Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

OPTIMIZATION OF CHEMICAL PLANT SIMULATION USING DOUBLE

COLLOCATION

Josef Ladislaus Illes
Doctor of Philosophy
The University of Aston in Birmingham
April 1993
This copy of the thesis has been supplied on condition, that anyone who consults
it is understood to recognise that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published without

proper acknowlcdgemcnt.

Thesis Summary
The University of Aston in Birmingham

OPTIMIZATION OF CHEMICAL PLANT SIMULATION USING DOUBLE
COLLOCATION

Josef Ladislaus Illes
Doctor of Philosophy
1993

A method has been constructed for the solution of a wide range of chemical plant
simulation models including differential equations and optimization.

Double orthogonal collocation on finite elements is applied to convert the model
into an NLP problem that is solved either by the VFI3AD package based on
successive quadratic programming, or by the GRG2 package, based on the generalized
reduced gradient method. This approach is termed simultaneous optimization and
solution strategy. The objective functional can contain integral terms. The state and
control variables can have time delays. Equalities and inequalities containing state and
control variables can be included into the model as well as algebraic equations and
inequalities. The maximum number of independent variables is 2. Problems containing
3 independent variables can be transformed into problems having 2 independent
variables using finite differencing. The maximum number of NLP variables and
constraints is 1500. The method is also suitable for solving ordinary and partial
differential equations. The state functions are approximated by a linear combination
of Lagrange interpolation polynomials. The control function can either be
approximated by a linear combination of Lagrange interpolation polynomials or by a
piecewise constant function over finite elements. The number of internal collocation
points can vary by finite elements. The residual error is evaluated at arbitrarily chosen
equidistant grid-points, thus enabling the user to check the accuracy of the solution
between collocation points, where the solution is exact. The solution functions can be
tabulated.

There is an option to use control vector parameterization to solve optimization
problems containing initial value ordinary differential equations. When there are many
differential equations or the upper integration limit should be selected optimally then
this approach should be used. The portability of the package has been addressed
converting the package from VAX FORTRAN 77 into IBM PC FORTRAN 77 and into
SUN SPARC 2000 FORTRAN 77.

Computer runs have shown that the method can reproduce optimization problems
published in the literature. The GRG2 and the VF13AD packages, integrated into the
optimization package, proved to be robust and reliable.

The package contains an executive module, a module performing control vector
parameterization and 2 nonlinear problem solver modules, GRG2 and VFI13AD. There
is a stand-alone module that converts the differential-algebraic optimization problem
into a nonlinear programming problem.

key words: differential-algebraic, optimal control, partial differential equations

2

Dedication
To the memory of my parents, Helen Preisinger and J6zsef Ill€s, and of my friend,
111és Drabik, chemical engineer, and of Margit Farkas, 1st year student in 1956 at

Veszprém University.

Acknowledgements
I wish to express my heartfelt thanks to :
A woman secretary at the Personnel Department in the Ministry of Heavy Industry in
Budapest for signing, in spite of her superiors’ opposition for reasons of my
involvement in the 1956 uprising, which also made it next to impossible for me to get
a proper job in chemical engineering, a paper, thus making it possible for me to study
applied mathematics part-time;
an official of the Personnel Department in the Ministry of Heavy Industry in Budapest
for getting me my first job as a chemical engineer at Kobanyai Fiitoeromiivek;
Sandor Ferenczi, chemical engineer at Kelenfoldi Hoeromii and my former chief, a
lecturer at Budapesti Miiszaki Egyetem, Kémia Technolégia Tanszék, Dr. Pil
Benedek, my former Professor at Veszprém University and later my chief at
MAVEMI, Dr. Tibor Hoffman, my former chief at MAVEMI, for starting my career
in computing;
Alan Jeffries, my former manager at SIA Ltd, for getting me my first job in
computing in Britain; Peter King, Professor of Computer Science at Birkbeck College,
for accepting me for a part-time M.Sc. course in computer science;
Dr. John Fletcher, my supervisor, for his direction, for his constant availability and for
his contribution to this research;
Dr. William R. Paterson, my external examiner, for his time, interest, valuable
suggestions and for reviewing this work;
Professor Lasdon and Mr. Marlow for sending me nonlinear programming codes;
Dr. Sarma, Dr. Stadtherr and Dr. Masi for sending me useful material;
Lajos Dienes, chemical engineer and my friend, for having aroused my interest in the
optimization of chemical processes through our joint investigation into optimizing
Fuller earth manufacturing at the Nagytétény chemical plant of Budapesti
Vegyimiivek;
my wife, Irene, for her love, understanding, encouragement, patience and total support
throughout all my part-time studies in England;
my parents, Helen Preisinger and J6zsef 1lés, for their total support, understanding,
encouragement and patience throughout my many years of school in Hungary and for

being there when I needed them and for their love.

‘ Table of Contents
Title Page . . o v ot it i it e et e e e e
Thesis SUMMATYo v ittt ittt e et e iae e
Dedication . . v v vttt i e i e e e
Acknowledgements oottt i e e
Table Of CONtENS « v v v v v e e et tie ettt eeseeeennns
List Of FIgUIES « o v v v v vt i e ieie e et ennieiieeeaaeennnn
List Of TableS « v v v vttt ieee s eee i tin e eiae e ineeennnnnnns
R 1514 (oo 1314110 o K
1.1 Optimization . . .« v v vttt et i i
1.2 Models in Chemical Engineeringovvineiiiinnnenn...
1.3Methodsof Solutiono i
14 ThesisOutlineo vi ittt nnneniaeneeeassassans
2. Literature Reviewottt ittt
2.1 Introduction » . v v vt v vt et e e e e e
2.2 Classification of Problems oo,
2.3 Classification of Solution Methods iiviin i,
2.3.1 Lumped Parameter Systemso v v vevv ettt

2.3.2 Distributed Parameter Systems v v v e v i ine i

3.2.1 Lumped Parameter Systemso v v v e et einii .,
3.2.2 Distributed Parameter Systems v v v vt ittt
3.2.3 Algorithm to solve an optimization problem using control vector
parameterizationo v it i e i e e
3.3 Orthogonal Collocation on Finite Elements,
3.4 Constrained Optimization v v ittt i
35Primal Methods . . . v v v vt ittt i it e e
3.5.1 The Generalized Reduced Gradient Method
3.6 Lagrangian Methods/Successive Quadratic Programming

O L A W N e

11
13
13

A3

16
18
20
20
20
20

20

21
22
30
30
31
31
32

3T DISCHERION wovvrivaaioni s 5 3 5 ¥ § $ S aniess s 4§ s ¥ 5 § paiehess 57

3.8 CORCIUBIONS ¢ puris w6 4 & & & & ¥ ERBERREE % 5 % 3 & & & & srseEEEe» 58
4. Generating the Nonlinear Programming Problem 59
4,1 Introduction . . .o v it e e e 59
42 Problem. Definition « : s s cossonminivnssss s pbpssmameisss s 59
4.3 Domaity DIsCretization «s e 5 » s 5 5 5 s ssiseavesiviess 58355 68 pse 60
4.4 Discretization of Differential Equationscovviieneaan. 61
4.4:1 Replacing Independent Variables . . vvwviiwswion oo s s o v ¢ wswosie 63
442 Replacing State Variables . « « « « scivomimvinmn 02 m o5 000 sioisoses 64
4.4.3 Replacing Control Variablesocsisisssiviasasgeniniesss 64
4.4.4 Replacing Derivatives of the State Variables.| 68
4.4.5 Replacing Auxiliary Variables . . . s s v ssvsssvonssesissosons 70
4.4.6 Replacing Input Variables R EEEERE 71
447 TimeDelay . . oo v ieeieeeesiiatenn e, 71
4.4.8 Parameter Estimationo vvvevnnn ettt 72
449 Irregular Domain . . . v oo vv v iinei i i 72
4.5 Discretization of Expressionsot 72
4.6 Discretization of Initial or Boundary Conditions . . . v« vvvvvvevennnnn 3
4.7 Transformation of the Objective Functionalcoovvvvn 73

4.7.1 Transformation of the Objective Functional not Containing

Integral Termsccovetnnscnsorescsnscnos 73
4.7.2 Transformation of the Objective Functional Containing

INIeEr]l TEEMIB i 5 4 6 4 & & ¢ v suraweiiese & 6 5 % & & ¥ weteisesiceme 13
4.7.3 Transformation of the Least-Square Objective Functional of

Lumped Parameter SyStems , . . .« ¢ o s aoniomns s s s 74

4.7.4 Transformation of the Least-Square Objective Functional of

Distributed Parameter Systems v v vvve e v v aans 74

4.8 Discretizationof Constraintsciviiiiiiiiinnnnnns 75
4.9 Completion of Equation Sets . . .« ¢ c s cvovveocssoncssosasssans 75
410 CONCHSION 565 svmsmeein s 5 4 8 s § # S RAEGIIWEREIE S SR80 58 5a 76
8. Tnterpolation and Biror BYaluation s ieivewme s ¥ 5 s & 5 5 & o aisasevsesiese s » 77
5.1 Interpolation «icuisss s 5 s s v o o vekeonams s a4 8545 v v vals el 77

5.1.1 IntrodUCHION &« v v v vt e et e ettt et en e e asnennnannnn 77

S.02TImplementation . . .o vv v vttt e e e 717
S52ErrorEvaluationottt i i 82
6. Implementation Strategy oo v it i i e 89
6.1 Generating the Nonlinear Programming Problem 89
6.1.1 Introduction « . o v v v v vt v vt e e 89
6.12InputFilefor OCFE 89
6.130utput Files . . . oo v vt i 90
6.1.4 Processingof the Input File iy 91
6.2 Optimization . .. v v v v v v i et e eeate s 93
6.2.1 Control Programov v e v eii i nnennennnaneans 93
6.2.2 Control Vector Parameterizationo vvvvv et ennn. 93
6.2.3 Solution of the Nonlinear Programming Problem 93
6.24 NLP Problem Solution v v v v iv v ii i 95
6.2.5 DAOP Problem Solutiono oo veee it 95
6.2.6 Evaluation of Function and Error Values 95
6.2.7 ConcluSion + v v vt vttt et e 96
7.Example Problems i i i e e 97
7.1 Differential-Algebraic Optimization Problemsovt.. 97
7.1.1 Example 1 : Optimal Control of a Tubular Plug-Flow Heat
Exchanger.......ooviiieenneeennnnnenan 97
7.1.2 - Example 2 : Optimization of a Train of Packed Bed Reactors . . . 106
7.1.3 DisCUSSION . v v v v vviei i it 117
7.2 Dynamic Simulation Problems oot 119

7.2.1 Example 3 : Diffusion and Chemical Reaction in a Tubular
Reactor with Non-Newtonian Laminar Flow 119

7.2.2 Example 4 : Diffusion and Reaction in Viscous-flow Tubular

Reactorovviiviiiiiinnniinnnn 125
73 Example 5: TimeDelay L, 132
7.4 Example 6 : Parameter Estimation Example 140
7.5 Example 7 : A Nonlinear Programming Example 159

7.6 Example 8 : Unsteady-State Diffusion in 2 Space Dimensions

- Parabolic PDE in 3 Independent Variables 174
7.7ConCluSions .« v vttt e e e 184
8: Cohiclusions and: RecoOmmendations .« s s s vi csesivisnnnniss s555 5 6 6 s 186
8.1 Conclugions . . v vowvwasns v v o v 6 4 & vorsemes e o 186
8.2 Contribations of this Research ..;iucs vvenn s 6 6 ¥ 5 & & swsssamssmes & 186
8.3 Recommendations for Putire Work ...cvvv s s 5 5 5 ¢ ¢ ¢ sosmvaimnsrsss s 187
NOMIBINEIARIIS o 4 5 4 & % = 0 & SvcrRERRAS % 5 5§ ¥ % ¥ 5 EORTFSTERR S & % % # 189
Referenceso i ittt it e e e e 194
ADPENdIX A iz i iasnia B i i A i ns sainenneads i s i3 88 bave 204
Optimizer User Guide
APPEHOE B - vovvvgmcn monn § 0 F i 5 § 5 PREERERTIE 6 K & B 6 b welses 302

Program Documentation
Appendix C .. .ccvvvcvnacsrssnsnannsssssesssosnsssnssvsne 323
Mathematical Background

List of Figures

Figure 7.1 = NLP Variables fO8 X « « « + v e v e vnsnsres s eennn 100
Figure 7.2 - temperature = f(time,radial length)covv... 103
Figtre 7.3 - Wall HOX = HHINE) s wanvvn s s s u e e snabemeosine s s i v ¢ s 104
Figure 7.4 - temperature = f(time,radial length) SR N s 105
Figure 1.5 = wtlb Bk S HOMEY o ovnen & 5 ¢ 6 & memmemieraee s 5 4 65 ¢ & & 106
Figure 7.6 = NLP 'Variables for Xy . v vvwvinns s s 5 5 ¢ v ¢ srmmsmmammass « 111
Figure 7.7 - conversion = f(reactor lengthtime) 114
Figure 7.8 - inlet temperature = f(reactor length,time) 115
Figure 7.9 - conversion = f(reactor lengthtime) 116
Figure 7.10 - inlet temperature = f(reactor length,time) 117
Figure 7.11 - NLP Variables for Co ittt ittt tiitinnen.n 121
Figure 7.12 - concentration = f(axial length,radius) « . . « « « v v v vennns.. 124
Figure 7.13 - concentration = f(axial length,radius) ovvvvvvvvi e, 125
Figure 7.14 - NLP Variables for C . s coicis s s 55 6 v o 66w aiwsavaon s s s s 128
Figure 7.15 - concentration = f(axial length,radius) 130
Figure 7.16 - concentration = f(axial lengthradius) oo v v v i v i v v, 131
Figure 7.17 - staté variable S f(IMe) v oo5 5 v 5 5 ¢ ¢ vwwaamemm 5 % v 5 ¢ s 136
Figure 7.18 = control variable =:f{time)vo.cs ovi0 o % 4 5 5 o« 6 wawonewien 137
Figure 7.19 - state variable = f(time) cvi i ennn. 138
Figure 7.20 - control vatiable = f(ime) . ccovonivn 558 5 3 5 5 @i s iswies 139
Pigure /.21 = NLP Varables for'A . ..ccuavnini s 5 s 5 v & o csssreammivios s + & « 142
Figure 7.22 - concentration of A=f(time)o 147
Figure 7.23 - concentration of B =f(time), 148
Figure 7.24 - concentration of C=f(time)ccovviv .. 149
Figure 7.25 - concentration of A mftime) . ccuacivnesons o iss vosammss 150
Figure 7.26 - concentration of B = I{tife) oo v 0w« v o 5 s 5 4 5 smwmansas 151
Figure 7.27 = concentration of C = fHme) c.oovvvs s 95 5 5 5 5 vecnvvnssnn s 152
Figure 7.28 - concentration of A &f{Me) ... v s s 45 54 o s camsseisinis 153
Figure 7.29 - concentration of B=f(time) e v v s v et v vvvnvvonnnnes 154
Figure 7.30 - concentration of C=1(tMe) o v v o4 o v ¢ & « 4 warew s aioiens s 155
Figure 7.31 ~ concentration of A = f{BHNE) . «.vrvnivin o 5 4 54 6 ¢ s wowsemess 156

Figure 7.32 - concentrationof B=f(time) ccovvvivieviiiinnnes 157

Figure 7.33 - concentration of C = f(time) . . . cv v svvvni i s v s v wvavwons 158
Figure 7.34 » NLP Variabloes foral, « « « « v« « veomsnvmns 20 6% 5 % 5 ¢ v 180
Figure 735 -u=u(tx,y)att =05ottt 184

10

List of Tables

Table 1.1 - Models in Chemical Engineering R I 14
Table 1.2 - Objective Functions versus Constraints 17
Table 6.1 - Derivatives of Lagrange Polynomials 91
Table 7.1 -Starting Valuesttt 100
Table 7.2 - Relationship between Continuous and NLP Variables 101
Table 7.3 - Collocation Parameters and NLP Statistics 101
Table 7.4 - Comparison of Temperature Values 102
Table 7.5 -Starting Valuesooi it it 110
Table 7.6 - Relationship between Continuous and NLP Variables 112
Table 7.7 - Parameters and NLP Statistics 112
Table 7.8 - Comparison of Conversion Values 113
Table 7.9 - Starting Values iy RET 121
Table 7.10 - Relationship between Continuous and NLP Variables 121
Table 7.11 - Collocation Parameters and NLP Statistics 122
Table 7.12 - Comparison of Concentration Values 123
Table 7.13 - Starting Valuesovi vttt 127
Table 7.14 - Relationship between Continuous and NLP Variables 128
Table 7.15 - Collocation Parameters and NLP Statistics e heeeaans 128
Table 7.16 - Comparison of Concentration Valuest 130
Table 7.17 - Relationship between Continuous and NLP Variables 134
Table 7.18 - Collocation Parameters and NLP Statistics 134
Table 7.19 - Comparison of State Variables 135
Table 7.20 - Experimental Data ov i i iinein s 140
Table 7.21 - Starting Values v oot iv ittt i it en e 142
Table 7.22 - State Functions versus NLP Variables 142
Table 7.23 - Collocation Parameters and NLP Statistics 143
Table 7.24 - Comparison Values of the Rate Constants. 144
Table 7.25 - Comparison of Concentrationof A. 145
Table 7.26 - Comparison of Concentrationof B. 145
Table 7.27 - Comparison of Concentrationof C. 146
Table 7.28 - Description of Variables 159

Table 7.29 - Initial and Final Values and Bounds oo
Table 7.30 - Description of Parameters
Table 7.31 - Description of Subroutineso,
Table 7.32 - Starting Values. i,
Table 7.33 - Relationship between Continuous and NLP Variables
Table 7.34 - Collocation Parameters and NLP Statistics
Table 7.35 -Exact Solutionciiiiin i

Table 7.36 - Numerical Solution oovi ittt innnnn.

12

Chapter 1

Introduction
1.1 Optimization
Optimization is a procedure for problem solving, where the problem can be stated as
the minimization or maximization of given economic or technological measures. The
measures to be minimized or maximized must each be put into mathematical form,
termed an objective function or objective functional. These objective functions or
functionals form part of the mathematical model of the problem. Objective functions
or objective functionals are also known as performance index. In an objective
functional at least one variable is dependent on time or a spatial independent variable.
This implies that there is at least one differential equation in the model, and the
problem is described as a differential-algebraic optimization problem.
An optimization problem is formulated as a mathematical model consisting of an
objective function or objective functional and constraints. The model is a set of
algebraic and/or differential equations and inequalities which approximates the true
behaviour of the system. A system is a part of the real world that is being studied.
In this work a system is normally a chemical process. The model can contain
algebraic equations and inequalities, equations and inequalities containing variables
dependent on one or two independent variables, ordinary differential equations, partial
differential equations having 2 independent variables, an objective functional that may
contain integral terms. The work involved is the application of optimization to the
solution of chemical engineering problems. _
This thesis extends, and was inspired by, the current methods capable of solving
differential-algebraic optimization problems described by ordinary differential
equations and algebraic equations and inequalities [72-76] to a method capable of
solving problems described by first and second order partial differential equations and
inequalities containing no more than 2 independent variables and algebraic equations
and inequalities. Although emphasis was put on solving differential-algebraic
optimization problems, mathematical programming problems also can be solved by the
package.
1.2 Models in Chemical Engineering

The following table presents some typical models in chemical engineering [85].

13

Table 1.1 Models in Chemical Engineering

EQUATION TYPE

Algebraic equations

Ordinary differential equations

with initial conditions

Ordinary differential equations
with boundary conditions

Partial differential equations

in two independent variables

First-order partial differential

equations

Hyperbolic differential equation

MATHEMATICAL MODEL

Equilibrium conditions of a chemical reactor.
Steady-state of a CSTR.

Distillation column.

Batch reactor.
Transient of a CSTR.
Steady state of a plug-flow reactor.

Steady state of a gas-liquid bubble-column
reactor.

Steady state of a tubular reactor with axial
dispersion.

Steady state diffusion with reaction in a catalyst

particle.

Transient of a tubular reactor with axial
dispersion.

Steady state of a heterogenous tubular reactor
or of a homogeneous one with radial and axial
dispersion.

Dynamics of an adsorption bed.

mass-balance

catalyst decline

Heat-balance in a plug-flow tubular reactor

Wave equation

ot? ox?

14

Parabolic differential equation Convective time-space diffusion

de _ d%
o ox?
2 2
Elliptic differential equation Je , 9% L
ox* 9y?

If f = O flow of a non-viscous fluid in a pipe

If f # 0 flow of a viscous fluid in a pipe

Steady-state heat flow

Steady-state diffusion
Partial differential equations Transient of a tubular reactor with radial and
in three independent variables axial dispersion.

Transient of the thermal field of a heated

bidimensional body.
Important areas of optimization in chemical engineering are flowsheet optimization
and optimal control. When the plant already exists, the optimization can be carried
out without knowing or making use of the mathematical model of the plant, using the
output variables of the plant to evaluate the objective function and adjusting the
control variables according to a certain optimization algorithm. This approach is
known in the literature as EVOP (evolutionary optimization). When the plant already
exists and the model of the plant exist, the model of the plant can be optimized. When
the plant does not exist, to perform the optimization, the model of the plant is needed.
Flowsheet optimization is a steady-state optimization, the model contains only
algebraic constraints, the problem is a mathematical programming problem. In case
of optimal control, the model contains differential equations. It can also contain
differential inequalities. The analytical solution of the equations that constitute the
model is usually obtainable only for very simplified models. Therefore the
optimization problem has to be solved numerically for each particular case. The
objective functionals can be classified into 2 classes, according to whether at least one
control(optimizing) variable is dependent upon the independent variable. A control
variable is a variable or a function of the independent variables that should be chosen

optimally to maximize or minimize the objective functional. A state variable is a

15

variable or a function of the independent variables that cannot be chosen freely and
the value of which is determined by the equations and control variables. If they are
functions of independent variables, their derivatives occur in the model. When at least
one control variable is dependent upon the independent variable, the optimization is
carried out in the infinite dimensional function space. The theory for the solution of
such problems is found in the field of variational calculus.
1.3 Methods of Solution

This research is concerned with optimization in the finite dimension Euclidean space,
because optimization in the infinite dimension function space cannot be fully
automated; if to solve optimization problems having partial differential equations in
the model control vector iteration is employed, then to obtain the Euler-Lagrange
equations explicitly, analytical differentiation of the integrand of the objective
functional and the state equations is required and the model can have only simple
bounds on the control variables, but cannot have general equality or inequality
constraints. This work is aimed at widening the class of problems that can be solved
as well as at providing an alternative method to solve differential-algebraic
optimization problems containing partial differential equations. In order to carry out
the optimization in the finite dimension Euclidean space, some kind of transformation
has to be applied to the model. Three kinds of transformations will be applied to
convert a variational problem into an optimization problem in the finite dimension
Euclidean space. The transformations described in (a) and (b) result in a sequential
optimization strategy, where one performs an unconstrained optimization, while for
each function evaluation the differential-algebraic constrains have to be solved. The
transformation described in (c) results in a nonlinear programming (NLP) problem,
and this approach is termed a simultaneous simulation-optimization strategy.
a) all control variables are regarded as constant throughout the integration. For
example, if optimal temperature progression to maximize the yield of a batch reactor
is to be found, the best isothermal yield will be found instead.
b) control vector parameterization is used, e.g. instead of T(t), say, T(f)=a,+a,e ™
or T(t)=a,+at+a,t* is used and a,, a,, a, are chosen optimally. Here the infinite
dimensional problem has been reduced into a three dimensional one.

c¢) orthogonal collocation on finite elements is used. The approximating function is

16

a piecewise continuous polynomial joined at knot points. The polynomials are usually
Lagrange or Hermite interpolation polynomials [86]. The collocation(interpolation)
points are chosen to be the zeros of a Legendre polynomial. The coefficients of the
interpolation polynomials are values of the continuous dependent variables (state or
control variables) and will be the unknowns of the resulting system of algebraic
equations to be satisfied at the collocation points. The control variables can also be
approximated by piecewise constant functions defined over the integration domain.
Both the coefficients of the interpolation polynomials (values of the dependent state
or control variables) and the piecewise constant values of the control variables will be
variables of the NLP problem. Thus orthogonal collocation on finite elements
transforms the objective functional into an objective function and the differential-
algebraic constraints into constraints of a NLP problem.

The following combinations of objective functions and model equations can occur:

Table 1.2 Objective Functions versus Constraints

objective function objective functional
algebraic constraints feasible not feasible
differential-algebraic unlikely feasible

constraints

The objective function - algebraic constraints combination is a mathematical
programming problem. The other combinations are differential-algebraic optimization
problems.
There are certain special features encountered in chemical processes:

The variables are mostly continuous and in most cases both the objective function and
constraints are nonlinear with a high degree of nonlinearity, There are a large number
of equality constraints. The inequality constraints are usually of the simple bound type.
The models have relatively few degrees of freedom. The majority of models can only
be described by differential-algebraic equations. Recycling occurs very frequently,
often feeding unconsumed reactant back to the reactor. An algebraic equation is

nonlinear if the coefficient of at least one variable is not constant. A differential

17

equation is nonlinear, if the coefficient of at least one derivative is function of
derivatives. Degree of freedom is equal to n, - n,, where n, is the number of variables
and n, is the number of equations. Chemical process models can also be distinguished
according to whether the model is deterministic or stochastic. A stochastic model
contains variables subject to random disturbances and measurement errors.
Optimization can be carried out on-line, when there is interaction between the plant
and the optimization package or off-line.

The work in this thesis is concerned with deterministic, off-line, continuous variable
optimization problems. Only real-valued functions and variables are considered. The
area of optimization tackled is optimization of problems described by differential-
algebraic equations. Optimization theory and algorithms will only be described as
they pertain to the class of optimization problems to be tackled and to optimization
algorithms judged to be most successful for chemical process optimization in the
literature. Techniques currently exist to solve optimization problems containing PDEs
with 2 independent variables. The package implemented in this work can solve
optimization problems containing PDEs with 2 independent variables, differential
inequalities, algebraic equations and inequalities.

1.4 Thesis Outline

Chapter 3 describes the theoretical foundations of control vector parameterization, of
orthogonal collocation on finite elements, of generalized reduced gradient method and
of successive quadratic programming. The control vector parameterization, although
well established, was included, because for a certain class of problems, i.e., when
there are many initial value ordinary differential equations, it is more advantageous
to use control vector parameterization, than orthogonal collocation in conjunction with
nonlinear programming, and if the upper integration limit is an optimizer variable,
then control vector parameterization is the only method to solve the optimization
problem.

Chapter 4 describes how the model is transformed into a nonlinear programming
problem using orthogonal collocation on finite elements. The class of problems that
can be solved is defined. Then the discretization of differential equations is described,
how in the model independent variables, state variables, their derivatives, control

variables, auxiliary variables and input variables are transformed resulting in nonlinear

18

algebraic equations. Then time delay handling and parameter estimation and irregular
domain handling is described. Expressions, initial and boundary conditions, objective
functionals and constraints are also transformed into algebraic equations and
inequalities.

Chapter 5 describes the definition of the state and control functions in terms of the
NLP optimal solution and how the residual error is evaluated.

Chapter 6 describes the implementation of the optimization package.

Chapter 7 deals with the analysis of 8 example problem runs including 2 differential-
algebraic optimization problems, 2 dynamic simulation problems, a time delay
problem, a parameter estimation problem, a nonlinear programming problem and a
PDE with 3 independent variables. Except for the nonlinear programming problem,
they all were solved both by the generalized reduced gradient method and by
successive quadratic programming. The nonlinear programming problem was solved
only be the generalized reduced gradient method. The parameter estimation problem
was also solved by control vector parameterization. Example 8 was solved only using
successive quadratic programming, because it ran faster on this problem than GRG2.
Chapter 8 contains discussion, conclusions and recommendations for future work.
The appendices contain the user guide and the program documentation to facilitate
maintenance and further enhancement of the nonlinear programming problem

generating program.

19

Chapter 2
Literature Review

2.1 Introduction

A number of important process optimization problems are described by models
containing ordinary or partial differential equations. These cover such applications as
optimal control, optimization of batch or continuous chemical processes, parameter
estimation of dynamic systems, etc. The optimization of dynamic systems can be
formulated as a differential-algebraic optimization problem.

2.2 Classification of Problems

Differential-algebraic optimization problems (DAOPs) can be classified by whether
they contain ordinary differential equations (ODEs) or partial differential equations
(PDEs). DAOPs described by ODEs are referred to as lumped parameter systems.
DAOPs described by PDEs are referred to as distributed parameter systems. Systems
can be classified also by whether or not there is time-delay in any state or control
variable. DAOPs having more than one state variable are termed multivariable
systems. Most of the systems are multivariable. DAOPs can also be classified as
follows:

1. Linear systems, where the model is linear.

2. Linear-quadratic systems, where the objective functional is quadratic and the state
of the system can be represented by a matrix equation. If every matrix in the
model is constant, it is called an autonomous system.

3. Nonlinear systems, where either the objective functional or the constraints are
nonlinear.

These 3 classes may be further subdivided by the order of the differential equations
and by the type of boundary conditions. In order to review the literature, it is useful
to classify the solution methods which have been used. This will be done separately
for lumped parameter and distributed parameter systems.

2.3 Classification of Solution Methods:

2.3.1 Lumped Parameter Systems

1. Generation and Solution of a linear-quadratic model, if necessary linearizing a
nonlinear model.

2. Generation of approximate solution to a problem formulated using dynamic

20

programming.

3. Discretization of the integration domain by finite differences to create an NLP

problem.

4. The extension of the ideas of Liapunov stability.

5. Dynamic Matrix Control.

6. Solution of the necessary conditions for optimality for the control vector.

The resulting problem can be solved as follows:
(a) using on-off control
(b) control vector iteration
(i) using gradient method
(ii) using conjugate gradient method
(iii) using quasi-Newton method
(c) quasilinearization
(d) using the method of weighted residuals to discretize the problem

7. Control vect(;r parameterization

8. Orthogonal collocation coupled with quasi-Newton methods

9. Approximation of the DAOP by algebraic functions to form a nonlinear problem.

The methods 1-2 and 4-6 are all problem-specific, each new problem must be
solved individually, the methods cannot be generalized or automated.

2.3.2 Distributed Parameter Systems:

10. Solution of the necessary conditions for optimality

11. Using the method of weighted residuals to convert the problem into a lumped
parameter system. Then the resulting problem can be solved by one of the
solution methods applicable to lumped parameter systems.

12. Using double orthogonal collocation on finite elements to convert the problem
into a nonlinear programming problem, then solve it either by the generalized
reduced gradient method or by successive quadratic programming.

The first step of method 11, lumping, can be automated, but the second step can be
fully automated only if the resulting lumped parameter system is solved by methods
3 or 7-9. Optimal control problems can be solved in such a way that the control
contains feedback information, i.e., state or output variables may appear in the control

law. In a closed-loop control scheme there is feedback information in the control law,

21

in an open-loop control scheme there is no feedback information in the control law.
2.4 Literature Survey

A vast body of literature is devoted to addressing the solution of differential-algebraic
optimization problems. One of the first approaches to the solution of nonlinear

optimal control problems was to use the properties of the linear-quadratic problem

)
min [I = G(x(8)) + ﬁx T™Ox + uRu)]dt 1)
) 0
subject to
%x? =Ax + Bu x(0) = x, 2

where (2) approximates the optimal control of the more general nonlinear system

% = flxut) x(0) = x, 3)

This was done by Pearson [1], Burghart [2], and Weber and Lapidus [3], reviewed in
[48], by rewriting equation (3) in the form

4% - A@px + Bixdu @)
dt

and solving the linear-quadratic problem at several different values of x. According
to Hicks and Ray [48], Burghart [2] was able to entirely pre-compute the suboptimal
feedback gain by expanding the gain in a Taylor series about some reference value of
x. To find the suboptimal solution, many computer runs had to be done with a range
of reference values of x and for different numbers of terms used in the Taylor series
expansion.

Another approach, as suggested by Durbeck [4], Garrard et al. [5], and Bukreev [6],
and reviewed in [48], is to generate approximate solutions to the Hamilton-Jacobi-
Bellman equations of dynamic programming to produce a suboptimal feedback control.
In dynamic programming, optimization is carried out in a stagewise manner starting

from the n-th stage and progressing backward. According to Hicks and Ray [48], these

22

methods generally require a great deal of computation, and as shown in comparisons
made by Garrard et al. [5] and Burghart [2], give somewhat worse performance than
the approximation to the linear-quadratic problem discussed above.

A method suggested by Tabak and Kuo [63] is to discretize the optimal control
problem by discretizing the integration domain. The derivatives are approximated by
finite differences. The values of the continuous functions at grid points become
variables in the resulting nonlinear programming problem.

An extension of the ideas of Liapunov Stability to generate near-optimal control
policies was suggested by Koepecke and Lapidus [8], reviewed by Hicks and Ray
[48]. In this case the control problem is to find the discrete control signals, u(0),
u(l),..., which will move the dynamic system from the initial state x(0) to the origin
in some optimum way. "Optimum way" is defined as a fast response with a minimum
overshoot. The overshoot requirements lead to stability considerations, and hence it
is considered natural to define "optimum way" around stability. The approach is to
establish the control criteria on the basis of Liapunov’s direct method which is a
technique for the stabilitﬁr analysis of linear and nonlinear processes. The method is
a mathematical abstraction of the concept that if the total free energy of a system is
decreasing then the system must be stable. This may be implemented in the present
case by finding a positive scalar function V(x) = V(x,X,,...,x,) called the Liapunov
function which has the property that the difference AV(x) is minimized over each
sampling period by a suitable choice of the u(k). This corresponds to the analogous
case of a continuous system of causing the derivative of V(x) with respect of time to
be negative. The optimum control vector is that u(k) which makes AV(k) the most
negative. The method of Liapunov is stable, simple, practical and therefore most
attractive for establishing a control criterion. V(x) is said to be positive definite with
the following properties:

(a) V(x) is continuous together with its first partial derivatives in a certain open region
€ about the origin.

(b) V(0)=0

(c) V(x(t)) is positive in €. The origin is a local minimum of V. Along the path g
of

23

X0 = X&x®) &)
we have
V=X-VV (6)

If in addition V <0 in Q , V is called a Ligpunov function. This technique

assumes an objective of the form

3]
I = j V(x)dt 7

where V(x) can be considered a Liapunov function. Then the controls u(t) are selected
dV(x)

dt
has been considered by Hicks and Ray [48] to produce quite good sub-optimal

feedback controls [7,8]. Paradis and Perlmutter [9] are reported by Hicks and Ray
[48] applying this technique to the feedback control of a tubular reactor modelled as

so that is made as negative as possible at each point in time. The technique

a distributed parameter problem with reasonably good success.

Universal Dynamic Matrix Control is used by Morshedi [10], reviewed by Renfro
[72]. Universal Dynamic Matrix Control (UDMC) differs from a conventional optimal
control, where the control horizon is equal to the integration horizon, in that in UDMC
the control moves are made only in the control horizon [t,,t.], and not in the steady-
state horizon [t,,t,].

A much used approach to optimal control is to use the necessary conditions of
Pontryagin’s maximum principle, i.e., to solve the Euler-Lagrange equations and to
maximize the Hamiltonian. Although Pontryagin’s Maximum Principle is applicable
for both lumped and distributed parameter systems, for simplicity, a brief outline of
the method is given below for lumped parameter systems, based on [23].

Theorem. (Weak Maximum Principle).

In order for a control u(¢), u, < u(t) < u* to be optimal in the sense that it
maximizes the objective / in Equation (9) while satisfying the system Egs. (8), it is
necessary that Eq. (11) be satisfied for the unconstrained portion of the control
trajectory and H defined by (12) be maximized along constrained portions of the

control trajectory. Thus given

24

dx
- = Sflxu), x(O}{ = x, ®)

and
Tu®) = Gt + [Fosaud ©

the necessary conditions for u(f) to maximize

IMu(®)] (10)
is that

oH

— =0 11

— (11)

on the unconstrained portion of the path and
H = F(xu) + Mf(x,u) (12)

be at the maximum on the constrained portion of the path. Here H is the Hamiltonian
defined by Eq. (12), and A is the time dependent Lagrange multiplier, which is
defined by

a _ _oH (13)
dt ox
and
3G
A =__ 14
) o (14)

for those state variables unspecified at #. Eqs (13-14) are termed adjoint or Euler-
Lagrange equations.

One method to solve the above problem used quasilinearization [135], reviewed by
Ray and Szekely [23]. According to Ray and Szekely [23], quasilinearization is a

direct substitution approach to solve the necessary conditions for optimality equations.

25

T LA e e wraee

The equation (11) is solved for u(t) explicitly. Then the solution is substituted into the
state equations (8) and in the adjoint equation (13). The resulting equations are
linearized about some reference trajectory x,A. Then they are solved repeatedly with
a better estimate of x,A until the solution of the linearized equations converge to the
solution of the nonlinear equations. This approach may fail to converge unless a
reasonably good initial guess is available; however, according to Ray and Szekely
[23], it has been used successfully on a number of practical problems [135].

Miele [12] proposed gradient algorithms for the DAOP problem, reviewed by Biegler
and Grossmann [94]. From the first order optimality conditions, a linear two-point
boundary value problem is formulated and solved at each iteration. Before beginning
the next iteration, however, a different linear two point problem is formulated and
solved successively to restore the nonlinear constraints to feasibility. According to
Biegler and Grossmann [94], these methods as well as control vector iteration methods
can be computational expensive for large problems.

The most common method to the above problem is control vector iteration. Here, an
initial control profile is assumed, the state equations are integrated forward and the
adjoint equations are integrated backward. At the end of this pass, a new trajectory
is calculated that minimizes the Hamiltonian. The control function is updated using
the gradient method in [13-32,36,40,41], referenced in reviews by Ray [22], Ray and
Szekely [23], and Jones and Finch [36). The control function is updated using the
conjugate gradient method in [33-35,37-39], reviewed by Ray and Szekely [23], Jones
and Finch [36] and Renfro [72].

Quasi-Newton algorithms are based on a static optimization algorithm and approximate
a second-order operator using first-order gradient information only, thus seeking the
accelerated convergence associated with second-order methods. This type of
’variable metric’ algorithm has been adopted to optimal control (Tripathi and
Nanendra[42], Lasdon[43]), reviewed by Jones and Finch [36]. According to Biegler
and Grossmann [94], the main drawback of control vector iteration is that repeated
solutions of state and adjoint equations are required.

The first-order necessary conditions of the maximum principle are used to produce a
two-point boundary-value problem. Then the method of weighted residuals is used to

discretize the problem and convert it to a system of nonlinear equations in

26

[46,47,57,58]. The system of nonlinear equations was solved by Newton method in
[46,47]. [47] was reviewed by Biegler and Grossmann in [94]. According to Oh and
Luus [46], the method is computationally efficient and yields results close to the
optimum with a small number of collocation points. The method was used to
determine the optimal control of a distributed parameter system, a model of a nuclear
reactor. Computational results demonstrated the validity of the method. [57,58] was
reviewed by Hicks and Ray in [48]. According to Hicks and Ray [48], this
approximation method works well for simple problems [57], or for linear ones [58],
but it has certain drawbacks for complex non-linear problems. One of the drawbacks
is that the equation (11) has to be solved for u which is not always possible for highly
non-linear or multivariable problems.

Methods based on the necessary conditions of optimality require iterative integration
of the original and adjoint equations (two-point boundary value problem). Also, these
methods cannot handle general inequality constraints. An additional difficulty is the
fact that one must be able to analytically differentiate the integrand of the objective
functional and the state equations in order to obtain the Euler-Lagrange equations
explicitly. This can be very tedious for some chemical engineering problems, where
complex empirical functions of the state variables are imbedded in the process model.
An alternative approach to solve differential-algebraic optimization problems is termed
control vector parameterization, where the control function is expressed as a linear
combination of trial functions and the linear combination coefficients and the
coefficients of the trial functions are the optimizing variables. Control vector
parameterization as well as control vector iteration are termed as sequential
optimization methods. Control vector parameterization is used in [48-56,59-62]. These
were reviewed in [23], [48] and [72].

According to Ray and Szekely [23], Sage [54] gives several examples in which partial
differential equations have been discretized in the spatial direction and control vector
parameterization was applied to the resulting set of ordinary differential equations.
According to Ray and Szekely [23], Zahrednik and Lynn [52] and Bosarge [53]
suggest a method, whereby the necessary conditions for optimality is applied to the
model, then all the variables in the resulting equations are expanded in trial functions

using control vector parameterization, then the method of weighted residuals is used

27

to evaluate the coefficients; however, according to Ray and Szekely [23], there had
been little computational experience on nonlinear problems.

Control vector parameterization also requires iterative integration of the original set
of differential equations. Also, this method cannot handle algebraic equations and
general inequality constraints. The principal disadvantage of the parameterization
methods is that the functional form of the optimal control must be specified in
advance. This requires much more physical insight than is needed by other methods,
like control vector iteration. In the absence of the physical feeling for the general
shape of the optimal control, a very general functional form must be used and the
optimization performed with respect to a large number of coefficients.

Mentioned by Renfro [72], Hertzberg and Asbjornsen [64] were the first to introduce
the idea of using orthogonal collocation coupled with a guasi-Newton method to
perform simultaneous parameter estimation and integration in nonlinear dynamic
systems. Differential equations and other equations containing state variables were
replaced by an approximating set of algebraic equations, and the optimization was
performed in the subspace of parameters. This method proved to be superior in
computational efficiency to other existing parameter estimation algorithms.

Tsang et al. [65] and Luus [66] solved optimal control problems as a nonlinear
programming problem using algebraic approximation, reviewed by Biegler and
Grossmann [94].

Linear-quadratic feedback problem is converted using algebraic approximation into a
quadratic programming problem in [67-69], reviewed by Biegler and Grossmann [94].
Orthogonal Collocation was first applied to the solution of chemical engineering
problems by Villadsen and Sorensen [90].

A linear parabolic PDE is discretized in [70] using both global orthogonal collocation
at Legendre roots and Lagrange interpolation polynomials, reviewed by Cuthrell [73].
The resulting lumped system is then integrated repeatedly with the variables found by
direct search optimization. According to Cuthrell [73], the disadvantage of this
approach to solve differential-algebraic optimization problems is that it is expensive
as far as computer run time is concerned. In my opinion, its advantage is the low
dimensionality of the resulting direct search optimization problem.

Lynn and Zahrednik used Galerkin’s method to discretize a linear partial differential

28

equation (PDE) [71], reviewed by Cuthrell [73]. Then the resulting linear-quadratic
control problem containing ODEs is solved with the method used in [46,47] and
mentioned in [94]. Pontryagin’s maximum principle was applied to redefine the
problem in terms of the necessary conditions for optimality. Then orthogonal
collocation was applied to transform the ODEs into a system of nonlinear algebraic
equations, which then was solved by Newton’ s method.

Paterson and Cresswell made the first step in the direction of Orthogonal Collocation
on Finite Elements [136], what was extended by Carey and Finlayson into Orthogonal
Collocation on Finite Elements [89].

Orthogonal collocation on finite elements is applied to differential-algebraic
optimization problems containing ODEs in [72-76]. The resulting NLP problem is
then solved with Successive Quadratic Programming.

There currently exist methods that use orthogonal collocation on finite elements that
convert the differential-algebraic optimization problem containing ODEs onto a NLP
problem, then solve the NLP problem using successive quadratic programming.
Control vector iteration and control vector parameterization can be applied to solve
distributed parameter systems not containing algebraic equations and general
inequalities. The method referenced in [73] and used by Lynn and Zahrednik [71] can
solve distributed parameter systems, but cannot be completely automated, it requires
analytical differentiation of the integrand of the objective functional and the state
equations in order to obtain the Euler-Lagrange equations explicitly.

This work uses double orthogonal collocation on finite elements to convert the
differential-algebraic optimization problem into a NLP problem that is solved either
by generalized reduced gradient method or by successive quadratic programming.
This approach was taken because it can be fully automated from model to the optimal
solution without manual intervention and it does not depend on the assumptions in the
variational conditions since it does not use the necessary conditions for optimality.

It can be considered an extension of the approaches described in [72-76] to PDEs.

29

Chapter 3
Theory
3.1 Introduction

In this work control vector parameterization and double orthogonal collocation on
finite elements have been implemented to solve differential-algebraic optimization
problems. Double collocation converts a PDE into a number of algebraic equations.
Collocation converts a PDE into a number of ODEs or an ODE into a number of
algebraic equations. This chapter presents the theory necessary for this work.

Control vector parameterization represents the control functions of a problem as
linear combinations of suitable trial functions. The linear combination coefficients and
the coefficients of the trial functions are the optimization variables. It is a sequential
optimization method, whereby the optimum is found by an unconstrained optimization
method, and each time the optimization algorithm requires the value of the objective
function, the original set of differential equations has to be solved.

Orthogonal collocation on finite elements discretizes the differential equations at

chosen collocation points into a set of algebraic equations by approximating the
unknown functions to be found by a linear combination of Lagrange interpolation
polynomials. The derivatives of the functions are approximated by a similar linear
combination of derivatives of the Lagrange interpolation polynomials. The resulting
NLP can be solved by any suitable NLP solver. In this work either the generalized
reduced gradient method or successive quadratic programming are used.
The generalized reduced gradient method is a feasible path method. It solves the
nonlinear optimization problem in the subspace of the n-m nonbasic variables, where
n is the number of variables and m is the number of constraints, Its advantage is low
dimensionality, its disadvantage is that it requires that the constraints be satisfied at
each iteration.

The successive quadratic programming method is an infeasible path method. It does
not require that the constraints be satisfied at each iteration. It constructs a quadratic
programming subproblem by constructing a quadratic objective function and
linearizing the constraints and solves the subproblem repeatedly. These topics will now

be covered in more detail.

30

3.2 Control Vector Parameterization
3.2.1 Lumped Parameter Systems

In a lumped parameter system with time variation, the properties are spatially
uniform throughout the system, thus allowing the system to be represented by a set
of ordinary differential equations.

The control functions u(#) are expressed as linear combination of trial functions
fi{t). The functions uft) and f(t) are chosen by the user, using any insights into the

nature of the problem, e.g.,

u(t) = a, +a,t + a,?

£ =1
‘)
fuld) =t
[0 =12
and covering different possible solution behaviours.
U(®) = Y af(CimmCy) i=lop)

j=1
Unconstrained optimization techniques are used to determine the optimal set of

coefficients @; and c;. Another approach is to generate y; in a feedback form, i.e.,

expand it as a linear combination of trial functions of the state variables

u(n) = Eb.-f:}(xnJz’--xn’cq,""*csj,;‘) i=l,..p (3)

=
and determine the optimal coefficients b;; and c;;. If the control policy is purely on-off,

a control of the form

u(t) = u, + @ - u) [)m:(—-l)f“ H(r—a,.,.)} @)

pry

where H(t) is the Heaviside function

31

Ho = {3 128 2

could be used.
3.2.2 Distributed Parameter Systems
Distributed parameter systems are represented by partial differential equations.

If the independent variables are x,y, then

ulx,y) = Eaiiﬁ}(x,y,cijl,...,cﬁw) i=1,...p, (6)
Jj=1
k
Vi) = Y b (xC; et) imlp,)
j-l 1 le
!
wy) = Zcbh‘.j(y,cﬁ',...,cij") i=1,.D, ®)

el

assuming we have p, control variables u; depending on both independent variables, p,
control variables v, depending on the independent variable x, and p; control variables
w; depending on the independent variable y.
3.2.3 Algorithm to solve an optimization problem using control vector

parameterization
(1) Guess the coefficients
(2) Numerically integrate the state equations
(3) Compute the objective functional
(4) Compute new values of coefficients using an unconstrained optimization

procedure

(5) Repeat (2)-(4) until the optimal set of coefficients is found
3.3 Orthogonal Collocation on Finite Elements

In the method of weighted residuals (MWR), each unknown function c(x,y) is
approximated by

éxy) = Y 3 wh o) ®)

i=] j=l
Substitution of ¢ and its derivatives into the PDE results in a residual, R. We

32

require that the integral of the residual be zero:

f fR(x,y)w'.j(x,y)dxdy =0 i=12,.N j=12,.M (10)
xy

This equation is the general equation describing the MWR, and a multiplicity of
schemes arise out of this expression through the definition of the weighting functions
w;. In the collocation method the weighting functions w;; are all chosen to be the

Dirac delta, that is,

W, = S(X"‘ ;vy-yj) (11)
The Dirac delta function has the important property that

[faxy)se-x,y-ypaxdy = al,, (12)
xy

Thus the orthogonality requirement for the collocation method

f fR(x,y)ﬁl.j(x,y)dxdy =0, i=1,2,.Nj=1,2..M (13)
xy

are a mathematical statement of the requirement that the residual vanish at each
collocation point (x;,y;)

Orthogonal collocation and orthogonal collocation on finite elements are methods
to discretize differential equations. The unknown function, its first and second
derivatives are approximated by a linear combination of Lagrange interpolation
polynomials and their derivatives. The linear combination coefficients are the values
of the unknown function at collocation points. The Lagrange polynomials are defined
at collocation points within one or more finite elements. A separate set of Lagrange
polynomials is used in each finite element. The collocation points are chosen within
the finite element. In this work they are chosen to be the roots of the Legendre
polynomials in the interval 0 to 1 [79-80]. It is required that the residual, i.e. the
differential equation after substituting its approximation for the unknown function and
for its derivatives be zero at the collocation points. If there are N, finite elements

along the x-interval, N, finite elements along the y-interval, N internal collocation

33

points in each finite element in x-interval, M internal collocation points in y-interval,
a PDE with 2 independent variables will give rise to (N(N+1)+1 JN(M+1)+1)
algebraic equations and a state variable dependent on 2 independent variables will give
rise to the same number of NLP variables. The derivatives of the Lagrange
polynomials will be constants in the equations. The values of the unknown functions
at collocation points will become NLP variables. The differential equations are
collocated at those collocation points at the boundary of the integration domain, where
there are no initial or boundary conditions.

Orthogonal Collocation on Finite Elements applied to an ODE:

State variables and control variables are replaced by a linear combination of
Lagrange interpolation polynomials. The derivatives of the state variables are replaced
by a linear combination of the derivatives of Lagrange interpolation polynomials. The
differential equations are evaluated at collocation points where there are no initial or
boundary conditions. In each finite element k& the equation is to be satisfied at

collocation points ¢, i = 1,...,N+2 excluding any boundary condition.

dc d*c _ _ (14)
ﬂc,E.,F,w,t) =0 k = 1,...,N,

l‘-l'I
where w is the control and ¢ is the state variable,
N, = number of finite elements,
N = number of internal collocation points.

The state variable ¢(z) is approximated by

k - k (t'tk) 15
cht) = Y e, 1) u= (15)
n=1 Atg
where
At, =t -t (16)
and

34

N+2 -
L = T —2 (17)

j-l J#n un -uj

is the n-th Lagrange interpolation polynomial, for which

_|0 fori#n 18
L) = [1 fori=n e
giving
N+2
cke) =Y ¢/ (w) (19)

n=1

This reduces to c¥(t,) = ¢} because of (18). ¢/ is the value of ¢(?) at the collocation
point ¥; in the k-th finite element.

The control variable w(t) is similarly approximated by
N+1
wke) = Y w1 (20)
n=2
at only the N internal collocation points [79-80] giving
N+l

wht) = Yowliw) for2<isN+1 1)
n=

and wX(t,) = w} as before because of (18).
At the end points of finite elements :
N+l

whe) =Y wliw) fori=1landN +2 (22)

n=2

The derivatives of the variable ¢(¢) are approximated by

n

k N+2
dett) 1 Vo dl (1) .
dt Af& nxl du

and

35

d% k) _1 X e 4w

= ve "= (24)
fp n=l U

Theorem [59]

There exists a unique polynomial p,(x) of degree n which assumes prescribed values
at n + 1 distinct real numbers x, < x; < ... < x,.

Proof.

Let

p,x) =):)l (x) (25)

From (17) and (18) can be seen that p,(x) is a polynomial of degree n and goes
through the points (x,,c(xy)),...,(x,,¢(x,)). In order to prove uniqueness, let us suppose

that g(x) is also a polynomial of degree n interpolating c(x) at x, < x,; < ,..., < X,. Let
r(x) = p,x) - q(). (26)

Then r(x) is a polynomial of degree n with n + 1 zeros at x,,x,,...,x,. It follows from
the fundamental theorem of algebra that r(x) is identically equal to zero (i.e., the only
polynomial of degree n with more than n roots is the zero polynomial. Thus p,(x) is
unique.

