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Abstract

This paper, addresses the problem of novelty detection in the case

that the observed data is a mixture of a known ‘background’ process

contaminated with an unknown other process, which generates the out-

liers, or novel observations. The framework we describe here is quite

general, employing univariate classification with incomplete informa-

tion, based on knowledge of the distribution (the probability density

function, pdf) of the data generated by the ‘background’ process. The

relative proportion of this ‘background’ component (the prior ‘back-

ground’ probability), the pdf and the prior probabilities of all other

components are all assumed unknown. The main contribution is a

new classification scheme that identifies the maximum proportion of

observed data following the known ‘background’ distribution. The

method exploits the Kolmogorov-Smirnov test to estimate the pro-

portions, and afterwards data are Bayes optimally separated. Results,

demonstrated with synthetic data, show that this approach can pro-

duce more reliable results than a standard novelty detection scheme.

The classification algorithm is then applied to the problem of identify-

ing outliers in the SIC2004 data set, in order to detect the radioactive

release simulated in the ‘joker’ data set. We propose this method as a

reliable means of novelty detection in the emergency situation which

can also be used to identify outliers prior to the application of a more

general automatic mapping algorithm.
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1 Introduction

Often when working with real data, one is faced with the situation that the

observations obtained result from a mixture of different processes, which can

be very challenging to model. An example of this, within the emergency

mapping context, is the identification of outliers due to extreme events.

This can be seen in the context of the Spatial Interpolation Comparison

2004 (SIC2004) exercise, designed to assess the reliability of state of the

art automatic mapping algorithms. In order to assess the robustness of

the methods a ‘joker’ data set was created which simulated a release of

radioactive material [1]. None of the algorithms that participated in the

SIC2004 exercise coped very well with this data set [2]. The reasons for

this are quite understandable; participants had been provided with 10 days

of ‘prior’ data, which represented typical or ‘background’ conditions and

had not had any examples of extreme values, which were generated by a

distinctly different processes from the ‘background’ process.

Often, when considering emergency mapping scenarios, a proportion of

the data will correspond to the typically observed ‘background’ process,

which given a reasonable observation system will be well observed and well

characterised, in terms of its probability density function, pdf. However, in

general, we will not know in advance the pdf of the various other processes we

will encounter in an automatic mapping context, and we will also not know

the proportion of the observations generated from this unknown process (or

possibly processes). In this work we address this issue using a classification

based approach, allowing us to identify the novel observations, their pdf and

their prior probability.

Classification consists of segmenting a set of data points into different

classes, each of which in this case corresponds to a different generating pro-

cess. This task is optimally solved knowing the distribution (the pdf) and

the relative proportion (the prior probability, P ) of the data generated by

each process. In this case Bayes’ theorem defines the posterior probabili-

ties of each data point being generated by each component process, and
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afterwards data can be segmented minimizing the misclassification rate [3].

Unfortunately, in many problems it is not possible to characterize each pro-

cess (i.e., to define each class conditional pdf and / or to know the corre-

sponding prior), and various techniques [4] have been developed in order

to provide approximate classification schemes, for instance novelty detection

methods [5, 6].

This work investigates classification, with emphasis on novelty detection,

with incomplete information when it is only possible to define the pdf of a

single ‘background’ generating process. Both the relative proportion of this

known component (the prior), as well as the pdf and the prior of all other

components are unknown. We essentially treat this as a two class classifi-

cation problem, with arbitrarily complex pdfs for each process. Although

this specific case is usually addressed with a novelty detection scheme, this

work shows some drawbacks associated with a novelty detection approach.

Instead, we propose on a new scheme based on the Kolmogorov-Smirnov

test to find the greatest number of observations that follow the distribution

of the known ‘background’ process. This establishes the prior probabilities

and the data are then Bayes-optimally separated. Results are demonstrated

with synthetic data, and then the method is applied to the SIC2004 data

sets[1].

