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Thesis Summary

The aim of this thesis is to present numerical investigations of the polarisation mode
dispersion (PMD) effect. Outstanding issues on the side of the numerical implementa-
tions of PMD are resolved and the proposed methods are further optimized for com-
putational efficiency and physical accuracy. Methods for the mitigation of the PMD
effect are taken into account and simulations of transmission systems with added PMD
are presented.

The basic outline of the work focusing on PMD can be divided as follows. At first
the widely-used coarse-step method for simulating the PMD phenomenon as well as a
method derived from the Manakov-PMD equation are implemented and investigated
separately through the distribution of a state of polarisation on the Poincaré sphere,
and the evolution of the dispersion of a signal.

Next these two methods are statistically examined and compared to well-known an-
alytical models of the probability distribution function (PDF) and the autocorrelation
function (ACF) of the PMD phenomenon. Important optimisations are achieved, for
each of the aforementioned implementations in the computational level. In addition
the ACF of the coarse-step method is considered separately, based on the result which
indicates that the numerically produced ACF, exaggerates the value of the correlation
between different frequencies.

Moreover the mitigation of the PMD phenomenon is considered, in the form of
numerically implementing Low-PMD spun fibres. Finally, all the above are combined
in simulations that demonstrate the impact of the PMD on the quality factor (Q-
factor) of different transmission systems. For this a numerical solver based on the
coupled nonlinear Schridinger equation is created which is otherwise tested against
the most important transmission impairments in the early chapters of this thesis.

Keywords: Polarisation mode dispersion, Numerical physics, Probability
distribution function (PDF), Autocorrelation function (ACF), Low-PMD spun fibres,
optical transmission, Q-factor
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Chapter 1

Introduction

1.1 Historical background

The increasing demand for higher information bandwidth resulted in a dramatic growth
in the telecommunications industry over the recent years. The stimulation for this
development, has been fuelled by the growth of the Internet. Services such as the
email and online World Wide Web interactions, in a financial and social level have been
widespread and common for almost any individual. Parallel to that the new global
economy has introduced business and company models, that are heavily dependent
on high data-rates driving the developing networks to operate at high speeds. It is
important to remember that such networks exist to connect, multiple members of a
certain group or organisation, as well as, to conduct group-to-group transactions. It
is then obvious that the spectrum of demand can cover most of the infrastructure of
modern communications including local area networks (LAN), metropolitan networks
and wide area networks (WAN). Let us not forget that the new technological advances
result in reduction of cost in the long run for the user, and this in turn fuels new
demand and the need for new applications escalating the technological race. This is
the main cause that the optical communications and processing seem so attractive as
it is the only solution that undoubtedly can fulfil the high bit-rate expectations due to
the enormous bandwidth capability it offers.

There is a pattern to the development of the structure of the optical networks being

11



Chapter 1. Introduction 12

deployed. Starting from the most dominant problem and as the demand and bit-rates
become higher, incorporating more phenomena for research and troubleshooting.

Thus in the early days, clearly the loss was the dominant factor in optical trans-
mission, with attenuation values which in the 1960s were greater than 1000 dB/km [1].
In 1970 , & huge step forward was achieved, by observing that at the region around the
0.632 um wavelength range the intrinsic material scattering loss becomes very close to
20 dB/km [2]. Further investigating the problem in 1979 the authors of [3], produced
a single-mode fibre with an extremely low-loss of 0.2 dB/km at 1.55 um, where it is
limited by Rayleigh scattering.

Continuously in 1986 a technical paper on low-loss rare-earth doped fibres [4], pro-
gressed into introducing the concept of erbium-doped fibre amplifiers (EDFA) as an
attractive means to increase even further the transmission distance., Moreover EDFAs
add amplified spontaneous emission (ASE), noise to the signal. Using such a system
then increases the distance, provided that filtering is used and proper signal power.

At this point it should be mentioned, that the loss-related experiments and observa-
tions, refer to single-mode fibres. As this medium, was accepted to be more efficient in
terms of the information data-rates. This due to fact that in multimode fibre, the dif-
ferent transmission paths of the propagating modes result in intermodal dispersion, as
the velocities of propagation, of the various paths, are different, producing the spread-
ing of the output pulse, rendering it inefficient for long distance transmission from the
early days of optical transmission.

Similar to multimode, in single mode fibres dispersion exists, especially in the vicin-
ity of 1.55 um wavelength, which is the aim in terms of transmission having the lowest
attenuation, but due to different underlying reasons. The two causes of intramodal
dispersion are material and waveguide dispersion.

In material dispersion the signal disperses because the refractive index of the fibre is
a function of the wavelength of the source. This in turn causes a wavelength dependence
of the group-velocity which leads to pulse spreading for a single mode. On the other
hand there is waveguide dispersion. According to the design of the fibre, a certain
amount of power of the optical pulse propagates in the cladding, in different speed

than the power in the core. Again as a result dispersion arises. More specifically
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the wavenumber is given as the solution for the propagation eigenmodes of the fibre.
As such it will vary depending on the frequency, which will eventually result in the
dependence of the group velocity on the frequency parameter, even in the absence of
material dispersion. Modern optical communications systems managed to attack the
problem of dispersion, by either using dispersion shifted fibre (DSF) with approximately
zero chromatic dispersion at 1.55 um, or by using laser with a narrow spectral width,
or even better by employing both methods. Another measure to overcome the problem
is dispersion management (DM),by using dispersion compensating fibre (DCF) [5].
Following this approach at certain points of the fibre, after a DCF having an equal and
opposite sign dispersion, to the one accumulated from the previous step, is inserted,
the total dispersion is zero. But the absolute value of the dispersion per length is
non-zero. Of course adding another fibre will introduce additional losses, this is why,
this scheme should be accompanied by additional amplification.

At high optical powers, nonlinear effects start to become noticeable in an optical
fibre. Provided that the rest of the effects can be compensated for, nonlinearities
- appear to be an important factor for long distance transmission, as the distortion that
they might cause acts on a longer length scale than losses, noise and dispersion.

While in low bit-rate systems nonlinearities are not an important factor, with the
advent of wavelength division multiplexing (WDM) systems and higher bit-rates, the
amount of optical power is significant. Also erbium-doped fibre amplifiers installed in
optical-fibre communication systems, replaced the electronic regenerators which were
spaced every twenty kilometres or so. By doing so, the bottleneck of the limited
bandwidth of the electronic components is removed, while the cost of installation and
maintenance of such devices is eliminated. But in addition by including amplification
in the optical domain the nonlinearity is allowed to reach the longer length scale that
it is required in order for this phenomenon to become important.

The nonlinear-fibre optics date back to the invention of low-loss fibres [6]. The
source of nonlinear effects is the nonlinear relation of the polarisation of the electric
dipoles to the electric field [6, 7]. In this case the third order susceptibility invokes elas-

tic effects, such as, third-harmonic generation, four-wave mixing, nonlinear refraction

[7].
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On the other hand there are inelastic effects, meaning that in this case the field
transfers part of the energy that contains to the medium, such as in stimulated Raman
scattering (SRS) and stimulated Brillouin scattering (SBS). In both these phenomena
a photon in a higher frequency is annihilated to create a photon of a lower frequency
and a phonon, so that the energy is conserved [6]. In SRS the phonon is optical while
in SBS the phonon is acoustic. In the case of WDM systems the SRS will lead to
a reduction in the power of a lower wavelength channel, with a transfer of energy to
higher-wavelength channels. SRS can be limited if the power of the signal in each
channel, remains below a certain threshold, depending on the number of channels and
the separation between them as indicated in [8]. The other inelastic effect is SBS, in
which case there is an absorption of an emitted acoustic phonon while the photon at
lower frequency propagates in the opposite direction depleting the forward propagating
signal. Again to reduce the SBS effect, the option would be to keep the power below
the SBS threshold.

Nonlinear refraction results from the intensity dependence of the refractive index.
This in turn, triggers nonlinear effects such as self phase modulation (SPM) which
is important as it forms optical solitons in the anomalous dispersion regime [9] and
cross-phase modulation (XPM), which it refers to the nonlinear phase shift induced to
one field from anothei‘ as they copropagate, such as in WDM systems.

In WDM systems the nonlinear refractive index also manifests itself in four-wave
mixing, Four-wave mixing takes place in these systems, of low dispersion fibre and
high overall power [10, 11]. If multiple wavelength channels are situated in the zero-
dispersion point, three optical frequencies interact to produce a fourth frequency, which
will grow depleting the rest of the channels, and cause severe crosstalk. A way around
this problem is to use the DM technique [12, 13] explained earlier so that the dispersion
will add-up to zero at some distance, while the fibre will be in the non-zero dispersion
regime. Thus during the propagation of the signal, the conditions for four-wave mixing
will not be satisfied.

Special attention should be given to optical solitons. In the anomalous group ve-
locity dispersion (GVD) regime, the interplay between SPM and GVD gives rise to
solitons, solitary travelling wave pulses. The mechanism by which this happens relies
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on the fact that the high energy of the pulse modulates the refractive index, so that
the SPM induced chirp, shifts the leading edge of the pulse to lower frequencies and
thus higher speed, while at the same time the trailing edge is shifted at higher fre-
quencies so that the speed in this part is reduced. This is counteracted by the action
of & negative sign GVD. As mentioned the optical solitons appeared theoretically in
[9] and later experimentally by Mollenauer, Stolen and Gordon [14]. Parallel to these
Hasegawa and Tappert theoretically introduced the concept of dark soliton [15], as a
dip in a bright uniform background, that can be formed in the normal-GVD regime.
A third option is the dispersion-managed (DM) soliton [6]. Here the amplitude, the
width and the frequency oscillate in a periodic manner.

Solitons however suffer from the effect of attenuation. The common solution to
counteract losses on the transmission line are optical amplifiers such as EDFAs. The use
of EDFAs affects the soliton transmission considerably, as the perturbation factor that
is added by the ASE noise will influence all the soliton parameters, such as amplitude,
position, frequency, and the phase of the input pulse.

Furthermore by adding noise there is & gradual degradation of the signal-to-noise
ratio. But more important, there is timing jitter created by the noise factor of the
system. This is less obvious than the immediate reduction of the quality of our trans-
mission due to unwanted noise, but it can be explained, by having in mind that the
frequency is changed because of the perturbation in the system. Then as the group
velocity is dependent upon frequency, it is obvious, that the arrival time of the pulse
will vary. This type of jitter is identified as Gordon-Haus timing jitter.

The experiment of [14] and the fascinating theory behind fibre nonlinear phenom-
ena, stimulated further the growth of the field of ultrashort optical pulses and high-
speed transmission through solitary waves of all three types, pulse, dark and DM
solitons [16]-[25].

Applications on the cutting edge of technology emerge in favour of the field of
nonlinear optics. Nowadays topics such as, optical routing through blocker solitons
[26], spatiotemporal solitons called “light-bullets” [27], as well as, “slow-light” dubbed
from the ability to control the group-velocity of light by nonlinear optical means in

order to produce optical buffers and optical delay lines [28] and of course photonic
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crystal fibres (PCF), optical fibres in which light is trapped by an array of air holes
which run down the fibre length [29] with their rich nonlinear properties are a step
closer toward all-optical processing.

Nowadays and moving on to higher-bit rates a new type of dispersion, classified
as polarisation mode dispersion (PMD), became important due to the ellipticity and
imperfections of optical fibres.

The appearance of polarisation effects during the transmission in the optical medium
started in the early 1960s [30]. Further in late 70s the phenomenon has been revisited
with papers such as in [31], referring to measurement techniques and the principles of
polarisation evolution in single-mode fibres, through theory and experiment or referring
to maintaining a constant polarisation by means of stress-induced, birefringence [32].
This work on keeping a constant polarisation, had as a higher aim, the improvement
of heterodyne detection.

In 1978 Rashleigh and Ulrich [33] indicated that in any fibre, imperfections exist
which cause the cylindrical symmetry to break. Thus the single-mode fibre can be
considered a two-mode fibre, due to the fact that the refractive indices of propagation
for the two orthogonal modes are different, and may exhibit mode dispersion, as even
in the case of a single mode of propagation HE;;, the two group velocities of the two
polarisations will vary.

Only after the positive aspect of optical amplification, and the mitigation of chro-
matic dispersion in fibres through DSF [34], the transmission reached higher lengths
and gave the polarisation effects the opportunity to accumulate, and reach the length
scale where they really become important. On the same time the data-rates reached
to 10 Gb/s. If it is taken into account that the spread due to PMD is proportional
to the square-root of the transmission length [6]. Then at 10 Gb/s, & typical value of
spreading per length is 0.1~1 ps/vkm, and at 1000 km that would produce a total
spread of 3~30 ps, this would mean that the spread could be comparable to the pulse
width of 100 ps. The problem seems worse if it is taken into account that the systems
eventually will be upgraded to 40 Gb/s or higher. It is clear then that for long-haul
transmission PMD is a limiting effect.

Moreover loss and chromatic dispersion contain an uncertainty related to manu-
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facturing imperfections . In most cases though the probability dependence, will be
minimum beyond a certain value for the parameters, of both these sources and thus
predictable systems can be generated that can be designed for the worst case sce-
nario. On the other hand PMD changes as a random process, dependent both upon
wavelength and time. This requires a statistical treatment of the phenomenon as it
varies from fibre to fibre or for the same fibre it varies randomly with the optical
carrier frequency and ambient temperature [35]. Also it would be important to note
that chromatic dispersion, can also vary with temperature these variations though are
within the dispersion tolerance of the transponders. In addition we should mention
another effect which depends on the polarization of the signal and causes additional
impairments on the transmission. The polarization dependent loss (PDL) refers to the
dependence of the loss of & link on the polarization state of the propagating wave. As
such it causes fluctuations in the power evolution of the signal and thus it degrades
further the signal-to-noise ratio.

Additionally, on systems that are already installed, the birefringence is really high.
The problem is more severe in DSF fibres, which have been used mainly in networks
due to their excellent behaviour regarding chromatic dispersion. As the core is smaller
in DSF fibres they are more prone to errors caused by imperfections and ellipticity. It
would be very costly to replace these links with new fibres, which would be optimised to
reduce PMD to a certain degree or with polarisation maintaining fibres (PMF), fibres
which preserve the state of polarisation, through an artificially increased birefringence
which becomes dominant.

Taking into account the random nature of PMD, it should be noted that the system
requirements for the PMD limitations can be formulated in different ways and that
there is no international standard [36] or a specified way for compensating the problem.
The probability densities of PMD have asymptotic tails extending to large impairments
so it is not beneficial to prepare for the worst case but instead the transmission systems
should be designed with a PMD outage probability in mind. And the alternative of
compensation has the aim of reducing the outage probability rather than compensating
exactly for PMD, which requires active components and is thus very costly. This is why

one needs to examine thoroughly the statistics of PMD and the mechanisms behind it.
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In the case of solitons, PMD combines with ASE, to reduce the quality of the
performance of the transmission.

All these constitute the idea that efficient modelling of phenomena in optical fibre
systems, is necessary, this is the reason that many telecommunication organisations
now devote significant efforts to it. Especially in the case of PMD because of the
inherent complexity of the subject, issues concerning optimized, in physical or com-
putational terms, designs are still to be resolved. The work that follows is devoted to
that particular aim, of providing computationally optimized implementations of PMD

and including them in realistic transmission cases.

1.2 Thesis synopsis

The objective of this thesis is to provide and demonstrate numerically efficient methods
for modelling PMD. Further the already existing models are compared to the proposed
methods by providing statistical and numerical evidence. Additionally a numerical
solver of the coupled nonlinear Shrodinger equation (CNLS), is implemented so that
these different methods are incorporated and simulated within the context of real-time
transmission systems, with all the important effects concerning optical transmission,
such as nonlinearity, dispersion, losses and noise.

At first the coarse-step method for modelling polarisation mode dispersion is consid-
ered, where PMD is represented as a cascade of short fibre sections (waveplates), with
fixed length, differential-group delay (DGD) which is the drift between the two polarisa-
tion modes and fixed principal states of polarisation (PSP). The sections are connected
by polarisation scatterers, that give the coupling of the two orthogonal modes. The
model is implemented and studied thoroughly through statistical tests. Modifications
concerning the model have been considered and added to the existing method. The
impact of such modifications on transmission are shown through simulation results.

An alternative and more physical model is also implemented. This model is derived
by producing numerically the polarisation effect through the Manakov-PMD equation.
It is continuously indicated that such an approach has been considered in the past by
other groups, but it was rejected as being numerically inefficient, although physically
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adequate, compared to the coarse-step approach. This model is further modified, so
that the numerical obstacle that arose by using it, is overcome. The Manakov-PMD
model, along with its modifications is analysed and studied through, the well known
statistical models and compared to the coarse-step method.

In order to examine if the models are effective, they are used in transmission systems
along with the rest of the well known limiting factors. For this purpose a vector-model
is created and tested methodically, by introducing each factor at a time and investigate
if the simulator corresponds properly to the limiting cases.

More specifically the report follows the structure presented next.

In chapter 1 a historical perspective of the optical communications in general was
given. The limiting factors were outlined and the importance of PMD was stressed.

In chapter 2 the CNLS is derived and the vector model generated from that for-
mula is tested by performing the limiting cases on that and compared to theoretical
descriptions for each case.

Following in chapter 3 the theoretical background behind the PMD phenomenon is
described, in the time domain as well as in the frequency domain following the Poincaré
sphere formalism.

In chapter 4 the existing methods of simulating PMD are presented. The coarse-step
method namely is analysed through the demonstration of its properties on the Poincaré
sphere, through the theoretical derivation of the artificial rescaling, this method induces
and through numerical investigations of the dispersion of a signal. Next in chapter 5
the Manakov-PMD method is examined in a similar way. Here the physical accuracy
of this method is presented and numerical investigations aim to a comparison with the
coarse-step method.

Statistical analysis of these two implementations follows in chapter 6, compared
with the appropriate analytical models. The limitations or advantages of each method
will be demonstrated here. In the case of the Manakov-PMD equation the way to
numerically optimise this method is presented.

In chapter 7 the method for eliminating the side-peaks of the Autocorrelation func-
tion (ACF) of the coarse-step method is shown through the numerical results. And in
chapter 8 the mitigation of PMD through Low-PMD fibres is considered.
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Continuously in chapter 9 simulations of optical transmission systems are given
and examined through the Q-factor parameter. The penalties that PMD induces on a
system are evident.

Finally in chapter 10 the conclusion of this thesis is included.



Chapter 2

Theory of optical transmission

2.1 Introduction

One of the aims of this project has been to determine the impact of the effects such
as loss, dispersion and nonlinearity with respect to the scalar and the vector model,
and investigate any differences between these two. For this purpose a numerical solver
of the CNLS and the nonlinear shrodinger (NLS) equation was implemented using the
split-step Fourier method (Appendix A) and tested on the limiting cases for each of
these effects to a good approximation with theory. In this chapter a derivation of the

equations used is given along with simulations on the Q-factor of these systems.

2.2 Theoretical background

The transmission of a signal along the path of an optical fibre, is described through
the NLS. The NLS equation can be derived from the Maxwell’s relations which govern
all electromagnetic phenomena.

Where E,H are the electric and magnetic field vectors while D,B are the electric and
magnetic displacement. The current density is represented by J, while p; represents
the charge density. In an optical fibre in the absence of free charges J = 0, psr=0.

