The influence of non-metallic inclusions upon the properties of linepipe steels

Hill, Daryl P. (1986). The influence of non-metallic inclusions upon the properties of linepipe steels. PHD thesis, Aston University.


The principal aim of this work was to determine the role of non-metallic inclusions in the process of hydrogen stepwise cracking (SWC). Additionally, the influence of inclusions upon the notch ductility of hydrogen charged (HC) and uncharged (UN) tensile specimens was examined. To obtain a basis for experiment a series of low carbon-manganese steels were prepared by induction melting. In order to produce variations in the composition, morphology, volume fraction, size and distribution of the inclusions the steel chemistry was adjusted prior to casting by additions of deoxidiser and Ca-Si injection. Sections of each ingot were hot rolled. Metallography, image analysis, mechanical tests and hydrogen SWC tests were then carried out. The volume fraction, morphology, and shape of inclusions influenced the tensile ductility of the steels. Marked anisotropy was found in the steels containing type II MnS inclusions at all rolling temperatures, whereas the fully Ca treated steel was isotropic. It was found that several inclusion parameters (projected length PL, mean free distance MFD, nearest-neighbour distance NND) correlated with fracture strain. An increase in inclusion volume fraction and/or the dimension of inclusions on a plane parallel to the plane of fracture led to a decrease in fracture strain. The inclusion parameters did not correlate with the fracture strains for the HC tensile specimens. However, large or clusters of inclusions acted as the principal sites for crack initiation. `Fisheyes' or areas of `flat' fracture were often found on these fracture surfaces. The criteria for SWC initiation was found to be either large inclusions or clusters of inclusions. As the PL of inclusions increased the probability of large SWCs occurring increased. SWC initiation at inclusions was believed to occur at a critical concentration of hydrogen. Factors which assisted the concentration of hydrogen at inclusions were discussed. None of the proposed mechanisms of hydrogen embrittlement could be identified as the single cause of SWC.

Divisions: Engineering & Applied Sciences > Mechanical engineering & design
Additional Information: Department: Mechanical and Production Engineering If you have discovered material in Aston Research Explorer which is unlawful e.g. breaches copyright, (either theirs or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our Takedown Policy and contact the service immediately.
Institution: Aston University
Uncontrolled Keywords: non-metallic inclusions,calcium silicide injection,image analysis,stepwise cracking,hydrogen embrittlement
Completed Date: 1986-10



Export / Share Citation


Additional statistics for this record