2 Methods

The classification scheme is described in a sequential manner. Section 2.1

briefly overviews the probability density modelling. Section 2.2 describes the

proposed scheme for identifying the prior probability of the known ‘back-

ground’ component. Finally, Section 2.3 presents the classification algo-

rithm.
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2.1 Modelling the probability density function

We employ Gaussian Mixture Models (GMMs) to provide flexible models

for the known ‘background’ and observed pdfs. GMM allow us to efficiently

represent more complex density functions through a linear combination of

simpler distributions:

p(x) =
M∑

j=1

p(x|j) P (j), (1)

where the j kernel function, p(x|j), is

p(x|j) =
1

(2πσ2
j )1/2

exp

{
−(x− µj)2

2σ2
j

}
, (2)

and the probabilities P (j), which combine the individual kernels, are the

mixing coefficients with 0 ≤ P (j) ≤ 1 and
∑M

j=1 P (j) = 1. The GMM can be

efficiently trained through an Expectation Maximization (EM) algorithm [7].

Although the component density functions are very simple, combining

a number of them in a mixture representation results in an overall more

complex density model, and provided that the number of training points is

sufficiently high, can represent any continuous data distribution [3]. We do

not discuss in detail the issues surrounding the use of GMMs; the interested

reader can consult [3].

2.2 Identifying the prior of the known process

Consider the case where a data set consist of observations drawn from dif-

ferent processes, but it is only possible to define the distribution of one

process, which we here call the ‘background’ process. In many applications

the term ‘background’ process might not be appropriate, and it could be

simply though of as any process whose pdf might be known in advance, for

example where some subset of the data from the process has been labelled.

In this paper we indicate by α this known ‘background’ process and group

all the remaining (unknown) processes into a unique class which we label β.

Our task is to identify the maximum proportion of “α-data”, i.e., the num-

ber of observations generated by the “α-process”. This is achieved using
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the Kolmogorov-Smirnov test (Section 2.2.1) to implement the algorithm

presented in Section 2.2.2.

2.2.1 The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test [8] (here after also indicated as KS) allows one

to verify whether a dataset follows some univariate cumulative distribution

function (cdf). Indicate by cdfα the cdf of the set of nα labelled α data,

by p(x|α) the corresponding pdf, and by cdf∗α the cumulative distribution

of a set of n∗α data. The Kolmogorov-Smirnov test verifies whether the n∗α

data follow the cdfα by measuring the maximum value, DKS, of the absolute

difference between the two cdfs,

DKS = max
−∞<x<+∞

|cdf∗α(x)− cdfα(x)| . (3)

The null hypothesis that the two cdfs are the same is checked against

the P-value,

Probability (DKS > Observed) = QKS ([
√

ne + 0.12 + 0.11/
√

ne]DKS) , (4)

where ne = nαn∗α
nα+n∗α

and the QKS distribution is

QKS(λ) =
∞∑

j=1

(−1)j−1e−2j2λ2
. (5)

2.2.2 Constructing P (α) with KS

Given N data points, the maximum proportion, nα/N , possibly drawn from

the “α-process” is defined as follows:

1. set the subscript variable i = 1 and ni = i;

2. sample ni points from p(x|α)1;

3. select from the N points to be classified, the ni points having the

minimum distance from those generated in step 2;
1Notice how this step directly exploits the generative nature of the GMM algorithm.
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4. using Equation (4), compute the P-value Ki;

5. set ni = ni + ∆n, i = i + 1 and go to step 2 or stop when the P-value

become less than a confidence level, and set nα = ni.

The smaller ∆n (i.e., the number of points to be added from one iteration

to the next), the more accurate, but also time consuming, is the algorithm.

For instance, setting ∆n = 1 and using the SIC2004 data set presented in

Section 3.2 (200 data points), the algorithm takes less than a second to

define P (α) with an AMD Athlon 3500 processor.

[Fig. 1 about here.]

