k = K − k0, (7.3)

ω(k) = Ω(K − k0)− ω0 (7.4)

E(k) = E(K − k0). (7.5)
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The electric field can then be written as

E(z, t′) =
(∫ +∞

−∞
E(k) exp i(ω(k)t′ − kz)dk

)
ei(ω0t′−k0z), (7.6)

and the slowly varying envelope takes the form:

A(z, t′) =
∫ +∞

−∞
E(k) exp i(ω(k)t′ − kz)dk. (7.7)

By defining two temporal variables: T = t′ and t = t′−z/vg, with vg group velocity

of the envelope, we have the final expression for the envelope

A(T, t) =
∫ +∞

−∞
E(k) exp{i [(ω(k)− vgk)T + kvgt]}dk. (7.8)

T is a slow temporal variable introduced to describe the pulse change on the cavity

roundtrip time scale, while t describes fast variations which occur on time scales of the

order of a typical pulse duration.

The key hypothesis of smooth change per cavity roundtrip allows to write the amplitude

variation at each roundtrip as a derivative with respect to the slow time scale T :

∂A(T, t)
∂T

=
∑
i ∆Ai
TR

(7.9)

where TR is the cavity round trip time and ∆Ai the amplitude variation due to the

i-th cavity element. We analyze now how each element affects the electric field slowly

varying envelope.

The gain medium action can be described naturally in the frequency domain by the

following transmission function exp
[
G(ω)

]
acting on the Fourier transformed amplitude

Ã(ω). exp
[
G(ω)

]
is related to the gain medium susceptibility and has the following

form:

exp
[
G(ω)

]
= exp

 G

1 +
[

2(ω−ω0)
∆ωG

]2
 = exp

 G

1 +
[

(ω−ω0)
ΩG

]2
 ≈ exp

[
G ·

[
1− (ω − ω0)2

Ω2
G

]]
.

(7.10)

where ω0 is the laser central frequency, ∆ω = ω − ω0, ΩG = ∆ωG/2 the gain medium

bandwidth, and G the single-pass gain. The Taylor approximation can be done by
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assuming that the electric field spectrum is smaller than the amplifying bandwidth.

Hence, since the effect of the gain should be small, the exponential can be approximated

to the first order:

exp
[
G(ω)

]
Ã(ω) ≈

[
1 +G

(
1− ∆ω2

Ω2
G

)]
Ã(ω) =

[
1 +G−G∆ω2

Ω2
G

]
Ã(ω), (7.11)

so

∆ÃG(ω) = G

[
1− ∆ω2

Ω2
G

]
Ã(ω). (7.12)

Taking the inverse Fourier transform on both sides of Eq. (7.12) we have

∆AG(T, t) = G

[
1− 1

Ω2
G

∂2

∂t2

]
A(T, t). (7.13)

Cavity losses are described in the following way: the amplitude at the roundtrip n+ 1

is the amplitude at the roundtrip n attenuated by an exponential factor exp(−l). Since

the amplitude suffers just a small attenuation per roundtrip:

An+1(T, t) = e−lAn(T, t) ≈ (1− l)An(T, t) (7.14)

and

∆Al(T, t) = −lA(T, t). (7.15)

The modulator is assumed to induce a cosinusoidal amplitude modulation, with period

much larger than a typical pulse width, which is a very realistic case; its effect is

described through a suitable transmission function so that:

An+1(T, t) = exp (−M [1− cos(ωM t)])An(T, t) (7.16)

where M is the modulation depth, and ωM the modulation frequency. Approximating

the exponential at the first order we obtain

∆AM (T, t) = −M [1− cos(ωM t)]A(T, t). (7.17)

The previously commented assumption that the modulation period is much larger than

a typical pulse width, allows to consider that the pulse, which passes through the
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modulator around the point of minimum losses, “sees ” the modulator just around this

point. If the time origin is assumed to be coincident with the pulse transit we can use

the parabolic approximation and write

∆AM (T, t) = −Mω2
M t

2

2 A(T, t). (7.18)

We are now able to write the HME for active mode-locking:

TR
∂A(T, t)
∂T

=
[
Ḡ

(
1 + 1

Ω2
g

∂2

∂t2

)
− l − Mt2ω2

M

2

]
A(T, t). (7.19)

Eq.7.19 is in general coupled to a gain equation (see e.g. [62])

∂G(T )
∂T

= −G(T )− g0
τL

−GW (T )
PL

(7.20)

where g0 is the small signal gain, τL the gain medium relaxation time, PL the saturation

power of the gain and W =
∫
|A(T, t)|2dt is the total energy stored in the cavity at the

instant of time T .

It is worth mentioning that the basic assumptions underlying its derivation are:

(i) the gain recovery time is much slower than the cavity roundtrip time, hence the

pulses sees only an average gain and (ii) all the physical effects induce small changes

in the electric field from roundtrip to roundtrip. Recent studies have evidenced the

limits of HME in describing accurately features of the pulses in lasers with a fast gain

recovery time, such as semiconductor lasers. In this cases the gain can change substan-

tially on a time scale comparable with the cavity round trip time hence violating the

assumptions of HME validity. Asymmetric pulses significantly deviating from the pre-

dicted Gaussian shape have been observed too. Such substantial discrepancies between

HME predictions and experimental results, has motivated some attempts to develop

new theoretical models for the description of mode-locking in lasers. A good exam-

ple is the delay-differential equation model developed by Vladimirov and Turaev [63]

which describes passive mode-locking in a semiconductor laser with saturable absorber,

reproducing some of the features of the experimentally observed pulses such as for in-

stance their asymmetric tails [64]. The results presented in this Chapter describe a

new complete theory for active mode-locking in lasers: a new master equation is de-
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rived from first principles, i.e. from the Arecchi Bonifacio (AB) equations describing,

from the fundamental point of view the coherent light-matter interaction in the gain

medium[65, 17]. In the literature those equations are generally referred to as Maxwell-

Bloch equations. Some reasons to pay credit to the original discover of those equations,

Tito Arecchi and Rodolfo Bonifacio, are given for example in a recent editorial [66].

The new master equation, a partial differential equation coupled to a gain equation,

describes active mode-locking in lasers and has an extended range of validity compared

to HME. In the limit where the gain recovery time is much longer than the cavity

round trip time, as for instance in solid state lasers, then the well-known predictions

by Haus are recovered, but our model is valid also in the opposite limit, e.g. when the

gain recovery time is comparable or smaller than the cavity round trip time. In the

latter case our model predicts substantial discrepancies from HME solutions, showing

that stable pulses are no longer symmetric, they could exhibit skew-sech shape or even

a pronounced “bump”. Such novel predictions are validated by a comparison with ex-

perimental results obtained with an actively mode-locked semiconductor laser.

7.2 The derivation of the coherent master equation

We start our derivation from the AB equations. How the AB equations can be obtained

starting from the density matrix formalism describing a two-level system coupled to the

electromagnetic field, whose dynamics obeys the Maxwell equations, has been reported

in Appendix; here we simply rewrite them (with a simple change in notation that will

be useful during the exposition) as the starting point of our work:

1
v0

∂f

∂t
+ ∂f

∂z
= a

2p (7.21)

∂p

∂t
= ΩG(Df − p) (7.22)

TG
∂D

∂t
= 1−D −Re(p∗f) (7.23)
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where f is the electric field slowly varying envelope, p the atomic polarization, D is

the population inversion, v0 is the cold cavity group velocity, a the unsaturated gain

and TG = γ−1
|| the inverse of the population inversion decay rate, ΩG is the half-width

at half-maximum of the gain curve, also usually denoted with the symbol γ⊥ in laser

physics. We consider the case where no detuning between the laser frequency and the

atomic resonance is present.

We consider a unidirectional ring cavity resonator. The presence of the modulator in

the cavity imposes the following boundary conditions for the electric field:

f(0, t) = (1− l)e−m(t−tm)f(w, t− te) (7.24)

where we have assumed that the entrance and exit plane of the gain medium are located

at coordinates z = 0 and z = w, l are the cavity losses in absence of the modulator, tm

is the light time of flight from the modulator to the gain medium entrance face, while

te is the light time of flight from the medium exit face to the medium entrance face.

We chose m to be the following function of t: m(t) = M [1− cos(ΩM t)] where M is a

modulation depth while ΩM = 2π/TM being TM the period of the modulator.

As an intermediate step towards obtaining the master equation we start with trans-

forming the field equation (Eq.7.21) into a map relating f(0, t) to f(0, t − TR), e.g.

to its value at the previous cavity round trip. Due to the fact that the “hot” cavity

group velocity v is unknown and differs from the “cold” cavity one, the effective cav-

ity roundtrip time TR = te + w/v is unknown too, we introduce the roundtrip time

difference δTR = w
(

1
v −

1
v0

)
and write

(
v−1∂t + ∂z

)
f = s being s = ap

2 + δTR
w ∂tf .

The equation for f can be solved formally and the solution reads f(w, t) = f(0, t −

w/v) +
∫ w
0 s(z, t−w/v + z/v)dz. If s is a wave-packet propagating at speed v we have

f(w, t) = f(0, t − w/v) + ws(0, t − w/v). From the fact that w/v = TR − te we have

f(w, t− te + TR) = f(0, t) +ws(0, t). Defining F(t) = f(0, t) and P(t) = f(0, t) we can

obtain the map:

∆RF = −[l +m(t)]F(t) + aw

2 P(t) + δTR∂tF(t). (7.25)
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The following definition has been used ∆RF = F(t + TR) − F(t). Furthermore, by

shifting the origin of time, we have written m(t) instead of m(t+ TR − tm), assuming

m and l << 1, approximated e−m(t) ≈ 1−m(t) and discarded higher order terms.

The atomic polarization captures indeed the coherence in the light-matter interac-

tion, but if we want to get to a simple equation for the field coupled to a gain equation,

like in HME, which simplifies significantly the problem, the equation for p should be

adiabatically eliminated. This way of proceeding is justified by the fact that p evolves

on a much faster time scale compared to f and D. However such adiabatic elimination

must be performed in a careful way. In general people simply set ṗ = 0 and obtain

two closed equations for f and D. However this cannot be done in our case since the

information on the finite gain bandwidth would be lost and we will have a gain medium

that amplifies all the spectral modes of the electric field having hence an instantaneous

response. A proper way of performing the adiabatic elimination in an advanced way

[67, 68], based on the expansion of differential operators, allows to formally write

p = (1 + Ω−1
G ∂t)−1(Df) (7.26)

and then Taylor expand the differential operator in virtue of the smallness of the pa-

rameter Ω−1
G up to the second order, hence obtaining the following expression for p:

p = (1 + Ω−1
G ∂t)−1(Df) ≈

[
1− Ω−1

G ∂t + Ω−2
G ∂2

t

]
(Df). (7.27)

In this way we see that a second order derivative in time appears which describes the

finite gain bandwidth, the first order term is a drift while the zero order term is just the

result one would obtain by performing the standard adiabatic elimination technique.

The map (Eq.7.25) becomes hence

∆RF = (lG− l −m)F + δTR∂tF + lL̂(GF) (7.28)

with G(t) = rD(0, t) being r = aw
2l the dimensionless pump parameter (equal to 1 at the

laser threshold). The information about the coherence is contained in the differential

operator L̂ = −Ω−1
G ∂t + Ω−2

G ∂2
t , while from Eq.7.23 it is easy to derive an equation for
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G:

TGdtG = r − G
(
1 + |F|2

)
−Re

[
F∗L̂(GF)

]
(7.29)

and the laser is now described by two equations only.

We now separate the time variable in a fast and a slow scale. Let’s define χ(t = nTR+t′)

being χ = F,G,m. Hence we have that χn(t′ + TR) = χn+1(t′). By limiting t′ ∈ [0, TR]

we have that n counts the number of cavity roundtrips while t′ the roundtrips fractions.

