Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately

DYNAMIC SIMULATION OF
CHEMICAL PROCBESSES

Lakhbinder Singh
Doctor of Philosophy

The University of Aston in Birmingham

June 1991

This copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and that no quotation
from the thesis and no information derived from it may be published without the
author's prior, written consent.

SUMMARY

This thesis describes the design and implementation of an interactive dynamic simulator
called DASP II. The starting point of this research has been an existing dynamic simulation
package, DASP which will be referred to as DASPI throughout this thesis. DASP Il is written
in standard Fortran 77 and is implemented on universally available IBM-PC or compatible
machines. It provides a means for the analysis and design of chemical processes. Industrial
interest in dynamic simulation has increased due to the recent increase in concern over plant
operability, resiliency and safety.

DASP II solves all model equations simultaneously and is therefore termed an equation
oriented simulation package which allows solution of dynamic and steady state equations. The
steady state can be used to initialise the dynamic simulation. A robust non-linear algebraic
equation solver has been implemented for steady state solution. This has helped to make DASP
IT more robust than DASPI.

A graphical front end is used to generate the process flowsheet topology from a user
constructed diagram of the process. A conversational interface is used to interrogate the user
with the aid of database files to complete the topological information.

An original modelling formulation implemented in DASP II provides a simple mechanism
for parameter switching which creates a more flexible simulation environment. The problem
description generated is by a conversational procedure using database files. The model format
used allows the same model equations to be used for dynamic and steady state solution.

All the useful features of DASP I are retained in DASP II. The program has been
demonstrated and verified using a number of example problems. Significant improvements
using the new NLAE solver have been shown. Topics requiring further research are described.
The benefits of variable switching in models has been demonstrated with a literature problem.

Keywords

Dynamic simulation = Computer aided design
Flowsheet generation Equation oriented approach
Non-linear algebraic equations

ACKNOWLEDGEMENTS

I would like to thank Dr John Fletcher for his supervision of this project. May I express
my gratitude to the management at BP International, and in particular Mr Peter Banks for his
encouragement, understanding and help. Thanks are also due to Mr Richard Bailey and
Professor Ross Taylor for the many useful comments and suggestions and to my collegues at
the Department of Chemical Engineering for the advice and moral support offered. I also wish to
thank my wife, parents, brother, sister and family for their moral support and understanding.

Special thanks are also offered to Professor Paul Preece of the University of Swansea
(formerly of Leeds University), for allowing me to use and modify PFG/PID for this work.

Funding for this project was received from the Science and Engineering Research Council
and this is gratefully acknowledged.

CONTENTS

Page
TITLE 1
SUMMARY 2
ACKNOWLEDGMENTS 3
LIST OF CONTENTS 4
LIST OF TABLES 8
LIST OF FIGURES 10
CHAPTER ONE Introduction 11
1.0 Introduction 12
1.1 Dynamic process simulation applications 14
1.2 Sequential modular approach 19
1.3 Equation oriented approach 20
1.4 Difficulties associated with the dynamic simulation of
chemical processes 21
1.4.1 Limited user interactiveness 21
1.4.2 Stiff model equations 22
1.4.3 Provision of a steady state 22
1.4.4 Handling of discontinuities 23
1.4.5. Large number of equations 23
1.4.6 Sparse equations 24
1.5 The DASP approach to simulation 24
1.6 Scope of Thesis 26
CHAPTER TWO Simulator Design Structures 28
2.0 Introduction 29
2.1 Dynamic simulation 30
2.2 Steady state simulation 31
2.3 Sequential modular approach 31
2.4 The equation oriented approach 33
2:5 Simultaneous modular approach 37
2.6 Concluding remarks 39

CHAPTER THREE Strategies and Structure of DASP 1

3.0

in comparison with other approaches

Introduction
3.1 Numerical methods
3.1.1 The solution of differential equations
3.2 Model format
3.3 Event processing
3.3.1 Event processing in DASP |
3.4 The problem description
3.5 Concluding remarks

CHAPTER FOUR The Solution of Non-linear Equations

4.0

Introduction

4.1
4.2
4.3
4.4

4.5
4.6

Variable initialisation

Non-linear algebraic equation solvers in simulators
Non-linear algebraic equation solvers for DASP II
The CONLES non-linear algebraic equation solver.
4.4.1 Newton Raphson method with step length

restriction

4.4.2 The Modified Levenberg-Marquardt
algorithm

443 The continuation method

CONSOL - Continuation method
Concluding remarks

Page

42

43
45
45
46
47
48
48
50

52

53
57
60
62
62

63

65

66
69

CHAPTER FIVE A Graphical method for generating

5.0

the process topology

Introduction

3:d
32

5.3

5.4

5.5
3.3

Methods of topology description

Methods for the graphical representation of the
flowsheet

Requirements for a process flowsheet generator
for DASP II

The limitations of PFG as a flowsheet topology
generator for DASP 11

BTOPOL - the interface between PFG and DASPII
Concluding remarks

CHAPTER SIX Models and their solution

6.0

Introduction

6.1
6.2

6.3

6.4
6.5

Model building and associated difficulties
Modelling strategies implemented in process
simulators

Selection of model variable specification

6.3.1 Model structure

6.3.2 Interactive variable specification interface
Generation of the simulation control options
Concluding remarks

Page

71

72
73

79

81

82
83
93

96

97
98

99
101
101
105
108
110

P.::ge
CHAPTER SEVEN Demonstration of DASP 11 111

7.0 Introduction 112
7.1 The generation of a DASP II flowsheet topology
input file for a methanol mixer tank problem with

the aid of BTOPOL 113
T2 Generation of the problem description information
using CINDAN and CUNIN 119

7.2.1 Interactive generation of the simulation control
information 119

7.2.2 Interactive generation of the variable

specification 125
7.3 The solution of Non-linear algebraic equations 135

7.3.1 Comparison of CONLES with Broyden's
method 135

7.3.2 Solution of NLAEs for multiple solutions
using CONSOL. 141
7.4 Conclusion 144
CHAPTER EIGHT Discussion and future work 146
8.0 General discussion 147
8.1 Recommendations for future work 151
8.2 Conclusion 153
REFERENCES 154
APPENDICES 164

Figure 5.1a
Figure 5.1b

Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8

Figure 5.9

Figure 5.10
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5

Figure 7.6
Figure 7.7

Figure 7.8
Figure 7.9
Figure 7.10

LIST OF FIGURES

Flowsheet of a section of an ethylene glycol plant.
Block diagram of the ethylene glycol plant illustrated
in figure 5.1a.

Connection blocks of modules.

The generation of the topological information file.
The PFG symbols menu and options.

The removal of a unit from the flowsheet.
Connecting lines at the same vertical co-ordinates.
Removal of a recycle stream.

Connecting lines with an exit stream at a higher vertical
position than the feed stream.

Connecting lines with an exit stream at a lower vertical
position than the feed stream.

Structure of the graphics front end.

Model generation by the model builder.

Generation of the variable specification files.
Construction of the equation system.

Generation of CINDAT - the simulation options file.
A flowsheet of the methanol mixer tank system.

A PFG flowsheet of the methanol mixer tank system.
Model selection for the units in the flowsheet.

The selection of an alternative sink unit for the old stream.

A PFG flowsheet of the methanol mixer tank system
without a feed heat exchanger.

Stream typing and labelling.

The standard prompt during the generation of the
simulation control options.

A typical integer parameter enquiry.

The selection of the default real variables.

Plot of tank liquid level versus time in the controlled

system.

Page
75

76
77
86
87
88
90
90

91

91

92
104
106
107
109
114
115
117
118

120
121

122
123
124

126

Figure 7.11

Figure 7.12

Figure 7.13

Figure 7.14

Figure 7.15

Figure 7.16

Figure 7.17

Figure 7.18

Plot of methanol mole fraction in the tank versus time
in the controlled system.

Plot of inlet water flowrate versus time in the controlled
system.

Plot of tank outlet stream versus time in the controlled
system.

Flow diagram of the methanol mixer tank in the
uncontrolled system.

Plot of tank liquid level versus time in the uncontrolled
system.

Plot of methanol mole fraction in the tank versus time
in the uncontrolled system.

Plot of inlet water flowrate versus time in the
uncontrolled system.

Plot of tank outlet stream versus time in the uncontrolled
system.

Page

127

129

130

131

132

133

134

LIST OF TABLES

Page

Table 7.1 The equipment list for the methanol mixer tank. 116

10

CHAPTER ONE

11

1.0 INTRODUCTION

This thesis is about dynamic simulation of chemical processes. The justification for this
work is the severe problems encountered in accurately predicting the behaviour of chemical

processes and the need to solve problems for safe design of chemical plant.

Dynamic simulation of chemical processes has become more significant over the last two
decades as energy consumption has increased and resources have been depleted. During the
same period the chemical industry has suffered several catastrophic incidents including
Flixborough (Kletz (1988)), Chernobyl (Mould (1988)), Bhopal (Shrivastava (1987)), Scveso
(Kletz (1988)) and Piper Alpha (Cook (1989)). As a result of these disasters there has been a
general tightening in safety standards. Increasing public awareness of pollution and its cffect on
the environment has led to legislation for the production of less effluent to a higher purity

standard.

These pressures have created financial difficulties for the industry. A great deal of capital
cost is incurred in order to meet the increasingly stringent government legislations for pollution
and safety (Anon (1984)), (Anon (1989)), (Stover (1985)). Operating costs have also been
adversely affected by upward trends in raw materials and fuel. Great savings can, however, be
made by improved reliability, increased efficiency, a greater recovery of usable by-products and
also by incorporating a higher degree of energy integration. Chemical engineers can achieve
some of the above savings by evaluating alternative process configurations. Process sjimulation
provides one method for carrying out such studies. This also enables a better undcrst;lnding of
the process, hence allowing the engineers to improve the controllability of the process which in
turn yields a safer and more pollution free plant. Until recently engineers relied mainly on
experience for process engineering; however, as new process technology, such as the use of
sub-sea slug catchers in the oil and gas industry (Sasnow (1989)), has rapidly advanced, only a
small number of enginecrs have the required knowledge to gain the maximum benefits from

these processes. Fortunately, during the same period there has been a vast increase in -

12

computing and numerical methods technology which enables process simulation to predict

process behaviour in a relatively small period of time.

The simulation of chemical processes can be defined as the use of mathematical models to
mimic these processes. The models are represented by a set of differential and algebraic
equations whose variables represent particular characteristics of the process. Steady state
simulation produces time independent values of the variables, whereas, dynamic simulation
generates the time dependent solutions of the equations. The models are usually solved using
numerical methods on a digital computer. Extensive work has been undertaken on steady state
simulation, which may be used to perform mass and energy balance calculations and preliminary
optimization studies of steady state chemical processes. More recently it has been developed to
enable an engineer to solve the dynamic equations of chemical plant systems. This can be used
to determine whether a steady state will be reached and whether the process design is safe,
efficient and environmentally clean. Since dynamic models contain differential equations in
conjunction with algebraic equations which must be solved over a given period of time, a greater
computing effort is required than that utilised for steady state simulation of an equivalent

problem.

13

1.1

Dynamic Process Simulation Applications

Dynamic simulation provides predictions of the performance of chemical processes which

were previously collected using pilot plant studies. The following are the more important

applications of dynamic analysis:-

a)

b)

Start-up and Shut-down studies

Dynamic simulation can be extremely beneficial in finding safe and efficient process start-
up and shut-down procedures. These must be known prior to initial start-up to ensure safe
operation.