Figure 1 shows an example of the dependency of the KS test result,

Ki, on the number of sample points, ni. For i small, there is a significant

chance of finding among the N data to be classified, a set of ni points that

follow the p(x|α) distribution. In this case the corresponding P-value (see

Equation (4)) will be close to 1. Once all the data distributed according to

p(x|α) have been identified, the P-value drops to 0. A threshold confidence

level of 0.99 was used in this study to define nα, although this will require

some knowledge of the cost-loss function of the specific application to choose

optimally. The maximum proportion of samples possible drawn from the

“α-process” is hereafter denoted as P̃ (α) = nα/N , where the tilde notation

is used to highlight the difference with respect to the mixing coefficient,

P (α), of the component from which the α samples are drawn. Notice that

P̃ (α) ≥ P (α). Analogously, P̃ (β) = nβ/N is the minimum proportion of

data not generated by the “α-process”, with nβ = N − nα.

The Kolmogorov-Smirnov test is used to check whether the unlabelled

data closest to the points sampled from the p(x|α) (see points 2 and 3

of the iterative procedure described previously) follow the p(x|α) distribu-

tion; this could have been assessed applying another test, for instance the

χ2 test. Here, we are interested in improving data classification in those

cases where the distributions of data generated by different processes over-

lap significantly – that is when the novelty detection scheme may produce
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sub-optimal results, as shown in Section 3. Notice that the cdfs on which is

based the Kolmogorov-Smirnov test approaches 0, or 1, in correspondence to

the tails of the two distributions. Hence, applying the Kolmogorov-Smirnov

test permits us to assess the two distributions similarity giving more rel-

evance to data points close to the median, and less relevance to the data

points in the tails.

2.3 Classification scheme

As stated in Section 2.2, assume that samples are drawn from two processes,

α and β, and only the distribution of the points generated by the “α-process”

is known. Now suppose that the prior P (α) has been defined with the

method described in Section 2.2. On this basis, we suggest the following

classification algorithm.

A data point to be classified, say x, is optimally attributed to the class

α when

P (α|x) ≥ P (β|x), (6)

where P (α|x) and P (β|x) are the posterior probabilities. Equation (6) can

be rewritten using Bayes’ theorem as

p(x|α)P̃ (α) ≥ p(x|β)P̃ (β)

≥ p(x|β)(1− P̃ (α)), (7)

where we used P̃ (α) + P̃ (β) = 1. Thus, P̃ (β) does not need to be derived

directly from the data. Instead, we need to model p(x|α) and p(x|β). Since

we do not know if there are some other unlabelled “α-data”, it is not possible

to model p(x|β) after having removed all the labelled “α-data”. As an

alternative, we model the unconditional distribution

p(x) = p(x|α)P̃ (α) + p(x|β)P̃ (β)

= p(x|α)P̃ (α) + p(x|β)(1− P̃ (α)), (8)

and then derive the unknown conditional distribution

p(x|β) =
p(x)− p(x|α)P̃ (α)

1− P̃ (α)
. (9)
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This leads to the following classification rule

p(x|α)P̃ (α) ≥ p(x)− p(x|α)P̃ (α)
1− P̃ (α)

(1− P̃ (α))

≥ p(x)− p(x|α)P̃ (α). (10)

Finally,

p(x|α)P̃ (α) ≥ 1
2
p(x), (11)

which means that the point x is attributed to the “α-process” when p(x|α)P̃ (α)

accounts for at least half of the p(x) density, quite meaningful also from the

intuitive point of view.

3 Results and Discussion

This section shows some results from the proposed schemes and from a stan-

dard novelty detection approach. The latter consists in fitting the labelled

“α-data” with a Gaussian distribution and then using a confidence level of

0.1 to identify novel data (i.e., those data to be attributed to the β-class).

3.1 Synthetic data

Synthetic data are drawn from the following mixture model

p(x) = p(x|α)P (α) + p(x|β)P (β). (12)

To make the simulation more general, each component process, p(x|α) and

p(x|β), is a GMM with two kernels (see Table 1) that generates a bimodal

distribution. According to our hypothesis, only the p(x|α) is assumed to be

known once data are sampled.

