Numerically optimized implementations, mitigation and simulations of polarisation mode dispersion in real-time transmission systems

Abstract

The aim of this thesis is to present numerical investigations of the polarisation mode dispersion (PMD) effect. Outstanding issues on the side of the numerical implementations of PMD are resolved and the proposed methods are further optimized for computational efficiency and physical accuracy. Methods for the mitigation of the PMD effect are taken into account and simulations of transmission system with added PMD are presented. The basic outline of the work focusing on PMD can be divided as follows. At first the widely-used coarse-step method for simulating the PMD phenomenon as well as a method derived from the Manakov-PMD equation are implemented and investigated separately through the distribution of a state of polarisation on the Poincaré sphere, and the evolution of the dispersion of a signal. Next these two methods are statistically examined and compared to well-known analytical models of the probability distribution function (PDF) and the autocorrelation function (ACF) of the PMD phenomenon. Important optimisations are achieved, for each of the aforementioned implementations in the computational level. In addition the ACF of the coarse-step method is considered separately, based on the result which indicates that the numerically produced ACF, exaggerates the value of the correlation between different frequencies. Moreover the mitigation of the PMD phenomenon is considered, in the form of numerically implementing Low-PMD spun fibres. Finally, all the above are combined in simulations that demonstrate the impact of the PMD on the quality factor (Q=factor) of different transmission systems. For this a numerical solver based on the coupled nonlinear Schrödinger equation is created which is otherwise tested against the most important transmission impairments in the early chapters of this thesis.

Divisions: College of Engineering & Physical Sciences
Additional Information: Department: Engineering and Applied Science If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: Numerical investigations,polarisation mode dispersion,computational efficiency,physical accuracy,probability distribution function,autocorrelation function
Last Modified: 08 Dec 2023 08:36
Date Deposited: 30 Jun 2010 11:29
Completed Date: 2006
Authors: Braimiotis, Christos

Download

Export / Share Citation


Statistics

Additional statistics for this record