Process Control Strategies

Dynamic simulation over the last decade has proved to be a useful tool for process control
design. It provides control engineers with the ability to rapidly investigate different control
strategies to achieve the maximum control for most chemical processes. This includes
evaluating control effectiveness by comparing advanced control schemes with conventional
and even manual techniques. This allows for better understanding of problematic control
applications. Once the most appropriate control scheme is chosen, the controllers can be
tuned to achieve an optimum response to a given perturbation. By using simulation, the
designers avoid having to rely on past experience alone. This allows a reduction in
overdesign of the control scheme to allow for uncertainty.

Batch Processing

A demand for new chemicals has arisen on a smaller scale of production than in the bulk
chemical industry. This demand has been met using batch processing. This enables often
production of many different chemicals from a small number of plant units, such as paints
and speciality products which are manufactured in a wide variety of formulations from the
same equipment. Other products - notably certain polymers are difficult to produce in the
required qualities by using continuous processes. While certain foods and drugs are made
in volumes too small to justify continuous processes. Dynamic simulation can be used for

analvsis and control design in these unsteady processes.

14

d)

e)

g

Effects of process parameters

Dynamic simulation allows the study of the response of chemical plants to perturbations in
feedstock, pressure, temperature and even climate. Consequently, optimum values of
process parameters can be determined. An extreme example of this is in the assessment of
the effect of changes in ambient temperature on a condenser. A change in ambient air
temperature can alter the amount of condensation taking place in the condenser, this may
significantly affect the complete distillation column and hence the product yields.

Hazard Analysis

Process engineers can use dynamic simulation to assess the safety problems associated
with each process after the onset of perturbations and hence determine the limits of
operation. Dynamic simulation enables the consequences of equipment failure to be
understood and the necessary operations to prevent dangerous and unwanted situations can
be designed.

Operability Studies

Highly integrated and complex processes can be simulated to study the effect of various
process changes. The control requirements of the process can also be determined. This
enables engineers to gain confidence with the process and work out emergency
procedures.

Operator training

Dynamic simulation is becoming a method for training plant operators intensively within a
short period of time. It offers hands on experience and exposure to a wide variety of
process conditions, including both routine events and those rarely encountered on the job.
This reduces the possibility of operator error through ignorance on the actual plant. Pathe
(1986) estimated from insurance surveys that approximately 25% of losses from accidents
in the petrochemical industry are the result of process upsets and human error.
Simulations can provide a key link between operator training effort and a subsequent

reduction in the number of plant trips and accidents.

15

It can be seen from the uses of dynamic simulation discussed above, that the possibilities
for chemical process design have been greatly increased by the introduction of simulation. All
the tasks now possible with dynamic simulation, were previously carried out on a full size
chemical plant or else on a pilot plant, where scale up can cause different behaviour. Chemical
engineers can also now analyse different process configurations and provide answers to "what
would happen if" type questions in a sufficiently small response time. Consequently,
chemical plants have been made more efficient due to the implementation of better equipment and
control design and employment of greater energy integration. They have also become safer
because of better understanding by engineers and operators. This shows the large economic
incentive for applying dynamic simulation to chemical processes. Mix et al (1977) estimated that
achievement of a ten per cent saving in the energy consumption would result in the USA alone

saving 2 x 104 BTU's of energy per year, currently worth about $500 million per year.

Burchell (1989) discussed the application of dynamic simulation for operator training by
BP on a new acetic acid and acetic anhydride plant. The acetyls process which involved both
continuous and batch unit operations had only been demonstrated under laboratory conditions.
As the new plant required advanced control schemes and utilised a Distributed Control System
(DCS), it was decided that the process operations training would incorporate DCS training and
plant operations training to ensure safe, effective and efficient operation of the plant. This
replaced the orthodox method of ‘on the job' training during commissioning. Burchell (1989)

states that the benefits accrued by the application of the simulator included:-

a) A general reduction in training time.

b) Anincrease in effectiveness and efficiency of the training process.

¢) Reduction in commissioning time.

d) Reducton in the frequency of the plant trips and plant down time.

e) Anincrease in the trainees confidence to effectively perform: cold and warm start-ups,

production change and maintenance shut-downs.

16

It can be seen from the uses of dynamic simulation discussed above, that the possibilities
for chemical process design have been greatly increased by the introduction of simulation. All
the tasks now possible with dynamic simulation, were previously carried out on a full size
chemical plant or else on a pilot plant, where scale up can cause different behaviour. Chemical
engineers can also now analyse different process configurations and provide answers to "what
would happen if" type questions in a sufficiently small response time. Consequently.
chemical plants have been made more efficient due to the implementation of better equipment and
control design and employment of greater energy integration. They have also become safer
because of better understanding by engineers and operators. This shows the large economic
incentive for applying dynamic simulation to chemical processes. Mix et al (1977) estimated that
achievement of a ten per cent saving in the energy consumption would result in the USA alone

saving 2 x 104 BTU's of energy per year, currently worth about $500 million per year.

Burchell (1989) discussed the application of dynamic simulation for operator training by
BP on a new acetic acid and acetic anhydride plant. The acetyls process which involved both
continuous and batch unit operations had only been demonstrated under laboratory conditions.
As the new plant required advanced control schemes and utilised a Distributed Control System
(DCS), it was decided that the process operations training would incorporate DCS training and
plant operations training to ensure safe, effective and efficient operation of the plant. This
replaced the orthodox method of 'on the job' training during commissioning. Burchell (1989)

states that the benefits accrued by the application of the simulator included:-

a) A general reduction in training time.

b) Anincrease in effectiveness and efficiency of the training process.

¢) Reduction in commissioning time.

d) Reduction in the frequency of the plant trips and plant down time.

e) Anincrease in the trainees confidence to effectively perform: cold and warm start-ups,

production change and maintenance shut-downs.

16

The cost of the simulator has been estimated as 2-3 days production. The time saving by
the company was much larger than this. A further example of the value of training simulators is
illustrated by Pathe (1986). He described the key role played by a real time process simulator in
obtaining "a near flawless and world record start-up” of C-I-L's Ammonia plant. The
management confirmed the significant contribution made to the successful start-up by the
extensive pre-training of the operating personnel using the simulator, which duplicated the
operation of the plant in real time response. It was estimated that the training, involving more
than 100 simulated trip situations, was equivalent to 10 years of on the job training and plant

experience to acquire the same skills.

Alcock (1985) gives an example involving a hazard and operability study for revamping
the water injection system of a North Sea platform. The performance of the redesigned system
was evaluated using dynamic simulation to provide information for the hazard and operability
study. The main issue of concern was the safe operation of the injection pumps which could be
seriously damaged by a failure in the sea water supply. Although, it was unclear whether there
would be sufficient liquid on the suction side to allow for safe shut down. The dynamic

simulation indicated that the proposed control systems would perform satisfactorily.

Prokopakis and Seider (1983) applied dynamic simulation to azeotropic distillation using
suitable algorithms to provide an efficient method for understanding this complex process. They
concluded that the open loop response for dehydration of ethanol with benzene is unusual, with
steep concentration and temperature fronts moving up and down the column. A combination of
disturbances can diminish this movement, indicating that azeotropic distillation towers can be

controlled by adjusting the decanter by pass fraction and reboiler heat duty.

These examples show that the economic and safety incentives for applying dynamic
simulation to chemical engineering processes are large. Dynamic simulation aids the engineer in

the decision making process by providing information that is difficult and time consuming to

17

obtain by other means. Consequently, dynamic simulation has a use at almost every stage in the

life cycle of a chemical process plant.

A typical chemical process consists of a series of process units. A dynamic simulation of
the whole process could be performed using a computer program specially written for the
purpose in a "stand alone" manner. This would have to contain a model for each type of process
unit. The effort of simulation is reduced by constructing a simulation package containing the
unit models and the means of linking them together. This program can then be used repeatedly
to solve different simulation problems. This development follows the pattern set for steady state

simulation (Evans (1981)).

Ponton (1983) describes the simulation of a process by a simulator called DPS which
required 2 to 3 man days of effort, whilst the same process required 6 man months of effort
writing and using a stand alone package. Exxon (Slaver (1986)) found that stand alone systems
were effective for problem solving but inefficient for running the variety of cases that were
required in system studies. Slaver (1986) concluded that the primary requirement for system

studies is that the simulation be sufficiently flexible to test a variety of cases.

During the 1950's analog computers were the major systems used for continuous
simulations. The translation to digital simulation via hybrid simulators exposed many engineers
to continuous system simulation languages (CSSL). CSSL's enable dynamic simulation
problems to be posed in a mathematical format without a great deal of programming effort. The
early CSSL's took the form of high level computer languages, such as FORTRAN. These
subroutines did not provide the flexibility and convenience desired in most simulation studies
and subsequently led to the Simulation Council Inc publishing the CSSL Standard
(Anon.(1967)) which defines the program structure for future simulation language
developments. A number of organisations developed CSSL's in line with the standard,
including IBM which with its significant computer market penetration released the widely used

CSMP (Spechart and Green (1976)). Other examples include ACSL (Mitchell (1978)), DARE- -

18

P (Kom and Wait (1978)) and GASP (Pritsker (1974)) which was developed for discrete,

continuous and combined simulations.]

Wood er al (1984), Cameron (1981) and Joglekar and Reklaitis (1984) have highlighted
the major limitations prevalent with existing CSSL's for chemical engineering applications.

Some of the limitations being:-

a) Lack of interaction with the simulation means the user has difficulty in extensive
experimentation.

b) The inability to directly call external FORTRAN subroutines, such as physical
property estimations.

c) The inability to calculate the steady state solution of the models by the
solution of non-linear algebraic equations.

d) The ngid output format must be adhered to.

e) Computing run time is high.

The lack of features discussed above prompted chemical engineers to develop general
purpose dynamic process simulators. These dynamic simulation systems, like steady state
simulators, can be broadly classified as modular based systems and equation oriented systems

(Westerberg et al (1979)).

1.2 Sequential Modular Approach

The majority of current steady state simulators are based on the sequential modular
approach. As the early dynamic simulation systems evolved from flowsheeting packages they
also followed this strategy. Unit operations are modelled with the equations housed in modules,
which to aid solution may contain numerical methods particularly suited for these models, e.g.
the use of continuation methods for distillation modelling (Kovach and Seider (1987)) which can
converge from starting points further from the solution than Newton methods. As distillation

systems are usually large, containing many variables the provision of a good enough starting

19

point for the Newton methods becomes difficult. Another advantage of the continuation
methods over Newtons method is their ability to find multiple solutions.. It is assumed that the
information flow in the models follow the material flow in the chemical plant and design
variables are defined at all times. The simulator executive calls the unit modules in a
predetermined sequence. Modules are structured to calculate derivatives of the output variables
given the input variables, model parameters and the output variables at time t. The integrator
then integrates the equations to generate the variables at the next time interval. Sequential
modular programs include DYFLO (Franks (1972)), DYNSL (Paterson ez al (1980)). DYSCO
(Briggs (1974)) and FLOWPACK II (Aylot et al (1985)). However, this approach has inherent
limitations that make it ineffective in dealing with large and complex processes. This is a result
of its evolution from steady state simulators. One of the difficulties associated with modular
dynamic simulators involves the degree of coupling between the equations in the various
modules (Cameron (1981)). Sequential modular systems can be divided into two divisions
depending on the coupling mechanism adopted in the simulator : uncoupled and coupled solution
systems. In the uncoupled systems the equations from a particular module are solved
independently of the other modules. The coupling only occurs at the end of predefined time
intervals and not during each integration step. Coupled systems employ equation coupling at
every step of integration, therefore all the differential equations are integrated in unison over the
time interval. Optimisation studies and complex processes incorporating recycle loops also pose

problems for this approach (Westerberg (1979)).