0B
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oD
VxH=J+ rry (2.2)
V:D= Pr (2.3)
V:-B=0 (2.4)
With the additional equations,
D = ¢E+P (2.5)
B = pH+M (2.6)

where P and M are the electric and magnetic field polarisation, with M = 0 as
the optical fibre medium is nonmagnetic. Also g, po are the vacuum permitivity and
vacuum permeability respectively. The electric field polarisation P has a linear and a

nonlinear response. Thus,

P=Pr+ Pny (27)

This relation can be expanded further into a power series of E,

t
P = / eox®(r,t = ty) - E(r, t;)dt
t
% / ] eox®(r, t — b1, — ta) : E(r, 1) E(r, t2)dtadtz (2.8)

t
- f f f X (r,t — t1,t — ta,t — t3)iE(r, t1)E(r, t;) E(r, ts)dt, dtadts

In Eq. 2.8 the first term amounts for the linear polarisation while the two terms that
follow represent the nonlinear polarisation. Where x(V), x®, x® are the first, second
and third order susceptibility tensors. For the case of silica glass the second order
nonlinearity that is caused by x® equals zero because this material is centrosymmetric.
Equation 2.8 by taking into account only instantaneous effects and neglecting self-

steepening and Raman scattering, can equivalently then be written as,
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¢
P = / eoxV(r,t —t1) - E(r, t1)dt; + eox®:EEE (2.9)

00

From the above the propagation equation is derived as follows. Taking the cross-

product of 2.1, one writes

VXVXE = —B(L‘,;:E)-
NxVxh = -—pggV&LH-)-
&E 9P
VXVXE = —MGQ-W—#QW (2.10)

Continuously, Eq. 2.10 is Fourier transformed. This implies that the operator 2
will be transformed to iw. Following a major simplification as in [6], that is, assuming
that Py is a small perturbation at this stage to reduce the general complexity of the

derivation, then,

V x V x E(r,w) — e(w)w-c;fi(r,w) =0 (2.11)

The dielectric constant e(w) = 1+ ¥)(w) and ¢ = 1/\/af. With E(r,w), ¥®(w)
being the Fourier transforms of the field and the susceptibility respectively. And given
by,

E(r,w) = / E(r, t) exp(iwt)dt (2.12)
W) = f x(r, £) exp(iwt)de (2.13)
The dielectric constant is in general given by e(w) = (n+iac/2w)? with a being the

absorption constant. Setting a = 0 at this point, as the attenuation will be included

later on and since at the wavelength region of interest optical losses are low, and taking
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into account the identity V x V x E = V(V - E) — V2E, then 2.11 concludes to the

following,

V2E(r,w) + f2(w)E(r,w) =0 (2.14)

The parameter § = (n(w)w/c) = w,/fig€ represents the propagation constant. As-
suming that the electric field has only one component, modelling the scalar approxi-

mation, E can be written as,

E(zt) = [E(zt)ezp(ifoz — iwot) + c.c.] (2.15)

Here E(z,t) represents the slowly varying, complex amplitude, envelope of the
wave and fo,wo are the wavenumber and angular frequency of the carrier. According
to the same approximation the operators on the transverse components for a Cartesian
coordinate system disappear, /0z = 8/8y = 0. In addition the rapid variation of
8%’; is neglected since E(z,t) is the slowly varying. Thus the propagation equation is

transformed as follows,

9+ (B~ f)E =0 (2.16)

The factor 42— was approximated by 28,(8—/). With the propagation constant
B = B(w) and the slowly varying envelope E = E(z,w —wp) and finally the field having

the Fourier transform,

E(zw) = E(z,w- wo) exp(ifoz) (2.17)

At this stage nonlinearity which has been neglected for the sake of simplicity, is
included. The nonlinear factor arises from the dependence of the polarisation of the

medium to the power of the field. This nonlinear polarisation as mentioned, is generally
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described by the third term of the right hand side of Eq. 2.8. Effectively this creates
a perturbation of the refractive index, giving rise to a nonlinear term in the equation

describing this quantity. Thus

fi(w) = n(w) + Pnr (2.18)

Referring only to nonlinear refraction the nonlinear term will be proportional to

n2|E|%. With |E|? being the power of the field and

3
™= Re(x..) (2.19)

As the propagation constant and the refractive index are related Eq. 2.18 is written

as,

% = n(w)+nyE|?

or

B =

wn(w) . ng| E|*w
c c

(2.20)

The wavenumber S is thus also a function of power and one may write,

B = Bw,|E|*) (2.21)

Expanding this around the carrier frequency wavenumber

_ 0B 18°B 2, OB 2
B=ho=75-(w—wo)+ 532 W W)’ + WUEI ) (2.22)
The derivatives of the wavenumber with respect to the frequency and amplitude are

evaluated at w = wy, |E| = | Eo|. Substituting this expression in Eq. 2.16, and Fourier
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transforming to the time domain so that w — wy changes to i9/d¢, this produces,

OFE oE ) B’ &E 0P

(5 +0%) ~ 5o + aap(EME=0 :5)

The next step is to include the loss term through the absorption coefficient which
has not been considered thus far and to transform the last term of Eq. 2.23 by differen-
tiating 2.20 and dividing this by the effective area of the fibre which has been defined
specifically for calculating nonlinear effects as explained in [37] - [39] and represents

the portion of the energy of the modal distribution coupled to the core,

_ U JZG |F (=, y)Pdady)®

Acss 2.24
=TT [P, y)ldady) (2:24)
Equation 2.23 then results in,
(OE _,0E\ p'¢E ,
(5 +0%) -5 Sz +E| )E+—E 0 (2.25)
And,
nawo
_ Tawo 2.26
o pe (226)

Identifying the terms, -gg = (' = 1/v, is the reciprocal of the group velocity at
which the slowly varying envelope travels, %} = (" is the group velocity dispersion
responsible for pulse broadening the term in 7 results in nonlinear refraction and last
the a term represents the attenuation coefficient. Where E = E(z,t) defined es the
slowly varying envelope in the time domain. To define the A, the modal distribution
F(z,y) was used, which is included in the equations if one assumes a general equation
for the field of the form
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E(r,t) = F(z,y)E(z,t)exp(ifoz — iwgt) (2.27)

Equation 2.25 describes a scalar model. In this case the effects of polarisation are

not included. For a birefringent fibre the field in general is defined as,

E(r,t) = Z(Fi(z,y)Ez(2,t) exp(iforz — iwot))
+ J(Fa(z,y)Ey(z,t) exp(ifoyz — iwot)) + c.c. (2.28)

The evolution of E,(z,t), E,(z,t) can be determined exactly as in the scalar case,
with the only difference that one has to expand each propagation constant 8. (w), 8,(w)
separately. This in turn results in two equations. Furthermore the nonlinear polarisa-

tion in this case is composed of two terms, one for each polarisation,

Pnr = x®:EEE = (ZP, + §P,) exp(—iwot) + c.c (2.29)

Each component expanded produces [6, 40],

3ery®. [ ]

P, = S0 (IE,P - §|Ey|’) B+ 3(B:B,)E, (2:30)
350X:(t372xx [ 2,2 2 ) o 1

Py = “'_3_ 'Eul i ElEzl Ey + E(EyEz)E-'- (2°31)

This in effect introduces a different nonlinear perturbation of the refractive index,

than in the scalar case. As determined below,

2
An, = n2(|E,|’ + §|E,|2) (2.32)

2
An, =n, (|.l£a‘,,|2 + E]E,r“) (2.33)
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In these expressions the first term introduces SPM as in the scalar case while the
second term results in XPM because of the dependence of the power of the orthogonal
polarisation, on the intensity of the current polarisation component. The last term in
Eq. 2.30, 2.31, results in degenerate four-wave mixing, although the phenomenon of
four-wave mixing has not been considered in this work it is included in this derivation in
favour of completion. Assuming that 3, = ﬁ: = " and + is the same, as the wavelength

A is the same for the two polarisations, then one writes for the two polarisations,

/OE, OE, B"PE, ia
3(6z + ﬁ;&)_‘g'_atz""ifz
= =(E:]*+ EIEyP)Ez = 3(E2E,) By exp[~2i(Boz — Boy)]  (2.34)
.(OE, ,0E, _ E &E, ia
(52 + B - Tt 5

2 1 .
= _7(|Ey|2 + SlEslz)Ev - E(E;Ex)Ez exp|[2i(foz — ﬁoy)] (2.35)
The terms in Eq. 2.34,2.35 are defined as in Eq. 2.25. The different 8’ indicate

that the signal undergoes PMD since the two wave-envelopes each for every polarisation

travel with different group velocities. And we define also the quantity,

AB = foz — oy (2:36)

indicating the modal birefringence of the fibre. Finally the term in 7 indicates the
nonlinearity, and the last term on the right hand side degenerate four-wave mixing.
The numerical simulators implemented according to Eq. 2.25, for the scalar case, and
Eq.2.34, 2.35 for the vector case, are tested for each phenomenon individually. These

test cases are presented next.

2.3 Optical attenuation

Loss is a fundamental limiting factor for any optical system. The power attenuation

inside the system can be translated by the following formula which can be derived from
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the NLS or the CNLS, assuming that the rest of the effects can be neglected,

dP

a = —aP (2,37)

where a is the attenuation coefficient, operating on the optical power. This equation

gives the P, in terms of the input power.

FPout = Pnexp(—al) (2.38)

several factors contribute physically to losses, these are mentioned below.

2.3.1 Material absorption

Material absorption is divided in two major categories intrinsic and extrinsic. Intrinsic
material absorption, can be defined as the loss related to the silica material which
absorbs the energy of the signal in the ultraviolet region through electronic resonances
and in the infrared region through vibrational resonances. The impurities existing in
the material, result in extrinsic absorption. In particular the impurity of OH-ions lead

to an extremely high loss in the area of 1.4 um.

2.3.2 Rayleigh Scattering

Rayleigh Scattering is the loss mechanism arising from local fluctuations in the density
of the material. These fluctuations lead to disturbances in the refractive index, that
affect the propagation of light. Rayleigh fluctuations are of intrinsic nature and present

the “floor” loss limit in silica optical fibres.

2.3.3 Fibre imperfections

Obvious loss factors can be fibre imperfections such as unwanted bending or splicing

of the fibre, as well as scattering at the core-cladding interface as outlined in [41].
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2.3.4 Simulations

The following features were used for the loss-limited case. The map consisted of stan-
dard single mode fibre, with a length of 1 km, with a dispersion parameter of Ops/nm
- km, a dispersion slope of 0 ps/km-nm?, while the effective area of the fibre was
Ay = 10000 pm?, so that the nonlinearities are set to zero. The main effect on
the transmission was the loss that was set to 0.2 dB/km. The system was tested for
bit-rates of 10 Gbit/s and 40 Gbit/s. These were represented, respectively as a pseudo-
random bit-pattern of 2° bits in a time window of 6.4 ns with a resolution of 211 points
for the bit-rate of 10 Gbit/s and as 28 bits for the same time width with a resolution
of 2'® points in total for the case of 40 Gbit/s. An RZ signal was used, with Gaussian
pulses of peak power of 1 mW for both cases, and & Tjyrm = 33 ps for 10Gbit/s and
Ttwhm = 10 ps for the case of 40Gbit/s. The effect of loss on the Q-factor can be seen
in figure 2.1. It is worth mentioning at this point that the Q-factor calculation for
all the effects in optical transmission is given by the well-known formula of Eq. 2.39,
where o7 , 0 are the noise variances depending upon the shot noise and thermal noise,
while p11 , po is the average value around which the power fluctuates from bit-to-bit for

the for the ones and zeros respectively.

H1 — Ho
=— 2.39
Q o (2.39)

The theoretical model for the loss-limited case was given by the following equation,

Q(2) = Q(0) exp(—0.046 L) (2.40)

Where Q(0) is taken empirically from the simulation and the factor of 0.046 is
derived from @ = @4p/4.343. Further the Q-factor decays exponentially with the
distance as expected for this case, alike the power of the signal. There is no difference
between the vector and the scalar model. Moreover the cases for 10 Gbit/s and 40

Gbit/s present the same decay.
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Figure 2.1: Q factor - loss limited case for 10Gbit/s and 40Gbit/s for the scalar and
vector simulator compared with the analytical model.

2.4 Chromatic dispersion

2.4.1 Theoretical background

Dispersion indicates in general the spreading of the pulses in a bit-pattern and is sep-
arated in two kinds. Intermodal which is caused due to the fact that different modes
travel in different group velocities, and intramodal, which is further separated in in-
trinsic chromatic dispersion and waveguide dispersion. Waveguide dispersion describes
the phenomenon where the light coupled in the cladding travels faster than the light
confined in the core [42]. Chromatic dispersion relates to the fact that different, com-
ponents in the spectrum travel at different velocities due to the frequency dependence
of the refractive index [6]. Chromatic dispersion plays a critical role for short optical
pulses and higher bit-rates, where there exist larger spectral content, that results into a
greater difference in the velocities. In the case where the nonlinearity is set to zero, in
the absence of the Kerr effect and with no dispersion compensating fibre, the dispersion
phenomenon can induce severe penalties to the transmission.

The effect of chromatic dispersion, can be obtained analytically, by expanding the
wavenumber around a central frequency wy. Thus the wavenumber 3, can be expressed

by Eq. 2.22. The term ﬁ% represents the group velocity dispersion(GVD) parameter.
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For the value of wavelength Ap = 1.27um, the second derivative, 8” = %‘:} =0
ps?/km [6]. This is called the zero-dispersion wavelength. Even in this case though
dispersion exists, as the third order derivative becomes important around this region
[6]. A second observation made upon this evidence is that 8" changes sign from positive
(A < Ap) to negative (A > Ap). In the first region also called normal dispersion regime
high-frequencies travel slower than low-frequencies, while the opposite happens in the
second region called anomalous dispersion regime [6]. Quite often in numerical and

experimental implementations the dispersion is defined by the parameter [6]

d?p 2nc

D=-277>7

(2.41)

2.4.2 Simulations

The characteristics of the optical transmission were the following A standard single
mode fibre with a dispersion parameter D of 20ps/nm/km, no higher order dispersion
terms, loss 0 dB/km and A,y of 10000um?. It should be mentioned that A, ;s has been
assigned an unrealistic value as in the loss-limited system implemented previously, so
that the nonlinearities are eliminated through Eq. 2.26. In the presence of GVD, in
the normal regime and in the absence of any other effects the width of a transmitted

Gaussian pulse increases according to [6],

Ti(2) = To[1 + (2/Lp)*" (2.42)

or equivalently for the peak power of the pulse to decreases as described by the

following expression,

Py(2) = Po/[1 + (2/Lp)*|'* (2.43)

with Tp being the initial width of a pulse, related to the Tyyam s Trunm = 1.665Th
and the dispersion length Lp = T¢/|8"|. For this purpose a single Gaussian pulse of
peak power 1 mW and Tyunm = 33 ps, was launched and its peak power monitored
within a distance of 100 km, as shown in figure 2.2 where the theoretical model follows

closely the evolution of the numerical solution.
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Figure 2.2: Peak power evolution for a dispersion limited system.

Furthermore the Q-factor of the system was obtained by using identical bit-patterns
to those used for the loss-limited case.

One would expect the Q-factor to follow closely the model presented for the peak
power of a pulse as it is shown to be true for the results of the loss-limited case. However
this appears to deviate from the theoretical expectation for a single pulse. The reason
for this is quite clear, if one obtains the eye diagram for both of these cases one can
observe that the effect that distorts the Q-factor is intersymbol interference. That
is the adjacent bits distort each other by spreading their energy beyond the assigned
bit-slot. This effect commences very fast especially for higher bit-rates and gives rise
to unwanted artifacts and peaks on the Q-factor. These peaks of course should not be
considered as an improvement but rather a false indication of the receiver perceiving
the unwanted increase in power in some bit-slots as bits. Naturally as the transmission
progresses this extra distortion worsens and deteriorating further the Q-factor. The
eye-diagrams produced for both the 10Gbit/s and 40Gbit/s case are presented in figure
2.4 . Finally one should also observe that the quality of the system deteriorates faster
for the 40 Gbit/s case, as predicted, because of the rich spectral content in this system.
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Figure 2.3: Q factor - loss limited case for 10Gbit/s and 40Gbit/s for the scalar and

vector solutions compared with the analytical model.
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Figure 2.4: Eye-diagram plots for (a) 10 Gbit/s at 30km (b) 40 Gbit/s at 2km.
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2.5 Optical noise

Initially in order to overcome the limitations imposed by optical attenuation, opto-
electronic equipment was utilised. These optoelectronic repeaters were based on the
principle, of optical-to-electrical conversion and subsequent regeneration of the signal
before it is converted back to the optical domain. Such an operation added greatly
to the cost and complexity of the transmission system. The alternative approach is
to use optical amplification which is based on the stimulated emission principle. As
this does not require conversion to the electrical domain it reduces the bulk of the
equipment, There are several numerical models, that correspond to different types of
optical amplifiers, such as semiconductor laser amplifiers, erbium doped fibre amplifiers
(EDFAs), Raman and Brillouin amplifiers. In this numerical solver, the simplest model

is considered as described below.

2.5.1 Optical amplifier model

The optical amplifier implementation utilised here, is adding gain to the signal accord-
ing to Eq.(2.44),

Pou
= = = exp(gL) (2.44)

The factor g is the individual gain coefficient for each amplifier and G is defined
as the amplification factor. The amplifier will add noise according to a probability
distribution, with variance 0? =< (AI)? >, with AT representing current fluctuations
caused by noise [1]. In general the type of noise contributing to the variance equation,
can be of thermal origin o2, shot noise o2, beating of signal and spontaneous emission
noise 0%,_,,, beating of spontaneous emission noise against itself afp_,p and finally
beating of shot noise and spontaneous emission noise o7_,,. So that the total can be
expressed as [43, 44, 45),

2

’=0r+0r+ O2gp + 02y + 02 (2.45)

—sp



Chapter 2. Theory of optical transmission 36

2.5.2 Simulations

For the purposes of this simulation a standard single mode fibre with a dispersion
parameter D of Ops/nm/km, no higher order dispersion terms, loss 0.2 dB/km and
A.zs of 10000 pm? was used. In order to introduce noise, in-line amplification was
used every 40km. The parameters for each individual amplifier are a gain of 8 dB so
that it compensates for the same exact amount of optical attenuation and a spontaneous
emission factor of 2, the amount of noise added was determined by the spectral density
Sp = n.p(G — 1)hv where hv the photon energy, h = 6.63 * 10734 J.s the Planck’s
constant, v the signal wavelength, G the gain of the amplifier and n,, the spontaneous-
emission factor related to the noise figure by Fy, & 2n,,. The bit-rates tested are again

a 10 Gbit/s and a 40 Gbit/s rates with the same evidence as in the loss-limited system.

10 T : -
3 — vector model 10 Gbit/s
ot iy - = - Analytical model
1 -+ scalar model 10 Gbit/s
8r{\ : — vector model 40 Gbit/s f
A -= = Analytical model
7F\ —o— scalar model 40 Gbit/s |i
{1 Y
6r |\
v
o 5f
)
4..
3.
2-
i
00 500 1000 1500 2000 2500 3000 3500 4000

Z (km)
Figure 2.5: Q factor - noise limited case for 10Gbit/s and 40Gbit/s for the scalar and

vector solutions compared with the analytical model.

The theoretical model introduced follows an inverse square root relation to the

distance which is expressed as in the following equation,

Q(z) = -?-[% (2.46)

The observation used to produce this equation originates from the fact, that the

Q-factor is inversely proportional to the standard deviation of noise which in turn



Chapter 2. Theory of optical transmission 37

is proportional to the square root of the noise power accumulated over a specified
distance. The original point Q(0) depends on the bit-rate the signal power and the
characteristics of the receiver but can also be substituted empirically from the evidence
of the simulation.

Further observations that should be noted on the diagram is that the 40 Gbit/s
curves will drop below the threshold of Q = 6 approximately at twice the rate of the
10 Gbit/s graphs. This can be explained because of the square root dependence, of the
standard deviation of noise to the bandwidth of the signal, and thus a factor of 2 will
be introduced in the case of the transition from 10 to 40 Gbit/s. Finally one notices
the difference between the scalar and the vector model. This is well-known [46, 47] and

accounts for the over-estimation of the signal-noise beating term for the scalar case.

2.6 Nonlinear effects

As mentioned earlier nonlinear effects stem from the dependence of the optical fibres
on the strength of the electromagnetic radiation. Thus the polarisation of the fibre
that depends on the orientation of the molecules of the medium varies in a nonlinear

manner as in Eq. 2.9.

2.6.1 Self-phase and cross-phase modulation

The third order susceptibility x(® gives rise to a dependence of the refractive index
on the power of the electric field. The effects that result then are self-phase modula-
tion(SPM), cross-phase modulation (XPM) and four-wave mixing (FWM). The phe-
nomenon of SPM is the term used to express the intensity dependence of the phase of
the signal to its own intensity. This causes a distortion in the frequency domain but
the temporal pulse shape remains intact in the absence of chromatic dispersion. For a

scalar model one writes,

Nalo 2
= | E R
¢ =n(w)+ l,,,l | (2.47)

The effect of XPM results from the copropagation of two or more signals in the
optical fibre. In this case each signal will depend on the intensity of the others. In a
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vector model where one solves for the CNLS and thus having a copropagation of two
waves, both the effects of SPM and XPM affect the nonlinear phase as noted below,

— ngwo 2 g 2
b = o (Bl + 51 (2.48)
NaWo 25 2iesig
= —22(E 34 Z|E, 2.49
ONLw) = T3 ”(l ol 3| I*) (2.49)

Thus after a distance L = z;,; + NAz where Az the step size and assuming that
the rest of the effects can be neglected. The field will be given by,

inawo

E(L,t) = exp( — N|E[*)E(Zinit,t) (2.50)
eff
—— T 2, 2 i
E,(L,t) = exp( A N(|E:|* + 3|EP|2))E=(ZIM£! t) (2.51)
ey D
E,(L,t) = exP(cAe” N(IEF|2 + 3|Ez|2))Ey( inits ) (2.52)

Thus for a transmission system limited only by SPM and XPM the nonlinear phase

(L) PNL(z)) PNL(y)) Will evolve linearly with distance.

2.6.2 Simulations

The fibre model used for the demonstration of SPM and XPM had the following char-
acteristics a D of 0 ps/nm/km, attenuation parameter 0.2 dB/km and an A,y of 100
pm?. As mentioned earlier the temporal pulse will remain undistorted, so the Q-factor
will remain at high values. Nonetheless the effect of the nonlinearities can be shown by
extracting the phase out of the field for different distances and comparing it against the
theoretical function calculated for the phase. This is achieved by launching a Gaussian
pulse into the system of power 1mW and Tyyhm = 33 ps. The parameters used for
the theoretical plotting of the phase are an n; = 2.6 x 107?°m?/W and & wavelength
parameter A = 1.55um. These were used to calculate the slope of each of these curves

through the nonlinear coefficient as expressed by the following formula,

27!'?12

AA.yr

(2.53)
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substituting these into the scalar model,

énL = 1.05 x 10732 (2.54)
and vector equations
PNL(z) = 9.5 x 10742 (2.55)
L) ~ 83 x 10742 (2.56)
(@
05 ' o ; 0.4 . . —
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Figure 2.6: Nonlinear phase evolution with distance compared against the theoretical
approximation for (a) the scalar, (b) the vector model.