The percentage of samples to be attributed to the “α–process” is pre-

sented in Figures 2 for classification schemes based on i. the posterior prob-

abilities computed through the data generating probability densities and

prior probabilities (this classification scheme is hereafter also identified as

virtual classification, being based on parameters supposed not to be known,
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and is used only for result benchmarking); ii. posterior probabilities de-

rived through the proposed KS classification scheme; and iii. the novelty

detection scheme.

Results from different tests (see Table 1) are shown as a function of the

similarity between p(x|α) and p(x|β), measured through the KL divergence

KL(p(x|α)‖p(x|β)) = −
∫ ∫

p(x|α)ln
(

p(x|β)
p(x|α)

)
dxdy. (13)

[Fig. 2 about here.]

When p(x|α) and p(x|β) are mostly dissimilar, that is for large value of

the KL distance, both the KS and the novelty detection schemes properly

estimate the number of samples attributed to the “α–process” by the virtual

classification. As an example, the first row panels of Figure 3 show the

original distributions from which data have been sampled, the estimates from

the KS scheme, and novel data (first second and third column, respectively).

Reduction of the distance between p(x|α) and p(x|β) leads the novelty

detection scheme to over-estimate the portion of “α–data”, while the KS

approach is still in agreement with the findings of the virtual classification,

as detailed in Panels 3(d), 3(e) and 3(f). This result highlights a major

drawback of the novelty detection scheme – data not novel with respect to

p(x|α) do not necessary follow the p(x|α) distribution!

[Fig. 3 about here.]

When the distance between p(x|α) and p(x|β) becomes very small, also

the KS scheme starts to attribute to the “α–process” more data than the

virtual classification (detail are given in the last row panels of Figure 3).

This result is fully justified by the task addressed in this work, that is to

find the maximum proportion of data possibly generated by the “α–process”.

The same can not be said for to the novelty detection scheme, where finding

this maximum proportion is not the aim of a principled approach.
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3.2 Outlier identification for automatic mapping: SIC2004

The SIC2004 exercise raises some interesting challenges. Firstly there is con-

siderable prior data made available at 200 observation sites over 10 ‘typical’

days. In this paper we ignore the spatial nature of this data (equivalent

to wrongly regarding the generating process as homogeneous) and assume

that these samples can be aggregated to define a stationary, homogeneous

background radioactivity probability density which defines our known ‘back-

ground’ process, p(x|α). This is modelled using a GMM chosen to have 5

components, which is flexible enough to represent the quite complex distri-

bution but is less prone to over-fitting than a more complex model. It is

trained using a k-means based initialisation followed by an EM algorithm to

find a maximum likelihood solution [9]. The GMM fits the SIC2004 back-

ground data well.

[Fig. 4 about here.]

We now model the data for the two test data sets used in SIC2004, the

‘normal’ data that arises from typical conditions (not shown) and the ‘joker’

data set that contains the simulated release of radioactive material. The pdf

of the background data, p(x|α), along with the pdf of the observations from

the ‘joker’ data set, p(x) are shown in Figure 4. It is clear that the ‘joker’

data set is largely similar in the main body of the pdf to the ‘background’

data, with the exception of a very small peak around 1200 nSv/hr due

to the contaminant release (not shown on the plot). It is not surprising

that the algorithm determines that there are only three outliers in this case,

these being shown in both spatial and data scale in Figure 5. In the current

implementation of the algorithm we use a P-value of 0.99 to assess whether

an observation is likely to have come from p(x|α), and in this data set

the estimate of p(α) at 0.86 – 0.96, the range resulting from the fact that

this is a Monte Carlo based algorithm requiring simulation from p(x|α). In

operational practice it might make sense to exploit multiple runs to provide

a more stable estimate of p(α). Note that all runs provide identical outlier
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detection results, detecting the release sites shown in Figure 5, as might be

expected in this rather simple data set; none of the other observations is

ever classified as an outlier.

[Fig. 5 about here.]