With such notation Eq.7.28 reads the same but with χ(t)→ χn(t′), χ(t+TR)→ χn+1(t′)

and m(t)→ mn(t′) = M {1− cos [ΩM (t′ − θnTR)]}, being θ = (TM − TR)/TR. All the

temporal derivatives are redefined as ∂t → ∂t′ .

Now we want to pass from the discrete to the continuum limit transforming the map into

a differential equation. For this purpose we define the continuous slow time variable

T ′ and the continuous fields X(T ′, t′) such that X ′(T ′ = nTR, t
′) = χn(t′); we also

impose the asynchronous boundary conditions X ′(T ′, t′+TR) = X ′(T ′, t′) which follows

from χn(t′ + TR) = χn+1(t′). The right hand side of Eq.7.28 can be hence written as

F ′(T ′+TR, t′)−F (T ′, t′), that in the limit of sufficiently small ∆RF can be approximated

as TR∂T ′F ′(T ′, t′). In this way we obtain the coupled differential equations:

TR∂T ′F
′ = (lG′ − l −m′)F ′ + δTR∂t′F

′ + lL̂′G′F ′ (7.30)

TG∂t′G
′ = r −G′

(
1 + |F ′|2

)
−Re

[
F ′∗L̂′(G′F ′)

]
(7.31)

where m′(T ′, t′) = M {1− cos [ΩM (t′ − θT ′)]} and L̂′ = −Ω−1
G ∂t′ + Ω−2

G ∂2
t′ .

Eq.7.30 and Eq.7.31 exhibit two inconvenient features, (i) the fields satisfy non syn-

chronous boundary conditions X ′(T ′, t′ + TR) = X ′(T ′ + TR, t
′) and (ii) the modu-

lation function m′ moves with speed θ. Both undesired features can be eliminated

by introducing the new time variables T = T ′ + t′ and τ = t′ − θT ′ and the new

fields X(T, τ) = X(T ′, t′). In this fashion the fields obey the periodic boundary

conditions X(T, τ) = X(T, τ + TM ) which confine the problem in the interval τ ∈

(−TM/2,+TM/2).
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Following the chain rule for differentiation we have

∂T ′ → ∂T − θ∂τ , ∂t′ → ∂T + ∂τ (7.32)

and using the fact that θ = lτd/TR, after defining τd = (TM −TR)/l and µ = M/(2l) =

the equations for the field and the gain read:

l−1TR∂TF = (G− 1− µ2Ω2
Mτ

2)F + (τd + l−1δTR)∂τF + L̂τ (GF ) (7.33)

TG(∂T + ∂τ )G = r −G
(
1 + |F |2

)
−Re

[
F ∗L̂τ (GF )

]
(7.34)

with L̂τ = −Ω−1
G ∂τ + Ω−2

G ∂2
τ . In the right hand side of both equations we have approx-

imated [∂T + ∂τ ] (GF ) ≈ ∂τ (GF ) because the electric field changes only slowly from

round trip to round trip but can vary substantially in the same roundtrip (typically

it will be very small far away from the modulator minimum losses point, it will grow

substantially in the vicinity of such point before decaying in a similarly fast fashion). In

order to gain a physical insight into the equations we split the gain variable in a fast and

slow part G(T, τ) = G(T ) + g(T, τ) where Ḡ is the average gain over one modulation

period. Note that such average gain as well as other average quantities X appearing

in the next equations are computed as follows: X(T ) = 1
TM

∫ TM/2
−TM/2X(T, τ)dτ . Coming

back to our gain-splitting procedure, g(T, τ) has zero average but can potentially vary

significantly in one modulation period. In the left hand side of the equation for g the

term ∂T g can be neglected because it is much smaller than ∂τg; indeed as mentioned

above the changes of the fields from round trip to round trip are considered small while

variations of the pulse intensity in the vicinity of the modulator minimum losses point

and consequently of the gain close to the pulse peak are substantial. Hence we have

l−1TR∂TF = (G− 1− µ2Ω2
Mτ

2 + τd∂τ +GΩ−2
G ∂2

τ )F + gF + L̂τ (gF ) (7.35)

TGdTG = r − Ḡ
(
1 + |F |2

)
− g|F |2 −GRe

[
F ∗L̂τF

]
−Re

[
F ∗L̂τ (gF )

]
(7.36)

TG∂τg = G
(
|F |2 − |F |2

)
+ g|F |2 − g|F |2 − g −GRe

[
F ∗L̂τF

]
+

+ GRe
[
F ∗L̂τF

]
−Re

[
F ∗L̂τ (gF )

]
+Re

[
F ∗L̂τ (gF )

]
. (7.37)
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Note that we have approximated also δTR ≈ aw
2ΩG D̄. We motivate here the reason.

δTR = w(v−1−v−1
0 ) can be computed from the dispersion relation of the medium. If we

have a monochromatic wave f(z, t) = f0(z)e−iωt propagating through the amplifying

medium, then the resulting polarization will have the form p(z, t) = p0(z)e−iωt let’s

consider D for the moment as a free variable. Plugging those definitions into the AB

equations gives that f(z) should be of the form f(z) = f(0)eik(ω)z with

k(ω) =
(
ω

v0
+ aD

2
ΩGω

Ω2
G + ω2

)
− iaD2

Ω2
G

Ω2
G + ω2 . (7.38)

The group velocity v = (dk/dω)−1
ω=0 is determined by the real part of k(ω) while the

absorption/amplification by the imaginary one; note that ω = 0 is the resonance fre-

quency. It is easy to see that hence δTR = aw
2ΩGD. When mode-locking is considered,

f is a superposition of monochromatic waves and hence D is not constant any more.

D can be split into its average value over a modulation period, D, and a remainder.

Such remainder can be considered small and has null average (by definition); its effect

on the pulse velocity should be much less than that of D and affect mainly its shape;

hence we can write for the multimode operation δTR ≈ aw
2ΩGD. Even if D still de-

pends on time, this dependence is very slow (null in the steady state). In the transient

regime (or in cases of pulse instability) D has some inter-roundtrip variation, but not

intra-roundtrip, hence D is a constant during the time taken by the pulse to cross the

medium and the formal solution of Eq.7.21 is valid.

By checking that approximating L̂τ ≈ −∂τ(gF ) and neglecting the term L̂τ (gF ) still

preserves the key coherent feature such as the Risken-Nummedal-Graham-Haken insta-

bility (RNGHI), we can neglect higher order terms in the equations for G and g. Within

this approximation F
∗
L̂τF = −(Ω−1

G /2)∂τ |F |2 = 0 thanks to the periodic boundary

conditions. In this way we arrive at the final master equation for active mode-locking

in lasers:

l−1TR∂TF = (G− 1− µ2Ω2
Mτ

2 + τd∂τ +GΩ−2
G ∂2

τ )F + gF + L̂τ (gF ) (7.39)

TGdTG = r −G
(
1 + |F |2

)
− g|F |2 (7.40)

TG∂τg = G
(
|F |2 − |F |2

)
+ g|F |2 − g|F |2 − g +GΩ−1

G Re [F ∗∂τF ] . (7.41)
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If we neglect the terms involving the fast gain g, then HME is recovered:

l−1TR∂TF = (G− 1− µ2Ω2
Mτ

2 + τd∂τ +GΩ−2
G ∂2

τ )F (7.42)

TGdTG = r −G
(
1 + |F |2

)
. (7.43)

It is worth recalling that HME admits the following Gaussian pulse solution:

F (τ) =
√
Ipe

iφe
− 1

2

(
τ−τ0
τp

)2

(7.44)

where the peak intensity is given by Ip ≈
√

2µΩGTR(r/rth − 1), the width τp =

(µΩGΩR)−1/2 and the position of the pulse by τ0 = −(τdΩG)/(2µΩR); φ is an arbi-

trary phase. The threshold rth is equal to 1.

Before proceeding to a detailed investigation of mode-locking dynamics, it is worth

mentioning that is possible to show that a linear stability analysis of the set of Eqs.7.39,

7.40 and 7.41 (without the modulator terms) predicts instability of the homogeneous

solution Fs =
√
r − 1, Gs = 1, gs = 0 with respect to the following modulation modes

δF = δF0e
λlT/TR+iqτ and δg = δg0e

iqτ , being q = αγΩG and γ = (TGΩG)−1/2 << 1.

The normalized eigenvalue λ, at the second order expansion in the parameter γ reads

λ = 2i(r − 1)α/γ −
[
α4 − 3(r − 1)α2 + 2r(r − 1)

]
α2γ2. (7.45)

Its real part is positive for wavevectors α satisfying α− < α < α+ with

2α2
± = 3(r − 1)±

√
(r − 1)(r − 9) (7.46)

which is the condition for the RNGHI in class-B lasers [69].

7.3 The fast gain and the differences with Haus

As a first result we can observe that the new master equation reproduces the HME

results in the limit TG >> TR which is typical for instance of solid state or gas lasers.

However if TG ≈ TR or TG < TR than our model predicts a very different solution. It is

important to stress that in the limit TG >> TR, g(τ) is very small, while for TG ≈ TR

or TG < TR, g(τ) acquires a more significant magnitude. We can hence ascribe to
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the fast gain component arising from the coherent light matter interaction, neglected

in the original approach by Haus, the qualitative change in the pulse shape when the

condition TG >> TR doesn’t hold any more (See Fig. 7.1).

It is important to stress that in HME if no detuning is applied then the pulse will

always be located at the minimum losses point of the modulator. We see that when

TG approaches TR this is not anymore true, the fast gain medium exerts a force on the

pulse shifting it towards negative temporal coordinates, this means that the maximum

of the pulse is located before the minimum losses point of the modulator. The pulse

stationary position is determined by the balance between the modulator and the gain

“forces”.

By applying a certain amount of detuning ∆ = T−1
M − T−1

R we can maximize the pulse

intensity and indeed we see that this occurs when the amount of applied detuning is

large enough to bring the pulse at the τ = 0 coordinate. However we observe that the

pulse in this case still preserves a slight asymmetry in its tails hence deviating from the

Gaussian shape predicted by Haus theory. Note that despite a detuning τd is already

present in the equations we have defined the new one ∆ in order to ease the comparison

with experimental results.

Figure 7.1: In a) the pulses obtain from the coherent master equation are compared
with HME for different values of TG showing an asymmetry arising for small TG. In
b) the corresponding value of the fast gain is shown: g(τ) increases in magnitude for
fast gain media, e.g. by decreasing TG. In c) applying a detuning we can optimize
the pulse intensity counteracting the gain medium force that pushes the pulse away
from the modulator minimum losses position; a very slight asymmetry in the pulses
still persists. Parameters used are ΩG = 1.1 · 1012 s−1, tR = 1.155 · 10−9s, l = 0.6,
M = 1.2, r = 1.3. The detuning ∆ applied in c) to center the pulses is respectively
283.32 kHz for TG = 10−9 s, 69.5 kHz for TG = 10−8 s, 5.75 kHz for TG = 10−7s and 0
for TG = 10−6s.
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7.4 The experimental validation of the coherent master

equation predictions

The predictions of the new master equation have been compared with experimental

results obtained in a ring cavity semiconductor laser, mode locked through amplitude

modulation. The experimental setup is depicted in Fig.7.2. It consists in a semicon-

ductor optical amplifier emitting at 970 nm, having carrier lifetime estimated in the

order of 10 ns, with an extended cavity constituted by an optical fibre. The total

cavity length is about 9 m. The unidirectionality of the propagation is guaranteed by

the presence of an optical isolator, the mode-locker is an active electro optical modula-

tor driven at a frequency of around 866 MHz, corresponding to the 25-th harmonic of

the cavity free spectral range. This leads to the generation of 25 pulses in the cavity.