Where & polarisation of 35° was used for the vector model and z is the distance pa-

rameter in (km) units. In figure 2.6 the linear relationship between nonlinear phase and

distance is clearly seen for the simplest of all cases involving nonlinear effects, as well

as an excellent agreement between numerical and theoretical results is demonstrated.

Note the simulation for this limiting case, useful as it is for numerical purposes, is for

an unphysical limit. When AB — 0, then the beat length goes to infinity which implies
that the last term in 2.34,2.35 cannot be ignored. When b=0 then one will get back

rotational symmetry.




Chapter 3

Polarisation mode dispersion theory

3.1 Introduction

Even single-mode fibres support two orthogonal modes of polarisation. The inherent
stress and imperfections that exist within a fibre core, lead to birefringence. The two
modes experience a different refractive index, which results in different propagation
times for the two modes. In general the birefringence is combined with random mode
coupling, occurring when power from the vertical mode couples to the horizontal and
vice versa. The simplest case of applying PMD is by modelling the total transmission

as a concatenation of many uniform birefringence segments randomly oriented.

3.2 Modal birefringence

In terms of mathematics the difference stems from the difference in the propagation

constant of the two modes. From Eq.2.36,

Aﬁ=ﬁoz_ﬁoy=w_ni‘._w_n°‘i=2_ﬂ‘&n, (3.1)

= |an| (3:2)

where A is the wavelength of light, w is the angular frequency, c is the speed of light,

40
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An = ngz — noy is the refractive index difference, and ko = 2w/A. The two components
travel then at different speeds as their group velocities will be different and split as
shown in figure 3.1,

Figure 3.1: Pulse splitting due to birefringence.

Eventually this results in a pulse broadening given by [1],

{L|_,.dB, B,
AT = |A—ug] = koL 4. =0 (3.3)

The parameter u, represents the group-velocity and L is the total transmission
length. This relation results for a uniform birefringent element only. In reality the
birefringence combines with power coupling and then grows with the square root of the
length. For what is more, in a uniform birefringent fibre, having a constant differential
group delay (DGD) between the two orthogonal modes results in a periodic variation of
the phase and thus in a periodic variation of the polarisation of the signal. The period
over which the signal returns to the original polarisation is called the beat length L,
so that

Lg = ﬁ (3.4)

Such a periodic evolution is shown in figure 3.2, and it represents the change of
polarisation within a uniform birefringent segment or a polarisation maintaining fibre
(PMF). In a real fibre the evolution of polarisation is random and depends on the
characteristics of the signal and the characteristics of the fibre which vary in a random
way. Moreover in any fibre for any wavelength there are two orthogonal polarisation
states undistorted by birefringence and can be used as basis vectors for a description

of PMD in all-fibres [49].
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Figure 3.2: Evolution of polarisation in a uniform birefringent fibre.
3.3 Polarisation mode coupling

In general the splitting of the pulses due to birefringence combines with power coupling
between the two modes which is random in nature. Thus instead of having an example
such as that of figure 3.1, the resulting signal as shown in figure 3.3 will be the product
of the following process. The two components of the pulse gain a delay between them
so that the pulse splits into two pulses. Mecting the first local imperfection in the fibre,
part of the power couples from one mode to the other. The coupled signal continues

splitting linearly due to the DGD per length.

LM g

Figure 3.3: Evolution of a signal in a randomly birefringent fibre.

This continuous random distribution of mode-coupling, results in the splitting,
broadening or merging of pulses, as the birefringence of one segment might counteract
or reduce the effect of the previous elements. For that reason the DGD for & real fibre
grows with the square-root of the fibre length. Additionally PMD will vary randomly
with temperature and time which lead to the conclusion that the PMD of a system has
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to be evaluated and analysed statistically.

3.4 Mathematical description of light

The launched signal can be decomposed into two lightwaves such that their electric-
field directions are mutually perpendicular with different amplitudes and phases [50].
As described below,

E; = 2B exp(i(wt — Bz + ¢.)) (3.5)
Ey = B, exp(i(wt — Bz + ¢,)) (3.6)

we thus define a phase difference A¢ = ¢, — ¢,, and B is the propagation constant.

The electric field resulting can then be represented as,

E(z,t) = Ex(z,t) + E,(2,1) (3.7

It is common to express the two components in matrix formation. For that reason
one might use the Jones vector or the Mueller matrix formalism. The Jones vector E

for the electric field is written as,

fi= (E‘(t) ) — (E‘ef% ) (3.8)
E,(t) E,eitv

In normalised form one might divide by the modulus of the field that is |E| =
VEZ+ EZ. In this case the Jones vector takes the form,

I Oei¢= (39)
sin feiés '
where cos0 = E,/\/EZ+ E? , and sinf = E,/\/EZ + EZ. For example the hor-

izontal and vertical states can be written* respectively as e#=(1,0)T and e*s(0,1)7.

To attain even simpler expressions for linear polarisations we can assume that Ad =

*The index T represents the matrix transpose
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¢z — ¢y = 0. With that simplification one might write in general that the Jones vector
is given by (1/v/2)(cosd,sin 0)T for example a 45° linear polarisation will be given as
(1/v/2)(1,1). The left and right-circular polarised light has the following characteris-
tics B; = E, and A¢ = &m/2 which leads to the Jones vector (1/+/2)(1, e*/2)T,
According to this notation the optical medium will be represented by a2 2 transfer
matrix. Let then A be the transfer matrix E;, being the input vector and £, the

output vector, then that results in,

~ a a a -
Boe=| """ "2 | B, = AE, (3.10)
az1 Q22

which implies that in the end of an optical fibre composing out of a number n of

such elements the result is,

Epi = An AQAL B, (3.11)

An alternative method for describing the polarisation of light is the Mueller ma-
trices formalism. The Mueller matrices method was devised in 1943 by Hans Mueller
and it is a matrix method that describes polarisation adequately through the Stokes
parameters [51, 52, 53, 54]. The Stokes parameters originate in the work of 1852 by
G.G. Stokes [55]. According to this theory one is able to identify the polarisation of
light using four filters. An isotropic filter transmitting light, with equal intensity for all
the polarisation states, a second linear polariser passing the horizontal linear polarised
light with maximum intensity, a +45° polariser, and a circular polariser transmitting
with maximum intensity for the circular polarisations and being non-transparent to

linear polarisations. The normalised Stokes vectors are given by [56],

|Eo® + |Ey|®

8y = B 1 (3.12a)
_ |E:]> = |E,?
= le—y— = cos 20 (3.12b)
2Re(E.E!
8y = ——I(Eﬁl)- = sin 20 cos ¢ (3.12¢)
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S3 = ?Im_-ﬁﬂ = sin20sin ¢ (3.12d)

The Stokes parameters represent coordinates on the Poincaré sphere, while sq rep-
resents the intensity of light. It is important to mention that orthogonal polarisation
states such as horizontal and vertical linear polarisation are represented by antiparallel

vectors on the Poincaré sphere.

45 degree
Linear Left
Polarisation circular
polarisation
vertical
horizontal
—45 degree
Linear
Polarisation
Right=hand
circular
Polarisation

Figure 3.4: Poincaré sphere representation of the Stokes vectors

The angles 0 and ¢ that are determined by the position of the Stokes vector are
indicated in figure 3.5. The Mueller matrices will represent the optical element in a
similar way to that of the Jones transfer matrices and will allow for an output vector

Sout ON the Poincaré to be mapped to an input vector s;,. So one writes,
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Sout = Msin (3.13)

Where M is the transfer matrix of an optical element.

[

8

Figure 3.5: A polarisation state represented on the Poincaré sphere by the Stokes
vectors.

3.5 The PMD vector

3.5.1 PMD vector and Poincaré sphere representation

In this section we will explain what the PMD vector is. The Stokes vector in a given
length of a fibre segment with negligible PDL, rotates as a consequence of the frequency
dependence of the transfer matrix R(l,w) of the segment, where | indicates length. As

a result,

s(l,w) = R(l,w)s(0,w) (3.14)



Chapter 3. Polarisation mode dispersion theory 47

the parameter s(0,w) is the initial Stokes vector, taking the derivative of that and

with no frequency dependence of the input state, one writes,

ds(l,w) _ dR(l,w)
dw | dw

next Eq. 3.14 is multiplied by R~!(l,w) and produces s(0,w) = R~1(l,w)s(l,w),
which is further substituted in Eq. 3.15. Thus,

s(0,w) (3.15)

ds(l,w) _ dR(l,w)

o = R7Y(lw)s(l,w) = Q(l,w) x s(l,w) (3.16)

where the s(l, w) is in the usual fashion the stokes vector representing a polarisation
on the Poincaré sphere. The parameter Q(l,w) is the PMD vector and Q(l,w)x =
4R04) R-1(l,w). The modulus of the PMD vector is the DGD of the link AT = |Q].
The Stokes vector in Eq. 3.16 is defined as a changing quantity with carrier frequency.
It should be stressed that this is in effect qualitatively the same effect as the change
of the polarisation state of a pulse with distance as it travels through the fibre. The
relation for the local birefringence W(l,w) in a fixed frequency and tracing the spatial
evolution is defined then as,

ds(l,w)

— = W(w) xs(l,w) (3.17)

Thus the birefringence of a PMD vector will result in a closed trajectory such as
in figure 3.6. This has been explained earlier and is justified if one considers the
periodic evolution that the signal will undergo under a constant DGD. Such a relation
describes only the first-order PMD. For practical applications in real-time systems
where the magnitude and the direction of PMD changes, the definition of PMD changes
to accommodate all of these effects, by expanding the PMD around a centre frequency
and it takes the form,

o0 POl w) (w = wo)?

Ql,w) = (I, wo) + %w)(w - wp) + B 5t (3.18)

where [ is the length of each individual fibre in the fibre ensemble,w is the frequency

parameter and wy is the centre frequency. Such a random evolution of the stokes vector
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Figure 3.6: Effect of the PMD of a uniform segment on a Stokes vector

is presented in figure 3.7

3.5.2 Pulse spreading due to PMD

The theoretical evidence presented into paragraph 3.5.1 are enough to provide an ex-
pression, for the spreading caused by PMD. The final relation is of great significance to
the work produced in this thesis so in the simplest of terms we follow the derivation of
[57]. Taking the derivative of equation 3.16 with respect to distance and the derivative
of 3.17 with respect to frequency, this implies that,

d(W xs) d(Qxs)

dew T dz -
-&st+W><(nxs)=-a;xs+Q><(Wxs)
&l _ el
dz  dw

+WxQ (3.19)

where at first the Jacobi identity was used so that (W x Q) x s = W x (Q x
$) = Q x (W X s) and the resulting expression was multiplied by (xs)~!. Assuming

that the local birefringence results as a perturbation added stepwise upon a constant
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Figure 3.7: Effect of the PMD of a transmission fibre on a Stokes vector

background one writes, for the local birefringence vector,

W(l,w) = Wo(l,w) + AW (3.20)

with Wo = (AB,0,0)T and AW = (AW,, AW,, AW:)T where AB = fo, — Boy rep-
resents the birefringence parameter and Q(l,w) = (2, (I,w), (l,w), A%(l,w))T. Sub-
stituting these into Eq. 3.19 this leads to,

0 -U(w) MN(l,w) 0 0 O
%=- (!, w) 0 -Qw) |AW=10 0 -A8 |Q
-N(lw) NU(,w) 0 0 A8 0
Ap
+| o (3.21)
0

At this point it should be noted that AW is negligible. Finally selecting AW from

a random distribution of white Gaussian noise with a standard deviation of o then
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AW will be substituted by c AW, thus

o [ 0 —w) w) 00 o0
T %lw) 0 -Q(w) |AW=-| 0 0 -A8 |Q
\—Qz(l,w) Q(l,w) 0 0 A8 0

A
+| o (3.22)
0 )

As the quantity cAW is randomly varying then Eq. 3.22 is classified as a stochastic
differential equation. According to the theory of these equations any function F of the
vector (I, w), such as the DGD of a fibre AT? = Q2 + Q2 + Q2, obeys the law.

d < F(Q(l,w)) >
dl

=< G(F(Q(l,w))) > (3.23)

The operator G in Eq. 3.23 is defined as the generator of the vector Q(I,w) The
stochastic system of Eq. 3.22 is interpreted either by the Ito or the Stratonovich
calculus. Both of these interpretations are equally correct and one can be transformed
into the other by a translation algorithm, which for Eq. 3.22 implies that & term equal
to 02Q is subtracted from the right-hand side. The method to use is chosen according
to the problem at hand. Suffice to say that concerning Eq. 3.22 the authors in [57]
proved that without the aforementioned term of ¢%Q and if one derives the equation
for the modulus average < |[Q(I)|? > according to 3.21 with the help of the appropriate
generator, without the driving term this moves off the sphere that it starts. This is not
correct as this average should be invariant as it is given by an equation which intends
to describe a process which is homogeneous with respect to length and with respect
to the vector Q(l,w). While adding the term, this produces the wanted result that is
< |2@)]> >= [Q(0)|. After the subtraction of this term 3.22 results in,
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0 -(l,w) Q,w) o2 0 0
'fi_{;vz-:_“ Q(l,w) 0 -U(w) [AW=[ 0 o -AB |Q
~Qw) Wlw) 0 0 A8 o
Ap
| o (3.24)

0

the key equation to producing the appropriate generator for the equation is given

in Appendix B. The generator G is thus given as,

o
¢=Z [+ 0+ (% o)L ok (@ + 02

oz
=201y —r i - 20— ¢ — 20,3 —no g
df2, ), d Qs d$'2293

d d d d d
g ( dQl deﬂ Qadﬂg) A (Qadﬂg deﬂg) Aﬁ dQl (3.25)

substituting < AT? >=< Q} + Q2 + Q2 > into Eq. 3.23 gives,

d<AT? >

¥ =208 <, > (3.26)

one notes that only < §; > remains to be resolved in Eq. 3.26 in order to obtain a
final equation that gives the evolution of < AT? > with distance. So plugging §; into

Eq. 3.23

a0

7 = =gl < Q1 > +AF (3.27)

Equations 3.26, 3.27 are first order differential equations, solving first Eq. 3.27 and
then substituting into Eq. 3.26 (Appendix B), results into the final relation,
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AB'\2
<AT?>=02= 2(7‘3-) (0?1 + exp(=c?l) = 1) (3.28)

from this equation it is possible to generalise and by choosing to set o = 1, we
obtain the two limits of I, being in the short or in the long length regime. As a rule [1]
if I <. this is classified as a short length while the opposite falls in the long distance
regime. In the first case (I < l.) the exponential term in 3.28 is retained, so that if this

is expanded up to the second order as, e* = 32 2" /n! then,

< AT? >= ok ~ A (3.29)

in the long length regime the exponential term becomes negligible and the term

linearly proportional to the distance provides the main contribution so that one writes,

< AT? >= o} ~ AB?2 (3.30)

these equations provide a clear understanding about the behaviour of a system
influenced by PMD. In a short distance the spreading, which results by taking the
square root of Eq. 3.29, evolves linearly while in the long length regime, where it is
obtained by the square root of Eq. 3.30, it evolves with the square root of the distance.
This is directly related with the physical phenomenon of power coupling which for a
longer distance is adding up more, reducing the effect of the DGD per length.

3.6 Statistical properties of the PMD vector

Based on the formalism of the Mueller matrices a long fibre will be given as the product

of a number of these matrices, thus [58],

M™ = M M,_y...MaMy = M, M™! (3.31)
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the cross-product of the PMD vector which is written as 2x, results then according
to the Mueller matrices notation, Qx = %ﬁ this is in agreement with the expres-
sion given earlier that is Q(l,w)x = %(-L‘QR"(I, w) for a rotation matrix R. A final
expression for {2X in terms of the three components (£2;, 22, 23)7 can be obtained from

a relation such as Eq. 3.16.

0 -Q3 N
Qx=[ Q 0 - (3.32)
- O 0

Using these tools it is proven that according to the definition provided in [58] the
PMD-vector resulting from this process is the vector sum of the vectors for each optical
element transformed by the appropriate Mueller matrices to the same position. This
is expressed in Eq. 3.33.

O =Q, + M Q! (3.33)

This contributes to the statement that this section intends to make, identifying the
probability distribution function of the PMD. According to Eq. 3.33 the direction of
the three components of the PMD vector will be varying as well as the modulus of each
one of them, that is after each step the PMD vector is multiplied by a random transfer
matrix. This is defined as a three dimensional random walk [57]. The PMD vector
will eventually, after a long length of fibre, be given by the sum of the individual PMD
vectors, which will obey the central limit theorem, which implies that its distribution
will be a Gaussian. This will lead finally into the analytical model of the distribution
of the PMD vector being a Maxwellian as this given as the average of the squares of

the three Gaussian components and this from theory is & Maxwellian given by Eq. 3.34

PDF(£)analyticat = ;%;(%)zexp ( = %(%)2) (3.34)

the theoretical form of this distribution is presented in figure 3.8
Moreover the background autocorrelation function (ACF) of the PMD should tend
rapidly toward zero. This is a direct outcome of the fact that the PMD vector for each
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Figure 3.8: Probability density function for the distribution of AT

one of the individual frequencies, should be independent and should thus be correlated
only with itself. This is effectively given by a quadratic decay of the background (ACF)
according to,

ACF(W)anatyticat = m [1 —exp (_AT (u:; —n) )] (3.35)

This is graphically represented as in Fig. 3.9 for a < AT >= 25 ps,
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Figure 3.9: Autocorrelation function of AT

To give a few examples for the DGD of existing systems, the values quoted in liter-



Chapter 3. Polarisation mode dispersion theory 55

ature for old installed fibres, generally will vary between 0.1 ~ 3 ps while for PMD in
recent installations these have been reduced to approximately 0.01 ~ 0.1 ps. Based on
the present day fibre models then, one assumes that the PMD phenomenon presents
no significant problem. This assumption is not true as there are already many fibres
installed, that are based on old-specifications and re-installment of new fibre would
prove more costly in comparison to troubleshooting the problem of PMD through sta-
tistical analysis. Further by increasing the data-rates, naturally the spreading caused
by PMD occupies a bigger part of the bit-slot, and thus even with the newly installed

fibres the problem might resurface for certain systems.



Chapter 4

Analysis and implementation of

existing methods for simulating

PMD

4.1 Introduction

The coarse-step method, which is the principal method, for numerically implementing
the phenomenon of PMD, will be introduced in this chapter. The theory as well as
the advantages and disadvantages of this method will be analysed through theoretical
evidence. The outcomes resulting from the numerical implementation of this method
will be presented, in the course of this chapter investigating the evolution of the state
of polarisation of the signal (SOP), in terms of the mixing on the Poincaré sphere. And
the effect that the coarse-step method has on the spreading of a signal.

4.2 Coarse-step method

The common approach of simulating PMD numerically is the coarse-step method.
This is based on the theory of emulating the optical fibre medium as a concatenation
of fibre sections with random rotations of the birefringence-axes in between, which in

turn results in mode coupling. This procedure is effectively represented by figure 4.1,

56
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Figure 4.1: Concatenation of waveplates with a fixed DGD and random rotation in
between the segments.

Furthermore it is convenient to describe this emulation process with the help of the
CNLS equation. From equations 2.34, 2.35, assuming that all of the other effects can
be neglected apart from PMD, these equations can be written as,

i(‘%- + B,‘,aazi’)=0 @.1)
i(% + ﬁ;aa'?"')=0 (4.2)

Next Fourier transforming these relations and assuming that g, = ¥, f, = —b' we

obtain,

-

.BE: = o
i 52 + YwE,=0 (4.3)
-6Ey L
el VwE, =0 (4.4)

This represents the splitting of the two modes as the wave envelope for the vertical
direction will travel at a group velocity vy, = 1/, = 1/¥ while the wave envelope of the
horizontal polarisation will be retarded having a group velocity of vy, = 1/8, = —1/V..
Effectively this implies that the direction of the x-axis component is the fast mode
while the y-axis is the slow mode. In this case and in the absence of any other effects
and mode coupling the two pulses will be separated in a given distance by 2b'L where
L is the propagation distance. The second step is to include the random rotation of

the field which is accomplished by multiplying with the following rotation matrix,

S ( cosa sinaezp(ig) ) (45)

—sin aexp(ip) cosa
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This matrix physically represents the exchange of energy between the two modes,
since in a given distance the axes of birefringence will change direction. The angles
a and ¢ are chosen at each step of the simulation from random uniform distributions
within the range [-m, 7] and [—7/2,7/2]. Further these angles refer to random ro-
tations of angles 2a, ¢ of the Stokes vector on the Poincaré sphere. Recalling that
< s} + 83 +s3 >=1 the distribution of a state of polarisation is considered uniformly
distributed on the Poincaré sphere when < s? >— 1/3 ~ 0.3333 where i = 1,2,3. Using
the rotation matrix of Eq. 4.5, when the signal is unaffected by Eq. 4.1,4.2 the fibre
will be represented by a series of rotation matrices of the form of the Eq. 4.5 multiplied
together.