The current implementation does not exploit any spatial structure in the

data, but in the context of automatic mapping, this is an omission. Further

work is required to model the spatial and spatio-temporal context, possibly

using mixtures of space-time Gaussian process models or using some for of

post processing to identify clusters of outliers. Space-time clusters of outliers

are more likely to represent anomalous observations, rather than instrumen-

tal error which might be expected to be uncorrelated in both space and time.

In this section we have briefly shown the application of our new novelty de-

tection algorithm to the SIC2004 data set, however more work is required to

apply the methods to larger and more challenging data sets. This work will

be undertaken as part of the INTAMAP project [http://www.intamap.org].

3.3 Why not seek P (α) directly through the EM algorithm?

It may seem that the two-class problem addressed in this work could be

solved by directly modelling the data distribution through a mixture model

constraining one kernel to the known probability density p(x|α),

p(x) = p(x|α)P (α) +
C∑

k=1

p(x|k)P (k), (14)

and

P (α) +
C∑

k=1

P (k) = 1. (15)

From this perspective, prior probabilities, P (α) and P (k), and the location

and scale parameters of each kernel, p(x|k), could be defined through a

standard EM learning procedure [7], keeping p(x|α) fixed. This would seem

to allow the computation of the posterior probabilities, P (α|x) and P (k|x),

providing the desired optimal classification, however this is not the case.
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The objective of the EM algorithm is to find the maximum-likelihood

estimate of the mixture model parameters. Thus, the prior for the known

process, P (α), found through the EM algorithm does not necessarily rep-

resent the maximum portion of data that follows the p(x|α) distribution.

Indeed it was found through numerical experiments (results not presented

here) that in most case the data likelihood becomes higher for P (α) going to

zero, this corresponding to the situation where the distribution of the entire

data set modelled only by
∑C

k=1 p(x|k)P (k).

4 Summary and Conclusions

This work addressed the problem of data classification with incomplete in-

formation assuming that we only know the distribution of data drawn from

a single ‘background’ generating process. We define the corresponding prior

probability by identifying the largest number of observations that follow this

known ‘background’ distribution. The proposed classification scheme is of

benefit when it is necessary to find observations that are more likely to have

been drawn (or do not come) from the known ‘background’ process while,

at the same time, and there is no need to discriminate among the other

processes.

The effectiveness of the KS method in determining the prior probabil-

ity of the known process was demonstrated with simulated data and then

applied to the real problem of detecting the simulated nuclear release in

the SIC2004 data. This requirement for classification with incomplete infor-

mation may arise in many other contexts besides the application presented

here, ranging from medical diagnosis to remote sensing data analysis.

The theory and the results presented in this work refers to the uni-

variate case. Although not investigated here, an analogous approach could

be applied to higher dimensional data through the generalization of the

Kolmogorov-Smirnov test (an extension to the two dimensional case is given

in [8]). Since it may become difficult to model data density in a high di-
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mensional space, feature extraction procedures could be used to reduce the

data dimensionality: the proposed classification scheme could then be im-

plemented on the basis of a lower dimensional features instead of higher

dimensional data. In this regard, the NeuroScale [10] algorithm is particu-

larly suited for extracting features that preserve the original data structure.

For this reason, the NeuroScale model can also be successfully applied to

data visualization (see for instance, [11]). We expect to pursue this further

in future work.

As discussed in Section 3.2 further improvements might be expected

in our ability to identify outliers by taking the spatio-temporal context into

account. This could be done as an augmentation of the existing model which

might be rather complex to implement, or more manageably as part of a

post-processing step to identify clusters of outliers that might result from

a real emergency rather than a simple instrument malfunction. Another

obvious enhancement might be to use more general mixture models, for

example gamma mixture models might be more appropriate for variables

such as dose rates that are physically constrained to be positive.
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π µ σ

α1 0.6 -1.5+∆ 0.05

α2 0.4 -1.0+∆ 0.03

β1 0.4 -0.25 0.05

β1 0.6 0.5 0.1

Table 1:
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