The choice of such an extremely long cavity was motivated by the will of exploring

more extreme scenarios that could emphasize the limitations of Haus theory and the

potentialities of the coherent master equation. In order to justify the application of

Figure 7.2: The experimental setup: a semiconductor gain medium (OA) is used as
gain medium and the extended cavity is provided by an optical fibre for a total cavity
length of 9 m, the modulator is denoted by the acronym (MZM). An isolator guarantees
the unidirectionality of the ring cavity.

our model, derived for fundamental mode-locking, to the analysis of these experimen-

tal results where harmonic mode-locking is achieved; we can consider the fact that the

various pulses coexisting in the cavity do not interact at all, due to the strong modu-

lation of losses and hence regard them as virtually belonging to different independent

lasers [70]. We can hence just consider in the simulations of Eqs.7.39, 7.40 and 7.41

that TR = TRexp/25 where TRexp is the true experimental cold cavity round trip time:

TRexp = 9m/c. The other parameters we have chosen reflect the remaining features of
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the experimental setup.

The stationary state pulsed solutions have been plotted versus the amount of modu-

lator detuning for both the experimental case and the numerical simulations, showing

a good agreement. We have also compared the tails of the high intensity pulses in

both cases showing that they deviate significantly from the Gaussian shape. Finally

we observe that the detuning interval over which stable pulses can be found is very

similar in simulations and in the experiment. It is important to tell that in experiment

it is not known which pulse corresponds to the zero detuning case. Hence the zero of

the detuning ∆ in experiment (Fig.7.3) is arbitrary. An important fact predicted by

our model is that the action of detuning is not a symmetric one. In the HME indeed

applying a certain amount of positive detuning or the same amount of negative detun-

ing will have no effect on the pulse shape and simply shifts is position by a quantity

proportional to the magnitude of the detuning itself; detuned pulse solutions are sim-

ply shifted Gaussians [62]. In our model things are different because the sign of the

detuning matters substantially: the pulse shape is dramatically different depending on

which sign of the detuning is chosen. This fact is due to the asymmetry introduced by

the fast gain action. Mathematucally this fact is described by the first derivative of gF

in Eq. 7.39.

The results depicted in Fig.7.3 show a quantitative agreement between theory and ex-

periments concerning the detuning interval over which pulses are stable in simulations.

The theory captures qualitatively all the relevant features observed in experiment:

asymmetry of the detuning action, asymmetric pulses, and pulses with bump (See also

Fig.7.4).

We can notice that the pulse duration is typically much shorter in experiment than

in theory. While the theory reproduces perfectly the pulses shapes in various mode-

locking regimes, as shown in Fig.7.4, the quantitative agreement concerning the pulse

duration is present only for the optimized sech-like pulse (Fig.7.4 c) and d)). When

the pulse deviates significantly from sech shape the duration predicted by the theory is

much longer than in experiment (still being the predicted duration of the same order

of magnitude). The broadening in experiment is limited by some effect which is not

accounted properly in the theory. Furthermore the pulse with the clear bump observed

has the highest intensity among the three in experiment but not in the theory. The
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Figure 7.3: The intensity of the stable pulse in the stationary state obtained numerically
a) is depicted for different values of the modulators detuning ∆ and is compared with
experimental results b). In both cases only the detuning range where stable pulses
exist has been plotted showing a good agreement between theory and experiment.
The theory captures the essential features of mode-locking observed in experiment:
asymmetric effect of the detuning, pulse with the bump, typical pulse duration and
range of detuning where pulses are stable. Parameters used in the simulations are
ΩG = 1.1 · 1012 s−1, tR = 1.155 · 10−9s, l = 0.6, M = 1.2, r = 1.3 and TG = 10−9 s.

Figure 7.4: Three paradigmatic pulse shapes observed experimentally a), b) and c)
are compared with their theoretically predicted counterparts: d), e) and f). A good
agreement is present concerning the shape of the pulses, while the duration is overes-
timated in theory in d) and e). The ordinate axes in experimental data refer to the
photocurrent measured by the detector and the deep after the right pulse tail in c) is
an effect due to the detector. Parameters used in the simulations are ΩG = 1.1 · 1012

s−1, tR = 1.155 · 10−9s, l = 0.6, M = 1.2, r = 1.3 and TG = 10−9 s; ∆ has been taken
equal to -115.03, 57.512 and 283.32 kHz in d), e) and f) respectively.

above mentioned discrepancies can be potentially attributed to many physical effects

that are not described in our model: the fibre group velocity dispersion and Kerr

nonlinearity or the linewidth enhancement factor (alpha-factor) of the semiconductor
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laser gain medium. Furthermore it may be that the parabolic approximation of the

modulator transmission function is accurate only in the vicinity of the minimum losses

point, if in experiment the losses increase with a faster law than a parabolic one, then

such fact could explain the longer pulse duration observed in the theory for those pulses

which are not close to the modulator minimum losses point.

Figure 7.5: The normalized intensity of the most symmetric experimental pulse with
Gaussian and hyperbolic secant fit is depicted in a): the hyperbolic secant fits better
the experimental results, but cannot account for the skewness. In b) the normalized
intensity calculated theoretically is fitted by an hyperbolic secant function. In c) the
normalized intensities obtained in experiment and in the theory are compared (plot
in linear scale). In d) the same quantities plotted in c) are represented in logarithmic
scale to emphasize the skewness. The data used correspond to Fig.7.4 c) and f).

Another important feature of the pulses generated through active mode-locking

outside the Haus limit is their skewness which persists even when the pulses are the

closest possible to a symmetric shape. The skewness is predicted by the theory and

observed experimentally (See Fig.7.5). The hyperbolic secant is the function that bet-

ter describes the data, anyway being symmetric doesn’t account for the skewness. It

is in the end relevant to recall the fact that we are are applying a theory valid for

fundamental mode-locking to describe harmonic mode-locking. An accurate modeling

aiming at the exact reproduction of the experimental results should most likely include

the physical effects mentioned above. Anyway, at the moment we can notice that the

our model captures remarkably well qualitatively and in various circumstances even

quantitatively the essential physics of laser mode-locking outside of the Haus limit.
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The above presented results show that coherence in light-matter interaction, an often

neglected feature in applied laser physics, can play significant roles in mode-locking by

affecting in a crucial way the shape and the dynamics of pulses. This is due to the fact

that coherence entails the presence of a fast gain component that varies on a typical

pulse duration time scale and becomes physically relevant when the inversion life time

is comparable or even shorter than the cavity round trip time. With the derivation

of the new master equation a substantial innovation in the theory of mode-locking in

lasers has been provided. Our coherent master equation, whose predictions have been

confirmed experimentally, can be potentially generalised to a variety of mode-locking

mechanisms and can include various physical effects such as Kerr nonlinearity, group

velocity dispersion, linewidth-enhancement factor for semiconductor lasers gain media

or even the presence of an intracavity saturable absorber. Our model could be particu-

larly promising in describing mode-locking in semiconductor lasers but also in actively

mode-locked quantum cascade lasers with external cavity, which are good candidates for

the generation of frequency combs in the mid-infrared frequency range[71, 72]. Quan-

tum cascade lasers have a gain lifetime of the order of the tens of ps, hence they can

significantly violate HME validity assumptions; up to now they have been modeled

by the heavy formalism of the full AB equations which is highly unpractical and not

amenable to a straightforward analytical treatment [73, 74]. Furthermore in such lasers

active mode-locking is preferred compared to passive one due to the very fast gain dy-

namics that prevents obtaining stable pulses with saturable absorbers; the coherent

master equation can be potentially generalised to describe such systems even when the

pump current, and not the losses, is modulated.
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8 Synchronization and disorder-induced
localization in coupled excitable lasers

8.1 Excitability in semiconductor lasers with a saturable

absorber

Excitability is an interesting phenomenon common to various dynamical systems but

most known in biology and especially associated to the spiking activity of the neuronal

cells[75, 76]. Excitability takes place when a system originally at a stationary state ex-

hibits an all-or-nothing response to a strong enough perturbation, undergoing a large

excursion in phase space and generating a spike-like signal. After the generation of the

spike the system relaxes back to the stationary state and, after a so called refractory

time, is hence ready to be excited again. Excitability is an emerging research paradigm

in nonlinear optics too. Probably the first theoretical prediction of excitability in lasers

dates back to when Dubbeldam, Krausskopf and Lenstra showed analytically and with

help of numerical simulations that a semiconductor lasers with an intracavity saturable

absorber can exhibit excitability in a parameter range realistically accessible for ex-

perimental observation[77]. The excitable behavior is due to the fact that the laser

off-solution is an attractor close to a saddle-point: a strong enough perturbation can

hence bring the system across the saddle point and subsequently back to the off-solution

attractor through a limit cycle. Such prediction has been later verified experimentally

by Barbay and co-authors [78]. A variety of studies on excitability in lasers and am-

plifiers has been undertaken. It is particularly worth mentioning that semiconductor

lasers with saturable absorber support the existence of temporally excitable spatially

localized cavity solitons [79]; also they allow the generation of pulsating excitable soli-

tons, and exhibit the intriguing potentiality for pulse reshaping, due to the fact that the
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output pulses features are independent of the intensity and duration of the triggering

perturbations [80]. Furthermore it has been demonstrated that semiconductor lasers

with saturable absorber can be used in order to exploit excitability for coincidence

detection and for creating optical switches but also to achieve spatiotemporal pattern

recognition [81, 82, 83].

The first studies of collective dynamics in a population of coupled excitable semi-

conductor lasers with saturable absorber, including both the synchronization properties

and the localization of excitability in presence of disorder in the coupling strengths have

been presented in two recent publications [84, 85] whose most relevant points will be

summarized in this Chapter.

Let’s first recall, by help of numerical simulations, how the single semiconductor laser

with saturable absorber exhibits excitability following the original work by Dubbeldam

and co-authors[77]. They considered the rate equation model for the normalized field

intensity I, gain G and absorption Q:

İ = (G−Q− 1)I + σ,

Ġ = γ(A−G− IG), (8.1)

Q̇ = γ(B −Q− aQI).

A describes the bias current of the gain, B the absorption, and a is the differential

absorption relative to the differential gain. γ is the relaxation rate of the gain which

is assumed to be equal to the one of the absorber and is in general much smaller than

unity. σ is a small additive delta correlated (〈σ(t1)σ(t2)〉 =
√

2Dδ(t1 − t2)) noise term

with amplitude D that is the key element in triggering excitability.

If the laser is kept in the off-solution below threshold but very close to it, then additive

noisy perturbations may trigger the stimulated emission process which will rapidly

deplete the gain with consequent emission of a giant light pulse. In this way the

gain medium is depleted and a refractory time is necessary to restore the population

inversion. During the refractory time pulses cannot be emitted. Once the inversion has

been restored thanks to the pumping mechanism the laser is ready to be excited again.

The excitable behavior can be appreciated from a phase space plot in the (G − I)

plane too (See Fig.8.2). Another relevant feature of the excitable laser is the presence
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Figure 8.1: Excitability in semiconductor laser with saturable absorber: a quasi-
periodic spiking activity is observed. Increasing the noise strength the repetition rate
is enhanced and the intensity of the pulses is reduced. Parameters used are A=6.5,
B=5.8, a=1.8, γ = 10−3 while D=0.004, 0.015 e 0.04 in a), b) and c) respectively.