Orthogonal Collocation on Finite Elements applied to PDEs with 2 independent

variables:

State variables and control variables dependent on 2 independent variables are
replaced by a linear combination of two sets of Lagrange interpolation polynomials.
The derivatives of the state variables are replaced by a linear combination of the

derivatives of Lagrange interpolation polynomials. The differential equation

dc d% dc d*¢ d% (27)

—— wx.y [=0
f (C’ax’axz dy dy? oxdy sk

must be satisfied at collocation points in each finite element (kl), k=1,...N,, I=1,...,N,,
at the collocation points (x;y;) where i = 1,..,N+2, j = 1,..., M+2 excluding any

36

boundary condition where w is the control and ¢ is the state variable. The state

variable c¢(x,y) is approximated by

N+2 M+2
(x—x,) y-y
cHix,y) = el @I () u=""* y=2_7"1
g ; " Ax, Ay,
N+2 M+«2
cay) =Y) cnff,l,.(u;)l,,,(v,-)
n=]l m=]

(28)

(29)

and c*(x,y;) = ¢, because of (18). Here ;" is the value of c at the collocation points

(w,,v,) in the (kl)-th element
The control variable w(x,y) is similarly approximated by

N+l M+l

whxy) = Yo 3 Wl @),)

n=2 m=2

N+l M+1 &
_ H for 2<isSN+1
Wﬂ(x‘-syj) = E Ewmln(ui)lm(v)') and 2 Sj < M+1

n=2 m=2
and w'(x,y;) = w;" because of (18).
N+l M+l
whEy) = 30 3 Wand @)1, 07)

n=2 m=2

at the corners of the 2-dimensional finite elements.

N+l H
N _ K for i=1 and N+2
w (xpyj) = Ewm'zn(ui) 2<js M+1

n=2

M+l
H _ 7] for2iN+l
w (x,'!y) = ,;z: wimlm(vi) j‘-:l and M+2

The derivatives of the state variable c(x,y) are approximated by

37

(30)

(1)

(32)

(33)

(34)

Ictxy) 1 “’i dl (u) [“" e)} 1 N*z dl (u) u (35

a.l' Axk n=l m=l k HII m
2. H N+z g2 M2 N+2 2
d%c (x,-,yj) = 1 a‘l (u) EC,.’::, ! (v) 1 d®l (u) ;; (36)
ox? A).’: wl du? | m=1 Axt a-l du?
acH(x,y) _ 1 - dl,v) gc“l w)| = M'z dl (V) el B
ay Ay | m=l dv | n=1 ﬂ)’ I m-l
2. H M2 2 ’-mz M2 g2
d’c (xpyj) - 1 E d lm(vj) Ecnil w)| = 1 E d?l (V) ‘:‘; (38)
ay 2 ijz m=] dv 2 | n=1 ot Aylz m=1 dv 2
2kl N+2 M2
d*c xy) 1 dl (u) dl (v) (39)

axdy Axhy, z; mEl

Theorem.

There exists a unique polynomial of degree n in x and of degree m in y solving the

interpolation problem
P®p¥) =cx,y) 0<is<m0<j<m (40)

on a rectangular grid.

Proof.
Egs. (28-29) establish the existence of such polynomials. In order to prove uniqueness,
suppose
@ny) =Y Y ax '’y (41)
i=0 j=0

is a polynomial of degree » in x and of degree m in y also solving (40). Equ. (28) in

terms of this theorem 1is

38

Pu®Y) = 3 3 LOLO)e; (42)

i=0 j=0

where ¢; = c(x;y;). From the assumption that p,, and g,, solve the interpolation

problem (40), it follows that
PuX,¥) = 4,,(%,y) = c(x,y) (43)

From (43) the following equation holds

> axyl =, (@4)

i=0 j=0
The coefficient of ¥y? in Equ. (41) is a,,. The coefficient of xy? in Equ. (42) is given
by

n m I

! H H (x;-xg)(yi-y ;)

k=00t I=0,k%f

krikea I#jlep

[);(1 1T % I) }C,. (45)

where o is a selection of n-p elements out of Xy, Xy, wey Xigy cees Xipps +oos X, and P is a

selection of m-q elements out of Yy, Yy, weey Yjgs +ees Ypr1» s Yo Without regard to order.

s = C,5,Cpy» Where C,., is the number of ways of selecting n-p objects out
of n objects without regard to order and Come is the number of ways of

selecting m-q objects out of m objects without regard to order. a,,’s are uniquely
determined by the corresponding coefficients in Equ. (42) shown in (45). Therefore
a,,’s are unique. Since the coefficients of g,, are unique, they must be equal to the
corresponding coefficients shown in (45), demonstrating that g,,,(x,y) is p,,(x.y) in

rearranged from, i.e.,

VIR CAY =26 A7) (46)

This proves that p,,, is unique.
Example. If n=2,m=2,p=1,i=2,q=1,j =2, then Equ. (45) becomes

39

B T i e T e —

1 [2::((-1)21"[xtHy,):icn= @

(xz_xg)(xz_xl)(}’z—yo)(yz—yl) kikea kjlep

(XY + Xy, + XYo * X)) Cpy
where

c, =c"=cf=(2]=2; c,,,”;=c;’=cf=[2J=2 (48)

For the first combination o = x,, for the second combination o = x,, for the first
combination P = y,, for the second combination B = y,.

The state variables are defined at the internal collocation points of finite elements
as well as at the boundaries of finite elements and at the boundaries of the integration
domain. The control variables are only defined at the internal collocation points of
finite elements. The control variables are extrapolated at the boundaries of finite
elements and at boundaries of the integration domain. In order to make the number
of collocation points equal to the number of algebraic equations, the differential
equations are collocated at finite element boundaries and at those boundary points
where there are no boundary conditions. Although the state functions are approximated
by different polynomials in different finite elements, the state function is a continuous
function over the integration domain, because the value of the state function at finite
element boundary is a linear combination coefficient in the polynomial approximation
and an NLP variable, and because of property (18) the approximating polynomial
reduces to this variable. The control functions are not continuous over the integration
domain, because the value of the control function at boundary is not a linear
combination coefficient of the polynomial approximation and not an NLP variable, but
extrapolated by a linear combination of Lagrange polynomials defined over internal
collocation points. This would result in the control function having different values at
boundary for different finite elements sharing the boundary. In order to make the
control function a one-valued function, it is approximated in only 1 finite element at
boundary. An arbitrary choice has been made that boundary points belong to finite

elements on the left hand side or on the lower side of finite elements.

40

3.4 Constrained Optimization

The DAOP problem has now been formulated a as large NLP problem where there
are many equality constraints, and there may also be inequality constraints. It is
therefore necessary to solve the optimization to solve the original problem. The
conditions for a solution of such problems consist of following 6 conditions now
developed [116].

Definition. A point x" satisfying the constraint h(x")=0 is said to be a regular point
of the constraint if the gradient vectors Vh,(x"),Vhy(x"),...,Vh,(x") are linearly
independent.

First-Order Necessary Conditions (Equality Constraints)

Let x" be a local extremum point of f subject to the constraints h(x)=0.

Assume further that x* is a regular point of these constraints. Then there is a
A e E"
such that
VAx*) + ATVh(x*) =0 49)
h(x*) =0
The necessary conditions can be expressed in the form
Vix*)A) =0
(50)
Vix*A) =0
where
I(x,\) = fix) + ATh(x) (51)

is the Lagrangian.
Second-Order Necessary Conditions (Equality Constraints)
Suppose that x” is a local minimum of f subject to h(x) = 0 and that x" is a regular

point of these constraints. Then there is a A € E” such that

Vfix*) + MVA(x®) = 0 (52)

or

41

AMNED |y Oh(x") %ahz(x') vy O
axl a‘rl axl " axl
Nfx) , 5 MG o &Y k)
ox, o ox, T ox, tet Ay ax, 0 (53)
h(x®) =0
h(x*) =0

If the tangent plane M = {y:Vh(x")y = 0} is denoted by M, then the matrix
L(x*) = F(x*) + ATH(x *) (54

is positive semidefinite on M, that is, y'L(x")y 2 0 for all y € M.

L = F + ATH is the matrix of second partial derivatives, with respect to x, of the
Lagrangian / = f + ATh.

F is the Hessian of f and ATH(x®) = ilﬂ,(x *) where H;(x") is the Hessian of
h(x"). .

Second-Order Sufficiency Conditions (Equality Constraints)

Suppose there is a point x" satisfying h(x") = 0 and a A € E™ such that

VAx*) + AVh(x*) = 0 (55)
Suppose also that the matrix
L(x*) = F(x*) + N'H(x") (56)

is positive definite on
M = {y:Vh(x")y = 0}, that is, for y € M, y # 0 there holds
y'L(x")y > 0. Then x" is a local minimum of f subject to h(x) = 0.

Let x* be a point satisfying the constraints
h(x*) =0,gx") <0 G

and let J be the set of indices j for which g(x") = 0. Then x" is said to be a regular
point of the constraints (57) if the gradient vectors Vi(x"), VgJ{x'), 1<is<m,je]

are linearly independent.

42

Kuhn-Tucker Conditions (First-Order Necessary Conditions - Inequality
Constraints).

Let X" be a relative minimum point for the problem

min f{x)

subject to h(x) =0, g(x) <0,

(58)

and suppose X' is a regular point for the constraints. Then there is a vector A € E™

and a vector p € EP with p 2 0 such that

VAx*) + ATVh(x") + n"Vg(x*) =0 (59)

pgx) =0 (60)
Since p 2 0 and g(x) < 0, (60) is equivalent to the statement that a component of
p may be nonzero only if the corresponding constraint is active.
Second-Order Necessary Conditions (Inequality Constraints)
Suppose the functions f,g,h € C? and that x* is a regular point of the constraints

(57). If x" is a relative minimum point for the problem

min f{x)
st h(x) = 0 (61)
glx) <0

then there isa A € E™, n € E?, u = 0 such that (59) and (60) hold and such that
L(x*) = F(x*) + MH(x") + p'G(x") (62)

is positive semidefinite on the tangent subspace of the active constraints at x* (Eqn.
65).
L =F + ATH + p'G is a matrix of second partial derivatives, with respect o X, of the
Lagrangian [= f + ATh + p"g. F is the Hessian of f, ?FH(x ") = E AH (X)
where H,(x") is the Hessian of h,(x") and p’G(x*) = E pG,(x) whcre G,(x") is
the Hessian of g(x"). "

Second-Order Sufficiency Conditions (Inequality Constraints)

Let f,g,h be € C% Suppose there exist A € E®, u € E?, such that

43

u=0
W) = 0)
VAx*) + MVh(x*) + p"Vg(x*) =0,

and the Hessian matrix
L(x*) = F(x*) + \TH(x") + p"G(x ") (64)
is positive definite on the subspace

M=1{y:Vh(x®)y =0, Vg(x")y =0 forall je J} (65)

where

J={j:g(x"=0p>0} (66)

Then x° satisfying (57) is a strict relative minimum of problem (61).
3.5 Primal Methods [124].
Introduction. A primal method of solution is a method that searches through the
feasible region for the optimal solution. Each point in the process is feasible and the
value of the objective function constantly decreases. For a problem with » variables
and having m equalities only, primal methods work in the feasible space, which has
dimension n-m. This reduction in dimensionality is a clear advantage of the primal
methods. Another advantage of this method is that since each point generated in the
search procedure is feasible, if the process is terminated before reaching the solution,
the terminating point is feasible. The major disadvantages of primal methods are, that
they require a phase I procedure to obtain an initial feasible point, and they are all
plagued, particularly for problems with nonlinear constraints, with computational
difficulties arising from the necessity to remain within the feasible region as the
method progresses.
3.5.1 The Generalized Reduced Gradient Method.

The choice of this method is based on [127-129], where the generalized reduced
gradient method was evaluated as one of the best methods to solve nonlinear

programming problems. For simplicity let us initially consider the nonlinear equality-

44

constraint form of the NLP, namely

min f(x)
subject to h(x) =0, i=1,2,..m

(67)

Implicit Variable Elimination. Suppose x" is a point satisfying the constraints of
the equality-constrained problem (67), and suppose a linear approximation to the

problem at the point x is constructed. The result is
h(xx®) = h(xV) + VA(xD)(x-x®) i=1,..m (68)

where VA, is a row vector.
Suppose these linearized equations are used to predict the location of another

feasible point, that is, a point at which
h(xx®) =0 i=12,...m (69)

Then, since h(x¥) = 0, i = 1,2,...,m, that point must satisfy the system of linear

equations

Vh(xM)(x-x®) =0 i=12,..m (70)

In general, m < n; consequently, this system of equations will have more unknowns
than equations and cannot be solved to yield a unique solution. It can be solved for
m of the n variables in terms or the other n-m. The first m variables are labelled

£ (basic) and the remaining variables are labelled X (nonbasic). Corresponding
to this partition of the X’s, the row vectors V/; are partitioned into VA, and V}Z.
and these subvectors are accumulated into two matrices B and C. The matrix B will

consist of elements

Vh, (71)

and the matrix C of the elements

45

(72)

The system of Egs. (70) can be written using the matrix notation introduced above as
B# -2®) +Cx -x® =0 (73)

Assuming that the square mXm matrix B has nonzero determinant, this set of equations

can be solved in terms of the x for the £ variables. This is equivalent to
£-20 = _ BIC(x - xO) (74)

To a first-order approximation, all points in the vicinity of x* satisfying the
constraints h(x) = 0 will be given by the matrix equation (74). For any choice of the
nonbasic variables x, the matrix equation will calculate values of the basic variables

X that will satisfy the linear approximations to the original constraints. The
linearization has made it possible to solve the constraints for m variables even though
this could not be accomplished directly with the constraints themselves.

Eq. (74) can be used to eliminate variables &£ from the objective function f(x).

Thus,
& ;%) =« & - BCE - T0)%) (75)

and f is reduced to a function involving only the n-m nonbasic variables x . Since
fis an unconstrained function of the nonbasic variables X, the necessary conditions
for x to be a local minimum of f are that the gradient of f with respect to ¥ be
zero.

Using the chain rule, since f(¥) = fi#(¥),%), then

F o, o o 76)

—_—

ox ox O0fF ox
Since, from Eq. (74),

46

- = -BC (77)

and if we write Vf = f / 0%) and Vf = Of / 0%) and Vf = (9f / 0£) , then it
follows that

Vix®) = Vf(x®) - Vix®)B-iC (78)
The first-order necessary conditions thus become
Vf(x®) - Vie™B-'C = 0 (79)

The vector Vf defined by (78) is called the reduced gradient (or constrained
derivative) of the equality-constrained problems. The first-order necessary conditions
for the local minimum expressed in terms of the reduced gradient reduces simply to

the statement that

Vf(x(l)) =0 (80)

It is going to be shown [124] that the reduced gradient optimality criterion is
equivalent to the Lagrangian optimality criterion. Thus, zeros of the reduced gradient
are Lagrangian stationary points. To verify this, the Lagrangian necessary conditions

must be considered for the equality-constrained problem. These are

VAx*) + A)'Vh(x*) =0 (81)

where Vh is the matrix of constraint gradients. If the definition of independent and

dependent variables x and £ is introduced, then the above system of equations

can be written as

L3 ‘T o
Vix* + A)'B =0 (2)

Vix*) + AC =0

The first of these equations can be solved for A to yield

47

A* = - (Vf(x -)B -I)T (83)
which when substituted into the second equation yields
Vix*) - Vix*)BC = 0 (84)

This is precisely the reduced gradient condition derived earlier. By using linear
approximations to the equality constraints two things have been accomplished:
1. A set of linear equations has been obtained to estimate the values of £
corresponding to any perturbation of the nonbasic variables X about the point x®
such that the resulting point is feasible for the first-order approximation to the
nonlinear constraints.
2. A direct first-order necessary condition for the equality-constrained problem has
been derived that implicitly accounts for the equality constraints.

The Basic GRG Algorithm. In the previous section, linearization of the
constraints was used to express the objective function as an unconstrained function of
n - m independent variables. As a consequence of this construction, the problem can
be treated as an unconstrained optimization problem - at least for small excursions
about the base point for the linearization - and presumably it can be solved using any
of the variety of unconstrained gradient methods. Thus the following algorithm
suggests itself.

At iteration k, suppose the feasible point x® is available along with the partition
x = (£,x) which has associated with it a constraint gradient submatrix B with
nonzero determinant.

Step 1. Calculate the reduced gradient
Vf = Vf(x®) - Vix®)B-C @5
Step 2. If |Vf| < g stop. Otherwise, set

7 = (-Vjy (86)

d=-B-'Cd (87)

48

d = dad’ (88)

Step 3. Minimize fix™® + ad) with respect to the scalar parameter a. Let o® be

the optimizing «, set

k= x® 4 By (89)

and go to step 1.

This prototype algorithm will now be refined.

It is easy to verify that regardless of the degree of nonlinearity, the direction d
generated in the fashion is a descent direction. From a first-order Taylor’s expansion

of Eq. (75), we have that

) - fix®) = flx) - fx®) = Vix®)F - £¥) = aVix®)a (0

Thus, if d is chosen as
E - _Vf(x (k)) (91)

then it follows that

fX) - fix®) = (VH'(-Vf) = -a|VfI? 92)

The right-hand side of this expression is less than zero for all positive values of c.
Consequently, for all positive a’s small enough that the linear approximations used

are sufficiently accurate, it follows that
flx) - fix® <0 (93)

and consequently d is a descent direction.

While it is thus evident that step 2 produces a descent direction, it is not at all clear
that the points generated in following that direction will be feasible. In fact, for
nonlinear constraints, d will not be a feasible direction. Rather, because it is
constructed using a lincarizatioﬂ of the equality constraints, it is almost certain to lead

to points away from the constraints. It has been shown that the vector d is a

descent direction in the space of nonbasic variables X but that the composite

49

direction vector

d 94)
d
where d , calculated via the linear equation

d = -Bcd (95)

yields infeasible points. Since d has desirable properties but the addition of d
causes undesirable consequences, it is necessary that the computation of d should
be revised. d is calculated using the linearization, but then, rather than
calculating d asin step 2 and minimizing f along the line fixed by d, d s
projected onto the constraint surface and fis minimized along the resulting curve. This
means that for every value of a that is selected as a trial, the constraint equation will
have to be solved for the values of the dependent variables £ that will cause the
resulting point to be feasible.

Thus step 3 of the prototype algorithm must be replaced by an iterative procedure
that will, for a given value of a, iterate on the constraints to calculate a value of

£ that satisfies the constraints. This can be accomplished by using, for instance,

Newton’s method to solve the set of equations
h(Z® + adf) =0 i=12,.,m (96)

Assuming that Newton’s method will converge to an £ that satisfies the
constraints, then f(x) can be evaluated at that point to determine if an improvement
over x® has been achieved. If no improvement has been achieved, then o must be
reduced using some search logic, and the Newton iteration must be repeated. If f{x)
is improved, then the algorithm can either continue with a new value of o until no
further improvement in f{x) can be obtained, or else, as is more typically done, the
current point can be retained and a new direction vector calculated.

It is possible that for the o selected, the Newton iterations may fail to find an £
that satisfies the constraints. This indicates that o was chosen too large and should be
reduced. If this occurs, then o must be reduced and another cycle of Newton iterations
initiated.

30

Extensions of the Basic Method. The preceding development of the basic GRG
algorithm has been restricted to equality constraints and has resulted in essentially a
gradient method operating within the reduced space of the nonbasic variables. In this
section extensions of the basic algorithm to accommodate the general NLP problem

with both upper and lower variable bounds as well as the inequality constraints will

be considered:
Min f(x)

subject to a; s gj(x) < bj J=12,...p
o7
h(x) =0 k=12,.m

P <x<x® i=12,.n

Treatment of bounds: Variable upper and lower bounds can be accommodated either
explicitly by treating each bound as an inequality constraint or implicitly by
accounting for the bounds within the appropriate steps of the algorithm. The latter
approach is clearly preferable, since it results in a smaller matrix B that must be

inverted. To incorporate such constraints into the algorithm in an implicit fashion,

three changes are necessary:
1. A check must be made to ensure that only variables that are not on or very near

their bounds are labelled as basic variables. This check is necessary to ensure that
some free adjustment of the basic variables can always be undertaken.
This can be accomplished by simply ordering the variables according to distance from

their nearest bound. Thus, at the current feasible point x®, let

2® = minlr® - x®),6® - x®) (98)

The quantities z® can then be ordered by decreasing magnitude, and the variables
associated with the first m can be selected as dependent variables. Of course, this
partition of the variables must also result in a nonsingular B. Therefore, one or more
of the first m variables may have to be rejected in favour of variables farther down
the order before a nonsingular B results.

2. The direction vector d is modified to ensure that the bounds on the independent
variables will not be violated if movement is undertaken in the d direction. This is

51

accomplished by setting

0 ifx, =% and (Vf), <0

99)

R
n

0 ifx, =x® and (Vf), > 0

-(Vf), otherwise

3. Checks must be inserted in step 3 of the basic GRG algorithm to ensure that the
bounds are not exceeded either during the search on a or during the Newton iterations.
The GRG2 package [91] treats variable bounds separately.

Treatment of Inequalities:
General inequality constraints can be handled within the GRG framework either by

explicitly writing these constraints as equalities using slack variables or by implicitly

using the concept of active constraint set. In the former case, inequalities of the form

a; S g(x) S b, (100)

are converted to equalities

b, %) = g -x,, =0 (101)

by the introduction of slack variables x,,;, together with the bounds

a; < X, < bj (102)

This approach is attractive because it allows all constraints to be treated in a uniform
fashion without further restructuring of the basic algorithm. The disadvantage is that
B must include a row for each g{x) even if the inequalities are not binding. In
addition, the problem dimensionality is increased.

If an active constraint strategy is employed, then at each iteration point ¥* the
active inequalities must be identified and their linearizations added to those of the
equalities to define B and C. The logic of step 3 of the basic algorithm must be
modified to include test for the violation of the previously inactive constraint. If at
target point x¥+ad some previously inactive constraint is violated, then the step size

o must be adjusted and the Newton calculations repeated until a point satisfying both

52

the active and inactive constraints is found. At the resulting points, any tight but
previously inactive constraint must be added to the active constraint set, and any
active constraint now not binding must be deleted from the active set. These
considerations will clearly complicate the step 3 computations and will result in the
need to continually readjust the size of B and C and update B”.

The direction vector d can be updated using conjugate gradient or quasi-Newton
methods. Provided that the variable partition is not altered, the use of such updates
will substantially enhance the convergence rate. Whenever a change is made in the
partition, the updating formula must be restarted, since the nature of the search
subspace is altered. Thus, the modifications of direction vectors is most effective in
the final stages of the iterations when no further significant partitioning changes are
encountered. The GRG2 package [91] was implemented in this work based on its good
performance [127-129]. It uses slack variables to convert inequality constraints into
equality constraints and uses active set strategy, i.e., constructs the basis from the
Jacobian of the binding constraints only and adding new constraints to the active set
if they become binding.

3.6 Lagrangian Method/Successive Quadratic Programming

General. This method is based on directly solving the Lagrange first-order
necessary conditions. The method works in the (n+m) dimensional space.

Direct Quadratic Approximation. Given x’, an initial solution estimate, and a
suitable method for solving QP subproblems. a plausible solution strategy would
consist of the following steps:

Step 1. Formulate the QP problem, replacing f{x) by its quadratic approximation and

the constraints by their linear approximation:

min VAx®)Td + .;.d V¥(x ®)d

subject to h(x®) + VR(x®)d =0 i=1,2,..m (103)

gx®) + Vg(x®d 20 j=12,..p

Step 2. Solve the QP problem, and set x**/) = x® 4 g,

Step 3. Check for convergence. If not converged, repeat from step 1.

53

Quadratic Approximation of the Lagrangian Functions. It is motivated by the
observation that it is desirable to incorporate into the subproblem definition not only
the curvature of the objective function but also that of the constraints. However it is
preferable to deal with linearly constrained rather than quadratically constrained
subproblems. This can be accomplished by making use of the Lagrangian function.
The equality-constrained problem is first considered. The extension to inequality

constraints will follow in a straightforward fashion.

For the problem

min f(x)

subject to h(x) =0

(104)

the necessary conditions for a point x" to be a local minimum are that there exist

a multiplier A* such that
VIix*A) = Vf* + A)'Vh* =0 and h(x*) =0 . (105)

Sufficient conditions for x” to be a local minimum are that conditions (105) hold

and that the Hessian of the Lagrangian function,
VxAY) = VF* + W)V (106)
satisfy
d™V2d > 0 for all d such that (Vh*)'d = 0 (107)

Given some point (.i",i) , let us construct the following subproblem expressed in

terms of the variables d:

min VADd + _;_ dV AH(EN)d (108)

subject to h(x) + Vh(x)'d = 0 (109)

If & = 0 is the solution to the problem consisting of (108) and (109), then x
must satisfy the necessary conditions for a local minimum of the original problem,

First note that if d* = 0 solves the subproblem, then (109) must be satisfied. Then

54

from (109) it follows that Ah(x) = 0 ; in other words, X is a feasible point in the
original problem. Next, since d* = 0 is a solution to the problem consisting of (108)
and (109), there must exist some A" such that the subproblem functions satisfy the
Lagrangian necessary conditions at d* = 0. Thus, since the gradient of the objective
function (108) with respect to d atd” = 0is VAlx) and that of (109) is Vh(x)

, it follows from the first-order necessary conditions for d” to be a local minimum of

(108)
that
1 3y =r
v, [Vﬂad = dV,I((x,l)d:[’w + (110)
ATV, [hGE) + V@], =
VAZ) + A)VAE) =0 (111)

Then A™ will serve as Lagrange multiplier for the original problem, and thus x
satisfies the necessary conditions for a local minimum.

If the subproblem is reformulated with (x,A*) instead of xA) (111) still
holds so that d = 0 satisfies the necessary conditions. Suppose the subproblem also
satisfies the second-order sufficient conditions at d = 0 with A",

The Lagrangian of the problem consisting of (108) and (109) is

VAD + . d VIEN + OVIHE + VAGd) (112)
The second order sufficiency conditions state that the second derivative of the
Lagrangian (112) must be positive definite for all d such that
V,[r@® + Va@Ed]'d =0 (113)

Note that the second derivative with respect of d of (112) is V(¥A") and
(113) reduces to VA(x)"d = 0 . Then, it must be true that

d VAT > 0 for all d such that Vh(x)'d = 0 (114)

Therefore, the pair (X,A") satisfies the sufficient conditions for a local minimum

55

of the original problem.
This demonstration indicates that the subproblem consisting of (108) and (109) has

the following very interesting features:
1. If no further corrections can be found, that is, d = 0, then the local minimum of
the original problem will have been obtained.
2. The Lagrange multipliers of the subproblem can be used conveniently as estimates
of the multipliers used to formulate the next subproblem.
3. For points sufficiently close to the solution of the original problem the quadratic
objective function is likely to be positive definite, and thus the solution of the QP
subproblem will be well behaved.

By making use of the sufficient conditions stated for both equality and inequality
constraints, it is easy to arrive at a QP subproblem formulation for the general case

involving m equality and p inequality constraints. If we let
I(xAp) = flx) + 3 AR - Y pg) (115)

then at some point (¥;A,Ji) the subproblem becomes

min g = V' + 2 4V IERD

subject to E(d;f) = h(x) + VA(xX)'d =0 i=12,..m (116)

gj(d;i) = gj(f) + ng(fjrd 20 Jj=12,..p

The algorithm retains the basic steps outlined for the direct QP case. Namely, given
an initial estimate x° as well as A° and p°, the subproblem [Eq. (116)] is formulated
and solved; set x**) = x¥ + d; check for convergence; and repeat, using the next
estimates of A and p the corresponding multipliers obtained at the solution of the
subproblem.

Constrained Variable Metric Method. Given initial estimates of x°,A°p’, and a
symmetric positive definite matrix H°,

Step 1. Solve the problem

56

min VAx®)Td + %d TH ®q

subject to h(x®) + Vh(x®)d =0 i=1,2,..m (1
8 (x ®y + ng(x‘*’)d 20 j=1,2,.p
Step 2. Select the step size o along d*), and set
@D = »® o a® (118)
Step 3. Check for convergence.
Step 4. Update H", using the gradient difference
in(x (hl)’l(hl}’p{m)) - Vxl(x (k)’l(h-l)’p[hl)) (119)

in such a way that H**") remains positive definite.

In order to ensure convergence, it is necessary to find a suitable merit(penalty)
function - a merit function that is compatible with the direction-finding algorithm in
the sense that it decreases along the direction generated. It is a somewhat arbitrary
function, defined for the sole purpose of guiding and measuring the progress of an
algorithm. It is defined so that it is minimized at the solution to the original problem,
and under appropriate circumstances it will serve as a descent function for an
algorithm, decreasing in value at each step. The quadratic programming subproblem
solver VE17AD of the VFI3AD package [92] uses an active set strategy, i.e., a subset
of the constraints that are satisfied as equalities by the current estimate of the solution
vector is considered at each iteration.

3.7 Discussion
Although control vector parameterization can be used to solve distributed parameter

systems, in this work only an initial value 4th order Runge-Kutta ODE solver has been
implemented. In order to make the package more robust and to enable it to solve more
problems in case one of the solver fails to find the optimal solution of a problem, two
nonlinear programming problem solvers have been included into the optimization
package. The GRG2 and VF13AD packages were chosen as two very reliable
packages, each representing the currently known 2 best nonlinear programming

methods available [127-129]. Chemical engineering problems have states and controls

57

that represent quantities like temperature or concentration. In this work orthogonal
collocation on finite elements has been chosen as a method of weighted residuals ,
because the linear combination coefficients of the Lagrange interpolation polynomials
are the values of the functions to be approximated at the collocation points, so that the
coefficients are physically meaningful quantities. This becomes useful when providing
variable bounds, initializing state or control functions or interpreting state or control
functions. Also the formulas are easily programmable. The property (18) of the
Lagrange interpolation polynomials is particularly advantageous in making
programming of the formulas simpler.

3.8 Conclusions

In this work, control vector parameterization can only be used for models containing
initial value ordinary differential equations. If there are only such differential equations
and their number is at least 3 and there are no algebraic constraints in the model, then
control vector parameterization is the preferred approach for solving an optimization
problem. If the upper limit of the integration is an optimization variable, then control
vector parameterization is the only possible approach to employ.

Although in the literature, successive quadratic programming, an infeasible path
method, is highly praised as the method used to solve DAOP problems arising in
chemical engineering [94], the generalized reduced gradient method, a feasible path
method, seems more suitable to solve models containing logarithmic and exponential
functions, square roots and fractions because problems are less likely to occur in the
GRG2 package due to negative or too large arguments in functions or zero
denominators.

Orthogonal collocation of finite elements combined with nonlinear programming is
an approach that can be used to solve the most general differential-algebraic
optimization problems. The only disadvantage of the method is the dimensionality that
precludes its current use for differential-algebraic optimization problems containing

PDEs having 4 independent variables.

58

4 ey e

Chapter 4
Generating the Nonlinear Programming Problem

4.1 Introduction

Orthogonal collocation on finite elements is used in this work to discretize the
differential equations and the initial or boundary conditions and to transform the
objective functional into an objective function. The differential equations and the
initial or boundary conditions will give rise to algebraic equations after the unknown
functions and their derivatives have been replaced by a linear combination of
Lagrange interpolation polynomials and their derivatives. This will enable any
correctly posed problem within the limitations of the next section to be described as
a NLP problem. This description can be developed automatically using the computer
program to be described. The program provides an input language for the description
of user’s problems in the form of a model. Some parts of the program may have to
be written by the user to describe particular requirements.

4.2 Problem Definition

Let us consider the following problem:

min G(%,5,€1,6,(0),630):€(X.Y)P 1P, (X),03(V)P (6, 3) 10,1, (%), 18, (¥), 1 (x,3)) |

U, u;(x)rug(y) Uy (xy)

xmxymy,

% ¥
+ sz(x’"vcz(x)"’4(x’3’f)»pl’pz(x)'“1*"z(x))dx + fGa0’,Cl,cs(Y),c‘(xf,)’),PpPs(}’),u,,us(y))dy
0 0

+ J‘ fG4(x’y’cl’ci(x)’c3(y)’c“(x’y)’pl’pz(x)’ps@)’p‘t(x’”’"p”;(x):";(y),u4(x,y))dxdy
’ (1)

0

59

subject fo g(x,y,cl,cz(x),CS(y),q(x,y),pl,pz(x)ps(y),p4(xy),ul,uz(x),us(y),m(x,y)) <0
h(x,,€1,6,(0),€5(0):€,(0:Y).0 1,2, ()25 (3):D(%,Y) 4,18, (3), 1, (1), 2, (x,y)) = 0
JY,€4,65(0),6,(0),€ (X:Y)sP 1P, (X)), P (%.Y),
3,1, (1), 15(1), 1 (x,y),dey(x)/dx,d ¢, (x)/dx 2,
de(y)/dy,d?c,(y)/dy *0¢ (x,y)/0x,0% (x,y)/0x?,
dc,(x,y)/0y,0%,(x,y)/0y %,0%c (x,y)/0xdy) = 0 xed, ye€®, (x,y) e €B
c,=c,atxed Sl
c,=c,atye o2
¢, =c,at (xy) € 0B
u < u, < u’
() S wy(0) < wy’(x)
uy;) < wy) < 1" (y)
ug (x%y) < uxy) < ul(xy)

where x,y = independent variables
c, = state variable vector
¢, (x),¢35(y),C4(x,y) = state function vectors
u, = control variable vector
u,(x),u3(y),u4(x,y) = control function vectors
p; = parameter vector
P2(X),P3(¥),P4(X,y) = parameter function vectors
u,5u, Y, (), (x),us(y),u Y (y),u(x,y),u,"(x,y) = control bounds
g,h = design constraint vectors
f = vector of ODEs and/or PDEs
Q1 = integration domain of x
Q2 = integration domain of y
Q3 = integration domain of (x,y) which should be rectangular
0Q1 = boundary of Q1
0Q2 = boundary of Q2
0Q3 = boundary of Q3

4.3 Domain Discretization

The rectangular grid G is defined by the parameters
LB, UB, : left and right endpoints of x-interval
LB,,UB, : bottom and top endpoints of y-interval

60

N, : number of finite elements along x-interval

N, : number of finite elements along y-interval

N, : number of internal collocation points in the i-th finite clement along x-interval

M, : number of internal collocation points in the j-th finite element along y-interval
The collocation points are chosen the roots of Legendre polynomials in the interval

[0,1]. Each finite element is mapped in the interval [0,1]. The domain is discretized

into rectangular elements with the boundaries

X = XXX ,xN: o1 @
Y =YY ,yp...,yN’ o1

There are N,N, rectangular elements and

N, N,
YN+ N, + 1} Y M|+ N, + 1} ®

i=l ol

grid points.
The grid points along x-interval are rootl, ., y and along y-interval

root2,, oL, where

neol, = ma.x N, +2 @)
I<i<N,
and
ncol, = max M, + 2
‘ 5
ISiSN,)

4.4 Discretization of Differential Equations

A PDE problem will be assumed. For each grid point in the rectangular integration
domain, where there are no initial or boundary conditions, an algebraic equation is
generated through scanning the PDE and replacing variables and derivatives. ODEs
are handled in the same way, only the discretization is done along x-interval or y-
interval depending on whether the variables in the ODE are dependent on the first or
the second independent variable, and not over a rectangular integration domain. Every

state and control variable maps into a range of NLP variables. The ranges are defined

61

as follows.
The start index of a range, referred to as a base, is 1 for the first variable,

range(first variable) + 1 for the second variable, etc. The range for a state variable c(x)

N, (6)
L\: NP] +N_+1

=]

is

The range of a state variable ¢(y) is

N,
LEMJ +N, +1)

=]
The range of a state variable c(x,y) is

N, N,
[ENP:f+NZ+1 [ZMP]+N,+1 ©)

p=1 p=l

The range of a control variable w(x) is

N:
TN, ©)

p=l

The range of a control variable w(y) is

NJ’
N (10)

pl

The range of a control variable w(x,y is
N, N,
>N, || S, an
p=l p=l

62

The range of a control variable which is dependent on the first independent variable
and is a piecewise constant function along the x-interval is N,.

The range of a control variable which is dependent on the second independent
variable and is a piecewise constant function along the y-interval is N,.

The range of a control variable w(x,y), when w(x,y) is a piecewise constant function

over the x-interval is
N’
N 3 M, \2)
=1

The range of a control variable w(x,y), when w(x,y) is a piecewise constant function

over the y-interval is
- (13)
N, E;N’

The range of a control variable w(x,y), when w(x,y) is a piecewise constant function
over 2-dimensional finite elements is (N,)(V,). The range of a control variable
w(x),w(y) or w(x,y), constant over the integration domain is 1.

4.4.1 Replacing Independent Variables
In the polynomial approximation the independent variables x and y are mapped into

the interval [0,1] using the transformation

X -x,

and v = Y T (14)
Axk Ay;

u':

When an independent variable appears in the model, when an equation is collocated
at (), the inverse transformation has to be performed to compute the correct value
of the independent variable. Therefore the indcpc_ndcnt variable x in the kl-th element
at the collocation point (u,v;), is replaced by =~ uAx, + x, , where Ax, is the length
of the k-th finite element along the x-interval, x, is the left endpoint of the k-th finite
element along the x-interval, and y is replaced by vAy+y, where Ay, is the length of
the /-th finite element along the y-interval and y, is the bottom endpoint of the /-th

finite element along the y-interval.

63

-l Fos 5

)

4.4.2 Replacing State Variables.
a) A state variable c(x,y), dependent on both independent variables in the k/-th element

at the collocation point (;,V)), is replaced by the NLP variable x;,, where

ind = base - 1 +In + I, + (i-)n +j (15)

where

=]

k-1 -1 N, (16)
Il=§NP +k-1LL=|}yYM +l—1,n=z'l:Mp +N +1

and base is the start index of the range of indices corresponding to the state variables.
b) a state variable c(x), dependent on the first independent variable in the k/-th element

at the collocation point (&,;), is replaced by the NLP variable x,,, where
k-1 I
ind=base—1+zl:NP+k+i-1 17

c) a state variable c(y), dependent on the second independent variable in the k/-th

element at the collocation point (&), is replaced by the NLP variable x;,; where

I-1
ind=base-1+|;EMP:|+l+j—l (18)
=1

4.4.3 Replacing Control Variables
a) a control variable w(x), dependent on the first independent variable in the kl-th

element at the collocation point (,v), if 1 <i <N, + 2, is replaced by the NLP
variable x;,,, where
k-1 9
ind=base—1+Ele+i—l (19)

Ifi = 1 or i = N, + 2 then w(x) is replaced by

64

Nyl k-1

Y x,,, 1.(u) where ind = base + YN |-2+n (20)
n=2

where y;=0ifi=landy;=1ifi =N, + 2

b) a control variable w(y), dependent on the second independent variable in the ki-th

element at the collocation point (u,v), if 1 < j < M, + 2, is replaced by the NLP

variable x;,;, where

I-1
ind = base - 1 + [EMP:I +j -1 1)
=1

If j =1 or j = M, + 2 then w(y) is replaced by

M 11
Y X, Lv) where ind = base +|Y"M [-2 +n (22)
n=2 =1
where v, =0if j=1andv;=1ifj=M, +2

c) A control variable w(x,y), dependent on both independent variables in the kl-th

element at the collocation point (4;,v)), when 1 <i <N, +2and 1 <j<M,+2,is

replaced by the NLP variable x;,, where

ind =base -1 +In +1I, + (i-2n +j - 1 (23)
where
k-1 -1 N,
L=XN, L= XM, =3 M, @9
p=l p=l p=l

and base is the start index of the range of indices corresponding to the control

variable.
Ifi=1lori=N,+2and1<j<M+1 then w(x)y) is replaced by

65

N+l

X lp(u,.)
p=2

(25)

where I,, I, and n are the same as above, u; =0ifi=1and y;=1if i =N, + 2 and

ind =base -1 +In +I, + (p-2)n +j -1 (26)

Ifj=1orj=M+2and 1<i<N,+ 1 then w(x,y) is replaced by

M;+1

Y X L) 27

=2

where I;, I, and n is the same as above, v, =0 if j=1and v;=1if j = M, + 2 and

ind = base =1 +In +I, + (i-2)n +5 - 1 (28)

Ifi=lori=N,+2andj=1orj=M+ 2 then w(x,y) is replaced by

N+l M+

)IDIEMNACAACH (29)

p=2 s=1
where I;, I, and n is the same as above, y; =0 ifi=land y;=1if i =N, + 2, v; =

0ifj=1andv,=1ifj=M,+2and

ind = base =1 +In +1, + (p-2)n +s - 1 (30)

d) a control variable w(x), dependent on the first independent variable and a piecewise
constant function along the x-interval in the kl-th element at collocation point (u;,v)),
is replaced by the NLP variable x;,4, where ind = base -1 + k

e) a control variable w(y), dependent on the second independent variable and a
piecewise constant function along the y-interval in the k/-th element at collocation
point (,v), is replaced by the NLP variable x,,4, where ind = base -1 + |

f) a control variable w(x,y), dependent on both independent variables and a piecewise
constant function along the x-interval in the k/-th element at collocation point (v,

and 1 <j <M, + 2, is replaced by the NLP variable x,,,, where

ind = base =1 + (k-D)n + 1, +j -1 31

66

where

I-1 N,
=Y M,n=3 M, (32)
p= pP=

If j = 1 or j = M; + 2 then w(x,y) is replaced by

M+l
Y X L) (33)
s=2
where
ind = base =1 + (k-D)n + I, +s - 1 (34)

I, and n are the same as above, v;=0if j=landv;=1if j=M;+ 2
g) a control variable w(x,y), dependent on both independent variables and a piecewise
constant function along the y-interval in the kl-th element at collocation point (i),

and 1 <i <N, + 2, is replaced by the NLP variable x,,,, where

k-1
ind = base - 1 + LENP] N, + 1+ (-2, 33)
=]
Ifi =1 ori=N,+ 2 then w(x,y) is replaced by
N+l
Exind L) (36)
n=2
where
=1 3
ind = base - 1 + EN;: N, + 1+ (n-2)N, @37
=1
where

w=0ifi=1landu;=1ifi=Ny+2

67

h) if a control variable w(x,y), dependent on both independent variables and a
piecewise constant function over the 2-dimensional finite elements, in the kl-th

element, at collocation point (u,v;), is replaced by x;,4, Where
ind = (k=1)N, + I (38)

If a control variable is constant over the integration domain, in the kl-th element, at

collocation point (1,v), is replaced by X,
4.4.4 Replacing Derivatives of the State Variables
a) dc(x)/dx in the kl-th element at collocation point (1,v;) is replaced by

N,+2
Loy, 2 (39)

where

Ax, = the length of the k-th finite element along the x-interval and

k-1
ind=base+[;2NP]+k-2+p (40)
=1

b) dc(x,y)/dx in the kl-th element at collocation point (1, is replaced by

N,+2
R Q)
Ax, b du
where
ind = base =1 +In + I, + (p-O)n +j (42)

and I,, I, and n are the same as in 4.4.2 (a).

¢) dc(x)/dx* in the ki-th element at collocation point (u,v,) is replaced by

N2

1 d?l (u)
-— ind —em 43
Axkz ,P-l nd duz ()
where ind is the same as in 4.4.4 (a).
68

BT e e s gy

B adere i

d) 9%c(x,y)/ox* in the kl-th element at collocation point (u;,v) is replaced by

N2
1 d*l (u)

Z Xind
2

Axl: p=l duz

where ind is the same as in 4.4.2 (a)

e) dc(y)/dy in the kl-th element at collocation point (u,;) is replaced by

1w, d
Ay, &g
Y,] s=l V

where
Ay, = the length of the /-th finite element along the y-interval and

-1
ind = base +LEMP]+I—2 + S
=]

f) dc(x,y)/dy in the kl-th element at collocation point () is replaced by

M2 d !’ (VJ)
&y, &g
Y, {1 =1 4

where

ind =base =1 +In +1I, + (i-)n + 5

and I,, I, and n are the same as in 4.4.2 (a).

g) dc(y)/dy* in the kl-th element at collocation point (u;,;) is replaced by

M2 21 (V)

— >

Ayl =1

where ind is the same as in 4.4.4 (e).

h) d%c(x,y)/0y* in the kl-th element at collocation point (u,;) is replaced by

69

(44)

(45)

(46)

(47)

(48)

(49)

T R pe————]

i (50)

where ind is the same as in 4.4.2 (a)

i) @%c(x,y)/oxdy in the ki-th element at collocation point (u;,v;) is replaced by

N+2 M42
E v, B dl (u) al(v) (51)
ﬁxﬁy' pel st ' dv
where
ind = base =1 +In +1, + (p=n + (52)

and I,, I, and n are the same as in 4.4.2 (a).
4.4.5 Replacing Auxiliary Variables

The model can contain expressions like K = KAe®*, where K is termed a
parameter or auxiliary variable. Wherever K appears in the constraints or in the
differential equations, an index is calculated and appended to the parameter. The
dependence of K on the independent variables is defined by the dependence of the
state or control variables on the independent variable. For example, if in the above
expression T is dependent on x, then X is considered to be dependent on x. When a
differential equation is discretized over the integration domain in the finite elements
(k) and at collocation points (%,;), the indices are calculated as follows:
a) p(x) is replaced by p,, where n is incremented when X or i is incremented, i.e., the
discretization moves to a new collocation point along the x-interval.
b) p(y) is replaced by p,, where n is incremented when / or j is incremented, i.e., the
discretization moves to a new collocation point along the y-interval.
c) p(x.y) is replaced by p,, where n is incremented when £, i, / or j is incremented, i.e.,
the discretization moves to a new collocation point.
d) p(k), a parameter dependent on the first independent variable and a piecewise
constant function of finite elements along the x-interval, is replaced by p,.
e) p()), a parameter dependent on the second independent variable and a piecewise

constant function of finite elements along the y-interval, is replaced by p,

70

»

f) p(k,y), a parameter dependent on both independent variables and a piecewise
constant function of finite elements along the x-interval, is replaced by p,, where n is
incremented when &,/ or j is incremented, i.c., the discretization moves to a new finite
element along the x-interval and to a new collocation point along the y-interval.
g) p(x,l), a parameter dependent on both independent variables and a piecewise
constant function of finite elements along the y-interval, is replaced by p,, where n is
incremented when &,/ or i is incremented, i.e., the discretization moves to a new finite
element along the y-interval and to a new collocation point along the x-interval.
h) p(k,l), a parameter dependent on both independent variables and a piecewise
constant function over the 2-dimensional finite elements (kl), is replaced by p,, where
n = (k-1)N, + L.
4.4.6 Replacing Input Variables

Disturbances and input variables that come from another process units and thus are
not available for manipulation, are functions of time or constants and must be
specified in advance before the problem can be solved. They have to be specified in
a program module USERINTFOR by the user and referenced in the model. For
example, if FUNCTION FLOWRATE(T) is specified in USERINT.FOR, it has to be
referenced in the model as FLOWRATE(T], where T is the independent variable time.
Examples of this are discussed later.

4.4.7 Time Delay
Time delays arise in a wide range of applications, including paper making, chemical

reactors, and distillation. Time delay may occur when a state, control or output
variable is measured at time t, showing the value of the variable at ¢ - 1.

Time delay can arise due to transport delay in a pipe, and due to delay caused by
chemical analysis of state, control or output variables. Constant or time-varying time-
delays can be handled. For a constant time delay 7, the value and the initial function
giving the value of the state, control or output variable at - T < ¢ < 0 must be given.
If both the time delay and the initial function are constant, the time delay is specified
in the model, as ¢(#-7;0,x), where c is a variable depending on independent variables
¢t and x, T is the constant time delay, and 0 is the value of the initial function. In the
case that either the time delay or the initial function is a function of time, the time

delay must be specified in the model as c(t-TIMEDELAY(I), where [is an integer,

71

G e pp———

-

R T T L i ot T —

which is used in a computed GOTO statement in the FUNCTION VARTIMEDELAY
in module OCFEINT.FOR. This must be written by the user, an example is given
later.

4.4.8 Parameter Estimation

The package can be used to estimate unknown parameters in a lumped or
distributed parameter model. The least-square estimates for the parameters will be
computed.

For lumped parameter systems, the measurements have to be given in the main data

file which is OCFEINP.DAT in the form of a least-square function, such as

Y Yo -a®r (53)

teltpnst) k=l

where measurements of the variables a;,...a, were taken at ¢ = ¢,,...,2,, and the variables
@;,...,d, and parameters k;,...,k, appear in the model.
For distributed parameter systems, the measurements have to be given in the data

file OCFEINP .DAT in the form of a least-square function, such as

Y Ylg®y - a&xy)P (54)

xelpntpet, b yEY dpey) kml

where measurements of the variables a,,...a, were taken at
X = Xypeurk, and y = YooV, and the variables a,,...,a, and parameters kyy.. ik,
appear in the model.

4.4.9 Irregular Domain
An irregular domain has to be embedded in a rectangular domain, and in the

FUNCTION WITHIN in the module OCFEINT.FOR the interior of the irregular
domain has to be specified. If we denote the irregular domain as D, the rectangular
domain as R, D C R, and the differential equations are collocated at collocation points
(x,y) € D, and the boundary condition should hold in (x,y) € R \ D.

4.5 Discretization of Expressions

-E
Expressions like k = ke ™ are discretized like differential equations, the only

72

[

difference is that the discretized expressions do not become constraints in the NLP
problem.
4.6 Discretization of Initial or Boundary Conditions
Initial or boundary conditions are discretized like differential equations, the
condition is discretized at grid points where the condition holds.
4.7 Transformation of the Objective Functional
4.7.1 Transformation of an Objective Functional not Containing Integral Terms.
An objective functional that does not contain integral terms is discretized like
differential equations, but usually there is only 1 collocation point, at x = x, y = y,

where x; is the end point of the x integration interval and y; is the end point of the y

integration interval.

4.7.2 Transformation of the Objective Functional Containing Integral Terms

An integral term fF (c,ux)dx in the objective functional is transformed as
x,
follows:
Let
I = fp(c,u,x)dx (55)

Both sides are differentiated with respect to x.

dal _
= Flcux) xelx,x], (56)
I(x) =0

The resulting differential equation is discretized in the usual manner. /(x,) replaces

the integral term in the objective functional.

¥
An integral term fF(c,u,y)dy is transformed in a similar fashion.
Yo

73

%Y
An integral term ffF (e ux.y)dxdy is replaced in the objective functional

XoYo

by I(xsy). The resulting differential equation

o4
EE = Feuxy) () € Xpxdxyeyds Iy, = 0 (57)

is discretized over the rectangular integration domain.
4.7.3 Transformation of the Least-square Objective Functional of Lumped
Parameter Systems.

The objective functional is in the form of

Y Y la®-a@)r (58)

teltt,nt) s=1
where measurements of variables a,,...,a, were taken at ¢ = ¢,,...,f,, and the variables
a,,....a, and the parameters k;,...,k, appear in the model, #; is mapped into the interval

[0,1] as

t -t
U, = Y (59)
At,
and a,(t) is replaced by
N2
> Lwa, (60)
pel

where a,} is the value of a,\(1) at collocation point u, in the k-th finite element. Thus

we discretize the least-square objective functional in such a way that in

E [a) - a(t)]* a(f) is replaced by its approximation and evaluated at ¢ =

s=]
Eyeersbe

4.7.4 Transformation of the Least—sqﬁare Objective Functional of Distributed
Parameter Systems.
The objective functional is in the form of

74

Y Ylaey)-alyP (61)

xe{xl......tl....x_li ye{yl....,yf..‘y.') 3=l

where measurements of variables a,,...,a, were taken at X = XppeooX,, and
1
Y =Yy, ~and the variables a,,...,a, and parameters k;,...,k, appear in the model

and x;, y; is mapped into the interval [0,1]x[0,1] as

T Rl) 62)
Ax& ! Ay;

and a,(x,y) is replaced by

N2 M+2

Y ¥ Lwiva,, (63)

p=l g=1

where a,," is the value of a,(x,y) at collocation point (4,v,) in the ki-th finite

element. Thus we discretize the least-square objective functional in such a way that
in

n

E [a,(xy) - a,(.!r,-,yj)]2 a,(x,y) is replaced by its approximation and evaluated

s=]

at X = XX, and y = YiserYm, -

4.8 Discretization of Constraints
The discretization of constraints is performed in the same manner as the

discretization of differential equations, with the difference that we collocate at the
boundary, too, because there are no initial or boundary conditions.
4.9 Completion of Equation Sets

In order to ensure that the resulting NLP problem is well posed, the number of NLP
variables derived from the state variables and the number of algebraic equations
derived from the discretization of differential equations and initial or boundary
conditions must be the same.