1.3 Equation Oriented Approach

To overcome the pitfalls existing in sequential simulators and the general advance in
computing, researchers started to turn their attention to the equation oriented approach. Some of
the subsequent simulators developed include DPS (Thambynayagom et al (1981)), SPEEDUP
(Pantelides (1988)), BOSS (Joglekar and Reklaitis (1984)), QUASILIN (Smith (1985)) and
ASCEND II (Kuru (1982)).

2(0)

The main attribute of the equation oriented approach is the ability to solve all the model
equations simultaneously. Thus, it overcomes the problem of coupling encountered in
sequential modular simulators. All the model equations in the process are solved together at
each time step. Two different variations of this type of simulator exist, the main difference
being the method of generating the equation block for simultaneous solution. The first type
involves the user assembling the model equations in a large system and the solver then acts upon
this system, it is obvious this approach can be time consuming. The alternative development is
the modularly organised equation based approach which entails the model equations being

extracted from modules containing the equations for the required unit operations.

1.4 Difficulties Associated with the Dynamic Simulation of

Chemical Processes

The development of dynamic simulation has been rather slow with most of the studies
being confined to academic organisations and industrial attention being restricted to very few
organisations. The main reason for this has been the high cost incurred in undertaking these
studies. Consequently, it has been used only for the most important problems where answers

were urgently required. The other difficulties met include:-

1.4.1 Limited user interactiveness

The major effort in a dynamic study is the definition of the complete and correct system
description. Therefore, the simulator must provide a simple and efficient mechanism for input
and output of the required information. Simulators attempt to provide this facility by using a
variety of different mechanisms, including the use of a specially written simulator language.

Others utilise text input files and a high level computer language. A mix of interactive facilities

21

and batch processing must be provided, so that operation of the program does not become o0

tedious for experienced users who can revert to the batch processing facility at will.

1.4.2 Stiff model equations

Chemical process models commonly contain dependent variables showing vastly different
rates of change with the independent variable, which usually is time. This can lead to a "stift”
problem, where the ratio of maximum to minimum eigenvalues is large, tvpically greater than
1000 (Finlayson (1980)). Explicit integration methods are not generally suitable for stift
systems as they usually require very small time steps to achieve the necessary accuracy. The
problem has been tackled with recently developed implicit integration techniques. such as Gears
method (Gear (1971)), which show improved performance but are only suitable for computers
because their highly iterative nature requires extensive computation. The problem can usually be
reduced by converting differential equations, with much smaller time constants than other
equations to algebraic equations, although extreme care must be taken to ensure that the resulting

model is still valid.

1.4.3 Provision of a steady state

A consistent initial state has to be provided to commence the dynamic simulation. This can
amount to solving the model equations with the derivatives equated to zero, yielding a set of
non-linear algebraic equations from the original system of differential algebraic equations
(DAE's). Consequently, it is the steady state or flowsheeting problem that must be s;olvcd. A
great deal of research has generated a number of methods for the solution of non-linear algebraic
equations (NLAEs), however, Newton Raphson or one of its variants remains the most popular
technique in simulators (Sargent (1982)), as these methods are the most efficient solution

techniques for NLAEs.

&)
(8]

1.4.4 Handling of Discontinuities

A rapid change of state in a chemical process is represented by a discontinuity in a dvnamic
simulation study. This may result when a valve closes shut or a blowoff valve suddenly opens.
this is termed an implicit discontinuity and requires the actual time of the switch to be located.
Detecting and then stepping over the discontinuity without a great deal of difficulty poses a
major problem for the dynamic simulator. Another type of discontinuity also exists and is
caused by imposed changes at specified times. This type of discontinuity is called an explicit

discontinuity.

1.4.5 Large number of equations

A large number of equations result if a comprehensive dynamic process study is carried
out on a complete process or a large process unit, examples include multicomponent distillation
columns which can yield as many as 3000 equations or distributed systems which yield
variables varying in two different independent variables and result in partial differential
equations. These large systems can pose difficulties for the numerical methods implemented in
simulation systems. For instance the equation system must be re-initialised after a discontinuity,
the likelihood of a failure increases if the system is large and in particular if the initial starting
points are far from the solution. The sparsity of the problem generally increase with the size of
the equation system. However, a mathematical model of a chemical process must only possess
the degree of complexity required to answer questions that are posed. Excessive model
complexity can be avoided by building the flowsheet from basic models. These models are
validated by comparing the model simulation results with the actual plant performance. The
models are then implemented in sections in order to construct the flowsheet. The resulting

consolidated model is then fit for the purpose and not unnecessarily rigourous.

[]
s

1.4.6 Sparse Equations Systems

Sparse matrices can be defined as matrices containing elements that are predominantly
zeros occuring randomly. These matrices result when equations exhibit a dependency on only a
small number of variables and can be manipulated to take advantage of the percentage and
distribution of the zero elements. These systems commonly occur in chemical engineering

problems.

During the solution of linear equations by standard linear equation solvers the structure of
the sparse matrix is changed as new non-zero elements are generated by the elimination process.
This process results in the loss of the matrix sparsity, which in turn increases the storage

requirements and computation needed for obtaining the solution.

1.5 The DASP approach to simulation

DASP is an equation oriented simulation package developed at the University of Aston.
The aim of the DASP project from its conception has been to provide a flexible and robust
simulation package. To develop such a package the limitations discussed in Section 1.4 must be

addressed and overcome.

Ogbonda (1987) attempted to overcome the following limitations occuring in the
application of dynamic simulation to chemical processes : the efficient solution of sets of DAE's
by the incorporation of DASSL - an implicit integrator. DASSL is also useful in the S(‘)lution of
stiff model equations. The inclusion of event processing which involves overcoming both
implicit and explicit discontinuities. MA28 (Duff (1977)) has been implemented to handle

sparse matrices.

Although, a library of chemical process models has been developed. the mode! structure
implcmented 1s inflexible allowing only predefined variables to be calculated from a model. This

major limitation has been overcome in DASP II in which the models utilise the full potential of

24

the equation oriented approach and allow any variable in an cquation to be defined as an
unknown. The method implemented is a more efficient method than that implemented in other
simulators such as SPEEDUP (Pantelides (1986)) and QUASILIN (Smith (1985)) as it allows a

simple and rapid change in the model variable/parameter specification.

Another major issue that has been investigated is the lack of interactiveness in equation
oriented dynamic simulation packages. A suitable interactive mechanism has been developed
with the aid of an extremely useful process flowsheeting package PFG, which allows the
generation of the process flowsheet topology information. An interface between a modified
version of PFG and DASP II allows the automatic generation of topological information. The
interface uses a conversational procedure as its interrogation method. A conversational
environment is also used to generate the problem description including the simulation control
parameters and the model variable/parameter information. A database system has been designed
which enables all the model information to be stored in an efficient manner using a commercially
available database manager thereby permitting its use on a universally available computer such as

an IBM PC which has limited memory.

The robustness of DASP II has been significantly increased with the inclusion of
CONLES - a non-linear algebraic equation solver. This contains three methods of solution, onc
each from the three classes of convergence available, 1.e. local, expanded and global. Although,
the methods offering local convergence properties need good initial variable estimates for
solution, they are usually the most efficient algorithms. Whilst, those offeriqg global
convergence are the least efficient, they can converge from the worst initial estimates. Most
simulators including DASP I have up until now utilised locally convergent methods. As non-
linear algebraic equations are required to be solved during many stages of a simulation study a

robust NLAE solver must be provided. This has been done in DASP II with the inclusion of
CONLES.

Model validation is a problem common to all simulators. This problem can be overcome to
some extent by model evolution where the model is built up in stages from basic equations. The
model prediction is then assessed at each stage. Difficulties can also arise with validating the
results generated by the simulators. For instance NLAEs generally possess multiple solutions
and NLAE solvers can converge to different solutions depending on the choice of starting point.
Consequently, the results must be thoroughly examined and infeasible solutions such as
negative pressures and compositions or mole fractions greater than one can be rejected by

inspection.

1.6 Scope of Thesis

Dynamic simulation of chemical processes with an equation oriented framework is

discussed in this thesis.

This research project investigated dynamic simulation in particular the strategies adapted in
DASP I and the limitations of this approach. The aim of this work was to develop a robust user
friendly dynamic simulation system for simulating the transient behaviour of chemical processes
and plant on a readily available computing medium such as IBM PC's or its compatibles. As
noted earlier in this introduction, the equation oriented approach poses many interesting features
that can be utilised to produce a comprehensive simulation package. However, it is also subject

to many frailties that can seriously hinder its use in dynamic simulation.

These limitations are highlighted in this introduction and discussed more comprehensively
in Chapter 2. The different methods used in simulation, their strengths and weaknesses are also
addressed in Chapter 2. DASP I is an equation oriented dynamic simulation package developed

at Aston University.

In Chapter 3 a description of the strategies implemented in DASP 1, in comparison with
other simulators, is given together with their limitations. Chapter 4 is devoted to the solution of _

non-linear algebraic equations which provides a steady state of the process which in tum can be
26

used as an initial starting point for dynamic simulation. The application of a graphical front end
to automatically generate the process topology is described in Chapter 5. In Chapter 6 a strategy
which allows the DASP II models to adopt a truly flexible equation oriented approach is
outlined. The automatic generation of the problem definition using a database management
system aiding interaction with the user is also described in Chapter 6. A collection of examples
illustrating the features used and considered for implementation in DASP II are described in

Chapter 7. The final chapter contains conclusions and recommendations for future work.

CHAPTER TWO

SIMULATOR DESIGN STRUCTURES

2.0 Introduction

A mathematical model of a chemical process is used to approximate the behaviour of the
process, usually under defined conditions. Some simplifying assumptions are made in the
model so that it can be solved relatively easily. Nevertheless a worthwhile balance must be

achieved between the model and reality.

The model consists of a set of equations of various types, which relate the physical
variables of the system being modelled. These are then solved to obtain design and performance
predictions for the modelled chemical plant. Experimentation with these theoretical models can
be used to overcome the expense associated with experimentation with real chemical plant. Prior
to the availability of digital computers, simple mathematical models were often used to ensure
solution. However, with more powerful computers readily available, more realistic models can
be formulated. Mathematical models can be classified as either steady state or dynamic. Steady
state models represent steady state processes which can be used for design or flowsheeting
calculations. Dynamic models apply to transient processes which can be used to carry out

performance predictions for chemical processes.

Chemical process simulators mimic real chemical processes by using numerical techniques
on computers to solve validated mathematical models of the chemical processes. ‘;Differem
general purpose chemical process simulators are therefore, classified in the way the numerical
techniques are used to solve the mathematical models. Two distinct approaches of simulation
exist: sequential modular and equation oriented. The former solves one model at a time with
some output variables being passed to the next model as input variables. Whilst the equation

oriented solved all the model equations simultaneously.