This is numerically implemented in our simulations. Using a CW initially polarised
in 30°, which is represented by a resolution of 2'° in a time window of 512 ps and
calculating the SOP through 5000 runs the uniform mixing of the state of polarisation
due to the rotation matrices only, is tested by setting the differential group delay per
length ¥ = Ops/km in our equations. This is presented in figure 4.2 for & number N =
1,2,10,100 number of steps in our simulations with a step size of Az = 0.84 km. The
spots represent states of polarisation and the dim spots are located on the opposite
side of the sphere. The variance for each one of the stokes vectors for each case is
numerically calculated. For N =1 < s? >~ 0.37, < s2 >~ 0.21, < s >~ 042, N
= 2 < s >x 0.3456, < s2 >m 0.327, < 82 >~ 0.326 for N = 10 < s2 >~ 0.3346,
< s >~ 0.33, < s2 >~ 0.328 and for N = 100 < s? >a 0.333, < s2 >~ 0.333,
< 83 >~ 0.333. From this data it is clear that the mixing for this case is quite rapid,
even with two steps the distribution approximates closely the value of 1/3 for each of
the three axes.

By contrast if one uses a rotation matrix that has the form of 4.6 and starting
from a linear polarisation, then all-the polarisation states will be concentrated on the
equator as there is no phase difference between the pulses and the only effect of Eq.
4.6 will be the change of amplitude of the two modes and thus only linear polarisation
states will exist as shown in figure 4.3 since there is no phase difference accumulated

between the two modes.
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cosa sina
S= (4.6)
—sina cosa

Neglecting the effect of the rotation matrix and including only the first-order PMD
that is the splitting of the two modes and using a polarisation of 30° and a ¥ = 0.025
ps/km the effect of the evolution of the SOP is shown in figure 4.4,
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Figure 4.2: Distribution of the state of polarisation on the Poincaré sphere for Eq. 4.5
after (&) N = 1 step,(b) N = 2 steps ,(c) N = 10 steps (d) N = 100 steps

In figure 4.4 the SOP forms a closed trajectory around the PMD vector as the two



Chapter 4. Analysis and implementation of existing methods for
simulating PMD 60

Figure 4.3: Distribution of the state of polarisation on the Poincaré sphere for a rotation
matrix such as in Eq. 4.6

Figure 4.4: The first-order PMD effect on the distribution of a state of polarisation on
the Poincaré sphere
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modes drift apart with a constant rate, this as mentioned earlier is the effect for a short
piece of fibre or for a polarisation maintaining fibre. Moreover the mixing resulting
from the complete coarse-step method with the first-order PMD given by Egs.4.1, 4.2
and the power coupling given by Eq. 4.5 is examined in figure 4.5. The step size used
is 0.8 km, and the characteristics of the simulation, &' = 0.025 ps/km with the signal
being represented by 2!° points in a time window of 512 ps. Using a single step for the
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Figure 4.5: Distribution of the state of polarisation on the Poincaré sphere for the
coarse-step method after (a) N = 1step,(b) N = 2 steps ,(c) N = 10 steps (d) N = 100
steps

coarse-step method, this in effect only includes the splitting of the two modes,and thus

the result is shown in figure 4.5(a) where only one SOP appears on the Poincaré sphere.
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After the second step there is a large concentration of the states of polarisation in two
areas of the sphere as presented in figure 4.5(b). This results after the two modes split,
they rotate with respect to the birefringence axes and then the first order PMD follows
once more. But this time can be directed on either side and thus the two modes will
repel or attract each other.

Moreover this reflects on the variance for each of the three Stokes vectors, where
for N = 2 < s >~ 0.482, < s >~ 0.311, < s2 >= 0.214. In addition estimating the
mixing after N = 4 steps this results in < s} >~ 0.465, < s2 >~ 0,283, < s2 > 0.253,
after N = 8 steps < s7 >~ 0.455, < s2 >~ 0.295, < s2 >~ 0.255, after N = 10
steps < s >m 0.335, < s3 >~ 0.334, < s? >~ 0.328 and after N = 100 steps,
< s} >~ 0.333, < s3 >~ 0.333, < s3 >~ 0.333.The N = 10,100, steps are shown in
figures (c),(d) where the SOPs are uniformly distributed.

As a conclusion it is evident from our simulations that at least 8 ~ 12 steps of the
coarse-step method are needed for a proper mixing of the polarisation states as at this

distance the Stokes vectors will be approximating uniformly distributed variables.

4.3 Rescaling of the polarisation mode dispersion

One of the main problems that the coarse-step method produces is the fact that this
method artificially rescales the DGD resulting from a long-line of transmission. This
implies that by numerically implementing systems in the long-distance regime, the
DGD for the resulting signal will not follow accurately the description of Eq. 3.30 but
will rather be rescaled according to the step size.

This is further shown analytically according to the notation of [61] as follows, defin-

ing the matrix for the field as,

E.(z,t
E(z,t) = (1) (4.7)
Ey(zt)
and E(z,w) the Fourier transform of that then after a long chain for the delay and

rotation matrices,this yields,
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E(z,w) = [[(S+5.)E(0,w) (4.8)

n=1
where S, are the different rotation matrices included after each DGD delay line and
S, are the delay matrices introducing the splitting of the two modes with Az being

the step size,

S = ( exp(ib'wAz) 0' ) (4.9)
0 exp(—ib wAz)

We then take the derivative of 4.8 with respect to w. We note that E’(0,w = 0) = 0,

where the prime indicating the derivative with respect to frequency. Thus,

E'(z,w=0)= (ﬂ(snsw)) 'E(U,w =0) (4.10)
n=1
Expanding this one writes*,
N '
B (z,w=0)= (]‘[(S,,sh,)) E(0,w = 0) (4.11)
n=1

bwA 0 <

= s | 7 5181 S8 518,E(0,w = 0)
0 —bwlAz

bwAz 0

+ SnSuSn-18. s
0 -bwAz

) SLSLSLS‘ _ISN_lsuSNSw...S1SuE(0,w = 0)

+

It is evident that every term is multiplied by the common factor [J_,(S,S.,) this

implies,

*The symbol 1 represents the conjugate transpose matrix
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- bwA 0
E (z,w: 0) = (SNSN ( Q:] ‘ b’w&z ) SLS}V

0 —bwAz

n=1

bwA 0 R 5
+ sﬂs,,,sN-ls,,,( o )s:,s}vs:,sk_,+...)( (Sa5.)) E(0,w = 0)
(4.12)

And finally by noticing that E(z,w = 0) = ( ,,”=1(S,.S,,,)) E(0,w = 0), Eq. 4.12

results in,

E'(z,w = 0) = FE(z,w = 0) (4.13)

The factor F results from the summation term on the right hand side of Eq. 4.12,
and is equal to

N
F=ibAz)  VnosV} (4.14)

m=1

With o3 being the Pauli matrix,

03 = (1 . ) (4.15)
0 -1

and V,, = [T, (SaS.). Also,
ml,m Iam — izS,m )

n=m
(4.16)
T2,m + imS,m =Z1m

desv,l = (
The variables 21, z3, 23 represent coordinates on the Poincaré sphere, this choice
of matrix is physically adequate and can be justified, as this will represent an optical

element describing the rotation of a unit vector on the Poincaré sphere. From [59] the
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DGD of the link is given as < A7? >= —4 < det(F) >. In the heart of this relation
lies the fact that the differential group delay is proven to be Ar = 2\. Where %)\ is
the eigenvalue that results by solving the eigenproblem of finding the principal states
of polarisation that will remain unchanged to first order with respect to frequency.
This is proven in [49] by finally stating that the spreading due to PMD is given by the
difference of the derivatives of the phase of the signal with respect to frequency that is
ddy /dw—d¢_ [dw with ¢ being the phase of the fast and slow axis respectively. This is
otherwise stated in Eq. 3.3. Then this is generalised with respect to the determinant of
the transfer matrix F' simply by noticing that 2\ = /—4 < det(F) >. The radius that

results from the determinant of V;,o3V}}, is then equal to |21m|? + |Zo.m|? + |Tam]? = 1
and this produces finally a factor of N as it is added through the summation of Eq.
4.14. It is important to note that in general < det(}] A) >#< 3 (det(A)) >, however
in our case the variables are independent and thus we end up with the average of the
squares of the three variables as well as the average of several products of those three
variables which result in the averages of the individual terms that are in turn equal
to zero so in out case in particular the rule < det(3 A) >=< Y (det(A)) > holds.
We thus obtain,< A7? >= 4(b)?Az*N = 4(b')*AzL. From [60, 6], it is well known
that < A7? >= 8(b')?Leorr L, with L, Ly, being the total distance and the correlation
length respectively. So this makes it obvious that there is an artificial rescaling of the
DGD, as it is clearly derived from the above that the value for the PMD spreading
will be modified by a factor of (Az/2Lcer,)/? if one uses the coarse-step method to
numerically solve the PMD. The effect of the algorithm on the spreading of a signal
for the two regimes, the short and the long distance regime, is shown in figures 4.6, 4.7
respectively by presenting the \/< (AT)? > = o7

In figure 4.6 the coarse-step method is numerically solved and then compared with
Eq. 3.29 for a PMD parameter Dpyp = 0.5ps/(km)'/2. There is perfect agreement
between simulation and theory as the random coupling is not included in the coarse-
step method for this case, but only the differential group delay between the two modes,
this implies that using < A7? >= —4 < det(F) >, the result is always the same and
equal to < A7? >= 4(¥/)?A?N? = 4(¥')%2? which is the same result otherwise defined
in Eq. 3.29. This result is shown, choosing for the simulation step size different values
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Figure 4.6: Evolution of the spreading of a signal due to PMD in the short distance
regime

Az = 1,2,0.5 meters and it is observed that the outcome is the same for all of these

numerical estimates.
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Figure 4.7: Evolution of the spreading of a signal due to PMD in the long distance
regime based on the coarse-step method

Further the long-distance simulation is shown in Fig. 4.7 for Dppp = 0.5ps/(km)'/2.
Clearly the rescaling of the PMD resulting from the coarse-step method, as explained
above, is observed. The curve given for 1km is simulated so that it agrees with the
theoretical plot of Eq. 3.30, for what is more the curves for 2km and 0.5km differ by a
(VAz) term, from the theoretical curve as expected. So based on that, if one simulates
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in a coarser way for more computational efficiency or if a better mixing, is required so
that one simulates on a shorter step and concatenates more rotational matrices then it
is necessary that the DGD is scaled by \/I/—Az in order to produce the accurate result
for the PMD so effectively by, = V/(2Lorr/(Az2))/? where by, the value that one needs
to choose for a given step size and b’ the original value.
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Manakov-PMD equation theory

and precomputed matrices

5.1 Review of the Manakov-PMD theory

The starting point for the second numerical algorithm is the Manakov-PMD equation
as described in [61, 62, 63],
oV 1,0 8 or 1

— en— - 2 — —1 ! i | A— N
i~ 3P gt gnzkallI![ VU = —iblo; 5 3ﬂ3kn(N <N>) (5.1)

The coefficients here are the equivalent of those appearing in the CNLS but it is
worth defining them to clarify any slight differences in the notation. Where 9 represents
the field, ¥/ = (B; — B,)/2 is the group delay per unit length indicating the splitting of
the two modes, 8" is the group velocity dispersion coefficient,n, is the Kerr coefficient,
and ko = 2m/\ and the primes denote differentiation with respect to frequency. This
equation can be solved by the split-step Fourier method approach. This eventually will

lead to two equations for the linear and the nonlinear part, these are the following,

V(z+Az,w) = exp[%wgﬁ”Az]M(w)\Il(z, w) (5.2)
V(z+ Az,w) = exp[ingkogl'IfPAz]'I'(z, w) (5.3)

AR
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The linear part described by Eq. 5.2 appearing in the frequency domain includes
the matrix M(w) which is the solution of the differential equation,

OM(z,w)
M

—— + b+ VW) Z(2)M(z,w) =0 (5.4)

with the initial condition,

M(z = z,w) =1 (5.5)

Where | is the 2 x 2 identity matrix

=1 (5.6)
“\lo1 '

Also b represents the birefringence parameter given by b = (8;—(,) which is the dif-
ference between the two propagation constants for the two different polarisations. The
factor ¥(z) describes the evolution of the random change on the axes of birefringence

that the signal experiences as it propagates through a fibre and it is equal to,

2(2) = o3cos(2a(z)) + o1 sin(2a(z)) (5.7)

Where 0y, 03 are the standard Pauli matrices with o3 defined in Eq. 4.15 and

01
01=(10) (5.8)

It is clear that Eq. 5.4 tracks the rapid evolution of the angle on the actual length
scale that this happens, within & meter or so. More specifically for each of these

subintervals,

m(w) = ( el s ) (5.9)

m21 Ma2

and for each of the components of these matrices one writes,

myy = mgy = cos [(b+ Yw)dz] + i cos(2a;) sin [(b + Yw)dz] (5.10)
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Mz = Moy = isi.n(2a,-) sin [(b + b’w)é'z] (5.11)

The individual a; are constant in every subinterval of step-size §z. The matrices
M(w) at each of the standard simulation step-sizes Az of the order of kilometres will
then be given by the product of the sub-matrices,

N
Mw) = H m;(w) (5.12)

The angles a; are chosen so that they are randomly distributed. The second moment

of this distribution is,

oz

<(Aa)>= 7
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Figure 5.1: M(w) matrices resulting from the Manakov-PMD equation (a),(b),(c),and
(d) real and imaginary parts for the elements M(1)(1), M(2)(2), M(1)(2), M(2)(1) re-
spectively
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Where Leorr is the correlation length [64, 65]. It should be pointed out that exactly
because the Manakov-PMD equation follows the physical evolution of the angles this
makes it more attractive than the coarse-step method. However the authors in [61]
note the numerical inefficiency of this method as they followed the path that required
for the matrices m(w) to be computed at the small step size of §z and the matrices
M(w) in turn to be recomputed at every step Az. As it is proposed through this thesis
and proven later through our numerical investigation of this method it is possible to
achieve great efficiency by just computing a limited number of matrices say 4~15 in
the beginning of the simulation and choose between these at random at each step in
the course of the transmission as they do not depend on the signal itself but just on
the characteristics of the fibre. In figure 5.1 the real and imaginary parts of an M(w)
matrix is shown. It should be mentioned that a relation appears between the elements
of this matrix, that is My = M3;, Im(Mis) = Im(My;) and Re(Mi2) = —Re(My,).
These expressions are true, and can be verified, if one produces the multiplication of

Eq. 5.12.

5.2 Manakov-PMD matrices and distribution of a
state of polarisation on the Poincaré sphere.

In a similar way to the one used for the coarse-step method the mixing on the Poincaré
sphere is tested numerically by launching the signal with an initial polarisation and
estimating the scattering on the sphere. In this case a CW initially polarised in 30° is
used, which again is represented by a resolution of 2!° in a time window of 512 ps to
test the algorithm over 5000 runs. This is done for & number of steps N = 1,2,4,10,100.
However there are several options for each case, as one might choose to recalculate the
matrices at every step or just precompute a number of matrices to test the system.
Here both of these options are considered. For a number of steps N = 1, the following
values for the number of matrices Ny, are used Ny = 1,15,256 as well as computing
a new matrix for every run. These results are shown in Fig. 5.2. The interpretation
of these results is straightforward, the result by only precalculating a number Ny, = 1

is presented in Fig. 5.2(a). For this case only one state of polarisation exists on the
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sphere. For the complete opposite case, that is recalculating a new matrix in every run,
the outcome is shown in Fig. 5.2(b) where the mixing is complete with < s? >~ 0.333,
< s3 >a30.333, < s2 >~ 0.333.

A

4
f
)

Figure 5.2: Distribution of the state of polarisation on the Poincaré sphere for the
Manakov-PMD equation after N = 1 step for (a) Ny = 1, (b) recalculating Ny at every
step, (¢)Ny = 15 and (d) Ny = 250

Further, in Fig. 5.2(c) the algorithm is tested with a precomputed number of Ny, =
15 matrices. As thisis only one step iteration there are exactly 15 states on the Poincaré

sphere. The three coordinates give < s} >~ 0.408, < s3 > 0.201, < s2 > 0.390.



Last the method is given a number of precomputed matrices Ny, = 256. In this case
there are exactly 256 states on the sphere and < s} >~ 0.32903, < s2 >~ 0.33906,
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< s2 >~ 0.33189.
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2 steps and the outcome is shown in Fig. 5.3.

Figure 5.3: Distribution of the state of polarisation on the Poincaré sphere for the
The same test was performed for N

Manakov-PMD equation after N = 2 steps for (a) Ny

and (d) N, = 32
of polarisation resulting. This stems from the fact that there are NN combinations of

For Ny, = 4 there are 16 output states of polarisation and for N,, = 8 there are 64 states
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these matrices and thus the same number of output states. So as stated earlier for
four matrices after two steps there are 4> = 16 output states. The coordinates are
< s7 >~ 0453, < s3 >~ 0.1429, < s3 >~ 0.403 for Ny = 4 and < s? >~ 0.319,
< s3 >= 0.331, < s3 >~ 0.359 for Ny = 8. Next the algorithm is simulated with a
number Ny = 15 and thus having 225 output states. The three averages of the Stokes
parameters are < s7 >~ 0.335, < s3 >~ 0.321, < s >~ 0.345. In Fig. 5.3(d) the
result of using 32 matrices is shown, in this case < s? >~ 0.333, < s2 >~ 0.333,

< 83 >~ 0.333. Successively in Fig. 5.4 the mixing for N = 4 is shown.
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Figure 5.4: Distribution of the state of polarisation on the Poincaré sphere for the
Manakov-PMD equation after N = 4 steps for (a) Ny = 4, (b) Ny, = 8

Estimating the Stokes parameters for N = 4 and Ny, = 4, these are < s? >~ 0.337,
< s3 >~ 0.322, < s >~ 0.340, while for Ny, = 8 < s} >~ 0.333, < s2 >~ 0.333,
< s3 >~ 0.333. For what is more the same number of matrices are tested for N =
10 where for Ny = 4, < s§ >~ 0.333, < s >~ 0.333, < s2 >~ 0.333 also for Ny, =
8, < s? >~ 0.333, < 87 >~ 0.333, < s2 >~ 0.333 and further for N = 100 and also
testing for Ny = 4 this results in < s§ >~ 0.333, < s2 >~ 0.333, < s2 >~ 0.333 and
last having Ny = 8 we also find < s} >~ 0.333, < s >~ 0.333, < s2 >~ 0.333. The
pattern emerging from all the above simulations for the various number of steps and
matrices is that as one moves toward higher values for N, then even by using lower

values for Ny this results in a proper mixing on the Poincaré sphere.



Chapter 5. Manakov-PMD equation theory and precomputed matrices 75

4, (b) Ny, = 8

Figure 5.5: Distribution of the state of polarisation on the Poincaré sphere for the

Manakov-PMD equation after N = 10 steps for (a) Ny

=8

100 steps for (a) Ny = 4, (b) Ny

Figure 5.6: Distribution of the state of polarisation on the Poincaré sphere for the

Manakov-PMD equation after N
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Additionally it is observed that even for a value of N = 1 by recomputing the
matrix resulting from the Manakov-PMD for every step results in the correct mixing
on the Poincaré sphere. The objective is however to achieve the correct mixing on the
sphere for only a few matrices so that this results in computational efficiency as well as
physical accuracy. For a number of Ny = 4, through our simulations it is evident that
uniform mixing will occur even for a number of steps N = 6. At this point it should
be noted that for the coarse-step method the correct mixing will develop for N = 10 or
further as proven earlier. From these results it is evident that it is correct to precompute
4 ~ 15 matrices to simulate the phenomenon of PMD. The scattering of an SOP on the
Poincaré sphere is not the only factor contributing to evaluating the Manakov-PMD
algorithm. The probability density function (PDF) and the autocorrelation function
(ACF) should be tested and compared to the analytical results. Such a comparison is
given in chapter 6.

5.3 Manakov-PMD theory and dispersion of a sig-
nal

In this section the evolution of the dispersion of a signal is monitored in the two regimes,

similarly to the coarse-step method. In Fig. 5.7 the PMD spreading in the short
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- Az=05m
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g
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Figure 5.7: Evolution of the spreading of a signal due to PMD in the short distance
regime based on the Manakov-PMD equation
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distance regime is shown and compared to Eq. 3.29 over 100 meters. The parameters
used are a Az = 1,2,0.5 m and a Dpyp = 0.5ps/vkm. There is perfect agreement
between simulation and theory as otherwise observed for the coarse-step method for
this case. For the option of a longer distance this evolution is presented in Fig. 5.8.
The parameters used in this case are a Az =1,2,0.5 km and Dppp = 0.5ps/\/E.