Figure 8.2: The intensity I is plotted versus gain G for many firing events: after firing
(large value of I) the refractory time is determined by the recovery time of the gain. For
stronger noise intensity D (values shown in the inset), the refractory time is reduced
and the pulses peak intensity exhibit larger fluctuations. Parameters used are A=6.5,
B=5.8, a=1.8 and γ = 10−3.

of the coherence resonance phenomenon. Coherence resonance means actually that it

exists an optimum value of the noise strength that maximizes the coherence of the

system: for lower or larger values a worse coherence is observed. Coherence resonance
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can be measured by plotting the normalized jitter R of the pulse train versus noise

strength D. The normalized jitter is defined as R = σT /〈T 〉 where σT is the standard

deviation and 〈T 〉 the average temporal interval between consecutive pulses. Numeri-

cal simulations that reproduce the results of the coherence resonance obtained for the

first time in [77] are depicted in Fig. 8.3. Another important feature of the excitable

Figure 8.3: The normalized jitter R exhibits a minimum when plotted versus noise
strength D. Parameters used are A=6.5, B=5.8, a=1.8 and γ = 10−3

semiconductor laser with saturable absorber, which is worth mentioning but that will

not be discussed here in detail, is its ability to perform pulse reshaping, e.g. to give

the same pulse output independently on the temporal shape of the input perturbation

[77, 80].

8.2 Synchronization and array-enhanced coherence reso-

nance

I present now some recent results about the collective dynamics of coupled excitable

lasers.

Initially we have considered a one-dimensional array of n coupled identical semicon-

ductor lasers with saturable absorber. The i-th laser’s normalized dynamical variables,

complex electric field amplitude Fi, inversion Gi, and absorption Qi obey the following

set of coupled nonlinear equations (the dot denotes temporal derivative):
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Ḟi = 1
2(Gi −Qi − 1)Fi + σi + K

2 [Fi+1 + Fi−1 − 2Fi] ,

Ġi = γi(Ai −Gi − IiGi), (8.2)

Q̇i = γi(Bi −Qi − aiQiIi).

The subscript i denotes the laser number, while Ii = |Fi|2 is the field intensity, Ai the

bias current of the gain, ai the differential absorption relative to the differential gain,

Bi the background absorption. γi is the absorber and gain decay rate that is consid-

ered to be smaller than unit. This fact gives to the field amplitudes Fi the role of the

slow variables of the system. The normalization is the one given in [86]. σi is a delta

correlated Gaussian noise term with 〈σi(t1)σj(t2)〉 =
√

2Dδ(t1 − t2)δij : as it has been

mentioned before, such noise term provides the necessary perturbations to the close to

threshold off-solution in order to induce the excitable behavior.

Concerning the coupling term K, lossy coupling has been considered, describing a

non-delayed mutual and reciprocal injection between closest neighbor lasers. The phe-

nomenological coupling term K describes the exchange of radiation between first neigh-

bor lasers scaled to the intensity damping rate of the single laser and in this section we

have considered the couplings identical for all lasers. The interaction can be physically

implemented using semitransparent mirrors with the desired transmittance, which cou-

ple light from one laser cavity to the adjacent ones. Periodic conditions at the array

boundaries have been assumed. During all the study the value of K has been cho-

sen to be constant along the whole array. The presence of the coupling induces the

appearence of a discrete one dimensional Laplace operator that acting as an effective

diffusion spreads the local electric field intensity gradients which form in the laser array

induced by the stochastic fluctuations caused by the random noise. In order to study

the synchronization properties of the array we have first considered various numbers

of coupled identical lasers described by the following set of parameters which hold for

all the results reported in this section: Ai = 6.5, Bi = 5.8, ai = 1.8 and γi = 10−3 ∀i.

With K=0 the single laser exhibits excitability for Ai ∈ [6.06, 6.8][77]. If we numerically

simulate the dynamics of a certain number of coupled lasers and compare the emitted

intensity traces with the uncoupled situation we can immediately observe some signif-
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icant qualitative differences: When the lasers are coupled they emit pulses in a highly

synchronized fashion (Fig. 8.4). This fact motivates the need of a more quantitative
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Figure 8.4: a): an example of intensity evolution for 5 uncoupled lasers, different colors
correspond to different lasers, obtained for D = 0.015 and K = 0. In b) the simulation
results obtained with the same parameters as in a) but with K = 0.2 shows a clear
example of temporal synchronization. c) and d): zooms of the regions indicated by a
dashed-line box for the uncoupled a) and coupled b) configuration respectively.

study of the synchronization There are many way of quantifying synchronization, as

far as the temporal synchronization is concerned, we have followed here the one used

in a similar study of coupled FitzHugh-Nagumo oscillators [87] and proposed originally

in [88]. To each oscillator a phase can attributed:

φi(t) = t− τk
τk+1 − τk

+ 2kπ (8.3)

where τk is the time of the k-th firing event, i.e. the position in time of the k-th

pulse. In order to describe the degree of synchronization the following quantity has

been considered:

si = sin
(
φi − φi+1

2

)2
(8.4)
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which after performing a spatiotemporal average gives the S indicator that provides a

measure of the synchronization degree

S = lim
T→∞

1
T

∫ T

0

1
n

n∑
i=1

si

)
dt. (8.5)

The maximum synchronization occurs when S = 0 while in complete absence of syn-

chronization S = 0.5. In Fig. 8.5a)-d) we have depicted log10(S) as a function of

coupling strength and noise amplitude for different values of n. As far as intensity

synchronization is concerned the linear correlation coefficient ρ for the intensity pulse

peak of closest in time pulses of consecutive lasers in the chain has been computed.

The results are depicted in Fig. 8.5e)-h). In order to take into account the stochas-

ticity of the system, for each quantity of interest a map obtained from an average of

10 independent realizations has been plotted. Each realization consists of a simulation

performed for a temporal interval of length T=100000. The white areas in the plots

correspond to situations where less than ten pulses were observed. Such procedure and

conditions apply to Figs. 8.6 and 8.7 too.

Figure 8.5: log10(S) is plotted in the (K-D) plane for various values of n, panels a)-
d). The minimum synchronization theoretically achievable corresponds to log10(S) ≈
−0.69. The intensity linear correlation coefficient ρI is depicted, panels in panels e)-h).

Results similar to those illustrated in Fig. 8.5 can be obtained by considering a
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population of lasers each one having a different value of pump parameter Ai that has

been chosen as uniformly distributed random number in the interval [6.3, 6.7]. This

choice basically guarantees that all the lasers are in the excitability regime, but each

one of them would fire with a different frequency (repetition rate of the pulse train)

if considered separated from the others. What indeed occurs is that synchronization

is robust also for different coupled lasers with a small reduction of the synchroniza-

tion area (See Fig.8.6). This fact is relevant towards the experimental observation of

the phenomena considered here, since in the real world imperfections are present and

differences in the pump parameters of the lasers are unavoidable.

Figure 8.6: The analogous of Fig.8.5 but for a population of nonidentical lasers. The
large inhomogeneity among different lasers implies, as intuitively expected, the necessity
of a stronger coupling in order to achieve the same degree of synchronization compared
to the case of identical lasers.

Another important aspect that is worth mentioning is how the collective behavior

influences the single laser performance. We can indeed notice improved performances

of the single laser coherence in terms of reduced jitter in its generated pulse train and

reduced variance in the pulse peaks heights (see Fig.8.7). Concerning the single laser

jitter an array-enhanced coherence resonance [87, 89] can be observed: the interval of

noise strength that excites a low jitter pulse train becomes larger by increasing the

number of coupled lasers.
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Figure 8.7: The normalized jitter R, panels a)-d), and intensity peak standard deviation
σI , panels e)-h), are plotted as function of coupling strength K and noise intensity D
in left and right column respectively for values of n indicated on the figures. Array-
enhanced coherence resonance is observed.

8.3 Disorder-induced localization of excitability

The second phenomenon that is presented in this Chapter is the localization of excitabil-

ity in an array of coupled lasers with saturable absorber, induced by the presence of

disorder in the coupling strengths of the array [85]. Exponential localization of the

electronic wave function in an atomic lattice, caused by disorder has been predicted by

Anderson in a seminal paper published in 1958 [90]. Such localization of the electronic

wave function being associated with the wave phenomenon of quantum interference.

Anderson’s paper has initiated an entire research field and what has been called Ander-

son localization is now an active research area which encompasses a variety of physical

systems ranging from solid state physics [91], its original starting point, to acoustics

[92], microwaves [93], Bose-Einstein condensates [94] and optics. In optics, phenomena

connected with localization induced by disorder has been extensively studied for in-

stance in [95] and [96], where light localization propagating in semiconductor powders

takes place. Other examples include the inhibition of light diffraction and consequent

localization in disordered photonics crystals [97, 98] and in waveguide arrays [99, 100].
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The disorder causing localization can be diagonal, as in the case of the original work by

Anderson, if the energy of the individual lattice sites is randomized; or out-of-diagonal,

in case where the randomness appears in the coupling strength between neighbor lat-

tice sites[101]. The latter is the case studied in [99, 100]. As I have already mentioned

before, excitability in optics is a research topic that is acquiring substantial momentum

due to the possible applications in computational tasks, detection and simulation of

neural networks dynamics. It is hence quite natural to investigate wether the excitable

waves generated in arrays of coupled lasers are subject or not to localization in presence

of disorder.

Let’s look hence at the impact of disorder on the propagation of excitable waves in

an array of coupled lasers with saturable absorber where randomness in the coupling

strengths is present. We consider again a 1D chain of lasers with local nearest neighbor

couplings and periodic boundary conditions described by the model:

Ḟi = 1
2(Gi −Qi − 1)Fi + σi + Ki,i+1

2 Fi+1 + Ki,i−1
2 Fi−1 −

(
Ki,i−1

2 + Ki,i+1
2

)
Fi

Ġi = γi(Ai −Gi − IiGi)

Q̇i = γi(Bi −Qi − aiQiIi) (8.6)

which are basically Eqs.8.2 with a more accurate specification of the couplings allowing

for a clear discussion of the randomness. Ki,i±1 describes local coupling between first

neighbor lasers scaled to the intensity damping rate of the single uncoupled laser. Note

that across all the studies only the case of reciprocal couplings Ki,i+1 = Ki+1,i∀i,

is considered. Throughout all the study on the localization of the excitability the

following set of parameters values has been chosen: Ai = 6.5, Bi = 5.8, ai = 1.8 and

γi = 10−3, ∀i; the noise strength D has been kept constant across all the array and

periodic boundary conditions have been assumed.

The disorder has been implemented by making Ki,i±1 vary randomly from laser to

laser following a uniform distribution. In particular, Ki,i±1 = K0 + ρi,i±1, where K0

is an average coupling and ρi,i±1 a random number constant in time drawn from a

uniform distribution in the interval [−r,+r] with ρi,i+1 6= ρi,i−1 in general. In the solid

state physics analogy this choice would correspond to a randomization of the hopping

probability between neighbor sites of the atomic lattice (out-of-diagonal disorder). We
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consider, without loss of generality, that the additive noise is present only in one laser

of the array, the central one and keep all the other lasers in the off-solution but very

close to threshold in order to study the conditions under which excitability waves

propagate through the lasers chain. If no randomness is present and the couplings are

all equal, each laser has in its field amplitude equation a discrete laplacian operator

of the form K0 (Fi+1 + Fi−1 − 2Fi) then, once the central lasers fires an excitability

wave propagates through the chain both left and right with respect to the central

laser. Roughly speaking we can say that the lasers are synchronized: they all fire in a

temporal interval much shorter than the central laser refractory time. Furthermore the

laser phases are locked in correspondence to the firing events as it is shown in Fig. 8.8

b). Such free propagation dynamics is what we can define as the ballistic or diffusive

Figure 8.8: The spatiotemporal dynamics corresponding to the diffusive regime: the
excitability wave emanates from the center of the array where the noise is added. Field
intensity is plotted versus laser (x-axis) and time (y-axis) in (a). In (b) the correspond-
ing phase evolution is shown: a strong phase locking occurs in correspondence to every
firing event. Parameters used are D = 0.1 and Ki,i±1 = K0 = 0.1 ∀i.

regime.