There are 2 ways to create additional algebraic equations:

1. At those boundary points where there are no initial or boundary conditions, the state

75

function is approximated by a linear combination of Lagrange interpolation
polynomials defined at other points in the finite element, excluding integration domain
boundary points. At finite element boundaries the continuity of derivatives can be
enforced.
2. The collocation method can be applied at boundaries of finite elements and at those
integration domain boundary points where there are no initial or boundary conditions.
Computer runs have shown that the second approach resulted in smaller residual
errors. An arbitrary decision had to be taken to which finite elements the points lying
on a finite element boundary belong. A point at finite element boundary belongs to
the finite element to the left or below of the point.
4.10 Conclusion

The user problem defined in (1) has been formulated as a NLP problem which can
be solved by one of the methods GRG2 or SQP already described.

76

]

Chapter 5

Interpolation and Error Evaluation
5.1 Interpolation
5.1.1 Introduction
The solution of the nonlinear programming problem yields the values of the state
variables and of the control variables that are defined as continuous functions at the
roots of the Legendre polynomials in each finite element. While this provides an
efficient solution, it gives the values of state and control functions at discrete
collocation points. The approximating polynomials are defined as continuous functions
over each finite element. Although the user can construct the continuous
approximating functions using information from the model and from the output file
OCFEOUT.DAT, it was felt that the user should be given an easy way to obtain the
values of the state and control functions at chosen equidistant points over the
integration domain. This also facilitates data generation for creating 2-dimensional
graphs or 3-dimensional surfaces.
5.1.2 Implementation
A program is generated that tabulates the approximated values of the state and control
variables for a given Ax and Ay. The approximate values of the state and control
variables are calculated as follows:

For a given (x",y"), find finite element (k/), in which (x",y") lies. Then

vea 2 1)

_ x*=x)
Ax, Ay,

is calculated.
Find the index set I = {i,,...,i,} into which the state or control variable maps when the

differential-algebraic optimization problem is converted into a NLP problem. If we
denote the n-th state or control variables as ¢,(x), c,(), ¢,(x.y), w,(x), w,(0), w,(x,y),
w,(k), w,(D), w,(k.y), w,(x,D), w,(k,l), where w,(k) denotes a control variable dependent
on the first independent variable and a piecewise constant function along the x-
interval, w,(/) denotes a control variable dependent on the second independent variable

and a piecewise constant function along the y-interval, w,(k,y) denotes a control

77

p

variable dependent on both independent variable and a piecewise constant function
along the x-interval, w,(x,l) denotes a control variable dependent on both independent
variables and a piecewise constant function along the y-interval, w,(k,/) denotes a
control variable dependent on both independent variables and a piecewise constant

function over 2-dimensional finite elements, then

N2

e = ¥ Lux,,)
i=1
where
ind = base(n) +|i§NP:|+k+;‘_2 (3)

is the index of the NLP variable, into which the collocation point u; and finite element

k maps for the n-th variable.

M#2
) = 3 L, o)
where
-1
ind = base(n) + EMP +1+j=-2 &)
p=l

is the index of the NLP variable, into which the collocation point v; and finite element

[maps for the n-th variable.

N2 M2
oy =3 ?:1 L)), ©)

where
ind = base(n) = 1 + II, + I, + (i-DI, +j 0

where

78

k-1 11 N,
Il=[2NP]+k—l,Iz=I:EMP:|+I—1,[3=LEMP]+N,+I(8)

p=l p=l

and ind is the index of the NLP variable, into which the collocation point (,v;) and

finite element (k,/) maps for the n-th variable.

N+l

wy(x®) = Y 1wy, ©)
=2
where
k-1
ind = base(n) +| YN, |+i -2 (10)
p=l
M1
w0 = X Lo, (11)
Jj=2
where
I-1
ind = base(n) + EMP +if = 2 (12)
p=1
g N+1 M+l
wiey) = 2 X L, (13)
i=2 j=2
where
ind = base(n) + II, + 1, + (i-2)[, +j - 2 (14)
where

1,=[§ P:|,Iz=[§Mp],13=l:§MP:I (15)

p=l p=l pel

79

A control variable w,(k) is approximated by

wa(x) = x,, (16)

where

ind = base(n) -1 + k (17)

is the index of the NLP variable, into which the finite element ¥ maps for the n-th

variable.
A control variable w,(J) is approximated by

(18)

wa ") =X,
where
ind + base(n) -1 + 1 (19)

is the index of the NLP variable, into which the finite element / maps for the n-th

variable.
A control variable w,(k,y) is approximated by

M+l
whxty?) = ¥ Ly, (20)
=2
where
ind = base(n) + k=DI, + I, +j -2 1)
where

N I

P-l p=l

and ind is the index of the NLP variable, into which the finite element (k/) and the

collocation point v; maps for the n-th variable.

80

A control variable w,(x,[) is approximated by

N+l
wheey) = ¥ L, (23)
i=2
where
11
ind = base(n) -1 +| "N |N, + 1 + (i-2)N, (24)
p=1

is the index of the NLP variable, into which the finite element (k/) and the collocation
point u; maps for the n-th variable.
A control variable w(k,l) is approximated by
wa(x*y*) =x,, (25)
where

ind = (k=1)N, + | (26)

is the index of the NLP variable, into which the finite element (k/) maps for the n-th

variable.

81

5.2 Error Evaluation

In general, it is impossible to ascertain when a given approximation accuracy has
been reached since the exact solution is unknown [130]. The simplest approach is to
compare results obtained with consecutive approximation order N and N+1. The error
in the N-th order approximation will normally be much smaller than the difference
between the N-th order and the (N+1)th order approximation.

The following example [130] shows that some a priori guidelines can be obtained
for a particular problem. For the differential equation

2
d_c.+%%=¢2c c) =1 ¢’0) =0 (1

2
max | 4€ + 1 41 - max @%) = @2 @)
de* x dx
If an approximate of the type
N
cy=1+1-x)Y ax¥? 3)

i=1

is used and it is assumed that ¢y, is positive and has positive derivatives in [0,1], since
the steepest possible function satisfying those condition being cy = ™", then
d%, 1 dcy

+ - _Nl=4yN? 4)
de* x dx

max

i.e. the approximation order should at least satisfy

AN? > @ orN>.%). 5)

The approximation error is = o 4’ [86] where h = max(h,,h), where h, = the size of
a finite element in x-direction and A, is the size of a finite element in y-direction, s is
bounded between 3 and r+1, for polynomials of degree r. The exact solution has

derivatives of at least degree s. The approximation error of an elliptic differential

82

equation is [84]

(1 TP 1 YotV h
o Ay) N (6)
NP (NE Jn

where N,=N,=NE and N=M=NP

NE is the number of finite elements and NP is the number of internal collocation
points.

Parameter k characterizes the continuity of solution and C is independent of NP and
NE.

Now the approximation error for Lagrange interpolation polynomials in the one-
dimensional case will be derived [59].
Let ¢ e C"?*[ab] and let p(x) be the Lagrange polynomial of degree N, + 1

interpolating ¢(x) at a =x, < x, < ..< Xy,, = b . Let us define the function g(x)

by

g = @) - c@] - 2 e’y - cx).)
w(x/)

where w() = (x - x)(x - X,)..(x - xN_ﬂ). Since for x = x,,...xy,, Px) = c(x)

and g(x’) = 0, g(x) has N, + 3 zeros at x,.x,,...xy ,x'. Applying Rolle’s theorem

repeatedly N, + 2 times to g(x), it follows that g(N"Z)(E) =0 for some & € [a,b].

Since p(x) is a polynomial of degree N, + 1, pw'm(x) =0 and since w(x) is a

polynomial of degree N, + 2 with a leading coefficient 1, w®*P(x) = (\V_+2)!

(N_+2)!

g%2® =0 = - ") - [px’) - cx"), (8)
wx’)
Therefore
N+2)
n - oY s 877 (3] /
cx’) - px’) T w(x’).)]

‘xN‘d * xN +2

Ifweleth=max (X, -%) 1Si<N, +2and x = L it follows

that

83

Wt B (10)

W] = [G=x)0x=x,)... (e)| < 7

Thus

i R 1)

c-pl <
le=pl 4(N,+2)

This result can be extended to the two-dimensional case as follows [59].
For each fixed x in [a,b] let I.c(x,y) be the Lagrange interpolate to c(x,y) in the y
direction; interpolating c(x,y) at the knots =,. Specifically,

N,+z

Le(y) = Y cay)lO). (12)

Jj=1
For each fixed y in [c,d] let I c(x,y) be the Lagrange interpolate to ¢(x,y) in the x
direction; interpolating c(x,y) at the knots =,. Then

N‘+2
Le(xy) = Y clxy)x). (13)
i=]
Then
N,oz N+2
Ie(xy) = LI c(xy) = Y 3 cCey)l®10). (14)

is the Lagrange interpolate p(x,y) to c(x,y) on a rectangular grid. The operators /, and

I, are commutative, giving

Ilc=Ilc=Ic=Ic=p (15)
If D,*c = %% exists at a point (x,y) in R, it holds that
N +2 N +2
: . de(x.y)
DTey) = D) Y e = 4o 2 = IDfe(ry) (16)

i=1 inl dy*

and

84

DM c(xy) = DAY cry)lo) = 2 L) a*“"’y) - IDlery) (D)

j=1 Jj=1

when the partial derivatives exist,
Assume ¢ € C*? [R]. Since Ic(x,y) is the Lagrange interpolate to ¢ in the y
direction, applying (11)

N+2
ID,

I] h.N +2
le=Icll £ (18)
4(Ny+2)

Now invoking the triangle inequality, with I,, = LI,
le=Icll < le=Lell + W,e-I cl. (19)
To estimate the second quantity on the right-hand side, from (15) we obtain
ILe -Ic=Wc) -1(0) (20)

I(Ic) is the Lagrange interpolate of degree N, + 1 in the x direction to /,c(x,y) which

interpolates /,c at the knots of x,.

N2 N2
10 =3 () [) c(xl.,yj)lj(y)J 1)

i=l jll
From (11) it follows that

N +2
ID," (f ol k- 22)

I c-I_cll <
o 4(N,+2)

considering Ic as a function of x. From (17), D fﬂ(lxc) = 1M is the
Lagrange interpolate of degree N, + 1 to DxN‘*zc considered as a function of y with

knots at 7,. Thus from (11)

Np2_ Ns+2
g g 12 Do el 23)

aN+2)

HDN+2 —I [D

so that

&5

Nps2 N+2

N2 N2 N2 I D" ¢l N+
D cil=1ID," [[c]|<ID,""¢c| + J * A (24)
i, [)"] NS e+ e
From (18), (19), (22) and (24)
N +2 N+2 N+2
e " + D)’ D, * ¢ . .
le-Ie] < ID,” el ;v,z . 1 1D + ID,” D,* ¢l hyN,z phe
4(N y +2) 4(N_‘ +2) 4(N,- +2)

(25)

Error estimates can also be derived for the derivatives of Lagrange polynomials.
Egs. (11) and (25) give approximation error estimates interpolating ¢ in the operator
equation Lc = d, where L is the differential equation operator. We can estimate the

approximation error to the solution of the differential equation as follows.

Let € be the approximation error approximating ¢, €, approximating %'., &
X
2 2
approximating _aﬁ, €, approximating E, €, approximating Ef_, €12
dy ox? dy?
o d’c . . .
approximating then for a differential equation

oc ,,0c , s0d% 0 . 0% 26
xe Bﬁ ’ Ya_y ’ ox? . “oy? ’ " dxdy (26)

the approximation error <
lole + [Ble, + lvle, + 18le,, + [Eley, + [Cley, 27

There is also an iterate error to the solution of the algebraic equation superimposed
to the approximation error as well as round-off error originating from the machine
representation of the floating point numbers.

In this work the following error evaluation strategy has been used:
The principle term in the mean square approximation error is calculated as follows
[105].
If N, = 1 then

86

I P
E, = ('N—P'T (28)

otherwise
Nl
N +2
Z:l: (&) (29)
E = !
Nx
IfN, = 1 then
l P
E, = (-—T (30)
NP
otherwise
NI
MJ+2
2 3D
E, = 2
2 N

y
The approximation error =

E + E2 G2)
2

The residual error is calculated as follows.

Given Ax and Ay, the differential equations are discretized at the collocation points
(X0Yo)s (X0 Yo+AY), .. etc. The discretization is similar to the described in chapter 4.4,
with the difference that since the collocation points normally do not coincide with the

roots of Legendre polynomials, the attribute of Lagrange polynomials, i.e.

_J0fori#
I,(u) = { Lfor i on (33)

cannot be utilized and therefore

87

N+2 N+1

E C:Iﬂ(u‘-) # C;'k » E wutzn(u;) * wc'k‘
n=2

n=]

N+2 M+2

Y ¥ @)l) # cf, (34)
n=l me=l

N+l M+l

E E w’:’:ln(ul)lm(vj) # wl';’»

n=2 m=2

Therefore the discretized algebraic equations are more complex. Also, the collocation

points (x,+iAx,y,+jAy) must be mapped into a finite element (/) and into a collocation

point (u,v) where

X=X -
k LV = y .V; (35)
Xpet Xk Y=V

U=

before the differential equations are discretized.

Then after the NLP has been solved, the residuals at the grid points are evaluated
with the optimal solution vector Xx.

Experience by running example problems has shown that the best strategy to define
control functions as piecewise constant functions over finite elements and have 1
internal collocation points in each subinterval. Therefore the state functions will be
approximated by a quadratic polynomial, and since we collocate at the boundaries of
finite elements, the approximation will be exact at the corners and in the middle of
the finite elements and the approximating function and the derivatives will not
fluctuate between collocation points. Then, if the residual error at certain grid points
(x,+iAx,y,+jAy) is unacceptably large, then we subdivide elements at these points and
solve the new problem. Large error can occur if the exact optimal solution cannot be
approximated by quadratic polynomials, then we need more finite elements to ensure
that the 2-dimensional finite elements are sufficiently small so that in that finite

element if the state function is approximated by a quadratic polynomial, the

approxirnation error is sufficiently small.

88

Chapter 6
Implementation Strategy
6.1 Generating the Nonlinear Programming Problem

6.1.1 Introduction

The algorithms described in Chapter 4 have been implemented in a FORTRAN 77
program. The problem solution is carried out by a program called OPTIMIZER which
must contain a program written to describe the user’s problem. In some cases this will
be written by the user, but more usually the problem is described in a data file and
this is translated by another program, OCFE, which performs automatically the
operations described in Chapter 4. Because of the large dimensionality of the resulting

nonlinear programming problem, implementation has been limited to 2 independent

variables.
6.1.2 Input File for OCFE
The user has to set up an input file, OCFEINP.DAT, describing the model to be

solved. This file must contain character strings which describe the equations, together
with numerical data. In this way the need for the user to write a program is avoided.
Instead the equation is described in a natural way. The syntax of the input file is
described in detail in Appendix A. The input file contains various parameters such as
the numbers of equations of different types, the numbers and types of variables, initial
or boundary conditions, the bounds of integration and the equations including the
objective functional. Each variable and equation is classified with a type. Details are
given in Appendix A. Also, the choice of GRG2 or SQP must be made by the user.
If the variables are dependent on independent variables, they must be followed by
their independent variables in parenthesis, e.g. c(x,y). The derivatives are indicated as
shown in the following examples.

DC(X,Y)/DX

DC(X,Y)/DY

D2C(X,Y)/DX2

D2C(X,Y)/DY2

D2C(X,Y)/DXDY.
Algebraic variables must be denoted by X followed by their subscript, e.g. X(1).

Integrals are denoted by the word INTEGRAL. For a partial differential equation,

89

boundary conditions, where present, have to be given, separately, on the sides and at

the corners of the rectangular integration domain.

The following examples illustrate the difference between the mathematical model and

the input file.

model input
de,)
—L = kM) DCI(T)/DT-KI(TEM)*CI(T)**2
c,0) = 1 CIT)-1. AT T =0
acla(:") - k(T)cl) DCI(T.2)/DT+KI(TEM)*C1(T,Z) %2
c(af) = 1forz =0, forall t >0 g;gﬁ:}ﬂg:gﬂ.},:l

1
J‘c(l,r)dt INTEGRAL C(1,T) DT
/]

6.1.3 Output Files
The OCFE program generating the nonlinear programming problem creates 2 output

files, OCFEOUT.DAT and OCFExIF.DAT, where x is either GRG2 or SQP.
OCFEOUT.DAT contains the echoed input file, the values of the first and second
derivatives by finite elements, by collocation points and by Lagrange polynomials. For
example, if there are 2 independent variables and 5 finite elements along each
independent variable and 1 internal collocation point in each finite element, then there
will be output 180 entries. There will be 18 entries for each 1-dimensional finite
elément. The following table shows the first 18 entries. They are for the first finite
element along the x-axis.

Sincc in each finite element the number of internal collocation points is 1, these
ér;tries will be repeated in the output matrix. OCFEOUT.DAT also contains variable
ﬁamcs, their types and the NLP indices of the first NLP variable associated with them.
I.t é.lso contains the equations with their type numbers, the number of NLP variables

associated with the state and control variables and the collocation points. The output

90

Table 6.1 Derivatives of Lagrange Polynomials

dl, dl, dl,
dx lx=0.0 dx x=0.0 dx x=0.0
dl, dl, dl,
dx x=0.5 dx x=0.5 dx x=(0.5
di, dl, dl,
dx =10 dx ix=1.0 dx x=1,0 (1)
dx G x=0.0 dx A x=0.0 dx ? x=0.0
d¥, a7, d,
dx i x=0.5 dr ® x=0.5 dx # x=,5

al av d2l3[
drzLil.ﬂ dx ZL'I.'D dxz =1.0

OCFEXIF.DAT, contains the number of NLP variables associated with the state and
control variables, the number of NLP variables, NLP constraints, etc. Full description
is given in Appendix A.

For GRG2 a file called GRG2INT.FOR contains a subroutine GCOMP for the
objective function and constraint equations. For SQP the file SQOINT.FOR contains
SQPCONSTRAINTS which has the same purpose.

6.1.4 Processing of the Input File

The following description is closely related to Chapter 4.

First the model is read in. Then a control module called INTERFACE calls the
following subprograms.

_ SETVARRANGE is called o set the NLP range of the state and control variables.
Then SETUPARB is called to set to set up the first and second derivatives of the
Lagrange polynomials. Following that, if integral terms are present in the objective
fﬁnctional, PROCESSOF is called to transform them into a differential equation. Then
if the user wishes to run GRG2, the generation of the subroutine GCOMP begins,

91

ek el o

otherwise the generation of SQPCONSTRAINTS takes place. Since every program
module is written in FORTRAN 77, a program module breaks up lines generated by
the program into a number of fixed format FORTRAN program lines, each starting
at column 7 and ending at column 72. The generated algebraic equations are first put
into a temporary file, then in a second pass from this file GCOMP or
SQPCONSTRAINTS is generated.

First constants and algebraic equations are written into the file. Then constraints
containing state or control variables dependent on 1 or 2 independent variables are
processed. Then differential equations, expressions, boundary conditions are processed,
including differential equations and initial or boundary conditions derived from
integral terms. PROCESSEQUATIONI processes equations dependent on the first
independent variable, PROCESSEQUATION2 processes equations dependent on the
second independent variable and PROCESSEQUATION3 processes equations
dependent on 2 independent variables. Objective functionals, boundary conditions and
differential equations are processed in similar fashion, only the range of the
collocation points is set accordingly. PROCESSEQUATIONIB,
PROCESSEQUATION2B and PROCESSEQUATION3B perform similar tasks, but
the equations are collocated along a user-defined rectangular grid, rather than at
collocation points and the values of the generated equations will be the residual errors
at those grid points. The subprograms PROCESSEQUATIONI,
PROCESSEQUATION2 and PROCESSEQUATION3 process an equation as follows.
For each finite element and for each collocation point within the finite element, they
scan the equations and replace variables and their derivatives according to the
algorithms described in Chapter 4. An equation is scanned for each collocation point.
The various subprograms performing the transformation are described in Appendix B.
Then an interpolation program called EVALFUNC.FOR described in Chapter 5 is
generated. Then the residual error evaluation program EVALERR.FOR is generated.
The OCFEOUT.DAT is written. Then a function called ERROR is generated that the
user can add to the objective functional in order to bring down the residual error, Then
the data file PLOTPREP.DAT is generated, that contains data used by
PLOTPREP.FOR. PLOTPREP.FOR reads PLOTPREP.DAT and FUNCOUT.DAT and

generates input data files for each state and control variable in the model for

92

GNUPLOT. As every other program module, this program is written in FORTRAN
77 and is available on the SUN SPARC 2000. Example of PLOTPREP.DAT is shown
in Appendix A.
6.2 Optimization
6.2.1 Control Program
The control program called Dispatcher invokes program modules pertaining to control
vector parameterization or to the GRG2 interface module SUBINT or to SQP
according to the selection of the user. The modules are fully integrated. The control
module reads the input files OCFEXIF.DAT generated by OCFE where x is either
GRG2 or SQP if a DAOP is solved by the collocation method in conjunction with
GRG2 or SQP. In addition, the program reads OPTIMINP.DAT which supplies the
parameters required for optimization. This must be written by the user. Details are
given in Appendix A.
6.2.2 Control Vector Parameterization

Control vector parameterization (CVP) has been implemented using Hooke-Jeeves
method and Broyden-Fletcher-Goldfarb-Shanno method [104] and the 4th order
Runge-Kutta method. The parameterization can solve only models containing first-
order initial-value ordinary differential equations. The model cannot contain algebraic
equations or inequalities. The use of CVP is recommended only when there are more
than 3 ordinary differential equations in the model or if the upper limit of the
integration is an optimization variable. Also it can be used only for initial value
ODEs. The user, however, has to set up the objective functional evaluation function
F and the derivative evaluation function DX2 in USERSUBS.FOR.
6.2.3 Solution of the Nonlinear Programming Problem
The NLP problem is solved either by the package GRG2, that uses the generalized
reduced gradient method, and was received from Professor L. S. Lasdon from the
University of Texas, Austin, Texas, [91] or by SOP, that uses successive quadratic

programming, and was received from the Harwell Physical Laboratory [92]. For
GRG2, the problem is stated as

93

i b L o

min g,(x)
subject to b, S x; S ub, i=12,..n 2

b, < g® <ub,, i=12,..m i

For SQP, the problem is stated as
min f{x)
subject to g(x) =0, i=12,.m" 3)

gx) 20, i=m+lm+2,.,m

The GRG2 and SQP packages have been chosen based on Schittkowski’s study
[127-129]. The study showed those packages as being among the most reliable
packages currently available. GRG2 and SQP are based on 2 different state of art
nonlinear programming methods, the generalized reduced gradient method and
successive quadratic programming. Both GRG2 and SQP require initial values. For the
SQP package, the calculation of the gradient vector of the objective function and of
the Jacobian matrix of the constraints have been implemented. In both cases central
differences are used. The arguments of the packages have been tuned. The GRG2 User
Guide [91] recommends that variables should be scaled so that a unit change
represents a small but significant change in that variable. In order to conform to that
strategy, for the GRG2 variables are scaled into the interval [0,100]. The SQP User
Guide [92] recommends that the values of the variables and the derivative vectors of
the objective function and of the constraints all have magnitudes about unity. For the
SQP the variables are scaled into the interval [0,1]. Computer run experience has
shown that the GRG2 and the SQP packages are capable of producing good results
even without scaling. Because of the VAX 32-bit word size to store REAL*4 floating
point numbers, double precision was used throughout. NLP parameters, like accuracy,
stop criterion, iteration limit, etc. are tuned to suit most of the problems, but the user
can override them if necessary. The packages stop when the Kuhn-Tucker conditions
are satisfied [Chapter 3 (47-48)]. Dump and restart facilities have been implemented.
Both packages have been implemented to handle up to 1500 variables and constraints

and are used as subroutines integrated into the optimization package. The main

94

difference between GRG2 and SQP is in that GRG2 treats individual bounds on
variables separately, while SQP treats them as inequality constraints. Also, in GRG2
every variable and constraint must have a lower and an upper bound, in SQP the
constraints are equations and greater than zero inequalities.

6.2.4 NLP Problem Solution

An NLP problem can be solved either by the GRG2 or by the SQP package. The
user has to set up either the interface subroutine GCOMP for GRG2 [91] or SQPOF
and SQPCONSTRAINTS for SQP [92]. GCOMP must be in the file grg2int.for and
SQPOF and SQPCONSTRAINTS in the file sqpint.for. SQPCONSTRAINTS contain
the constraints of the model, SQPOF evaluates the objective function. GCOMP
contains both the constraints and the objective function.

6.2.5 DAOP Problem Solution

When GRG2 or SQP is used to solve a DAOP, then the program files
GRG2INT.FOR and SQPINT.FOR are automatically generated by the program OCFE
as already described. Arguments to the packages are generated using data from
OPTIMINP.DAT set up by the user and from OCFExIF.DAT written by the OCFE
package.

The objective functional is replaced by an objective function and the differential-
algebraic constraints are replaced by algebraic equations.

Each state and control variable dependent on 1 or 2 independent variables is
replaced by a number of NLP variables called the range. If GRG2 and SQP are used
to solve NLP problems derived from a DAOP, then the initial values and bounds
given to state and control variables are assigned to the range of NLP variables
corresponding to them. If GRG2 is used to solve the NLP problem derived from a
DAOP, then variable lower and upper bounds are assigned to the range of NLP
variables corresponding to them. If GRG2 is used to solve the NLP problem derived
from a DAOP and variable scaling is used, then the scaling bounds will become
variable bounds.

6.2.6 Evaluation of Function and Error Values.
For each problem translated by OCFE, the programs EVALERR and EVALFUNC

operate on the output files to generate data on a grid chosen by the user.

95

6.2.7 Conclusion
The programs implement the methods discussed in Chapters 4 and 5 and enable a

user to solve modelling and optimization problems within the class described.

96

Chapter 7
Example Problems

Computer codes were written implementing the methods described in previous
chapters. The method presented in this work has been tested on approximately 40
various test problems, of which 8 are included in this thesis. In this chapter, example
problems are solved to illustrate the concepts presented in previous chapters and to
validate the computer code implementations of these algorithms developed in this
work for the solution of differential-algebraic optimization problems containing partial
differential equations to be solved over a 2-dimensional rectangular domain. Known
solutions to these problems exist, so the correctness of the solutions may be analyzed.
Examples 1 and 2 have models containing first order linear partial differential
equations. All first order partial differential equations are hyperbolic. Examples 3 and
4 have models containing parabolic differential equations. Examples 5 and 6 have
models containing first order linear ordinary differential equations. Example 7 is a
NLP problem. Example 8 is a partial differential equation with 3 independent variables
that has been transformed manually into a PDE having 2 independent variables.
7.1 Differential-Algebraic Optimization Problems

Two test problems were solved using the proposed approach described in previous
chapters. These problems were taken from the book Advanced Process Control by Ray
[22] and from [96]. The solutions obtained are in the form of piecewise constant
functions for the control variables, and polynomial approximations for the state
variables.
7.1.1 Example 1 : Optimal Control of a Tubular Plug-Flow Heat Exchanger.

This example is concerned with the determination of near-optimal control policies
for a tubular plug-flow heat exchanger with uniform wall flux forcing. (E.S. Parkin
and R.L. Zahrednik, [96]). The dynamics of the uniform heat flux exchanger,
assuming plug flow in the tube, constant physical properties, and no axial or radial
diffusion of heat, can be represented in the following dimensionless form:

dx _ _ox
= e + U (1)

The state variable, x(r,f) represents the deviation of the temperature profile from the

97

final steady-state condition, and u(f) represents the deviation of the wall flux from the
final flux profile. The inlet temperature T(0,?) is taken to be constant at T,(0), so that

x0,5) =0 (2)

Initially the exchanger is assumed to be in a steady state corresponding to a steady

state control of unity. Thus the differential equation can be integrated analytically to

obtain the initial condition

x0r) =r 3

The exchanger is controllable and the optimal policy is chosen to minimize the

following quadratic performance index:
17
pw) = = | | (u? + u?drdt C))
2]

where p is a non-negative scalar weight. In [96], the problem was solved as follows:
Pontryagin’s maximum principle was used to derive the necessary condition for
optimality leading to the derivation of the Hamiltonian and of the adjoint equations.
Then the state and adjoint variables were approximated by linear combination of
spatially dependent trial functions and time-dependent coefficients. Application of the
method of weighted residuals reduced the problem to one involving ordinary
differential equations in terms of the linear combination coefficients. Then the system
of ODEs were solved. Here double orthogonal collocation on finite elements was
applied to transform the model into an NLP problem. The temperature profile closely
approximates the solution given in [96]. The problem parameters and problem
statistics are shown in Tables 7.1-7.3. The knot points in z-interval are 0.2, 0.4, 0.6,
0.8. The knot points in r-interval are 0.2, 0.4, 0.6, 0.8. The integration domain was
[0,1]x[0,1]. The residual error of the discretized differential equation was evaluated
at (0.125,0.125), (0.125,0.25),...,(1,1). There were 25 2-dimensional finite elements.
The discretized differential equations were evaluated both at internal collocation points
and at the boundaries of the finite elements and at those boundary points of the
integration domain where there are no initial/boundary conditions. The discretized

differential equation in element (k) k = 1,2,...5 1 = 1,2,...,5 and at collocation points

98

i=123j=123is

30, di @ R N (o - _
1 E nﬁ: &) . L E -’Gi’ i) u(k) k = 1,2,....,5 {=12..5
Atk n=1 d!f ATI n=1 dr’ 1= 2$3 J = 2,3 (5)

The differential equations were not collocated where initial/boundary conditions

were given.

The discretized initial/boundary conditions are

i

o

3
P ©)

Xy = F I =12,..5] =23

The integral part of the objective functional has been transformed into a differential

equation
o4 - pxz +py?
orot 2 (7
I1(00) =0

It was discretized as follows
atk=12,..,51=12,..,5i=23j=23

1 3 3 d (I) dl (?’) p(xl.’f‘ 2 4 (u k)z
¥ = v =
b33 j [- } 0 ®

Ar; n=l m=1 dr’

1 111l =0

In order to reduce the residual error, a weighted error term was added to the
objective functional. The error term is the least-square residual error over the

integration domain. The objective functional is

99

I, + 0.1IERROR(x))

Table 7.1 shows the starting values and bounds for the state and control variables.
Table 7.1 Starting Values

Function/ lower upper starting
Variable bound bound point
X 0 1 0
u -1 1 0
I 0 1 0

The state variables x and I are unbounded, the bounds are only used for scaling.

The number of unknowns is illustrated for x in Figure 7.1.

¢ 11 22 55 5 s 121
[1021 120
| 000, cennss 119
| 819........ 118
[DBcasnies s 117
| 617..cunn.. 116
| 51605540 115
| 415........ 114
| BT ns s i 50 113
[2135005500 112
53 - — 111
|

|

|

[

Fig. 7.1 NLP variables for x

100

Table 7.2 shows the number of NLP variables derived from the state and control

variables.
Table 7.2 Relationship between Continuous and NLP Variables

State or control function NLP dimension

X 121
u 5
I 121

The problem was run twice, once using GRG2 and once using VFI3AD on the VAX.
Table 7.3 shows the parameters of the collocation method applied and the NLP

solution statistics.
Table 7.3 Collocation Parameters and NLP Statistics

GRG2 SQpP

N 5 5

M 3 -

N, 5 5

N, 5 5

n 247 247

m 243 243
nfun 114 -

niter 11 11

acc 0.000001 0.0001
CPU 00:18:31 00:29:31

101

GRG2 SQP
err 0.08 0.08
aveerr 0.01 0.01
OF 0.079 0.073
where N = number of internal collocation points in t-interval
M = number of internal collocation points in r-interval
N, = number of finite elements in #-interval
N, = number of finite elements in r-interval
n = number of NLP variables
m = number of NLP constraints
nfun = number of function evaluations
niter = number of NLP iterations
acc = accuracy of NLP solution
<-CPU = CPU time (hh:mm:ss)
err = the maximum point-wise residual error
aveerr = the average point-wise residual error
11
OF = > [[Gux® + widrdr + 0.1ERRORG)
0

2

[=]

Table 7.4 compares the optimal values of the temperature at r = 1

Table 7.4 Comparison of Temperature Values

Time GRG2 SQP [96]

0 1 1 1

0.2 0.766 0.761 ~0.76

0.4 0.549 0.543 ~0.56
102

Time GRG2 SQP [96]
0.6 0.332 0.327 ~().34
0.8 0.134 0.130 ~(.15
] 0.0053 0.0024 ~()
Figure 7.2 shows the optimal values of x (GRG2 run).
Heat Exchanper
"g409.dat”’

temperature

os
radial length

Fig. 7.2 temperature = f(time,radial length)

103

Figure 7.3 shows the optimal values of u (GRG2 run).

Heat Exchanger

wall flux

Fig. 7.3 wall flux = f(time)

104

Figure 7.4 shows the optimal values of x (SOP run).

Heat Exchanpger

‘8408 .dat’ Ry

temperature

0 s
radial length

Fig. 7.4 temperature = f(time,radial length)

105

Figure 7.5 shows the optimal values of u (SQP run).

Heat Exchanger
D.D2 T T T T
‘840812 .dat’ e

wall flux

Fig. 7.5 wall flux = f(time)

7.1.2 - Example 2 : Optimization of a Train of Packed Bed Reactors

This example is concerned with the optimization of three adiabatic packed bed
reactors used for SO, oxidation (Example 4.3.2, pp. 177-182, Ray [22]). Let us
consider the problem of disposing of exhaust gases from a smelting or other ore-
processing operation. One solution which has been employed to avoid the air pollution
resulting from SO, in the stack gases is to oxidize it to SO, for the production of
sulfuric acid. This oxidation is to be carried out over some catalyst which is subject
to deactivation with time. Because the reaction is exothermic and is assumed to be
reversible, a number of adiabatic stages are employed with interstage cooling. It is
assumed that species A is the reactant and B is the oxidation product. Thus the first-

order reaction

106

k1
A = B
k2

is to be carried out in three adiabatic bed packed reactors.

The first reactor begins at o,", ends at ,, the second reactor begins at o,", ends at
o,;, the third reactor begins at o," and ends at o,. For modelling purposes o, =0,

o, =0, =0, 0 =05 =0, and 0, = @, neglecting place occupied by interstage

cooling, where o, =0, o, = -,1- o = % and o, = 1.
In the k-th bed the dimensionless reaction temperature T, is related to the
RT,
dimensionless inlet temperature u, = —~ and conversion by
k
T(2,8) = u (@ + Jlx(zt) - x(0,0)] 0=<¢t<1
0<z<1 (10)
k=123

where J is constant and x,(z,t) is the conversion.

The equation describing the conversion is

ox,(z,t) : -
:3 = x,zD[B,e " (1-x,(z,0)-B,e "™ x izt 0<t<1
b4
0<z< 1 A
k=123
%,(0,) = 0

The decay of catalyst is given by

ax,(z,1) -
B’ = plx,Gzne ™™ 0<t<1
O=zg] (12
k=123

107

X,(z,0) = 1
We wish to maximize the accumulative conversion of A over a catalyst lifetime

I = |x,(1,pat (13)

ot_\‘-

We wish to control the interstage coolers (i.e. the inlet temperatures T, , T,, T;) so
as to maximize the conversion of A over the catalyst lifetime.

The set of parameters are

B, = 5.244x10° B, = 2.28x10° p = 1300 u. = 0.07

u, = 0.08 p = 1.648 p, = 1.666 J =0.005

In Ray [22], this problem was solved by control vector iteration. Pontryagin’s
maximum principle was used to develop the derivation of necessary conditions for
optimality leading to the derivation of the Hamiltonian and the adjoint equations. The
computational procedure was as follows:

1. Guess u,(t), 0 <t <1, k=1,2,3.

2. Solve the state equations (the 2 partial difference equations) forward in z,t using
the method of characteristics (or finite differences); compute the objective functional
L

3. Solve the adjoint equations backward in z,;t.

4. Correct the control function u,(t) by

w0 = w0 + e | |2 | gy (14)
ou,
o,
—123,04=0, 0= L0y = 2,0, = i i
where k = 1,23, 0, =0, o, = .3.,0!1 = .g,m, = 1, and g, is determined by a one-

dimensional search.

5. Return to step 2 and iterate.
The optimal control was found in about 5 minutes of computing time (IBM 360/75).
In this work orthogonal collocation on finite elements was applied to transform the

model into an NLP problem and run it using OCFE on VAX. The conversion and the

108

control closely approximates the solution given in Ray [22]. The problem parameters
and problem statistics are shown in Figure 7.6 and in Tables 7.5 - 7.7
The SQP model differs from the GRG2 model, in that it contains 2 inequality

constraints

0.08 = u(zt

)20
u(z,t) - 0.07 20 (13)

It is because GRG2 treats individual bounds separately while SQP treats individual
bounds as inequality constraints.

The integration domain was [0,1]x[0,1].

The residual error of the discretized differential equations was evaluated at (z,f) =
(0.0), (0.0.23),{1,1).

The knot points in z-interval are 1/3, 2/3, corresponding to the 3 stages.
The knot points in f-interval are 0.2, 0.4, 0.6, 0.8.

There are 15 2-dimensional finite elements. The discretized differential equations
were evaluated both at internal collocation points and at boundaries of finite elements
and at the boundaries of integration domain, where there are no initial/boundary
conditions. The discretized differential equations are in element (k,)) k = 1,...13 [=

1,...,5 and at collocation points i = 1,...,3j= 1,..,3

k=1231=1]
s it)) =23j=123
Loy B [B e M - xl - Beint]
Az, & d 1,231 =2,.5

i=23j=23(16)

k=23 I=1,...,5
3 dt t.! ' J ._ » ¥
Alr > i ;(:) : p(x;;)ze-mptz‘) i=2,3 j=2,3 an
n= t
1=l k=1 I=1,...,5 i=1,2,3 j=2,3

The differential equations are not collocated where initial/boundary conditions are

given. The discretized initial/boundary conditions for x; and x, are

109

FEE W CEALIT RO SR W S

Xy =0 =1 j=123
1=2,..5 j=23
kl (18)
=1 k=23 i=23
k=1 i=123

The integral part of the objective functional has been transformed into the
differential equation

ﬁ{ -x(n =0
(19)
I(10) =0
It was discretized as follows:
Atk=31=1,..,5i=3j=273
2 3] dt (t) 31
Efsn — X3 =0
[n=1 (20)
13311 = 0

In order to reduce the residual error, a weighted error term was added to the
objective functional. The error term is the least-square residual error over the

integration domain. Then the objective functional is
1} - 0.1ERROR(x) (21)

Table 7.5 shows the starting values and bounds for the state and control variables

Table 7.5 Starting Values

Functions/ lower upper starting]
Variables bound bound point
X, 0 1 0

110

LR e sy Ay

Functions/ lower upper starting
Variables bound bound point
u 0.07 0.08 0.075
I 0 1 0
where x, = the dimensionless conversion (state variable)
x, = the catalyst activity (state variable)
u = the dimensionless inlet temperature (control variable)
I = variable derived from the integral term

The state variables x,, X, and I are unbounded, the bounds only used for scaling.
1, and T, are parameters. z and ¢ are independent variables.

The numbering of unknowns is illustrated for x, in Figure 7.6.

t
11 22....T77
| 1021....76
| 920....75
| 819....74
| 7 18....73
| 61772
| 516....17
| 415....170
| 3 14....69
| 213....68
| 112....67
l
l
|
l

z

Fig. 7.6 NLP variables for x,

111

The numbers represent NLP variable numbers at grid points.
Table 7.6 shows the number of NLP variables derived from the state and control
variables.
Table 7.6 Relationship between Continuous and NLP Variables

State or control function NLP dimension
x1 77
x2 77
u 15
I 11

The problem was run twice, once using GRG2 and once using SQP on the VAX.
Table 7.7 shows the parameters of the collocation method applied and the NLP

solution statistics.

Table 7.7 Parameters and NLP Statistics

GRG2 SQP
N 3 3
M 5 5
N, 3 3
N, 5 5
n 180 180
m 166 196
nfun 733 -
niter 119 20

112

GRG2 SQP
acc 0.000001 0.0001
CPU 00:37:26 00:22:45
error 0.05 0.06
aveerr 0.008 0.01
conv 0.488 0.491
where N = number of internal collocation points in z-interval

M = number of internal collocation points in #-interval

N, = number of finite elements in z-interval

N, = number of finite elements in #-interval

n = number of NLP variables

m = number of NLP constraints

nfun = number of function evaluations

niter = number of NLP iterations

acc = accuracy of NLP solution

CPU = CPU time (hh:mm:ss)

err = the maximum point-wise residual error

aveerr = the average point-wise residual error

conyv = cumulative conversion

Table 7.8 compares the optimal values of the conversion at t = 1

Table 7.8 Comparison of Conversion Values

GRG2 SQP [22]

z=1/3

0.28 0.28 ~0.28

113

z GRG2 SQP [22]
k= 0.40 0.40 ~.40
z=2/3
k=3 0.46 0.46 ~(.465
z=1
OF (0.488 0.491 0.50
Figure 7.7 shows the optimal solution x; (GRG2 run).
Packed Bed HReactors
‘g4321n.dat’ _—

conversion

0
0
0.
0
0

o = N w & wu

0s
reactor length

Fig. 7.7 conversion = f(reactor length,time)

114

Figure 7.8 shows the optimal values of u (GRG2 run).

Packed Bed Reactora

‘94323 .dat’ —

inlet temperature

0.0785
D.078
D.D785
0.078
0.D773
0.077
D.D765
D.078

0.5
reactor length

Fig. 7.8 inlet temperature = f(reactor length,time)

115

Figure 7.9 shows the optimal values of x, (SQP run).

Packed Bed Renctors

conversion

ns

04

a2

os
reactor length

Fig. 7.9 conversion = f(reactor length,time)

116

Figure 7.10 shows the optimal values of u (SQP run).

Packed Bed Reactors

‘54323 .dat "’ ——

0.073
0.078
o o777
0.076

0.075

reactor length

Fig. 7.10 inlet temperature = f(reactor length,time)
7.1.3 Discussion
The optimal conversion values are slightly lower than the ones published in Ray [22]
and in [30], it is caused probably by the fact that they solved the problem by control
vector iteration, which implies that the control u, is a continuous function of time,
whereas in this work u, was a piecewise constant function of time.

The advantage of control vector iteration is that the optimization is done in the
function space of continuous functions so that if the control function is very general,
it can approximate any arbitrary true control function. Another advantage of the
control vector iteration is the low dimensionality compared with the method used here.

The disadvantage of the method described in [22] and [96] is that it requires setting
up manually the Hamiltonian and the adjoint equations, coding manually the
differential equations and the adjoint equations and probably requires human effort
along the various stages leading up to the solution. So it requires more time to solve

the problem from start to finish. Another disadvantage of using the necessary

117

conditions of optimality is that only simple control bounds can be handled.

The advantage of using double orthogonal collocation on finite elements over the
method described in [22] and [96], that the transformation of the problem requires
only setting up the model according to the syntax of the conversion package, from that
point the solution is obtained automatically. In comparison with the method of using
the equations derived from the necessary conditions for optimality, the advantage of
using double orthogonal collocation on finite elements to discretize the differential-
algebraic optimization problem into a NLP problem, that it can solve problems
containing also algebraic constraints and constraints containing state and control
variables. This advantage did not show up in this examples, because there were no
constraints except for bounds on the control variable.

The disadvantage of the method described in this work is that an NLP problem of
high dimensionality has to be solved.

Computer times cannot be compared, because the problem was run on different

machines, and it was observed that the CPU time depend on the load on the computer

system.

118

7.2 Dynamic Simulation Problems
7.2.1 Example 3 : Diffusion and Chemical Reaction in a Tubular Reactor with
Non-Newtonian Laminar Flow
The dimensionless form of the steady-state continuity equation with first-order
homogeneous chemical reaction and negligible axial diffusion of reactant is given by
the differential equation

&°C , 1 3C|_ .

Kl— * o = 1 - =0
A L
(22)
where s = 04, B = 3”11, K = 0.01 and
s+l
0E€) =E°
subject to the boundary conditions
C=1at{=0,0<E<1
aC
— =0at& =0,
3 at =0,{>0 23)
aC
—_— =0at ¢ =1
3 at§=10>0

In [97], the problem was solved as follows:

By separation of the variables an analytical solution was found, containing a
function that should satisfy an ordinary differential equation. Galerkin’s method was
used to express the eigenfunctions of the ODE in a finite set of trial functions.
Galerkin’s method reduced the problem of solving an ordinary differential equation
to one of solving a matrix equation. It was solved to yield eigenvectors and
eigenvalues. From the eigenvectors the eigenfunctions were determined. The solution
of the ODE was then obtained as a linear combination of the eigenfunctions. Here
double orthogonal collocation on finite elements was applied to transform the PDE
into a system of algebraic equations. The solution obtained closely approximates the
solution given by R. V. Homsy and R. D. Strohman in [97]. But the solution function

¢(¢,E) has "humps" in the { (axial) direction. The derivatives in the {-direction are not

119

y—-

monotonic, although ¢({,§) is monotonic in both co-ordinate directions. In [136] there
is reference to "hump" in measured radial temperature profiles. Also in order to reduce
residual error, in this work the derivatives are not continuous at finite element
boundaries. It probably can be ruled out, that the model is wrong. I also checked
repeatedly every step leading to the creation of the surface plot starting with the input
model to OCFE. The problem parameters and problem statistics are shown in Tables
7.9-7.11.

The knot points in {-interval are 1., 2., 3., 4., 5., 6. The knot points in E-interval are
0.1, 0.3, 0.6. The integration domain was [0,7]x[0,1]. The residual error of the
discretized differential equation was evaluated at (0.9,0.125), (0.9,0.25),...,(6.3,0.875).
There were 28 2-dimensional finite elements. The discretized differential equation was
evaluated both at internal collocation points and at boundaries of finite elements and
at those initial/boundary points of the integration domain, where there are no
initial/boundary conditions. The discretized differential equation in element (k,/)
k=1,2,...,7 1 = 1,2,3,4 and at collocation points i = 1,2,3 j = 1,23 is

K——-—EC.H dzl(E_u +iiicu dz(‘g;

AE; T dE” AL, & T
3 di (¢
- Bl - 0] - St L5 om (24)
Bl1 - ¢EN] Af;,, 52_1 o .

k=12,.,71=123i=23j=23
k=12.71=4i=23]=2

The differential equation was not collocated where initial/boundary conditions were
given. The discretized initial/boundary conditions are
= k=11=1i=1]=123

¢f=1k=11=234i=1]=23 (25)

Ly oo dl, (&) { k=12,.71=1i=23j=1
A_é;n-n " dE’ k=12,.71=4i=23j=3
120

Table 7.9 shows the starting values and bounds for the state variable

Table 7.9 Starting Values

Function/ lower upper starting
variable bound bound point
& 0 1 1

The state variable C is unbounded, the bounds are only used for scaling. The

numbering of C is shown in Figure 7.11

g

BI85y v vy 135
| 817 ¢« s conmisinn oo 134
| 2 18, . 2 sawunie s v a 133
| 615 5 ¢ ysswivenn s v 4 132
| 8§ Tdin o macateinii i s s 131
| B 33 4 o svonvin o v o 130
| 8 12 .. stinng s w6 129
b I 5 cmmnin v 5 & 0o 128
| 130 . covpinnis ¥ § 565 127

¢
Fig. 7.11 NLP Variables for C

Table 7.10 shows the number of NLP variables derived from the state variable C.
Table 7.10 Relationship between Continuous and NLP Variables

Function/variable NLP dimension

C 135

121

The problem was run twice, once using GRG2 and once using VFI3AD on the VAX.
Table 7.11 shows the parameters of the collocation method applied and the NLP

solution methods.

Table 7.11 Collocation Parameters and NLP Statistics

GRG2 SQP

N 7 7

M 4 4

N; 7 7

N; o 4

n 135 135

m 136 136

nfun 312 -

niter 90 1

acc 0.000001 0.0001

CPU 00:10:28 00:00:51

err 0.06 0.06

aveerr 0.006 0.006
where N = number of internal collocation points in z-interval

M = number of internal collocation points in x-interval

N, = number of finite elements in C-interval

N, = number of finite elements in E-interval

n = number of NLP variables

m = number of NLP constraints

122

nfun
niter
acc
CPU
err

aveerr

number of function evaluations
number of NLP iterations

accuracy of the NLP solution

CPU time (hh:mm:ss)

the maximum point-wise residual error

the average point-wise residual error

Table 7.12 compares the optimal values of concentrations for { = 5 and ¥ = 0.01 and

s = 0.4.
Table 7.12 Comparison of Concentration Values

radius GRG2 SQP [97]
0 0.04 0.04 ~0.039
0.2 0.04 0.04 ~0.038
0.4 0.03 0.03 ~0.03
0.6 0.01 0.01 ~0.015
0.8 0.006 0.006 ~0.007
1 0.002 0.002 ~0.003

123

Figure 7.12 shows the values of C (GRG2 run).

Diffusion and Reaction

'92151a.dat’ —_

-R-R-N-N-N-N-W-N-1
“aMNWAVMINDD

Fig. 7.12 concentration = f(axial length,radius)

124

Figure 7.13 shows the values of C (SOP run).

Diffusion and Reaction

‘82151a.dat’ ——

coooocaoaoao
“MN WLV N DL

radius

4
axial length 8 a

Fig. 7.13 concentration = f(axial length,radius)

The advantage of using double collocation over the method described in [97], that
the transformation of the problem requires only setting up the model according to the
syntax of the conversion package, from that point the solution is obtained completely
automatically. Using the method described in [97] requires more manual procedures
and requires more human effort along the various stages leading to the solution. So
it requires more time to solve a problem from start to finish., The advantage of the
method described in [97] over the method employed in this work that one does not
have to solve a NLP problem of high dimensionality.

7.2.2 Example 4 : Diffusion and Reaction in Viscous-flow Tubular Reactor.

A differential volume of fluid within a tubular flow reactor will be considered.

Steady-state, axial symmetry, and flow in the axial direction only are assumed. An

irreversible first-order chemical reaction in dimensionless form becomes:

125

gl

gz OC #?C 1 aC
(1 U)ﬁ+a[w+?w]_c=o (26)

where a = 0.1

subject to the boundary conditions

C=1lal=0

oC

—_—=0a U =

oU ¢ 0 27
oC

— =0at U =
T at U =1

In [98], the problem was solved as follows:

The differential equation was transformed into corresponding difference equation
using finite difference method. C was expanded in Taylor’'s series. The resulting
system of simultaneous difference equations was then solved. Here double orthogonal
collocation on finite elements was applied to transform the PDE into a system of
algebraic equations. The solution obtained shows some discrepancies as compared to
the solution given by F. A. Cleland and R. H. Wilhelm in [98]. In [98] there is no
boundary condition for U = 0. But the differential equation (26) is parabolic, and a
parabolic differential equation requires 1 initial and 2 boundary conditions. In this
work, differential equations are collocated at the boundaries of the integration domain,
where there are no boundary conditions. But the differential equation (26) is not
defined at U = 0, because there is division by U, In this example there was a
boundary condition at U = 0, this fact might explain the discrepancy in the state
function for U = 0.8 and 1. The problem parameters and problem statistics are shown
in Tables 7.13-7.15.