10 20 30 4 S 6 70 8 80 10
z (km)

Figure 5.8: Evolution of the spreading of a signal due to PMD in the long distance
regime based on the Manakov-PMD equation

Further for the long-distance regime there is a clear agreement between numerical
results and theory irrespectively of the step-size used for the simulation in contrast
to the coarse-step method. Which stems from the fact that the PMD phenomenon is
physically accurately represented by the Manakov-PMD rather than the coarse-step
method.



Chapter 6

Statistical validation and simulation

results

6.1 Introduction and motivation for a statistical com-

parison of the numerical implementations of PMD

The coarse-step method [66, 67] is accepted as a numerically efficient method. Also in
[61] it is stated explicitly that computing the M(w) matrices is faster than integrating
the Manakov-PMD equation in the short length scale of the order of meters so that the
angle variation is included at every step of the integration. The question then would
be how to implement the M(w) matrices approach, so that it equals the coarse-step
method in terms of numerical efficiency. In the case that this aim is achieved, the
M(w) matrices would be the preferred implementation as it is a physically accurate
method resulting from the Manakov-PMD equation which takes into account a more
detailed account for the evolution of the reorientation of the birefringence axes..

This can be accomplished by noticing that the matrices are eventually independent
of the signal and can be precomputed. This implies that the matrices will not be
recomputed at each step.

It would be better to take advantage of that in order to avoid the statistical problems
of the coarse-step method, as given in [61] and explained in chapter 4, by using the
Manakov-PMD equation.

7R
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6.2 Precomputing coefficients

The equation of M(w) matrices depends on the orientation of the fibre axes and the
birefringence. In these equations there is no dependence upon the signal itself. Polari-
sation mode dispersion is a statistical process, so that only one instance of the M(w)
matrices would not suffice to represent it accurately.

There are quite a few evidence though from papers on emulation such as in [68]
that a few number of waveplates (> 15) would be enough. So even a smaller number
of the Manakov-PMD matrices, since they represent better the rapid reorientation of
the evolution angle, would suffice in our case to represent the phenomenon correctly.

The method proposed thus is the following. Computing a number of (N) matri-
ces before starting the actual transmission and then during the simulation choose at
random between these matrices, at each step of the simulation of a kilometre or more.
On the top of that the same set of matrices can be used for different simulations, if
for example, it is needed to produce an ensemble average so that there is no need to
recompute these even in the case of different runs.

Getting info the numerical details of this comparison during the transmission it
is clear that the two methods will not differ in terms of speed. The M(w) method
consists now of drawing one random number for the selection of the matrix at each
step and then the multiplication of the matrix with the field. The coarse-step method
consists of the splitting of the field which takes place when the linear part is computed
through the Fourier transformation for each one of the polarisation modes and then
again there is the draw of a random number and the multiplication for the rotation
matrix exactly as in the case of the M(w) matrices. From the physical perspective
the matrices are a correct representation of the mixing on the Poincaré sphere since
a single representation is derived through the integration of the Manakov-PMD and
thus there exists the proper evolution of the rotation angle. In contrast the coarse-step
method is the representation of PMD emulation. That is one random rotation takes
place after the separation of the two modes. In no case does this present a correct
mixing on the Poincaré sphere. At least a dozen number of steps are needed for the
mixing to take place. In this way physically the scaling of the PMD with the step-size
can be explained, as this would result to the linear PMD accumulating longer.
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Further it is quoted in [61] that the coarse-step method inaccurately describes the
nonlinear effect again in contrast to the M(w) matrices. The last but interesting point
that should be stressed is that these matrices provide access to all the elements of the
fibre allowing to bias factors such as the angle and the birefringence and simulate more

complex effects.

6.3 Analytical theory and numerical implementa-
tion of the PDF and the ACF of the PMD phe-
nomenon

The conditions that should be satisfied as stated in [69] are the following,

1. The probability density function (PDF) of the DGD should converge to a Maxwellian
distribution thus it should agree with the following equation
8 2t \2 1/72t\2
PDFQmaics = 7oz (z7) o0 (- 3(z7)) 6D
2. The autocorelation (ACF) of the PMD vector should tend quadratically toward
zero as it deviates from the central frequency reaching 10% for the background

of the autocorrelation. Which in mathematical terms implies that the autocor-

relation function should agree with the following equation.

3 ~ AT (w — wo)?
ACF(@)matyica = oo [1 —exp ( 0; wo) )} (6.2)
The numerical implementation used can be found in [69] and as follows,
] {0W) - Qw))
ACF(w)numencd ‘ (Q(&Jo) ‘Q(w(])) (6'3)

The parameters in these equations A7, t, w, Q(w), stand for the total DGD, the
time parameter, the frequency parameter and the PMD vector which can be computed

as follows,
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P(l,w) = Yu(l, w)ya(l, w) + Yo, w)ys (I, w) (6.4)
1(L) = s W) = Yl i)

&mm=p&3m@w%mm+mmmmmm)

%mm=?%aw&mwmw—mmmm&M)

Where P(l,w), the power, ¥u(l,w), ¥u(l,w), ¥5(l,w), ¥35(l,w), the two orthogonal
modes and their conjugates, s(l,w), the stokes vector and [ the length of the fibre.

A_(l,w) =s(l,w) —s(l,w — Aw) (6.5)
Ay(lw) =s(l,w+ Aw) — s(l,w)

Where the A_(l,w) and A4(l,w) the two difference vectors,

CA_(Lw) x A (lw)
CA-(Lw) x Ay (L w)|

Here eq(l,w) is the direction of the PMD vector, and then the calculation of the

eq(l,w) (6.6)

angle 6 between the s(l,w) and the PMD vector follows,

cosf = s(l,w) - eq(l,w) (6.7)

and finally the modulus of the PMD vector,

9] = 1 ds(l,w)
V1-cos?(f)| dw
arccos(s(l, w + Aw) - s(l, w)) + arccos(s(l, w) - s(l,w — dw))
2Aw+/(1 = cos?(0))

= (6.8)

The derivation of these expressions is given in Appendix C.
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6.4 Statistical Comparisons

The simulation characteristics which we also used to demostrate these results in [70),
were the following, & Dppyp = 3 ps/vkm, correlation length of L. = 100 m, beat
length Lpe,e = 50m and step size Az = 1 km. The smaller step-size to which the
Manakov-PMD equation evolves is dz = 1.67m, thus Az is divided in approximately
600 pieces. The optical spectrum of the simulation is 4 THz. This is represented as
2048 resolution points and a time window of 512 ps. The ensemble average was taken
after 5000 initial conditions. Also it should be noted that no other effect is included
focusing only on the M(w) multiplication at each step.

(a)

—t— N = 256
—— N= 16
—— N = 4 I
- = - coarse-step method

—— Analytical model

10
t(ps)

Figure 6.1: (a), (b), PDF and ACF for a distance 1 km comparing the M(w) matri-
ces algorithm, the coarse-step method and the analytical model of Eq. 6.1, Eq. 6.2
respectively. Results are compared by precomputing & number N = 256,16,4 of these
matrices.

In figure 6.1 the probability density and the autocorrelation function for a trans-
mission distance is given. Commenting on the PDF it should be noticed that the
coarse-step method deviates completely from the analytical model, being concentrated
on the value of 3 ps/vkm which is the value of the DGD per length. This is explained,
as the coarse-step method in the first step includes only the splitting of the field into
the two orthogonal eigenmodes without any mixing due to power coupling. The matri-
ces of the Manakov-PMD equation include the mixing due to the evolution of the angle
and thus the PDF approaches the theoretical expectation more so as the number of

matrices increases so that there is more randomisation. In the case of the ACF again
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a similar effect is produced, the coarse-step method is correlated completely as there is
no randomisation, while the M(w) matrices focus better around the area of the central
frequency. Although the ACF of the 16 and 4 matrices peaks above the acceptable
level of the 10% for frequencies that deviate from the central one, except for the case
of 256 matrices which is correct, since if the number of matrices increases the mixing
gets better.

Moving on to the distance of 2 km the following main points can be observed. In
the case of the PDF the coarse-step method produces two peaks, each one for the two
delays, to the fast and slow axis. While in the autocorrelation function of the coarse-
step method there is & periodicity obtained, of peaks resulting at multiples 1/b’. This
is a numerical artifact inherent to the coarse-step method with a fixed DGD per-length
which is the outcome of the numerical product of the fixed b’ with frequencies multiples
of 7. For the case of the M(w) matrices the agreement is much better so for the case
of the PDF where the curves are nearly indistinguishable, as for the ACF where there
is no periodicity and the background correlation is very close to the acceptable level of

10%.
{a) (b}
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L . ﬁ:
0 5 10 15 20

t(ps)

Figure 6.2: (a), (b), PDF and ACF for a distance 2 km comparing the M(w) matri-
ces algorithm, the coarse-step method and the analytical model of Eq. 6.1, Eq. 6.2
respectively. Results are compared by precomputing & number N = 256,16,4 of these
matrices.

Furthermore the results of the 4, 8, 50 km transmission distance are presented. For
each of these cases a dramatic change has occurred for the probability density of the

coarse-step method. This amounts to the fact that, as the transmission gets longer
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and longer there are more rotation matrices, at the end of each step contributing to
a better mixing. The periodicity of the autocorrelation function remains because this
effect is caused from the splitting of the two fields which always remains constant. For
the M(w) matrices the agreement is good for all cases both for the PDF and the ACF.
Another important observation is that for all the distances of 4, 8, 50 km there is no
significance difference between the set of N = 4, 16 and 256 matrices. For what is
more for shorter distances even though the PDF and ACF improves as the number of
matrices increases, still the matrices resulting from the integration of the Manakov-
PMD give better results even for a small number of matrices, than the coarse-step
method.

Regarding the speed of the method, and using as an example the 8 km simulation on
a Pentium 3 processor with & CPU of 598.417 MHz, the time required for completing
the work for the case of recomputing one matrix at each step was 10 hours. By
precomputing 4 matrices the run time for the computation of the matrices required,
was 7 seconds, while for the total simulation the time needed was 10 minutes. For the
16 matrices, their computation time was 28 seconds and the total simulation time 10
minutes 21 seconds. And last the 256 matrices needed approximately 7 minutes to be
computed and the total simulation 17 minutes. For the coarse-step method the total
time of the simulation added up to approximately 10 minutes. So there is no significant
difference in terms of speed between the coarse-step method and the case of 4 or 16
matrices (7 ~ 21 sec), while indeed there is an enormous amount of computational
time saved by using the algorithm instead of integrating the Manakov-PMD at each
step.

Based on the above it is clear that the numerical algorithm devised from the
Manakov-PMD algorithm has the same numerical efficiency as the coarse-step method.
Moreover the physical description of the M(w) matrices is the physical description
based on the accumulation of the effect on the small length regime, while the coarse-
step method, is a numerically adequate approximation, this is the reason behind the
artificial rescaling. In terms of the simulation results presented it is obtained that sta~
tistically the proposed algorithm behaves better in the limit cases of 1 and 2 km of the
PDF and it is clear that the ACF of the coarse-step method results in an unwanted
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Figure 6.3: (a), (b), PDF and ACF for a distance 4 km comparing the M(w) matrices
algorithm, the coarse-step method and the analytical model of Eq. 6.1 and Eq. 6.2.
Results are compared by precomputing a number N = 256,16,4 of these matrices.
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Figure 6.4: (a), (b), PDF and ACF for a distance 8 km comparing the M(w) matrices
algorithm, the coarse-step method and the analytical model of Eq. 6.1 and Eq. 6.2.
Results are compared by precomputing a number N = 256,16,4 of these matrices.
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Figure 6.5: (a), (b), PDF and ACF for a distance 50 km comparing the M (w) matrices
algorithm, the coarse-step method and the analytical model of Eq. 6.1 and Eq. 6.2.
Results are compared by precomputing a number N = 256,16,4 of these matrices.

periodicity. For the above reasons the M(w) algorithm is more advantageous to use

rather than the coarse-step method.



Chapter 7

PMD correlations with the

coarse-step method

7.1 Theoretical background

The phenomenon of polarisation mode dispersion in optical fibres is normally modelled
using the coarse-step method. This approach is based on the idea of replacing the con-
tinuous random birefringence by a sequence of randomly connected fibres each of which
has a constant birefringence. It has been demonstrated [70] and shown in chapter 6
of this thesis, that this method produces an autocorrelation function (ACF), which is
qualitatively different to the one calculated from a continuous analytical model. It is
important to stress that the phenomenon has been observed experimentally in emula-
tors [68, 69], that is, experimentally concatenating pieces of polarisation maintaining
fibres with polarisation scattering at the beginning of each section but not in the con-
text of numerical simulations, with the widely used coarse-step method.

The coarse-step method uses & constant differential-group delay (DGD)b' term which
is applied after each integration step. This results in the polarisation ACF containing
a series of harmonics instead of a single peak.

In this chapter as we demonstrated in [71, 72] we show that by allowing the DGD
to vary from step-to-step the harmonic artifacts can be removed. In particular, we

investigate the reduction of the side peaks as we gradually increase the number of dif-

R7
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ferent values from which we choose the DGD per length. We also allow the pool of
random values to vary between a uniform and a Gaussian distribution and numerically

we confirm that there is no difference in the long length regime.

7.2 Autocorrelation function of the coarse-step method

The periodicity of the ACF of the coarse-step method results numerically, from the
splitting of the field to the two orthogonal polarisation modes which is the effect of the
DGD per unit length.

It is convenient at this stage to represent the initial pulse as a delta function. Succes-
sively, after a number of simulation steps, and neglecting the power coupling which does
not affect our case, the time domain picture will consist of a series of delta functions
all of which are separated by a constant multiple of time determined by the constant
parameter b'. Thus the autocorrelation of the series of delta functions in the frequency
dofna.in, will result in another series of regularly spaced delta functions.

Furthermore we can monitor the reduction of the side-peaks by having b’ given as a
variable chosen from a pool of random values that exist within a certain width. By
gradually increasing the width of the distribution it is possible to measure the reduction

of the first harmonic against the centre peak.

7.3 Numerical results

The simulations that were performed, refer to a system having the following character-
istics Dppyp = 3 ps/(km)” 2. correlation length L. = 100 m, the integration step was
1 km while the optical bandwidth of the simulation was 4 THz represented by a reso-
lution of 4096 sampling points. As can be seen in figure 7.1, using a fixed value DGD
we obtain the periodic pattern in the ACF of the coarse-step method which deviates
from the proposed analytic model as given in Eq. 6.2.

Continuously we use the “refined” coarse-step method. The value of b’ is chosen from
a range of random numbers spaced equally around the mean value of 3 ps/km. As

presented in figure 7.2 the harmonics decrease as we draw more numbers for the value
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Figure 7.1: ACF of the coarse step method with a fixed DGD of 3ps/km for 64km
compared to the analytical model of Eq. 6.2.

of b" and thus increase the range of choice. Initially we used & number N = 2 for
b, choosing between 2.8ps,3.2ps. Progressively number N is increased to 4 numbers
2.6ps,2.8ps,3.2ps,3.4ps and finally we reach N = 8. The DGD in the last case varies

between the values 2.2ps,2.4ps,2.6ps,2.8ps,3.2ps,3.4ps,3.6ps,3.8ps, thus having a range
of 1.6ps around the average value of 3ps/km.
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Figure 7.2: ACF simulations of the coarse-step method for an increasing number of
values for the DGD per length, N = 2,4,8.

As shown in figure 7.3 it is obvious that the autocorrelation background will reduce to
10 % when we reach a value of 1ps for the width Ab’ of the random pool. We now use
the modified coarse-step method for the option of using a Gaussian distribution for the
random pool of |b'|. It is important to note that since the absolute value is used, the

negative numbers for the birefringence that in any case have no physical meaning are
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Figure 7.3: Evolution of the difference in amplitude between the fundamental frequency
and the first harmonic for an increasing width of the random pool spaced evenly around
an average b of 3 ps/km.

discarded. In figure 7.4 we show that, even for a small variance for |b'| of 0.05 ps, the
harmonics of the ACF become suppressed. An important point to mention is that the
reduction on the harmonics of the ACF is obtained in [73]. The authors there indicate
that extra randomisation introduced by setting the DGD per length, of an emulator,
from a Gaussian distribution leads to removing the periodicity gradually by increasing

o, the standard deviation of the distribution. The variance of |b'| is increased to 1 ps
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Figure 7.4: ACF of the coarse step method with DGD varying according to a Gaussian

distribution of o = 0.05ps and mean p = 3ps compared to the analytical model of Eq.
6.2, the transmission length was 64km.

in figure 7.5 where there are no longer any harmonics present and the central peak still
agrees very well with the analytical prediction of Eq. 6.2. As the simulations have

been performed in the long-length regime, different random distributions will produce
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the same effect. This is demonstrated in figure 7.6 where a uniform and a Gaus-
sian distribution of the same range produce the same effect on the harmonic artifacts.
It is worth noting that the PDF of the DGD does not change significantly when we
modify the coarse-step method, as it is shown in figure 7.7 thus it is correct to use
the coarse-step method with a varying differential group delay model rather than the
conventional one. Further we demonstrate results that are produced from introducing
only two different values for b'. From figures 7.8 - 7.11 where we used randomly, one of
two values (N = 2) for b’ at each step, it is clear that the effect on the resulting ACF
is multiplicative. Using only two values for & though, results in harmonics existing
within the bandwidth of interest. A better choice is to use 4 values (N = 4) as in
figure 7.12 where the harmonics are totally eliminated within the frequency range of 4
THz. Thus instead of using a constant b'. Or randomising the DGD per unit length
by recalculating this value at every step, based on the strategy of inserting a statistical
distribution and gradually increasing the random pool of numbers we choose from, as in
[73]. It was proven more numerically efficient to precalculate four numbers, that meet
at higher frequencies, in the beginning of the simulation, and choose between these
values at random, at every step to enlarge the bandwidth of transmission in order to

produce a simulator that can accommodate WDM systems.
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Figure 7.5: ACF of the coarse step method with DGD varying according to a Gaussian
distribution of ¢ = 1ps and mean p = 3ps compared to the analytical model given by
Eq. 6.2, the transmission length was 64km.

More specifically for a computer with the same CPU specifications, as previously

given it was possible to reduce 1 hour of run time by 10 min this due to the fact that
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Figure 7.6: Results for the ACF of two different type of distributions, a uniform and a
Gaussian
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Figure 7.7: Comparison of the PDF simulations of the refined coarse-step method
with a varying DGD. Results are presented for N=2,4,8 a uniform and a Gaussian

distribution.
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Figure 7.8: Results for the ACF, choosing ' = 3 ps or b’ = 3.5 ps randomly at each
step and comparing with the individual ACF for each of these two values
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Figure 7.9: Results for the ACF, choosing b’ = 3 ps or b’ = 3.2 ps randomly at each
step and comparing with the individual ACF for each of the two values
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Figure 7.10: Results for the ACF, choosing b’ = 3 ps or b' = 2 ps randomly at each
step and comparing with the individual ACF for each of the two values

Figure 7.11: Results for the ACF, choosing b’ = 3 ps or ' = 4 ps randomly at each
step and comparing with the individual ACF for each of the two values
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Figure 7.12: Results for the ACF, choosing b' from the values 2,4,2.5,3.5 ps randomly
at each step and comparing with the analytical curve

the function to call for the various probability distributions get additively more time

consuming than the proposed method.



Chapter 8

Numerical implementation of

Low-PMD spun fibres

8.1 Introduction to PMD mitigation

At this stage and after introducing the statistical validations of all methods, it is
straight forward to obtain a mitigation mechanism of the PMD by implementing Low-
PMD spun fibres as we demonstrated in [74, 75] through the approach of the precom-
puted M(w) matrices.

Experimentally, the class of low-PMD spun fibres, refers to an artificial spin that has
been induced through the medium in the drawing process [76]. The correlation length
of the birefringence Lc,r» shortens and as a result the polarisation evolves faster through
the several stages. Because of its L., /2 dependence the differential group delay(DGD)
< Ar > is reduced. Numerically we introduce the artificial spin by adjusting the
precomputed M(w) matrices that result from the integration of the Manakov-PMD

equation.

8.2 Theoretical approach

It is clear that M(w) matrices depend on parameters such as b,¥/,a,. The distribution
of the angle can be accurately represented by a Gaussian, dispersing slightly around the
mean induced spin da. Offsetting the angular Gaussian distribution by the fibre spin

QR
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the principal states of polarisation will couple faster and thus the overall PMD effect
should be reduced. As in [34] the spreading of the angular distribution, according to
which the angle will evolve is defined as,

0z
2L+

<(Aa)*>= (8.1)

8.3 Numerical implementation

The system tested had the following characteristics, a Dppyp = 3ps/ \/(H , correlation
length L. = 100m, and integration step of 1 km . In figure 8.1, the evolution of the
DGD distribution is shown. As we include a fibre spin and gradually increase it, the
probability distribution of the DGD < A7 >= 24ps, progressively shifts to lower values
21ps, 18ps for a spin of respectively 0.3 rad/m, 0.4 rad/m.
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Figure 8.1: PDF of the DGD for different values of circular birefringence.