If the randomness is introduced in the coupling strengths a very different dynamics

takes place: the excitable behavior of the laser array remains spatially localized to a

small set of lasers located in the vicinity of the central one (See Fig.8.9a) ).

In order to characterize quantitatively the localization we have defined a “firing-

event” as the small temporal window located around the interval of time, the coupled

lasers generate an excitable wave. Within the “firing-event” temporal window we have

recorded the maximum intensity emitted by each laser and averaged it over all the

“firing-events” occurring during one simulation. After averaging the intensity distribu-

tion over many different realization of the disorder in the system (i.e. different draws of
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Figure 8.9: When the disorder is turned on with a sufficient strength in the laser array,
excitability becomes localized as the spatio-temporal dynamics depicted in (a) shows.
The average intensity across the array averaged over the “firing-events” of 150 multiple
realizations of the disorder in the coupled lasers’ system, is fitted by an exponential
function (Eq.8.7), dashed red line in (b). Parameters used are r = 0.4, D = 0.1 and
K0 = 0.5.

the Ki,i±1’s for fixed r) we have then fitted the tails of such resulting averaged intensity

distribution with an exponential function (see Fig.8.9b))

f = b+ e−α|i−i0| (8.7)

being i0 the position of the central laser. Repeating the above mentioned procedure

for five times allows to obtain the average localization exponent 〈α〉 and the relative

standard deviation. The localization length can be hence defined as the inverse of 〈α〉.

Note that the method used is reliable and takes into account the fluctuations in the

height of the different spikes emitted. Indeed although in a single “firing-event” some

lasers may emit higher spikes than others, lasers that emit the most intense pulses

change randomly (within the localization length) in successive “firing-events” and in

different realizations of the disorder, so that the average is justified.

A critical amount of disorder must be present in the system in order to observe ex-

ponential localization of excitability, by repeating the simulations for arrays having

different number of lasers, a decreasing trend of the critical point rc at which excitabil-

ity becomes localized versus the number of lasers present in the array, can be observed.

Such fact may suggest that for infinitely long chains localization could take place for

arbitrarily small randomness strength. I prefer however to be cautious about this last

115



point and leave the problem open to future investigations.
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Figure 8.10: The phase transition from diffusive to localized regime is illustrated by
plotting the average localization exponent 〈α〉 and relative standard deviation versus
the randomness strength r, for laser chains having different number of elements n (see
legend). The amount of randomness necessary to achieve localization decreases by
increasing the array size. Each point has been calculated averaging over five values of
α. Each α has been obtained from 150 different realizations of the disorder with the
same strength r. The remaining parameters used are the same as in Fig.8.9.

What is worth mentioning is that the localization process observed here is not a

trivial one. It has been verified that for every value of the disorder strength r used in

the simulations, the lasers are always operating in the excitable regimes and excitability

waves can propagate normally through the array if all the coupling coefficients are set

identically equal to K0 − r, the minimum possible value achievable during the random

determination of the coupling terms. A proof in this sense is given in Fig.8.8, where for

n = 150 lasers, if all the lasers are identically coupled with the minimum possible cou-

pling achievable with the parameters used in Fig.8.10, propagation of excitable waves is

not inhibited. This check supports the fact that the observed localization phenomenon

is due to a non trivial dynamical scattering process, where dissipation for sure plays

a relevant role, that can not be explained by an artificial local breaking of the links

between neighbor elements of the array.

Gaining access on how the noise strength affects excitable dynamical systems is crucial

towards understanding their operation and achieving a better control over their perfor-

mances: such point is indeed evident in the case of the coherence resonance processes

discussed in the first section of the present Chapter, for this reason it is interesting to
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briefly comment on how the localization exponent 〈α〉 depends on the additive noise

strength D. Some results in this sense are depicted in Fig.8.11: a decrease in the lo-

calization exponent is observed for increasing the noise strength in the central laser of

the array.
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0

0.025

0.05

Figure 8.11: The average localization exponent is plotted versus the noise strength D
for n = 150 coupled lasers. Each point, and relative standard deviation, is the result of
an average over 20 different values of 〈α〉 each one obtained through 150 realizations of
the disorder and with the same value of D. Parameters used are K0 = 0.5 and r = 0.4.

The two results discussed above constitute a very preliminary and modest step to-

wards the study and understanding of the collective phenomena in coupled excitable

lasers: more effort is needed both concerning the development of suitable mathematical

models that properly account for the above mentioned phenomenology and concerning

their experimental study. It would be also interesting to study the dynamics of cou-

pled excitable lasers in different geometries for instance considering a laser matrix (2D

geometry) instead of a chain (1D geometry), and to understand wether technological

applications of those systems could be envisaged.

I can anticipate that, a numerical study still in progress reveals the fact that both

synchronization and disorder induced localization take place also when the coupling

coefficient is imaginary and when the alpha-factor is included in the lasers equations.

Predicting synchronization and localization in presence of imaginary couplings is rel-

evant for instance in view of their potential experimental observation in array of cou-

pled micropillar lasers [102, 103] where the coupling among the laser cavities is due to

evanescent waves.
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9
Spatiotemporally localized solutions on the

finite background of the nonlinear
Schrödinger equation: the Bogoliubov-de

Gennes bullets

9.1 Towards spatio-temporal localization...

Up to now in this thesis we have focussed our attention on light pulses or solutions

which are localized in time. Historically in nonlinear dynamics localized solutions in

general have been considered a very attractive and fascinating research object. Some

equations such as the nonlinear Schrödinger equation, the Korteweg-de Vries equation

and the Kadomntsev-Petviashvili equation to cite just a few, are integrable, which

means they can be solved exactly through the inverse scattering transform technique

[104, 105]. In certain parameter regions such equations admit soliton solutions, e.g.

solutions that are localized and also that are robust upon collisions. If we restrict our

attention to the nonlinear Schrödinger equation we can mention the two celebrated

soliton solutions: the fundamental bright soliton for the so called focussing and the

dark soliton for the defocussing case respectively. In nonlinear optics we can have

both spatial and temporal solitons due to the interplay between Kerr nonlinearity and

diffraction or dispersion accordingly [106]. Bright solitons exist when the diffraction

and nonlinearity or when dispersion and nonlinearity compensate each other. In the

first case we speak about spatial solitons or non diffracting light beams, while in the

second case we speak about of temporal solitons or non dispersing pulses. There has

been a substantial effort in the recent years to combine the concept of both spatial

and temporal localization, with the ambitious goal to obtain the so-called light bullets:

solitonic solutions that remain confined and propagate without spreading neither along

the propagation direction (temporal confinement), nor diffracting in the transverse

direction with respect to the propagation direction (spatial confinement). The idea has

118



been first suggested by Silberberg [107] and some experimental attempts to observe

such bullets have been done, evidencing however some stability problems [108, 109].

Besides solitons defined in a strict mathematical sense from the integrability of the

evolution equations through inverse scattering transform, some localized solutions have

been predicted by studying theoretically and experimentally dissipative equations like

the complex Ginzburg-Landau equation [110] or perturbed versions of the nonlinear

Schrödinger equation as well as in other nonlinear equations [111]. Such localized

solutions are customary referred to in the literature as solitons in a broad sense.

All the above mentioned bright solitons in the nonlinear Schrödinger equation or in

the complex Ginzburg-Landau equation “live” on a vanishing field background. If

the background is finite and different from zero the nonlinear Schrödinger equation

admits so called breathers solutions. Breathers are solitons that undergo a periodic

dynamics. The most general breathers solution has been derived by Kuznetsov [112].

Later, two particular cases of the Kuznetsov breather have been discussed, the so-called

Peregrine soliton [113] and the Akhmediev breather [114]. The existence of such peculiar

solutions still stimulates an active research interest both from the theoretical [115] and

the experimental point of view [116]. On the other hand another class of solitons exists

in presence of periodic potentials. It is well known that in presence of periodic potential

the dispersion relation exhibits a band structure, like in the case of crystalline structure

in solid state physics. It can be shown that for modes close to the first band edges,

localized structures called gap-solitons can be found [117]. Gap solitons have been

studied extensively both in nonlinear optics for light propagating in photonics crystals,

where the periodic potential is realized through a periodic modulation of the refractive

index. For two dimensional modulation of the refractive index spatial gap-solitons can

be observed for light propagating orthogonally to the modulation plane[118]. Temporal

gap-solitons can be instead observed for instance in fibre Bragg gratings where the

one-dimensional modulation of the refractive index takes place along the propagation

direction of the light through the fibre [119]. Gap solitons have been observed also in

other physical systems such as Bose-Einstein condensates where the periodic potential

can be realized by means of an optical lattice [117, 120].
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9.2 Controlling the excitations dispersion relation through

the potential

We suggest here that there is possibility to build spatiotemporally localized solutions,

living on the finite non-vanishing field background, in a two-dimensional nonlinear

Schrödinger equation, describing a a field defined in space and evolving in time for

instance an atomic Bose-Einstein condensate in presence of a periodic potential:

∂A

∂t
= i∇2A+ ic|A|2A+ i4m[cos(qxx) + cos(qyy)]A. (9.1)

WhereA is the field envelope defined in space and evolving in time t, c is the nonlinearity

coefficient, m the potential strength while qx,y determine the periodicity of the potential

along the two spatial directions of coordinates x and y. Indeed in the mean field

approximation such equation called also the Gross-Pitaevskii equation in the Bose-

Einstein condensates community, describes the dynamics of a Bose-Einstein condensate

[121]; the periodic potential can be practically created by using an optical lattice [122].

Throughout all the study we have taken the nonlinearity coefficient c < 0. Hence the

equation is defocussing and no bright solitons could in principle exist.

Let’s for the moment consider the vanishing potential case (m = 0). We examine now

the dispersion relation of the weak excitations on top of the condensate, the so called

Bogoliubov-de Gennes modes. In a Bose-Einstein condensate they correspond to sound

waves propagating on top of the spatially homogeneous stationary state [121]. In one

spatial dimension
(
∇2 = ∂2

∂x2

)
the dispersion relation is a parabola that in the limit of

strong background becomes linear close to the origin, while in two spatial dimensions

the dispersion relation consists of paraboloids determined by the following relation:

ω = ±k
√

(k2 + 2|A0|2c); (9.2)

where k = |~k| =
√
k2
|| + k2

⊥ being k|| and k⊥ the components of the wavevector ~k in the

parallel and orthogonal direction with respect to the propagation one. Eq.9.2 can be

obtained by substituting the following ansatz:

A(t, ~r) = A0e
ic|A0|2t

[
1 + b+(~r, t)ei~k·~r + b−(~r, t)e−i~k·~r

]
(9.3)
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into Eq. 9.1 and linearizing with respect to the small Bogoliuobov modes amplitudes

|b±| << A0.