These strategies which apply to steady state and dynamic simulation are discussed in

Sections 2.3 and 2.4 respectively.
29

Most simulators can potentially carry out steady state, dynamic simulation and optimizaton
within one package. Biegler (1989) lists several simulators demonstrating this feature. DASP I

can undertake steady state and dynamic simulation.

2.1 Dynamic Simulation

Dynamic models are composed of a set of differential and algebraic equations (DAE) of the

form

F (y‘s ys Z, u, t) = @m
g(y;zl U,t) :@n 21

where

F is a vector of functions for the differential system

g 1is a vector of functions for the algebraic system

y 1is a vector of differential variables

u is a vector of control variables

t isthe time

z is a vector of algebraic variables

@m is a null vector

@n is a null vector

The initial conditions yg =y (to) for the differential equations and z, = z (t,) are required to

commence the simulation from time t,. The control variables u are functions of time and are

specified between the start and final time of simulation.

30

2.2 Steady State Simulation

Steady state models yield sets of nonlinear and linear algebraic equations. The
fundamental mathematical problem is the solution of these nonlinear algebraic equations of the

form:

r2
[£9)

f(y; z! ua t) = gm+n

It can be seen that the differential and algebraic system given in equation 2.1 generated by
dynamic analysis is reduced to the steady state problem if the differential terms are eliminated,
i.e. if the ime variation is eliminated. Consequently, the steady state can be used as one set of
initial conditions for the DAE system which requires a consistent and non-redundant initial state
of the physical system. Inital estimates for the algebraic variables are also provided to aid the

initialisation procedure.

2.3 Sequential Modular Approach

In the sequential modular approach all the units in the chemical process are represented by
modules which describe the units. Each module contains mathematical models and can therefore
be steady state or dynamic. These modules are simulation oriented or in other words behave like
"black boxes" - generating outputs given the inputs. For dynamic simulation, variables are
produced describing the output streams once the input variables, model parameters and the
output variables at the previous time interval are given. Two different techniques exist within
the dynamic modular simulation framework, with the main difference being the manner in which
the equations are coupled from the different modules. The older simulators such as DYFLO
(Franks (1972)), implement the uncoupled solution system, which solves the module equations
independently from other modules. The integration through a time step is carried out
sequentially over all the modules after which control is passed back to the executive routine,
which in turn couples the variables. This procedure is repeated from the integration start time

until the final simulation time. This method results in poor solution accuracy as outdated
31

variable values are used in subsequent calculations. DYFLO (Franks (1972)) employed this
technique with explicit integration algorithms, whilst this integrator has been replaced by the
implicit Euler method in DYFLO 2 (Franks (1982)). The alternative approach is to couple the
equations at every step of the integration, so that the differential equations are integrated in
unison over the time interval. This solution approach is adopted in DYNSL (Patterson and

Rozsa, 1980).

The sequential modular approach was very popular during the early stages of the
development of dynamic simulation because many organisations had expended a great deal of
time and money on producing libraries of steady state models which could be easily converted to
dynamic models. As the information flow in the program closely resembles the material flow in
the system, process engineers found it easy to follow and error checking proved to be simple in
the case of program failure. A great deal of research effort is still expended on simulators
implementing this approach, because it allows numerical methods to be incorporated within the
model. Hence, special techniques can be utilised for difficult problems. Examples of this
include: Woodman (1989), who utilised continuation methods to solve complex azeotropic
distillation problems. Kovach III and Sieder (1987) also attempted to solve this problem, using
arc length continuation methods where the set of non-linear equations is reformulated as a set of
ordinary differential equations with respect of the arc length of the path. This technique follows
the actual curvature of the path, hence it is more reliable than the classical continuation methods
which steps along the path by simply incrementing the homotopy parameter. However, several
major problems seriously affect the efficiency of the sequential modular approach. A
fundamental problem occurs with this approach when applied to dynamic simulation and
involves the degree of coupling between the equations. The difficulty with uncoupled systems
has been described earlier. In the coupled method, although the differential equations are solved
simultaneously, coupling between the algebraic and dynamic variables is neglected. This results
from different modules calculating the differential and algebraic equations separately, hence
outdated variable values are used in subsequent calculations. Consequently, the correct solution

for the equation system is not obtained. Another problem is encountered with flowsheets

32

containing recycles, these streams have to be guessed or "torn” and must then be converged.
Therefore, complex flowsheets with multiple recycle streams require many iteration loops which
can be time consuming to solve. As optimisation involves the addition of an outer loop on the
process, it is evident that this will add to the degree of difficulty of solution (Westerberg
(1981)). With steady state systems controlled simulation problems with one or more design
specifications can be troublesome. These problems are usually solved by an iterative simulation
in which the process is repeatedly simulated until the design specifications are met, these
iterations are termed control loops. As the design specifications are usually very simple
equations, the applications of control loops is an inefficient and costly mechanism for their
solution. It is clear that the aforementioned problems can become severe and limiting for
realistic applications which are usually complex in nature. Consequently, there has been a great
deal of recent interest in the equation oriented approach, which is an alternative mechanism for

the simulation of chemical processes.

2.4 The Equation Oriented Approach

In the equation oriented approach, the process model equations, connections and
specifications are accumulated into one large system of equations which are then solved
simultaneously. The physical property equations can also be included in the system of equations
or handled separately. The physical property equations unnecessarily add to an already large
system of equations which further exacerbates the problem of a large set of nonlinear algebraic
equations. A substantial academic effort, including the work of Sargent and Westerberg (1964),
Christensen and Rudd (1969), Westerberg (1979) and Gorczynski et al (1979), has been
expended since the 1960's on equation based process simulators. This is a result of the general
view that this approach can alleviate the inherent weaknesses commonly associated with the
sequential modular approach. It is necessary for equation oriented simulators to assemble the
model equations together as a system. The equations are then solved by the simulator. One

example of this approach was the general purpose CSSL's which were used to dynamically

33

simulate chemical processes. Examples of this type of package include: CSMP (IBM (1970)).
DSL (Anon. (1980)) and ACSL (Anon (1976)).

The use of continuous languages and their limitations in dynamic simulations have been
discussed earlier. These weaknesses can be briefly highlighted as lack of interaction with the
user, inability of accessing external code, inability to obtain the steady state, rigid output format,
excessive computing time, excessive time taken to correctly formulate the svstem definition and
the difficulty in debugging the code when errors occur. In practise other approaches have
proved much easier to use. Consequently, they have only been utilised for problems in chemical
engineering applications which necessitated the use of dynamic simulations.

For such complex problems, typically consisting of a few hundred variables, error frec
coding was seldom possible and inefficient storage meant that variable limits were easily

exceeded.

To overcome the laborious task of coding the system of equations and the resulting
problems, researchers such as Gorczynski er al (1979), Pantelides (1986) and Ogbonda (1987)
considered the advantages of units being modelled in modules and subsequently developed
techniques for using a modularly organised equation oriented approach. Unlike sequential
modular unit models, the numerical methods were required to be kept invisible from the units to
maintain simultaneity. Consequently, the modularly based equation oriented simulators usually
contain a library of models, with each model containing the differential and algebraic equations
describing a unit operation. The executive routines for these simulators are ‘therefore
sophisticated programs which collect the equations from the library of all the models in the
flowsheet and utilise the most appropriate numerical techniques to ensure an efficient simulation.
This technique is applied in QUASILIN (Gorczynski er al (1979)), SPEEDUP (Pantelides
(1986)). SEQUEL (Stadtherr and Hilton (1982)), GOS-84 (Kohlert er al (1985) DASP
(Ogbonda (1987)) and CHEOPE (Pagani er al (1989)). A distinction can be made between two
general approaches to equation based flowsheeting. The first is the solution of the full problem

using suitable numerical methods for nonlinear systems. The second involves partitioning the

34

equations into blocks which are then solved. Perkins and Sargent (1982) describe two
mechanisms of partitioning, that can be used for simulation; the first method involves
partitioning the full set of equations and vanables into blocks which can be solved sequentially.
This can reduce the size of the largest set of equations to be solved simultaneously. The second
approach goes one step further, by tearing to reduce the size of the largest subproblem once
partitioning has taken place. A number-of variables are tomn so that the remaining variables can
be calculated by solving a sequence of single variable problems. A set of equations remains,
equal in number to the torn variables, resulting in residuals which can enable the torn variables
to be adjusted in an outer iteration loop. SPEEDUP (Pantelides (1986)) implemented the first
decomposition scheme. GOS-84 (Kohlert (1985)) is another simulation system which utilises
decomposition to aid convergence of the complete flowsheet. However, the majority of
equation oriented simulators implement simultaneous linerization in the solution of a steady state
for a problem. This approach is also attempted in different ways; Quasilin (Gorczynski er al
(1979)) requires its models to be composed of linearised equations. The executive routine
passes the unit parameters and the values of all the process variables to each unit module.
Linearised equations are constructed from this information and returned to the executive. All the
linearised equations are assembled from the modules and are solved by a modified form of
Gaussian Elimination, generating a new set of values of the process variables. This whole
process is repeated until convergence is obtained. Each unit module contains the necessary
information required to linearise the original equations. This approach is very much like the

simultaneous modular approach although the authors consider it an equation oriented approach.

In SEQUEL (Stadtherr and Hilton (1982)) this problem is overcome by utilising a set of

equations in a fixed form.

The user must convert all model equations to the same form of one of the defined
equations. The transformed model equations are then collected and solved by one of three
available, non-linear algebraic solvers. Two of these are: Newton Raphson and a variant. The

third is a hybnid method which consists of a first order method. used far away from the solution

35

because of its stability properties and a second order full Newton Raphson scheme nearer the
solution to utilise its desirable speed. The user is required to specify a blending parameter and
its rate of change. There is an option to use the Newton Raphson method throughout.

Pagani et al (1989) used another approach with their equation oriented flowsheeting
package - CHEOPE. The modules are used to generate equation blocks for each process unit.
The equations are then collected in a large system of equation blocks forming a quasi-tridiagonal

Jacobian matrix. A Newton Raphson method is then used for solving the resulting equations.

Equation oriented simulators have the potential to overcome all the drawbacks associated
with the sequential modular approach. However, industrial acceptance has been very limited
because of major disadvantages existing with the equation oriented approach. One of the most
serious problems is the complex executive routine that is required to generate the system
equations from the necessary models. The executive routine must then solve the system of
equations in the most efficient manner, and produce the results in a format that can be easily
understood by the user. In order to achieve all the housekeeping efficiently the executive routine
tends to be large and complex. The advent of cheap and powerful microcomputers with large
storage capabilities has meant that the large and complex executive routines are not as limiting as
they once were. The new generation of powerful computers also reduces the computational time
of the advanced numerical methods that are used to increase the accuracy and efficiency of
equation oriented simulations. These advanced numerical routines must be general purpose so
that all the different types of model equations can be solved without failure. However, more
reliable equation solvers have been developed (Sargent (1981), Shacham ez al (1982),'Pagani et
al (1989)) which can handle the large, sparse system of nonlinear algebraic equations that arise.
Whilst, a new generation of integration techniques have been formulated (Gear (1971), Holland
and Liapus (1985)). These methods can automatically vary the step size and order of integration
to handle stiff equations systems. Other researchers have worked on developing numerical
methods such as sparse matrix packages (Stadtherr and Wood (1984) and Duff (1977)) which
can be used to reduce the huge storage requirements demanded by the equation oriented

approach. Another problem with equation oriented approach is the difficulty in sctting up the

36

system definition. Whilst engineers encounter problems in following the information flow
during an equation oriented simulation and assessing where the problem occurs when the
simulation has failed. These problems are now less severe because equation oriented simulators
have now generally adopted the modular organisation strategy. Simulators such as SPEEDUP
(Anon (1988)), generally possess improved diagnostic facilities which allow for better error

tracebacks.