The background autocorrelation should tend rapidly toward zero as demonstrated
in figure 8.2, so that the modified algorithm agrees with the theoretical requirements
of PMD emulation theory that were given in section 3.6, thus it is stated through this
test that by including & spin, this does not add any unwanted correlation artifacts in
the ACF. Furthermore it is evident that the correlation length L., has an inverse
proportional relation to the angular distribution of the fibre. Moreover in the long-
length regime the total DGD scales with the square-root of the correlation length. From
the above we conclude that < A7 > 1/< (Aa)? >2 since < (A)? >= < (Aa) >+
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(Aa)?. In figure 8.3 the numerical results for the DGD for successive values of fibre spin
is given and compared against an analytical model based on [77] for different values of
constant spin < (Aa) > thus,
P ;.. (82)
\/ B+ 4< (Aa) >?

= Ba=7 radm
—— Sa=2radm
1- = Sa=0radm

— Analytlcal curve

Br ! ==~ Analytical curve H

Figure 8.2: ACF for different values of the fibre spin against the theoretical model at
a propagation distance of 64km.
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Figure 8.3: Evolution of the mean DGD < At > against the theoretical model of Eq.
8.2

In conclusion for the first time we report the implementation of Low-PMD fibres
with the Manakov-PMD equation. This is a “passive” element for PMD management,
as it will compensate the polarisation dispersion for a certain value which will relate

to the artificial spin that one includes in the drawing process of the fibre.



Chapter 9

Simulation results for transmission

systems with PMD impairments

9.1 Introduction

Continuously we present our results concerning the Q-factor of transmission systems
including PMD as well as other effects such as nonlinearity, losses and dispersion. For
this purpose a numerical solver of the CNLS was implemented using the split step
Fourier method. In this implementation, the fibre component included nonlinearity,
dispersion and PMD. Also other components were implemented for the needs of the

simulations and then incorporated into the general model, such as amplifiers and filters.

9.2 NRZ transmission

The first system demonstrates the propagation of a 10 Gbit/s NRZ pseudorandom bit-
pattern. The launch power is 3 dBm. A rectangular optical filter of 2 THz is used in the
amplifier. Another electrical filter is included in the receiver with 20 GHz bandwidth.
We used 28 bits and a resolution of 2'4. The width of the time window is 25.6 ns.
The periodic map which we used to produce the same results for [75] and as pre-
sented in [47], used is shown in figure 9.1. The SMF fibre has a dispersion coefficient
of 18 ps/nm/km, 80 um? eflective area and 0.2 dB/km loss. For the case of the sys-
tem presented the DCF has a dispersion coefficient of -18 ps/km/km, 80 um? effective

QR
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area and 0.2 dB/km loss, the amplifier has a saturation power of 3 dBm while the

spontaneous emission factor is 1.5.
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Figure 9.1: NRZ Transmission system.

* | — NRZ transmission

35 —— NRZ coarse-step method Dp = 0.1 ps/ Vkm |
—— NRZ M(w) method PMD Dp = 0.1 ps/ Vkm
—— NRZ M(w) method Dp = 1 ps/Nkm

80F | NRZM(w) method Dp = 1 ps/vkm — Low~PMD fibre ||

0 2000 4000 6000 8600 10000
z (km)

Figure 9.2: Q-factor performance for the NRZ transmission system of Fig. 9.1 (blue
line), using the coarse-step method with a Dpyp = 0.1 ps/vkm (red line), using
the M(w) matrices for the same Dpyp value (black line), using the M(w) matrices
for a Dpyp = 1 ps/vkm value (green line) and implementing low-PMD fibres after

increasing the Dpyp value to Dpyp = 1 ps/vkm (magenta) through the Manakov-
PMD matrices

In figure 9.2 the results of this simulation are shown. The NRZ bit-pattern was
transmitted without the effect of PMD and then with added PMD of a Dpyp =
0.1ps/vkm. This was done both with the coarse-step method and the M(w) matrices
approach. Because of the nature of the low PMD the phenomenon does not affect
significantly the transmission. At the same time the dispersion is compensated exactly
because of the periodic map as well as the losses since there is an amplifier included

in the transmission. It should also be noted that the amplifier formula used for the
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gain, included the effect of the saturation of the amplifier, so that the gradual increase
in power of the signal as a result of excessive gain can be avoided. Commenting
further it was proven that the filtering used was adequate to eliminate any significant
accumulation of noise. As a result only the long distance effect of the nonlinearity really
affects the transmission in all these three cases, so that they all reach the threshold
of a Q-factor of 6 at roughly 7000 km. Continuously & higher Dpyp = 1ps/ Vkm
was included for the M(w) matrices case while finally for the same value of PMD the
mitigation of the phenomenon was observed for this algorithm by including a fibre spin
and thus implementing Low-PMD fibres, extending the distance for approximately
1000 km.

9.3 Interaction of solitons and PMD

9.3.1 Vector soliton transmission

In order to achieve soliton transmission affected by PMD, the CNLS in the following

form was used,

OE, p"6*FE,
v 0z 2 ot2 = _7(|E=|2 + BlEvF)Ez (9.1)
OE, p"&E
i=* =S =a =B + B|E|)E, (9.2)

where this is identical to Eqs. 2.34,2.35 but the four-wave mixing term is dropped
as it is not used in the simulations and the new parameter B (78, 79] introduced
in this equation is the ellipticity parameter. That is the fibre might not be linearly
birefringent but a certain ellipticity can be introduced in the preform so that the two
nonlinear components will couple through the XPM term but the variable B will have
a different value.

To demonstrate the resilience of soliton transmission in terms of the GVD of a
link, a first order (N = 1) soliton pulse was launched through a fibre of 10000 km
having a GVD parameter ' = —1.275ps?/km, and an effective area A.s; = 80um?, A
hyperbolic secant format was used for the pulse such that,
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E, = \/Fooosesech(T

':ITO) (9.3)

E,= P sinﬂsech(%) (9.4)

where T is the full-width of the pulse, 7' the time parameter, 0 is the polarisation
angle which in this case was set to be 30° the peak power P, = 0.121W and finally
the full width at half maximum of the pulse was set as Trway = 5ps, of course the
peak-power and the the parameter of Trw uar of the pulse are related by the expression
Py~ %ﬂ% resulting by equating the nonlinear length and the dispersion length.

) ®

Figure 9.3: Transmission of the fundamental soliton for (a) B = 1 and (b) B = 2/3

In figure 9.3 the transmission results that are presented, demonstrate the transmis-
sion of a pulse through a fibre of (a) B =1 and (b) B = 2/3 for the given parameters.
In the first case the soliton is transmitted undistorted through the duration of the total
transmission distance of 10000 km. This is expected and theoretically obtained in [80],
as the nonlinear phase term including the SPM and XPM term is the same for both
polarisations. In this case the soliton that results is directly derived from the CNLS
equation by using the inverse scattering method [81]-[90]. Generally though if the fibre
has not been manufactured for a B = 1 this would imply that B = 2/3 for a linearly
birefringent fibre which is represented by figure 9.3(b), where the soliton does not prop-
agate undistorted but nonetheless exhibits the properties of soliton propagation in a
sense that retains its intensity profile and does not disperse significantly due to GVD
[91]-[95].
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9.3.2 Soliton trapping

The robustness of the PMD phenomenon stems from the XPM term that couples the
two directions. If B = 0 then the two components decouple and propagate as two
independent pulses after a constant DGD is applied at each step. The effect of the
XPM term has been investigated through theoretical results and numerically [96, 97].
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Figure 9.4: The two orthogonal modes |u| (solid line) and |v| (dashed line) after a
distance z = 300 km (first column) and z = 600 km (second column) for a signal
polarisation of 30°. The soliton order N = 0.8 and the group velocity mismatch é§ = 0.15
for the first row while N = 1.2 and § = 0.8 for the second row.

Following the results of reference [97], numerical simulations were performed for a
soliton pulse launched at a polarisation of 30° represented by a time window of 1200 ps

and a resolution of 2!! points. The results are shown in figure 9.4 for a § = 0.15ps and
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then for a § = 0.8ps. Following the formalism of [97], the parameter N is the soliton

order included in the normalised field equations for the two modes,

u = N cosfsech(7) (9.5)
v = N sinfsech(7) (9.6)

and parameter ¢ is introduced and represents the group-velocity mismatch for the

case of the normalised CNLS equation which is written as,

L[ Ou ,0u 1% 2 2
1(6_.5 + & _) s 557 = —(lu? + BJv|*)u (9.7
[0V ,0v 18% 2 2
(G — 95) + 35w =~ + Bl 88

where £ = z/Lp the normalised distance and Lp the dispersion length Lp =
T3/18"), the normalised time parameter 7 = (t/Tp) and § = (8, — ' )To/2|B"]. The
two different values of § were tested for different values of N that isN = 0.8 and N = 1.2
respectively. Each one was transmitted to the distances of 300 and 600 km. The results
of figure 9.4 can be interpreted as follows, when the birefringence of the signal is small
enough so that the two pulses do not drift apart fast, then the higher amplitude pulse
will envelope above the smaller amplitude one and the two will continue to propagate
with the same group velocity. From a physical viewpoint the two pulses shift their
carrier frequencies so that they achieve a synchronisation in the time domain. This
is defined as soliton trapping. If the § is larger though then a portion of the smaller
pulse will not be captured by the larger amplitude mode and thus dispersive waves
will be created. For a larger group-velocity mismatch the soliton may give significant
dispersive waves and breathers for a random initial polarisation (6 # 45°). The general
rule is that the value of N needs to be above a certain threshold [98]-[103] so that the
two solitons remain bound together. This value is proportional to § this is the reason
that for different values of § we used different N values in the simulations presented.
In the next paragraph the power-coupling between the two modes is included so that

the complete picture of PMD is incorporated in the simulations.
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9.3.3 Q-factor and soliton transmission

The effect of soliton trapping implies that the soliton transmission should be more
stable under the influence of PMD in contrast to a linear transmission. This is due to
the fact that the trapping implies that soliton pulse will adjust itself to the mismatch
of the group-velocities of the two modes and will preserve its profile by simultaneously
emitting dispersive wave as summarised in paragraph 9.3.2.

To simulate the effect of PMD we transmit a non-soliton pulse through a fibre of

2000 km with 3" = —1.275ps®/km, A5y = 80um?, and a DGD per length § = 0.15.
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Figure 9.5: PMD transmission for a Gaussian pulse of peak-power (a) Py = 10 mW
(b) P,=05W

In figure 9.5(a) we use a Gaussian pulse with a polarisation angle of 30° a peak
power Py = 10mW and finally the full width at half maximum of the pulse Trwan =
5ps, in this case the pulse collapses completely after the accumulated dispersion of
both the GVD and PMD. In the second part of this figure (Fig. 9.5 (b)) a pulse of
P, = 0.5W is used. In this case the pulse again collapses but this time under the
effects of PMD and nonlinear phase accumulation as the power of the pulse excites the
nonlinear refractive index of the fibre.

Next in figure 9.6 (a),(b) a soliton transmission is presented for a peak-power
P, = 0.121 W, simulated with both algorithms of the coarse-step method and the
precomputed M(w) matrices. The fibre had the same parameters as otherwise for

the results shown in figure 9.5. The transmission is shown to improve as the pulse is
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Figure 9.6: PMD transmission for a soliton of peak-power Py = 0.121 W, simulated
using (a) the coarse-step method (b) the precomputed matrices of the Mananakov-PMD
equation

shown to retain the intensity profile and not to disperse in comparison to Fig. 9.5(a),
simultaneously the intensity levels remain on higher levels for a larger distance and the
pulse does not break down as in Fig. 9.5(b). Rather the pulse will appear to jitter
in the temporal domain as the two modes adjust their velocities continuously in order
to remain bound together. However the soliton peak-power does drop as the soliton
produces dispersive waves. To monitor the reduction of the PMD broadening due
to soliton transmission, a Gaussian pulse of 10 mW peak-power is launched initially
through a fibre of 2000 km with a ¥’ = 0.1 ps/km, at this stage in this so called “linear
case” only the PMD effect is included using the Manakov-PMD equation. Next a full
soliton transmission is accomplished for the same fibre using a pulsewidth of Ty,nm = 5
ps, and for successive values of the GVD parameter D = 0.2,0.5,1 ps/nm/km. The
results are shown in figure 9.7.

The numerical outcome of figure 9.7 indicates that indeed there is a reduction in the
PMD broadening owing to the soliton effect. When the GVD parameter is small the
PMD phenomenon is influencing greatly the transmission and can not be ignored as the
curves for D = 0.2,0.5 ps/nm/km reveal, as the DGD is large compared to the GVD.
When the GVD is large (D = 1 ps/nm/km) the PMD can be treated as a perturbation
and thus the reduction is even greater as further shown in Fig 9.7, In the same figure

the common case of a Gaussian pulse suffering only from PMD (¥ = 0.1 ps/km) is
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Figure 9.7: PMD broadening for a Gaussian pulse compared against the square-root
of Eq. 3.30 and against the PMD broadening for soliton transmission

compared against the theoretical result for the long length regime of Eq. 3.30, which is
labelled Analytical model. From this graph it is shown that all the soliton transmission
results demonstrate a clear improvement compared to the case of the common non-
soliton transmission (blue curve), as the curves presenting the broadening of the soliton
pulses due to PMD produce a lower level of broadening for the same distance. Next the
robustness of solitons with respect to PMD is investigated through the quality factor
of different transmission systems. The Q-factor of a conventional soliton transmission
system is monitored after launching a 10 Gbit/s bit-pattern through a fibre having a
D = 1 ps/km/nm, A,;; = 80um?. The soliton signal was represented as a series of
secant pulses with a resolution of 2! points in a time window of 3200 ps with a number
of bits of 25. It should be noted that in this case the ellipticity parameter B = 1 so
that the Manakov soliton is obtained in a strict mathematical sense. In figure 9.8(a)
the Q-factor of the system without PMD is shown. The Q-factor continues to be well
above the limit of Q = 6 for over a distance of 10000 km. In contrast, in figure 9.8(b)
and after PMD is added to the signal one finds that the soliton transmission is severely
impaired and it falls below the limit-value of Q = 6 at the region of a distance of
1000 km even for a small value of & = 0.1 ps/km. This reveals the significance of the
PMD effect for a soliton link in general, as ultimately the Q-factor or equivalently the

bit-error-rate of a system will characterise a link, as being efficient or inefficient for
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transmission.
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Figure 9.8: Q-factor for a soliton system (a) without PMD, (b) with a b’ = 0.1 ps/km
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Figure 9.9: Bit-pattern of a soliton system (a) without PMD at the transmitter and
after a propagation distance of 10000 km, (b) with & ¥’ = 0.1 ps/km at the transmitter
and after a propagation distance of 1000 km

The reason for the severe impairements caused by PMD are presented clearly in
figure 9.9. In Fig. 9.9(a) the soliton bit-pattern propagates error free for 10000 km.
In the second part for a shorter distance of 1000 km and focusing on a time window
between -700~100 ps (Fig. 9.9(b)) it is shown that the PMD effect causes the solitons
to produce dispersive waves that interfere with the adjacent bits giving errors and

simultaneously the “jitter” introduced by PMD as the two modes change their velocities
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cause the Q-factor to drop dramatically.

We next simulate a soliton system with the dispersion map similar to [47] as shown
in figure 9.10 with the following characteristics. An input power of 26.4 mW and a
FWHM of 17.6 ps. A rectangular optical filter with 2 THz bandwidth is used in the
amplifier. The receiver includes another electrical filter of 20 GHz bandwidth. We used
a 10 Gbit /s bit-pattern simulated with 2® bits and a resolution of 2 in a time window
of 25.6 ns. The fibre was an SMF fibre with a dispersion parameter of 1 ps/km/nm a
loss of 0.2 dB/km and an effective area 72um?. The amplifier has a gain of 8 dB and

a noise-figure of 2.
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Figure 9.10: Soliton Transmission system
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Figure 9.11: Q-factor performance for the soliton transmission system of Fig. 9.10
(blue line), using the coarse-step method with a Dpyp = 0.25 ps/vkm (red line),
using the M(w) matrices for the same Dpyp value (green line), implementing low-PMD
fibres after increasing the Dpyp value to Dpyp = 1 ps/\/kE (magenta.) through the
Manakov-PMD matrices and using the M(w) matrices for a Dpyp = 1 ps/ vkm value
(black line)
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The result for the Q-factor of such a system without PMD and for a constant
Dpup = 0.25ps/km*/2, given by the coarse-step method, is shown in figure 9.11. In
the same graph we also used the M(w)-matrices method for a Dppyp = 0.25ps/km*/?
and Dppp = 1ps/km'/? and continuously we introduced a fibre spin of 0.1 rad/m for
the case of a Dpyp = lps/kmlf 2, which as shown improved the Q-factor extending
the transmission length. We otherwise produced the same result for [75].

It should be noted that the Q-factor of the system with the PMD given by the
coarse-step method, was tested additionally for a varying Dppsp, uniformly and Gaus-
sian distributed, with a width for the random distributions of 0.8 ps. The results of
these tests have been grouped together with the standard coarse-step method approach
(blue line), because all of these curves presented similar evolutions for the Q-factor, as

it was otherwise expected.
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Conclusion

The fibre optic technology is considered to be a promising option for the global mesh
of communication networks. The advantages of such a technology, as outlined in the
introduction of this thesis include a huge bandwidth capability, low signal attenuation,
low dispersion, and low power requirements.

From a financial point of view, a large amount of funds, have been directed from
several telecommunications companies for the fabrication and installation of optical
fibre links.

There is large amount of these links that have been implemented in the earlier
days of optical communications and for lower bit rate requirements. For these links
to accommodate higher rates and more sophisticated systems, need to be upgraded
in order to eliminate the potential problems that arise. For that to happen either

_complete new systems or individual links have to be installed or high cost maintenance
will have to be arranged in predetermined periods of time or on demand when a problem
appears. Both of these methods are very expensive, which also reflects on the price
that the individual customer will have to pay to the service provider.

A third option would be to resolve outstanding issues, through numerical simula-
tions, which would then give accurate description of the problem and reveal the outages
that might occur, for various problems. It is obvious from the above that the improve-
ment in terms of physical accuracy, and numerical efficiency of the numerical solvers
is imminent.

The aim of this thesis is that exactly, of providing computationally optimized, and

1in
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physically adequate numerical solvers for the description of the optical phenomenon of
PMD that arises for higher bit rates and thus shorter time slots.

In the following paragraphs of this section an expanded index of the thesis is pro-
vided, which will present a commentary and also conclusions based on the work per-
formed in every chapter.

In chapter 1 a historical perspective of the evolution of the optical telecommuni-
cations network was given. The obstacles that arose during the growth of the optical
network were mentioned in a chronological order along with a brief description of each
effect. The various ways that these problems were resolved or on the other hand the
methods to utilise the phenomena, to produce a positive outcome, such as using the
GVD and the nonlinearity to produce the soliton pulse, were outlined. The aim of
the development of this section was to eventually introduce the PMD and the reasons
behind the application of numerical methods to represent this effect, which is also the
aim of this work.

Chapter 2 provides the derivation of the NLS equation and the generalisation to the
CNLS. The effects that were defined briefly in chapter 1 are here identified as the terms
of the NLS and the CNLS equations, namely the losses, the dispersion and nonlinearity
and also the PMD effect. The derivation and description of these two relations was
necessary as in the process of this research it was essential to implement the numerical
solvers of the scalar and vector approximations. This due to the fact that any model
of PMD will have to be included into these two equations for the description of more
realistic systems subjected to PMD. Further in this chapter the limited cases for all of
these effects were given, with theoretical and numerical evidence. The term “limited
case”, is defined as the situation where only one effect is present in a transmission link
while the rest have been numerically set to zero through the different parameters and
the aim for this kind of simulations is to identify if the system is responding according
to well known theoretical solutions. On the other hand one of the aims of this project is
to analyse any potential differences that might arise from the use of the vector instead
of the widely used scalar model. Such & comparison has not been presented thoroughly
and systematically in other sources.

Chapter 3 reviews the different elements of polarisation mode dispersion theory. In
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more detail the different factors that contribute to the effect are the modal birefringence
and the power coupling between the two modes. Moreover a detailed mathematical
description of light is incorporated. Then based on that, the Poincaré sphere represen-
tation is explained. This is essential for further understanding, as later in this thesis a
number of simulations and the representation of their results, on the Poincaré sphere
are given. Equally important is the mathematical derivation of the spreading due to
PMD as this is the element that has been used widely to describe the phenomenon in
the short and long length regime and also used in this thesis to compare against, the
numerical results for the spreading of a pulse due to PMD. The derivation follows the
same steps of known references which are aknowledged. Last the stochastic models
that are used to characterise links and PMD emulators are presented and explained,
as the same models are used in this and a number of other projects to characterise a
numerical simulator.

In chapter 4 a detailed account of the numerical method of the coarse-step method
is given. This method is represented by the theory of the CNLS equation which intro-
duces the delay developing between the two modes and the inclusion of power coupling
through the multiplication of the modes with a rotation matrix. The mixing that the
coupling introduces is shown with the help of the Poincaré sphere, where the scattering
of a single polarisation state is monitored. Simultaneously through the Poincaré sphere
coordinates the mixing is calculated for different steps. The purpose of this test is to
identify the number of steps needed and the rate that the mixing occurs. For the rota-
tion matrices this is found indeed to happen very fast. The same tests take place for the
complete method that includes the splitting of the two modes, where it is found that a
uniform mixing will result in a number of 8 ~ 12 steps. Next the theoretical derivation
of the rescaling, depended on the step size, that the method introduces is given, which
is then demonstrated through the numerical simulation and the comparison with the
theoretical model.