The analytical computation of the dispersion relation in presence of a periodic poten-

tial is in general problematic. A useful numerical technique that we use in order to

compute the dispersion of the excitations accounting for the modifications induced by

the potential (when m 6= 0) is the following.Starting from an homogeneous background

of amplitude A0 we introduce a small perturbation to every spatial spectral mode and

let the corresponding field amplitude evolve in time for a certain temporal interval T

recording the field amplitude A(~r, t) values in the entire space and time domain. A

simple spatio-temporal Fourier transform give hence the spectrum Ã(~k, ω). For every

fixed value of ω, the set of obtained wave numbers (kx, ky) constitutes the so-called

isofrequency curves. Isofrequency curves are very important analysis tools for the wave

propagation which are are widely used for instance to study the properties of photonic

crystals. In general they indicate the curvature that the phase front acquires upon prop-

agation hence allowing an understanding of the focalization, collimation or spreading

nature of the waves in those systems. Due to the mathematical similarity of the problem

we are considering in this Chapter our study can benefit from such cross-disciplinary in-

teraction. Coming back to our system, in case of nonvanishing potential the dispersion

still exhibits paraboloid shape, that cut at certain frequency give circular isofrequency

curves with increasing radius for larger and larger ω. When the isofrequency curves are

concave a wavepacket of excitations on top of the homogeneous background will spread

due to diffraction. However, for sufficently high ω, discontinuities in the isofrequency

curves called bandgaps appear (See Fig.9.1). Waves having wavevectors lying in the

bandgaps cannot propagate. In correspondence to the apparence of bandgaps we can

observe also a flattening of the isofrequency lines. This flattening corresponds to the

so called self-collimation regime. A wave-packet whose spectrum lies entirely on the

flat isofrequency lines propagates without suffering any diffraction. We can call such

wave-packet spatial soliton or solitonic beam. In this sense we have an ingredient to

achieve spatial localization. Self-collimation has been indeed studied and observed in

photonic crystals [123, 124, 125].

We now want to ask the following question: how can we use the periodic poten-

tial to achieve temporal localization? Temporal spreading of a wave-packet, e.g. a
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Figure 9.1: In a) the isofrequency lines of the Bogoliubov excitations are presented for
different values of ω (indicated on the plot). Increasing ω we have first the diffracting
regime (ω = ωu), then the aparence of the bandgaps with the flattening of the isofre-
quency curves for ω = ωsc and later on the change of curvature of the isofrequency lines
with corresponding focussing regime (ω = ωf ). The suffix sc stands for self-collimation
and wave-packets with a wavevector corresponding to this value experience no diffrac-
tion upon propagation. In b) the dispersion relation ω versus k|| is shown: the red
arrow indicates the longitudinal inflection point, wave-packets with wavevectors cen-
tered around this point experience no dispersion. The parameters used are m = 1,
qx = qy = 6.67, c = −0.05 and A0 = 0.5.

spreading taking place in a reference frame co-moving with the wave-packet, occurs in

general because the different spectral component travel at different velocities, e.g. a

group velocity dispersion exists. The group velocity dispersion in fibre optics is defined

as the second derivative of the propagation constant with respect to the frequency [25].

In the notation that we are considering in this Chapter the temporal and spatial co-

ordinates are interchanged, hence the analogous of the group velocity dispersion is the

second derivative of ω with respect to ~k||, where ~k|| is the wavevector oriented along

the propagation direction of a pulse. Now, if one chooses a wave-packet of excitations

whose spectrum is centered around a wavevector that lies in correspondence to the

inflection point of the curve ω versus ~k|| (temporal inflection point), there ∂2ω
∂~k2
||

= 0,

and no dispersion is present. Inspired by this consideration we can indeed think that

wave-packets of excitations having an infinite extent in the direction transverse to the

propagation one remain localized in the co-moving reference frame upon evolution if

the central wave-vector is chosen in correspondence to the inflection point of the curve

ω versus ~k|| (Fig.9.1b)): such solutions are the temporal solitons or solitonic pulses.
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9.3 Linear Bogoliubov-de Gennes bullets

We have now both ingredients ready to obtain the so-called Bogoliubov de-Gennes

bullets, we just need to combine them in a suitable way. If we choose a Gaussian wave-

packet of excitations with amplitude a0, wavevector ~k0, longitudinal and transverse

width, w|| and w⊥ accordingly to Eq. 9.4:

a(~r) = a0exp
{
i~k0 · ~r

}
exp

{[
− (x− y)2

w2
||

+ (x+ y)2

w2
⊥

)]}
(9.4)

and locate it on top of the homogeneous field background by choosing a wavevector ~k0

that corresponds simultaneously to the longitudinal and transverse inflection points, we

will achieve simultaneously a non diffracting and non dispersing regime and our wave-

packet can propagate without spreading neither along the direction of propagation nor

along the direction transverse to it. If the nonlinearity coefficient is small and/or the

intensity of the wave-packet is much smaller than the background (with a background

amplitude that is non negligible) we call the spatiotemporally localized wave-packet of

excitations: linear Bogoliubov-de Gennes bullet. The results of numerical simulations

are summarized in Fig. 9.2 and Fig. 9.3 and show that such bullets exist emphasizing

their difference with usually dispersive pulses. Note that in the intensity profiles de-

picted in Fig.9.2, in all the plots, the spatial Fourier components with wave numbers

kx = qx and ky = qy, corresponding to the the potential periodicities, have been re-

moved (only in the plotting). This has been done in all the intensity plots presented in

this Chapter.
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Figure 9.2: In a) the snapshots of the temporal evolution of the linear Bogoliubov-
de Gennes excitations are shown (the black arrows denote the propagation direction).
The bullet width, both in the longitudinal and transverse direction, remains unchanged
upon propagation, while if the wavevector is not choosing to satisfy the bullet condition
then excitations wave-packets broaden significantly in time b). In c) a 1-D section of the
initial conditions of the simulations and the results after an evolution for t = 150 in both
cases of spreading pulse and linear bullet. Parameters used are: m = 1, qx = qy = 6.67,
A0 = 0.5, c = −0.05, a0 = 0.05 and initial widths w⊥ = w|| = 18.5. The spreading
pulse has wavevector ~k0 = 1.45(x̂+ ŷ), while for the linear bullet ~k0 = 2.45(x̂+ ŷ).

Figure 9.3: In a) the spreading pulse at t = 0 and after temporal evolution (2-D plot
and 1-D section) is compared with the linear Bogoliubov-de Gennes bullet b). The
latter remains unchanged. Parameters considered are A0 = 0.5, m = 1, qx = qy = 6.67,
c = −0.05, a0 = 0.05, and w⊥ = w|| = 18.5; ~k0 = 1.45(x̂+ ŷ) and ~k0 = 2.45(x̂+ ŷ) for
the spreading pulse and the linear bullet respectively.

It is interesting to comment about the fact that while in Fig.9.2 results about bullets

of excitations propagating on the finite background have been reported, in principle one
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could also remove the background and have a bullet traveling on the vanishing back-

ground.

9.4 Nonlinear Bogoliubov-de Gennes bullets

We define the nonlinear Bogoliubov-de Gennes bullets as wave-packets of excitations

traveling on the finite field background where the bullet amplitude is comparable with

the background amplitude being the latter significantly different from zero, and/or the

nonlinearity coefficient is large (about order one). It is indeed possible to observe nu-

merically such objects too. The results are summarized in Fig.9.4. We have identified

families of bullets where a fixed relation between intensity peak Ip and width is re-

spected (Ip ∝ w−2
|| ). The interested reader can also find movies showing the evolution

of the stable linear and nonlinear bullets available online as a Supplemental Material

of the paper where the results presented in this Chapter have been published [126].

As a general comment it is important to say that since the Bogoliubov-de Gennes

Figure 9.4: In a) the intensity peaks values of the nonlinear bullets are depicted as a
function of the bullet width for various values of the nonlinearity coefficient c depicted
above. In b) the same results are shown in logarithmic scale. In c) the snapshots of
the temporal evolution of one nonlinear bullet are shown, the white arrows denote the
propagation direction. Parameters used in the simulations are: a0 = 0.2, c = −0.15,
w⊥ = w|| = 21, m = 1, qx = qy = 6.67, A0 = 0.5 and ~k0 = 2.48(x̂+ ŷ).

bullets exist also in the limit of vanishing nonlinearity, probably they are not solitons
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Figure 9.5: In a) a spreading pulse at t = 0 and after temporal evolution (2-D plot
and 1-D section) is compared with the nonlinear Bogoliubov-de Gennes bullet b). The
latter remains unchanged upon propagation. Simulations have been performed with
the following set of parameters: A0 = 0.5, m = 1, qx = qy = 6.67, c = −0.15, a0 = 0.2,
and w⊥ = w|| = 19; ~k0 = 1.45(x̂ + ŷ) and ~k0 = 2.48(x̂ + ŷ) for spreading pulse and
nonlinear bullet respectively.

in the strict sense, if one consider solitons to be objects existing thanks to the balance

of dispersion or diffraction and nonlinearity (at least in the conservative case). The

Bogoliubov-de Gennes bullets may be considered maybe as linear localized solutions

that may be also “dressed” with nonlinearity such as X-waves [127, 128, 129, 130]. Also

it is important to stress that Bogoliubov-de Gennes bullets have a width that cannot be

smaller than a critical value, indeed for very narrow bullets the spectrum will be very

large and contain wavenumbers falling into the forbidden bandgap. This fact should

be taken into account in possible future experimental studies.
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9.5 On the bullets stability

It is very important to stress some points about the preparation of the initial conditions

for the bullets. Indeed I comment now in detail about the procedure briefly sketched

above. First of all it is necessary to find the system steady state, the spatially periodic

Bloch mode with average amplitude A0 and periodicities qx and qy in the x and y

directions, respectively. An artificial transient step is needed to “cool down” the system

into the stationary Bloch solution. This is obtained by making a transformation to

complex time t → t(1 + iε), being ε a real parameter much smaller than unity and

then integrating Eq.9.1 for a small temporal interval. This transformation mimics

dissipation and causes damping of the thermal excitations of the condensate [131],

allowing the system to relax to a stationary state. Once the system has reached the

ground state, the complex time transformation is removed and the system switches back

to the conservative regime. This time is referenced as t = 0. Hence the Bogoliubov-de

Gennes bullet envelope can be introduced over the steady-state background in the form

given by Eq. 9.4. However Eq. 9.4 is just an ansatz and not the true bullet solutions,

consequently a substantial scattering takes place once the bullet is located on top of

the steady-state background. Since periodic boundary conditions have been used in the

simulations, the scattered dispersive waves lead to the introduction of strong noise in

the system affecting dramatically the stability of the steady state and of the propagating

pulse. For this reason, the scattered radiation is sufficiently, although not completely,

filtered out of the system before allowing the bullet to propagate. In this sense a certain

amount of noise is present in the system and this reveals the fact that bullets are stable

with respect to such perturbations. It is possible to test numerically more extensively

and quantitatively the stability of the bullets. Two ways have been followed. In the

first case, after preparing the initial bullet condition as described before, complex white

noise of amplitude n has been added to the field at t = 0. In presence of noise the

intensity peak of the bullet undergoes oscillations. The variance of the bullet intensity

peak, V ar(Ip), has been computed after evolution for a long time interval obtained

by numerically simulating Eq.9.1. The procedure has been repeated varying the input

noise strength n (See Fig.9.6). We can observe that V ar(Ip) increases linearly with n2.

The second stability test has been done perturbing the field continuously, at each
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integration step during the temporal evolution. The variance of the pulse intensity

peak has been calculated at each interval j∆t with j an integer ranging from 1 to

T/∆t, with T the total integration time. Results of such numerical stability analysis

are presented in Fig.9.7. The variance increases linearly with n2 in the first perturbation

scheme considered and with time in the second one. If the bullets were unstable then

the width would increase exponentially.

Figure 9.6: The variance of the peak intensity V ar(Ip) of the bullet for long intervals
of propagation (t ≈ 100) is plotted as a function of the initial noise intensity n2 both in
the case of linear bullets a), and for nonlinear bullets b). The respective insets show the
cross-section of the bullets intensity before propagation (blue) and after propagation
(red). The parameters for the bullets are the same as in Fig.9.2 and Fig.9.4 for the
linear and nonlinear bullets respectively. Dashed lines correspond to linear fits. Dashed
black arrows indicate the bullets at the initial (blue plots) and final (red plots) stage
of the evolution for the corresponding value of added noise.