2.5 Simultaneous Modular Approach

The simultaneous modular approach is considered as a subset of the equation oriented
approach (Perkins (1982)), this is because the equations describing the entire process are solved
simultaneously. However, the simultaneous modular approach contains several strategies
different from the equation oriented and the sequential modular method. The model equations
are contained in modules in a similar manner to the sequential modular approach. However,
unlike the equation oriented approach the simultaneous modular approach uses two levels of
calculation and is sometimes referred to as the two-tier method. The first is termed the module
level which involves the representation and subsequent solution of simplified and usually linear
models to generate an approximate Jacobian matrix. The second level computation is the
flowsheet level which involves the simultaneous solution of the equations and some or all of the
connection equations. The linear models generated in the module level contain coefficients
which are calculated by perturbing the sequential modular models. Simultaneous modular
simulators differ in the way the Jacobian matrix is generated in the module level computations,
the numerical methods used for the flowsheet computations and the mechanism by which unit
connecting streams are calculated. Examples of simultaneous module simulators include
ASPEN (1979) and SIMMOD (Chen and Stadtherr (1985)). Joulia and Kohert (1985) have also
experimented with the simultaneous modular approach by adding appropriate convergence
modules to their sequential modular simulator. Jirapogphan (1980) attempted to utilise non-
linear models in a simultaneous modular environment and concluded that the convergence was

improved in steady state simulations and optimisation problems. Pierucci ¢ al (1982) confirmed

37

the improved convergence obtained by using nonlinear reduced models. Chen and Stadtherr
(1985) observed a considerable improvement in optimization problems by using the
simultaneous approach over the sequential modular method - whilst Trevino-Lozano (1985)

modified ASPEN to incorporate a simultaneous modular approach and called it ASPEN plus.

The simultaneous modular approach attempts to combine the best features of the sequential
modular and equation oriented approaches, hence overcoming some of the deficiencies
associated with the other methods. The main advantage over the sequential modular approach is
that computationally intensive control loops used in design calculations and optimisation are no
longer required. Existing sequential modular models can be used to generate the linearised

model coefficients, which become redundant in the equation oriented methods.

38

2.6 Concluding Remarks

Extensive research carried out in process simulation over the last thirty years has meant
there has been a considerable advance in chemical processes being more realistically simulated.
Various reviews of process simulation have been undertaken during this period, highlighting
studies that aided this general advance. Sargent (1967) discussed computer aided design
encompassing steady state and dynamic simulation. Rosen (1980) reviewed the field of steady
state chemical process simulation. This subject was discussed more comprehensively by
Westerberg (1979). Whereas, Shacham er al (1982) discussed the application of the equation
oriented approach to process flowsheeting. Cameron (1981) reviewed the field of dynamic
simulation of chemical processes. Biegler (1989) discussed some general concepts adopted in
process simulators. He also illustrated many commercially available chemical process

simulators.

The sequential modular approach was adopted in the early chemical process simulators in
the 1950's. This was because stand alone programs representing various unit operations were
connected in a similar manner to the material flow in an actual process. The model equations are
then organised in modules. The simulation progresses through each model in turn, enabling
special purpose solution strategies to be constructed for each different unit type. There has been
a reluctance in industry to switch from the sequential modular technique to the others available
because of the large time and cost investment incurred in the development of model libraries.
Although, a lot of effort has been expended on this method, a number of problems still remain
unresolved. These include the excessive computational expense in the simulation of systems
with nested iteration loops for recycles and design specifications which add further loops. In
dynamic simulation an added problem occurs with the degree of coupling between the equations
in the various modules.

The simultaneous methods can overcome most of the problems associated with the
sequential modular approach. The simultaneous modular approach can utilise the existing

sequential modular modules unlike the equation oriented approach. However, the use of

39

simplified models in the simultaneous modular approach exacerbates the problem of accuracy.
As a great deal of work in numerical techniques has been carried out to increase the accuracy of

simulation, the use of simplified models will go against this work.

The equation oriented approach like the simultaneous modular approach generally attempts
to solve all model equations collectively hence overcoming the difficulties of design problems
occurring during steady state simulation when using the sequential modular approach. Whilst,
the problems of equation coupling in sequential modular approach is also overcome by using the
simultaneous methods. As the equation oriented approach solves the full model equations and

not linearised equations the flowsheet is more realistically represented.

However, the equation oriented approach has certain weaknesses including: seldom error
free coding of the complete set of model equations representing the whole chemical process in
one large block. This block is also difficult to debug. These weaknesses have been overcome
to some extent by using a modular framework within the equation oriented approach. The
resulting modularly organised equation oriented approach requires complex executive routines to

generate the equation set from the chosen models.

Several methods have evolved from the methods already discussed. Ponton and Vasek
(1986) describe a two level approach to dynamic simulation. Whereby the modelling of
interactions between flows and pressures with small time constants can be modelled together
with the models with large time constants which are encountered when modelling the .details of
composition changes and vapour liquid equilibria. This in effect is the problem of stiffness of
differential equations and their method is an effective technique of overcoming the stiffness
arising from the modelling of processes with widely different time constants. The equation
oriented methods use well developed numerical methods to overcome this problem. Liu and
Brosilow (1987) suggest the use of parallel processing in the modular simulation of dvnamic
systems by using suitable integration algorithms for each subsystem. This technique offers the

possibility of computational speed by parallel processing of individual subsystems. The most

40

efficient integration algorithms for each subsystem can be selected, this also aids computational
speed. However, difficulties can arise in co-ordinating the calculation of the different
subsystems to ensure time synchronization. Coordination routines are therefore required to keep

the dynamic modules in time synchronization.

The equation oriented approach within the modular framework is a method which
overcomes the problems encountered with the other methods and gives a more accurate
representation of the flowsheet. The problems still remaining with this method are the robust
solution of the algebraic equation set during steady state solution and the effective definition of
the problem. Once these problems have been solved this technique should provide an cxccellent
mechanism for chemical process simulation, as it offers greater speed and flexibility for complex
processes and controlled simulations than the sequential modular approach. The coupling
problem encountered in the sequential modular approach is also overcome hence giving more

representative results.

41

CHAPTER THREE

STRATEGIES AND STRUCTURE OF DASP I IN COMPARISON
WITH OTHER APPROACHES

3.0 Introduction

DASP I was developed using the equation oriented approach, the reasons for selecting this
method are described in Chapter 2. The equation oriented approach is, however. more difficult
to implement than the sequential modular approach (Hlavacek, (1977)). One of the reasons for
this added difficulty is that the executive routine for the equation oriented simulators is more
complex, because of the extra duties performed by this executive routine. These duties include
generating the equations from the chosen models and then controlling the solution of the

resulting equation sets.

DASP 1 is structured modularly, in that the simulation options, such as dynamic and
steady state simulations, event processing and the terminal section, are each controlled by a co-
ordinating routine. The executive routine calls each of these co-ordinating routines when
required. Consequently, new options can be added and removed. A model library is provided,
with the models in a standard format. These models are lumped parameter models, which
means that variables are relatively uniform throughout a control volume, when a process is
divided into a number of control volumes of finite size or lumps. The model equations
representing each unit are written in a format which allows these equations to be used both in

steady state and dynamic simulation.

An event processor is present and allows events such as opening and closing of valves to
be simulated. This enables the highly unsteady plant start-up and shut-down procedures to be
mimiced. A change in flowsheet usually results when certain valves are opened or closed in a
flowsheet. Hence, it is an essential feature for an effective dynamic simulator which can handle

such highly transient operation and are very common in the batch processing facilities.

e
[59)

Dynamic simulators must provide facilities for disturbances to be entered to the system to
determine the behaviour of the chemical processes. DASP provides the user with access to all
the variables, parameters, simulation control information and the problem description during the
simulation. This allows the user to view the simulation information at specified points during a
run and modify the problem as and when required. Three different perturbation functions are

provided, these are a step, a ramp and a sine wave.

The correct solution of model equations is one of the major tasks for a chemical process
simulator. The equation oriented approach adopted in DASP I solves all the model equations
simultaneously. Consequently robust numerical methods are required to solve this set of
equations efficiently. Some well proven numerical techniques are utilised by DASP I to ensure

the efficient simultaneous solution of the model equations. These are discussed in Section 3.1.

The information describing the process, supplied to most simulators is mostly numerical,
difficulties can therefore arise when debugging is required. Different strategies are used in
simulators to reduce problems in generating and debugging of the problem description
information. DASP I requires the user to provide most of this information in data files. Others

such as SPEEDUP (Pantalides (1986)) use special input languages, which the user must learn.

This chapter describes the basic features of DASP I and compares these features with those
available in other research chemical process simulators to assess their capabilities and

limitations. Hence the requirements of a useful simulation system can be established.

DASP I was developed on an ICL PERQ utilising a version of the UNIX operating system
called PNX. It has however, been run on a number of machines including a DEC VAX and an
IBM PC AT, with slight modifications. Ogbonda (1987) consequently described DASP I as

highly portable.

44

3.1 Numerical Methods

In the equation oriented approach a set of equations must be solved simultaneously.
Robust numerical methods are required to solve the equations where this 1s possible and indicate
clearly any faults in the equations. With dynamic simulators the system equations must be
integrated. The solution is not continuous but provided at intervals over the time of simulation.

There must therefore be numerical integrators robust enough to do this reliably.

In steady state simulation a set of non-linear algebraic equations must be solved to obtain
the steady state. These equations which include physical property approximations are solved
simultaneously. As these equation sets can easily contain 2000 equations for a realistic chemical
process, a method that is robust for large sets must be used for their solution. The solution of

non-linear algebraic equations is discussed in Chapter 4.

3.1.1 The solution of differential equations
The differential and algebraic system that is solved is described in Section 2.1.

One of the major problems with solving differential equations is the large differences in the
time constants of variables within an equation system. This type of system is called a stiff
system. The difficulty arises in determining the correct step size, which must be small enough
to prevent the system from going unstable, but large enough to solve the system in a reasonable
amount of time. Two different types of numerical methods exist: explicit and implicit i'ntcgmtion
methods. With the explicit methods the unknown differential variable appears only on one side
of the equation and can therefore be easily calculated. Examples of the explicit methods include
the Euler and the Runge Kutta methods. On the other hand when the unknown variable appears

on both sides of the solution equation the technique is called the implicit method.

Examples of this approach include the Adams-Bashforth and Gear's methods. Explicit

methods are very inefficient for stiff systems because very small time steps must be used. The

45

implicit formulas are very useful for overcoming the stiffness problem. This is because the time
step size chosen for the integration is subject only to the issue of accuracy and not stability.
hence there is no constraint on the maximum step size used. A great deal of research in the field
of implicit integration methods has yielded the semi-implicit Runge-Kutta methods (SIRK), and
the backward differentiation formulas (BDF) implemented by Gear (Gear (1971)), as the most
popular methods. Smith (1985) tested various integration techniques including two forms of
BDF: EPISODE (Hindmarsh and Byrne (1975)) and GEAR (Gear (1971)) together with a SIRK
method and some explicit methods. He concluded that the predictor corrector multistep methods
were the most efficient. DASP I utilised DASSL (Petzold (1983)) as the integrator it implcments

is an efficient BDF method and has been successfully tested by several researchers.