Chapter 5 describes the numerical method resulting from the Manakov-PMD equa-
tion. The theoretical derivation of the method is outlined. Through the evidence
provided it is suggested that the Manakov-PMD method can be numerically effective,

by precalculating a number of transfer matrices resulting from this method instead of
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calculating this matrix at every step. Moreover the mixing on the Poincaré sphere,
as previously shown for the coarse-step method is produced, for different number of
matrices, and different number of steps. This of course concludes that for the case
of calculating a matrix at every run there is a complete mixing but also here it is
shown that for a smaller number of steps than the coarse-step method and by using
the precomputed matrices approach it is possible to achieve a satisfactory mixing on
the Poincaré sphere. Further the spreading of the pulse which results by using the
Manakov-PMD equation is given and shown to always follow the theoretical model
irrespectively of the size of the step used in the numerical implementation.

Chapter 6 is concerned with the statistical comparison of both methods which is
essential to define if they agree with the theory behind emulation. The probability
distribution function and the autocorrelation function of the coarse-step method and
the Manakov-PMD matrices is numerically produced and compared with the theoretical
models widely used in emulation. The motivation for this comparison is to specify the
exact length over which each of the two methods will converge to the appropriate
model. The Manakov-PMD equation matrices method is shown to converge much
faster than the coarse-step method. Although both of these algorithms are adequate
for the representation of the PMD in the long-length regime it is preferable to choose the
method which will cover physically accurately all the cases including the short length
regime, that is the Manakov-PMD equation which otherwise does not inherently suffer
from the rescaling problem of the coarse-step method. The second and more important
conclusion is that these results allow for the numerical optimisation of the Manakov-
PMD method through the precomputed matrices approach. That is, even in the case
where one chooses to use a number of matrices which will be equal to 4 and for a
number of steps equal to 4 the PDF and the ACF converge to the required theoretical
models.

In chapter 7 the focus was mainly on the artifacts that are produced in the au-
tocorrelation function of the coarse-step method. These artifacts become evident as
side harmonics appear in the ACF that are a product of & numerical property of the
coarse-step method. In other words the first-order PMD remains constant from step to

step and thus as the delay between the two modes is introduced by the CNLS through
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the first order PMD term, side-peaks appear in the values of frequency multiples of
7. This is a direct outcome of the fact that a constant DGD per length multiplies the
different frequency bins in the numerical implementation at every step. This problem,
which has been shown to appear with respect to emulators has not been fully resolved
in terms of numerical simulators. The problem is solved by introducing a different
DGD from step to step and thus randomising the location that these peaks appear in
the frequency spectrum. For a large number of values and a large number of steps
the peaks disappear altogether. However another step is taken so that the algorithm
is further numerically optimized and that is accomplished, by noticing that the peaks
appear in larger frequency intervals even by choosing only between a number of values
ranging from 2 ~ 4. Thus instead of implementing a uniform or Gaussian distribution
of certain range and calculating a value at every step, one chooses only between 2 or
4 values. This additively results in reducing the overall time of computation in simu-
lations such as calculating the PDF and the ACF in order to approach the theoretical
model of PMD, as simulated in chapter 6.

Chapter 8 provides an algorithm for reducing the PMD of a fibre. This algorithm
is basically the Manakov-PMD matrices approximation, with a modification. That is
adding a mathematical mean to the distribution which represents the angular evolution
of the fibre for the Manakov-PMD equation. For the first time thus it is evident
that low-PMD spun fibres can be simulated numerically through the Manakov-PMD
equation. These fibres are experimentally produced by adding an artificial spin in the
drawing process which effectively masks the perturbation of the birefringence and forces
the two modes to couple faster. This is essentially what the modified Manakov-PMD
matrices represent.

In chapter 9 the different methods are combined to produce realistic communica-
tion systems. The different algorithms for implementing PMD are incorporated into
the CNLS equation. The chapter then focuses on the two main issues of optical trans-
mission, first the linear transmission and second the soliton transmission. The linear
system was implemented by choosing NRZ format for the signal at a low power level.
The transmission system was implemented using & symmetric map of 20 km of DCF
added between two 10 km segments of SMF, so that the GVD was compensated. The
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losses of the fibre were reduced by an amplifier which in turn introduced noise. Through
the filtering, that follows the amplifier, the majority of the noise content is removed
and thus the only remaining effect is the nonlinearity accumulated in a long distance.
The PMD that is added next through all of the algorithms mentioned earlier results in
the deterioration of the quality of the system but not significantly due to the low-value
of this (0.1 ps/vkm). For an increased DGD value the penalties are severe but there is
also improvement through the modified Manakov-PMD algorithm for low-PMD spun
fibre. The soliton case is really interesting as it puts the soliton-trapping phenomenon
to the test. Indeed this is demonstrated in this thesis for a constant DGD. When
we include the complete model the picture changes significantly and we find that the
dispersive waves deteriorate the Q-factor tremendously.

Last it is important to mentioned a few subjects that are of particular interest,
have been brought forward during the course of this project and should be considered
as areas of future work. First is the extremely complex task of PMD compensation
techniques. As of this moment there has not been an effective way of compensating
the PMD phenomenon on a fibre with random DGD sections. This would require the
calculation of a mirror image of the transmission link that would be implemented in
the receiver with polarisers and delay elements. This is an excellent task for numerical
implementations as the experimental aspect of it could be costly, more complex, and
time consuming. In contrast the numerical solvers can be optimized and transformed
much faster and then the final solution can be translated into an experimental method.
Another area of future work should be soliton transmission, interaction with PMD and
compensation. There has been an effort nowadays to compensate for the dispersive
waves produced by PMD on a soliton transmission as this is speculated to be the
major source of penalties in such transmission, since the soliton pulses maintain their
pulsewidth. This is attempted through filtering. However through our simulations it
is evident that the quality factor reduces because of the reduction of the peak power of
the pulse. It would be much easier then to use a nonlinear optical loop mirror (NOLM)
to compensate for this loss and simultaneously suppress the dispersive waves as this
element can produce the required transfer function to achieve such an effect. Finally

the outstanding issue on the side of multichannel transmission and interaction with
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PMD should be mentioned, which would be accomplished by numerically implementing
elements such as WDM multiplexers and demultiplexers so that the PMD effect in

realistic multichannel transmission is monitored.



Appendix A

Split-step Fourier method

The algorithm used to solve the CNLS and the NLS equation in this thesis, is the
commonly used split-step Fourier approach. The theory behind the implementation
of the split-step Fourier method is based on dividing the evolution of the field into a
linear and a nonlinear part. Then splitting the transmission path along the fibre into
small segments one calculates the two parts, the linear and the nonlinear separately.

It would suffice demonstrating the method for the NLS equation, since the CNLS
differs only due to the fact that the split-step Fourier method has to be applied to each
one of the two propagation modes separately, and thus be calculated twice. So starting
from the NLS,

(0B | ,0E\ ['O°E Ny 18
(5o +8%) — G357 +WEME+ZE=0 (A1)
one writes then for the field,
&5 b+ N)E (A2)

With D, N, the linear and the nonlinear part of the NLS respectively. Solving this

one finds,

E(z + Az, t) = exp((D + N)Az)E(z,1) (A.3)

with the D operator for the linear part
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D=-itoe - = (A4)

and the N for the nonlinear part given by,

N =iy(|E) (A.5)

applying the split-step Fourier method on this result implies that

E(z + Az, t) ~ exp(DAz) exp(NAZ)E(z, t) (A.6)

where the linear operator can be solved in the frequency domain while the nonlinear

operator in the time domain, one then Fourier transforms Eq. A.4,

D=it- 52‘; (A7)

the strategy behind using this method is summarised in this step as one can evaluate
the two effects differently, the linear in the frequency domain and the nonlinear in the
time domain, and thus employ the FFTW [104]-[113] package to Fourier transform
from one to the other domain, which makes the overall computation extremely fast
and gives the opportunity to the programmer to skip the partial derivatives resulting
from the linear operator.

The overall computation accuracy can be improved if one uses the so called sym-
metrized split-step Fourier method which is more specifically used in this work. Using
this method Eq. A.6 transforms to,

E(z+ Az, t) m exp(DAz/2) exp(NAz) exp(DAz/2) E(z, 1) (A.8)

In more detail instead of setting say D = 0 and computing the full step of the
nonlinear operator and then setting N = 0 and calculating the action of the full step
of dispersion, with Eq. A.8 the nonlinearity is included in the middle of the simulation
step. So numerically one calculates the first half of the linear step then one full nonlinear
step and then the second half of the linear step.

This physically takes advantage of the slow nonlinear effect which effectively will
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be accumulated additively through the step and become important later on in the
transmission. The proof for the accuracy improvement of the transmission simulation
is given mathematically as follows. For two operators such as D and N in general
through the Baker-Hausdorff formula,

T T T
exp(D+ N)=exp(D+ N + E[D’ N+ E[D — N,[D,N]] +...) (A.9)

if the operators commute then [D, N] = DN — ND = 0 which would mean that
they operate on a common set of eigenfunctions. However from theory in this case
the operators D, NV are non-commuting thus exp((D + N)Az) ~ exp(DAz) exp(NAz).
The general formula is then actually given by,

exp(Az(D+I)) = exp(Asz+Azﬁ+A22%[ﬁ, R+ A2 (DR, [D, Fl+..) (A10)

It is obvious then that the split-step Fourier transform given by Eq. A.6 will
approximate the expansion of A.10 and have a difference of up to the second order of
Az from the correct result which can be indicated as O(Az%).

On the other hand if one expands Eq. A.8 this can be done in two steps, first the
product exp(DAz/2) exp(VAz) is expanded,

exp(DAz/2) exp(NAZ) = exp(%ﬁmzmmz%[b, ﬁ}+Az32—14[%ﬁ—ﬁ, (D, N}+...)

(A.11)

and for the second step, one computes the same formula by including the second
term of exp(DAz/2),

exp(f)Az/ 2) exp(NAz) exp(ﬁAz/.‘Z)

exp(——-D+AzN+Az 2D, R+ A2 (2D — B, [D, ] + ) exp(DA2/2)

exp(ﬁp + 55D+ Acl + AZLD, 8, D] +..) (A12)
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It is clear from Eq. A.12 that mathematically this method produces a smaller
difference of the third order to the step-size O(Az®). So that it enables the numerical
implementation to be more accurate and being then the method of choice for solving
both the NLS and the CNLS equation.



Appendix B

Important differential equations

and their solutions

In this appendix the several differential equations that are met throughout the text

will be analytically solved, as in the main thesis only the final results were presented.

The Stochastic differential equation for the PMD
vector

In chapter 3, the following differential equation was presented,

0 —Qulw) Qw) o2 0 0
Beo| Quw) 0 -2w) [AW=| 0 o -28 |0
“w) Mw) 0 0 A8 o
AP
| i (B.1)

0

this equation is related directly with the theory of stochastic differential equations

[114]-[117], which is summarised in the following expression,
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df (2
L9 — g1 (:0te) +u(s(2) (B.2)
where f(z) is an m-dimensional vector, v(z) is again m-dimensional and a white
noise process such as the parameter AW in Eq. B.1, which is chosen from a uniform

distribution, g(f(z)) represents an m x m matrix,

0 -Q(hw) Q(l,w)
-0 | Qu(l,w) 0 - (l,w) (B.3)
~Bw) ,w) 0

and finally u(f(z)) will be another m-dimensional vector and in this case given by,

—o?Q(lLw) + AB
- (l,w) + AL (1, w) (B.4)
-ABQ (L, w) — o* (1, w)
from the theory of stochastic differential equations any function F' of the variable
2 will obey the rule

d< F >

=~ =< G(F)> (B.5)

the generator G will be given from the general formula

==Y " o(f(2)9(f(2)) EORIER % Zu (f(2)) (B.6)

=1 i=1 k=1

l:x:il'-l

where the superscript T denotes transpose so plugging Eq. B.3 into g(z) and Eq.
B.4 into u(f(2)) and substituting the f(z) with the £ vector one finds the generator
to be equal to Eq. 3.25.
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The first order differential equation of the PMD
broadening

Deriving the DGD quantity from the stochastic differential equation generator G given
by Eq. 3.25 as follows,

d<AT? >

T G2 + Q% +03) > (B.7)

after the application of the generator on (23 +0Q3%+3) this results in the expression,

d< AT? >

T =2A0 < > (B.8)

In order to define this the quantity < ©; > must be defined by applying the same

generator operator on (2;, thus

d< > _
T = G(Ql) >
9% — ot <0y > +A8 (B.9)

this is solved by using an integrating factor exp(o?z2),

exp(rfzz)% + o exp(0?z) < U >= exp(a?z)AF’ (B.10)
AR cAB
o?  exp(o?z)o?

<Y >= (B.11)

and by setting the initial condition so that at z = 0, AT?(0) = Q2(0) + Q2(0) +
Q2(0) = 0 then < ©; >= 0, we find the constant ¢ = —1.Then returning in Eq. B.10
this implies that,
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< >= %‘—E’(l — exp(—0?z)) (B.12)

substituting this into Eq. B.7 gives,

d= AT? AB?
= 7 S g £ (0? — o? exp(—0?z)) (B.13)

by straight forward integration this will result in,

AB? , 2
<AT? >= 2—(0*z+ exp(—o?z) +¢) (B.14)

and using the same initial condition as before which is AT?(0) = 0 we find the

constant of integration to be ¢ = —1 thus the final result concludes,

AB?
< AT? >= 20_—€(o-2z + exp(—0?2) = 1) (B.15)

The M(w) matrix derivation

Returning to chapter 5 we recall the first order differential equation [118]-[121] whose

solution are the M(w) matrices,

igﬁ% + (b+ bw)E()M(z,w) =0 (B.16)

then by integrating this expression one finds,

M(z,w) = exp ('/i(b + b'w)}.."‘(z)dz) M(0,w) (B.17)

with the initial condition that
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. ( 8 ) _—

In order to focus on a shorter length scale the factor exp ( Jib+ b’w)E(z)dz) is
approximated as exp (i(b + b’w)E(z)éz) where the integral over the distance which
results in a larger length accumulation is approximated by dz. Further this factor can

be written by the exponential series expansion as,

& (—=1)" b b’ b3 2"6 2n
exp (i(b+ V) £(2)32) =z( 1) (6+b)5E) " (62)

= 2n!
& b+ Bw)n() T (82
i ; 2n + 1! (B.1%)
this is further simplified by noticing that,
(2)* = (Z(2))" =1 and E(2)**! = (Z(2)*)"2(2) = Z(2) (B.20)

and thus further substituting this into Eq. B.19,

o (=1)"((6-+ b)) 152

exp (i(b + Yw)5(2)6z) = Zjo —
() e
so the final relation for the m(z,w) matrices is,
m;(w) = m(z,w) = cos((b+ bw)dz)I + isin((b+ bw)sz)T(z) (B.22)

while finally by accumulating a long chain of these transfer elements results in a

series of multiplications which gives,
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L
M(z,w) = Hmj(w) (B.23)

i=0
where L is the total length of the coarse-step of the simulation in the order of

kilometres.



Appendix C

A geometrical derivation of the

PMD vector

From the two polarisations of the signal the three normalised Stokes vectors are derived
as in Eq. 6.4. In order to define numerically the PMD vector, the three coordinates
are needed as well as the modulus of the vector. In order to find the three directions

the starting point is the expression,

en(t,w) =

A_(l,w) x AL(l,w)
t : (C.1)

lA—(Ilw) x A+( sw)'
where the unit vector of the PMD directions eq = (e1, €3, €3)7, this vector will

always be vertical to the differences of the Stokes parameters vectors, that is,

A_(l,w) =s(l,w) = s(l,w — Aw) (C.2)
As(lw) =s(l,w+ Aw) = s(l,w)

Where the A_(z,w) and A,(2,w) the two difference vectors, provided that the
difference Aw is small compared to the bandwidth of the simulation, the PMD vector
will be perpendicular on the surface defined by the two differences, between the s(w)
vector and the two vectors s(w+ Aw) and s(w— Aw). Thus the cross-product in return
will define the direction of the vector as in Eq. C.1.
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This is graphically represented in Fig. C.1, where the PMD vector € is perpendic-
ular to the closed trajectory defined by the two differences.

S ((,))

s(0—-Aw) _Q

Figure C.1: PMD vector direction

What follows next is the calculation of the angle § between the Stokes vector and
the PMD vector,

s(l,w) - ea(l,w) = lea(l,w)||s(l,w)] cos § (C.3)
but since both the normalised stokes vectors and the vector of the direction of PMD
have |eq(l,w)| = [s(l,w)| = 1, then

cos 0 = eza(l,w)s:(l,w) + eya(l,w)sy(l, w) +s.(l,w)e.a(l,w) (C4)

defining the angle it is then possible to move on to the modulus of the PMD vector

from the defining expression of

ds(l, w)
dw

= Q(l,w) x s(l,w) (C.5)

one replaces the dot-product and as for Eq. C.3 the modulus of the Stokes-vector
|s(l,w)| = 1, then

1

_ ds(l,w)
[€8]ees sin(0)

dw
and finally by substituting the derivative by the length between the vectors s(w +
Aw), s(w) plus the length between s(w — Aw), s(w), which will be given by the sum of

the two angles arccos(s(z,w + Aw) - s(2,w)) and arccos(s(z, w) - s(2,w — Aw)) the final

(C6)

equation is given as follows.
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_ 1 ds(l,w)| _
|Q|_ \/ITCOW dw ’—' (C‘T)

arccos(s(l,w + Aw) - s(l,w)) + arccos(s(l,w) + s(l,w — dw))
2Aw+/(1 — cos?(0))




List of publications

1. M. Eberhard and C. Braimiotis, Numerical implementation of the Manakov-
PMD equation with precomputed M(w) matrices, In Techn. Digest Series, Conference
on Nonlinear Guided Waves and Their Applications (NLGW), page MC3, Toronto,
Canada, March 2004, Optical Society of America

2. C. Braimiotis and M. Eberhard, Numerical implementation of the coarse step
method with a varying differential group delay, Proc. of Conference on Optical Net-
works and Technologies (OpNeTec), page 530-534, Pisa, Italy, October 2004, Consorzio

Nazionale Interuniversitario per le Telecomunicazioni (CNIT)

3. Braimiotis and M. Eberhard, Numerical implementation of low-PMD spun fibres
with precomputed M(w) matrices, Proc. on Postgraduate Research Conference in Elec-
tronics, Photonics, Communications and Networks, and Computing Science (PREP),
page 100-101, Lancaster, UK, March 2005, University of Lancaster

4. C. Braimiotis and M. Eberhard, Application of the Manakov-PMD equation to
a computational investigation of low-PMD fibres, Techn. Digest Series, Conference
on Nonlinear Guided Waves and Their Applications (NLGW), page ThBS, Dresden,
Germany, September 2005, Optical Society of America

5. C. Braimiotis, M. Eberhard and K. Blow, “Polarisation mode dispersion corre-

lations with the coarse-step method”, Opt. Comm. 262, pp. 135-139, 2006

120



References

[1] Govind P. Agrawal, “FIBRE OPTIC COMMUNICATION SYSTEMS”, John
Wiley & Sons Inc., New York (1997), Second Edition.

[2] F.P.Kapron,D.B.Keck and R.D Maurer, ”Radiation losses in glass optical waveg-
uides”, Appl. Phys. Lett, vol. 17, pp. 423 - 425 (1970)

[3] T.Miya, Y.Terununa, T.Hosaka and T.Miyashita,” Ultimate low-loss single-mode
fibre at 1.55 m”, Electron.Lett,vol. 15, pp. 106-108 (1979).

[4] S. B. Poole, D. N. Payne, R. J. Mears, M. E. Fermann and R. I. Laming, “Fabri-
cation and characterization of low-loss optical fibers containing rare-earth ions”,
J. Lightwave Technol., vol. 4, pp. 870-876, (1986).

[5] C. Lin, H. Kogelnik, and L. G. Cohen, “Optical-pulse equalization of low-
dispersion transmission in single-mode fibers in the 1.3-1.7-mu-m spectral region”
Opt. Lett.,vol. 5, pp. 476-478 (1980).

[6] Govind P. Agrawal, “NONLINEAR FIBER OPTICS”, Academic Press, (2001),
Third Edition.