Figure 9.7: The variance of the peak intensity of the bullets, V ar(Ip), in the presence of
a continuously added noise of constant amplitude, averaged over regular subintervals of
the propagation time t. The amplitudes for the noise were n = 0.0002 and n = 0.001 for
the linear and nonlinear bullets respectively. The total propagation time in both cases
is t ≈ 95 and the dots in the plots correspond to the variance calculated on temporal
intervals having length ∆t = 4.75. All the parameters for the bullets are the same as
in Fig.9.2 (linear) and Fig.9.4 (nonlinear). Dashed lines correspond to linear fits.

It is also very important to stress the fact that the Bogoliubov-de Gennes bullets

128



differ substantially from the well known gap solitons. Indeed gap solitons exist close

to the band edges where the first derivative of the dispersion relation is close to zero(
∂ω

∂~k||
≈ 0

)
. We are instead considering here the case where the second derivative of

the dispersion relation is close to zero
(
∂2ω
∂~k2
||
≈ 0

)
. We note that choosing the correct

wavevector corresponding to the bullet regime is crucial, indeed if we take a too long

one corresponding to the convex curvature of the isofrequency lines we will obtain

focussing of the Bogoliubov-de Gennes excitations. Focussing is achieved thanks to the

dispersion relation modification induced by the potential notwithstanding the fact that

we are considering a defocussing nonlinear Schrödinger equation (see Fig.9.8):

Figure 9.8: Focussing dynamics of a Bogoliubov-de Gennes excitations wave-packet,
the white arrows denote the propagation direction. Parameters used are m = 1, qx =
qy = 6.67, c = −0.1, A0 = 0.5, a0 = 1.1 and ~k0 = 2.7(x̂ + ŷ); the initial widths are
w⊥ = 10 and w|| = 14 respectively.

Future tasks in this research direction are numerous. From the mathematical point

of view, analytical solutions of the Bogoliubov-de Gennes bullets must still be found

as a well as a rigorous proof of their stability must be given. From the experimental

point of view it is interesting to think how to observe the bullets in atomic Bose-

Einstein condensates with periodic potential, first of all individuating a realistic range

of real world parameters and then studying the practical feasibility of the experiment.

Another interesting direction could be to find a suitable photonic system supporting the

existence of the Bogoliubov-de Gennes bullets, in this direction the main challenge may

be finding a way of implementing the periodic potential in an efficient way. Adapting

the proposed localization scheme to dissipative systems where gain and losses play
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important roles can be challenging, but it is an option that potentially could be explored

too.

130



10 Appendix: The derivation of the
Arecchi-Bonifacio (Maxwell-Bloch)

equations

10.1 Interaction of a two-level atom with the electromag-

netic field

We present here a derivation of the Arecchi-Bonifacio equations starting from the den-

sity matrix of a two-level atomic system interacting with a monochromatic electric field.

We will describe how a two-level atom interacts with a non-quantized electromagnetic

field through the density matrix formalism (it is of course possible to derive the same

equations from a fully quantum approach [132], but such procedure would be redun-

dant for our purposes). This treatment will result in the optical Bloch equations. The

same mathematical picture can be obtained studying the dynamics of a spin one-half

particle interacting with a magnetic field which oscillates periodically in time; this is

the reason for the name Bloch.

In order to take into account the temporal evolution of the electric field amplitude,

which varies due to the photon exchanges with the atomic medium, a self consistent

analysis is required. For this reason it will be necessary to take into account how the

polarization induced by the field in the material medium affects the field itself. This

point will be accounted for by coupling the optical Bloch equations with Maxwell equa-

tions.

The Hamiltonian which describes an electron with charge −e and mass m interacting

with an electromagnetic field is:

H = 1
2m

[
p− e

c
A(x, t)

]2
+ eV (x, t) + U(r). (10.1)
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Where x the electron position which can be written as x = r0+r being r0 the nucleus

position, and r the electron position relative to the nucleus; p is the momentum operator

conjugate with r. A(x, t) and V (x, t) are the vector and scalar potential of the external

electromagnetic field while U(r) is the spherically symmetric potential which describes

the electron-nucleus Coulombian interaction.

The electric field E and the magnetic field B are related to the potentials through the

well known relationships

E = −∇V − 1
c

∂A
∂t

(10.2)

B = ∇×A. (10.3)

Let’s choose the Coulomb gauge where V = 0 and ∇ · A = 0 and assume that the

radiation field is monochromatic with wavelength λ.

We introduce now the first crucial approximation of our description: we assume that

the wavelength λ is much greater than the atomic dimensions, which is equivalent to

require k · r� 1 where k is the radiation wave vector. This is what is called the dipole

approximation.

It follows that the vector potential can be well approximated in this way:

A(r0 + r, t) = A(t) exp[ik · (r0 + r)] + c.c. = A(t) exp(ik · r0)(1 + ik · r + ...) + c.c.

≈ A(t) exp(ik · r0) + c.c. = A(r0, t) (10.4)

losing its operator properties, since its dependence on the position operator r can be

neglected, and becoming a simple complex number. Hence the Schrödinger equation

for the electron is:

Hψ(r, t) =
{

1
2m

[
p− e

c
A(r0, t)

]2
+ U(r)

}
(r, t) = i~

∂ψ(r, t)
∂t

. (10.5)

In order to split the Hamiltonian into two separate parts, the first one describing the

isolated atom and the second one including the coupling with the external field, let us

introduce the following gauge transformation defined by the unitary operator

T (r, t) = exp
[
−i e

~c
r ·A(r0, t)

]
. (10.6)
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Applying T to the Schrödinger equation we have:

THT †Tψ = i~T
∂ψ

∂t
, (10.7)

but since the Coulomb potential depends just on the position operator r, it commutes

with T and TUT † = U . The transformation on the remaining part of H is:

T
1

2m

[
p− e

c
A(r0, t)

]2
T † = 1

2m

[
TpT † − e

c
A(r0, t)

]2
. (10.8)

We have

TpT †ψ = T (−i~∇)
{

exp
[
−i e

~c
r ·A(r0, t)

] }
= T

{
exp

[
−i e

~c
r ·A(r0, t)

] [
−i~∇ψ + e

c
A(r0, t)

]}
=

[
p + e

c
A(r0, t)

]
(10.9)

and

THT † = p2

2m + U(r) = H0 (10.10)

where we have defined H0 as the Hamiltonian of the isolated atom. Furthermore

T
∂ψ

∂t
= ∂(Tψ)

∂t
− ∂T

∂t
(10.11)

and since

∂T

∂t
= −i e

~c
r · ∂A(r0, t)

∂t
T = i

~
er ·ET (10.12)

if we define the new wave function ψ′ = Tψ, the Schrödinger equation becomes

H0ψ
′ = i~

[
∂ψ′

∂t
− i

~
er ·Eψ′

]
. (10.13)

Omitting the apex to simplify the notation

(H0 +HINT )ψ = i~
∂ψ

∂t
(10.14)
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where HINT = −er ·E is the interaction Hamiltonian.

Let E1 be the energy of the atom upper level (excited state) and E2 the energy of the

lower level (ground state). We can define the transition frequency:

ωa = E1 − E2
~

(10.15)

and fixing the zero of the energy between the two levels we have E1 = ~ωa
2 and E2 =

−~ωa
2 , which are respectively the eigenvalues of the free hamiltonian H0:

H0|1〉 = ~ωa
2 |1〉, H0|2〉 = −~ωa

2 |2〉. (10.16)

The eigenstates can be written in a vector form as follows:

|1〉 =

 1

0

 , |2〉 =

 0

1

 . (10.17)

A generic atomic state will be then a linear combination of |1〉 and |2〉 which constitute

a basis for the two dimensional Hilbert space:

|ψ〉 = a|1〉+ b|2〉 =

 a

b

 (10.18)

while a generic observable is described by the hermitean matrix:

A =

A11 A12

A21 A22

 (10.19)

whose elements are Aij = 〈i|A|j〉 and satisfy A11, A22 ∈ R together with A21 = A∗12

since A = A†.

The two observables of interest are the free hamiltonian

H0 =


~ωa

2 0

0 −~ωa
2

 (10.20)
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and the dipole moment operator

er =

 0 d

d∗ 0

 . (10.21)

We have assumed that the states |1〉 and |2〉, have definite and opposite parity, so that:

d11 = d22 = 0, d12 = d∗21 = 〈1|er|2〉 = d. (10.22)

Defining the Rabi frequency:

ΩR = 2d ·E
~

(10.23)

H becomes hence

H = H0 − er ·E = ~
2

 ωa −ΩR

−ΩR −ωa

 . (10.24)

The atomic frequency appears now to be split into two new frequencies and the splitting

depends on the field strength. This phenomenon is the so called Rabi splitting.

In order to describe the temporal evolution of the physical observables of the system it

is convenient to define the the density operator ρ(t). ρ is positive defined, self-adjoint

and has unitary trace. It can be described by a matrix whose elements are given by:

ρij = 〈i|ρ|j〉.

Its temporal evolution is ruled by the Liouville-Von Neumann equation of motion:

ρ̇ = − i
~

[H, ρ], (10.25)

that for the matrix elements says:

ρ̇ij = − i
~
∑
k

(Hikρkj − ρikHkj). (10.26)

For the two-level atom the density matrix is a 2 × 2 matrix with just 3 independent

elements (due to hermiticity) ρ11, ρ22 and ρ12. ρ11 represent the population of the

state |1〉 while ρ22 the population of |2〉. The unitarity of the trace which implies
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ρ11 + ρ22 = 1, describes the probability conservation.

Out of diagonal terms describe the so-called coherences and are the feature of the system

“quantumness”. The mean value of a generic observable can be calculated through the

following prescription:

〈A(t)〉 = Tr [ρ(t)A] . (10.27)

Hence the expectation value of the dipole moment operator reads:

〈er〉 = Tr(ρer) = Tr

ρ11 ρ12

ρ∗12 ρ22


0 d

d 0


)

= dTr

ρ12 ρ11

ρ22 ρ∗12

 = d(ρ12 + ρ∗12).

(10.28)

This expression shows the connection between out of diagonal terms and the electric

dipole moment of the atom. This result allows to obtain an expression for the macro-

scopic dipole moment induced in a material whose N atoms per unit volume can be

modeled as two-level systems:

P = N〈er〉 = Nd(ρ12 + ρ∗12)û. (10.29)

d is the modulus of d and û is a unitary vector.

Exploiting the constraints of hermiticity and unitarity of the trace of ρ we can formulate

the equation of motion for the independent density matrix elements following Eq.10.26:

ρ̇12 = − i
~

[(H11 −H22)ρ12 +H12(ρ22 − ρ11)] (10.30)

ρ̇11 = − i
~

[H12ρ21 −H21ρ12] . (10.31)

Substituting the hamiltonian of Eq.10.24 into Eq.10.30 and Eq.10.31, we obtain:

ρ̇12 = −iωaρ12 + i

2ΩR(1− 2ρ11) (10.32)

ρ̇11 = i

2ΩR(ρ∗12 − ρ12). (10.33)

We can restrict ourselves to the case where the electric field is a plane wave propagating

along the direction z and polarized along ê:

E(z, t) = E(z, t)ê, E(z, t) = E0
2 ei(kz−ωt) + c.c.. (10.34)
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Since the Rabi frequency is directly dependent on the electric field, substituting Eq.10.34

into Eq.10.23 we get:

ΩR(z, t) = Ωei(kz−ωt) + c.c. (10.35)

with

Ω = d · êE0
~

. (10.36)

Assuming that P and E are parallel (û = ê) we have

Ω = Ω = dE0
~
. (10.37)

It follows naturally that the temporal dependence of the macroscopic polarization P ,

should be the same as the electric field one. This implies to write down ρ12, which entails

the main dependence of P , in a consistent way introducing a complex amplitude r and

a phase:

ρ12 = rei(kz−ωt). (10.38)

Eq. (10.34) suggests that P can be rewritten as:

P(z, t) = P(z, t)ê (10.39)

with

P(z, t) = P0
2 ei(kz−ωt) + c.c., P0 = 2Ndr. (10.40)

It is physically relevant introducing a variable which takes into account the population

difference between the two atomic levels:

r3 = ρ11 − ρ22 = 2ρ11 − 1. (10.41)

r3 is positive if the upper level is more populated than the lower one, negative otherwise.