3.2 Model Format

Many different strategies are used in dynamic simulation packages to formulate or layout
the mathematical model equations representing the process units. ASCEND II (Kuru (1981))
and QUASILIN (Smith (1985)) both introduce a new variable for every differential equation.
These new variables are termed velocity variables -V. This strategy increases the dimension of
the system with an extra variable and an extra equation for each derivative term. The model

equations (2.1) must be manipulated to state variable form:

X- V=0
V-f(x,y) =Bm 3.1

g (X!Y) = @n

DASP 1 implements another strategy for model simulation, which imposes fewer
restrictions on the model. The equations can have more than one derivative term with variable
cocfficients. These equations do not need to be manipulated to be brought to state variable form
as in other formulations. An important feature of this approach is that the formulatuon provides a

consistent method of writing the equations which means there is no distinction between -

46

differential and algebraic equations. The same model equations can also be used for both steady
state and dynamic simulations by equating all the derivative terms to zero for steady state

simulation.

The unit modules are written in standard FORTRAN 77 and are therefore compiled and
linked into a library. However, DASP I must have the unknown variables in each equation
predefined, hence if a different variable is required to be calculated from within the equation, the
model must be rewritten. Therefore experimentation with the simulation may be difficult as
recompilation of the models is required. This is a major drawback with the implementation in

DASP I and is discussed further in Chapter 6.

3.3 Event Processing

Chemical engineering processes undergo behaviour which is highly transient during
certain periods of operation. Events occur during these transient operations which include start-
up and shut-down procedures, the attainment of emergency states such as bursting discs or
blowoff valves being activated and plant trips. Events are defined as points in time beyond
which there is an abrupt change in a particular state. Two types of events can occur the first
being a time event, which occurs at a predefined time. This time of event is commonly used for
describing the forcing function applied to a process. The second type of event occurs more
frequently in chemical engineering processes, and is called the state event. This type of event
occurs when a predefined state is attained. Examples of state events include the attainment of a
particular temperature, pressure level or concentration within a process. Events are a form of
discontinuity during the integration, with the time event being an explicit discontinuity whereas a
state event is an implicit discontinuity. It is obvious that a state event is much harder to
accommodate than a time event. This is because the simulator must detect whether a particular

state has been attained and then locate the exact time of occurrence of this event.

47

3.3.1 Event Processing in DASP 1

DASP I can handle events which have been predefined in a particular sequence. At present
events occurring randomly cannot be accommodated. This is not a realistic representation of

chemical processes and is an obvious limitation in DASP 1.

A state event is located by determining if an unknown state variable has crossed a
threshold value during each predictor evaluation during integration. Once this has occurred the
variable coefficients are used to determine the time of the event using an iterative technique.
Once an event has occurred control is returned back to the user. The user can then impose the
required change to the flowsheet as required. This change can occur to a variable or parameter
within a particular unit. This modification is carried interactively by issuing the unit number and
the variable/parameter number. Another important modification can be made to the flowsheet.
This can be in the form of disconnection or reconnection of a unit in the flowsheet. Units such
as valves and drums can be removed from the flowsheet by specifying the unit number during
interaction with the program. The user must then reconnect the loose streams to other units
within the flowsheet. Reconnection of a unit is the exact opposite procedure to the
disconnection. This facility is extremely useful in simulating start-up and shut-down procedures

as well as batch processing facilities.

3.4 The Problem Description

The problem description is the data that is required for the definition of the chemical
process that is to be simulated. It is a collection of information including the flowsheet or
topology, the unit parameters the component information feed stream data and the simulation
control data. The correct definition of the problem description is an essential factor in achieving

a successful simulation. It is probably the most difficult operation for the user to perform.

48

Simulators achieve the generation of problem description by various methods. In DPS
(Thambynayagom et al (1981)) the data input to the program takes place in an interactive session
on the terminal. Although, it is very simple for non experts to usc it may become tedious for
regular users who become familiar with its operation, especially when it is used for simulation
of any realistic chemical plant. SPEEDUP (Pantelides (1986)) uses a data base structure to enter
all the input information including the problem description. However, it is limited in its
interaction. The user is required to provide any models that do not exist in the standard library
together with problem definition using a specially developed input language. This input
language is based on the high level computer language, PASCAL. The data is provided in well
defined sections which reflect the natural structure of the simulation problem. In each section
the data must be provided according to the rules of the input language. The problem description
that has been entered into the program is translated into FORTRAN. This FORTRAN source
code is then compiled and linked with other code producing an executable program which is
specific to one particular problem. Hence, if the problem description is modified in any way the
code must be retranslated, compiled, linked and re-run. Even minor modifications, such as a
change in value of a single parameter results in this retranslation procedure. It can be seen that
experimentation with the simulation may be expensive both in time and computing costs.
Another problem with this approach is that the user must first become familiar with the input
language before using the package. QUASILIN (Smith (1985)) requires the user to supply an
input file which defines the simulation problem to be solved and a control file which contains
information defining the equation solving parameters. The input file is read by an input
processor, which generates a program specific to the flowsheet and a data file containing
information for the simulation. These two files are then used by the main QUASILIN executive
together with the necessary units and physical properties from various libraries. Keywords are
used in the input files to describe the problem. Another input file defines the graph that is
required. Therefore this method also requires the user to have some knowledge of the keywords

used in the input files.

49

DASP I uses a similar approach to QUASILIN for the problem description. This involves
providing the description in ASCII files. However, several different files are used for providing
the information required for the simulation. Although no keywords are required as in

QUASILIN a pre-defined format must be used to enter the description

3.5 Concluding Remarks

DASP I has been developed as a portable semi interactive dynamic simulation package. It
has a modular executive routine which is useful as it allows other features to be added or
removed easily. The whole package including the models is written by using standard
FORTRAN 77 and since most engineers are familiar with FORTRAN the models can be written

and modified relatively easily.

The input data used to describe the problem is entered in ASCII data files in a standard
format. As no translation of the problem description is required excessive computation expense
is not incurred in setting up the files as in SPEEDUP. An added advantage is that knowledge of
a special input language is not required. Unfortunately the user must know the correct set up for
these files, as errors in the data file generation can lead to spurious results and/or failure. As a
great deal of information is required, large processes may cause too many problems in setting up

the correct definition.

Hence, if this process is automated the simulation in general becomes much simpler. A
method for overcoming this limitation by automatically generating the correct input files is
described in Chapters 5 and 6. The modelling formulation implemented in DASP I is an
cxcellent method as it allows the same model to be used for steady state and dynamic
simulations. However, the method currently used does not utilise the modelling formulation to
its full potential, because the models must have the equations written with a predefined set of
unknown variables which is rather inflexible for simulation experimentation. A new model

layout and model solution strategy is described in Chapter 6 which overcomes this drawback.

50

An efficient integration package DASSL that has been tested by various researchers has
been shown to be successfully used in DASP I by Ogbonda (1987), who tested it on scveral
examples. The non-linear algebraic equations solvers implemented in DASP I are the Newton
Raphson and Broyden methods. Both of these methods are locally converging methods,
requiring good initial values to achieve convergence. As non-linear algebraic equations are
required to be solved to obtain a steady state solution and also to solve the equations generated
by the integrator, a robust solver must be used to assure convergence. There methods are

discussed further in Chapter 4.

51

CHAPTER FOUR

52

THE SOLUTION OF NON-LINEAR EQUATIONS

4.0 Introduction

Models used to represent chemical engineering problems give rise to non-linear algebraic
equations which must be solved using numerical methods to find the roots of the equations. A
system of non-linear algebraic equations (NLAEs) must be solved to obtain a steady statce
solution for the flowsheet. This steady state solution is required in two instances, the first is
when a solution is used as a design or flowsheeting calculation the other is when a steady state is
needed as an initial starting point for an integration calculation. In DASP the differential models

can be reduced to steady state models by equating all the derivatives to zero in the system.

Non-linear algebraic equations are generated during a dynamic run in DASP, as a step to
solving the dynamic equations, as follows. In the method used, the derivative is approximated
by a combination of the solution at the current and earlier times, resulting in a set of non-linear
algebraic equations. These systems of equations are usually difficult to solve for several
reasons. There may be several solutions to the system, not all physically feasible and some with
complex number solutions, it is possible for NLAE solvers to converge to these infeasible
solutions hence providing potentially incorrect results to the user. Another problem that
commonly arises is that the functions are very non-linear and badly scaled. The non-linearity
occurs because of the presence of products of variables, variables raised to powers other than
one and also the existence of intrinsic functions such as logarithms for example, exponential
functions involving temperature occur in detailed modelling of chemical kinetics. Bad scaling
occurs when variables or coefficients differ in size by orders of magnitude. Scaling can be
improved by transforming the coefficients of a system so that they do not have such different
orders of magnitude. Such scaling reduces the possibility of arithmetic problems when a

solution is sought. This can be illustrated by the following equation.
1020 x2 + 3.1020x + 2.1020 = @ 4.1

53

which can be multiplied by 10-20 to give

x2 + 3x + 2 =0 4.2

This type of scaling is called equation scaling. Another form of scaling can be used to

simplify an equation, this is termed variable scaling and can be shown by equation (4.3).
1020 x2 + 3x + 2.1020 =0 4.3

which is scaled by substituting

x = 10202 4.4

to give

22 4+ 3z + 2 =0

The coefficients of the system are redefined by scaling the variables and equations in the
system. However, the actual structure of the system and the unscaled variable values will
remain the same. The solutions will initially be in scaled units. The original units can be
recovered. For realistic chemical processes the number of equations can be as large as 5000.
Such sets of equations are usually sparse, any one equation containing only a few variables.
This means that the coefficient matrix has a majority of zero elements. Duff (1977) states that "a
sparse matrix or system is one in which advantage can be taken of the percentage and/or
distribution of the zero elements". A robust NLAE solver must be present in a simulation

package to ensure convergence.

Many different numerical methods are available for calculating the solution of a set of
simultaneous NLAEs. They are based on successive approximations by applying a set of rules
so the initial estimate of the solution, and, often also to estimates of partial derivatives of the
equations with respect to the problem variables. The most common technique implemented in
chemical engincering process simulators is the Newton Raphson method. This method is very
efficient, in offering second order, or quadratic, convergence, when a good initial guess can be

54

supplied. However, it has several disadvantages associated with it. Consequently a great deal
of work has been undertaken to find alternatives by a number of researchers. One of the most
severe limitations is that the successive approximations may diverge away from the solution if
the initial starting point is too far away from the solution. This can result in the method finding
one of the physically infeasible solutions for the particular equation system. The method also
fails to converge when the Jacobian matrix, i.e. the matrix of partial derivatives of the system,
becomes singular. This means that the tangents at the solution are zero, hence the progression
of the iterations breaks down. Methods involving the Jacobian matrix can bccome
computationally intensive if the Jacobian matrix is evaluated and inverted at every iteration. It
can be seen that for a system with 2000 variables and equations can result in a Jacobian matrix
with 4 000 000 elements and is obvious that evaluation of such a large matrix would be
computationally expensive. In fact, the sparse nature of the equations means that most of the

terms are zero.