[7] Shen, Y. R., “The principles of nonlinear optics”, John Wiley & Sons ,New York
(1984)

(8] M.J.O’Mahoney, Simeonidou D., Yu A. Zhou, “The design of a European optical
network”, J. of Lightwave Technol., Vol 13, pp. 817 - 828,(1979)

[9] A. Hasegawa and F. Tappert, "Transmission of Stationary Nonlinear Optical

131



References 132

Physics in Dispersive Dielectric Fibers I: Anomalous Dispersion,” Appl. Phys.
Lett., Vol. 23, pp. 142-144, (1973)

[10] R. W.Tkach, A. R.Chraplyvy, F.Forghieri, A. H.Gnauck, and R. M.Derosier,
“Four photon mixing and high speed WDM systems,J. Lightwave Technol., vol.
13, pp. 841-849, (1995)

[11] W. Zeiler, F. Di Pasquale, P. Bayvel and J.E. Midwinter,” Modeling of four-wave
mixing and gain peaking in amplified WDM optical communication systems and
networks”, J. of Lightwave Technol., vol 14, pp. 1933-1942,(1996)

[12] C. Kurtzke, “Suppression of fiber nonlinearities by appropriate dispersion man-
agement” IEEE Photon. Technol. Lett., vol. 5, pp. 1250-1253, (1993)

[13] B. Jopson and A. Gnauck, “Dispersion compensation for optical fiber systems”,
IEEE Commun. Mag., vol. 33, pp. 96-102,(1995)

[14] L.F. Mollenauer, R.H. Stolen, and J.P. Gordon, "Experimental Observation of
Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Letters,
Vol. 45, pp. 1095, (1980)

[15] Akira Hasegawa and Frederick Tappert, “Transmission of stationary nonlinear
optical pulses in dispersive dielectric fibers. II. Normal dispersion” ,Appl. Phys.
Lett.,vol. 23, pp. 171 , (1973)

[16] L. Mollenauer and R. Stolen, "Soliton laser,” Opt. Lett.,vol 9, pp. 13, (1984)

[17] A.S. Gouveia-Neto, A.S.L. Gomes and J. R. Taylor, "Soliton Raman fibre ring
oscillators” Opt. & Quantum Electron,vol. 20, pp. 165 (1988)

[18] K.J.Blow and N.J.Doran, “High Bit Rate Communications Systems using Non-
Linear Effects”, Optics Commun., vol. 42 ,pp. 403-406 (1982)

[19] N.J.Doran and K.J.Blow, “Solitons in Optical Communications”, IEEE. J. Quan-
tum Electronics,vol. 19,pp. 1883-1888, (1983)

[20] K.J.Blow and N.J.Doran, “Multiple Dark Soliton Solutions of the Nonlinear
Schrodinger Equation”, Physics Letters A, vol.107,pp. 55-58, (1985)



References 133

[21]

(22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

W. Zhao, E. Bourkoff, “Propagation properties of dark solitons”, Optics Letters
vol.14, pp. 703,(1989)

W. Zhao, E. Bourkoff, “Generation of dark solitons under a cw background using
waveguide electro-optic modulators”,Optics Letters, vol.9,pp. 405,(1990)

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and 1. Bennion, “Enhanced
power solitons in optical fibres with periodic dispersion management”, Electron.
Lett.,vol 32, pp. 54-55, (1996).

Smith N.J., Doran N.J., Forysiak W., Knox F.M., “Soliton transmission using
periodic dispersion compensation”,Journal of Lightwave Technology, vol.15, pp.
1808-1822,(1997)

Turitsyn S.K., Fedoruk M.P., Shapiro E.G., Mezentsev V.K., Turitsyna
E.G,” Novel approaches to numerical modeling of periodic dispersion-managed
fiber communication systems”,Journal of Selected Topics in Quantum Electron-
ics,vol.6, pp. 263-275,(2000)

D. N. Christodoulides and E. D. Eugenieva, ” Blocking and Routing Discrete
Solitons in Two-Dimensional Networks of Nonlinear Waveguide Arrays ”, Phys.
Rev. Lett. vol. 87,pp. 233901-1 - 233901-4,(2001)

Michal Matuszewski, Marek Trippenbach, Eryk Infeld, Boris A. Malomed, “Sta-
bilization of Light Bullets by a Transverse Lattice in a Kerr Medium with Disper-
sion Management”, Nonlinear Guided Waves and their Applications conference
proceedings NLGW (2005),WD22

R. W. Boyd and D. J. Gauthier, Slow and Fast Light, in Progress in Optics, Vol.
43, E. Wolf, Ed. (Elsevier, Amsterdam, 2002), Ch.6, pp. 497-530.

J. C. Knight, “Photonic crystal fibres”, Nature, pp. 424-847 (2003)

Snitzer E., Osterberg H,” Observed dielectric waveguide modes in the visible spec-
trum”, J.opt.Soc.Am., vol 51, pp. 499 - 505,(1961)



References 134

[31] A.Simon and R.Ulrich, “Evolution of polarization along a single mode fiber”,
Appl. Phys. Lett., Vol. 31,pp. 517 - 520,(1977)

[32] V. Ramaswamy and W.S.Froch, “Influence of noncircular core on the polarization

performance of single mode fibers”, Electron. Lett.,vol. 14, pp. 143-144,(1978)

[33] S. C. Rashleigh and R. Ulrich, “Polarization mode dispersion in single-mode
fibers”, optics letters, Vol. 3, pp.60-62, (1978)

[34] Marcuse, D.; Chinlon Lin, “Low dispersion single-mode fiber transmission-The
question of practical versus theoretical maximum transmission bandwidth”, IEEE
Journal of Quantum Electronics,vol. 17, pp. 869 - 878,(1981)

[35] C.D. Poole and C.R. Giles, ”Polarization-dependent pulse compression and
broadening due to polarization dispersion in dispersion-shifted fiber”, Optics Let-
ters, vol. 13, pp. 155-157, (1988)

[36] Eugenio Lannone, Francesco Matera, Antonio Mecozzi, Marina Settembre, ” Non-

linear Optical Communications Networks”, John Wiley & sons, (1998)

[37] Artiglia M. et al., “Mode Field Diameter Measurements in Single-Mode Optical
Fibres” , IEEE Journal of Lightwave Technology,vol. 7, pp. 1139-1152, (1989)

[38] Namihira Y., “Relationship Between Nonlinear Effective Area and Modefield
Diameter for Dispersion Shifted Fibres” , Electronics Letters,vol. 30, pp. 262-
263, (1994)

[39] Namihira Y., “Wavelength Dependence of Correction Factor on Effective Area
and Mode Field Diameter for Various Singlemode Optical Fibres” , Electronics
Letters,vol. 33, pp. 1483-1485, (1997)

[40] C.R.Menyuk, “Nonlinear Pulse Propagation in Birefringent Optical Fibers”,
IEEE Journal of Quantum Electronics, vol. QE-23,pp. 174,(1987)

[41] D.Marcuse, “Light Transmission Optics”, Van Nostrand Reinhold, New York
(1982), Second Edition



References 135

[42] Gerd Keiser, “Optical fiber communications”, McGraw-Hill Inc., New York
(1989), Second Edition

[43] N.A.Olsson,” Lightwave systems with optical amplifiers”,IEEE Journal of Light-
wave Technology,vol. 7,pp.1071-1082 , (1989).

[44] R.C.Steele,G.R.Walker,N.G.Walker, “Sensitivity of optically preamplified re-
ceivers with optical filtering”, IEEE Photonics technology letters,vol.3,pp.545-
548,(1991)

[45] T.Mukai, Y. Yamamoto, and T.Kimura, “S/N and Error rate performance in
AlGaAs semiconductor laser Preamplifier and linear Repeater systems” ,IEEE
Journal of Quantum ELectronics, vol. QE-18,No.10,pp. 1560-1568,(1982)

[46] M.Eberhard and Keith Blow, “Numerical Q parameter estimates
for scalar and vector models in optical communication system
simulations” ,Opt.comms,vol.249,pp.421-429,(2005)

[47) M.Eberhard and K.J.Blow “Semi-analytical Q parameter estimate in linear and
nonlinear transmission systems” ,Nonlinear Guided Waves and Their Applications
proceedings, ThB4(2005)

[48] Kaminow, I.,”Polarization in optical fibers” , IEEE Journal of Quantum Elec-
tronics, vol. 17, Issue 1, pp.15 - 22,(1981)

[49] C.D.Poole, R.E.Wagner, “Phenomenological Approach to Polarisation mode dis-
persion in long-single mode fibres”, Electronics Letters, vol.22, pp.1029-1030
,(1986)

[50] E.Hecht “OPTICS”, Addison Wesley Longman Inc., New York,(1998),Third Edi-

tion
[51] W. Schurcliff, “Polarized Light”, Harvard U. Press, Cambridge Mass., (1962)
[52] Mueller H., “ The foundation of optics”, J. Opt. Soc. Am.,vol. 38, pp.661,(1948)

[63] Walker M.J., "Matrix calculus and the Stokes Parameters of Polarized radia-
tion”,Am.J.Physics.,vol. 22,pp. 170-174,(1954)



References 136

[54] WS.Bickel and WM.Bailey,” Stokes Vectors, Mueller Matrices and Polarized Scat-
tered Light”, Am.J.Physics.,vol. 53,pp. 468-478,(1985)

[55] G. G. Stokes, "On the composition and resolution of streams of polarized light
from different sources,” Trans. Cambridge Phil. Soc.,vol. 9, pp.399, (1852).

[56] E.Hecht,”Note on an Operational Definition of the Stokes parame-
ters”,Am.J.Phys.,vo0l.38,pp.1156,(1970)

[57] G.J.Foschini and C.D.Poole, “Statistical Theory of Polarization Dispersion in
Single Mode Fibers”,J Lightwave Technol.,vol.9,pp.1439-1456,(1991)

[58] Magnus Karlsson and Jonas Brentel “Autocorrelation function of the

polarization-mode dispersion vector”,Optics letters,Vol. 24, pp. 939-941,(1999)

[59] C.R.Menyuk and P.K.A.Wai, “Polarization evolution and dispersion in
fibers with spatially varying birefringence”,J.Opt.Soc.Amer.B,vol. 11,pp. 1288~
1296,(1994)

[60] P.K.A.Wai and C.R.Menyuk, “Polarization mode dispersion decorrelation
and diffusion in optical fibers with randomly varying birefringence”,
J.Lightwave.Technol.,vol.14,pp.148-157,(1996)

[61] D.Marcuse, C. R. Menyuk and P. K. A. Wai, “Application of the Manakov-PMD
Equation to Studies of Signal Propagation in Optical Fibers with Randomly
Varying Birefringence”, Journal of Light. Tech., Vol. 15, pp. 1735 - 1746, (1997)

[62] C. R. Menyuk, “Application of multiple-length-scale methods to the study of
optical fiber transmission”, Journal of Engineering Mathematics, Vol.36, pp. 113
- 136, (1999)

[63] C. R. Menyuk, “Interaction of nonlinearity and polarization mode dispersion”,
Journal of Opt.Fiber.Comms.Rep.1, pp. 305 - 307,(2004)

[64] P.K.A.Wai and C.R.Menyuk, “Polarization decorrelation in optical fibers with
randomly varying birefringence” ,Opt.Leters.,vol.19,pp.1517-1519,(1994)



References 137

[65] P.K.A.Wai and C.R.Menyuk, “Anisotropic diffusion of the state of polarization in
optical fibers with randomly varying birefringence”,Opt.Letters.,vol.20,pp.2493-
2495,(1995)

[66] P.K.Wai, C.R. Menyuk and H.H.Chen, “Stability of solitons in randomly varying
birefringent fibers”,Opt.Lett.16,1231-1233(1991).

[67] S.C.Evangelides ,L.F.Mollenauer, J.P. Gordon and N.S.Bergano, “Polarization
multiplexing with solitons”, J.Lightwave Technology 10, pp. 28-35 (1992)

[68] R. Khosravani, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Willner, and C.
R. Menyuk “Time and Frequency Domain Characteristics of Polarization-Mode
Dispersion Emulators”, IEEE Photonics Technology Letters, Vol. 13,pp. 127-
129,(2001)

[69] Ivan T. Lima, Jr., Reza Khosravani, Paniz Ebrahimi, Edem Ibragimov, Curtis
R. Menyuk and Alan Eli Willner ”Comparison of Polarization Mode Dispersion
Emulators”, Journal of lightwave technology, vol. 19, pp. 1872-1881, (2001)

[70] M. Eberhard and C. Braimiotis, “Numerical implementation of the Manakov-
PMD equation with precomputed M(w) matrices”, Nonlinear Guided Waves and
Their Applications proceedings,MC3(2004).

[71} C. Braimiotis and M. Eberhard, “Numerical implementation of the coarse step
method with a varying differential group delay”, Proc. of Conference on Optical
Networks and Technologies (OpNeTec), page 530-534, Pisa, Italy, October 2004,

Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT)

[72] C. Braimiotis, M. Eberhard and K. Blow, “Polarisation mode dispersion corre-
lations with the coarse-step method”, Opt. Comm. 262, pp. 135-139, 2006

[73] Brian S. Marks, Ivan T.Lima,Curtis R.Menyuk,” Autocorrelation function for po-
larization mode dispersion emulators with rotators” ,Optics Letters Vol. 27,pp.
1150 - 1152,2002

[74] Braimiotis and M. Eberhard, “Numerical implementation of low-PMD spun fibres

with precomputed M(w) matrices”, Proc. on Postgraduate Research Conference



References 138

in Electronics, Photonics, Communications and Networks, and Computing Sci-

ence (PREP), page 100-101, Lancaster, UK, March 2005, University of Lancaster

[75] C. Braimiotis and M, Eberhard,” Application of the Manakov-PMD equation to
a computational investigation of low-PMD fibres”, Techn. Digest Series, Confer-
ence on Nonlinear Guided Waves and Their Applications (NLGW), page ThBS,
Dresden, Germany, September 2005, Optical Society of America

[76] Andrea Galtarossa, Luca Palmieri and Anna Pizzinat, “Low-PMD spun fibers”,
Venice Summer school proceedings on Polarization Mode Dispersion, Tuesday
08, pp.1-5,(2002).

[77] Daniel A.Nolan, Xin Chen, Ming-Jun Li, “Fibers With Low Polarization-Mode
Dispersion”,J.Lightwave Tech. 22, pp. 1066-1077(2004).

[78] R. Ulrich and A. Simon, “Polarization optics of twisted single-moded fibers”
Appl. Opt,vol. 18, pp. 2241- 2251,(1979)

[79] C.R.Menyuk “Pulse propagation in an elliptically birefringent Kerr medium”,
IEEE J.Quantum Electron,vol.25, pp. 2674-2682,(1989)

[80] Manakov S.V., “On the theory of two-dimensional stationary self-focusing of
electromagnetic waves”, Soviet Physics JETP 38, pp. 248-253, (1974)

[81] C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, “Method for
solving the Korteweg-de Vries equation”, Phys. Rev. Lett. 19, pp. 1095-1097,
(1967).

[82] R.M. Miura, ”Bcklund Transformations, the Inverse Scattering Method, Solitons,
and Their Applications” Springer-Verlag, New York, (1974)

[83] R. M. Miura, “Korteweg-de Vries equation and generslization. I. A remarkable
explicit nonlinear transformation”, J. Math. Phys. 9,pp. 1202-1204, (1968)

[84] A. Hasegawa and M. Matsumoto, “Optical solitons in fibers”, Springer ,London
(2002)



References 139

[85] Mark J. Ablowitz and Harvey Segur, “Solitons and the inverse scattering trans-
form”, Publication Philadelphia, SIAM, 1981

[86] M. J. Ablowitz and P. A. Clarkson, “Solitons nonlinear evolution equations and

inverse scattering”, Cambridge University Press, Cambridge, 1991.

[87] S. Novikov “Theory of solitons, the inverse scattering method” , Contemporary
Soviet mathematics Series, New York (1984)

[88] P.D. Lax, “Integrals of Nonlinear Equations of Evolution and Solitary Waves”,
Comm. Pure Appl. Math.,vol 21,pp. 467-490 (1968)

[89] V.E. Zakharov and L.D. Faddeev, “Korteweg-deVries Equation: A Completely
Integrable System”, Funct. Anal. Appl.,vol 5,pp. 280-287, (1972)

[90] G. L. Lamb Jr., “Elements of soliton theory”, Wiley, New York, (1980)

[91] V.E. Zakharov, E.I. Schulman, “To the integrability of the system of two coupled
nonlinear Schrdinger equations”, Physica D 4,pp. 270-274, (1982)

[92] K. J. Blow, N. J. Doran, and D. Wood, “Polarization instabilities for solitons in
birefringent fibers”, Optics Letters 12,pp. 202-204, (1987)

[93] D. N. Christodoulides, R. I. Joseph, “Vector solitons in birefringent nonlinear
dispersive media”, Optics Letters, Vol. 13, pp. 53-55, (1988)

[94] Tetsuji Ueda and William L. Kath,“Dynamics of coupled solitons in nonlinear
optical fibers”, Phys. Rev. A 42, pp. 563-571, (1990)

[95] Masato Hisakado, Takeshi Iizuka and Miki Wadati, “Coupled Hybrid Nonlinear
Schrdinger Equation and Optical Solitons”, Journal of the Physical Society of
Japan Vol. 63, pp. 2887-2894, (1994)

[96] C.R.Menyuk,”Stability of solitons in birefringent optical fibers, I:Equal propaga-
tion amplitudes”, Optics letters Vol.12, pp. 614 - 616, (1987)

[97] C.R.Menyuk,”Stability of solitons in birefringent optical fibers, II:Arbitrary am-
plitudes”, J.Opt.Soc.Am.B, Vol.5, pp.392 - 402, (1988)



References 140

[98] Yuri S. Kivshar, “Soliton stability in birefringent optical fibers: analytical ap-
proach”, J.Opt.Soc.Am.B, Vol. 7, pp. 2204-2209, (1990)

[99] R. J. Dowling, “Stability of solitary waves in a nonlinear birefringent optical
fiber”, Phys. Rev. A,vol. 42,pp. 5553-5560, (1990)

[100] Boris A. Malomed, “Polarization dynamics and interactions of solitons in a bire-

fringent optical fiber”, Phys. Rev. A,vol. 42,pp. 410-423, January 1991

[101] B. A. Malomed, S. Wabnitz, “Soliton annihilation and fusion from resonant in-
elastic collisions in birefringent optical fibers”, Optics Letters, Vol. 16, pp. 1388-
1390, (1991)

[102] V.K.Mesentsev and S. K. Turitsyn, ”Stability of vector solitons in optical fibers,”
Optics Letters, vol. 17, pp. 1497-1499, (1992)

[103] X. D. Cao, C. J. McKinstrie, “Solitary-wave stability in birefringent optical
fibers”, J.Opt.Soc.Am. B, Vol. 10, pp. 1202-1207, (1993)

[104] 1. J. Good, “The interaction algorithm and practical Fourier analysis”, J. Roy.
Statist. Soc., vol. B 20, pp. 361-372, (1958).

[105] J. W. Cooley and J. W. Tukey, “An algorithm for machine calculation of complex
Fourier series”, Math. Comp., vol. 19,pp. 297-301, (1965)

[106] W. H. Press, B. P. Falnnery, S. A. Teukolsky, and W. T. Vettering, “Numerical
recipes in C: the art of scientific computing”, Cambridge University Press, New
York, (1988).

[107] L. Auslander, J.R. Johnson, and R.W. Johnson, “Multidimensional Cooley-
Tukey algorithms revisited”, Adv. in Appl. Math. 17 , pp. 477-519, (1996)

[108] E. O. Brigham, “The fast Fourier transform and its applications”, Prentice Hall
Signal Processing Series, Englewood Cliffs, NJ (1988)

[109] Matteo Frigo Steven G. Johnson, “The Fastest Fourier Transform in the West”,
MIT-LCS-TR-728 , also see http://www.fitw.org/fltw-paper.pdf,(1997)



References 141

[110] Matteo Frigo and Steven G. Johnson, “FFTW: AN ADAPTIVE SOFTWARE
ARCHITECTURE FOR THE FFT”, ICASSP conference proceedings, vol. 3, pp.
1381-1384, also see http://www.fltw.org/fitw-paper-icassp.pdf,(1998)

[111] Matteo Frigo, “A Fast Fourier Transform Compiler”, Proceedings
of the 1999 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’99), Atlanta, Georgia, also sce
http://www.fltw.org/pldi99.pdf,(1999)

[112] FFTW manual for FFTW version 2.1.5, vol. 26,
http://www.fTtw.org/ffitw2.doc/,(2003)

[113] http://www.fitw.org/

[114] C.G. Lambe C.J. Tranter, “Differential equations for engineers and scientists”,
English Univ. P., London ,(1961)

[115] Oksendal Bernt, “Stochastic differential equations, an introduction with applica-
tions”, Springer-Verlag, Berlin, New York, (1985)

[116] Ito Kiyosi, “Foundations of stochastic differential equations in infinite dimen-
sional spaces”, Society for Industrial and Applied Mathematics, Philadelphia.
(1984)

[117) G.S. Ladde and M. Sambandham, “Stochastic versus deterministic systems. of
differential equations”, Marcel Dekker,New York,(2004)

[118] Kreyszig Erwin, “Advanced engineering mathematics” 8th edition, Wiley, New
York, Chichester, (1999)

[119] Jeffrey Alan, “Mathematics for engineers and scientists” 6th edition, Chapman
and Hall, (2005)

[120] N.S. Koshlyakov, M.M. Smirnov and E.B. Gliner, “Differential equations of math-
ematical physics”, translated by Scripta Technica Inc., Amsterdam, (1964)

[121] Robinson James C., “An introduction to ordinary differential equations”, Cam-
bridge University Press,Cambridge, (2004) '