The knot points in A-interval are 0.1, 0.3, 0.6, 1., 1.5. The knot points in U-interval
are 0.2, 0.4, 0.6, 0.8. The integration domain was [0,2]x[0,1]. The residual error of the
discretized differential equation was evaluated at (0.25,0.125), (0.25,0.25),...,(2,0.875).
There are 30 2-dimensional finite elements. The discretized differential equation was
evaluated both at internal collocation points and at boundaries of finite elements at

those initial/boundary points of the integration domain, where there are no

126

r"I'!P"!(H

initial/boundary conditions. The discretized differential equation in element (k,[)
k=1,2,....,6 1 = 1,2,...,5 and at collocation points i = 1,2,3j=1,2,3 is

(1 _ 7172 1 2 K d’u(xf) .
(l U) m— [chj — o

'k n=} d}-’
N ST RN O R
AU,Z n=l dU 12 U AU{ n=l dU’

o
I

=1,2,..,61=1234i=23j=23
k=12,.,61=5i=23j=2

The differential equation was not collocated where initial/boundary conditions were

given. The discretized initial/boundary conditions are
¢f =lk=11=1i=1j=123
¢ =1k=11=2345i=1j=23

1 o u dl U;) {k
—_— C:,
AU{ n=] dU’ k

29)

w0 1
w0 1

fnou

Table 7.13 shows the starting values and bounds for the state variable

Table 7.13 Starting Values

Function/ lower upper starting
variable bound bound point
C 0 1 1

The state variable C is unbounded, the bounds are only used for scaling. The

numbering of C is shown in Figure 7.14

127

P 11220, ... 143
| 1021.......... 142
| 920.......... 141
| 819.......... 140
| 718.......... 139
| 617.......... 138
| 516.......... 137
| 415..........136
| 314.......... 135
| 213.......... 134
| 112.......... 133
|

l

L

A
Fig. 7.14 NLP Variables for C
Table 7.14 shows the number of NLP variables derived from the state variable C.

Table 7.14 Relationship between Continuous and NLP Variables

Function/variable NLP dimension

C 143

The problem was run twice, once using GRG2 and once using VFI3AD on the VAX.
Table 7.15 shows the parameters of the collocation method applied and the NLP

solution methods.

Table 7.15 Collocation Parameters and NLP Statistics

” GRG2 SQP

128

N 6 6

M 5 5

N, 6 6

Ny 5 5

n 143 143

m 144 144

nfun 322 -

niter 108 2

acc 0.000001 0.0001

\ CPU 00:14:03 00:01:49

err 0.1 0.1

aveerr 0.008 0.008
where N = number of internal collocation points in A-interval

M = number of internal collocation points in U-interval

N, = number of finite elements in A-interval

Ny, = number of finite elements in U-interval

n - number of NLP variables

m = number of NLP constraints

nfun = number of function evaluations

niter = number of NLP iterations

acc = accuracy of the NLP solution

CPU = CPU time (hh:mm:ss)

err = the maximum point-wise residual error

aveerr = the average point-wise residual error

129

Table 7.16 compares the concentration values of the reactant at A = (.5

Table 7.16 Comparison of Concentration Values

U GRG2 SQP [98]
0 0.57 0.57 ~0.58
0.2 0.55 0.55 ~).53
0.4 0.51 0.51 ~(0.47
0.6 0.39 0.39 ~0.37
0.8 0.13 0.13 ~0.30
| 0.12 0.12 ~.26

Figure 7.15 shows the values of C (GRG2 run).

Diffusion and Reaction

‘g4891a .dat”’ —_—

radius

axial length

Fig. 7.15 concentration = f(axial length,radius)

130

Figure 7.16 shows the values of C (SQP run).

Diffusion and Reactlon

'84891a.dat’ —

radius

axial length

Fig. 7.16 concentration = f(axial length,radius)

The advantage of using double collocation over the method described in [98], finite
differencing, that experience has shown, that orthogonal collocation on finite elements

requires fewer number of grid points than the finite difference method, to achieve the

same accuracy.

131

Trap o e p——

a e

B i e]

7.3 Example 5 : Time Delay

This example is concerned with optimal control of a time-delay system. Pontryagin’s
maximum principle is applied to derive necessary conditions of optimality that results
in obtaining the Hamiltonian and the adjoint equations. Since the control vector is
unconstrained, the minimum of H, the Hamiltonian, can be obtained from the
stationary condition

H _g (30)

ou

where u(t) is the unconstrained control vector. The optimal control is obtained by
solving the original differential equations, the adjoint equations and the stationary
conditions. By using the stationary equations, u is eliminated from the state and
adjoint equations yielding a two-point boundary-value problem. The unknown
functions are expressed as polynomial expansions. The numerical example considered
is a linear time-delay system, using algebraic manipulations, the boundary value
problem was reduced to a system of linear algebraic equations, for which the solution

can be obtained with no iteration. The linear time-delay system

i) = x@) + x(t-8) + u(p) (31)

with the initial state profile

x(t) =1 -0<1t<0 (32)

is considered with the performance index

2
J = ﬁx= + ud)dt (33)

to be minimized.
The method developed in this work, orthogonal collocation on finite elements was

132

applied to transform the optimal control problem into a NLP problem. The state profile
closely approximates the solution given in [46]. The problem parameters and problem
statistics are shown in Tables 7.17-7.18. The knot points are 0.2, 0.4, 0.6, 0.8, 1., 1.2,
1.4, 1.6, 1.8. The time delay is © = 1.0. The integration domain is [0,2]. The residual
error of the discretized differential equations was evaluated at 0.05, 0.1, ...,2. There
are 10 finite elements. The discretized differential equation was evaluated both at the
internal collocation points and at the boundaries of finite elements and at ¢ = 2. It was
not evaluated at ¢ = 0, because initial condition is given at ¢ = 0. The discretized

differential equation in element k, k=1,2,...,10 and at collocation points i=1,2,3 is

: dl (t))
k7 i k,. 7 k, . 7)
A7 X () — =X () - x (G - 8) - uk
x z:: dt’)) (34)
k = 12, ..,10 I = 2’3
The discretized initial condition is
x;:l k=1 i=1 (35)
The objective functional has been transformed into a differential equation
E{ =x2 + y?
dt (36)
100) =0
It was discretized as follows
atk =1,2,..,10 i=2,3
3 dl (t;
Llge 0)] Y - = 0
n=] (37)
I'=0

133

The objective functional is

L (38)

Table 7.17 shows the number of NLP variables derived from the state and control

variables.
Table 7.17 Relationship between Continuous and NLP Variables

State or control function NLP_dimcnsion
X 21
u 10
I 21

The problem was run twice, once using GRG2 and once using VFI13AD on the VAX.
Table 7.18 shows the parameters of the collocation method applied and the NLP

solution methods.
Table 7.18 Collocation Parameters and NLP Statistics

GRG2 SQP
N 10 10
N, 10 10
n 52 52
m 43 43
nfun 437 &
niter 44 76
acc 0.000001 0.0001
CPU 00:19:00 00:06:05
eIt 0.02 0.03

134

GRG2 SQP

aveerr 0.002 0.001

OF 6.25 6.293
where N = number of internal collocation points in the integration domain

N, = number of finite elements

n = number of NLP variables

m = number of NLP constraints

nfun = number of function evaluations

niter = number of NLP iterations

acc = accuracy of the NLP solution

CPU = CPU time (hh:mm:ss)

err = the maximum point-wise residual error

aveerr = the average point-wise residual error

OF =

Table 7.19 compares the optimal values of the state variables.

f (x? + u?dt
o

Table 7.19 Comparison of State Variables

time GRG2 SQP [46]
0 1 1 1

0.4 0.44 0.40 ~0.45
0.8 0.29 0.27 ~0.30
1.2 0.39 0.30 ~0.36
1.6 0.55 0.45 ~0.53
2 0.89 0.73 ~0.84

135

Figure 7.17 shows the optimal values of x (GRG2 run).

etnte

Tims Delay

0.7

0.4

I I L L 1

T T T
"gohluusi,dat"

—

time

1.4 1.6 1.8

Fig. 7.17 state variable = f(time)

136

Figure 7.18 shows the optimal values of u (GRG2 run).

Time Delay

control

Fig. 7.18 control variable = f(time)

Figure 7.19 shows the optimal values of x (SQP run).

state

Time Delmy

I 1 T T T

T T T
‘sohluust.dat’

Fig. 7.19 state variable = f(time)

138

Figure 7.20 shows the optimal values of u (SQP run).

Time Delny

control

-4

Fig. 7.20 control variable = f(time)
The method applied in [46] approximated the state and control function as a
polynomial expansion instead of as a linear combination of Lagrange interpolation
polynomials, the disadvantage of this approach is that the coefficients have no physical

meaning. There is a relationship between the 2 approximations:

N+2 N+2

x® =Y et =Y xl® (39)
Jj=1

J=1

The method can only be applied if the control vector is unconstrained. The approach
developed in this work does not apply the theorems and results of control theory,
because then it would be difficult to automate the computational procedure and it
would not be so general-purpose, e.g., in [46] the fact that the control vector was
unconstrained, was made use of. The work in this thesis does not make use of the
linearity of systems, because there would be problems concerning automating the

conversion of optimal control problems into NLP problems.

139

7.4 Example 6 : Parameter Estimation Example
Given experimental time-concentration data for species A,B,C, the task is to find the
values for the rate constants k;, k, and k;, that best fit the experimental data. The data
are presented in Table 7.20.

Table 7.20 Experimental Data

concentration

Time A B C

0 0.75 0 0

2 0.266 0.412 0.0479
4 0.105 0.520 0.148
6 - 0.470 0.216
8 0.0095 0.420 0.329
10 0.00525 0.377 0.357

The mathematical model
% = kA
L= kA +kC - kB “40)

C=A,+B, +C, - A - B overall mass balance

where A, By, C, are the initial values of A, B, C, respectively. This problem is shown
in the Simusolv User Guide, [93], where it was solved by maximizing the maximum
likelihood function which is a measure of how well the model fits the experimental
data. In this work orthogonal collocation on finite elements was applied to transform
" the model into an NLP problem. The values of the rate constants and the functions
A(), B(®), C(2) closely approximate the experimental data as well as the solution given

in the Simusolv manual. The least-square function

140

S B oans Ll LA NI

6

Y [AM-A'®) + BO-B'®) + (COH-C'®)] (41)

t € 10,24,6,8,10}

was minimized using GRG2 and VFI3AD. The problem parameters and problem
statistics are shown in Tables 7.21-7.23. The knot points are 1,2,3,4,5,6,7,8,9,10,11.
The integration domain is [0,12]. The residual error of the discretized differential
equations was evaluated at [0.5,1.,1.5,...12.]. There were 12 finite elements. The
discretized differential equations were evaluated at internal collocation points, at finite
element boundaries and at t=12. They were not evaluated at t=0, where initial
conditions are given. The discretized differential equations are in element k,

k=1,2,...,12 and at collocation points i=1,2,3

I ¢ dLE) :
. An 2 kA; {k = ,2,..., | =
Aft § df' * et 1 12 § 2,3

(42)
1 gt dl,,(fi’)

L y5

k k .
Atk el dt! - klA; = k3C,- + sz,-* {k = 1,2,.,12 i =23

The overall material balance was discretized in the element k, k=1,2,...,12 and at

collocation points i=1,2,3

.k _ _ _ _k k k=1 f=l,2,3
Ci' -A,-B, -C, +A; +B, k=2,..,12 i=2,3 “3)

The discretized initial conditions are

Al =075 { k=1 i=1
B! =0 {k=1i=1 (44)
Cl=0 {k=1i=1

The objective function was evaluated at

141

e

t=0 k=1
=2 k=2
t=4 k=4
t=6 k=6
t= k=8

=10 k=10 i
t 12 k=12 i

i=1
i=3
i=3
i=3
1-3

Table 7.21 shows the starting values and bounds for the state variables
Table 7.21 Starting Values

(45)

Function lower upper starting
bound bound point
A 0 1 0.75
B 0 1 0
C 0 1 0

The numbering system of unknowns is illustrated for A in Figure 7.21
1234 56 7 8 91011 12131415 16171819 202122 232425

—)— XXX X XXX XXX

t=0

1 2 3 4

5

6

7

8

9 10 11

Fig. 7.21 NLP Variables for A

12

Table 7.22 shows the number of NLP variables derived from the state variables

Table 7.22 State Functions versus NLP Variables

State Function NLP dimension
A 25
B 25

142

State Function NLP dimension

C 25

The problem was run twice, once using GRG2 and once using VFI3AD on the VAX.
Table 7.23 shows the parameters of the collocation method applied and the NLP

solution methods.

Table 7.23 Collocation Parameters and NLP Statistics

GRG2 SQP
N 12 12
N, 12 12
n 75 75
m 76 79
nfun 404 -
niter 52 11
acc 0.000001 0.000001
CPU 00:01:29 00:01:07
err 0.02 0.02
aveerr 0.0005 0.0005
OF 0.001 0.001
k, 0.506 0.506
k, 0.102 0.102
k, 0.033 0.033

143

where N

number of internal collocation points in the integration domain
number of finite elements

number of NLP variables

number of NLP constraints

number of function evaluations
number of NLP iterations

accuracy of the NLP solution

CPU time (hh:mm:ss)

the maximum point-wise residual error
the average point-wise residual error
the value of the least-square function
the rate constant of species A

the rate constant of species B

the rate constant of species C

The parameter estimation problem has been solved also using control vector

parameterization in conjunction with the Hooke-Jeeves and BFGS method and with

the 4th order Runge-Kutta method. The objective functional evaluation, the derivatives

evaluation, and the mass-balance equation evaluation codes are shown in Appendix

A.

Table 7.24 compares the values of the rate constants.

Table 7.24 Comparison Values of the Rate Constants

GRG2 SQP Hooke- BFGS SIMU-

Jeeves SOLV
k, 0.506 0.506 0.504 0.503 0.507
k, 0.102 0.102 0.107 0.104 0.103
k, 0.033 0.033 0.043 0.034 0.036

144

Table 7.25 compares the concentration values of A.

Table 7.25 Comparison of Concentration of A

time GRG2 SQP Hooke- BFGS SIMU-
Jeeves SOLV

0 0.75 0.75 0.75 0.75 0.75

2 0.27 0.27 0.27 0.27 0.27

4 0.1 0.1 0.09 0.1 0.098

6 0.03 0.03 0.03 0.03 0.035

8 0.01 0.01 0.01 0.01 0.012

10 0.004 0.004 0.004 0.004 0.004

12 0.001 0.001 0.001 0.001 0

Table 7.26 compares the concentration values of B.
Table 7.26 Comparison of Concentration of B

time GRG2 SQP Hooke- BFGS SIMU-
Jeeves SOLV

0 0 0 0 0 0

2 0.42 0.42 0.42 0.42 0.42

4 0.50 0.50 0.50 0.50 0.50

6 0.47 0.47 0.47 0.47 0.47

8 0.42 0.42 0.42 0.42 0.42

time GRG2 SQP Hooke- BFGS SIMU-
Jeeves SOLV

10 0.37 0.37 0.37 0.37 0.37

12 0.33 0.33 0.33 0.33 0.33

Table 7.27 compares the concentration values of C.
Table 7.27 Comparison of Concentration of C

time GRG2 SQpP Hooke- BFGS SIMU-
Jeeves SOLV

0 0 0 0 0 0

2 0.05 0.05 0.05 0.05 0.05

4 0.14 0.14 0.14 0.14 0.14

6 0.23 0.23 0.23 0.23 0.23

8 0.30 0.30 0.31 0.30 0.30

10 0.36 0.36 0.36 0.36 0.36

12 041 041 0.41 0.41 0.38

146

concentration of A

Figure 7.22 shows the optimal values of A (GRG2 run).

Parameter Estimation

I I I I I

‘@simuv .dat’

Fig. 7.22 concentration of A = f(time)

147

12

Figure 7.23 shows the optimal values of B (GRG2 run).

Parameter Estimation

0. T T T T T
‘gsimu2 .dat” —

concentration of B

Fig. 7.23 concentration of B = f(time)

148

Figure 7.24 shows the optimal values of C (GRG2 run).

Parameter Estimation
o as T T T T T

‘egsimul.dat’ ———

concentration of C
(=]
n

Fig. 7.24 concentration of C = f(time)

149

Figure 7.25 shows the optimal values of A (SQP run).

cancentration of A

Parameter Estimation

‘ssImuv.dat’

Fig. 7.25 concentration of A = f(time)

150

12

Figure 7.26 shows the optimal values of B (SQP run).

Parameter Estimation

0B T T T T T
‘ssImu2 .dat’ —_—

concentration of B

Fig. 7.26 concentration of B = f(time)

151

Figure 7.27 shows the optimal values of C (SQP run).

Parametler Estimation
o 45 T T T T T

‘ssimud.dat’ e

concentration of C

%ig. 7.27 concentration of C = f(time)

152

Figure 7.28 shows the optimal values of A (CVP HOOKE-JEEVES run).

concentration of A

Perameter Estimation

B T T

Fig. 7.28 concentration of A = f(time)

‘hsimua.dat’ —
4 =
1
1]
0 2 4 B 10 12
time

Figure 7.29 shows the optimal values of B (CVP HOOKE-JEEVES run).

concentration of B

B T T T T T

Parameter Estimation

‘heimub.dat’ E—

Fig. 7.29 concentration of B = f(time)

154

Figure 7.30 shows the optimal values of C' (CVP HOOKE-JEEVES run).

Parameter Estimation
o 4s T T T T T

‘heimuc.dat” ——

concentration of C

Fig. 7.30 concentration of C = f(time)

155

Figure 7.31 shows the optimal values of A (CVP BFGS run).

concentration of A

Parameter Estimation

I I I I I
‘bsimua.dat’

10

Fig. 7.31 concentration of A = f(time)

156

12

Figure 7.32 shows the optimal values of B (CVP BFGS run).

Parameter Estimation

[} T I T T T
‘bsimub.dat’ ——

concentration of B

Fig. 7.32 concentration of B = f(time)

157

Figure 7.33 shows the optimal values of C (CVP BFGS run).

Parameter Estimation
o 45 T T T T T

‘bsImuc .dat”’ —

concentration of C

Fig. 7.33 concentration of C = f(time)

The approach taken in SIMUSOLV was probably sequential optimization, for each
function evaluation the differential equations had to be solved. It is not sure whether
SIMUSOLYV can handle a case when the rate constants are functions of time, because
they depend on temperature, which in turn is a function of time. In this work
simultaneous simulation and optimization strategy and the sequential optimization

strategy control vector parameterization were used.

158

7.5 Example 7 : A Nonlinear Programming Example

Optimization of an Electrolytic Cell

This example is concerned with a model of a chlor-alkali cell to determine maximum
profit for a single cell. The model is described in [99]. In [99] the model was solved
using GRG2 package. Here it was solved also using the same package and the optimal

solution closely approximates the solution given in [99].

The model consists of 40 variables, 37 equality constraints and 2 inequality

constraints.
Table 7.28 shows the description of the variables.

Table 7.28 Description of Variables

NLP variable model variable Description

scale factor

X, I - cell current

(kiloamperes)

10

anodic current
density (amps/
ft?)

i cathodic cur-
rent density
(amps/ft?)

D decomposition
of salt per

pass

10?

U current effici-

ency

10

m, sodium in feed

brine (Ibmoles/
hr)

159

NLP variable model variable Description scale factor

Xg M; salt molality 1
of feed brine
(gfw/kgm H,0)

Xs W; feed brine H,0 10
flow rate (Ibs/
hr)

Xq W, feed brine mass 102
flow rate (lbs/
hr)

X0 L life of anode 1
(days)

X11 I, current day of 1
anode life (day
s)

X2 0 fractional age 1
of anode

%Xiq Iy age of the nth 1
diaphragm (days)

X4 d, anode blade thi- 10*
ckness (feet)

Xys dg anode-diaphragm 10°
gap (feet)

Xy Meia' chlorine evolv- 10?

ed

160

NLP variable

model variable

Description

scale factor

X17

H,0 formed at
anode (Ibmoles/
hr)

10?

anolyte tempe-

rature (degrees

F)

Po

vapor pressure
of H,0 at x4
(mm Hg)

M+

salt molality
of anolyte (gfw
/kgm H,0)

vapor pressure
of anolyte (mm
Hg)

H,0 vaporized
at anode (Ibmol
es/hr)

X2

H,O0 in anolyte
flowing into
diaphragm (lbs/
hr)

10

chlorine over-
voltage resis-

tance (ohm)

10°

161

NLP variable

model variable

Description

scale factor

X2s

resistance of
anolyte liquor
(ohm ft)

10°

gap

resistance of
anolyte in ano-
lyte diaphragm
gap (ohm)

10°

caustic molali-
ty of catholyte
(gfw/kgm H,0)

salt molality
of catholyte
(gfw/kgm H,0)

catholyte tempe
rature (degrees
F)

X30

Po

vapor pressure
of H,0 at x,
(mm Hg)

vapor pressure of

catholyte (mm
Hg)

water vaporized at
cathode (Ibmoles/
hr)

162

NLP variable model variable Description scale factor

X33 mass flow rate of 10

H,0 in cell liquor
(Ibs/hr)

X4 n hydrogen overvol- 10°
tage resistance
(ohm)

Xss R, diaphragm resis- 10°
tance (ohms)

X36 E* thermodynamic 10

rev voltage at

anode (volts)

X317 v* anode side half- 1
cell voltage
(volts)

E thermodynamic 1
rev voltage at

cathode (volts)

X39 \A cathode side half- 1
cell voltage
(volts)

X0 A4 total cell voltage 1

(volts)

Model Formulation
ﬁ’he"ccll consists of 2 parts, anode side and cathode side, separated by a deposited
ﬁschtOS diaphragm. The model consists primarily of mass, heat and voltage balances

bn each side of the cell. The derivation of the model is described in detail in [99].

-

163

Table 7.29 shows initial values, final values and bounds on the variables.

Table 7.29 Initial and Final Values and Bounds

NLP model initial final lower upper

variable variable value value bound bound
Xy I 56 60 0 60
X, i, 121.7 130.43 0 10*
X3 i, 121.7 130.43 0 10%
Xs D 52 50.84 10° 100
Xs U 95.8 96.30 0 100
X m, 8.49 9.34 0 10
X, M, 5.7 6.88 0 10%
Xg Wy 14.9 13.57 0 10%
Xo W, 19.86 19.04 0 10

Xy L 259 240.55 0 10

X1y A 0 0 0 10%
X2 (€] 0 0 0 1
X3 ly 0 0 0 10*
X4 d, 10.42 10.41 2.08 10.42
Xys | dyap 31.25 31.25 31.25 72.92
X6 Mg, 221 237.67 0 10%
X17 Myg0" 9.57 9.11 0 10%*
X3 T 195 209.96 86 230

164

NLP model initial final lower upper
variable variable value value bound bound
X9 Po’ 537 729.85 0 10%
X20 M* 4.39 5.73 0 10%
Xa1 P 452 57433 0 750
Xz m,,," 3.42 7.91 0 10%
Xz3 Wy 14.3 12.16 0 10%
Xo4 n' 4.38 4.22 0 10%
Xas P 67.3 58.12 0 10%
Xa6 Ryep 5.31 4.58 0 10%
X7 N 3.57 4.84 0 12.5
X8 M 3.29 4.68 0 10%
X29 T 197 215.36 68 230
X30 Po 562 812.18 0 10%
X31 P 427 532.18 0 750
X3 M,y 3.05 6.02 0 10%
Xa3 W, 12.92 10.19 0 10%
X34 ul 4.46 4.26 0 10%
X35 R, 10.2 8.78 0 10%
X36 E* 131 128.70 0 10%
X37 v* 2 1.97 0 10%
Xsg E 0.86 0.86 0 10%
X3 \'%A 1.87 1.84 0 10%

165

NLP model initial final lower upper
variable variable value value bound bound
X40 3.87 3.82 0 10%°

Table 7.30 shows the description of the parameters.

Table 7.30 Description of Parameters

Parameter Description
R hardware resistance
GCU hardware resistance
RG hardware resistance
RHDWR hardware resistance
F Faraday’s constant
F2 Faraday’s constant
. F4 Faraday’s constant
AREAA anodic area
“AREAC cathodic area
AREAD diaphragm area
AREAE electrolyte area
DTHKNS diaphragm thickness
" PRESS barometer pressure
" DRELCND diaphragm relative conductivity
MWH20 molecule weight

166

Parameter Description
MWCL2 molecule weight

MWNACL molecule weight

MWNAOH molecule weight

MWH2 molecule weight

PAO vapor pressure of water at anolyte
PA vapor pressure of anolyte

RCL chlorine overvoltage resistance
RHOO resistivity of the anolyte solution
PCO water pressure of H,O at catholyte temperature
PC water pressure at catholyte

RH2 hydrogen overvoltage resistance
D1 anolyte salt mass fraction

D2 catholyte caustic mass fraction
D3 anolyte salt mass fraction

Table 7.31 shows the description of the subroutines.

Table 7.31 Description of Subroutines

Subroutine Description

RANOLT calculates the resistivity of the anolyte

CLOVER calculates anode chlorine overvoltage

H20VER calculates cathode hydrogen overvoltage

167

Subroutine Description

VAPH20 calculates the vapor pressure of water

VAPANO calculates the anolyte vapor pressure

VAPCAT calculates the catholyte vapor pressure

TBOIL computes the approximate boiling point of

an "M" molal aqueous solution of sodium

chloride

Equality constraints

5100 anodi t densi

Xy ™ e—— anodic curren ensi

2 AREAA v

x,10° . .

X, = = 0 cathodic current density

AREAC
X
1.461(1 - 4.
scrat = 100 salt/caustic ratio
X

4

—

[1’:)50 + 0.0805195(SCRAT)? - 0.295247(SCRAT) ~ 0.7066872 J 100 = 0

current efficiency scale factor

x,10%
X - L3 =0 sodium input in feed brine
XF

168

x,1000
100x, -

Xq

] = 0 mass flow rate of H,0 in feed brine

x,100 = (MW)y, %, - 100x,

. = (feed brine mass flow

x,, + 2.08333x, - 512.292 = 0 life of anode

X
[xn - _EJ 100 = 0 fractional age of anode
xm

X,; = X, = 0 age of nth diaphragm

1.25 - x,
X4 _ 121100 = 0 anode blade thickness
100 12

Ys 1, %14 1100 = 0 anode di
- = iaphragm ga
[1000 12 200 prrasm 8%

X6 x,5%,1000 10 =0 .
- = 0 chlorine gas evolved at
[100 T00F3 ne g olved at anode

x. x, 1000
[x” - - 5) 1F2 :IIOO = 0 H,0 formed by current inefficiency reaction

v - -0 vapor pressure of water
19~ Pao at anolyte temperature

vapor pressure of water

Xy =Py = 0 above anolyte temperature

169

.

[e T T

N T T

X
1000x,(1 + W’g)x21

- 10 = 0 water vaporized with anolyte gas
*2 = —(PRESS - x,)F4

X water in anolyte flowing into
x,,100 - 100x; - {'ﬁf - xzz] (MW)po = 0 diaphragm e flowing

Xs = X6
x -
[20 100

o
=0 salt molality of anolyte
100x,,

[.ﬁ‘; - R,] 105 = 0 chlorine overvoltage resistance

[132(;0 - Ry00 } 1000 = 0 resistance of anolyte liquor

x x,0.905 + 0.009x,,1™x, - resistance of anolyte in anolyte-
%6 _ 725 10 =0 .
T0° 10°(AREAE) diaphragm gap

X
X, (1 - 2] 100
X - =0 salt molality of catholyte

Xy = Poo = 0 vapor pressure of water at catholyte temperature

Xy ~ Pc _ 0 vapor pressure of H,0 above catholyte temperature
10

170

1000x
- - 000x%,, 10 = 0 water vaporized with cathode gas
F2(PRESS) - %)
1000x,
100x,, - 100x,, + [T Xn](MW)HZO _o Jlow rate of H,O in cell
10 ligour

1000x, 1000
1~ ~Floox,

] 10 = 0 caustic molality of catholyte

Ii_{ci - Ry, } 10’ = 0 hydrogene overvoltage resistance

HKN.
Xy _ Xy DTHKNS) - 2.132010 %2 + 5.414x10x,, |10° = 0
10° 1000(DRELCND)(AREAD)
diaphragmresistance
xlﬁ

Y =

CL2

X
00
+ X

100x,1000 {1 - 1’

F4 2

¥ _ 1350 - 2.3952105(TAR)LOG {

(Y .,)(PRESS) 10 < 0 thermodynamic
100

- reversible
0.81X,0X,, emf of anode

x36
100 Xy Xy, Ryey + RG |10* = 0 anode half-cell equivalent

1000x, 10° " To° resistance

X37

171

R SR]

x31

Y, (PRESS)0.81x,
X, — 0.828 - 2.3952x107%[x,, + 459.7]LOG [a 5) 7] 10° = 0
thermodynamic reversible emf of cathode

Xag = Xyg _ Xay | Ky | RHDWR :| 10° = 0 cathode half-cell

1000x, 106 10° equivalent resistance

Xy = X3y = X3 =0 total cell voltage

[68.2139x40 + 1.52602(D1) - 0.0936978(POWER) + 54.8611] 9

2 (1 =0
5 10

xls

anolyte temperature

[-3.26827x,, - 4.81807DI + 339.217x,, - 0.466131(POWER) - 37.6628D2] 9
5

, [26.6881D3 5* 9548919 _ X, =0 catholyte temperature

X9 T

x, =0 force evalation of constraints at initial day of anode life

Inequality Constraints

4 - >0 make sure anolyte temperature is at least 5.4
Xpg = 34 = Xy degrees less than the catholyte temperature

B - >0 make sure catholyte temperature is not
29 greater than its boiling point

Objective Function
The objective function includes 3 terms:

172

(1) gross income from product sales
(2) cost of electricity
(3) cost of feed materials to the cell

145(5x10 *)x, (MW) ..,
100
(5x1077) = 20.7xx,100(MW),,,,(5:x10 ")

- -0.06(POWER)5x10* + + 175x,%,,100(MW) 00

OF

Its optimal value was 10.077.
In [99], the optimal value of the objective function is 10.08.

173

7.6 Example 8 : Unsteady-State Diffusion in 2 Space Dimensions - Parabolic
PDE in 3 Independent Variables

The initial-boundary-value problem described in [138]

u ~-(u_ + u”) = -y O<x<1, O<y<l, 0 '

u(x,y,0) = xy
u(0,y,1) =0
ux,0,6) =0 (46)

u(lyt) = ye~
u(x,1,t) = xe™
u(0,0,0) =0

u(l,1,f) = e™

has the exact solution xye®. Backward-in-time finite difference method was used to
traﬁsform the PDE in 3 independent variables into a PDE in 2 independent variables.
The time-step was chosen as kA = 0.1 and the integration domain was
[0,0.5]1x[0,1]x[0,1]. The knot points in x-interval are 0.2,0.4,0.6,0.8 and in the y-
interval are 0.2,0.4,0.6,0.8. The residual error of the discretized differential equations
was evaluated at (0.125,0.125),(0.125,0.250),...,(0.875,0.875). There were 25 2-
dimensional finite elements. The discretized differential equation was evaluated in the
ixitéfi&r of the x-y integration domain, i.e. at internal collocation points. The finite
différe}lcing led to 5 dependent state variables, uy(x,y,0.1), u;(x,y,0.2), u,(x,y,0.3),
u,(%,y,0.4) and ug(x,y,0.5).

The discretized differential equations in element (k1) k=1,2,...,5 1=1,2,...,5 and at

collocation points i=1,2,3 j=1,2,3 are

174

ST

1] 3
Uyj = XY 1 E K
0.1 AxZ o

. k ne=l

Kl ki 3
Us; = Uy 1 E ul
- i

001 Axkz n=]

K K 3
Ug; = Uy 1]
3 Y lha

0.1 Axt n=l

kl kl 3
Us;j = Uy 1 E uH
2 Snj

0.1 Axk n=l

] K

Us;; — Us;j 1 i uH
) 6nj

0.1 Axk n=]

k=12,.41=12,.
k=12,.41=5i=23j=2
k=51=12..4i=2j=23

a1
dx"? A}’tz
iUy 1
dx’? A)’:z
dzf,(xi’) _ 1
dx’* A)’fz
i) 1
dx'* A)’iz
KXo B
dx'? i A}’iz

k=51=5i=2j=2

-0.1
g dy’* e
d?l (y/
uly 0+ vy
y
d? (y/
u‘&: dn(ﬁ) _'_e—o.sxy
Y
dA /)
Al avJ -0.4
Usin N * e XY 47)
2 /
" al,;) + e 5y
dy’?

A4i=23j=23

The differential equations were not collocated at the boundary of the x-y integration

- domain, where initial-boundary conditions were given. The discretized initial-boundary

conditions are:

wy=0k=11=1i-=
ul =0k=2.51=1i=23j=1
1j=23

u;;=0k=ll:]’2,."’5i=

uzt.:. = xe'o‘l k = 1,2,...,4 l=5i-= 2,3j =3

123j =1

(48)

P P
u;:;=ye_°'lk=51=1’2:-"’41..:3.’.:2’3
ull =ye M k=51=5i=3j=2

175

HeeWp=5]=5i=3j=3

e

uy, =0k=11=1i=123j=1

"3t;=0k=2»--,51=1i=2,3j=1
ujp=0k=1101=12.5i=1j=23

Uy =xe®k =12,.,41=5i=23j=3
Uy =xe®2k=51=5i=2j=3
G =ye?k=51=12.4i=3j=23
G=ye ™ k=51=5i=3j=2
Uy =e®*k=51=5i=3j=3

H-0k=11=1i=123j=1
H=0k=2.,501=1i=23j=1

uf =0k=11=12.,5i=1j=23
e xe®k=12,.41=5i=23j=3
ub =xe ™ k=51=5i=2j=3
Moy k=51=12..4i=3j=23
Y=y k=51=5i=3j=2
ufi=e*k=51=5i=3j=3

n

ug =0k=11=1i=123j=1
Mo0k=2.,501=1i=23j=1
HeQk=11=12.5i=1j=23
o xe®k=12,..41=5i=23j=3
Hexe®k=51=5i=2j=3
us’:}=ye“°'4k=53= 1,2,.,4i=3j=23
H=ye " k=51=5i=3j=2
ugy=e®k=51=5i=3j=3

176

(49)

(50)

1)

U;=0k=11=1i=123]=1

Ui =0k =2.50=1i=23]=1

U =0k=11=12.5i=1j=23
u£=x(“k=12MAl=5i=23j=3

Ui =xe Sk =50=5i=2]=3 2
Ui =ye S k=51=12.4i=3]=23

Ugj=ye S k=51=5i=3]=2

U =e S k=51=5;=3j=3

1}

.T.hc- problem to be solved has been transcribed as shown below

325500

1111111111

1111111111

':s;‘;_p NICP NEEDED WITH ONE SUBINTERVAL

% THIS IS A COMMENT
o‘c_fcpdcsqppddzapdcbdw5p420.dat
0.125 0.125 0.5 0.5
100000054070 1
4444411
000011111111
000011111111
000011111111
000011111111
000011111111
0333336666
6666666666
6666666666
6666666666
6666669
000011111111

177

000011111111
000011111111

000011111111

000011111111

U2’ "U3’ "U4’ U5’ U6’

XY

0000

0.1.0.1.0.0.0.0.

0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8

pi=3.141592

(U2(X,Y)-X*Y)/0.1-D2U2(X, Y)/DX2-D2U2(X,Y)/D Y 2-+exp(-0.1y¥X*Y
(U3(X,Y)-U2(X,Y))/0.1-D2U3(X, Y)/DX2-D2U3(X, Y)/DY 2+exp(-0.2) *X*Y
(U4(X,Y)-U3(X,Y))/0.1-D2UACK, Y)/DX2-D2U4(X, Y)/DY 2+exp(-0.3y*X*Y
(U5(X,Y)-U4(X,Y))/0.1-D2U5(X,Y)/DX2-D2U5(X,Y)/DY 2+exp(-0.4) ¥X*Y
(U6(X,Y)-USCX, Y))/0.1-D2U6(X, Y)/DX2-D2U6(X, Y)/DY2-+exp(-0.5) XY
U2(X,Y) AT X=0 AT Y=0

U2(X,Y) AT X=0 AT Y=1

U2(X,Y) AT X=1 AT Y=0

U2(X,Y)-exp(-0.1) AT X=1 AT Y=1

U2(X,Y) AT X=0

U2(X,Y)-Y*exp(-0.1) AT X=I

| U2X,Y) AT Y=0

U2(X,Y)-X*exp(-0.1) AT Y=1

U3(X,Y) AT X=0 AT Y=0

| U3(X,Y) AT X=0 AT Y=1

U3(X,Y) AT X=1 AT Y=0

U3(X.Y)-exp(-0.2) AT X=1 AT Y=1

U3(X,Y) AT X=0

| U3(X,Y)-Y*exp(-0.2) AT X=1

U3(X,Y) AT Y=0

U3(X,Y)-X*exp(-0.2) AT Y=1

178

U4(X,Y) AT X=0 AT Y=0
U4(X,Y) AT X=0 AT Y=1

U4(X,Y) AT X=1 AT Y=0
U4(X,Y)-exp(-0.3) AT X=1 AT Y=1
U4(X,Y) AT X=0
U4(X,Y)-Y*exp(-0.3) AT X=1
U4(X,Y) AT Y=0
U4(X,Y)-X*exp(-0.3) AT Y=1
U5(X,Y) AT X=0 AT Y=0
U5(X,Y) AT X=0 AT Y=1
U5(X,Y) AT X=1 AT Y=0
U5(X,Y)-exp(-0.4) AT X=1 AT Y=1
U5(X,Y) AT X=0
US(X,Y)-Y*exp(-0.4) AT X=1
US(X,Y) AT Y=0
US(X,Y)-X*exp(-0.4) AT Y=1
U6(X,Y) AT X=0 AT Y=0
U6(X,Y) AT X=0 AT Y=1
U6(X,Y) AT X=1 AT Y=0
U6(X,Y)-exp(-0.5) AT X=1 AT Y=I
U6(X,Y) AT X=0
U6(X,Y)-Y*exp(-0.5) AT X=1
U6(X,Y) AT Y=0
U6(X,Y)-X*exp(-0.5) AT Y=1

U6(X,Y)
Table 7.32 shows the starting values and bounds for the state variables.

Table 7.32 Starting Values

Function/ lower upper starting
bound bound point

variable

179

u, 0 1 0
u, 0 1 0
u, 0 1 0
Ug 0 1 0
Ug 0 1 0

The state variables are unbounded, the bounds are only used for scaling. The

humbcring of u, is shown in Figure 7.34.

y
|

1495 . oo oo 605
| 494 . : 604
| 493 . . oo 603
| 492 . o v oo e 602
| 491 . o v 601
| 490 . . . o .. 600
| 489 599
| 488 . . o oo - 598
| 487 . o v oo e 597
| 486 . v v oo e 596
| 485 . v o oo 595

X
Fig. 7.34 NLP Variables for ug

Table 7.33 shows the number of NLP variables derived from the state variables.

180

Table 7.33 Relationship between Continuous and NLP Variables

Function/variable NLP dimension)
u, 121
u, 121
u, 121
ug 121
U 121

The problem was solved using VFI3AD on SUN SPARC 2000 workstation. The
numerical solution closely approximates the exact solution given in [138].

‘Table 7.34 shows the parameters of the collocation method applied and the NLP

" solution statistics.

Table 7.34 Collocation Parameters and NLP Statistics

N 5
M 5
N, 5
N, 5
m 605
n 605
niter - 2
o acc 0.0001
i") CPU 00:25:27

181

€1r

0.01

averr

.0.0007

where

5 Z 72 2 Z

=

niter
acc
CPU
err

averr

number of internal collocation points in x-interval

number of internal collocation points in y-interval

number of finite elements in x-interval

number of finite elements in y-interval

number of NLP constraints

number of NLP variables

number of NLP iterations

accuracy of NLP solution
CPU time

the maximum point-wise residual error

the average point-wise residual error

;I'éblc 7.35 shows the exact solution at t=0.5.

Table 7.35 Exact Solution

x/y d |2 [3 |4 |5 |6 |7 |8 |9 |1

;d- o |o [0 |o Jo |o o [o |o |o

X 1 - 01 (.01 |.02 |.02 |.03 |.04 [.04 |.05 |.05 |.06
2 01 .02 |04 |05 [.06 [.07 |.08 |.10 [.11 |.12
3 02 [.04 |05 (.07 |.09 [.11 |.13 |.15 [.16 |.18
4 02 (.05 |07 |00 (.12 |15 |7 .19 |22 | .24
5 03 |.06 {.09 .12 (.15 |.18 [.21 [.24 |.27 |.30
.6 04 (.07 |01 .15 [.18 [.22 |25 |.29 [.33 |.36

182

Vi 04 .08 |03 |.17 |.21 |.25 |.30 [.34 |.38 | .42
.8 05 |10 |15 |19 | .24 |29 (.34 [.39 | .44 | .49
9 05 [.11 |16 |22 |27 [33 [.38 |.44 | .49 |.55
1. 06 |12 | .18 | .24 | .30 |.36 |.42 .49 |.55 | .61
Table 7.36 shows the numerical solution at t=0.5.
Table 7.36 Numerical Solution
x/y 1 2 3 4 5 .6 7 8 .9=T
0 0 0 0 0 0 0 0 0 0 0
.1 01 {01 (02 (03 [.03 [.04 |.04 |.05 |.06 |.06
2 .01 (03 (.04 [0O5 [.06 |.08 |.09 [.10 |.11 |.12
3 02 |.04 |06 [.08 [.09 |.11 |.13 |.15 |.17 |.18
4 03 |05 (.08 |.10 [.13 [.15 [.18 [.20 |.22 |.24
.5 03 |06 (09 (.13 |06 .19 (.22 [.25 [.28 |.30
6 04 (.08 (.11 (.15 [.19 |.23 |.26 |.30 |.33 | .36
7 : 04 (09 |13 [.18 |22 |26 [.31 |.35 |.39 |.42
%3 05 |.10 (.15 [.20 [.25 | .30 |35 |40 | .44 | .49
9 _b 06 |11 (17 .22 | .28 | .33 | .39 | .44 | .49 |.55
1 06 |12 (.18 (.24 |30 |36 | .42 | .49 | .55 |.61
i

183

Figure 7.35 shows the values of u(r,x,y) at r = 0.5.

unsteady-state diffusion In 2 space dimensions at t=0.5

'420bd055.dat’ —

u{t,!t,y'}

0.6

gl

0.4 |

0.3 —

:.: i 4//—////%/\// ///////
0

Fig. 7.35 u=u(t,x,y) at t=0.5

This example shows that the method and its computer implementation is capable of
solving partial differential equations in 3 independent variables. The user has to
transform the 3-dimensional problem into a 2-dimensional one using finite difference
method. The finite difference method cannot be applied if second derivatives of each
state variable appear in the model and there are no initial-boundary conditions for any
of the state variables, because the finite difference formula for u,(x,,y,z) requires the
functions u, ,(y,z), u,(y,z) and u,,,(y,z) in the differential equation. For u,(y,z) at x =
0 the finite difference formula would require the function u (y,z) which would lie
outside of the integration domain. Similarly in the differential equation for u,(y,z) at
x = x, where x, is the boundary of the x-interval, the finite difference formula would
require the function u,,,(y,z) which would lie outside of the integration domain.
7.7 Conclusions

The 2 NLP packages proved to be very reliable. Computer run experience did not

show either of them to be consistently superior to the other, but to be equally good,

184

2 of the best packages currently available. Computer run experience has also shown
that the residual error is smaller if the control function is a piecewise constant function
over the finite elements and if there is one internal collocation point in a finite
element. The package has solved both dynamic simulation and optimization problems
involving lumped or distributed parameter systems. The package solved a lumped
parameter system involving parameter estimation, time delay and equality constraint
containing time-dependent state variables. The package has also solved a realistic
nonlinear programming problem. The package has solved models involving bounds on
control variables. The package has solved problems containing integral terms in the
objective functional.

The package has not been used to solve problems involving general inequality
constraints containing state and control variables dependent on 1 or 2 independent
variables and problems containing algebraic constraints, realistic problems with
irregular domains. Although the package has been tested to handle variables that come
from another process unit, but it has not been used to solve a real problem involving

disturbances or variables coming from another process unit.

185

o e

Chapter 8

Conclusions and Recommendations

8.1 Conclusions
Computer runs have established that orthogonal collocation on finite elements is a

viable method to convert, into a nonlinear programming problem, models containing

algebraic equations and inequalities, ordinary differential equations, partial differential

equations containing state or control functions having 1 or 2 independent variables,

equations and inequalities containing state and control functions dependent on 1 or 2

independent variables.
The packages GRG2 and SQP have solved the resulting large nonlinear

programming problems without any difficulty.

" 8.2 Contributions of this Research

1.

R P I St NP S L

Although techniques currently exist to solve optimization problems containing
PDEs with 2 independent variables, this work extends the class of problems
that can be solved by also making possible the handling of equalities and
inequalities containing state and control functions dependent on 1 or 2
independent variables and algebraic equations and inequalities.

Control vector parameterization and 2 NLP packages have been integrated into
one optimization package.

For solving a differential-algebraic optimization problem by collocation, the
NLP model is generated automatically without any user intervention. From
model to solution, the intermediate stages are completely automated.
Residual error can be evaluated at a priori selected grid points.

The state and control functions can be tabulated.

The package has a commercial potential. Subject to royalties being paid to the
University of Texas, USA, and to the Harwell Physical Laboratory, England,
it should be made available both to the industry and, through a computer
network, to Universities.

As, from an engineering standpoint, this work is quite general, in the instances
where the models conform to a model solvable by this work, it should be of
benefit not only to chemical engineering, but to all other engineering

disciplines as well as to other disciplines, to science, to economics, to ecology

186

e ———————

e

- ey

to mathematics and to medical science.

8.3 Recommendations for Future Work

1.

The package could be extended to handle more than 2 independent variables,
say, t,x.,y, where every state or control function is a function of only 2 of the
independent variables, eg., the model could contain state functions c,(t,x),
c,(t,y), cs(x,y), but in every differential equation there may appear only state
and control functions and auxiliary variables depending on the same 2
independent variables. For example, if ¢, appears in a differential equation, c,
and ¢, may not appear in the same equation.

The package could be extended to handle split boundary conditions, such as,
when, e.g., between 0 and o a boundary condition is different from the one
existing between o and t,.

The package could be extended to handle those of the time delays where the
time delay is not only a function of time but also that of the state variables.
The package could be used for on-line simultaneous control and optimization,
if some type of feedback mechanism is included within the overall strategy.
A variant of the OCFE package could be implemented using Hermitian
interpolates instead of Lagrangxan interpolates.

A variant of the OCFE package could be 1mplcmcntcd using splines
interpolates instead of Lagrangian interpolates.

The package could be extended to handle modules where the validity of a
different equation and the associated state variables is extended only over a
part of the integration domain, e.g. there could be more than 1 phases where
different laws would apply.

The package could be extended to allow state variables, control variables and
parameters dependent on independent variables and the associated differential
equations to have their own dedicated independent variables. Independent
variables could have their own integration domain. This extension is an
alternative to extension described in paragraph 7.

The OCFE program could be enhanced to check automatically whether the
model equations contained in OCFEINP.DAT are independent and whether the

initial and boundary conditions are consistent and sufficient.

187

10.

A version of OCFE could be developed, which would result in the state
function having continuous first derivatives. This could be achieved either by
reactivating the code that generated equations making the derivatives equal at
finite element boundaries, or by using cubic Hermite interpolation polynomials
having continuous first derivatives or using cubic splines having continuous
second derivatives, or by introducing a new state variable and add a
differential equation to make this variable equal to the first derivative of an
original state variable. Since the solution function of a state variable is a
continuous function, this additional differential equation would make the

derivative function of the original state variable continuous.

188

Nomenclature
In this section is a list of Nomenclature which defines many of the quantities and

formulations used in this text. Also presented is a list of Acronyms.

Greek characters

Q integration domain
0Q boundary of Q
A vector of adjoint profile coefficients

o Dirac delta

mA coefficient vectors

o scalar parameter of search direction

Q, integration domain of the first independent variable
Q, integration domain of the second independent variable
Q, integration domain of (t,x)

0Q, boundary of ,

0Q, boundary of ,

0, boundary of Q,

T time delay

Roman characters

I objective functional

G,Gl1 function at t; and/or x,, term in the objective functional

G2,G3,G4,F integrand of the integral performance index
AB,Q.R matrices in linear/quadratic optimal control problem

vector of state functions

X
X vector of real-valued variables in an NLP problem
X; an element of the vector x in an NLP problem
u(t),u,(t) control function vectors
u,(x) control function vector
u, a vector of real-valued control variables
uy(tx) control function vector ‘
Vv Liapunov function [R® -> C']
f a vector of right-hand side functions in a system of first-order

quasilinear differential equations

189

fi.f;

“z::"

[¢]

E © <
<

2" T arE

to Xy
torXo
t$x’y

R" .

a system of differential equations

in an NLP real-valued function of x [R® -> R!]

a system of ordinary differential equations [R' -> C?]

a system of partial differential equations [R? -> C?]

number of finite elements along the first independent variable
number of finite elements along the second independent variable
number of internal collocation points along the first independent
variable in a finite element

number of internal collocation points along the first independent
variable in the k-th finite element

number of internal collocation points along the second independent
variable in a finite element

number of internal collocation points along the second independent
variable in the I-th finite element

state variable

control variable

auxiliary variable

independent variables transformed into the interval [0,1]

equality constraint vector in an NLP problem [R® -> R™]

gradient vector

Lagrangian

objective function

tangent plane

final value of integration

initial value of integration

independent variables

1-dimensional Euclidean space

n-dimensional Euclidean space

function space of continuous functions over the domain of integration
function space of functions having continuous first derivatives over the
domain of integration

the Hamiltonian function

190

e

G ®

’ cs(x)

c (tx) -
P1

p:(t)
ps(x)

function of x and u [R™®™ -> R!]

coefficients

the Heaviside function

real-valued scalar function

real-valued scalar function

real-valued scalar function

real-valued scalar function

linear combination coefficient

residual

differential equation

the n-th Lagrange interpolation polynomial evaluated at collocation
point y,

length of the k-th finite element along the first independent variable
length of the /-th finite element along the second independent variable
the matrix of second partial derivatives of the Lagrangian

the Hessian of f

the Hessian of the i-th equality constraint

inequality constraints vector in an NLP problem

the Hessian of the i-th inequality constraint

matrix of the gradient vectors of equality constraints

search direction vector

j-th lower bound

j-th upper bound

Hessian of f

real-valued scalar function

a vector of real-valued state variables

state function vector [R! -> C]

state function vector [R! -> C]

state function vector [R? -> C]

a vector of real-valued parameters variables
parameter function vector

parameter function vector

191

P4(t,x) parameter function vector

S initial value vector of state variables
€,,C,,C,,C, boundary value vector of state variables
h,g real-valued constraint function vectors of the independent variables
u,” lower bound of u,
u,’ upper bound of u,
u,(t) lower bound of u,(t)
u,’(t) upper bound of u,(t)
u,“(x) lower bound of u,(x)
- uP(x) upper bound of u,(x)
ul(x,y) lower bound of u,(x,y)
u,U(x,y) upper bound of u,(x,y)

LB,,UB, left and right endpoints of the first independent variable
LB,,UB, left and right endpoints of the second independent variable

i-th state variable or its measurements

a,
b lower bound
ub upper bound
g real-valued constraint function in an NLP problem [R® -> R!]
Superscripts
* upper bound
n dimensionality of an Euclidean space
1 . indicates continuity of first derivatives in a function space
k iteration number
Tk k-th finite element
l I-th finite element
0 indicates initial estimate in an NLP problem
L lower bound
U upper bound
Subscripts
0 indicates that a state function be evaluated at the initial value of
integration
* lower bound

192

f indicates that a state function be evaluated at the final value of

integration
i i-th component of a vector
ij ij-th element of a matrix
i i-th collocation point
j j-th collocation point
Major mathematical formulations and acronyms
NLP nonlinear programming problem
GRG generalized reduced gradient method
GRG2 package received from Professor Leon Lasdon from the University of
Texas
SQP successive quadratic programming
VF13AD package received from the Harwell Physical Laboratory
CSTR continuous stirred tank reactor
EVOP evolutionary optimization
PDE partial differential equation
ODE ordinary differential equation
QP quadratic programming
- QDMC quadratic dynamic matrix control
. DAOP Differential-Algebraic Optimization Problem
.BVP Boundary Value Problem
MWR . Method of Weighted Residuals

193

References

1.

10.

11.

12.

13.

14.
15.