Researchers in this field have developed many methods which are claimed to be superior to
the Newton Raphson method (Powell (1970), Westerberg and Director (1981)). However,
extensive testing by many other workers, including Sargent (1981), Hiebert (1982) and More ez
al (1981) showed that the theoretical superiority was not in fact transferred to practical
superiority. Broyden's method (Broyden (1969)) is one such technique developed to overcome
the expense of Jacobian matrix evaluation at every step in the Newton Raphson method, by
approximating the Jacobian at the first iteration and then updating this approximation at every
iteration. Hence, it saves computational effort for large systems, but can offer only suber linear
convergence unlike Newton Raphson which possesses quadratic convergence (Conte and de
Boor (1980)). It also requires the starting point to be relatively close to the solution to ensure

convergence.

Other researchers have looked at methods of achieving convergence even when the initial
starting point was not close to the solution. An example of this is the development of Powell's

dog leg method (Powell (1970)). This method combines the steepest descent method. which |
55

has good global properties and is used to predict the first part of iteration path, with Broyden's
method which is considered to be an efficient locally convergent technique. Hence, the result is
that the area of convergence is expanded. However, Cosnard (1975) stated that a test used to
compare NLAE solvers showed that Powell's method failed to solve many problems. This was
confirmed by Shacham (1985) who tested five different codes implementing different algorithms
on chemical engineering problems and concluded that codes implementing Powell's algorithm
were unpredictable and unreliable for these problems. Sargent (1981) discovered that Powell's
method had problems with equation sets that possessed badly scaled variables and functions.
He also reported that Powell's method was sensitive to random errors or noise in the function

evaluation.

Non-linear algebraic equation solvers can be classified into three broad categories:

1. Locally convergent methods - hence requiring a good starting initial estimate to achieve
convergence. This includes methods such as Newton Raphson and most of the Quasi-
Newton techniques which includes the Broyden (Broyden (1969)) and Schubert (Schubert
(1970)) methods.

2. Expanded region of convergence methods - these methods have a larger area of
convergence than the locally convergent techniques. Examples of methods offering this
type of convergence are Powell's dog leg method and Levenberg - Marquardt (Shacham
(1986)) method which also overcomes the problem of singular Jacobian matrices.

3. Globally convergent methods - these methods are newer than the other methods but are
usually more complex and are theoretically able to converge to the solution from any
starting point. Examples include differential arc length homotopy methods (Seader (1985)

and Burton and Morton (1987)).

A great deal of mathematical research has been undertaken with the latter class of methods
because of the obvious attractions. The techniques developed are generically called continuation

methods. As digital computing power has rapidly increased and unit computing costs have -

56

fallen, the more efficient locally convergent methods are no longer the most effective to use.
This is because more time has to be spent on initial analysis to produce a good initial estimate of
the solution to ensure convergence. Instead, the globally convergent method can do this by
computation. The basic idea behind continuation methods is to solve a series of problems as a
parameter is slowly varied, using a locally convergent iterative technique for each problem, and
the solution to the previous problem as a starting point for the current problem. This work has
lead to the development of differential equation continuation formulation in various forms by
Kubicek (1976), Georg (1981) and Rheinboldt (1982). Despite this work these continuation
methods experience difficulty when the Jacobian matrix becomes singular and fail. Another
advance by Chow er al (1979) was the development of probability one homotopy methods,
which overcame the problem of singular Jacobian matrices as they were constructed not to have
any singular points. Probability one refers to the supporting theory, which states that for most
choices of a parameter vector in the homotopy map, there are no singular points and the method
is globally convergent. These methods have been successfully tested on problems which caused
difficulties for quasi Newton methods as in Dennis and Schnabel (1983). Morgan (1987) has

demonstrated the use of this method in chemical engineering applications.

4.1 Variable Initialisation

From the preceding discussion it can be seen that the major problem in the solution of
NLAE:s is the provision of an initial starting point. Depending on the method implemented it can
be easy or difficult to provide a sufficiently good initial estimate for convergence. For instance it
is vitally important for the initial estimate to be close to the solution to achieve convergence when
using locally convergent methods. Whereas with the expanded region methods the initial
estimate does not have to be as close. However, these methods are less efficient than the locally
convergent methods. This situation is more exaggerated in the globally convergent methods,
where the starting value can theoretically be anywhere, although in practice this is usually not the
case but the methods are computationally intensive. However, in chemical engineering

applications and particularly in process simulators the most popular methods are those

57

possessing locally convergent properties. Consequently in simulators either a good initial
estimate of the solution must be provided by the user or a method of automatically generating a
good default initial estimate must be installed in the simulator. The former strategy is
unreasonable, because a realistic model of a large chemical process has many hundreds or
thousands of variables and supplying good initial estimates for these variables would be
extremely difficult. Most simulators therefore provide a facility for some sort of default variable

initialisation.

In SPEEDUP (Pantelides (1986)) the user declares types of variables; for example all the
temperatures can be declared as type TEMPERATURE. All the variable types are then assigned
upper and lower bounds and an initial starting point. This can be further augmented by giving
estimates and bounds for specific variables for which the user can provide better estimates than
those provided by the particular variable type. The bounds can represent physical bounds, such
as non-negative pressures, or mathematical limits which can declare the domain of definition of
functions. The numerical methods implemented in SPEEDUP are modified to ensure that bound
violation does not occur. Although this technique is a good idea and has been successfully used
by Paloschi (1982), it is very easy to overconstrain the system which then fails to converge. On
the other hand it is possible that many solutions exist for the problem with some of them being

infeasible within the bounds imposed on the variables.

Variable initialisation in QUASILIN (Hutchinson et al (1986)) is achieved by converting
non-linear equations into linear ones for the first iteration. However, initial estimates can be
specified for all the process variables if available. Some of the linearised equations require initial
guess data to aid the generation of a good starting point. Unfortunately, accurate representation
of the non-linear equations as linear equations can in some instances be very difficult. In
ASCEND II (Westerberg and Bengamin (1985)), for each model the library creator decides on a
minimal set of tear variables to be guessed leading to the calculation of the rest of the variables.
Hence, with the stream variables known and the guesses for the tear variables, the output

variables are determined much the same as in sequential modular simulators. This process is
58

carried out for each unit model within the flowsheet. However, this method requires an

initialisation routine for each process unit.

Pagani er al (1989) implement a different strategy with their CHEOPE flowsheeting
package, for variable initialisation. This scheme involves taking a single step of the steepest
descent algorithm from default values of the variables. Then a Newton Raphson scheme is used

for final convergence.

During the iterations the Jacobian matrix is transformed into a block triangular form, by for
instance, setting all the recycle stream variables as constants. This approach is similar to the one
used in ASCEND II which tears variables in a sequential fashion. However, this strategy is
broadly similar to Powell's dog leg method with a steepest descent method used in conjunction
with a Newton Raphson method. As already discussed Powell's method has been shown to

possess unreliable convergence characteristics.

Westerberg and Benjamin (1985) discussed another technique for initialisation involving
the evolution of the models from simple to final complex ones. The complete flowsheet is
solved with simple models that for instance consider only material balance and then perhaps add
the energy balance and recalculate the complete flowsheet. Although, Westerberg and Benjamin
(1985) have found that this approach has worked from simple defaults and unit-by-unit
initialisation it may not be as simple when there are units in the flowsheet that contain
simultaneous heat and material balances. This method may also run into problemsiwhen the
complexity of a large flowsheet is increased by the addition of say the energy balance, this may
double the number of equations in the system and hence cause difficulties for the NLAE solver.
A better scheme would be to evolve the flowsheet, in that several units may be solved first, then
other units can be gradually added until the complete flowsheet is built up. In fact this strategy

would be useful in most simulators as debugging i1s made much easier.

59

In DASP I (Ogbonda (1987)) the variable values must be estimated for each unknown.
This has obvious limitations especially for large processes. Fortunately, DASP I uses a

predefined list of variables for all the models hence a default strategy can be easily implemented.

4.2 Non-Linear Equation Solvers in Simulators

The Newton Raphson method is the most popular non-linear algebraic equation solver in
chemical process simulators. CHEOPE (Pagani et al (1985)) implements such a moditied
method which reduces the step length in the Newton direction if constraints are violated or
residual error increases. The Newton Raphson algorithm fails when the Jacobian becomes
singular. This situation can arise when some equations become linearly dependent on the
remaining ones. This solver attempts to overcome singularities by using a modified linear
equation solver to solve only a subset of the linearly independent equations to obtain a suitable
Newton direction. The discarded equations are re-included at the next step by the program.
SEQUEL (Stadtherr and Hilton (1982)) utilises two Newton Raphson schemes; the first being
the standard linearisation, the other utilises step size relaxation. A hybrid linearisation blending
first and second order linearisations is also included. The non-linear terms are linearised by
holding all but one of the variables in the term as constants, this selection was made at program
development. This is a first order linearisation, and is transferred to second order or the Newton
scheme by using a blending parameter. Hence, the first order is used far away from the solution
and the second order close to the solution. The difficulty with the method is selecting the
blending parameter and its rate of change. ASCEND II (Locke (1981)) also utilises a Newton
Raphson method with flowsheet evolution. In SPEEDUP (Pantelides (1988)) the sparsity of the
system is exploited by decomposing the problem by partitioning the equation set and variables in
blocks. Then a NLAE solver is applied sequentially to each of the blocks. Three techniques are
provided for solving the NLAEs, they are:- Newton, Schubert and Hybrid. They differ in the
way the Jacobian approximation is obtained and maintained during solution. In the Schubert
method the Jacobian is initialised at the first iteration by using finite-differences, whilst the other

two methods generate the Jacobian using an automatic algebraic manipulation (AAM) method

60

which automatically generates analytical derivatives, and finite differences. The AAM is
performed using symbolic operations in a recursive manner by applying the rules of
differentiation. As system equations can be provided in procedures in addition to the normal
equations, the form of these equations is not available for AAM. Hence, the partial derivatives
are approximated numerically using finite differences or secant type approximations. During
subsequent iterations the Schubert method implements a least change second update to all the
non zero elements of the Jacobian. Newton's method uses the same method as the first
iteration, whereas in the hybrid method the analytically available elements are recalculated and a
least change secant update is applied to the remaining non zero elements. The decomposition of
the flowsheet is a good method for reducing the sparsity of a problem but other sparse matrix
methods are still required in the package to completely address the problem of sparse matrix
manipulation. Also the vast majority of equations are usually in one large non-linear block.
Consequently, the NLAE solver must still be powerful enough to handle these large blocks.
Although, the AAM is an excellent method of providing most of the Jacobian, the locally
convergent methods implemented in SPEEDUP must still have good initial starting estimates to

ensure convergence.

Burton and Morton (1987) implemented a differential arc length continuation method in an
equation oriented simulator. They were unable to solve some chemical engineering problems
from arbitrary starting points. Problems can occur if the step length is not closely monitored and
another path is followed or a reverse direction is followed. They concluded that there was some
improvement over Newton's method but the greatest benefit was the potential of finding multiple
solutions of an equation set. Also infeasible specifications can be identified and the limit of

feasibility established.

DASP 1 currently implements Broyden's method and Newton's method to gencrate a
steady state solution for a problem. The user sets a flag to define the NLAE solver that is used

for the solution. As both of these methods are locally convergent techniques the starting

61

estimate must be close to the solution to ensure convergence. Consequently, more robust

method must be provided to ensure convergence.