The substitution of Eq.10.35, 10.37 and 10.41 into Eq.10.32 and Eq.10.33, gives two
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first order coupled differential equations for the variables r and r3:

ṙ = i(ω − ωa)r −
i

2
(
Ω + Ω∗e−2i(kz−ωt)

)
r3 (10.42)

ṙ3 = i
(
Ωr∗ − Ω∗r − Ωre2i(kz−ωt) + Ω∗r∗e−2i(kz−ωt)

)
. (10.43)

A final approximation is necessary to accomplish the deduction of the Bloch equa-

tions: the terms oscillating at twice the optical frequency can be neglected without

substantial loss of information since their rapid oscillation does not affect the dynamics

which occurs on time scales larger than the optical period. This is the rotating wave

approximation. Furthermore, introducing the detuning between the field and atomic

frequencies, δ = ω − ωa, we obtain the optical Bloch equations for a two level atomic

system:

ṙ = −iδr − i

2Ωr3 (10.44)

ṙ3 = i(Ωr∗ − Ω∗r). (10.45)

10.2 The Arecchi-Bonifacio (Maxwell-Bloch) equations

Up to now we have supposed the the electric field interacting with the atomic system

doesn’t modify its amplitude in the interaction. We didn’t consider that it gains and

loses photons due to the stimulated emission and absorption processes. In order to de-

scribe these facts it is necessary to take into account self consistently the field dynamics

itself introducing the so called Maxwell-Bloch equations.

Let’s suppose that our material is non magnetic and that no free charges or currents

are present; in this case Maxwell equations are:

∇×E = −1
c

∂B
∂t

(10.46)

∇ ·B = 0 (10.47)

∇ ·D = 0 (10.48)

∇×B = 1
c

∂D
∂t

. (10.49)

The constitutive relation

D = E + 4πP, (10.50)
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connects the displacement field D with the electric field E through the medium polar-

ization P.

Applying the rotor to both side of the first Maxwell equation Eq.10.46 and exploiting

Eq.10.49 and Eq.10.50, we get:

∇× (∇×E) = ∇(∇ ·E)−∇2E− 1
c2
∂2E
∂t2

= −4π
c2
∂2P
∂t2

. (10.51)

For a plane wave the electric field has zero divergence. We assume that it propagates

along the direction z with linear polarization along x and P is parallel to E, so that

the vectorial Eq.10.51 becomes a scalar one:

∂2E
∂z2 −

1
c2
∂2E
∂t2

= 4π
c2
∂2P

∂t2
(10.52)

where E = E(z, t) and P = P(z, t). The wave equation (Eq. 10.52) contains a source

term proportional to the medium polarization, i.e. the polarization induced by the field

acts as a source producing itself an electric field.

Let us assume that the field is a monochromatic plane wave propagating along the

positive direction of the z axis and analogously for the polarization:

E(z, t) = 1
2E0(z, t)ei(kz−ωt) + c.c., P(z, t) = 1

2P0(z, t)ei(kz−ωt) + c.c.. (10.53)

A substantial simplification is obtained by assuming that the envelopes vary only

slightly on spatial and temporal scales comparable to the carrier periods. This assump-

tion is the so called slowly varying envelope approximation (SVEA).

The SVEA can be expressed mathematically in the following way:

∣∣∣∣∂E0
∂z

∣∣∣∣� k|E0|,
∣∣∣∣∂P0
∂z

∣∣∣∣� k|P0|,
∣∣∣∣∂E0
∂t

∣∣∣∣� ω|E0|,
∣∣∣∣∂P0
∂t

∣∣∣∣� ω|P0|. (10.54)

The expressions for the fields in Eq.10.53 can be written as the following sum:

E(z, t) = E+(z, t) + E−(z, t), P(z, t) = P+(z, t) + P−(z, t) (10.55)

with

E+(z, t) = 1
2E0(z, t)ei(kz−ωt), E−(z, t) = 1

2E
∗
0(z, t)e−i(kz−ωt) (10.56)
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and analogously for P(z, t).

Hence Eq.10.52 can be split in two distinct equations; let us consider the one with the

+ sign. Left-hand side of Eq.10.52 can be written as

(
∂

∂z
+ 1
c

∂

∂t

)(
∂

∂z
− 1
c

∂

∂t

)
E+. (10.57)

The action of the linear operators defined in the brackets is the following:

(
∂

∂z
− 1
c

∂

∂t

)
E+ = 1

2e
i(kz−ωt)

(
ikE0 + ∂E0

∂z
+ i

ω

c
E0 −

1
c

∂E0
∂t

)
≈ 2ikE+(10.58)(

∂

∂z
+ 1
c

∂

∂t

)
E+ = 1

2e
i(kz−ωt)

(
ikE0 + ∂E0

∂z
− iω

c
E0 + 1

c

∂E0
∂t

)
= 1

2e
i(kz−ωt)

(
∂

∂z
+ 1
c

∂

∂t

)
E+ (10.59)

where we have applied the SVEA in Eq.10.58. The left-hand side of Eq.10.52 becomes

then
∂2

∂z2 −
1
c2
∂2

∂t2

)
E+ = 2ik1

2e
i(kz−ωt)

(
∂

∂z
+ 1
c

∂

∂t

)
E+. (10.60)

Applying the SVEA to the right-hand side we get:

∂2P+

∂t2
= ∂

∂t

[
∂P+

∂t

]
= ∂

∂t

[1
2e

i(kz−ωt)
(
−iωP0 + ∂P0

∂t

)]
≈ (10.61)

≈ −iω ∂
∂t

[1
2e

i(kz−ωt)P0

]
= −iω1

2e
i(kz−ωt)

(
−iωP0 + ∂P0

∂t

)
≈ ω2 1

2e
i(kz−ωt)P0.

The scalar wave equation with source term, Eq.10.52, obtained equating Eq.10.61 and

Eq.10.60 acquires the following form:

∂E0
∂z

+ 1
c

∂E0
∂t

= 2πikP0. (10.62)

In an analogous way, considering the equations for E− and P− we can get an equation

for E∗0 and P ∗0 which is exactly the conjugate of Eq.10.62.

We emphasize the fact that the SVEA introduces a fundamental simplification of

the problem reducing a second order differential equation, Eq. 10.52, to a first order

one: Eq.10.62.

It is worth noting that outside the plane wave approximation, in order to describe
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the field propagation in the transverse directions, the Laplacian operator in Eq.10.51

should contain also a transverse part: ∇2
⊥ = ∂2

x + ∂2
y . This results in an additional

diffraction term into Eq.10.62 which would become:

1
2ik0
∇2
⊥E0 + ∂E0

∂z
+ 1
c

∂E0
∂t

= 2πik0P0. (10.63)

We have defined k0 as the longitudinal component of the carrier wave vector, outside

the plane wave approximation the wave vector can assume also transverse components.

Up to now we have considered just reversible effects neglecting the dynamics related to

dissipative phenomena. Let us see how dissipative processes can be included into the

Maxwell-Bloch equations.

The atomic excited state can decay through both spontaneous emission and anelastic

collisions, i.e. non radiative de-excitations. We can write the de-excitation rate as

γ↓ = A + γa, where A is the Einstein coefficient for spontaneous emission and γa the

rate of non radiative de-excitations. The same processes will contribute obviously to

increase the population of the ground state. We are implicitly assuming that A and γa

refer to processes connecting the two levels, in a more complicated scheme where other

atomic levels are present we should introduce also dissipative terms which are related

to those additional levels.

The populations are also altered by thermal excitations or pumping processes which

transfer atoms from the ground to the excited level. Let’s call γ↑ the rate at which these

processes occurs. Hence we can write two rate equations which describe the dissipative

dynamics:

ρ̇11 = −γ↓ρ11 + γ↑ρ22 (10.64)

ρ̇22 = γ↓ρ11 − γ↑ρ22. (10.65)

The rate equation for the population difference r3 = ρ11 − ρ22 = 2ρ11 − 1 is:

ṙ3 = 2ρ11 = −2γ↓ρ11 + 2γ↑(1− ρ11) = −2(γ↓ + γ↑)ρ11 + 2γ↑ =

= −(γ↓ + γ↑)(r3 + 1) + 2γ↑ = −(γ↓ + γ↑)r3 + γ↑ − γ↓ =

= −γ||(r3 − σ). (10.66)

141



Where we have defined:

γ|| = γ↓ + γ↑, σ = γ↑ − γ↓
γ↓ + γ↑

(10.67)

The temporal evolution of variable r3 is then:

r3(t) = σ + [r3(0)− σ] e−γ||t. (10.68)

Hence γ|| is the decay rate of the population inversion. The parameter σ discriminates

between an absorber, for σ < 0, when population is mostly located on the ground

level and consequently the radiation interacting with the atoms is absorbed, and an

amplifying medium, σ > 0, where the excited level is the most populated (population

inversion regime) and the interacting electric field is amplified through the stimulated

emission process.

The polarization itself is affected by a decay due to the elastic collisions between the

atoms that induce shifts of the atomic transition frequency ωa. This fact causes a

broadening of the gain linewidth whose width is defined by ΩG (in the literature such

term is also denoted by the symbol γ⊥).

Coming back to the Maxwell-Bloch equations we can add to them the dissipative

terms:

1
c

∂Ω
∂t

+ ∂Ω
∂z

= ik4πN d2

~
r (10.69)

∂r

∂t
= −iδr − i

2Ωr3 − ΩGr (10.70)

∂r3
∂t

= i(Ωr∗ − Ω∗r)− γ||(r3 − σ). (10.71)

We introduce now a more compact notation where the dynamical variables are dimen-

sional and the parameter number is reduced. We define:

f = Ω√
γ||ΩG

, p = 2i
σ

√
ΩG

γ||
r, D = r3

σ
, g = 2πkNd2

~ΩG
σ. (10.72)
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Introducing the normalized detuning

∆ = δ

ΩG
= ωa − ω

ΩG
(10.73)

we obtain the equations:

1
c

∂f

∂t
+ ∂f

∂z
= gp (10.74)

∂p

∂t
= ΩG [fd− (1 + i∆)p] (10.75)

∂D

∂t
= −γ||

[1
2(fp∗ + f∗p) +D − 1

]
. (10.76)

This set of equations constitute the starting point for the study of the laser dynam-

ics. The equations have been derived under the following hypothesis: dipole, slowly

varying envelope, rotating wave and plane wave approximation. They can be (and

indeed have been [17]) generalised in order to account for the most diverse cavity con-

figurations, boundary conditions, and to include external injection as well. In particular

cases they can be reduced to simplified rate equations models.
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[69] E. Roldán, G. J. de Valcárcel, F. Prati, F. Mitschke, and T. Voigt. Multilon-
gitudinal mode emission in ring cavity class B lasers, in O. G. Calderon and
J. M. Guerra (eds.) Trends in Spatiotemporal Dynamics in Lasers, Instabilities,
Polarization Dynamics and Spatial Structures. Research Signpost, 2005.

[70] M. Pang, W. He, X. Jiang, and P. St. J. Russel. All-optical bit storage in a fibre
laser by optomechanically bound states of solitons. Nat. Phot., 10:454, 2016.
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