Pearson J. D., "Approximation Methods in Optimal Control", J. Electronic
Control, Vol. 13, p. 453, (1962)

Burghart J. H., "A Technique for Suboptimal Feedback Control of Nonlinear
Systems", IEEE Trans. on Autom. Control AC-14, p. 530, (1963)

Weber A. P. and Lapidus L., "Suboptimal Control of Nonlinear Systems",
AIChE Journal Vol. 17 pp. 641-658, (1971)

Durbeck R. C., "An Approximation Technique for Suboptimal Control", IEEE
Trans. Autom. Control AC-10, p. 144, (1965)

Garrard W. L., "An Approach to Sub-optimal Fedback Control of Non-linear
Systems”, Mc Clamrock N. H. and Clark L. G., Int. J. of Control, Vol. 5., pp.
425-435, (1967)

Bukreev V. Z., Automatika i Telmekhanika, Vol. 11, p. 5, (1968)

Luus R. and Lapidus L., Optimal Control of Engineering Processes, Blaisdell,
(1967)

Koepecke R. and Lapidus L., "Dynamic control of chemical engineering
processes using a method of Lyapunov", Chem. Eng. Sci., Vol. 16, pp. 252-
266, (1961)

Paradis W. O. and Perlmutter D. D., "Part 1: Optimality and Computational
Feasibility in Transient Control. Part 2: Feedback Control of a Distributed
Parameter process.”, AIChE Journal, Vol. 12, pp. 876-890, (1966).

Morshedi A. M., "Universal Dynamic Matrix Control", Seminar 6, paper no.
2, Chemical Process Control Conf. 3, Asilomar, California, (1986).

Bryson A. E. and Ho. Y. C,, Applied Optimal Control, Ginn/Blaisdel, New
York, (1968).

Miele A., "Gradient Algorithms for the Optimization of Dynamic Systems" in
Control and Dynamic Systems, Leondes C. T., [ed.], Academic Press (1980).
Atham M. and Falb P. L., Optimal Control, New York, Mc Graw Hill, (1966).
Noton A. R. M., Modern Control Engineering, New York, Pergamon (1972).
Irving M. R,, Boland F. M. and Nicholson H., "Optimal control of the argon-
oxygen decarbonizing steelmaking process", Proc. Institution of Electrical
Engineers, Vol. 126, pp. 198-203, (1979).

194

+ ————y—. B T ————

- 26.

30.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.

27.
28.

29.

31

Edwards J. B. and Eren H., Proc. "Controlling electric traction drives for
minimum energy wastage", Institution of Electrical Engineers, Vol. 126, pp.

254-260, (1979).
Jones D. I. and Finch J. W., Proceedings Institution of Electrical Engineers,

Vol. 130, p. 175, (1983).
Kelley H. J., "Optimization Techniques", [ed.] Leitmann G., London,

Academic Press, (1962).

Gibson J. A. and Lowinger J. F., "A predictive Min-H method to improve
convergence to optimal solutions”, International Journal of Control, Vol. 19,
pp. 575-592, (1974).

Kumar V., "A control averaging technique for solving a class of simple
optimal control problems”, International Journal of Control, Vol. 23, pp. 361-

380, (1976).
Quintana V. H. and Davison E. J., Proceedings Joint Automatic Control Conf,,

p. 43, (1970).

Ray W. H., Advanced Process Control, Mc Graw-Hill, New-York, (1981).
Ray W. H. and Szekely J., Process Optimization, John Wiley & Sons, (1973).
Crowe C. M. et al., Chemical Plant Simulation, Prentice Hall, (1971).
Paynter J. D., Dranoff J. S. and Bankoff S. G., "Application of a Suboptimal
Design Method to a Distributed-Parameter Reactor Problem”, Ind. Eng. Chem.
Proc. Des., Vol. 9, pp. 303-309, (1970).

Denn M. M., "Optimal Boundary Control for a Non-linear Distributed System",
Int. J. Control, Vol. 4, pp. 167-178, (1966).

Jackson R., Trans. Inst. Chem. Engn., Vol. 45, T 160-168, (1967).

Chang K. S. and Bankoff S. G., "Optimal Control of Tubular Reactors",
AIChE J. Vol. 15, pp. 410-414, (1969).

Bertran D. R. and Chang K. S., "Optimal Feedforward Control of Concurrent
Tubular Reactors", AIChE J. Vol. 16, pp. 897-902, (1970).

Ogunye A. F. and Ray W. H., "Optimal Control Policies for Tubular Reactors
Experiencing Catalyst Decay : 2. Multiple Bed", AIChE J. Vol. 17, pp. 365-

371, (1971).
Ogunye A. F. and Ray W. H., "Optimization of a Vinyl Chloride Monomer

195

32.

33.

34.

35.

36.
37.
38.

39,

40.
41.

42.

43.

45.

- 46.

47.

Reactor", I and EC Process Des., Vol. 9, pp. 619-624, (1970).

Ogunye A. F. and Ray W. H., "Optimization of Cyclic Tubular Reactors with
Catalyst Delay", I & EC Proc. Des. Dev., Vol. 10, pp. 410-416, (1971).
Hasdorff L., Gradient Optimization and Nonlinear Control, Wiley-International,
New York, (1976). '

Dixon L. C. W. and Szego G. P. [eds.], Numerical Optimization of Dynamic
Systems, North Holland, Amsterdam, (1980).

Lasdon L.S., Mitter S. K. and Warren A. D., "The conjugate gradient method
for optimal control problems", IEEE Trans. of Automatic Control Vol. AC-12,
2, p. 132, (1967).

Jones D. 1. and Finch J. W., "Comparison of Optimization Algorithms", Int.
J. Con't., Vol. 40, pp. 747-761, (1984).

Padmanabhan L. and Bankoff S. G., Proc. Joint Autom. Control Conf., (1969).
Bachman G. and Narici L., Functional Analysis, Academic Press, 1966
Pagurek B. and Woodside C. M., Automatica, Vol. 4, p. 337, (1968).

Kopp R. E. and Mayer H. G., Advanced Control Systems, Vol. 4, (1966).
Quintana V. H. and Davison E. J., "Clipping-off gradient algorithms to
compute optimal controls with constrained magnitude”, Int. J. Control, Vol. 20,
pp. 243-255, (1974).

Tripatki S. S. and Narendra K. S., "Optimization Using Conjugate Gradient
Methods", IEEE Transaction Autom. Control, Vol. 15, pp. 268-270, (1970).
Lasdon L. L., "Conjugate Direction Methods for Optimal Control", IEEE
Trans. Autom. Control, Vol. 15, pp. 267-268, (1970).

Jacobson D. H., "Second-Order and Second-Variation Methods for Determining
Optimal Control. A Comparative Study Using Differential Dynamic
Programming", Int. J. Control, Vol. 7, pp. 175-196, (1968).

Lapidus L. and Luus R, Optimal Control of Engineering Processes,
Gimmy/Blaisdel, (1967).

Oh S. H. and Luus R., "Use of Orthogonal Collocation Method in Optimal
Control Problems", Int. J. Control, Vol. 26, No. 5, pp. 657-673, (1977).
Lynn L. L., Parkin E. S. and Zahrednik R. L., "Near-Optimal Control by
Trajectory Optimization", I & EC Fund. 9, 1, p. 58, (1970).

196

AT |y ——

e

43.

49.

50.

S

52.

- 53.

54.

55.

56.

57.

58.
59.

60.

61.

62.

63.

64.

Hicks G. and Ray W. H., "Approximation Methods for Optimal Control
Synthesis", Canadian J. Chem. Eng., Vol. 49, pp. 522-528, (1971).
Asselmeyer B., "Optimal Control for Nonlinear Systems Calculated with small
Computers", J. Opt. Theory & Appl., Vol. 45, pp. 533-543, (1985).

Sargent and Sullivan, "The Development of an Efficient Optimal Control
Package", "Proceedings of the 8th IFIP Conference on Optimization
Techniques", Wurzburg, (J. Stoer, ed.), (1977), Part 2, Springer-Verlag, Berlin,
(1978).

Ritz W., "Uber eine neue Methode zur Losung gewisser Variationsprobleme
der mathematischen Physik", Journal fur reine und angewandte Mathematik,
Vol. 135, p. 1, (1908).

Zahrednik R. L. and Lynn L. L., Proc. JACC, paper 22E, (1970).

Bosarge E., Proceedings IFAC Symposium on the Control of Distributed
Parameter Systems, Banff, Canada, June 1971.

Sage A. P., Optimum Systems Control, Prentice-Hall, Englewood Cliffs, N. J.,
(1968).

Bukovski A. G., Automatika i Telemekhanika, Vol. 22, p. 1565, (1961).
Bukovski A. G., Automatika i Telemekhanika, Vol. 24, p. 1217, (1963).
Zahradnik R. L. and Parkin E. S., Computing Methods in Optimization
Problems, Academic Press, (1970).

Bosarge W. E. and Johnson O. G., Proceedings JACC, Vol. 51, (1970).
Prenter P. M., Splines and Variational Methods, John Wiley & Sons, Inc,

(1975).
Rosenbrock H. H. and Storey C., Computational Techniques for Chemical

Engineers, Pergamon, (1966).

Walder T. J. and Storey C., "Numerical Solution of an Optimal Temperature
Problem", Chem. Eng. J., Vol. 1, pp. 120-128, (1970).

Eisenberg B. R. and Sage A. P., "Closed Loop Optimization of Fixed
Configuration Systems", Int. J. Control, Vol. 3, pp. 183-194, (1966).

Tabak D. and Kuo B. C., Optimal Control by Mathematical Programming,
Prentice-Hall, Englewood Cliffs, New Yersey (1971).

Hertzberg T. and Asbjornsen O. A., "Parameter Estimation in Nonlinear

197

e

65.

66.

67.

68.
69.

70.

71.

72.

73.

74.

75.

Differential Equations", Computer Applications in the Analysis of Data and
Plants, Science Press, Princeton, (1977).

Tsang T. H., Himmelblau D. M. and Edgar T. F., "Optimal Control via
Collocation and Nonlinear Programming", Int. J. Control, Vol. 21, No. 5, pp.

763-768, (1975).
Luus R., "Time Optimal Control of Linear Systems", Can. J. Chem. Eng., Vol.

52, pp. 98-102, (1974).

Neumann C. P. and Casasayas L. G., "Parameter Identification Using the
Galerkin Procedure in Nonlinear Boundary Value Problems", Trans. ASME,
J. Dyn. Sys. & Control, p. 310, (1972).

Neumann C. P. and Sen A., "A Suboptimal Control Algorithm for Constrained
Problems Using Cubic Splines", Automatica, Vol. 9, pp. 601-613, (1973).
Neumann C. P. and Sen A., "Weighted Residual Methods in Optimal Control",
IEEE Trans. Aut. Control, p. 67, Feb., (1974).

Wang K. T. and Luus R., "Time suboptimal Feedback Control of Systems
Described by Linear Parabolic Partial Differential Equations", Optimal Control
Applications & Method, Vol. 3, pp. 177-185 (1982).

Lynn L. L. and Zahradnik R. L., "The Use of Orthogonal Polynomials in the
Near-Optimal Control of Distributed Systems by Trajectory Optimization", Int.
J. Control, Vol. 12, No. 6, pp. 1079-1087, (1970).

Renfro J. G., PhD Thesis, "Computational Studies in the Optimization of
Systems Described by Differential/Algebraic Equations, University of Houston,
UMI, 300 N. Zeeb Road, Ann Arbor, Michigan 48106 800-521-600 or
313/761-4700

Cuthrell J. E., PhD Thesis, "On the Optimization of Differential-Algebraic
System of Equations in Chemical Engineering", Carnegie Mellon University,
UMI, 300 N. Zeeb Road, Ann Arbor, Michigan 48106 800-521-600 or
313/761-4700

Biegler L. T., "Solution of Dynamic Optimization Problems by Successive
Quadratic Programming and Orthogonal Collocation", paper no. 27f, AIChE
97th National Meeting, San Francisco, California (1984).

Cuthrell J. E. and Biegler L. T., "On the Optimization of Differential-Algebraic

198

A S, g Nk 4 R R

A pn E T

76.

77.

78.

79.

80.

81

82.

83.

84.

85.

86.

Process Systems", AIChE Journal, Vol. 33, No. 8, pp. 1257-1270 (1987).
Renfro J. G., Morshedi A. M. and Asbjornsen O. A., "Simultaneous
Optimization and Solution of Systems Described by Differential/Algebraic
Equations, Computers and Chemical Engineering, Vol. 11, No. 5, pp. 503-517,
(1987).

Sarma P. V. L. N. and Reklaitis G. V., "Optimization of a Complex Chemical
Process Using an Equation Oriented Model", Mathematical Programming
Study, Vol. 20, pp. 113-160, (1982).

Biegler L. T., "Solution of Dynamic Optimization Problems by Successive
Quadratic Programming and Orthogonal Collocation”, Computers and Chemical
Engineering, VoL. 8, No. 3/4, pp. 243-248, (1984).

Cuthrell J. E. and Biegler L. T., "Simultaneous Optimization and Solution
Methods for Batch Reactor Control Profiles", AIChE Journal, Vol. 33, No. 8,
pp. 1-43, (1987).

Kalman R. E., Falb P. L. and Arbib M. A., Topics in Mathamatical System
Theory, Mc Graw-Hill Book Company, (1969).

Biegler L. T., "On the Simultaneous Solution and Optimization of Large Scale
Engineering Systems", 18. Congress on the Use of Computers in Chemical
Engineering, EFCE, Giardini Noxos (Italy) 26-30 April 1987.

Bracken J. and Mc Cormick G. P., Selected Applications of Nonlinear
Programming, John Wiley & Sons, Inc., New York, (1968).

Chang P. W. and Finlayson B. A., "Orthogonal Collocation on Finite Elements
for Elliptic Equations”, Mathematics and Computers in Simulation, 20, pp. 83-
92, (1978).

Chang P. W. and Finlayson B. A., "Orthogonal Collocation on Finite Elements
for Elliptic Equations”, Advances in Computer Methods for Partial Differential
Equations, Videhevetzky R. [ed.] IMACS (AICA) (1977).

Morbidelli M., Servida A., Storti G., Paludetto R., Carra S., "Application of
the Orthogonal Collocation Method to some Chemical Engineering Problems”,
Ing. Chim. Ital., Vol. 19, No. 5-6, pp. 47-60, MAG.-GIU., (1983).
Finlayson B. A., "Orthogonal Collocation on Finite Elements - Progress and
Potential”, Mathematics and Computers in Simulation 22, pp. 11-17, (1980).

199

e

B s aa kBN

87.

88.

89.

90.

91.
92.
93.
%,

95.

96.

97.

98.

99.

Houstis E. N., Mitchell W. F. and Rice J. R., "Collocation Software for
Second-Order Elliptic Partial Differential Equations”, ACM Transactions on
Mathematical Software, Vol. 11, No. 4, pp. 379-412, (1985).

Ascher U., Christiansen J. and Russel R. D., "A Collocation Solver for Mixed
Order Systems of Boundary Value Problems", Mathematics of Computation,
Vol. 33, No. 146, pp. 659-679, (1979).

Carey G. F. and Finlayson B. A., "Orthogonal Collocation on Finite Elements",
Chemical Engineering Science, Vol. 30, pp. 587-596, (1975).

Villadsen J. and Sorensen J. P., "Solution of Parabolic Differential Equations
by a Double Collocation Method", Chemical Engineering Science, Vol. 24, pp.
1337-1349, (1969).

GRG2 User Guide, Professor Lasdon L. S., University of Texas, Austin, Texas
VF13AD User Guide, Harwell Physical Laboratory

Simusolv User Guide, Dow Chemical Company

Biegler L. T. and Grossmann I E., "Strategies for the Optimization of

Chemical Processes”, Reviews in Chemical Engineering, Vol. 3, No. 1, pp. 1-

47, (1985).
Fletcher J. P. and Ogbonda J. E., "A Modular Equation-Oriented Approach to

Dynamic Simulation of Chemical Processes”, The Use of Computers in
Chemical Engineering, 18. Congress, Giardini Naxos (Italy), 26-30, April,
(1987).

Parkin E. S. and Zahradnik R. L., "Computation of Near-Optimal Control
Policies by Trajectory Approximation: Hyperbolic-Distributed Parameter
Systems with Space-Independent Controls”, AIChE Journal, Vol. 17., No. 2,
pp. 409-412, (1971).

Homsy R. V. and Strohman R. D., "Diffusion and Chemical Reaction in a
Tubular Reactor with Non-Newtonian Laminar Flow", AIChE Journal, Vol. 17,
No. 1, pp. 215-219, (1971).

Cleland F. A. and Wilhelm R. H., "Diffusion and Reaction in Viscous-flow
Tubular Reactor”, AIChE Journal, Vol. 2, No. 4, pp. 489-497, (1956).
Stadtherr M. A., Cera G. D. and Alhire R. C., "Optimization of an Electrolytic
Cell with Use of a GRG Algorithm", Computers and Chemical Engineering,

200

100.

101.

102.

103.

104.
- 105.
106.
- 107.

108.
109.
110.

111.

112,

Vol. 7, No. 1, pp. 27-34, (1983).

Botha J. F. and Pinder G. F., Fundamental Concepts in the Numerical Solution
of Differential Equations, John Wiley & Sons, (1983).

Berna T. J., Locke M. H. and Westerberg A. W., "A New Approach to
Optimization of Chemical Processes", AIChE Journal, Vol. 26, No. 1, pp. 37-

43, (1980).

Biegler L. T. and Hughes R. R., "Approximation Programming of Chemical
Processes with Q/LAP CEP pp. 76-83, (1981).

Cuthrell J. E. and Biegler L. T., Simultancous Solution and Optimization of
Process Flowsheets with Differential Equation Models", Chem. Eng. Res. Des.,
Vol. 64, pp. 341-346, (1986).

Dennis J. E. Jr and More J. J., "Quasi-Newton Methods, Motivation and
Theory", SIAM Review, Vol. 19, No. 1, pp. 46-89, (1977).

Finlayson B. A., Nonlinear Analysis in Chemical Engineering, Mc Graw-Hill
International Book Company, (1980).

Fletcher R., "A New Approach to Variable Metric Algorithms", Computer
Journal, Vol. 13, No. 3, pp. 317-322, (1970).

Gill P. E., Murray W. and Wright M. H., Practical Optimization, Academic
Press, (1981).

Avriel M., "Nonlinear Programming", Chapter 11 in Holzman A. G. [editor],
Mathematical Programming for Operation Researchers and Computer
Scientists, Marcel Dekker, Inc., (1981).

Hong E. J., "Quadratic Approximation Methods for Constrained Nonlinear
Programming", PhD Thesis, Georgia Institute of Technology (1982).

Han S. P., "A Globally Convergent Method for Nonlinear Programming",
Journal of Optimization - Theory and Applications, Vol. 22, No. 3, pp. 297-

309.
Himmelblau D. M., Applied Nonlinear Programming, Mc Graw-Hill Book

Company, (1972).
Jang S. S., Joseph B. and Muhai H., "On-Line Optimization of Constrained

Multivariable Chemical Processes", AIChE Journal, Vol. 33, No. 1, pp. 26-35,
(1987).

201

113.
114,

115.

116.

117.

118.

119.

- 120.
121.

122.

123.
124.

. 125.

Kaijaluoto S., Process Optimization by Flowsheet Simulation, Publication No.
20, Technical Research Center of Finland, (1984).

Kolm M. C., Practical Numerical Methods - Algorithms and Programs,
Macmillan Publishing Company, (1987).

Kari R., "Parameterization and Comparative Analysis of the BFGS
Optimization Algorithm for the Determination of Optimum Linear
Coefficients", International Journal of Quantum Chemistry, Vol. 25, pp. 321-
329, (1984).

Luenberger D. G., Linear and Nonlinear Programming, Addison-Wesley
Publishing Company, (1984).

Himmelblau D. M., "A Uniform Evaluation of Unconstrained Optimization
Techniques", Lootsma F. A. [editor], Numerical Methods for Nonlinear
Optimization, Academic Press, (1972).

Locke M. H., Westerberg A. W. and Edahl R. H., "Improved Successive
Quadratic Programming Optimization Algorithm for Engineering Design
Problems", AIChE Journal, Vol. 29, No. 5, pp. 871-874, (1983).

Lang Y. D. and Biegler L. T., "A Unified Algorithm for Flowsheet
Optimization", Computers and Chemical Engineering, Vol. 11, No. 2, pp. 143-
158, (1987).

Lapidus L. and Pinder G. F., Numerical Solution of Partial Differential
Equations in Science and Engineering, John Wiley & Sons, Inc., (1982).
Murray W. [editor], Numerical Methods for Unconstrained Optimization,
Academic Press, (1972).

Murtagh B. A., "On the Simultaneous Solution and Optimization of Large-
Scale Engineering Systems", Computers and Chemical Engineering, Vol. 6,
No. 1, pp. 1-5, (1987).

Powell M. J. D., "Convergence Properties of Algorithms for Nonlinear
Optimization"”, SIAM Review, Vol. 28, No. 4, pp. 487-500, (1986).
Reklaitis G. V., Ravindran A. and Ragsdell K. M., Engineering Optimization,
John Wiley and Sons, (1983).

Ray W. H., "Multivariable Process Control - A Survey", Computers and
Chemical Engineering, Vol. 7, No. 4, pp. 367-394, (1983).

202

126.

127.

128.

129.
130.
131
132.
133.
134.
135.
136.
137.

- 138..

Sarma P. V. L. N. and Reklaitis G. V., "Optimization of a Complex Chemical
Process Using an Equation Oriented Model", Mathematical Programming
Study, Vol. 20, pp. 113-160, (1982).

Schittkowski K., "The Current State of Constrained Optimization Software",
Powell M. J. D. [editor], Nonlinear Optimization, Academic Press, New York,
(1982).

Schittkowski K., "A Numerical Comparison of 13 Nonlinear Programming
Codes with Randomly Generated Test Problems", Numerical Optimization of
Dynamic Systems, Dixon L. C. W. and Szego G. P. [eds], North-Holland
Publishing Company, (1980).

Schittkowski K., Nonlinear Programming Codes, Springer-Verlag Berlin
(1980).

Villadsen J. and Michelsen M. L., Solution of Differential Equation Models by
Polynomial Approximation, Prentice-Hall (1978).

Wolfe M. A., Numerical Methods for Unconstrained Optimization, Van
Nostrand Reinhold Company (1978).

Wilde D. J., Optimum Seeking Methods, Prentice-Hall, Inc. (1964).
Williams T. J. and Otto R, E., "A generalized Chemical processing Model for

- the Investigation of Computer Control", AIEE Trans., Vol. 79, pp. 458-473,

(1960).
Rao S. N. and Luus R., "Evaluation and Improvement of Control Vector

Iteration Procedure”, Can. J. Chem. Eng., Vol. 50, pp. 777-784, (1972).

Lee E. S., Quasi-Linearization and Invariant Imbedding, Academic Press, 1968.
Paterson W. R. and Creswell D. L., "A Simple Method for the Calculation of
Effectiveness Factors", Chemical Engineering Science, Vol. 26, pp. 605-616,

(1971).
Davis M. E., Numerical Methods and Modelling for Chemical Engineers, John

Wiley & Sons, Inc., (1984).
DuChateau P. and Zachmann D., Applied Partial Differential Equations, Harper

& Row, Publishers, Inc., (1989).

203

Appendix A - Optimizer User Guide

OPTIMIZER is a package written in SUN SPARC 2000 FORTRAN, which solves

problems of the
following classes:

1. unconstrained optimization problem

min g(x) (P1)

2. linear or nonlinear programming problem with upper and lower bounds on
the variables and on the constraints

min g,(x) (P2)
subject to
b, <x Sub, i=12..n

b,, < g(x) Sub,, i=1,2,...,m i#k

£
3. linear or nonlinear programming problem

min f{x) (P3)
subject to
g.'(x) =0 f=1,2,...,ml

gx) 20 i=m+ 1, m+ 2,..m

4 explicit quasilinear first-order system of ordinary d1fferent1a1 equations
(mmal value problem) :

204

¢() = fle,c,(0) ted

¢,(0) = ¢,

5. first-order system of ordinary differential equations
(initial or boundary value problem)

J(e,e,(0,6,(0) = 0 teQ

c,=cyatte oQ

6. second-order system of ordinary differential equations

de,(t) d,(t)
f [cl,c,(z), ;: : d;]teQ

c2=czarre Q

7. first-order system of partial differential equations

dc,(x,y) dc,(x,y)
f[cpc4(xsy)’ 48.1? y “ay](xJ’) € Q

= ¢, at (x,y) € dQ

Cs

8. second-order system of partial differential equations

de,(x.y) dc (xy) dc(xy) 0%, (xy) % (x.y)

Jlepey)—= % S B o) (xy) € 9Q

¢, = ¢, at (x,y) € 0Q

9, differential optimization problem where the constraint is a system of
quasilinear first-order differential equations (initial value problem)

subject to

205

(P4)

(P5)

(P6)

(P7)

(P8)

min Gl (t ’ Cpcz(r) P pp z(t)’u 1 ruz (t))lf'f, +sz(t acpcz(r) ST _puz (f) P 1 P, z(‘)) dt (Pg)

u,,u,(1)

¢,(0) = flte,c(0).u,uy(0),p,.p,(1) teQ

c,(0) = ¢,

10. diffz?r-cntial optimization problem where the constraint is a system of
quasilinear first-order differential equations (initial value problem)
and the upper limit of the integration is also an optimizing variable

min G.(r,cl,c,(r)ml,p,(t).u,,u,(t))L_&+fG,(r,c,,c,(r),ul,uz(r),pl,pz(t)) dt (p1p)
T

Uy, Uy (1)1

subject to

¢,(1) = fle,,e(D).u,u,(0).p,,p,(1) te Q

¢,0) = ¢y,

11. differential-algebraic optimization problem where the constraints
a system of second-order ordinary and/or partial differential are
equations(initial or boundary value problems), equations and/or
inequalities containing state variables, control variables or parameters

dependent on the independent variables, algebraic equations
and/or inequalities

206

min G,(x,y,cl,cz(x),c3(y).c4(x.y@1,p,(x),p3@),p4(x,y),ul,u,(x).u,@),u.‘(x,y))l‘m
1, 00,00,1,),14,(%,Y) '

+ f G,(01,,(0),,,1,(x),€,(5.Y) PP, (). X) dx
%o

Y
+ [Gylepe, 0y 3).c) pup 0)) dy
Yo

Yy

+ .UGL,(cl,c,(x),cs(y),c4(x,y),ul,u;(x),u3@),u4(x,y),pl,p2(x),p3(y),p (Ey)xy) dxdy
%o Yo (P I 1)
subject to
de,(x) d%,(x)
A (cl,cz(x)), ;x , d:z ,ul,uz(x),pl,pz(x),x] =0 xeQ

¢, =c,atx € 0Q,

de,(y) dzcs(y)
dy =~ dy?

f; [01,030")); ,ul,us(y),pl,ps(y),y] =10 yeQz

¢y, =c,aty e 0Q,

dey(x) dc,(x) dey(y) dcy()
C,o(X),C4\Y),C(X,Y), ’ »
f3(c1 ;() 3()') 4(y) ax dxz dy y dyz ’
dey(ry) de(xy) de(xy) de(xy) 9%, (x.y)
ox ox* dy | dy? ~ oxdy
ul,uz(x),u,(}'),u4(X,Y),P1;P;(x),P_,,(.)’),P.‘(xs)’)rx-J") =0 (x’y)e Q3

¢, = ¢, at (xy) € 0Q,

207

B < h(x,y,6,,6,(%),6,0),C,00Y):8,,0,(0,8,0): 8 (5.9),P 1,2, (0),p0).p (%)) < B Y

zb<z<zY .

u” <u <u

u, <u, < u,’

u; Su; s usv
u, <u, <u

12. differential-algebraic optimization problem where the constraints are
a system of second-order ordinary and/or partial differential
equations(initial or boundary value problems), equations and/or

inequalities containing state variables, control variables or parameters
dependent on the independent variables, algebraic equations

and/or inequalities

min Gl(x,y,c,,c,(x),c,,(y),q(x.y,pl,p,(x),p_,,(y),p.,(x,y),ul,u,(x),us(y),m(x,y))lx
EpY =Yy

ul,uz(x),%(y)su.‘(x,J’)

+ J'G,(c,,c,(x),ul,u,(x),c4(x,yf),p,,pztx),x) dx

Y
N st(cl,cs(y),Hl,"3(}‘),04(xp)’)sP1,P30’),)‘) dy
Yo

+ f J‘G,,(c,,c,(x),c,(y),c4(x,y),ul,uz(x),us(y),u.,(xy),p,,p,(x),p_«,(y),m(x,y).r,y)dxdy
EA% (P12)

subject to

de,(x) d?c,(x)
dx ~ dx?

£, [€4:6,X)), U U(X).PpP ()X | = 0 x€Q,

c,=cC,atx e BQl

208

dey(y) d%cy(y)
dy dy?

f 2 {CI,CS()’)), J‘,#;()’)P;P;(y).y] =0 ye Qz

c,=catye Q,

2 2
[y (€,(0).6500).,(x.y), dc;ix) , ¢ ;:Ex) , dc;g) , d:;?)
de,(ry) ¢ (xy) dc(xy) o (xy) % (xy)
ox ox? dy Qy? Oxdy
1y, (%), (9) .8 (X,Y) P P, () PP (%)%y) = 0 (xy)eQ,

¢, = ¢, at (xy) € 0Q,

B(%,,€1,€5(3),65(0):€ (%) 18,0, (%) 13 (0) 1 (%,Y) 2, P, () P,)P (%)) = 0
2(x,,€,,6,(x),c5(0),€,(x,y) 18,1, (X) 1, (¥), 1, (x,) P, 2, (X) P, P (%) 2 0
u, - u<0
u,v —u, 20
u, - u," 20
u' -u, 20
u, - u" 20
u;” -—u; 20
u, -ul 20

H4v—u42 0

N.B. Problem 11 is formulated in terms of the package GRG2, and
problem 12 is formulated in terms of the package VF13AD. But they
can easily be converted in each other, e.g. an individual bound

on a variable can be replaced be 2 constraints, and an

inequality constraint g(x) 2 0 can be considered a constraint

having an upper bound 10¥, so that the same class of differential-
algebraic problem can be solved either by GRG2 or by VFI3AD.

13. parameter estimation problem using least-square method based on
experimental data, where the constraint is a system of quasilinear

first-order ordinary differential equations (initial value problem)

209

min Y Y [cft) = ¢/(t)P (P13)

i1 gl
P,

subject to

) = flep,) 1€Q

¢0) =¢,

14. parameter estimation problem using least-square method based on
experimental data, where the constraint is a system of
second-order differential equations (initial or boundary value problem)
, equations and/or inequalities containing state variables, control
variables or parameters dependent on the independent variables, algebraic
equations and/or inequalities

miny Y [e/xy) = ¢/ CGxy)P (P14)

i=l j=1

PP, ()PP (x.y)

subject to

dey(x) dc,(x)
dx = dx?

Ji {Cv"z(x)v -’-’,.Pz(x).xJ =0 xeQ

¢, =¢C,atx € 0Q,

dey(y) d’c,(y)
dy ~ dy?

fa {cl,cs(y), a'-’lp;;()’)s)’] =0 yeQ,

¢, =cyaty€ 0Q,

Ib, S h(2€,6,X)C,0) NP2)PO)P(xY)xy) S ub, i=12,...m,

b, < glc\p,) S ub,, i=1,2,.,m,

210

T e s ———— e

de,(x) d?%.,(x) dec,(y) d*%
£y (epe,(e0)e,) ——, dx’z . ;y , d;?) ,
de,(x,y) dc,(x,y) % (xy) d%c(xy) d%,(x.y)
ox dy ox* 9y? = oxdy
PP, ()P0 xY)xy) =0 (xy)eQ,

c, =c, at (x,y) € 0Q,

15. parameter estimation problem using least-square method based on
experimental data, where the constraint is a system of
second-order differential equations (initial or boundary value problem)
, equations and/or inequalities containing state variables, control
variables or parameters dependent on the independent
variables, algebraic equations and/or inequalities

minz: E [Cj(x,'iyj) - cj'(xi"yi)]z (PIS)

i=l jel

PP, (0).p(0).p,(x,y)

subject to
de,(x) d?%,(x)

fl(cl’cz(x)' dx . dx? vpppz(x)rx) =0 XEQI
¢, =c,atx e 3Q,
de,(y) d%,(y)
£ (cl,c_.,@}. ;y , d;'*' PP)Y [= 0 yeQ,

c;=caty e 0Q,

de,(x) d%c,(¥) dey(y) d,(y)
f; (CI,CZ(I),C:‘(_V),(a"(x,y)» dx t dx 2 ;y L] d; 2z
ac4(x,)’) 804(xsy) ach,(x!y) azc 4(x’y) azf."(x,y)
ox dy ox* = oy* = oxdy

PP, (X202 x)xY) =0 (x,y)eQ,

¢, = ¢, at (x,y) € 99,

211

glep) =0 i=12,...m

g;(c]pl) 20 i=m1+1,ml +2,...,m

h(€1,C,(x).€30)C)P 2R PPN AY) = 0 i=1.2,...m,

B (€1:€2(0),€300),€,(60) 212, () PN P () xy) 2 0 i=1,2,....m,

N.B. Problem 14 is formulated in terms of the package GRG2, and problem 15 is
formulated in terms of the package VFI3AD. But they can easily be converted
in each other, e.g. an individual bound on a variable can be replaced be 2
constraints, and an inequality constraint g(x) 2 0 can be considered a constraint
having an upper bound 10%, so that the same class of parameter estimation
problem can be solved either by GRG2 or by VF13AD. Also Problems 14 and
15 are formulated as distributed parameter estimation problems, parameter
estimation problems for lumped parameter systems can also be solved.

The package offers the following options:

. Unconstrained optimization using Hooke-Jeeves method.
It can be used to solve problem 1.

.- Unconstrained optimization using the Broyden-Fletcher-Goldfarb-

Shanno method.
It can be used to solve problem 1.

. It has been superseded by options 15 and 17.
. It has been superseded by options 15 and 17.

"It has been superseded by option 6.

..-It uses BFGS method and control variable parameterization.
It can be used to solve problem 4, 9, 10 and 13. If problem
4,9 or 13 has many differential equations, than option 6 is
faster than option 16 or option 18, although it is easier

to set up a problem for computer run using options 16 or 18,

It has been superseded by option 6.

. It uses Hooke_Jeeves method and control variable parameterization.
It can be used to solve problem 4, 9, 10 and 13. If problem 4,9 or 13
- has many differential equations, than option 8 is faster than
option 16 or option 18, although it is easier to set up a
problem for computer run using options 16 or 18,

-. .It has been superseded by options 16 and 18.

212

10. Tt has been superseded by options 16 and 18.

11. Parameter estimation using Hooke-Jeeves method and control variable
parameterization.
It can be used to solve problem 13 when there are no material balance equations.

12. Parameter estimation using BFGS method and control variable parameterization.
It can be used to solve problem 13 when there are no material balance equations,

13. It has been superseded by options 16 and 18.

14. 1t has been superseded by options 16 and 18.

15. This option invokes the GRG2 package.
It can be used to solve problems 1 and 2.

16. This option invokes the GRG2 package.
The model has to be first input to the package OCFE.
It can be used to solve problems 4, 5, 6, 7, 8, 9, 11 and 14.

17. This option invokes the VfI13AD package.
It can be used to solve problem 3.

18. This option invokes the Vf13AD package.
The model has to be first input to the package OCFE.
It can be used to solve problems 4, 5, 6, 7, 8, 9, 12 and 15.

Program files and data files.
The package contains the following declaration in its subroutines:
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

Program source files:

preprocessor for options 16 and 18

ocfe.for

optimizer.for main program

dispatcher.for main driving subroutine

hjbfgs.for subroutines performing options 1-14

user supplied subroutines computing the objective function or

usersubs.for T St _
objective functional and derivatives for options 1-14

subroutines comprising GRG2

subint.for

213

grg2l.for
grg22.for
sqp.for

userint.for

ocfeint.for

sqpint.for

grgint.for

evalerr.for

error.for

evalfunc.for

plotprep.for

subroutines comprising GRG2
subroutines comprising GRG2
subroutines comprising VF13AD

user supplied subroutines containing various functions callable
from GCOMP or SQPCONSTRAINTS when using options 16
or 18. e.g., if one has a boundary condition C=IF T < THETA
THEN 0.5 ELSE 0, then such case can be handled by writing
a function in userint.for, Functions handling disturbances and
initializing state variables have to be put also in userint.for.

user supplied subroutines containing various functions callable
from OCFE when using options 16 or 18. e.g., the function
handling variable time delay VARTIMEDELAY and the
irregular domain handling function WITHIN have to be in
ocfeint.for.

The user has to write REAL*8 FUNCTION SQPOF(X) and
SUBROUTINE SQPCONSTRAINTS(C,U,N,M) when using
option 17.

The user has to write SUBROUTINE GCOMP(G,X) when
using option 18.

It is output by OCFE if options 16 or 18 are used. It computes
the residual error after OPTIMIZER has been run and outputs
ERROROUT.DAT. It reads in OPTSOLUTION.DAT

It is output by OCFE if options 16 or 18 are used. If one solves
problems 5,6,7,8,9,11,12 using option 16 or 18, ERROR(X) has
to be added to the objective functional if the problem is defined
as minimization and ERROR(X) has to be subtracted from the
objective functional if the problem is defined as maximization.
Then variables cannot be named X. ERROR(X) may shift the
optimum, so it is reccommended that with optimization problems
the user runs his/her problem with and without ERROR(X).
One also can use weights like F(T)+0.005*ERROR(X). Before
linking OPTIMIZER, error.for has to be compiled.

It is output by OCFE if options 16 or 18 are used. It
computes the values of the state and control variables at
equidistant points along the independent variables after

OPTIMIZER has been run. It outputs FUNCOUT.DAT and
reads OPTSOLUTION.DAT

It generates data for GNUPLOT.

214

Executable modules:

ocfe.exe It has to be run if options 16 or 18 are used. It reads
OCFEINP.DAT and outputs OCFEOUT.DAT, evalerr.for,
error.for, and evalfunc.for. If option 16 is used, it outputs
grg2int.for and OCFEGRG2IF,DAT. If options 18 is used, it
outputs sqpint.for and OCFESQPIF.DAT.

optimizer.exe It reads OPTIMINP.DAT. If option 16 is used, it reads
OCFEGRG2IF.DAT. If option 18 is used, it reads
OCFESQPIF.DAT. It outputs OPTSOLUTION.DAT and
OPTIMOUT.DAT. OPTSOLUTION.DAT is read by EVALERR
and by EVALFUNC.

OCFEINP.DAT

OCFEOUT.DAT
OCFEGRG2IF.DAT
OCFESQPIF.DAT
6PFSOLUTION.DAT
OPTIMINP.DAT
6PTIMOUT.DAT
FUNCOUT.DAT
ERROROUT.DAT
PLOTPREP.DAT

ROOTS5.DAT
EXPER.DAT

OCFETEMP.DAT

OCFETEMP2.DAT

Data Files:

It contains the model if options 16 or 18 are used. It
is read by OCFE.

It is output by OCFE.

It is output by OCEFE if option 16 is used.

It is output by OCFE if option 18 is used.

It is output by OCFE.

It contains input to optimizer

Output of OPTIMIZER

Output of EVALFUNC

Output of EVALERR

It is input file to PLOTPREP, output by OCFE.

It is output by OCFE, read by DISPATCHER, used by
INIT2 in userint.for to initialize state variables as a
function of independent variables.

It is output by OCFE, read by DISPATCHER, used for
printing and comparing the experimental data and
computed data in parameter estimation.

temporary file created by OCFE

temporary file created by OCFE

215

OCFETEMP3.DAT temporary file created by OCFE

OCFETEMP4.DAT temporary file created by OCFE

Steps taken if option 16 is used:

L.

2.

12.

13.

set up OCFEINP.DAT and OPTIMINP.DAT

delete or rename ROOTS.DAT, EXPER.DAT, OCFETEMP.DAT.
OCFETEMP2.DAT, OCFETEMP3 DAT, OCFETEMP4.DAT, OCFEOUT DAT.
EVALFUNCEFOR, PARESTRES.FOR, EVALERR.FOR, ERROR.FOR.
GRG2INT.FOR, OCFEGRG2IF.DAT, PLOTPREP.DAT S

ocfe.exe

1Ipr OCFEINP.DAT OCFEOUT.DAT OCFEGRG2IF.DAT
mv GRG2INT.FOR grg2int.for

f77 grg2int.for -c -x/ -i4

£77 error.for -c -x/ -i4 if option 16 is used for problems 4,5,6,7,8,9 or 11 and
ERROR(X) or - ERROR(X) was added to the objective functional.

f77 ~illesjl/optimizer.o ~illesj/dispatcher.o ~illesjl/hj L)
. . . . i . J /h‘]bfgs.o ~lllcs I/Sllbl t.
~illesjl/grg21.0 ~illesjl/grg22.0 ~illesjl/sqp.o usersubs.o userint oj SClPilr:tg
grg2int.o €rror.o -0 optimizer.exe ' .

delete or rename OPTIMOUT.DAT, OPTSOLUTION.DAT and :
IDUMP=1 and IRESTART=0 and DUMP.DAT if

at hh:mm
time optimizer.exe > optimizer.log

ctrl d
logout

Ipr OPTIMINP.DAT OPTIMOUT.DAT optimizer.log

mv EVALERR.FOR evalerr.for
£77 evalerr.for -c -xl -i4
£77 evalerr.o -o evalerr.exe

evalerr.exe
Ipr ERROROUT.DAT

mv EVALFUNC.FOR evalfunc.for

£77 evalfunc.for -c -xI -i4
£77 evalfunc.o -o evalfunc.exe

evalfunc.exe

216

T

B S —

e.g. 0.50.5 or 0.1 0.1
Ipr FUNCOUT.DAT

Steps taken if option 18 is used:

L.

2.

10.

11.

12

13.

set up OCFEINP.DAT and OPTIMINP.DAT

delete or rename ROOTS5.DAT, EXPER.DAT, OCFETEMP.DAT.
OCFETEMP2.DAT, OCFETEMP3.DAT, OCFETEMP4.DAT, OCFEOUT DAT.
EVALFUNC.FOR, PARESTRES.FOR, EVALERRFOR, ERROR.FOR.
SQPINT.FOR, OCFESQPIF.DAT, PLOTPREP.DAT '

ocfe.exe

Ipr OCFEINP.DAT OCFEOUT.DAT OCFESQPIE.DAT
mv SQPINT.FOR sqpint.for
f77 sqpint.for -c -x/ -i4

£77 error.for -¢ -x/ -i4 if option 18 is used for problems 4,5,6,7,8,9 or 12 and
ERROR(X) or - ERROR(X) was added to the objective functional.

77 —:illcsj!/optimi.zcr..() ~illesj//dispatcher.o ~illesjl/hjbfgs.o ~illesjl/subint.o
~illesjl/grg2l.0 ~illesjl/grg22.0 ~illesjl/sqp.0 usersubs.o userint.o sqpint.o
grg2int.o €rror.o -o optimizer.exe

delete or rename OPTIMOUT.DAT, OPTSOLUTION.DAT and D i
IDUMP=1 and IRESTART=0 UMP.DAT if

at hh:mm
time optimizer.exe > optimizer.log

ctrl d
logout

Ipr OPTIMINP.DAT OPTIMOUT.DAT optimizer.log

" mv EVALERR.FOR evalerr.for

£77 evalerr.for -c -x/ -i4
£77 evalerr.o -0 evalerr.exe

evalerr.exe
Ipr ERROROUT.DAT

mv EVALFUNC.FOR evalfunc.for
£77 evalfunc.for -c -x/ -i4

- £77 evalfunc.o -o evalfunc.exe

evalfunc.exe

~e.g. 0.50.50r0.10.1

217

6.

Ipr FUNCOUT.DAT

Steps taken if options 1 or 2 are used:

Set up the objective function in usersubs.for and OPTIMINP.DAT

£77 usersubs.for -c -x/ -i4

f77 ~illesjl/optimizer.o ~illesj//dispatcher.o ~illesj//hjbfgs.o ~illesjl/subint.o
~illesj//grg21.o ~illesjl/grg22.0 ~illesjl/sqp.o usersubs.o userint.o sqpint.o grg2int.o
€rTor.o -o optimizer.exe

delete or rename OPTIMOUT.DAT

at hh:mm
time optimizer.exe > optimizer.log

ctrl d
logout

lpr OPTIMINP.DAT OPTIMOUT.DAT

Steps taken if options 6,8,11 or 12 are used:

1.

2.

8.
| Steps taken if option 15 is used:

1. - Set up SUBROUTINE GCOMP in grg2int.for and OPTIMINP.DAT

Set up the objective function in usersubs.for and OPTIMINP.DAT
Set up the computation of derivatives in the FUNCTION DX2 in usersubs.for

Set up the overall mass-balance equation if it is part of the model in the
SUBROUTINE OVERALLMASSBALANCE in usersubs.for

£77 usersubs.for -c¢ -x/ -i4

£77 —-illcsjl/optifnizc.:r.o ~illesjl/dispatcher.o ~illesj//hjbfgs.o ~illesjl/subint.o
~illesjl/grg21.o ~illesjl/grg22.0 ~illesjl/sqp.o usersubs.o userint.o sqpint.o grg2int.o
error.o -0 optimizer.exe

delete or rename OPTIMOUT.DAT

- at hhimm

- time optimizer.exe > optimizer.log
ctrl d
logout

_.Ipr OPTIMINP.DAT OPTIMOUT.DAT

218

2. {77 grglint.for -c -x/ -i4

3. f'?'? .—'illcsjl/optifniz?r.o ~illesjl//dispatcher.o ~illesj//hjbfgs.o ~illesj//subint.o
~illesj//grg21.0 ~illesj/grg22.0 ~illesjl/sqp.o usersubs.o userint.o sqpint.o grg2int.o
erTor.o -0 optimizer.exe

4. delete or rename OPTIMOUT.DAT OPTSOLUTION.DAT and D :
IDUMP=1 and IRESTART=0 nd DUMP.DAT if

5. at hh:mm
time optimizer.exe > optimizer.log

ctrl d
logout

6. lpr OPTIMINP.DAT OPTIMOUT.DAT

Steps taken if option 17 is used:

1. Setup FUNCTION SQPOF and SUBROUTINE SQPCONSTRAINTS in sqpi
and OPTIMINP.DAT in sqpint.for

2. 77 sgpint.for -c -x/ -i4

3. 77 illeslloptimizer.o ~illesjldispatcher.o ~illsjimibigs.o ~illesil/subinto
" ~illesjl/grg21.o ~illesjl/grg22.0 ~illesj//sqp.o usersubs.o userint.o sqpi Tk
erTor.o -0 optimizer.exe sgpint.o grg2int.o

4. delete or rename OPTIMOUT.DAT OPTSOLUTION.DAT and ;
" IDUMP=1 and IRESTART=0 and DUMP.DAT if

5. at hhimm

.*»: time optimizer.exe > optimizer.log
ctrl d

. logout

~ 6. lpr OPTIMINP.DAT OPTIMOUT.DAT

- When option 16 is selected, some of the input variables are read from

- OCFEGRG2IF.DAT and when option 18 is selected, some of the input variables

are read from OCFESQPIF.DAT

Syntax of OCFEINP.DAT

 DIFFEQCLASS IOPT NFE(1) NFE(2) NFE(3) NFE(4)

NICP1(1)...NICP1(NFE(1))
219

NICPI1(1)...NICP2(NFE(2))
NICP3(1)...NICP3(NFE(3))
NICP4(1)...NICP4(NFE(4))
PROBLEMNAME

DELTAT DELTAX DELTAY DELTAZ

NAE! NALGEQ NALGINEQ NALGVAR NTDEPEQ NTDEPINE
NICBC NTDSCVPAR IS VILLORFIN Q Q NEQ NDE

VARCLASS(1)...VARCLASS(NTDSCVPAR)

DO I=1;NTDSCVPAR

~ if VARCLASS() > 1 and VARCLASS(I) < 5 then

NOI(I) N11(D) NO2(I) N12(I) I100(T) I110(T) TI01(T) I11(T) IBSO(I) IBS1(I) IBFO(I)

IBF1(I)
endif
cnddo

N=NAE 1 +NALGEQ+NALGNEQ+N'IDEPEQ+NTDEPINEQ+NEQ+NDE+NICB C+l
DECLASS(1)...DECLASS(N)
do I=1,N

if DECLASS(I) > 0 and DECLASS(I) < 4 or DECLASS(I) > 12 and DECLASS(I) <

16

then
MO1(T) M11(I) M02(T) M12(T) JJ00(T) JJ10(T) JJO1(T) JI11(1) JBSO(I) IBS1(I) JBFO(I)

JBFI(I)
endif
enddo

NAMEVAR(1)..NAMEVAR(NTDSCVPAR)

SATISFIED(1)..SATISFIED(4)

'LIB(1) UIB(1) LIB(2) UIB(2) LIB(3) UIB(3) LIB(4) UIB(4)

“if NFE(1) > 1 then

KNOTI1(1)...KNOTI1(NFE(1)-1)
endif

if NFE(2) > 1 then
KNOT2(1)...KNOT2(NFE(2)-1)

endif

220

INPUTTEXT(1)...INPUTTEXT(N)

if INPUTTEXT(N) = 'PARAMETER ESTIMATION’ then
NLINES

INPUTTEXT(N)...INPUTTEXT(N+NLINES-1)
endif

Composition of INPUTTEXT
NAE2=NALGEQ+NALGINEQ
NTDC=NTDEPEQ+NTDEPINEQ

Option 16

NAE]1 algebraic equations like R=1.9865

NAE?2 algebraic constraints like X(1)+X(2)+X(3)=1

NTDC time-dependent consraints like ¢,+c,+c,=1

NEQ equations like rate constant or feedback control law

NDE differential equations
NICBC boundary conditions
objective functional

if there is parameter estimation then
PARAMETER ESTIMATION

N
N lines containing the least-squares objective functional at sampled

points of the independent variable
Option 18

" NAEI algebraic equations like R=1.9865
. NALGEQ algebraic constraints like X(1)+X(2)+X(3)=1
NTDEPEQ time-dependent consraints like ¢, +¢,+cy=1
NEQ equations like rate constant or feedback control law
f‘JDE differential equations

NICBC boundary conditions
221

NALGINEQ algebraic inequalities like X(1)+X(2)+X(3)>1

NTDEPINEQ time-dependent inequalities like 300 < temperature(t)
and 400 > temperature(t)

objective functional

if there is parameter estimation then
PARAMETER ESTIMATION

N
N lines containing the least-squares objective functional at sampled

points of the independent variable

Description of input variables

Name Role
DIFFEQCLASS =1 ODE

=3 PDE
10PT =] use GRG2

=2 use VFI3AD

NFE(1) number of finite elements along the first
: independent variable

NFE(2) number of finite elements along the second
independent variable

NFE(3),NFE(4) not used

NICPI1(I) number of internal collocation points along the first independent
variable in the i-th subinterval

NICP2(D) number of internal collocation points along the second
independent variable in the i-th subinterval

NICP3,NICP4 not used
PROBLEMNAME problem name

DELTAT The residual error will be evaluated at DELTAT intervals along
the first independent variable

DELTAX The residual error will be evaluated at DELTA intervals along
the second independent variable

DELTAY,DELTAZ not used
222

FT

NAEI
NALGEQ
NALGINEQ
NALGVAR

NTDEPEQ

NTDEPINEQ

NEQ

NDE

NICBC
NTDSCVPAR

IS

VILLORFIN

VARCLASS

number of algebraic equations like R=1.9865
number of algebraic equations like x(1)+x(2)=1
number of algebraic equations like x(1)+x(2)>0
number of algebraic variables

number of equations containing at least one variable dependent
on the independent variable like c,(t)+c,(t)+c,(t)=1

number of inequalities containing at least one variable
dependent on the independent variable like c(t)>0

number of equations like k=exp(E/RT)

number of differential equations

number of boundary conditions

number of variables dependent on the independent variables
should always be zero

=1 programs taken from Villadsen and Michelsen are used
=2 programs taken from Finlayson are used

if the number of internal collocation points > 5, select
VILLORFIN=1

=1 independent variable

=2 dependent state variable like concentration dependent on
the first independent variable

=3 dependent state variable like concentration dependent on
the second independent variable
=4 dependent state variable like concentration dependent on

both independent variables

=5 control variable like temperature dependent on the first
independent variable

=6 control variable like temperature dependent on the
second independent variable

223

control variable like temperature dependent on both
independent variables

parameter like rate constant dependent on the first
independent variable

parameter like rate constant dependent on the second
independent variable

parameter like rate constant dependent on both
independent variables

control variable dependent on the first independent
variable piecewise constant function over the
subintervals

control variable dependent on the second independent
variable piecewise constant function over the
subintervals

control variable dependent on 2 independent variables,
piecewise constant function over subintervals along the
axis of the first independent variable

control variable dependent on 2 independent variables,
piecewise constant function over subintervals along the
axis of the second independent variable

parameter dependent on the first independent variable
piecewise constant function over the subintervals

parameter dependent on the second independent variable
piecewise constant function over the subintervals

parameter dependent on 2 independent variables,

piecewise constant function over subintervals along the
axis of the first independent variable

parameter dependent on 2 independent variables,
piecewise constant function over subintervals along the
axis of the second independent variable

user-defined function in userint.for

variable in irregular domain

control variable dependent on 2 independent variables,

224

NO1()

N11()

NO2(i)

N12(i)

1100(i)

1110(3)

1101(1)

=25

constant over 2-dimensional finite elements

parameter dependent on 2 independent variables,
constant over 2-dimensional finite elements

control variable dependent on the first independent
variable is a constant function over the integration
domain

control variable dependent on the second independent
variable is a constant function over the integration
domain

control variable dependent on 2 independent variables
constant over 2-dimensional integration domain

if an initial condition is given in an ODE associated
with the i-th state variable dependent on the first
independent variable

if a boundary condition is given in an ODE associated
with the i-th state variable dependent on the first
independent variable

if an initial condition is given in an ODE associated
with the i-th state variable dependent on the second
independent variable

if an boundary condition is given in an ODE associated
with the i-th state variable dependent on the second
independent variable

if a boundary condition is given in a PDE associated
with the i-th state variable at the start value of the first
independent variable and at the start value of the second
independent variable

if a boundary condition is given in a PDE associated
with the i-th state variable at the final value of the first
independent variable and at the start value of the second
independent variable

if a boundary condition is given in a PDE associated
with the i-th state variable at the start value of the first
independent variable and at the final value of the second
independent variable

225

I11(1)

IBSO(1)

IBS1(1)

IBFO(i)

IBF1(i)

DECLASS

I
—

if a boundary condition is given in a PDE associated
with the i-th state variable at the final value of the first
independent variable and at the final value of the second
independent variable

if a boundary condition is given in a PDE associated
with the i-th state variable along the axis of the first
independent variable at the start value of the second
independent variable

if a boundary condition is given in a PDE associated
with the i-th state variable along the axis of the first

independent variable at the final value of the second
independent variable

if a boundary condition is given in a PDE associated
with the i-th state variable along the axis of the second

independent variable at the start value of the first
independent variable

if a boundary condition is given in a PDE associated
with the i-th state variable along the axis of the second

independent variable at the final value of the first
independent variable

ODE dependent on the first independent variable
ODE dependent on the second independent variable
PDE

boundary condition on the first independent variable
boundary condition on the first independent variable

boundary condition in a PDE

objective functional on an ODE associated with the first
independent variable

objective functional on an ODE associated with the
second independent variable

objective functional in a PDE containing at least one
state variable dependent on 2 independent variables

226

MO1(1)

M11(@)

constraint dependent on the first independent variable
constraint dependent on the second independent variable
constraint dependent on both independent variables

equations like the Arrhenius law for the rate constant
dependent on the first independent variable

equations like the Arrhenius law for the rate constant
dependent on the second independent variable

equations like the Arrhenius law for the rate constant
dependent on both independent variable

PDE with irregular domain

ICBC with irregular domain

individual bound on control var of class 5
individual bound on control var of class 6
individual bound on control var of class 7
individual bound on control var of class 11
individual bound on control var of class 12
individual bound on control var of class 13
individual bound on control var of class 14
individual bound on control var of class 21
individual bound on control var of class 23
individual bound on control var of class 24
individual bound on control var of class 25
differential equation to be satisfied at a single point.

if an initial condition is given in the i-th ODE
dependent on the first independent variable

if an boundary condition is given in the i-th ODE
dependent on the first independent variable

227

MO02(3i)
M12(i)

JJ00(3)
JJ10(31)
JJO1(i)
JI11(i)

J BSO(i)
JBS1(i)
JBFO(i)
J“BFI (i)
NAMEVAR

SATISFIED(1)

SATISFIED(2)

SATISFIED(3)

S ATRLATTER AR m

if an initial condition is given in the i-th ODE
dependent on the second independent variable

if an boundary condition is given in the i-th ODE
dependent on the second independent variable

if a boundary condition is given in the i-th PDE at the
start value of the first independent variable and at the
start of the second independent variable

if a boundary condition is given in the i-th PDE at the
final value of the first independent variable and at the
start of the second independent variable

if a boundary condition is given in the i-th PDE at the
start value of the first independent variable and at the
final of the second independent variable

if a boundary condition is given in the i-th PDE at the
final value of the first independent variable and at the
final of the second independent variable

if a boundary condition is given in the i-th PDE along
the axis of the first independent variable at the start
value of the second independent variable

if a boundary condition is given in the i-th PDE along
the axis of the first independent variable at the final
value of the second independent variable

if a boundary condition is given in the i-th PDE along
the axis of the second independent variable at the start
value of the first independent variable

if a boundary condition is given in the i-th PDE along
the axis of the second independent variable at the final
value of the first independent variable

names of variables, maximum 3 characters, independent
variables only 1 character

if the differential equation is defined at the start value
of the first independent variable

if the differential equation is defined at the final value
of the first independent variable

if the differential equation is defined at the start value
of the second independent variable

228

T

SATISFIED(4) =1 if the differential equation is defined at the final value

of the second independent variable

LIB(1) start value of the first independent variable

UIB(1) final value of the first independent variable

LIB(2) start value of the second independent variable

UIB(2) final value of the second independent variable

LIB(3) unused, but required

UIB(3) unused, but required

LIB(4) unused, but required

UIB4). unused, but required

KNOTI1() i-th finite element knot along the first independent variable
KNOT2(I) i-th finite element knot along the second independent variable

INPUTTEXT(I) the i-th equation

if an equation is longer than 80 characters then at the end of the
line & must be used indicating that the next line is a
continuation line

Rules, assumptions and limitations of the OCEFE package

1.

grg2intfor and sqpintfor are automatically generated using information
contained in OCFEINP.DAT.

Mixed ODEs and PDEs are handled.

There must be at least 2 internal collocation points in each finite element, if
there is a control variable, i.e., the problem is an optimization problem, and the
control variable is not constant over the finite elements.

The number of internal collocation points can vary from finite element to finite
element.

The maximum number of independent variables is 2, but problems containing 3
independent variables can be transformed into problems having 2 independent
variables using finite differencing. If there is a second derivative term with
respect to the variable z to be eliminated then there must be boundary conditions
defining the value of the state function at the start point and at the end point of
the integration with respect to z.

229

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

- 20.

The maximum order of differential equations is 2.
The maximum number of NLP variables is 1500.
The maximum number of NLP constraints is 1500.
Lines starting with asterisk are treated as comments.

Currently only rectangular domains are handled, the code handling irregular
domains has been implemented, but it has not been tested on real problem and
it is not sure, that it will work on real problems.

Algebraic variables, i.e. variables not dependent on the independent variables
must appear in OCFEINP.DAT subscripted starting from subscript 1, they have
to be named x and x cannot be a variable name.

The objective functional and initial and boundary conditions can contain
derivative terms.

NLP variables derived from state variables are not bounded.

For second-order differential equations the Lagrange interpolation polynomial
must be at least cubic in order to prevent constraints becoming identical by
having constant derivatives if there are no first derivative terms and independent
variables do not appear in the differential equation.

OCEE in conjunction with GRG2 and VF13AD can be used to solve differential
equations when there is no control variable, i.e., when the problem is not an

optimization problem.

State variables dependent on 2 independent variables can be fixed at knot points
or at the start or at the end of the integration interval of an independent variable.
It occurs normally in integral terms of an objective functional when integration
is performcd along the edge of a rectangular integration domain.

Control variables and parameters can be constant over a finite element.

There can be no time delay in derivative terms and in parameters like rate
constant and in objective functional and initial and boundary conditions.

c(0,t) or c(t,0) indicates that a state variable is fixed at start value of an
independent variable. ¢(1,t) or c(t,1) indicates that a state variable is fixed at end
value of an independent variable.

Differential equations, integral terms of an objective functional and initial and
boundary conditions can contain state and control variables and parameters.

230

21.
22,

23.

24,
25.

26.
27.

28.

29.

30.

3l
32,

33.

If a state variable is fixed at knot point, then it is indicated by putting 'L’
instead of the independent variable, consequently L’ cannot be the name of an
independent variable.

If a variable c(t,x) appears in an integral term of the objective functional, as
c(0,t)dt, the new variable derived from this integral term is defined at x=0 along
the t-axis. It is dependent only on t.

There can be more than 1 integral term in an objective functional.

The independent variable must appear in parentheses following a state or control
variable or a parameter.

Variable time delays should be defined in ocfeint.for in the function
VARTIMEDELAY.

Both state and control variables can have time delays.
A PDE must contain at least 1 variable dependent on both independent variables.

If a model contains function references such that the argument is NLP variable
x, then x cannot be a variable name, the function name cannot be a variable
name, and the function must be defined in userint.for.

If a variable dependent on both independent variables appears in an ODE, then
this variable must have one of its independent variables fixed.

For a PDE IC/BC conditions have to be specified separately for the corners and
for the sides of the rectangular domain. Boundary conditions for a side exclude
these end points. For instance,

BC AT T=0 AT X=0

BC AT T=0 AT X=1

BC AT T=1 AT X=0

BC AT T=1 AT X=1

BC AT T=0 [0sX<] IMPLIED]

BC AT T=1 [0<X<1 IMPLIED]

BC AT X=0 [0<T<1 IMPLIED]

BC AT X=1 [0<T<1 IMPLIED]

are all the possible initial/boundary conditions for a state variable dependent on
both independent variables.

A PDE can contain variables dependent only on 1 independent variable.
Independent variables can appear in any order in parentheses.

If, say, there are 2 spatial variables 0 < x <L, and 0 <y < L,, then every
dependent variable must be dependent on x or on y or on both over the entire

231

34.

35.

36.

37,

38.

39,
" 40.

41.
42.
43.

interval or rectangle. Also, in the model there can be no more than 2
independent variables. In one word, 2 units cannot be modeled together if both
are modelled by differential equations with variables in both units dependent on
spatial variables if the range of the spatial variables differs in units. But if only
1 unit contains differential equations dependent on a spatial variable and on time
and the other units contain ordinary different equations dependent on time only,
then this case can be handled. Also, if variables are transformed like 0 <z’ <L
and we transform z” as z=z'/L, then 0 < z < 1 for each spatial independent
variable and the above restriction is removed. Even if more than 1 units are
modelled together, the lower and upper limit of integration is common for every
unit. This implies that a unit cannot be started later or earlier and cannot be

stopped later or earlier than other units.

A variable cannot be fixed and cannot have time delay at the same time.

If a control variable has time delay, then it cannot have an associated
parameter, e.g., if k=A%exp(-E/R/Temperature), then not k, but
A*exp(-E/R/Temperature) should appear in the differential equations.

If an integral term in the objective functional is to be maximized, then a - sign
should precede the integral, like -INTEGRAL, if VF13AD is used. If GRG2 is
used, either -INTEGRAL and 1 in OPTIMINP.DAT second line last number, or
no minus sign and 2 in OPTIMINP.DAT last number must be given. If the
objective functional is minimized, no - sign and if GRG2 is used, 1 in
OPTIMINP.DAT second line last number must be given.

Variable names should not start with @.

If the letter D appears in a variable name, then there cannot be another variable
name contained entirely in the first variable whose first character starts with a
letter following the D in the first variable, because the first derivative of the
second variable would be taken for the first variable, e.g. first variable = DAB

and the second variable = AB.

If there is a time delay and both the time delay and the initial function is
constant, it is indicated as e.g. t-0.5;0.5. otherwise as TIMEDELAY(i) where i
is a label in a FUNCTION VARTIMEDELAY in ocfeint.for.

x cannot be a variable name if error(x) appears in the objective functional.

A state variable fixed at knot cannot appear in boundary condition and in the
objective functional and in a parameter equation.

A state variable in derivative term cannot be fixed at knot or at boundary.

Disturbances and variables that come from another process unit and therefore
cannot be manipulated must be specified as functions of time in userint.for and

232

44,

45.

46.

47.
48.

49.

50.

51.

52.

53.

54.

55.

the same name should occur in OCFEINP.DAT, the independent variables
enclosed in close brackets, like FI[T] or FI[X,Y].

Boundary conditions must not contain the substring *AT’.

If parameter K(T) is associated with diff. equ. of DECLASS=3 then the
condition associated with K(T) [VARCLASS = 8 DECLASS = 13] should reflect
the condition associated with the diff. equ. of DECLASS=3 e.g. JBF0=1 implies
MO1=1. Similarly if parameter K(X) is associated with diff. equ. of
DECLASS=3 then the condition associated with K(X) [VARCLASS = 9
DECLASS = 14] should reflect the condition associated with the diff. equ. of
DECLASS = 3 e.g. JBS0=1 implies M02=1.

A parameter definition equation must have the same set of conditions
(JJ00,...JBF1) as the associated differential equation

Since second-order hyperbolic PDEs require 2 initial conditions, the number of
equations is greater than the number of state variables, feasible point may not be
found, i.e. the feasible region may be empty.

Constant definitions like R = 1.9865 can appear in OCFEINP.DAT.
Integral terms can occur only in the objective functional.

Boundary conditions can be split only if they are in the form "state variable =
constant". The split has to be defined in userint.for and referenced in the model.
e.g. in the model F1[T,X] and in userint.for a FUNCTION FI1(T,X) should define

F1 dependent on T and/or X.
State variables fixed at boundary cannot appear in a parameter equation.

It is possible to initialize state variables as a function of constants and
independent variables if by this initilaization run time can be reduced by giving
initial values closer to the optimal values or at least starting closer to the feasible
region defined by the constraints. A user-written subroutine INIT2 has to be

included in the program file userint.for.

It is possible to print out the experimental values when performing parameter
estimation. The program PARESTRES has to be compiled, linked and run after
the optimization run. The experimantal and estimated values are printed out

" when control vector parameterization is used to estimate parameters, but the
model can only be an initial-value ODE problem. Zero values have to be given

in the least-square objective functional, e.g. (A(T)-0)**2 at T = 0.
All differential equations must be integrated over the same integration domain.

Integration domain has to be fixed before simulation or optimization.

233

56. Conditional constraints cannot be handled automatically.

57. Boundary and initial conditions must be consistent.

58. Differentiation can be performed only with respect to independent variables.

59. A differential equation must be valid on the whole open integration domain.

60. If a differential equation is not defined at boundary, i.e. there is a division by an
independent variable, then there must be a boundary condition for such portion

of the boundary.

61. Boundary conditions can be specified only at the boundary of the integration

domain.

62. If the differential equation is longer than 79 characters, then & should indicate

in the position 79 that the equation is to be continued.

63. A differential equation can be defined over a single point.

The following table shows certain feasible and infeasible combinations.

OF I/B DERIVATI- PARAME-
VE TER
EQUATION
TIMEY N N N N
‘DELAY

FIXED N N N N

KNOT

FIXED Y Y N N

BOUNDARY

Syntax of OCFEGRG2IE.DAT

N NFUN NOBJ NALGVAR NALGC NTDIQ NSTATE
TDVRANGE(1)..TDVRANGE(NTDVAR)

STATEVARIND(1)...STATEVARIND(NTDVAR)

" TDCRANGE(1)..TDCRANGE(NTDC)

Syntax of OCFESQPIF.DAT

" N M NOBJ MEQ NALGVAR NSTATE
STATEVARIND(1)...STATEVARIND(NTDVAR)

234

TDCRANGE(1)...TDCRANGE(NTDC)

Syntax of OPTIMINP.DAT

Option 1

* comment
SELECTION

N NALGSTATE NTIMEDEPSTATE NCO
’PROBLEMNAME’ NTROLVAR NN M
OUTPUTLEVEL

LOG

if LOG = 1 THEN

A(D... A(N)

B(1)...B(N)

endif

LOG

if LOG=1 THEN

U(1)...U(N)

endif

DVARNAME(1)..DVARNAME(N)

HJEPSR DR

Option 2

* comment

SELECTION
N NALGSTATE NTIMEDEPSTATE NCONTROLVAR NN M

'PROBLEMNAME’

OUTPUTLEVEL

LOG

if LOG = 1 THEN

AD)... AQN)
B(1)..B(N)

endif

LOG

if LOG=1 THEN

U(1)...UN)

endif

. DVARNAME(1)..DVARNAME(N)

MAXITER BFGSEPSR HDIFFR
Option 6

* comment
SELECTION
N NALGSTATE NTIMEDEPSTATE NCONTROLVAR NN M

’PROBLEMNAME’

235

OUTPUTLEVEL
LOG

if LOG = 1 THEN
IBOUND(1)...IBOUND(N)

A(D)... A(N)

B(1)...B(N)

endif

LOG

if LOG=1 THEN

U((1)...U(N)

endif
DVARNAME(1)..DVARNAME(N)
HJEPSR DR PENALTYR FEASIBILITYTOLR

MAXITER BFGSEPSR HDIFFR

HR TO TN TFOPTION INTEGRALTERMFLAG
OVERALLMASBALANCEFLAG

if NCONTROLVAR > 0 then
LB1(1)..LBI(NCONTROLVAR)
UB1(1)...UBI(NCONTROLVAR)

endif

Y(1)..Y(NTIMEDEPSTATE)
TIMEDEPSVARNAME(1)...TIMEDEPSVARNAME(NTIMED EPSTATE)

Option 8

* comment

SELECTION
N NALGSTATE NTIMEDEPSTATE NCONTROLVAR NN M

’PROBLEMNAME’
OUTPUTLEVEL
LOG

" if LOG = 1 THEN

IBOUND(1)....BOUND(N)
A(D)... A(N)

B(1)...B(N)

endif

LOG
if LOG=1 THEN

- u)...UN)

endif
DVARNAME(1)..DVARNAME(N)

HJEPSR DR PENALTYR FEASIBILITYTOLR
HR TO TN TFOPTION INTEGRALTERMFLAG
OVERALLMASBALANCEFLAG

if NCONTROLVAR > 0 then
LBI1(1)..LBI(NCONTROLVAR)
UBI1(1)..UB1(NCONTROLVAR)

endif
236

Y(1)...Y(NTIMEDEPSTATE)
TIMEDEPSVARNAME(1)... TIMEDEPSVARNAME(NTIMEDEPSTATE)

Option 11

* comment
SELECTION

N NALGSTATE NTIMEDEPSTATE NCONTROLVAR NN M
’PROBLEMNAME’

OUTPUTLEVEL

LOG

if LOG = 1 THEN

IBOUND(1)...IBOUND(N)

A(l)... A(N)
B(1)..B(N)
endif

LOG

if LOG=1 THEN
U(1)..UN)
endif

DVARNAME(1)...DVARNAME(N)

HJEPSR DR PENALTYR FEASIBILITYTOLR
HR TO TN TFOPTION INTEGRALTERMFLAG
OVERALLMASBALANCEFLAG

if NCONTROLVAR > 0 then
LB1(1)..LBI(INCONTROLVAR)
UBI1(1)...UB1(NCONTROLVAR)

endif

Y(1)...Y(NTIMEDEPSTATE)
TIMEDEPSVARNAME(1)...TIMEDEPSVARNAME(NTIMEDEPSTATE)

MISSINGDATA(J) J=1..M I=1...N
EXPERDATA(LJ) J=1..M I=1..N

Option 12

* comment

SELECTION
N NALGSTATE NTIMEDEPSTATE NCONTROLVAR NN M

'’PROBLEMNAME’
OUTPUTLEVEL

LOG
if LOG = 1 THEN

IBOUND(1)..IBOUND(N)
A(D)... A(N)

B(1)...B(N)

endif

LOG
if LOG=1 THEN

237

U(1)...UN)
endif

DVARNAME(1)...DVARNAME(N)

HJEPSR DR PENALTYR FEASIBILITYTOLR
MAXITER BFGSEPSR HDIFFR

HR TO TN TFOPTION INTEGRALTERMFLAG
OVERALLMASBALANCEFLAG

if NCONTROLVAR > 0 then
LB1(1)..LBI(NCONTROLVAR)
UB1(1)...UBI(NCONTROLVAR)

endif

Y(1)...Y(NTIMEDEPSTATE)
TIMEDEPSVARNAME(I)...TIMEDEPSVARNAME(NTIMEDEPSTATE)
MISSINGDATA(,J) J=1..M I=1...N
EXPERDATA(,J) J=1..M I=1...N

Option 15

* comment

SELECTION
PNEWT PINIT PSTOP PSPIV PHIEP NSTOP ITLIM LMSER IPR IPN4 IPN5 IPN6

IPER

IDUMP IQUAD LDERIV MODCG IDEFAUL19 IRESTART

if any of PNEWT...IDEFAUL19 = -1 then default valued are used
’PROBLEMNAME’

N NFUN NOBJ

SCALEVAR SCALECON VARSCALELB VARSCALEUB CONS
ICONSTRAINTS CALERAC

LOG
if LOG = 1 THEN

IBOUND(1)...IBOUND(N)

A(D)... AN)
B(1)..B(N)
endif

LOG

if LOG=1 THEN
u()...UN)
endif

VARNAME(1)... VARNAME(N)
BLCON(1)...BLCON(NFUN)
BUCON(1)...BUCON(NFUN)

Option 16
* comment

SELECTION
PNEWT PINIT PSTOP PSPIV PHIEP NSTOP ITLIM LMSER IPR IPN4 IPN5 IPN6

IPER
238

IDUMP IQUAD LDERIV MODCG IDEFAUL19 IRESTART
if any of PNEWT...IDEFAULI19 = -1 then default valued are used

’PROBLEMNAME’
SCALEVAR SCALECON VARSCALELB VARSCALEUB CONSCALEFAC

ICONSTRAINTS

if NALGVAR > 0 then
LOG

if LOG = 1 THEN
IBOUND(1)...IBOUND(NALGVAR)
A(1)... AINALGVAR)
B(1)..B(NALGVAR)

endif

LOG
if LOG=1 THEN

U(1)...U(NALGVAR)

endif
VARNAME(1)..VARNAME(NALGVAR)
BLCON(1)...BLCON(NALGC)
BUCON(1)..BUCON(NALGC)

c_ndif

NTDVAR NTDC
TDVIV(1)..TDVIV(NTDVAR)
TDVLB(1)..TDVLB(NTDVAR)
TDVUB(1).. TDVUB(NTDVAR)
TDLC(1)..TDLC(NTDC)
TDUC(1)..TDUC(NTDC)
INITIALIZE(1)...INITIALIZE(NTDVAR)

Option 17

* comment

SELECTION
N M MEQ MAXFUN ACC IPRINT INF IDUMP IRESTART

if INF = -101 or INF = -111 then
W(M+1).. W(M+N)

endif

if INF = -110 or INF = -111 then
w()..WM)

endif

SCALEVAR SCALECON VARSCALELB VARSCALE
ICONSTRAINTS UB CONSCALEFAC

LOG :
if LOG = 1 THEN

239

i e

IBOUND(1)...IBOUND(N)

A(D)... A(N)
B(1)...B(N)
endif

LOG

if LOG=1 THEN
u()..UN)
endif

VARNAME(])...VARNAME(N)
HDIFFR VSMALL MAXLIN INFO3

Option 18

* comment
SELECTION

MAXFUN ACC IPRINT IDUMP IRESTART

SCALEVAR SCALECON VARSCALELB VARSCALEUB CONSCALEFAC
ICONSTRAINTS

if NALGVAR > 0 then

LOG

if LOG = 1 THEN

IBOUND(1)...IBOUND(NALGVAR)

A(1)... A(NALGVAR)

B(1)..B(NALGVAR)

endif

LOG

if LOG=1 THEN

U(1)...U(NALGVAR)

endif

VARNAME(])...VARNAME(NALGVAR)

endif
HDIFFR VSMALL MAXLIN INFO3

NTDVAR
TDVIV(1).. TDVIV(NTDVAR)
TDVLB(1)... TDVLB(NTDVAR)
TDVUB(1)..TDVUB(NTDVAR)
INITIALIZE(1)...INITIALIZE(NTDVAR)

Description of input variables

Name Range Default Description

SELECTION 1-18 selects optimizing option
PROBLEMNAME 1-60 name of the problem
OUTPUTLEVEL 0-3 controls the amount of output if

options 1,2,6,8,11 or 12 are

240

LOG

B

DVARNAME

MAXITER

HJEPSR

DR
U
EPSDIVR

BFGSEPSR

HDIFFR

IBOUND

HR
TO
TN

TFOPTION

1-13

>0

>0

>0

>0

>0

>0

0-1

>0

>0

>0

241

selected

if zero, defaults are assigned
to scaling bounds or to initial
values of the optimizing
variables

lower scaling bounds of the
optimizing variables

upper scaling bounds of the
optimizing variables

variable names for options
1,2,6,8,11 or 12

if the iteration count is >
MAXITER in BFGS, then BFGS

exits

if the stepsize is < HJEPSR in
HIJ, then HJ exits

initial stepsize for HJ

the vector of optimizer variables
played role in superseded options
if the norm of the gradient vector
of the optimizer variables is <

BFGSEPSR, then BFGS exits

stepsize of numerical
diferentiation in BFGS

if IBOUND(I)=1 then the i-th
optimizer variable is bounded

integration stepsize
initial value of integration
final value of integration

if TFOPTION=1 then TN is an
optimizer variable

S

INTEGRALTERMFLAG

OVERALL-
MASSBALANCEFLAG

N
NALGSTATE

NTIMEDEPSTATE

TIMEDEPSVARNAME

NCONTROLVAR

PENALTYR

FEASIBILITYTOLR

LBI

UBI

Y

NN

M
MISSINGDATA

EXPERDATA

PNEWT

0-1

>0

>0

>0

>0

>0

>0
>0

0-1

0.000001

242

if =1 then there is an integral
term in the objective functional

if =1 then overall mass balance
is used to compute the n-th
time-dependent state variable

number of optimizer variables
used in defunct options

number of time-dependent state
variables

names of time dependent state
variables for options 6,8,11 or 12

number of time-dependent control
variables

if a time-dependent control
variable violates its constraint, the
magnitude of violation is
multiplied by this factor
tolerance level of a
time-dependent control variable
constraint violation

lower bounds on time-dependent
control variables

upper bounds on time-dependent
control variables

the vector of time-dependent state
variables

number of experimental values
number of components + 1

= 1 if experimental value is
missing

experimantal values including
time

a constraint is assumed to be

PINIT

PSTOP

PSPIV

PHIEP

NSTOP

ITLIM

LMSER

0.000001

0.0001

0.0001

10

100

100000

243

binding if it is within this epsilon
of one of its bounds. If a
constraint is not binding and not
within its bounds then the
constraint is not satisfied

initial constraint tolerance

If the fractional change in the
objective is less than PSTOP for
NSTOP consecutive iterations, the
program will stop. The program
will also stop if the Kuhn-Tucker
optimality conditions are satisfied
within PSTOP.

If, in constructing the basis
inverse, the absolute value of a
prospective pivot element is less
than PSPIV, the pivot will be
rejected and another pivot
element will be sought.

If nonzero, the phase 1 objec-
tive is augmented by a multiple
of the true objective.

If the fractional change in the
objective is less than PSTOP for
NSTOP consecutive iterations,the
program will try some alternative
strategies. If these do not produce
an objective change greater than
PSTOP, the program will stop.

If SUBROUTINE NEWTON
takes ITLIM iterations without
converging satisfactorily (in its
attempt to solve the binding
constraint equations for the basic
variable values), the iterations are
stopped and corrective action is
taken.

If the number of completed one
dimensional searches equals
LMSER, optimization will
terminate.

IPR

IPN4
IPNS
IPN6
IPER

IDUMP

IQUAD

LDERIV

MODCG

IDEFAULI19

IRESTART

0-6

0-1

0-1

0-5

244

controls output level

controls output level

controls output level

controls output level

controls output level

if=1 then current values of
optimizer variables are written on
a dump file

method for initial estimates of

basic variables for each one
dimensional search

0 - tangent vector and linear
interpolation will be used

1- quadratic extrapolation
will be used

method for obtaining partial
derivative

0- forward difference
approximation is used

1- central difference
approximation is used

2 - user supplied subroutine

(PARSH) is used

It controls the use of conjugate
gradient method. Since MAXHES
is set to N, always the
quasi-Newton method will be
used, its value is irrelevant.

if =1 objective will be minimized,
otherwise objective will be
maximized

if = 1, program reads the latest
values of optimizer variables
from a dump file to be used as
initial values

NFUN

NOBJ

NALGVAR
NALGC

NTDIQ

NSTATE

TDCRANGE

SCALEVAR
SCALECON

VARSCALELB and
VARSCALEUB

CONSCALEFAC

0-1

0-1

>0

245

number of variables

number of functions including
objective

index of component of vector G
in SUBROUTINE GCOMP
corres- ponding to the objective
function

number of algebraic variables

number of algebraic constraints

number of NLP constraints
derived from time-dependent
constraints

number of NLP variables derived
from state variables

number of NLP constraints
generated from a time-dependent
model constraint

if =1, variables will be scaled
if =1, constraints will be scaled

variables are scaled into the
interval [VARSCALELB,
VARSCALEUB]. The GRG2
User Guide recommends that
variables should be scaled so that
a unit change represents a small
but significant change in that
variable. It also recommends that
all problem functions be scaled to
have absolute value less than 100.
The VFI3AD User Guide
recommends that the values of
the variables and the derivative
vectors of the functions all have
magnitude about unity.

if a constraint function is less
than -CONSCALEFAC then it is
set to -CONSCALEFAC, If it is

ICONSTRAINTS

INITIALIZE

VARNAME
BLCON
BUCON

NTDVAR

NTDC

TDVIV
TDVLB

TDVUB

TDLC

TDUC

TDVRANGE

0-2

246

greater than CONSCALEFAC
then it is set to CONSCALEFAC.

=] if a variable is bounded and
violates bounds it is set to the
bound.

=2 additionally, the changed
values of variables are returned
from GCOM or from
SQPCONSTRAINTS to the
calling subroutine.

if = 1, then the state variable is
initialized in INIT2 in userint.for.

variable names
lower bounds of functions
upper bounds of functions

number of time-dependent
variables, i.e. number of variables
dependent on the independent
variable.

number of time-dependent
constraints, i.e. constraints that
are not differential equations, but
equations or inequalities
containing at least 1 variable
dependent on the independent
variable

initial values of time-dependent
variables
lower bounds of time-dependent
variables
upper bounds of time-dependent
variables

lower bounds of time-dependent
constraints

upper bounds of time-dependent
constraints

number of NLP variables a state
or control variable maps.

STATEVARIND

M

MEQ

MAXFUN

ACC

IPRINT

INF

HDIFFR

VSMALL

MAXLIN

INFO3

Problem 1

grg2int.for

Examples

20

=] if the variable is a state
variable

when option 17 is used, the
number of functions excluding
objective. When option 18 is
used, then number of functions
including objective

number of equality constraints

It limits the function and gradient
evaluations that are called for,

It controls the accuracy of the
calculation.

controls output level

It should be set to a negative
value initially by the user.

stepsize of numerical diffe-
rentiation.

used in VE17ED to check conver-
gence and smallishness.

bounds the call of VF13AD in a
line search

if =1, then VFI3AD returns
INF=1 instead of INF=3

16x,>+16x; -8x,x,-56x, ~2561x,+991

min fx) =

SUBROUTINE GCOMP(G,XX)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 G(*),XX(*),A(1000),B(1000),BLVAR(1000),BUVAR(1000),X(1000)

247

15

INTEGER IBOUND(1000)
COMMON/GRGA/N,NFUN,A,B,BLVAR,BUVAR,IBOUND,NOBJ
INTEGER*4 SCALEVAR,SCALECON

LOGICAL ALTERED

COMMON/SCX/VARSCALELB,VARSCALEUB,CONSCALEFAC,S CALEVAR,S

CALECON
1,ICONSTRAINTS
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLEUNSCALING3(N,XX,X,A,B)

ELSE
DO 4 I=1,N
X(D=XX(D

4 CONTINUE
ENDIF
IF(ICONSTRAINTS.GT.0)THEN
ALTERED=.FALSE.
DO 1I=1,N
IF(IBOUND(I).EQ.1)THEN
IF(X(I).LT.A(I)) THEN
XD=A{)
ALTERED=TRUE.
ENDIF
IF(X(I).GT.B(I)) THEN
XM=B(D)
ALTERED=.TRUE.
ENDIF
ENDIF

1 CONTINUE
ENDIF

* UGRG2TESTI

G(D)=(16X(1)*X(1)+16.%X(2)¥*2-8.¥X(1)*X (2)-56.¥X(1)-256 %X (2)+

1991.)/15.
IF(SCALECON.EQ.1)CALL CONSTRAINTSSCALING2(G,M,NOBJ)

IF(ICONSTRAINTS.EQ.2)THEN
IF(ALTERED)THEN
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLESCALING3(N,X,XX,A,B)
ELSE
DO 5 I=1,N
XXM=X(1)
5 CONTINUE
ENDIF
ENDIF
ENDIF
RETURN

248

e T

END
OPTIMINP.DAT

* source of example

15
-1,-1.-1.-1.-1,-1-1-1-1-1-1-1-11-1-1-110

"UGRG2TEST1.DAT’

211
110. 100. 100. 0
1

00

0. 0.

100. 100.
1

10. 10.
X1 X2’
0.

100.

Problem 2
Sources : 1) Proctor and Gamble Co.
2) Himmelblau problem number 11, p. 406

3) Colville problem number 3, p. 24

min f(x) = 5.3578547x; + 0.835689Lx,x, + 37.293239x, - 40792.141

s.t.
0 < 85.334407 + 0.0056858xx, + 0.0006262x,x, - 0.0022053xx,< 92

90 < 80.51249 + 0.0071317x,x5 + 0.0029955x,x, + 0.0021813x, < 110
20 < 9.300961 + 0.0047026x,x, + 0.0012547x,x, + 0.0019085x,x, < 25
78 < x, <102
3B <sx,s45
27 sx,545
27 <x,<45
27 < x, 545

249

grg2int.for

SUBROUTINE GCOMP(G,XX)
IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 G(*),XX(*),A(1000),B(1000),BLVAR(1000),BUVAR(1000),X(1000)
INTEGER IBOUND(1000) '
COMMON/GRGA/N,NFUN, A,B,BLVAR, BUVAR,IBOUND,NOBJ
INTEGER*4 SCALEVAR,SCALECON

LOGICAL ALTERED

COMMON/SCX/VARSCALELB,VARSCALEUB,CONSCALEFAC,SCALEVAR.S

CALECON
LLICONSTRAINTS
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLEUNSCALING3(N,XX,X,A,B)

ELSE
DO 4 I=1,N
XDH=XXD

4 CONTINUE
ENDIF
IF(ICONSTRAINTS.GT.0)THEN
ALTERED=.FALSE.
DO 1 I=1,N
IFBOUND(I).EQ.1)THEN
IF(X(D).LT.A(D)THEN
X(D=A(D)
ALTERED=TRUE.
ENDIF
IF(X(D).GT.B())THEN
X(M=B(I)
ALTERED=.TRUE.
ENDIF
ENDIF

1 CONTINUE
ENDIF

% MICROFICHE

G(1)=5.3578547*X(3)**2+0.835689 1*X (1)*X (5)+37.293239*X(1)-
140792.141
G(2)=85.334407+0.0056858*X(2)*X(5)+0.0006262*X(1)*X (4)-
10.0022053*X(3)*X(5)
G(3)=80.51249+0.0071317*X (2)*X (5)+0.0029955%X (1)*X (2)+
10.0021813*X(3)**2
G(4)=9.300961+0.0047026%X(3)*X(5)+0.0012547*X (1)*X (3)+
10.0019085*X(3)*X(4)
IF(SCALECON.EQ.1)CALL CONSTRAINTSSCALING2(G,M,NOBJ)

IF(ICONSTRAINTS.EQ.2)THEN

250

IF(ALTERED)THEN
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLESCALING3(N,X,XX,A,B)
ELSE
DO 5 I=1,N
XX([D=X()
5 CONTINUE
ENDIF
ENDIF
ENDIF
RETURN
END

OPTIMINP.DAT

* himmelblau problem no 11, p406, colville problem no 3, p24

15
-1.-1.-1.-1.-.-1-1-1-1-1-1-1-11-1-1-110

’GRG2MICROFICHEEX3.DAT’
541

‘1 10. 100. 100. 1

1

11111

78. 33. 27. 27. 27.
102. 45. 45. 45. 45.
1

. 78.62 23.44 31.07 44.18 35.32

’Xl, !X2’ ’XB’ ’X4’ !XS)
0. 0. 90. 20.
100. 92. 110. 25.

Problem 3

- Sources: Math. Prog. 14(1978),pp 224

Math. Prog. Study 16(1983),pp 84

min f{x) = ™

s.t.

251

2 2 2 2
Xp *X +X; +x; +xl-10=0
xzxa-sx‘rxs:O

3 3
X +x, +1 =0

grg2int.for

SUBROUTINE GCOMP(G,XX)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 G(*),XX(*),A(1000),B(1000),BLVAR(1000),BUVAR(1000),X(1000)
INTEGER IBOUND(1000)
COMMON/GRGA/N,NFUN,A,B,BLVAR,BUVAR,IBOUND,M,NOBJ

* GRG2RENFRONLPEX2.DAT
CALL VARIABLEUNSCALING3(N,XX,X,A,B)
G(1)=EXP(X(1)*X(2)*X(3)*X(4)*X(5))
G(2)=X(1)**2+X(2)**2+ X (3)**2+X (4)**2+X (5)**2-10.
G(3)=X(2)*X(3)-5.¥X(4)*X(5)
G@)=X(1)*X(1)*X(1)+X(2)*X(2)*X(2)+1.
CALL CONSTRAINTSSCALING2(G,NFUN,NOBJ)
RETURN
END

OPTIMINP.DAT

* renfro phd thesis ex2 p92

15
1-L-L-L-l-1-1-1-1-1-1-1-11-1-1-110

’'GRG2RENFRONLPEX2.DAT’

541

110. 100. 100. 0

1

00000

-10. -10. -10. -10. -10.

10. 10. 10. 10. 10.

1
-1.7 1.6 -1.8 0.76 -0.76

X1’ ’X2’ °X3’ ’X4’ °X5’
0. 0. 0. 0.
100. 0. 0. 0.

sqpint.for

REAL*8 FUNCTION SQPOF(XX,N)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
REAL*8 X(1000),XX(*),A(1000),B(1000)
INTEGER*4 IBOUND(1000)

INTEGER*4 SCALEVAR,SCALECON

252

LOGICAL ALTERED
COMMON/SQPA/A,B,IBOUND

COMMON/SCX/VARSCALELB,VARSCALEUB,CONSCALEFAC,SCALEVAR,S

CALECON
1,ICONSTRAINTS
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLEUNSCALING3(N,XX,X,A,B)

ELSE
DO 4 I=1,N
XMH=XX(T)

4 CONTINUE
ENDIF
IF(ICONSTRAINTS.GT.0)THEN
ALTERED=FALSE.
DO 11=1,N
IF(IBOUND(I).EQ.1)THEN
IF(X(D).LT.A(D))THEN
XM=A()
ALTERED=TRUE.
ENDIF
IF(X(I).GT.B(I)) THEN
XM=B()
ALTERED=.TRUE.
ENDIF
ENDIF

1 CONTINUE
ENDIF
SQPOF2=EXP(X(1)*X(2)*X(3)*X(4)*X(5))
IF(SQPOF2.LT.-100.0D0)SQPOF2=-100.
IF(SQPOF2.GT.100.0D0)SQPOF2=100.
SQPOF=SQPOF2
IF(ICONSTRAINTS.EQ.2)THEN
IF(ALTERED)THEN
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLESCALING3(N,X,XX,A,B)
ELSE
DO 5I=1,N
XX(D=X(D)

5 CONTINUE
ENDIF
ENDIF
ENDIF
RETURN
END
SUBROUTINE SQPCONSTRAINTS(G,XX,N,M)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

253

REAL*8 G(*),X(1000),XX(*),A(1000),B(1000)
INTEGER*4 IBOUND(1000)

INTEGER*4 SCALEVAR,SCALECON
LOGICAL ALTERED
COMMON/SQPA/A,B,JBOUND

COMMON/SCX/VARSCALELB,VARSCALEUB,CONSCALEFAC,SCALEVAR.S

CALECON
1,LICONSTRAINTS
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLEUNSCALING3(N,XX,X,A,B)

ELSE

DO 4 I=1,N

XM=XX(D)

4 CONTINUE

ENDIF

IF(ICONSTRAINTS.GT.0)THEN

ALTERED=FALSE.

DO 11=1,N

IF(IBOUND(I).EQ.1)THEN

IF(X(I).LT.A()) THEN

XM=A®D

ALTERED=.TRUE.

ENDIF

IF(X(I).GT.B(I)) THEN

X(@M=B)

ALTERED=.TRUE.

ENDIF

ENDIF

1 CONTINUE

ENDIF
G(1)=X(1)**2+X(2)**2+X (3)**2+ X (4)%*2+(X (5)*%2)-10.0
G(2)=X(2)*X(3)-5.0X(4)*X(5)
G(3)=(X(1)**3)+(X(2)**3)+1.0

IF(SCALECON.EQ.1)CALL CONSTRAINTSSCALING(G,M)

IF(ICONSTRAINTS.EQ.2)THEN
IF(ALTERED)THEN
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLESCALING3(N,X,XX,A,B)
ELSE
DO 51=1,N
XX@M=XD

5 CONTINUE
ENDIF
ENDIF
ENDIF

254

RETURN
END

OPTIMINP.DAT

* renfro phd thesis ex2 p92

17
53310000 0.000001 1110

110. 1.100.1

1

11111

-2, -2, -2, -2, -2,
2.2.2.2. 2.

1

-2.2.2.-1. -1.

’Xl’ ,xz! ,Xs’ !X4’ !Xs’
0.0001 1.0D-10 100000 1

Problem 8

uzy) + ufzy) + u,@y) + u (zy) + u (zy) + u(zy) - 2zy* -
: 22 2\ zy® = 2z% - 2y?
- 2z% - 4zy - z%? i ” Y-y

u(zy) =0 for z e [0,1] y=0
uizy) =0 forye [0,11z=0
1
1

u(zy) =y* forye [0,] z

u(zy) =z* forze [0,1]y

OCFEINP.DAT

* made up by Josef Illes
312200
22

22
OCFEPDEGRG2TEST1.DAT

0.50.50.50.5
000000018301
411
000011111111
3666666669
000011111111
’U”Z”Y’

255

1111
0.1.0.1.0.0.0.0.

0.7

0.7

DU(Z,Y)/DZ+DU(Z,Y)/DY+D2U(Z,Y)/DZ2+D2U(Z.Y
+U(Z,Y)—2*Z*Y**2—2*2**2*Y-2"(‘Y**)2-2*Z**2—4’("2,*8){21{3;*22*2(7.2’Y)/D2DY&
UZY) AT Z=0

UZY) AT Y=0

U(Z,Y)-Y**2 AT Z=1

U(Z,Y)-Z**2 AT Y=1

U(Z,Y) AT Z=0 AT Y=0

U(Z,Y) AT Z=0 AT Y=1

U(Z,Y) AT Z=1 AT Y=0

U(Z,Y)-1 AT Z=1 AT Y=1

INTEGRAL U(1,Y)DY+INTEGRAL U(Z,1)DZ+INTEGRAL U(Z,Y)DZDY

OPTIMINP.DAT

* made up by Josef Illes

16
-1.-1.-1.-1.-1.-1-1-11-1-1-1-11-1-1-110

"PDEGRG2TEST1.DAT’
110.100.100.0

SO A

0

. 0. 0. 0.

.0.0.0.
1. 1. 1.

(S

.

OCFEINP.DAT

* made up by Josef Illes
322200
22

22
OCFEPDESQPTEST1.DAT

05050505
000000018301
411
000011111111
3666666669
000011111111
’U’!Z!!Y’

1111
0.1.0.1.0.0.0.0.
0.7

0.7
DU(Z,Y)/DZ+DU(Z,Y)/DY+D2U(Z,Y)/DZ2+D2U(Z,Y)/DY2+D2U(Z,Y)/DZDY&

+U(Z,Y)-2*Z*Y**2-2*Z**2*Y-2*Y**2-2*2**2_4*2*1{_2**Q*Y**z

256

U(Z.Y) AT Z=0
U(Z.Y) AT Y=0

U(Z,Y)-Y**2 AT Z=1

U(Z,Y)-Z**2 AT Y=1

U(Z,Y) AT Z=0 AT Y=0

U(Z,Y) AT Z=0 AT Y=1

U(Z,Y) AT Z=1 AT Y=0

U(Z,Y)-1 AT Z=1 AT Y=lI

INTEGRAL U(1,Y)DY+INTEGRAL U(Z,1)DZ+INTEGRAL U(Z,Y)DZDY

OPTIMINP.DAT

* made up by Josef Illes
18

100000 0.000001 110
110.1.100.1

0.0001 1.0D-10 100000 1

o K

[l ==

.0.0.
. 0. 0.
-

—_ O

Problem 9

It is a batch reactor dynamic optimization problem, found as Example 3.3.2
pp 95-99 in W.H. RAY, Advanced Process Control

max [I = c,(1)]
o T0
S0 - ke 6O = 1
de,(t
XD e - kMo c,0) = 0

dt
T.<T(H) <T*

OCFEINP.DAT

* ray: advanced process control p95
114000

3333
%10 NICP NEEDED WITH ONE SUBINTERVAL

* THIS IS A COMMENT
OCFE1GRG2RENFRODAOPEX1.DAT

0.10.10.10.1

257

600000222601
221115151
100000000000
100000000000
000000131311

447

100000000000
100000000000
100000000000
100000000000

’Xl’ ’X2’ "I‘EM' ,Kl’ ’Kz!

o

1111

0.1.0.0.0.0. 0. 0.

0.10.3 0.6

REAL*8 A2(2),E(2),R

R=1.9865

A2(1)=4000.

E(1)=5000.

A2(2)=620000.

E(2)=10000.
K1(T)=A2(1)*EXP(-E(1)/R/TEM(T))
K2(T)=A2(2)*EXP(-E(2)/R/TEM(T))
DX 1(T)/DT+K1(T)*X1(T)**2
DX2(T)/DT-K1(T)*X 1(T)**2+K2(T)*X2(T)
X1(T)-1. AT T=0

X2(T) AT T=0

X2(T)

OCFEOUT.DAT

* renfo example 1
1 14000

3 3 3 3
%10 NICP NEEDED WITH ONE SUBINTERVAL

* THIS IS A COMMENT
OCFE1GRG2RENFRODAOPEX1.DAT
0.10 0.10 0.10 0.10

6 0 0 0 0 0 2 2 2 6 0
2 2 11 15 15 1

1 0 00 0 0 0 0 0 0 0
1 0 0 0 00 0 0 0 0 0
0 0 0 0 0 0 13 13 1 1
4 4 7

1 00 0 0 0 000 0 0
1 0 00 0 0 0 0 0 0 0
1 00 00 0 0 0 0 0 0

258

o oo

1 0 0 0 0 0 0 0 0 0 0 o
X1 X2 TEM Kl K2
T
1 1 1 1
0.00 1:.00 000 000 0.00 0.00 0.00 0.00
*0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4 0
3
0
.10D+00 .30D+00 .60D+00
*0.05 0.15 0.3 0.6

*0.03 0.1 0.3 0.5 0.75
*0.03 0.1 0.3 0.6 VERY GOOD WITH44444 AND 10

*0.05 0.15 0.3 0.6 VERY GOOD WITH 33333 AND 2 0

*0.03 0.1 0.3 0.6 VERY GOOD WITH 33333 AND 2 1

%0.001 0.1 0.3 0.6
%0.0125 0.025 0.0375 0.05 0.0625 0.075 0.0875 0.1 0.15 0.2
%0.3 0.4 0.5 0.6 0.7 0.8 0.9

%0.8 0.9

%0.001 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7

%0.8 0.9

%0.1 0.3 0.6

¥0.001 0.01 0.1 0.3 0.6

%0.01 0.05 0.15 0.3 0.6

%0.1 0.2 0.3 0.6

%0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%0,01 0.03 0.06 0.1 0.15 0.21 0.3 0.5 0.7

%0.5

%0.1 0.3 0.6

%0.05 0.3 0.6

0.1 0.20304050607080911111111]1

%0.1 0.2 0.3 0.4

* OK BUT NICP 3 2 0.3

* OK BUT NICP 322 .25 .5

%0.01 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.35 0.5

*0.7

*OK WITH NICP 2222220.10.203 0.5 0.7

*OK WITH NICP 22222 0.1 0.2 0.4 0.7
*OKWITHNICP 22222222220.1020.30.4 0.5 0.6 0.7 0.8 0.9
*OKWITHNICP11111111110.10.20.3040.50.6 0.7 0.8 0.9
REAL*8 A2(2),E(2),R

R=1.9865

A2(1)=4000.

E(1)=5000.

A2(2)=620000.

E(2)=10000.

K1(T)=A2(1)*EXP(-E(1)/R/TEM(T))

259

T AT e T e,

K2(T)=A2(2)*EXP(-E(2)/R/TEM(T))
DX 1(T)/DT+K1(T)*X1(T)**2

DX2(T)/DT-K1(T)*X1(T)**2+K2(T)*X2(T)

X1(T)-1. AT T=0
X2(T) AT T=0
X2(T)
-0.13000000D+02
-0.10000000D+01
-0.53237900D+01
0.67620999D+00
0.15000000D+01
-0.15000000D+01
-0.67620999D+00
0.53237900D+01
0.10000000D+01
0.13000000D+02
0.84000000D+02
0.24000000D+02
0.53237900D+02
0.67620999D+01
-0.60000000D+01
-0.60000000D+01
0.67620999D+01
0.53237900D+02
0.24000000D+02
0.84000000D+02
-0.13000000D+02
-0.10000000D+01
-0.53237900D+01
0.67620999D+00
0.15000000D+01
.0.15000000D+01
-0.67620999D+00
0.53237900D+01
0.10000000D+01
0.13000000D+02
0.84000000D+02
0.24000000D+02
0.53237900D+02
0.67620999D+01
-0.60000000D+01
-0.60000000D+01
0.67620999D+01
0.53237900D+02
0.24000000D+02
0.84000000D+02
-0.13000000D+02
-0.10000000D+01

0.14788306D+02 -0.26666667D+01
0.38729833D+01 0.20655911D+01
-0.32274861D+01 0.46259293D-16
0.12909944D+01 -0.20655911D+01
-0.18783611D+01 0.26666667D+01
-0.12206317D+03 0.58666667D+02
-0.73333333D+02 0.26666667D+02
0.16666667D+02 -0.21333333D+02
-0.13333333D+02 0.26666667D+02
-0.44603500D+02 0.58666667D+02
0.14788306D+02 -0.26666667D+01
0.38729833D+01 0.20655911D+01
-0.32274861D+01 0.46259293D-16
0.12909944D+01 -0.20655911D+01
-0.18783611D+01 0.26666667D+01
-0.12206317D+03 0.58666667D+02
-0.73333333D+02 0.26666667D+02
0.16666667D+02 -0.21333333D+02
-0.13333333D+02 0.26666667D+02
-0.44603500D+02 0.58666667D+02
0.14788306D+02 -0.26666667D+01

260

0.18783611D+01
-0.12909944D+01

0.32274861D+01
-0.38729833D+01
-0.14788306D+02
-0.44603500D+02
-0.13333333D+02

0.16666667D+02
-0.73333333D+02
-0.12206317D+03

0.18783611D+01
-0.12909944D+01

0.32274861D+01
-0.38729833D+01
-0.14788306D+02
-0.44603500D+02
-0.13333333D+02

0.16666667D+02
-0.73333333D+02
-0.12206317D+03

0.18783611D+01

-0.53237900D+01
0.67620999D+00
0.15000000D+01
-0.15000000D+01
-0.67620999D+00
0.53237900D+01
0.10000000D+01
0.13000000D+02
0.84000000D+02
0.24000000D+02
0.53237900D+02
0.67620999D+01
-0.60000000D+01
-0.60000000D+01
0.67620999D+01
0.53237900D+02
0.24000000D+02
0.84000000D+02
-0.13000000D+02
-0.10000000D+01
-0.53237900D+01
0.67620999D+00
0.15000000D+01
-0.15000000D+01
-0.67620999D+00
0.53237900D+01
0.10000000D+01
0.13000000D+02

0.38729833D+01
-0.32274861D+01
0.12909944D+01
-0.18783611D+01
-0.12206317D+03
-0.73333333D+02
0.16666667D+02
-0.13333333D+02
-0.44603500D+02
0.14788306D+02
0.38729833D+01
-0.32274861D+01
0.12909944D+01

-0.18783611D+01

0.84000000D+02 -0.12206317D+03
0.24000000D+02
0.53237900D+02 -0.73333333D+02
0.67620999D+01
-0.60000000D+01 0.16666667D+02
-0.60000000D+01
0.67620999D+01 -0.13333333D+02
0.53237900D+02
0.24000000D+02 -0.44603500D+02
0.84000000D+02
X1 2 1
X2 2 18
TEM 11 35
K1 15 0
K2 15 0
T 1 0
[19 0
0
REAL*8 A2(2),EQ)R
0

261

0.20655911D+01
0.46259293D-16
-0.20655911D+01
0.26666667D+01
0.58666667D+02
0.26666667D+02
-0.21333333D+02
0.26666667D+02
0.58666667D+02
-0.26666667D+01
0.20655911D+01
0.46259293D-16
-0.20655911D+01
0.26666667D+01
0.58666667D+02
0.26666667D+02
-0.21333333D+02
0.26666667D+02

0.58666667D+02

-0.12909944D+01

0.32274861D+01
-0.38729833D+01
-0.14788306D+02
-0.44603500D+02
-0.13333333D+02

0.16666667D+02
-0.73333333D+02
-0.12206317D+03

0.18783611D+01
-0.12909944D+01

0.32274861D+01
-0.38729833D+01
-0.14788306D+02
-0.44603500D+02
-0.13333333D+02

0.16666667D+02
-0.73333333D+02

-0.12206317D+03

R=1.9865
0

A2(1)=4000.
0

E(1)=5000.
0

A2(2)=620000.
0

E(2)=10000.
13

K1(T)=A2(1)*EXP(-E(1)/R/TEM(T))

13

K2(T)=A2(2)*EXP(-E(2)/R/TEM(T))

1

DX1(T)/DT+K1(T)*X1(T)**2

1

DX2(T)/DT-KI(T)*X1(T)**2+K2(T)*X2(T)
4

XI('I‘)"]..
4

X2(T)
7

X2(T)
17 17 4
1 1 0
0.00000000D+00
0.10000000D+00
0.12254033D+00
0.33381050D+00
0.45000000D+00
0.80000000D+00
0.95491933D+00
0.00000000D+00
0.10000000D+01
0.00000000D+00
0.10000000D+01
0.00000000D+00
0.10000000D+01
0.00000000D+00
0.10000000D+01

grg2int.f0r

0.11270167D-01
0.20000000D+00
0.56618950D+00

0.10000000D+01
0.11270167D+00

0.11270167D+00
0.11270167D+00

0.11270167D+00

SUBROUTINE GCOMP(G,XX)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
REAL*8 G(*),XX(*),X(1000),A(1000),B(1000),BLVAR(1000)
REAL*8 BUVAR(1000)

262

0.50000000D-01
0.27745967D+00

0.60000000D+00

0.50000000D+00
0.50000000D+00
0.50000000D+00

0.50000000D+00

0.88729833D-01
0.30000000D+00

0.64508067D+00

0.88729833D+00
0.88729833D+00
0.88729833D+00

0.88729833D+00

INTEGER*4 IBOUND(1000)
INTEGER*4 SCALEVAR,SCALECON

LOGICAL ALTERED
COMMON/GRGA/N,NFUN,A,B,BLVAR,BUVAR,IBOUND,NOBJ

COMMON/SCX/VARSCALELB,VARSCALEUB,CONSCALEFAC,SCALEVAR,S

CALECON
1,JCONSTRAINTS
REAL*8 A2(2),E(2),R
REAL*8 K11,K12,K13,K14,K21,K22,K23,K24
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLEUNSCALING3(N,XX,X,A,B)

ELSE
DO 4 I=1,N
XM=XX(D)

4 CONTINUE
ENDIF
IF(ICONSTRAINTS.GT.0)THEN
ALTERED=FALSE.
DO 1 I=1,N
IF(IBOUND(I).EQ.1)THEN
IF(X(I).LT.A(T)) THEN
XM=A®D
ALTERED=.TRUE,
ENDIF
IF(X(T).GT.B(I))THEN
X([D=B()
ALTERED=TRUE.
ENDIF
ENDIF

1 CONTINUE
ENDIF
R=1.9865
A2(1)=4000.
E(1)=5000.
A2(2)=620000.
E(2)=10000.
K11=A2(1)*EXP(-E(1)/R/X(35))
K12=A2(1)*EXP(-E(1)/R/X(36))
K13=A2(1)*EXP(-E(1)/R/X(37))
K14=A2(1)*EXP(-E(1)/R/X(38))
K21=A2(2)*EXP(-E(2)/R/X(35))
K22=A2(2)*EXP(-E(2)/R/X(36))
K23=A2(2)*EXP(-E(2)/R/X(37))
K24=A2(2)*EXP(-E(2)/R/X(38))
G(1)=(-0.5323790007724450D+01*X (1)+0.3872983346207417D+01*X (2)+0.2

263

X065591117977289D+01*X(3) -0.1290994448735806D+01*X(4)+0.6762099922
X755498D+00*X(5))/(0.1000000000000000D+00-0.0000000000000000D+00)+K

X11*X(2)**2
G(2)=(0.1500000000000000D+01*X(1) -0.3227486121839514D+01*X(2)+0.4

X625929269271486D-16*X(3)+0.3227486121839514D+01*X(4) -0.1500000000

X000000D+01*X(5))/(0.1000000000000000D+00-0.0000000000000000D+00)+K

X11¥X(3)**2
G(3)=(-0.6762099922755499D+00*X(1)+0.1290994448735806D+01*X(2) -0.

X2065591117977289D+01*X(3) -0.3872983346207417D+01*X(4)+0.532379000

X7724450D+01*X(5))/(0.1000000000000000D-+00-0.0000000000000000D+00)+

XK11*¥X(4)**2
G(4)=(0.1000000000000000D+01*X(1) -0.1878361089654305D+01*X(2)+0.2

X666666666666667D+01*X(3) -0.1478830557701236D+02*X (4)+0.1300000000

X000000D+02*X(5))/(0.1000000000000000D+00-0.0000000000000000D+00)+K

X11*X(5)**2
G(5)=(-0.5323790007724450D+01*X(5)+0.3872983346207417D+01*X(6)+0.2

X065591117977289D+01*X(7) -0.1290994448735806D+01*X(8)+0.6762099922

X755498D+00%X(9))/(0.3000000000000000D-+00-0.1000000000000000D+00)+K

X12%X(6)**2
G(6)=(0.1500000000000000D+01*X(5) -0.3227486121839514D+01*X(6)+0.4

X625929269271486D-16*X(7)+0.3227486121839514D+01*X(8) -0.1500000000

X000000D+01*X(9))/(0.3000000000000000D+00-0.1000000000000000D+00)+K

X12%X(7)**2
G(7)=(-0.6762099922755499D+00*X(5)+0.1290994448735806D+01*X(6) -0.

X2065591117977289D+01*X(7) -0.3872983346207417D+01*X(8)+0.532379000
X7724450D+01*X(9))/(0.3000000000000000D+00-0.1000000000000000D+00)+
XK12*X(8)**2

264

G(8)=(0.1000000000000000D+01*X(5) -0.1878361089654305D+01*X(6)+0.2
X666666666666667D+01*X(7) -0.1478830557701236D+02*X(8)+0.1300000000

X000000D+02*X(9))/(0.3000000000000000D+00-0.1000000000000000D+00)+K

X12*X(9)**2
G(9)=(-0.5323790007724450D+01*X(9)+0.3872983346207417D+01*X(10)+0.

X2065591117977289D+01*X(11) -0.1290994448735806D+01*X(12)+0.6762099
X922755498D+00%X(13))/(0.6000000000000000D+00-0.3000000000000000D+0

X0)+K13*X(10)**2
G(10)=(0.1500000000000000D+01*X(9) -0.3227486121839514D+01*X(10)+0

X.4625929269271486D-16%X(11)+0.3227486121839514D+01*X(12) -0.150000

X0000000000D+01*X(13))/(0.6000000000000000D+00-0.3000000000000000D+

X00)+K13*X(11)%*2
G(11)=(-0.6762099922755499D+00*X (9)+0.1290994448735806D+01*X(10) -

X0.2065591117977289D+01*X(11) -0.3872983346207417D+01*X(12)+0.53237

X90007724450D+01*X(13))/(0.6000000000000000D+00-0.3000000000000000D

X+00)+K13¥X(12)**2
G(12)=(0.1000000000000000D+01*X(9) -0.1878361089654305D+01*X(10)+0

X.2666666666666667D+01%X(11) -0.1478830557701236D+02*X (12)+0.130000

X0000000000D+02*X(13))/(0.6000000000000000D+00-0.3000000000000000D+

X00)+K 13*X(13)**2
G(13)=(-0.5323790007724450D+01*X (13)+0.3872983346207417D+01*X (14)+

X0.2065591117977289D+01*X(15) -0.1290994448735806D+01*X(16)+0.67620

X99922755498D+00*X(17))/(0.1000000000000000D+01-0.6000000000000000D

X+00)+K14*X(14)**2
G(14)=(0.1500000000000000D+01*X(13) -0.3227486121839514D+01*X(14)+

X0.4625929269271486D-16*X(15)+0.3227486121839514D+01*X(16) -0.15000

X00000000000D+01%X(17))/(0.1000000000000000D+01-0.6000000000000000D

265

X+00)+K14*X(15)**2
G(15)=(-0.6762099922755499D+00*X (13)+0.1290994448735806D+01*X(14)

X-0.2065591117977289D+01*X(15) -0.3872983346207417D+01*X(16)+0.5323

X790007724450D+01*X(17))/(0.1000000000000000D+01-0.6000000000000000

XD+00)+K14*X(16)**2
G(16)=(0.1000000000000000D+01*X(13) -0.1878361089654305D+01*X(14)+

X0.2666666666666667D+01*X(15) -0.1478830557701236D+02*X(16)+0.13000

X00000000000D+02*X(17))/(0.1000000000000000D+01-0.6000000000000000D

X+00)+K14*X(17)**2
G(17)=(-0.5323790007724450D+01*X(18)+0.3872983346207417D+01*X (19)+

X0.2065591117977289D+01*X(20) -0.1290994448735806D+01*X(21)+0.67620

X99922755498D+00*X(22))/(0.1000000000000000D+00-0.0000000000000000D

X+00)-K11¥X(2)**2+K21*X(19)
G(18)=(0.1500000000000000D+01*X(18) -0.3227486121839514D+01*X(19)+

X0.4625929269271486D-16%X(20)+0.3227486121839514D+01*X(21) -0.15000

X00000000000D+01*X(22))/(0.1000000000000000D+00-0.0000000000000000D

X+00)-K11*X(3)**2+K21*X(20)
G(19)=(-0.6762099922755499D+00*X (18)+0.1290994448735806D+01*X(19)

X-0.2065591117977289D+01*X(20) -0.3872983346207417D+01*X(21)+0.5323

X790007724450D+01*X(22))/(0.1000000000000000D+00-0.0000000000000000

XD+00)-K11*X(4)**2+K21*X(21)
G(20)=(0.1000000000000000D+01*X(18) -0.1878361089654305D+01*X(19)+

X0.2666666666666667D+01*X(20) -0.1478830557701236D+02*X(21)+0.13000

X00000000000D+02*X(22))/(0.1000000000000000D+00-0.0000000000000000D

X+00)-K11*¥X(5)**2+K21*X(22)
G(21)=(-0.5323790007724450D+01*X(22)+0.3872983346207417D+01*X(23)+

X0.2065591117977289D+01*X(24) -0.1290994448735806D+01*X(25)+0.67620
X99922755498D+00*X(26))/(0.3000000000000000D+00-0. 1000000000000000D

266

X+00)-K12*¥X(6)**2+K22*X(23)
G(22)=(0.1500000000000000D+01*X(22) -0.3227486121839514D+01*X(23)+

X0.4625929269271486D-16*%X(24)+0.3227486121839514D+01*X(25) -0.15000

X00000000000D+01*X(26))/(0.3000000000000000D+00-0.1000000000000000D

X+00)-K12¥X(7)**2+K22*X(24)
G(23)=(-0.6762099922755499D+00%X (22)+0.1290994448735806D+01%X (23)

X-0.2065591117977289D+01*X(24) -0.3872983346207417D+01*X(25)+0.5323

X790007724450D+01*X(26))/(0.3000000000000000D+00-0.1000000000000000

XD+00)-K12*X(8)**2+K22*X(25)
G(24)=(0.1000000000000000D+01*X(22) -0.1878361089654305D+01*X(23)+

X0.2666666666666667D+01*X(24) -0.1478830557701236D+02*X(25)+0.13000

X00000000000D+02*X(26))/(0.3000000000000000D+00-0.1000000000000000D

X+00)-K12%X(9)**2+K 22X (26)
G(25)=(-0.5323790007724450D+01*X (26)+0.3872983346207417D+01¥X (27)+

X0.2065591117977289D+01*X(28) -0.1290994448735806D+01*X(29)+0.67620
X99922755498D+00*X(30))/(0.6000000000000000D+00-0.3000000000000000D

X+00)-K13*X(10)**2+K23*X(27)
G(26)=(0.1500000000000000D+01*X(26) -0.3227486121839514D+01*X(27)+

X0.4625929269271486D-16%X(28)+0.3227486121839514D+01*X(29) -0.15000
X00000000000D+01*X(30))/(0.6000000000000000D+00-0.3000000000000000D

X+00)-K13*X(11)**2+K23*X(28)
G(27)=(-0.6762099922755499D+00*X (26)+0.1290994448735806D+01*X (27)

X-0.2065591117977289D+01*X(28) -0.3872983346207417D+01*X(29)+0.5323
X790007724450D+01*X(30))/(0.6000000000000000D+00-0.3000000000000000

XD+00)-K13*X(12)**2+K23*X(29)
G(28)=(0.1000000000000000D+01*X(26) -0.1878361089654305D+01*X(27)+

X0.2666666666666667D+01¥X(28) -0.1478830557701236D+02*X (29)+0.13000

267

X00000000000D+02*X(30))/(0.6000000000000000D+00-0.3000000000000000D

X+00)-K13*X(13)**2+K23*X(30)
G(29)=(-0.5323790007724450D+01*X(30)+0.3872983346207417D+01*X(31)+

X0.2065591117977289D+01*X(32) -0.1290994448735806D+01*X(33)+0.67620

X99922755498D+00*X(34))/(0.1000000000000000D+01-0.6000000000000000D

X+00)-K14*X(14)**2+K24*X(31)
G(30)=(0.1500000000000000D+01*X(30) -0.3227486121839514D+01*X(31)+

X0.4625929269271486D-16%X(32)+0.3227486121839514D+01*X(33) -0.15000
X00000000000D+01*X(34))/(0.1000000000000000D+01-0.6000000000000000D

X+00)-K14*X(15)**2+K24*X(32)
G(31)=(-0.6762099922755499D+00*X (30)+0.1290994448735806D+01*X(31)

X-0.2065591117977289D+01*X(32) -0.3872983346207417D+01*X(33)+0.5323
X790007724450D+01*X(34))/(0.1000000000000000D+01-0.6000000000000000

XD+00)-K14*X(16)**2+K24*X(33)
G(32)=(0.1000000000000000D+01*X(30) -0.1878361089654305D+01*X(31)+

X0.2666666666666667D+01*X(32) -0.1478830557701236D+02*X(33)+0.13000

X00000000000D+02*X(34))/(0.1000000000000000D+01-0.6000000000000000D

X+00)-K14*X(17)**2+K24*X(34)
G(33)=X(1)-1.
G(34)=X(18)

G(35)=X(34)
IF(SCALECON.EQ.1)CALL CONSTRAINTSSCALING2(G,NFUN,NOBJ)

IF(ICONSTRAINTS.EQ.2)THEN
IF(ALTERED)THEN
IF(SCALEVAR.EQ.1)THEN
CALL VARIABLESCALING3(N,X,XX,A,B)
ELSE
DO 5 I=1LN
XX(D=X(D)

5 CONTINUE
ENDIF
ENDIF
ENDIF
RETURN

268

END

OCFEGRG2IF.DAT
383535 0 0 0 34

17 17 4
1 1 0

PLOTPREP.DAT

bt D

11
0.00000000D+00 0.10000000D+01 0.00000000D+00 0.00000000D+00

OPTIMINP.DAT

* ray: advanced process control p95

16
0.000001 0.0001 -1. -1. -1. 100 1000 1000000 1 -1 -1-1-11-1-1-120

’GRG2RENFRODAOPEX1.DAT’
110. 100. 100. 0

OCFEINP.DAT

* ray: advanced process control p95
124000

33333
*10 NICP NEEDED WITH ONE SUBINTERVAL

* THIS IS A COMMENT
OCFE1SQPRENFRODAOPEX1.DAT
0.10.10.10.1
600002222601
221115151
100000000000
100000000000
00000021211313

11447
100000000000

269

100000000000
100000000000
100000000000

'X17 °X2’ "TEM’ "K1’ K2’

’T’

1111

0.1.0.0.0.0.0. 0,

0.10.3 0.6

REAL*8 A2(2),E(2),R

R=1.9865

A2(1)=4000.

E(1)=5000.

A2(2)=620000.

E(2)=10000.

398.-TEM(T)

TEM(T)-298.
K1(T)=A2(1)*EXP(-E(1)/R/TEM(T))
K2(T)=A2(2)*EXP(-E(2)/R/TEM(T))
DX1(T)/DT+KI1(T)*X 1(T)**2
DX2(T)/DT-K1(T)*X1(T)**2+K2(T)*X2(T)
X1(T)-1. AT T=0

X2(T) AT T=0

-X2(T)

OCFEOUT.DAT

* renfro example 1
1 24000
3 3 3 3

%10 NICP NEEDED WITH ONE SUBINTERVAL

* THIS IS A COMMENT
OCFE1SQPRENFRODAOPEX1.DAT

0.10 0.10 0.10 0.10

6 0 0 0 2 2 2 2 6
11 15 1

oo o
Roo
Moo
-0 o
—_O O

Noococo~ocoomwo
Heooorooo
Zoc:c::c::-uc:ooa
~
—oocoowocoo

cooco

cooo

cooo

cooco

2
1
1
0
1
1
1
1
1
1

SGoocoo

X
T

—
[S—y
[—

1
270

oo

cooco

oo

cooco

B e T .

0.00 100 0.00 0.00 000 0.00 000 0.00

*0.05 0.15 0.3 0.6
4
3
0

0

.10D+00 .30D+00 .60D+00
*0.0000001 0.000001 0.00001 0.0001 0.001 0.01 0.03 0.1 0.3 0.5

*0.75

*0.03 0.1 0.3 0.5 0.75

*0.05 0.15 0.3 0.6
*0.1 0.3 0.6

*0.001 0.003 0.006 0.01 0.03 0.06 0.1 0.3 0.6

*0.05 0.3 0.6

*0.10203040506070809111111111

*0.1 0.2 0.3 04

* OK BUTNICP320.3
* OK BUTNICP322.25.5
*0.01 0.02 0.05 0.075 0.1 0.15 0.2 0.25 0.35 0.5

*0.7

*OK WITHNICP 2222220.10.20.30.50.7
*OK WITHNICP 222220.10.20.40.7
*OKWITHNICP22222222220.1020.30.40.50.60.70.80.9
*OKWITHNICP11111111110.10.20.30.40.50.60.70.80.9

REAL*8 A2(2),E(2),R

R=1.9865
A2(1)=4000.
E(1)=5000.
A2(2)=620000.
E(2)=10000.
398.-TEM(T)
TEM(T)-298.

K1(T)=A2(1)*EXP(-E(1)/R/TEM(T))
K2(T)=A2(2)*EXP(-E(2)/R/TEM(T))
DX 1(T)/DT+KI(T)*X1(T)**2

DX2(T)/DT-KI(T*X1(T)**2+K2(T)*X2(T)

X1(T)-1. AT T=0
X2(T) AT T=0
-X2(T)
-0.13000000D+02
-0.10000000D+01
-0.53237900D+01
0.67620999D+00
0.15000000D+01
-0.15000000D+01
-0.67620999D+00
0.53237900D+01
0.10000000D+01
0.13000000D+02

0.14788306D+02

0.38729833D+01

-0.32274861D+01

0.12909944D+01

-0.18783611D+01

271

-0.26666667D+01
0.20655911D+01

0.46259293D-16
-0.20655911D+01

0.26666667D+01

0.18783611D+01
-0.12909944D+01
0.32274861D+01
-0.38729833D+01

-0.14788306D+02

0.84000000D+02
0.24000000D+02
0.53237900D+02
0.67620999D+01
-0.60000000D+01
-0.60000000D+01
0.67620999D+01
0.53237900D+02
0.24000000D+02
0.84000000D+02
-0.13000000D+02
-0.10000000D+01
-0.53237900D+01
0.67620999D+00
0.15000000D+01
-0.15000000D+01
-0.67620999D+00
0.53237900D+01
0.10000000D+01
0.13000000D+02
0.84000000D+02
0.24000000D+02
0.53237900D+02
0.67620999D+01
-0.60000000D+01
-0.60000000D+01
0.67620999D+01
0.53237900D+02
0.24000000D+02
0.84000000D+02
-0.13000000D+02
-0.10000000D+01
-0.53237900D+01
0.67620999D+00
0.15000000D+01
-0.15000000D+01
-0.67620999D+00
0.53237900D+01
0.10000000D+01
0.13000000D+02
0.84000000D+02
0.24000000D+02
0.53237900D+02
0.67620999D+01
-0.60000000D+01
-0.60000000D+01
0.67620999D+01
0.53237900D+02

-0.12206317D+03
-0.73333333D+02
0.16666667D+02
-0.13333333D+02
-0.44603500D+02
0.14788306D+02
0.38729833D+01

-0.32274861D+01

0.12909944D+01

-0.18783611D+01
-0.12206317D+03
-0.73333333D+02
0.16666667D+02
-0.13333333D+02
-0.44603500D+02
0.14788306D+02
0.38729833D+01

-0.32274861D+01

0.12909944D+01

-0.18783611D+01

10.12206317D+03

10.73333333D+02
0.16666667D+02

-0.13333333D+02

0.58666667D+02
0.26666667D+02
-0.21333333D+02
0.26666667D+02
0.58666667D+02
-0.26666667D+01
0.20655911D+01
0.46259293D-16
-0.20655911D+01
0.26666667D+01
0.58666667D+02
0.26666667D+02
-0.21333333D+02
0.26666667D+02
0.58666667D+02
-0.26666667D+01
0.20655911D+01
0.46259293D-16
-0.20655911D+01
0.26666667D+01
0.58666667D+02
0.26666667D+02
10.21333333D+02

0.26666667D+02

272

-0.44603500D+02
-0.13333333D+02
0.16666667D+02
-0.73333333D+02
-0.12206317D+03
0.18783611D+01
-0.12909944D+01
0.32274861D+01
-0.38729833D+01
-0.14788306D+02
-0.44603500D+02
-0.13333333D+02
0.16666667D+02
-0.73333333D+02
-0.12206317D+03
0.18783611D+01
-0.12909944D+01
0.32274861D+01
-0.38729833D+01
-0.14788306D+02
-0.44603500D+02
-0.13333333D+02
0.16666667D+02

-0.73333333D+02

0.24000000D+02 -0.44603500D+02

0.84000000D+02

-0.13000000D+02 0.14788306D+02

-0.10000000D+01

-0.53237900D+01 0.38729833D+01

0.67620999D+00

0.15000000D+01 -0.32274861D+01

-0.15000000D+01
-0.67620999D+00
0.53237900D+01

0.10000000D+01 -0.18783611D+01

0.13000000D+02

0.84000000D+02 -0.12206317D+03

0.24000000D+02

0.53237900D+02 -0.73333333D+02

0.67620999D+01

0.12909944D+01

-0.60000000D+01 0.16666667D+02

-0.60000000D+01

0.67620999D+01 -0.13333333D+02

0.53237900D+02

0.24000000D+02 -0.44603500D+02

0.84000000D+02
X1 2 1
X2 2 18
TEM 11 35
K1 15 0
K2 15 0
T 1 0
[19 0
0
REAL*8 A2(2),E2),R
0
R=1.9865
0
A2(1)=4000.
0
E(1)=5000.
0
A2(2)=620000.
0
E(2)=10000.
21
398.-TEM(T)
21
TEM(T)-298.
13
K1(T)=A2(1)*EXP(-E(1)/R/TEM(T))
13

273

0.58666667D+02
-0.26666667D+01
0.20655911D+01
0.46259293D-16
-0.20655911D+01
0.26666667D+01
0.58666667D+02
0.26666667D+02
-0.21333333D+02
0.26666667D+02

0.58666667D+02

-0.12206317D+03

0.18783611D+01
-0.12909944D+01

0.32274861D+01
-0.38729833D+01
-0.14788306D+02
-0.44603500D+02
-0.13333333D+02

0.16666667D+02
-0.73333333D+02

-0.12206317D+03

K2(T)=A2(2)*EXP(-E(2)/R/TEM(T))
1

DX1(T)/DT+KI(T)*X1(T)**2
1

DX2(T)/DT-K1(T)*X1(T)**2+K2(T)*X2(T)
4

X1(T)-1.
4

X2(T)
7
-X2(T)
17 17 4
1 1 0
0.00000000D+00
0.10000000D+00
0.12254033D+00

- 0.33381050D+00

0.45000000D+00
0.80000000D-+00
0.95491933D+00
0.00000000D+00
0.10000000D+01
0.00000000D+00
0.10000000D+01
0.00000000D+00
0.10000000D+01
0.00000000D+00
0.10000000D+01

sqpint.for

0.11270167D-01
0.20000000D+00
0.56618950D+00

0.10000000D+01
0.11270167D+00

0.11270167D+00
0.11270167D+00

0.11270167D+00

REAL*8 FUNCTION SQPOF(X)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
DIMENSION X(*)

SQPOF=0
RETURN
END

0.50000000D-01
0.27745967D+00

0.60000000D+00

0.50000000D+00
0.50000000D+00
0.50000000D+00

0.50000000D+00

SUBROUTINE SQPCONSTRAINTS(G,XX,N,M,NOBJ)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
REAL*8 G(*),X(1000),XX(*),A(1000),B(1000)
INTEGER*4 IBOUND(1000)

INTEGER*4 SCALEVAR,SCALECON

LOGICAL ALTERED
COMMON/SQPA/A,B,IBOUND

0.88729833D-01
0.30000000D+00

0.64508067D+00

0.88729833D+00
0.88729833D+00
0.88729833D+00

0.88729833D+00

' COMMON/SCX/VARSCALELB,VARSCALEUB,CONSCALEFAC,SCALEVAR,S

'~ CALECON

|

274

1,ICONSTRAINTS
REAL*8 A2(2),E(2),R

REAL*8 K11,K12,K13,K14,K21,K22,K23,K24
IF(SCALEVAR.EQ.1)THEN

CALL VARIABLEUNSCALING3(N,XX,X,A,B)

ELSE
DO 4 I=1,N
X(M=XX()

4 CONTINUE
ENDIF
IF(ICONSTRAINTS.GT.0)THEN
ALTERED=.FALSE.
DO 1 I=1,N
IF(IBOUND(I).EQ.1)THEN
IF(X(I).LT.A(I)) THEN
X@=A(0)
ALTERED=.TRUE.
ENDIF
IF(X(D).GT.B(I)) THEN
X@=B()
ALTERED=TRUE.
ENDIF
ENDIF

1 CONTINUE
ENDIF
R=1.9865
A2(1)=4000.
E(1)=5000.
A2(2)=620000.
E(2)=10000.
K11=A2(1)*EXP(-E(1)/R/X(35))
K12=A2(1)*EXP(-E(1)/R/X(36))
K13=A2(1)*EXP(-E(1)/R/X(37))
K14=A2(1)*EXP(-E(1)/R/X(38))
K21=A2(2)*EXP(-E(2)/R/X(35))
K22=A2(2)*EXP(-E(2)/R/X(36))
K23=A2(2)*EXP(-E(2)/R/X(37))
K24=A2(2)*EXP(-EQ2)/R/X(38))

G(1)=(-0.5323750007724450D+01*X (1)+0.3872983346207417D+01*X(2)+0.2

X065591117977289D+01*X(3) -0.1290994448735806D+01*X(4)+0.6762099922

X755498D+00*X(5))/(0.1000000000000000D+00-0.0000000000000000D+00)+K

X11*¥X(2)**2

G(2)=(0.1500000000000000D+01*X(1) -0.3227486121839514D+01*X(2)+0.4

275

X625929269271486D-16*%X(3)+0.3227486121839514D+01*X(4) -0.1500000000

X000000D-+01*X(5))/(0.1000000000000000D+00-0.0000000000000000D+00)+K

X11*X(3)**2
G(3)=(-0.6762099922755499D+00*X (1)+0.1290994448735806D+01*X(2) -0.

X2065591117977289D+01*X(3) -0.3872983346207417D+01*X(4)+0.532379000

X7724450D+01*X(5))/(0.1000000000000000D+00-0.0000000000000000D+00)+

XK11¥X(4)**2
G(4)=(0.1000000000000000D+01*X(1) -0.1878361089654305D+01%X(2)+0.2

X666666666666667D+01*X(3) -0.1478830557701236D+02*X(4)+0.1300000000

X000000D+02*X(5))/(0.1000000000000000D+00-0.0000000000000000D+00)+K

X11*X(5)**2
G(5)=(-0.5323790007724450D+01*X(5)+0.3872983346207417D+01*X(6)+0.2

X065591117977289D+01*X(7) -0.1290994448735806D+01*X(8)+0.6762099922

X755498D+00*X(9))/(0.3000000000000000D+00-0.1000000000000000D+00)+K

X12*X(6)**2
G(6)=(0.1500000000000000D+01*X(5) -0.3227486121839514D+01*X(6)+0.4

X625929269271486D-16%X(7)+0.3227486121839514D+01*X(8) -0.1500000000

X000000D+01*X(9))/(0.3000000000000000D+00-0.1000000000000000D+00)+K

X12*X(7)**2
G(7)=(-0.6762099922755499D+00*X(5)+0.1290994448735806D+01*X(6) -0.

X2065591117977289D+01*X(7) -0.3872983346207417D+01*X(8)+0.532379000

X7724450D+01¥X(9))/(0.3000000000000000D+00-0.1000000000000000D+00)+

XK12*¥X(8)**2
G(8)=(0.1000000000000000D+01*X(5) -0.1878361089654305D+01*X(6)+0.2

X666666666666667D+01*X(7) -0.1478830557701236D+02*X(8)+0.1300000000

X000000D+02*X(9))/(0.3000000000000000D+00-0.1000000000000000D+00)+K

X12*X(9)**2
G(9)=(-0.5323790007724450D+01*X(9)+0.3872983346207417D+01*X(10)+0.

276

X2065591117977289D+01*X(11) -0.1290994448735806D+01*X(12)+0.6762099

X922755498D+00*X(13))/(0.6000000000000000D+00-0.3000000000000000D+0

X0)+K13*X(10)**2
G(10)=(0.1500000000000000D+01*X(9) -0.3227486121839514D+01*X(10)+0

X.4625929269271486D-16*%X(11)+0.3227486121839514D+01*X(12) -0.150000

X0000000000D+01*X(13))/(0.6000000000000000D+00-0.3000000000000000D+

X00)+K13*X(11)**2
G(11)=(-0.6762099922755499D+00*X(9)+0.1290994448735806D+01*X(10) -

X0.2065591117977289D+01*X(11) -0.3872983346207417D+01*X(12)+0.53237

X90007724450D+01*X(13))/(0.60000006000000000D+00-0.3000000000000000D

X+00)+K13*X(12)**2
G(12)=(0.1000000000000000D+01*X(9) -0.1878361089654305D+01*X(10)+0

X.2666666666666667D+01*X(11) -0.1478830557701236D+02*X(12)+0.130000

X0000000000D+02*X(13))/(0.6000000000000000D+00-0.3000000000000000D+

X00)+K13*X(13)**2
G(13)=(-0.5323790007724450D+01*X(13)+0.3872983346207417D+01*X (14)+

X0.2065591117977289D+01*X(15) -0.1290994448735806D+01*X(16)+0.67620

X99922755498D+00*X(17))/(0.1000000000000000D+01-0.6000000000000000D

X+00)+K14*X(14)**2
G(14)=(0.1500000000000000D+01*X(13) -0.3227486121839514D+01*X(14)+

X0.4625929269271486D-16%X(15)+0.3227486121839514D+01*X(16) -0.15000

X00000000000D+01*X(17))/(0.1000000000000000D+01-0.6000000000000000D

X+00)+K14*X(15)**2
G(15)=(-0.6762099922755499D+00*X(13)+0.1290994448735806D+01*X (14)

X-0.2065591117977289D+01*X(15) -0.3872983346207417D+01*X(16)+0.5323
X790007724450D+01*X(17))/(0.1000000000000000D+01-0.6000000000000000
XD+00)+K14*X(16)**2

2717

G(16)=(0.1000000000000000D+01*X(13) -0.1878361089654305D+01*X(14)+
X0.2666666666666667D+01*X(15) -0.1478830557701236D+02*X (16)+0.13000

X00000000000D+02*X(17))/(0.1000000000000000D+01-0.6000000000000000D

X+00)+K14*X(17)%*2
G(17)=(-0.5323790007724450D+01*X(18)+0.3872983346207417D+01*X(19)+

X0.2065591117977289D+01*X(20) -0.1290994448735806D+01*X(21)+0.67620
X99922755498D+00*X(22))/(0.1000000000000000D+00-0.0000000000000000D

X+00)-K11*¥X(2)**2+K21*X(19)
G(18)=(0.1500000000000000D+01*X(18) -0.3227486121839514D+01*X(19)+

X0.4625929269271486D-16*%X(20)+0.3227486121839514D+01*X(21) -0.15000

X00000000000D+01*X(22))/(0.1000000000000000D+00-0.0000000000000000D

X+00)-K11*¥X(3)**2+K21*X(20)
G(19)=(-0.6762099922755499D+00*X(18)+0.1290994448735806D+01*X(19)

X-0.2065591117977289D+01*X(20) -0.3872983346207417D+01*X(21)+0.5323

X790007724450D+01*X(22))/(0.1000000000000000D+00-0.0000000000000000

XD+00)-K11¥X(4)**2+K21*X(21)
G(20)=(0.1000000000000000D+01*X(18) -0.1878361089654305D+01*X(19)+

X0.2666666666666667D+01*X(20) -0.1478830557701236D+02*X(21)+0.13000

X00000000000D+02*X(22))/(0.1000000000000000D+00-0.0000000000000000D

X+00)-K11*¥X(5)**2+K21*X(22)
G(21)=(-0.5323790007724450D+01*X(22)+0.3872983346207417D+01*X(23)+

X0.2065591117977289D+01*X(24) -0.1290994448735806D+01*X(25)+0.67620
X99922755498D+00*X(26))/(0.3000000000000000D+00-0.1000000000000000D

X+00)-K12*X(6)**2+K22*X(23)
G(22)=(0.1500000000000000D+01*X(22) -0.3227486121839514D+01*X(23)+

X0.4625929269271486D-16%X(24)+0.3227486121839514D+01*X(25) -0.15000

X00000000000D+01*X(26))/(0.3000000000000000D+00-0.1000000000000000D

278

X+00)-K12*X(7)**2+K22*X(24)
G(23)=(-0.6762099922755499D+00*X (22)+0.1290994448735806D+01*X(23)

X-0.2065591117977289D+01*X(24) -0.3872983346207417D+01*X(25)+0.5323

X790007724450D+01*X(26))/(0.3000000000000000D+00-0.1000000000000000

XD+00)-K12*X(8)**2+K22*X(25)
G(24)=(0.1000000000000000D+01*X(22) -0.1878361089654305D+01*X(23)+

X0.2666666666666667D+01*X(24) -0.1478830557701236D+02*X(25)+0.13000

X00000000000D+02*X(26))/(0.3000000000000000D+00-0.1000000000000000D

X+00)-K12*X(9)**2+K22*X(26)
G(25)=(-0.5323790007724450D+01*X(26)+0.3872983346207417D+01*X(27)+

X0.2065591117977289D+01*X(28) -0.1290994448735806D+01*X(29)+0.67620

X99922755498D+00*X(30))/(0.6000000000000000D+00-0.3000000000000000D

X+00)-K13*X(10)**2+K23*X(27)
G(26)=(0.1500000000000000D+01*X(26) -0.3227486121839514D+01*X(27)+

X0.4625929269271486D-16*X(28)+0.3227486121839514D+01*X(29) -0.15000

X00000000000D+01*X(30))/(0.6000000000000000D+00-0.3000000000000000D

X+00)-K13*X(11)**2+K23*X(28)
G(27)=(-0.6762099922755499D+00*X(26)+0.1290994448735806D+01*X(27)

X-0.2065591117977289D+01*X(28) -0.3872983346207417D+01*X(29)+0.5323

X790007724450D+01*X(30))/(0.6000000000000000D+00-0.3000000000000000

XD+00)-K13*X(12)%*¥2+K23*X(29)
G(28)=(0.1000000000000000D+01*X(26) -0.1878361089654305D+01%X(27)+

X0.2666666666666667D+01*X(28) -0.1478830557701236D+02*X(29)+0.13000
XOOOOOOO0000D+02*X(30))/(0.6000000000000000D+00—0.BGOOOOOOOOOOUOOOD

X+00)-K13*X(13)**2+K23*X(30)
G(29)=(-0.5323790007724450D+01*X(30)+0.3872983346207417D+01*X (31)+

X0.2065591117977289D+01*X(32) -0.1290994448735806D+01%X(33)+0.67620
X99922755498D+00*X(34))/(0.1000000000000000D+01-0.6000000000000000D

279

X+00)-K14*X(14)**2+K24*X(31)
G(30)=(0.1500000000000000D+01*X(30) -0.3227486121839514D+01*X(31)+

X0.4625929269271486D-16*X(32)+0.3227486121839514D+01*X(33) -0.15000

X00000000000D+01*X(34))/(0.1000000000000000D+01-0.6000000000000000D

X+00)-K14*X(15)**2+K24*X(32)
G(31)=(-0.6762099922755499D+00*X (30)+0.1290994448735806D+01*X(31)

X-0.2065591117977289D+01*X(32) -0.3872983346207417D+01*X(33)+0.5323

X790007724450D+01%X(34))/(0.1000000000000000D-+01-0.6000000000000000

XD+00)-K14*X(16)**%2+K24*X (33)
G(32)=(0.1000000000000000D+01*X(30) -0.1878361089654305D+01¥X(31)+

X0.2666666666666667D+01%X(32) -0.1478830557701236D+02*X(33)+0.13000
X00000000000D+02#*X(34))/(0.1000000000000000D+01-0.6000000000000000D

X+00)-K14*X(17)**2+K24*X (34)
G(33)=X(1)-1.

G(34)=X(18)

G(35)=-X(34)

G(36)=398.-X(35)

G(37)=398.-X(36)

G(38)=398.-X(37)

G(39)=398.-X(38)

G(40)=X(35)-298.

G(41)=X(36)-298.

G(42)=X(37)-298.

G(43)=X(38)-298.

IF(SCALECON.EQ.1)CALL CONSTRAINTSSCALING2(G,M,NOBJ)

IF(ICONSTRAINTS.EQ.2)THEN
IF(ALTERED)THEN
IF(SCALEVAR .EQ.1)THEN
CALL VARIABLESCALING3(N,X,XX,A,B)
ELSE
DO 5 1=1,N
XX(D=X(D)
5 CONTINUE
ENDIF.
ENDIF
ENDIF
RETURN

280

B T

END

OCFEGRG2IF.DAT
38 43 35 34 0 34

17 17 4
1 1 0

PLOTPREP.DAT

—)

11
0.00000000D+00 0.10000000D+01 0.00000000D+00 0.00000000D+00

OPTIMINP.DAT

* ray: advanced process control p95
18

100000 0.0001 1 10
110.1.100.0

0.0001 1.0D-10 100000 1

3

1. 0. 390.

0. 0. 298.

1. 1. 393.

000

usersubs.for

FUNCTIONF(UU X,U,A,B,MISSINGDATA,EXPERDATA,COMPUTEDDATA)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
INTEGER*4 SELECTION
INTEGER*4 DATAPOINTER
INTEGER*4 MISSINGDATA(NN,M)
REAL*8 EXPERDATA(NN,M),COMPUTEDDATA(NN,M)
REAL*8 X(*),U(*),UU(*),A(*),B(*)
COMMON/A/SELECTION,N,NALGSTATE,NAL
MRy AR N GSTATE2,NTIMEDEPSTATE,
COMMON/H/TH
COMMON/L/DATAPOINTER
CALL UNSCALE3(N,UU,U,A,B)
% UTESTI

281

*

*

*

* ¥ %

CVPRENFRODAOPEX! & DAPCVPTESTI
F=-X(2)
SIMUSOLV
RETURN
END
SUBROUTINE EC(UU,U,A,B,X,F,Y)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
THIS IS FOR NLPS
SELECTION 3,4
NOT INVOKED WITH THIS OPTION
INTEGER*4 SELECTION
REAL*8 X(¥),F(¥),U(*),Y(*),UU(*),A(*),B(¥)
COMMON/A/SELECTION,N,NALGSTATE,NALGSTATE2,NTIMEDEPSTATE,
INCONTROLVAR,NN,M
CALL UNSCALE3(N,UU,U,A,B)
RENFRONLPEX2
F(1)=X(1)**2+X(2)**2+X (3)**2+U(1)**2+U(2)**2-10.
F()=X(2)*X(3)-5.*U(1)*U(2)
F3)=X(1)*X(1)*X(1)+X (2)*X(2)*X(2)+1.
MICROFICHE
RETURN
END
SUBROUTINE EC2(UU,U,A,B,X,EY)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
THIS IS FOR DAOPS
SELECTION 9,10,13,14
NOT INVOKED WITH THIS OPTION
INTEGER*4 SELECTION
REAL*8 X(%),F(¥),U(*),UU(¥),A(*),B(*)
REAL*8 Y(*)
COMMON/A/SELECTION,N,NALGSTATE,NALGSTATE2NTIM
INCONTROLVAR,NN,M e EDEPSTATE,
CALL UNSCALE3(N,UU,U,A,B)
DAPCVPTESTI
F(1)=Y(1)+Y(2)+X(1)-1.
SIMUSOLV
F(1)=0.75-Y(1)-Y(2)-X(1)
RETURN
END
REAL*4 FUNCTION IC(UU,U,A,B,X)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
THIS IS FOR NLPS
SELECTION 34
INTEGER*4 SELECTION
NOT INVOKED WITH THIS OPTION
REAL*8 U(*),X(*),UU(*),A(*),B(*)
COMMON/A/SELECTION,N,NALGSTATE
N CONTROLVAR NN M NALGSTATE2,NTIMEDEPSTATE,

282

COMMON/B/PENALTY,PENALTYTERM,FEASIBILITYTOL
CALL UNSCALE3(N,UU,U,A,B)

P=0.

MICROFICHE

IC=P

RETURN

END

REAL*4 FUNCTION IC2(UU,U,A,B,Y,X)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

THIS IS FOR DAOPS

SELECTION 9,10,13,14

INTEGER*4 SELECTION

NOT INVOKED WITH THIS OPTION

REAL*8 U(*),X(*),Y(*),UU(*),A(*),B(*)
COMMON/A/SELECTION,N,NALGSTATE,NALGSTATE2,NTIMEDEPSTATE,
INCONTROLVAR,NN,M

COMMON/B/PENALTY ,PENALTYTERM,FEASIBILITYTOL

CALL UNSCALE3(N,UU,U,A,B)

P=0.

1C2=P

RETURN

END

FUNCTION DX2(1,Y,TIME,UU,U,A2,B,LB1,UB1,X)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

REAL*8 Y(¥),U(*),C(5),E(5),K(5),A(2)

REAL*8 LB1(*),UB1(*),UU(*),A2(*),B(*)

INTEGER*4 SELECTION,TFOPTION

LOGICAL NOTCALLEDFROMNUMDIFF

REAL*8 X(¥)
COMMON/A/SELECTION,N,NALGSTATE,NALGSTATE2,NTIMEDEPSTATE,

INCONTROLVAR,NN,M
COMMON/B/PENALTY,PENALTYTERM,FEASIBILITYTOL
COMMON/D/TFOPTION,TF
COMMON/I/NOTCALLEDFROMNUMDIFF
CALL UNSCALE3(N,UU,U,A2,B)

RENFRODAOPEX1 WITH TFOPTION = 1

IF(TFOPTION.EQ.1)THEN

IF(U(4).LT.0.THEN

PENALTYTERM=PENALTYTERM-U(4)*PENALTY

ENDIF

ENDIF

RENFRODAOPEX! & DAPCVPTESTI

R=1.9865

A(1)=4000.

A(2)=620000.

E(1)=5000.

E(2)=10000.
T=U(1)+U(2)*EXP(-U(3)*TIME)

283

7t e e g .

*

X R X X X X X %

el A L —

T=U(1)+UQR)*TIME+U3)*TIME*TIME
IF(T.LT.LBI(1))THEN
PENALTYTERM=PENALTYTERM+(LB1(1)-T)*PENALTY
IF(NOTCALLEDFROMNUMDIFF)T=LB1(1)
ENDIF
IF(T.GT.UB1(1))THEN
PENALTYTERM=PENALTYTERM+(T-UB1(1))*PENALTY
IF(NOTCALLEDFROMNUMDIFF)T=UBI1(1)
ENDIF
DO 4 J=1,2
K()=AJ)*EXP(-E(J)/(R*T))
ROSENBROCK
K(3)=C()*EXP(-E(J)*(1./T-1./658.)/R)
4 CONTINUE
GOTO (1,2),1
1 DX2=-K(1)*Y(1)**2
RETURN
2 DX2=K(1)*Y(1)**2-K(2)*Y(2)
RETURN
SIMUSOLV

END
SUBROUTINE CONTROLEVALUATION(UU,U,CONTROLV,T,N,A,B,N,Y)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
DIMENSION UU(*),U(*),CONTROLV(¥), A(*),B(*)
CALL UNSCALE3(N,UU,U,A,B)
CONTROLV(1)=U(1)+U(2)*T+U(3)*T**2
RETURN
END
FUNCTION DX1(1,Y,UU,U,A2,B,LB1,UB1)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
NOT INVOKED WITH THIS OPTION
REAL*8 Y(*),U(¥),E(5),K(5),A(5)
REAL*8 LB1(*),UB1(¥),UU(*),A2(*),B(*)
LOGICAL NOTCALLEDFROMNUMDIFF
COMMON/A/SELECTION,NNALGSTATE NALGSTATE2,NTIMEDEPSTATE,
INCONTROLVAR,NN,M
COMMON/B/PENALTY,PENALTYTERM,FEASIBILITYTOL
COMMON/I/NOTCALLEDFROMNUMDIEF
CALL UNSCALE3(N,UU,U,A2B)
RENFRODAOPEX]1 O
R=1.9865
A(1)=4000.
A(2)=620000.
E(1)=5000.
E(2)=10000.
T=U(1)
IF(T.LT.LB1(1))THEN
PENALTYTERM=PENALTYTERM+(LB1(1)-T)*PENALTY

284

IF(NOTCALLEDFROMNUMDIFF)T=LB1(1)
ENDIF
IF(T.GT.UB1(1))THEN
PENALTYTERM=PENALTYTERM+(T-UB1(1))*PENALTY
IF(NOTCALLEDFROMNUMDIFF)T=UBI1(1)
ENDIF
DO 4 J=1,2
K(J)=AJ)*EXP(-E(J)/(R*T))
4 CONTINUE
GOTO (1,2),1
1 DX1=-K(1)*Y(1)**2
RETURN
2 DX1=K(1)*Y(1)**2-K(2)*Y(2)
RETURN
3 DX1=K(2)*Y(2)
RETURN
RAYEX336
RETURN
END
SUBROUTINE OVERALLMASSBALANCE(Y)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
REAL*S Y(¥)
RENFRODAOPEX1 INSIDE-OUT
Y(3)=1.-Y(1)-Y(2)
IF(Y(3).LT.0.0)Y(3)=0.0
SIMUSOLV
Y(3)=0.75-Y(1)-Y(2)
IE(Y(3).LT.0.0)Y(3)=0.0
RETURN
END

* ¥ ¥ *

OPTIMINP.DAT

8
302100
'DCCVPHIRENFRODAOPEX1.DAT’
0

1

000

0. -100. -100.
500. 100. 100.

1

360. 10. 5.

,AO’ ,AI’ :Azs
0.00001 0.1 1. 1.
0010.1.00

0

298.

285

398.

1. 0.
,A' ‘B!
OPTIMINP.DAT
6

302100
"DCCVPBFGSRENFRODAOPEX1.DAT’
0

1

000

0. -100. -100.
500. 100. 100.

1

360. 10. 5.

’AO, ?AID 3A2!
0.001 0.5 1. 0.1
100 0.00001 0.001
0.010.1.00

0

298.

398.

1. 0.

,’A’ !B’

Problem 10

Same as problem 9, with the exception that the batch time as also an optimizer
variable.

OPTIMINP.DAT

8
402100
- ’DCCVPHITFOPTIONRENFRODAOPEX1.DAT’

0

1 -
0001
0. -100. -100. 0.

. 500. 100. 100. 10.

1

360. 10. 5. 1.

’AO’ ’All ssz ’TF'
0.001 0.1 1. 1.

286

W A ey

0010.1.10

0
298.

398.

1. 0.

'A’ !B'
OPTIMINP.DAT

6

402100
;)DCCVPB FGSTFOPTIONRENFRODAOPEX1.DAT’
1

1111

0. -100. -100. 0.
500. 100. 100. 10.

1

310. 40. -20. 2.
A0’ ’Al’ A2’ TR
0.001 0.1 1. 0.1
10000 0.00001 0.001
0010.1.10

0

298.

398.

1. 0.

’A’ !B’

Problem 11

It is a dynamic optimization problem, where the sam i :
: . . g e chemical reacti

ret:erred to in Problem 9 is carried out in a homogeneous tubular rcact:::' *

It is found as Problem 4.1 in W. H. Ray, Advanced Process Control .

287

Y

max | I = |c(1,0)dt
Of :

()
dc(zf) _ 1 0c,(z)
lat = —6 :—I)Z - kl(nclz(z.f) 0<z<1¢r>0

dc,(z,1) _ 1 de,(z,1)
ot 9 oz

@) =1cyzt) =0forz =0, forall t >0

+k(Del@t) - (M) 0<z2<1¢> 0

c(zr) =1c(zf) =0 fort =0, for all z € [0,1]

OCFEINP.DAT

* ray: advanced process control problem 4.1 of distributed systems
317500
1111111111
1111111111

* THIS IS A COMMENT
OCFEPDEGRG2RAY41.DAT
0.4 0.25 0.05 0.05
7000002210701
4411151511
100011101010
100011101010
000000013133
3666666666

69

100011101010
100011101010
100011101010
100011101010
'Cl’ ’C2’ "TEM’ ’K1’ ’K2’
i A

0101
0.2.0.1.0.0.0.0.
0.10.2040.7 1.1 1.6
0.10.20.40.7

REAL*8 A2(2),E(2),R
TETA=1.

R=1.9865

A2(1)=4000.

E(1)=5000.

A2(2)=620000.

288

E(2)=10000.
K1(T)=A2(1)*EXP(-E(1)/R/TEM(T))
K2(T)=A2(2)*EXP(-E(2)/R/TEM(T))
DCI(T,Z)/DT+DCI(T,Z)/DZTETA+K1(T)*C1(T,Z)**2
DC2(T,Z)/DT+DC2(T,Z)/DZ/TETA-K1(T)*C1(T.Z)#* .
CI(T,Z)-1 AT T=0 AT Z=0 DrelaammKrAmCAT)
C2(T,Z) AT T=0 AT Z=0

CI(T,Z)-1 AT T=1 AT Z=0

C2(T.Z) AT T=1 AT Z=0

CI(T,Z)-1 AT T=0 AT Z=1

C2(T,Z) AT T=0 AT Z=1

CI(T.Z)-1 AT Z=0

C2(T.Z) AT Z=0

CI(T.Z)-1 AT T=0

C2(T,Z) AT T=0

INTEGRAL C2(T,1)DT-1.25*ERROR(X)

OPTIMINP.DAT

* ray: advanced process control problem 4.1 of distributed systems
16

-L.-1.-L.-L.-L.-1-1-11-1-1-1-11-1-1-120
’PDEGRG2RAY41.DAT’

110.100. 100.0

40

1. 0. 350. 0.

0. 0. 298. 0.

1. 1. 398. 2.

0000

Problem 12
Same as Problem 11, only solved by VF13AD instead of GRG2.

OCFEINP.DAT

* ray: advanced process control problem 4.1 of distributed systems
327500 '
1111111111

1111111111

* THIS IS A COMMENT

OCFEPDESQPRAY41.DAT

0.4 0.25 0.05 0.05

7000022210701

4411151511

100011101010

100011101010

0000000212113

13336666666

289

6669
100011101010

100011101010

100011101010

100011101010

'C1’ °C2’ 'TEM’ K1’ ’K2’

!T' ’Z!

0101

0.2.0.1.0.0.0.0.

0.10204071.11.6

0.1 0.2 0.4 0.7

REAL*8 A2(2),E(2),R

TETA=1.

R=1.9865

A2(1)=4000.

E(1)=5000.

A2(2)=620000.

E(2)=10000.

398.-TEM(T)

TEM(T)-298.

K1(T)=A2(1)*EXP(-E(1)/R/TEM(T))
K2(T)=A2(2)*EXP(-E(2)/R/TEM(T))
DCI(T,Z)/DT+DCI(T,Z)/DZ/TETA+K1(T)*C1(T,Z)**2
DC2(T,Z)/DT+DC2(T,Z)/DZ/TETA-KI(T)*C1(T,Z)**2+K2(T)*C2(T,Z)
CI(T,Z)-1 AT T=0 AT Z=0 '
C2(T,Z) AT T=0 AT Z=0

CI(T,Z)-1 AT T=1 AT Z=0

C2(T,Z) AT T=1 AT Z=0

CI(T,Z)-1 AT T=0 AT Z=1

C2(T,Z) AT T=0 AT Z=1

CI(T,Z)-1 AT Z=0

C2(T,Z) AT Z=0

CI(T,Z)-1 AT T=0

C2(T,Z) AT T=0

- INTEGRAL C2(1,T)DT+1.25*ERROR(X)

OPTIMINP.DAT

* ray: advanced process control problem 4.1 of distributed systems
18

100000 0.0001 110

110.1.100.0

0.0001 1.0D-10 100000 1

4

1. 0. 350. 0.

0. 0. 298. 0.

1. 1. 398. 2.

0000

290

Problem 13

It is a parameter estimation problem, found in Simusolv User Guide as an
example problem.

The data
Time Concentration
A B e

0 0.75 0 0

2 0.266 0412 0.0479

4 0.105 0.520 0.148

6 0.470 0.216

8 0.0095 0.420 0.329
- 10 0.00525 0.377 0.357
The mathematical model

Ay
dt
dB

—_— = kA + kC-LkB
df i k3 kZ

C=A,+B,+Cy,-A-B

The objective is to find the best values for the rate constants k,, k, and
k,, given the experimental time-concentration data for A, B and C.

usersubs.for

REAL*8 FUNCTION
F(UU,X,U,A,B,MISSINGDATA,EXPERDATA,COMPUTEDDATA)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

INTEGER*4 SELECTION

INTEGER*4 DATAPOINTER

291

* ¥

INTEGER*4 MISSINGDATA(NN,M)
REAL*$ EXPERDATA(NN,M),COMPUTEDDATA(NN,M)
REAL*8 X(*),U(*),UU(*),A(*),B(*)
COMMON/A/SELECTION,N,NALGSTATE,NALGSTATE2 NTIMEDEPSTATE,
INCONTROLVAR,NN,M
COMMON/H/T,H
COMMON/L/DATAPOINTER
CALL UNSCALE3(N,UU,U,A,B)
UTEST!
SIMUSOLV
SUM=0.
DO 1 I=1,NN
DO 2 J=2M
IF(MISSINGDATA(L,J).EQ.0)THEN
SUM=SUM+(EXPERDATA(I,J)-COMPUTEDDATA(LJ))**2
ENDIF
2 CONTINUE
1 CONTINUE
F=SQRT(SUM/NN)
RAYEX336
F=X(3)
RETURN
END
SUBROUTINE EC(UU,U,A,B,X,F,Y)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
THIS IS FOR NLPS

SELECTION 3,4
NOT INVOKED WITH THIS OPTION

INTEGER*4 SELECTION
REAL*8 X(*),F(*),U(*),Y(*),UU(*),A(*),B(*)
COMMON/A/SELECTION,N,NALGSTATE NALGSTATE2,NTIMEDEPSTATE
INCONTROLVAR,NN,.M ’
CALL UNSCALE3(N,UU,U,A,B)
RENFRONLPEX2
F(1)=X(1)¥*24+X(2)**2+X(3)**2+U(1)**2+U(2)**2-10.
F(2)=X(2)*X(3)-5.*¥U(1)*U(2)
F(3)=X(1)*X(1)*X(1)+X(2)*X(2)*X(2)+1.
MICROFICHE
RETURN
END
SUBROUTINE EC2(UU,U,A,B,X,F,Y)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
THIS IS FOR DAOPS
SELECTION 9,10,13,14
NOT INVOKED WITH THIS OPTION
INTEGER*4 SELECTION
REAL*8 X(*),F(*),U(*),UU(*),A(*),B(*)
REAL*8 Y(*)

292

COMMON/A/SELECTION,N,;NALGSTATE NALGSTATE2,NTIMEDEPSTATE,
INCONTROLVAR,NN,M

CALL UNSCALE3(N,UU,U,A,B)

DAPCVPTEST1

F(D=Y(1)+Y(2)+X(1)-1.

SIMUSOLV

F(1)=0.75-Y(1)-Y(2)-X(1)

RETURN

END

REAL*8 FUNCTION IC(UU,U,A,B,X)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

THIS IS FOR NLPS

SELECTION 3,4

NOT INVOKED WITH THIS OPTION

INTEGER*4 SELECTION

REAL*8 U(*),X(*),UU(*),A(*),B(*)
COMMON/A/SELECTION,N,NALGSTATE,NALGSTATE2,NTIMEDEPSTATE,
INCONTROLVAR,NN,M
COMMON/B/PENALTY,PENALTYTERM,FEASIBILITYTOL
CALL UNSCALE3(N,UU,U,A,B)

P=0.

MICROFICHE

IC=P '

RETURN

END

REAL*8 FUNCTION IC2(UU,U,A,B,Y,X)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

THIS IS FOR DAOPS

SELECTION 9,10,13,14
NOT INVOKED WITH THIS OPTION

INTEGER*4 SELECTION
REAL*8 U(*),X(*),Y(*),UU(*),A(*),B(*)
COMMON/A/SELECTION,N,NALGSTATE,NALGSTATE2,NTIMEDEPSTATE,
INCONTROLVAR,NN.M
COMMON/B/PENALTY,PENALTYTERM,FEASIBILITYTOL

CALL UNSCALE3(N,UU,U,A,B)

P=0.

1C2=P

RETURN

END

REAL*8 FUNCTION DX2(LY,TIME,UU,U,A2,B,LB1,UB1,X)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

REAL*8 Y(*),U(*),C(5),E(5),K(5),A(2)

REAL*8 LB1(*),UB1(*),UU(*),A2(%),B(*)

INTEGER*4 SELECTION, TFOPTION

LOGICAL NOTCALLEDFROMNUMDIFF

REAL*8 X(*)
COMMON/A/SELECTION,N,NALGSTATE,NALGSTATE2, NTIMEDEPSTATE,

293

*

INCONTROLVAR,NN,M
COMMON/B/PENALTY ,PENALTYTERM,FEASIBILITYTOL
COMMON/D/TFOPTION,TF
COMMON/I/NOTCALLEDFROMNUMDIFF

CALL UNSCALE3(N,UU,U,A2,B)
SIMUSOLV
IF(U(1).LT.0.0)PENALTYTERM=PENALTYTERM-U(1)*PENALTY
IF(U(2).LT.0.0)PENALTYTERM=PENALTYTERM-U(2)*PENALTY
IF(U(3).LT.0.0)PENALTYTERM=PENALTYTERM-U(3)*PENALTY

IF(U(1).LT.0.0)U(1)=0.0

IF(U(2).LT.0.0)U(2)=0.0

IF(U(3).LT.0.0)U(3)=0.0

GOTO (1,2),]

1 DX2=-U(1)*Y(1)
RETURN
SIMUSOLV MASSBALANCE
2 DX2=U(1)*Y(1)+UB)*Y(3)-UQR)*Y(2)

SIMUSOLV CONSTRAINT

2 DX2 = U(1)*Y(1)+U3)*X(1)-U2)*Y(2)

RETURN

RAYEX336.

END
SUBROUTINE CONTROLEVALUATION(UU,U,CONTROLV,T,N,A,B,N,Y)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
DIMENSION UU(*),U(*),CONTROLV(*),A(*),B(*)

CALL UNSCALE3(N,UU,U,A,B)
CONTROLV(1)=U(1)+U(2)*T+U(3)*T**2

RETURN

END

REAL*8 FUNCTION DXI1(I,Y,UU,U,A2,B,LB1,UBI)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

REAL*8 Y(*),U(*),E(5).K(5),A(5)

REAL*8 LB1(*),UB1(*),UU(*),A2(*),B(*)

LOGICAL NOTCALLEDFROMNUMDIFF

NOT INVOKED WITH THIS OPTION
COMMON/A/SELECTION,N,NALGSTATE,NALGSTATE2,NTIMEDEPSTATE,
INCONTROLVAR,NN,M
COMMON/B/PENALTY,PENALTYTERM,FEASIBILITYTOL
COMMON/I/NOTCALLEDFROMNUMDIFF

CALL UNSCALE3(N,UU,U,A2,B)

RETURN

END

SUBROUTINE OVERALLMASSBALANCE(Y)

IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

REAL*8 Y(*)

RENFRODAOPEX]1 INSIDE-OUT

Y(3)=1.-Y(1)-Y(2)

IF(Y(3).LT.0.0)Y(3)=0.0

294

* SIMUSOLV
Y(3)=0.75-Y(1)-Y(2)
IF(Y(3).LT.0.0)Y(3)=0.0
RETURN
END

OPTIMINP.DAT

* simusolv user guide parameter estimation example

11
303064
"DCCVPHIPEMBSIMUSOLVKINEX.DAT’

0

1
. 0.
. L

— -

e = e

0.3 0.3 0.02

’Kl! 'Kz? iKs!

0.001 0.5 1. 0.1
0.10.12.00

1

0.75 0. 0.

!A’ ’B’ ’C’

0000

0000

0000

0100

0000

0000

0.0.75 0. 0.

2. 0.266 0.412 0.0479
4. 0.105 0.520 0.148
6. 0. 0.470 0.216

8. 0.0095 0.420 0.329
10. 0.00525 0.377 0.357

OPTIMINP.DAT

* simusolv user guide parameter estimation example

12
303064
'DCCVPBFGSPEMBSIMUSOLVKINEX.DAT’

295

1. 1. L.

1

0.3 0.3 0.02

K1’ K2’ K3’
0.001 0.5 1. 0.1
100 0.00001 0.001
0.10.12.00

1

0.75 0. 0.

!A' ’B! IC!
0000

0000

0000

0100

0000

0000

0. 0.75 0. 0.

2. 0.266 0.412 0.0479

4. 0.105 0.520 0.148

6. 0. 0470 0.216

8. 0.0095 0.420 0.329
10. 0.00525 0.377 0.357

Problem 14

Same as Problem 13, with the exception that it is solved by GRG2 instead
of using control variable parameterization.

OCFEINP.DAT

* simusolv user guide parameter estimation example
1112000
1111111111

11
OCFEIGRG2SIMUSOLVEX.DAT

0.50.5050.5
300310023401
2221
100000000000
100000000000
100000000000
00010114447
100000000000
100000000000
A’ ’BC T
1111

296

0.12.0.0.0.0.0.0.
1.2.3.4.5.6.7. 8. 9. 10.

11.

A0=0.75

B0=0.

C0=0.

C(T)-A0-BO-CO+A(T)+B(T)

DA(T)/DT+X(1)*A(T)
DB(T)/DT-X(1)*A(T)-X(3)*C(T)+X(2)*B(T)

A(T)-0.75 AT T=0

B(T) AT T=0

C(T) AT T=0

PARAMETER ESTIMATION

6

(A(T)-0.75)**2+(B(T)-0.0)**24+(C(T)-0.0)**2 AT T=0
(A(T)-0.266)**2+(B(T)-0.412)**2+(C(T)-0.0479)**2 AT T=2
(A(T)-0.105)**2+(B(T)-0.52)**24(C(T)-0.148)**2 AT T=4
(B(T)-0.47)**2+(C(T)-0.216)**2 AT T=6
(A(T)-0.0095)**2+(B(T)-0.42)**2+(C(T)-0.329)**2 AT T=8
(A(T)-0.00525)**2+(B(T)-0.377)**2+(C(T)-0.357)**2 AT T=10

OPTIMINP.DAT
* simusolv user guide parameter estimation example
16
-1.-1.-1.-1.-1.-1-1-11-1-1-1-11-1-1-110
’GRG2SIMUSOLVEX.DAT’
110.100. 100. 1

1

111

0. 0. 0.

10. 10. 10.

1

0.3 0.3 0.02

K1’ ’K2’ ’K3’

31

0.75 0. 0.

0.0.0.

1. 1. 1.

0.

0.

000

Problem 15

Same as Problem 13, with the exception that it is solved by VF13AD instead
of using control variable parameterization.

297

G e L e e e e

v e TR 4 1 A et — ey rerrrm—

OCFEINP.DAT

* simusolv user guide parameter estimation example
1212000

1111111111

11

OCFE1SQPSIMUSOLVEX.DAT

0.50.5050.5

303310023401

2221

100000000000

100000000000

100000000000

00000010114

447

100000000000

100000000000

'A’ B’ C’ T’

1111

0.12.0.0.0.0.0.0.

1.2.3.4.5.6.7. 8.9. 10.

11.

A0=0.75

B0=0.

CO0=0.

X(1)

X(2)

X(3)

C(T)-A0-BO-CO+A(T)+B(T)

DA(T)/DT+X(1)*A(T)
DB(T)/DT-X(1)*A(T)-X(3)*C(T)+X(2)*B(T)

A(T)-0.75 AT T=0

B(T) AT T=0

C(T) AT T=0

PARAMETER ESTIMATION

6

(A(T)-0.75)**2+(B(T)-0.0)**2+(C(T)-0.0)¥*2 AT T=0
(A(T)-0.266)**2+(B(T)-0.412)**2+(C(T)-0.0479)**2 AT T=2
(A(T)-0.105)**2+(B(T)-0.52)**2+(C(T)-0.148)**2 AT T=4
(B(T)-0.47)**2+(C(T)-0.216)**2 AT T=6
(A(T)-0.0095)**2+(B(T)-0.42)**2+(C(T)-0.329)**2 AT T=8
(A(T)-0.00525)**2+(B(T)-0.377)**2+(C(T)-0.357)**2 AT T=10

OPTIMINP.DAT

* simusolv user guide parameter estimation example
18

100000 0.000001 110

298

10.1.100. 1

1

1

111
0.0. 0.
1. 1. L.
1

0.3 0.3 0.02

’K1’ ’K2’ ’K3’

0.0001 1.0D-10 100000 1
3

0.75 0. 0.

0.0.0.

1. 1. L.

000

example how to set up ocfeint.for

ocfeint.for

REAL*8 FUNCTION VARTIMEDELAY(T,I,TDIF)

* HANDLES CONSTANT AND VARIABLE TIME DELAYS
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
GOTO(1,2,3,41

1 VARTIMEDELAY2=0.02

* 1 VARTIMEDELAY?2=0.0
IF(T.LT.VARTIMEDELAY2)TDIF=1.
VARTIMEDELAY=VARTIMEDELAY?2
RETURN

2 VARTIMEDELAY?2=0.015

* 2 VARTIMEDELAY2=0.0
IF(T.LT.VARTIMEDELAY2)TDIF=-0.02
VARTIMEDELAY=VARTIMEDELAY?2
RETURN

3 VARTIMEDELAY2=0.5
IF(T.LT.VARTIMEDELAY2)TDIF=T-0.5
VARTIMEDELAY=VARTIMEDELAY2

4 VARTIMEDELAY2=1
IF(T.LT.VARTIMEDELAY?2)TDIF=1
VARTIMEDELAY=VARTIMEDELAY?2
RETURN
END
LOGICAL FUNCTION WITHIN(X,Y)

* CHECKS WHETHER (X,Y) IS WITHIN AN IRREGULAR DOMAIN
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)

* WRITE(6,%)X,Y,(X-0.5)**2+(Y-0.5)**2
IF((X-0.5)**2+(Y-0.5)**2,LT.0.25)THEN

* IF(X.GT.0.001.AND.X.LT.0.999.AND.Y.GT.0.001 .AND.Y.LT.0.999)THEN

* IF(X.GE.0..AND.X.LT.0.499.AND.Y.GE.0..AND.Y.LE. 1.)THEN

299

G T S e —————ry

WITHIN=.TRUE.
ELSE
WITHIN=.FALSE.
ENDIF

RETURN

END

example how to set up userint.for

userint.for

* PROGRAM TESTCZEQO
* X=CZEQO0(0.0D+00)
* WRITE(6,*)X

* X=CZEQO0(0.3D+00)
* WRITE(6,*)X

* X=CZEQO0(0.11D-01)
* WRITE(6,%)X

* X=CZEQO0(0.1D+00)
* WRITE(6,*)X

* X=CZEQO0(0.12D+00)
* WRITE(6,%)X

* X=CZEQO0(0.27D+00)
* WRITE(6,*)X

* STOP

* END

REAL*8 FUNCTION FI1(T,X)
* HANDLES VARIABLE BOUNDARY CONDITIONS (SARMIDI)
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
TETAF=0.5
IF(T.LE.TETAF)THEN
F1=0.5
ELSE
F1=0
ENDIF
RETURN
END
REAL*8 FUNCTION FLOWRATE(T)
* HANDLES DISTURBANCES AND OTHER VARIABLES THAT ARE NEITHER

STATE
* NOR CONTROL VARIABLES, E.G. VARIABLES THAT COME FROM

ANOTHER PROCESS

* AND ARE NOT AVAILABLE FOR MANIPULATION
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
1=999
IF(T.LE.0.5)THEN
FLOWRATE=50+RAN(I)
ELSE

300

FLOWRATE=60+RAN(I)
ENDIF
RETURN
END
REAL*8 FUNCTION CZEQO(T)
* HANDLES DISTURBANCES AND OTHER VARIABLES THAT ARE NEITHER

STATE
* NOR CONTROL VARIABLES, E.G. VARIABLES THAT COME FROM

ANOTHER PROCESS
* AND ARE NOT AVAILABLE FOR MANIPULATION
* CHECKING EFFECT OF STEP CHANGE IN INPUT ON THE SOLUTION
* IT CAUSES DISCONTINUITY FOR FIRST-ORDER HYPERBOLIC EQUATIONS
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
IF(T.LE.0.1)THEN
CZEQO=1
ELSE
x CZEQ0=0.75
x CZEQ0=0.95
CZEQ0=0.9
* CZEQ0=0.99
* CZEQO=1
ENDIF
RETURN

END
REAL*8 FUNCTION U(T)
* HANDLES DISTURBANCES AND OTHER VARIABLES THAT ARE NEITHER

STATE
* NOR CONTROL VARIABLES, E.G. VARIABLES THAT COME FROM

ANOTHER PROCESS
* AND ARE NOT AVAILABLE FOR MANIPULATION

* CHECKING EFFECT OF STEP CHANGE IN INPUT ON THE SOLUTION
* IT CAUSES DISCONTINUITY FOR FIRST-ORDER HYPERBOLIC EQUATIONS
IMPLICIT REAL*8 (A-H,0-Z),INTEGER*4 (I-N)
OMEGA=3.
U=DSIN(OMEGA*T)
RETURN
END

Things to try if the package is not working and useful hints

1. It is recommended to try out first a run on a small rectangle, say,
[0.25]X[0.25]

2. It is recommended that constant control over a finite element be used
to reduce the residual error.

301

Appendix B - Program Documentation
OCFE

This program discretizes equations depending on independent variables and transfers
the model into interface routines for the package GRG2 or VFI13AD.

Description of Variables

Input variables are described in the User Guide.
OUTPUTSTRING contains the transformed model equation

MININD points to the beginning of the variable name in the model
equation

WORKSTRING contains the model equation

VARIND1 =1 first independent variable has been found between
parentheses

=2 second independent variable has been found between
parentheses

The first independent variable precedes the second independent variable in the array
VARNAME.

MINJ subscript of the next variable to be processed in the model
equation

INTEGRALTERM =1 if a differential equation derived from an integral term
of an objective functional is processed

NONUNIQUEVAR true if the name of the variable to be processed is followed by
an alphanumeric character

NONUNIQUEVAR?2 true if the name of the variable to be processed is preceded by
an alphanumeric character excluding D’ and 2’

WHICHEQ =1 differential equation or any other equation containing a
variable dependent on an independent variable
=2 initial/boundary condition
=3 objective functional

INPUTTEXT subscript of the model equation currently processed

302

Modules
INTERFACE

This subroutine scans the equations read in from the problem definition file and
calls subprograms to discretize equations containing continuous variables.

ADDSUBSCRIPTSTOPARAMETER

This subprogram replaces parameters like k (rate constant) by ki,....k,....k,, i is
incremented for each collocation point. If it processes expressions like k =
EXP(E/R/T), then it also declares k; as a REAL*8 variable.

ADDSUBSCRIPTSTOPARAMETERB

This subprogram replaces parameters like k (rate constant) by ki,....k,,....k,, i is
incremented for each residual error evaluation point in the integration domain. If it
processes expressions like k = EXP(E/R/T), then it also declares k; as a REAL*8

variable.

ALLOCATEMEMORY

OCFE has been written to provide the appearance of dynamic memory allocation
with REAL*8 arrays set up as portions of DPCORE so that OCFE does not waste
memory space on individual arrays and the memory is utilized most economically.
This subroutine assigns pointers to DPCORE for each REAL*8 array.

BREAKUP
This subprogram is called from PROCESSEQUATIONI,2,3,1B,2B,3B. 1t searches
for a string enclosed in parentheses and if the string is longer than 10 characters,

generates x; = string and replaces the string by x; in the output string (the transformed
model equation). It calls BREAKUPANDWRITE and OPENCLOSEPAR.

Description of variables

I3 points to the first character to be copied from OQUTPUTSTRING to
STRING.

12 points to))

i) points to (.

STRING transformed OUTPUTSTRING, where each string longer than 51 is
replaced by x;.

When searching for (, it ignores (preceded by X.
OPENCLOSEPAR

This subprogram counts open and close parentheses.

303

BREAKUPANDWRITE

This subprogram breaks up a transformed model equation into a FORTRAN
statement having continuation lines if necessary. It handles 3 types of equations:
TYPE =1 e.g. R = 19895
TYPE =2 e.g. DX1/DT + K1 * X1 =0
TYPE = 3 least square objective function
It writes the generated FORTRAN statement in a temporary file. The statements will
be eventually put into the files GRG2INT.FOR and SQPINT.FOR, to be part of the
subroutines GCOMP or SQPCONSTRAINTS.

REPLACEPM
It replaces +- by - in the transformed model equation.
DISTURBANCE

It replaces variables coming from other process units. They are known functions of
the independent variables. Called from PROCESSEQUATIONI,
PROCESSEQUATION2 and PROCESSEQUATION3, if an open square bracket is
encountered in a model equation. The open square bracket is considered a variable
having VARCLASS = 19. For example, FLOW[T] in a boundary condition at z = 0
and t = 0 will be replaced by FLOW(0.0) and will be called from GCOMP or from
SQPCONSTRAINTS. The REAL*8 FUNCTION FLOW(T) has to be put in
USERINT.FOR by the user. It calls GETTFROMLZ to obtain the value of T from the
finite element and from the collocation point.

EVALFUNC

It generates a program EVALFUNC, EVALFUNC will write tabulated values
of the state and control variables at user-defined equidistant points ¢, ¢ + deltat,... and
x, x + delta x,... EVALFUNC uses the optimal NLP variables to interpolate the
continuous state and control variables. If, for example, the state variable c is
dependent on 2 independent variables #,z and ¢ falls in the second finite element along
the t-axis and z falls in the first finite element along the z-axis and the number of
internal collocation points is 3 in both finite elements, then

5 5
¢ =Y ¥ LWl (M

i=] ju=l

where c,-f’ is an NLP variable corresponding to the i-¢h collocation point in the second
finite element along the f-axis and to the j-th collocation point in the first finite
element along the z-axis and

304

U= @) and v = (2-z) (2)

(1) (2,-2,)

where ¢, - ¢, is the length of the second finite element along the t-axis, ¢, is the first
knot, ¢, is the second knot along the #-axis, and z,-z, is the length of the first finite
element along the z-axis and z, is the start of the integration along the z-axis and z,
is the first knot along the z-axis. If w is a control variable dependent on ¢, then if ¢
falls in the second finite element along the f-axis and the number of internal
collocation points is 3 in the finite element, then

~ w2 =Y Lww! ©)

i=2

where w;? is an NLP variable corresponding to the i-th collocation point in the second
finite element along the f-axis. The summation for control variables excludes the end
points of finite elements. If, for instance, the integration is to be performed from t=0
to t=1 and from z=0 to z=1 and At = 0.1 and Az = 0.1, then EVALFUNC would write
values for ¢ and w in FUNCOUT.DAT as follows assuming that ¢ is the first

independent variable:
¢(0,0), ¢(0,.01),...,c(1,1) and

w(0), w(0.1),...,w(1).

EVALERR

This subprogram generates the program EVALERR in the file EVALERR FOR to
evaluate the differential equations at equidistant points ¢,#+Af and x,x+Ax, and the
generated program EVALERR writes the residual error to ERROROUT.DAT. The
FORTRAN statements to evaluate the residuals are generated by
PROCESSEQUATIONIB,PROCESSEQUATION2B and PROCESSEQUATION3B and
written to OCFETEMP4 .DAT. The generated program reads the optimal solutions from
the file OPTSOLUTION .DAT written by DISPATCHER. EVALERR uses the optimal
NLP variables to interpolate the continuous state and control variables. If, e.g., the
integration is to be performed from ¢=0 to t=1 and from z=0 to z=1] and At=0. and
Az=0.1, and SATISFIED(i)=1 i=1,...,4 and ¢t is the first independent variable, then
EVALERR would evaluate every differential equation in the model at (t=0, z=0), (t=0,
2=0.1),...,(t=1,z=1). It also calculates the estimate of the approximation error based
on B. A. Finlayson "Nonlinear Analysis in Chemical Engineering"” p. 143 and p. 305,

ERROR

It generates the REAL*8 FUNCTION ERROR in the file ERROR.FOR to evaluate
the squared residual error. The FORTRAN statements to evaluate the residuals are

305

generated by PROCESSEQUATIONIB,PROCESSEQUATION2B and
PROCESSEQUATION3B and written to OCFETEMP4.DAT. 1If problems
4,5,6,7,8,9,10,11,12 are solved using options 16 or 18, ERROR(X) has to be added to
the objective functional if the problem is defined as minimization and ERROR(X) has
to be subtracted from the objective functional if the problem is defined as
maximization. Then variables cannot be named x. ERROR(X) may shift the optimum,
so it is recommended that with optimization problems the user runs his/her problem
with and without ERROR(X). Weights can also be used like F(T)-1.25*ERROR(X).
Before linking OPTIMIZER, ERROR.FOR has to be compiled.

GRG2INTERFACE
It writes variables NVAR, NFUN, NOBJ, NALGVAR, NALGC, NTDIQ, NSTATE and
arrays TDVRANGE, STATEVARIND and TDCRANGE into OCFEGRG2IF .DAT. This

file will be read by DISPATCHER. NVAR is equal to the number of NLP variables.
The other variables are described in the USER GUIDE.

SQPINTERFACE
It writes variables NVAR, NFUN, NOBJ, MEQ, NALGVAR, NSTATE and arrays
TDVRANGE and STATEVARIND into OCFESQPIF .DAT. This file will be read by
DISPATCHER. NVAR is equal to the number of NLP variables. The other variables
are described in the USER GUIDE.
INSERT
It reads collocation equations generated by PROCESSEQUATIONI,
PROCESSEQUATION2 and PROCESSEQUATION3 from OCFETEMP.DAT, and
assembles the GRG2 user interface GCOM in the file GRG2INT.FOR.
INSERT2
It reads collocation equations generated by PROCESSEQUATIONI,
PROCESSEQUATION2 and PROCESSEQUATION3 from OCFETEMP.DAT, and

assembles the VFI3AD user interface subprograms SQPOF and SQPCONSTRAINTS
in the file SQPINT.FOR.

ISUMNICPA
It sums up collocation points up to subinterval L exclusive.
ISUMNICPB

It sums up collocation points over the entire integration domain.

306

OUTPUTINDVAR

It outputs the roots of Legendre polynomials and their mapped values into the
integration domain in the file OCFEOQUT.DAT.

PROCESSDERIVATIVE

It replaces derivatives of the state variables as a linear combination of the
derivatives of the Lagrange polynomials previously evaluated at collocation points and
stored in arrays A, B, A2 and B2, where

A(LJ,K) first derivative of the j-th Lagrange polynomial at the i-th collocation
point in the k-th finite element along the first independent variable

B({1,J,K) second derivative of the j-th Lagrange polynomial at the i-th
collocation point in the -tk finite element along the first independent
variable

A2(1,J,K) first derivative of the j-th Lagrange polynomial at the i-th collocation
point in the k-th finite element along the second independent variable

B2(1,J,K) second derivative of the j-th Lagrange polynomial at the i-th
collocation point in the k-th finite element along the second

independent variable

In the ki-th element the unknown c is approximated by

N M
ctxy) = ¥ Y Ll)
=l jel
w= %, O)
(=X 0=

Here ¢, is the value of ¢ at the collocation point (u,,,) in the kl-th element.
XXy = Ax, is the size of the k-t finite element in the x-direction.
Yiur-y; = Ay, is the size of the [-th finite element in the y-direction.

N+2 M+2

oc ¥(x,y) 1 . Y
= A(m,i,k)A2(nj,l)c;:
axdy AxAy, Zl: ,):1: M (6)

when evaluated at collocation point (u_,v)

307

N+2

ac¥(x,y) 1 !
= A » in
ox Ax, ,2.1: (i ke

when evaluated at collocation point (u,v,)

kl -
0c’ey) - LS a2(njbe
dy Ay, =

when evaluated at collocation point (u,,v,)

K N2
ety _ 1 E B(m,ik)cy
2 Axf inl

when evaluated at collocation point (u,,v,)

d%c¥(x, 1 = .
@) = LY B2mjde)
dy Ay i

when evaluated at collocation point (u,,v,)

de*(x) 1 f o
= A] ?k i
= Axk § (m,ik)c,

when evaluated at collocation point (u,)

dc'y) 1 = e
=Y A2(njl;
dy Ay, ; !

when evaluated at collocation point (v,)

308

)

(8)

®

(10)

11

(12)

i -

2.k ~
40 - LY Bmjct
dx Axy i)

when evaluated at collocation point (u,)

2.1 1 M+2)
d“c gy) - - 2 Bz(nJJ)cjl
dy Ay} i (14)

when evaluated at collocation point (v,)

Local variables

I = subscript of the NLP variable associated with the finite element and the
subscript of ¢ corresponding to a collocation point
STRING = the string replacing the derivative term in the model equation

PROCESSDERIVATIVEB

It is called for error evaluation. It replaces derivatives of the state variables as a
linear combination of the Lagrange polynomials computed analytically at grid points
(x+iAx,y+jAy). Since the grid points where the derivatives have to be evaluated do not
normally coincide with collocation points, arrays A, B, A2, B2 cannot be used,
REAL*8 FUNCTION DERIVI and DERIV2 have to be invoked instead.

DERIV1

It computes the first derivative of the i-th Lagrange polynomial in finite element
L and at collocation point z analytically.

DERIV2

It computes the second derivative of the i-th Lagrange polynomial in finite element
L and at collocation point z analytically.

MIXEDDERIVATIVE

It checks a mixed derivative term in a model equation, whether VARNAME contains
the 2 independent variables in the derivative term.

PROCESSEQUATIONI
It discretizes model equations depending only on the first independent variable,

replacing variables and derivatives. It handles differential equations, initial/boundary
conditions, objective functionals and any other model equations dependent on the first

309

independent variable. Initial and boundary conditions and objective functionals are
discretized only at collocation points according to the scope of the equations.
Differential equations are discretized along the integration domain of the first
independent variable excluding initial and boundary conditions. The model equation
is scanned repeatedly for each collocation point.

Algorithm

LOOP : FOR each finite element selected DO :
LOOP : FOR each collocation point selected DO :
find the next unprocessed variable dependent on the
independent variable in the model equation
IF found THEN
CASE type of substring to be replaced
derivative : process derivative
state variable : process state variable
control variable : process control variable
parameter : process parameter
independent variable : process independent
variable
END CASE
ELSE
write out the transformed equation
ENDIF
END LOOP
END LOOP

PROCESSEQUATIONI1B

It is similar to PROCESSEQUATIONI, except for the fact that boundary conditions
and objective functionals are not processed and looping is performed over equidistant
points for the purposes of residual error evaluation.

PROCESSEQUATION2

It is like PROCESSEQUATIONI, but processing model equations depending only
on the second independent variable.

PROCESSEQUATION2B

It is like PROCESSEQUATIONIB, but processing model equations depending only
on the second independent variable.

PROCESSEQUATION3

It is like PROCESSEQUATIONI, except for the fact that discretization is performed
over a rectangular integration domain and it processes model equations which contains
at least one variable dependent on both independent variables.

310

PROCESSEQUATION3B

It is similar to PROCESSEQUATION3, except for the fact that boundary conditions
and objective functionals are not processed and looping performed over a rectangular
domain over equidistant points for the purposes of residual error evaluation. '

PROCESSOF

CASE type of objective functional

LEAST SQUARE : process least square objective functional

INTEGRAL : LOOP for each integral term
convert the integral term into a differential equation. Set
initial/boundary conditions of the differential equation. Set
attributes of the artificial variable derived from the integral
term. Set attributes of the differential equation and the initial

condition.
END LOOP
END CASE

PARES1

It processes a least-square objective functional in case of parameter estimation,
PARES2

It passes the sample time to PARES3 in case ('.)f parameter estimation.
PARES3

It processes one line of the least-square objective functional replacing variables by
a linear combination of Lagrange interpolation polynomials evaluated at sample time
after the sample time has been mapped into the interval [0,1].

GETNUM

It returns in /7 the start position of and in /2 the end position of a number string
delimited by spaces.

READCOMMENTS

It treats lines in OCFEINP.DAT as comment lines if the first character in the line
is an asterisk.

REPLACEINDEPENDENTVAR

This subprogram maps a collocation point, i.e. the root of a Legendre polynomial
in a finite element into the integration domain.

311

L W = T ey —

REPLACEINDEPENDENTVARB

This subprogram replaces the name of an independent variable by its value at the
point where the residual is to be evaluated.

REPLACESCVAR

This subprogram replaces a state or control variable with its NLP equivalent taking
account of a possible time delay. If the collocation point - time delay < the start of
the integration then the variable takes on its initial value, If a variable is fixed at knot
or boundary then REPLACESCVAR adjusts the finite element and the collocation point
where the variable is to be evaluated. If a control variable is to be evaluated at the
beginning or at the end of a finite element then the control variable is approximated
as a linear combination of the NLP equivalents of the control variable evaluated at

internal collocation points.

REPLACECONTROLVAR
REPLACECONTROLVAR is called from REPLACESCVAR when the control
variable is of VARCLASS 5,6,7 and it has to be replaced in the model equation at the
end-point or edge of a finite element. If w is a control variable of VARCLASS=S5 in
finite element &, then if the number of internal collocation points in the k-th finite
element along the axis of the first independent variable is N, then since the
collocation point is at the end-point of a finite element, z equals either 0 or 7 and

N+1
w0 = 3 LWy, (15)

If w is a control variable of VARCLASS=6 in finite element /, then if the number
of internal collocation points in the /-z4 finite element along the axis of the second
independent variable is M, then since the collocation point is at the end-point of a
finite element, z2 equals either 0 or / and

M+1

w') =Y LWy, (16)

j=2

Similarly, if w is a control variable of VARCLASS=7, then

N+l M+l

why) =Y 3 L@ E2Wyp40 (17)

i=2 =2

REPLACESCVARB

REPLACESCVARSB is called for error evaluation. It approximates state and control
variables by a linear combination of Lagrange interpolation polynomials, taking

312

account of a possible time delay. If the collocation point - time delay < the start of
the integration, then its initial value is assigned to the variable. The linear combination
coefficients, i.e. the state or control variables at the collocation points are replaced by
their NLP equivalents. If the variable is fixed at knot or at boundary then
REPLACESCVARB sets the finite element and the collocation point in accordance with
the fixed value of the independent variable.

A state variable of VARCLASS=2 is approximated by

N+2 -
ctw) = Y Lwe! where u = L
i=1 (a1 =X

(18)

I{u) is the i-th Lagrange polynomial cvaluatcd at u. The number of internal
collocation points in the k-th element is N. ¢ is the value of c¢ at collocation point ¥
in the k-th element. x, is the left end-point of the k-t finite element.

A state variable of VARCLASS=3 is approximated by

M+2 -
clo) =3 L) where v = 22 (19)

j=1 11 Y ;)

I{v)is the Jj-th Lagrange polynormal evaluated at v. The number of internal collocation
pomts in the I/-th element is M. ¢ is the value of ¢ at collocation point v; in the /-th
element. y, is the left end-point of the I-th finite element.

A state variable of VARCLASS=4 is approximated by

N+2 M+2

cHy) = % LWl (20)

i=l j=l
¢, is the value of ¢ at collocation point (,v;) in the ki-th element.

A control variable w of VARCLASS=5 is approximated by

N+l

wh) =Y Lww! @n

i=2

A control variable of VARCLASS=6 is approximated by

M+l

wio) =Y, L)w;' (22)

A control variable of VARCLASS=7 is approximated by

313

N+1 M+1

whey) =Y Y l‘.(u)lj.(v)*.rv,;-‘Jl (23)

2 =

Control variables of VARCLASS=11,12,21 are constant over a finite element, they
are not approximated by a linear combination of Lagrange interpolation polynomials,
they have an NLP equivalent.

Control variable of VARCLASS=13 is approximated by

M+l

wh(x,y) = E IJ.(v)w;d (24)

Control variable of VARCLASS=14 is approximated by

N+1

whiey) =Y 1w (25)
i=2

Local variables

T,T2 value of the first independent variable

X,X2 value of the second independent variable

2z the value of the first independent variable mapped into the
corresponding finite element

222 the value of the second independent variable mapped into the
corresponding finite element

L,L2,L3 finite elements along the first independent variable

LL,LL2,LL3 finite elements along the second independent variable
INDEX2

This subprogram returns the NLP subscript of a variable of VARCLASS=4 if
NLPVARSUBSCRIPTS is added to it.

INDEX3

This subprogram returns the NLP subscript of a variable of VARCLASS=7 if
NLPVARSUBSCRIPTS is added to it.

INDEX6

This subprogram returns the NLP subscript of a variable of VARCLASS=13 if
NLPVARSUBSCRIPTS is added to it.

314

INDEX7

This subprogram returns the NLP subscript of a variable of VARCLASS=14 if
NLPVARSUBSCRIPTS is added to it.

INDEX4

This subprogram returns the subscript added to a parameter of VARCLASS=10.
INDEXS8

This subprogram returns the subscript added to a parameter of VARCLASS=17.
INDEX9

This subprogram returns the subscript added to a parameter of VARCLASS=18.
INDEX10

This subprogram returns the NLP subscript of a variable of VARCLASS=21 if
NLPVARSUBSCRIPTS is added to it. It also returns the subscript added to a parameter
of VARCLASS=22.

INDEX11
This subprogram returns the subscript added to a parameter of VARCLASS=22.
INDEXS

This subprogram returns the NLP subscript of a variable of
VARCLASS=2,34,5,6,7,11,12,13,14 or 21.

RLAGRANGE

This subprogram evaluates the i-th Lagrange polynomial at z in the finite element
L with N internal collocation points. If a state variable is approximated then the
summation runs from J to N+2. If a control variable is approximated, the summation

runs from 2 to N+1.

GETLZFROMT

Given a value of an independent variable, this subprogram returns the finite element
and variable value mapped into the interval [0,1].

GETTFROMLZ

Given a variable mapped into the interval /0,/] in a finite element, this subprogram

315

returns the original value of an independent variable.
TIMEDELAY

This subprogram returns the value of a time delay, i.e. decodes a number string into
a value.

WHICHINDVAR

Given an independent variable name, it returns in IND1 the subscript of the first
independent variable in VARCLASS and sets VARINDI to 1 if the given string is the
first independent variable. Given an independent variable name, it returns in IND2 the
subscript of the second independent variable in VARCLASS and sets VARINDI to 2
if the given string is the second independent variable.

IYTCOMMAX

IYTCOMMAX checks the arguments of a variable between parentheses and returns
the following values:

1 the variable is dependent on the first independent variable

2 the variable is dependent on the second independent variable

3 the variable is dependent on both independent variables

4 the variable is dependent on the first independent variable at lower bound and
on the second independent variable

5 the variable is dependent on the first independent variable at upper bound and
on the second independent variable

6 the variable is dependent on the second independent variable at lower bound
and on the first independent variable

7 the variable is dependent on the second independent variable at upper bound
and on the first independent variable

8 the first independent variable is fixed at knot

9 the second independent variable is fixed at knot

The setting of the argument ITIMEDELAY:

0 no time delay

1 time delay at the first independent variable

2 time delay at the second independent variable

Valid combinations of DECLASS,VARCLASS and return value:

DECLASS VARCLASS return value
1,4,7,10,13 2,5 1
2,5,8,11,14 3.6 2

316

T W T s e ——.

DECLASS VARCLASS return value
1,4,7,10,13 4,7 6,7
2,5,8,11,14 4,7 4,5
3,6,9,12,15 4,7 3
3,6,9,12,15 2,5 1
3,6,9,12,15 3,6 2

The values of the local variable [YTCOMMAX2:

-1 before comma variable at low boundary

-2 before comma variable at high boundary
-3 before comma first independent variable
-4 before comma second independent variable
-5 before comma variable fixed at knot

The values of the local variable IYTCOMMAX3:

-1 after comma variable at low boundary
-2 after comma variable at high boundary
-3 after comma first independent variable
-4 after comma second independent variable

-5 after comma variable fixed at knot

SETUPAB

This subprogram stores the first and second derivatives of the Lagrange polynomial
at collocation points for each finite element.

A(i,j,k) first derivative of the j-th Lagrange polynomial at the i-th collocation
point in the k-th finite element along the first independent variable

B(i,j,k) second derivative of the j-th Lagrange polynomial at the i-th
collocation point in the k-th finite element along the first independent
variable

A2(i,j,k) first derivative of the j-th Lagrange polynomial at the i-th collocation

point in the k-th finite element along the second independent variable
B2(i,j.k) second derivative of the j-th Lagrange polynomial at the i-th
collocation point in the k-th finite element along the second

independent variable

SETVARRANGE

This subprogram sets subscripts of the first NLP variable derived from state and

control variables dependent on independent variables.

317

LANGE

This subprogram returns the dynamic length of a string variable or string array

element.
JCOBI

This subprogram evaluates roots of Lagrange polynomials. [Villadsen and
Michelsen, Solution of Differential Equation Models by Polynomial Approximation].

DFOPR

This subprogram evaluates derivatives of Lagrange polynomials. Villadsen and
Michelsen, Solution of Differential Equation Models by Polynomial Approximation].

PLANAR

This subprogram evaluates roots and derivatives of Lagrange polynomials. [
Finlayson, Nonlinear Analysis in Chemical Engineering].

DISPATCHER

This subprogram is the control module of the optimization package. It calls modules
using unconstrained optimization, sequential optimization and solution strategy using
control vector parameterization or modules associated with VFI3AD and GRG2 using
simultaneous optimization and solution strategy.

PROCESSGRG2NLP

This module reads in OPTIMINP .DAT and invokes the GRG2 package. The GRG2
interface subroutine GCOMP has to be set up by the user. This module is invoked to
solve unconstrained or constrained linear or nonlinear programming problems.

PROCESSGRG2DAP

This module reads in OPTIMINP .DAT and OCFEGRG2IF DAT and invokes the
GRG2 package. This module is invoked to solve differential-algebraic optimization
problems.

PROCESSSQPNLP

This module reads in OPTIMINP.DAT and invokes the VFI3AD package. The
VF13AD interface subroutines SQPOF and SQPCONSTRAINTS have to be set up by
the user. This module is invoked to solve constrained linear or nonlinear programming
problems.

318

WA TR S R e T ap————

PROCESSSQPDAP

This module reads in OPTIMINP.DAT and OCFESQPIF DAT and invokes the
VFI13AD package. This module is invoked to solve differential-algebraic optimization
problems.

INTERFACE

This module calls unconstrained optimization modules based on the Hooke-Jeeves
or Broyden-Fletcher-Goldfarb-Shanno algorithm if option 1,2,6,8,11 or 12 selected.

HIBFGSSETUP

This module provides the appearance of dynamic memory allocation setting up
INTEGER*4 and REAL*8 arrays as segments of INTCORE and DPCORE so that
HJBFGS does not waste memory space on individual arrays and the memory is
utilized most economically. This subroutine assigns pointers to DPCORE for each
REAL*8 array and to INTCORE for each INTEGER*4 array.

INPUT
This subprogram reads OPTIMINP.DAT if option 1,2,6,8,11 or 12 is selected.
OUTPUT
This subprogram writes the optimal solution to OPTIMOUT.DAT.
SCALE
This subprogram scales optimizer variables from the interval [a,b] into the interval
1or VARIABLESCALING

This subprogram scales optimizer variables from the interval [a,b] into the interval

[LU].
SCALEDX

This subprogram scales an optimizer variable from the interval [a,b] into the
interval [L,U].

UNSCALE

This subprogram unscales optimizer variables from the interval [0,]] into the
interval [a,b].

319

ST A WL TSR, e wr T erm—m——

VARIABLEUNSCALING

This subprogram unscales optimizer variables from the interval [L,U] into the
interval [a,b].

UNSCALEDX

This subprogram unscales an optimizer variable from the interval [L,U] into the
interval [a,b].

SCALE3

This subprogram scales optimizer variables from the interval [a,b] into the interval
[0,1] leaving the array of the unscaled variables unscaled.

VARIABLESCALING3

This subprogram scales optimizer variables from the interval [a,b] into the interval
[L,U] leaving the array of the unscaled variables unscaled.

UNSCALE3

This subprogram unscales optimizer variables from the interval [0,1] into the
interval [a,b] leaving the array of the scaled variables scaled.

VARIABLEUNSCALING3
This subprogram unscales optimizer variables from the interval [L,U] into the
interval [a,b] leaving the array of the scaled variables scaled.

SCALE2

This subprogram scales an optimizer variable from the interval [a,b] into the
interval [0,1].

UNSCALE2

This subprogram unscales an optimizer variable from the interval [0,1] into the
interval [a,b].

CONSTRAINTSSCALING

If constraint < a then
" constraint:=a
else if constraint > b then
constraint:=b
endif

320

CONSTRAINTSSCALING2
It is like CONSTRAINTSSCALING except leaving the objective function unscaled.

DIFF(a,b)
It returns DIFF=a-b. This subprogram is used to test underflow. It is called to increase
the stepsize of the numerical differentiation, if it is too small. It is called as follows:

400 IF(1+HDIFF,1).EQ.0)THEN
HDIFF = 10*HDIFF
GOTO 400
ENDIF

HIBFGS

The modules contained in H/BFGS.FOR are called if the user wants to solve
unconstrained optimization problems by the Hooke-Jeeves or by the BFGS method,
or differential-algebraic optimization problems containing initial-value ordinary
differential equations by sequential optimization and solution strategy using control
vector parameterization.

HJ

This subprogram finds the minimum of an unconstrained function using Hooke-
Jeeves method. It is called if option 7 is selected.

BFGS

This subprogram finds the minimum of an unconstrained function using the BFGS
method. It is called if option 2 is selected. The code is based on the article by J. E.
Dennis, J. R. Jorge and J. More, SIAM Review, Vol. 19, No. 1, January 1977. The
line search code is based on the algorithm in Reklaitis, Engineering Optimization.

HJ2

This subprogram uses Hooke-Jeeves method with sequential optimization and
solution strategy to find the minimum of an unconstrained function using control
vector parameterization. For each function evaluation, calls a 4-th order Runge-Kutta
differential equation solver.

BFGS2

This subprogram uses BFGS method with sequential optimization and solution
strategy to find the minimum of an unconstrained function using control vector
parameterization. For each function evaluation, calls a 4-th order Runge-Kutta
differential equation solver.

321

NUMDIFF

This subprogram returns the gradient vector of the objective function using central
difference approximation. It is called from BFGS.

NUMDIFF2

This subprogram returns the gradient vector of the objective function using central
difference approximation. It is called from BFGS2.

RK
This subprogram solves a system of initial value quasilinear ordinary differential

equations using the fourth-order Runge-Kutta method. The user must provide the
derivative evaluation module.

322

T T T U e A T e e

Appendix C - Mathematical Background
Euclidean Space

n-component vectors of n-tuples of real numbers span an n-dimensional Euclidean
space. The vectors can be

multiplied by a scalar, there is an addition and scalar product ix.yi defined, the
i=]
magnitude of a vector is |x| = (x ™x)"2. For any two vector x and y in E" the
Cauchy-Schwartz Inequality holds. : |xTy| < |x| - |y|- The distance of 2 vectors
x and y is defined as (Y -y)?)m .
Functional

A functional is a mapping of a function into the real line.

Hamilton-Jacobi-Bellman Equation

U set of input values (controls)

B, B, Banach spaces

B’ space of continuous linear functionals on B

X state set

R real line

A,0V/ox continuous linear transformations of B, into R, that is, € B,

V(t,x) a real-valued function defined on [T1,T2] x X

[T1,T2] closed time-interval

R < [T1,T2] x X event space

S target set ¢ R

u’ an admissible control that transfers (t.,x,) to S along a path
lying entirely in K.

X c B,

X state

t time

u control

The real-valued function H defined on X x B,” x U x [T1,T2] by the relation
H(x,Aut) = L(xu,t) + <A flx,ut)>

is called the Hamiltonian

where <A,f(x,u,t)> is the operation of A on f(x,ut) € B

The partial differential equation
is called the Hamilton-Jacobi-Bellman equation.

323

VD) |, gy [x.9VEN) o (1 OVED))
of o o U o)

Normed Linear Space

A vector space over which a norm [x]| is defined called normed linear space having
the following properties:

el = ¥ 5
x| =0
Ix}l =0 if and only if x =0
lox | = Joc| [x]
(o + B)x = ax + Bx
ox +y) =ox + ay
a(fx) = (af)x
Ix=x
where o,p are scalars and X,y are vectors.
Metric Space

A vector space over which a distance d(x,y) is defined is called a metric space having
the following properties:

dx,y) 20
dix,y) =0if and only if x =y
d(x,y) = d(y,x)
d(x,z) < d(x,y) + d(y,z)
Cauchy Sequence
If, in a metric space (X,d), the sequence {x,} has the property that for any € > 0,

there exists an integer N such that for all n and m greater than N, d(x,,x,) < €, the
sequence is said to be a Cauchy sequence.

324

7T W —— L R e

Complete Metric Space

If a metric space has the property that every Cauchy sequence converges, the space
is called a complete metric space.

Banach Space

Let X be a normed linear space. Let the distance between any two points x,y € X be
d(x,y) = |x-yll. If (X,d) is a complete metric space, X is said to be a Banach space.

325