4.3 Non-Linear Algebraic Equation Solvers for DASP II

Earlier in this chapter it has been seen that the Newton method and its derivatives are the
most frequently used NLAE solvers in simulators. Since these methods are locally convergent,
good initial estimates must be provided to aid convergence. As discussed in Section 4.1,
simulators must provide means by which a good starting estimate can be automatically
generated. Although, various methods are utilised none of them guarantee a good starting point
with global convergence. CONSOL (Morgan (1987)) and POLSYS (Watson (1987)) arc
programs that offer global convergence for polynomial systems, other equation types must be
converted to polynomial form. These codes require no starting points and solve for all possible
solutions. It can be seen that this method would be extremely valuable for providing a steady
state solution which can be used to solve flowsheeting problems and as an initial starting point
for dynamic simulation. This method is described further in 4.5.

Three different convergent strategies are possible, as described in 4.0 they are locally
convergent, expanded region of convergence and globally convergent methods. However,
methods with these properties are all prone to certain disadvantages and consequently it is
difficult to say which method is preferable to the others. For instance, locally convergent
methods offer the best speed of convergence but require the best starting estimates. The globally
convergent methods does not require good starting points, but are the least efficient. CONLES
(Shacham (1986), (1985)) is a solver that contains three methods, each offering convergence

properties of one of three classes described earlier. This package is described in section 4.4.

4.4 The CONLES Non-Linear Algebraic Equation Solver

Hicbert (1982) evaluated several available codes for solving a set of various test functions.

She concluded that such software should handle constraints such as non-negativity and simple

62

bounds on the variables. CONLES (Shacham (1986)) can handle two tvpes of constraints. The
first type is termed "Physical constraints” where the variables must be greater than or equal to
zero only at the solution. The second type is called "Absolute constraints” where the variable
values during the calculation cannot become less than zero. Shacham (1985) concluded that the

step length restricted NR is effective in solving problems with absolute constraints.

CONLES contains three different methods and uses the strengths of each to create an
efficient NLAE solver. For example it uses the speed and efficiency of the Newton Raphson
method. When the Jacobian matrix becomes singular or even nearly singular the Levenberg
Marquadt method is used. The third method is the continuation method which offers an

extended region of convergence. Each of these methods is discussed in more detail.

4.4.1 Newton Raphson Method with step length restriction

This method linearises the set of NLAEs which are then solved by a suitable linear
equation solver. The Newton Raphson uses an iterative sequence starting from the initial

estimate X° and by solving the linear system.
] X)) AX = - f(X) 4.9

where

J (Xm) is the Jacobian matrix, evaluated at Xmj;AXn 1s the correction which is calculated
by:

Xm+1 = Xm + Am AXnp
where

Am is the scalar step length.

If A 1s set to 1 the method becomes the classical Newton Raphson. The step length

restriction is used to prevent absolute constraints being violated. The A, is calculated from:

aXJ.
b, = mjm ij 4.10

where o is a number smaller than, but close to 1. j are the indicies of all the variables for which
absolute constraints have been specified for which Ax;j< 0. « is used to ensure that an

absolutely constrained variable does not become equal to zero.

The Newton Raphson method offers quadratic or second order convergence, i.e.

Lim B
‘M - i i

M-a Xm - X*

where K is a constraint, X* is the solution and Illl is a suitable norm. Consequently, near the
solution the number of correct significant digits of the variables is multiplied by two in every

iteration.

However, Newton Raphson has only locally convergent properties and may fail if the
initial estimate is not close to the solution. If the Jacobian matrix becomes singular the Newton

Raphson method breaks down as equation 4.9 cannot be solved for AXm. This problem can be
overcome by combining this with the steepest descent method. The combined method is called

the Levenberg-Marquardt method (Shacham (1985)) and is described in the next section.

4.4.2 The Modified Levenberg-Marquardt Algorithm

This algorithm solves a linear equation for the correction step

[uml FIX) J(Xm)] AX_ = -J(X) £(X) 112

where I is the unity matrix a diagonal matrix with positive elements and um is a non-negative
scalar. This scalar is used to control the direction and length of the correction vector. When
pm is equal to zero the length of the correction vector and step length becomes the same as the

Newton Raphson. When it becomes the dominating term, the direction is the steepest descent

64

direction and the length becomes very small. By selecting an appropriate pm the Levenberg
Marquadt method converges to a local minimum of F (x). However, it is not certain that F (X) is
a zero of f(x). Hence, a value of um is selected so that the singularity in the Jacobian matrix is
eliminated and that moving away from the near singular region at a reasonable rate is possible.

In CONLES this scalar is selected so that:

K = max IJ(Xm)l 4.13

4.4.3 The Continuation Method

Methods using continuation or embedding methods are considered to have global
convergence properties (Sieder (1985), Garcia and Zangwill (1987)). In these methods the
function f (x) is embedded in homotopy functions G(x,t). This homotopy parameter is slowly
changed to follow a path from a starting point G(x,1) = 0 where the solution X is known until G

(X,0) = f(x), 1.e.

GX, 1) = foX),

GX,0 = fX) 4.14
and the equation

GX, 8 =0 4.15

is to be solved.
The homotopy satisfying (4.14) has the form:

GX,0) = f(X) - 6f(xg), XeD,0 €e[1,0] 4.16

Equation .15 is itself a NLAE and must be solved by a NLAE solver. As the system path

is tracked with the previous value providing a good starting point the Newton Raphson is an

ideal method. A sequence of values for 0 is generated by

65

Okh = 6 - A6 ; K= 1,2, ..,p—-1

when A = 1, a single step is used to solve the system and the continuation method reduces to

the Newton Raphson method. Otherwise a curve is generated along which the residual values

must decrease.

4.5 CONSOL - Continuation Method

CONSOL (Morgan (1987)) is a continuation method which solves systems of polynomial
equations. The advantage of this algorithm is that it finds all solutions, real and complex, for the
sets of polynomial equations. HOMPACK (Watson ez al (1986)) is a package that can solve
many different types of equations and one of its options is POLSYS which is basically the same
as CONSOL but with a different path tracker. However the advantage of this method over the
classical NLAE solvers is that initial estimate values are not required to ensure convergence,

hence overcoming the major drawback of the classical methods.

Most chemical engineering problems are in the form of a system of n polynomial equations
- fn, in n unknowns - Xm or can be converted to such a form. The continuation method

comprises two steps:

1. Definition of the continuation system h.
For example the following continuation equation
h (x,t) =x2 +atx + [tb - (1 - t) 2] 4.17b
for the following equation:

f(x)=x2+ax+b 4.17c

66

where
h is the continuation function
t is the continuation parameter
q is a complex constant

f 1is the non-linear function

2. Choosing a numerical method for tracking the continuation paths.
Which usually increments the continuation parameter from O to 1 and solves

the resulting continuation equation at each increment. Equation 4.17b becomes:

h (x,0) =x2-q2 4.17d
at t=0, and
h(x,0.1)=x2 + 0.1 ax+[0.1b-0.9q2] 4.17e

at t = 0.1, with the solution of 4.17d being used as a starting point for 4.17e.

The equation system to be solved is:

f1 (X1, X2,eeeeiiinenn . xa) = 0
Po K ¥ Rissssunovia , Xp) = 0
fn (XI, Xz, » Xn) = 0
or more simply
fX =0 4.18

Each of the polynomial functions are sums of terms. The general form of a term is:

TERM = oaX;MIXxpM2 Xp Mn

where a is the coefficient of the term and can be a complex constant, real or zero. M; are non

negative integers. The degree of the term is My + My + ... M;. The degree of an equation is

07
ASTON UNIVERSITY
LSRARY AND
IRFORMATION SERYICES

defined to be the largest degree of its terms. The total degree of the system is the product of the

degree of the individual equations. The Jacobian is defined by:

of

JpeX) = # (X) 1.19
S

If X* is the solution to f (X) = 0, then X* is singular if det (J (X*)) = 0. A solution is
termed geometrically isolated if no other solution exists within a region around the point. A start

system g (X) = 0 is chosen, so that the deg (gj) = dj forj=1to n.

gjX) = pjj dej - qjdj 4.20

The homotopy map is defined as

hX,t) = (1-)ygX) + tf(X) 4.21

with a randomly chosen complex number y. Equation 4.18 may have solutions at infinity,
which force some of the homotopy paths to diverge to infinity as t approaches 1. This system
can be transformed into a new system, which under reasonable hypotheses can be proven to
have no solutions at infinity and thus bounded paths. The transformation H (x,t) is defined by
homogenising h (x,t) with a new variable Xp+1 and then defining Xp+1 as a linear equation in

the other variables. Therefore the transformation becomes:

Hj (X1, oo Xne 1) = XP 0 b X1/ Xn1 s o, XoXnat) 422

forj= 1, n and take
x“+l = L(X], 5 Xn) = o X] * ix T+ B Xn + Qn+l 423

where the ai are randomly chosen real or complex numbers. When the transformation is used,
paths that previously diverged converge to solutions with Xp4+1=0. Each solution to G (X) =0

defines a continuation path for H (X.t) = 0 leading to a solution to F (X) =0, hence there are d

68

continuation paths. As tis incremented the Newton Raphson method is used to solve the system

h (X, At) =0. Newton Raphson is effective in this situation as the system is solved at t; - At.

Scaling can be critical to the success of this method as it affects the effective evaluation of
the polynomial system (equation 4.18) and the solution of linear systems using finite precision
arithmetic. A general purpose scalar is used to scale the variables and equations to centre the
coefficients about unity and minimize the variation within the equations. Chemical engineering
model equation systems possess extreme scaling of the variables and must therefore be
addressed by the numerical methods used to solve these systems. As each path is tracked, the
algorithm can be expensive in terms of computation, hence the algorithm is not recommended
for systems greater than 10 equations with 10 unknowns. However most systems can be
reduced to much smaller systems. Reduction will decrease the total degree of the system,
consequently the system will be faster to solve and generally more reliable. However, the
structure of the original equation system is transformed into a new structure. This procedure
must be undertaken manually although a symbolic manipulation program REDUCE (Hearn

(1983)) can be used to simplify the system of equations.

4.6 Concluding Remarks

The provision of a steady state is crucial in simulation both for steady state simulation and
for dynamic simulation. For steady state simulation a steady state solution is calculated to
provide the desired result for a particular plant configuration. In dynamic simulation the steady
state is used for providing an initial starting point for the integration. During the integration a
NLAE solver is also used to solve the NLAEs generated by the integrator at each step. Hence, a

robust solver must be provided to ensure the solution of NLAEs.

The methods for solving NLAEs have various difficulties, including: convergence to one
of many multiple solutions, some of which may be complex, the functions are usually very non-

linear and badly scaled, the system is usually large and sparse and consequently an iterative
69

procedure is required. The methods have 3 types of convergence properties: locally convergent,
expanded region and globally convergent. However, each of these methods have their
disadvantages. The most frequently used methods in chemical engineering are those with locally
convergent properties but they require good initial values and may encounter difficulties when
the Jacobian matrix becomes singular. Hence, simulators implementing these methods usually
employ an automatic method for generating initial estimates . As a completely successful
scheme of automatically generating these initial values has not been developed, work (Pagani er
al (1989)) is still being carried out to find a robust mechanism. The expanded region methods
include Powell's method which has problems with badly scaled functions and is sensitive to
random errors (Sargent (1981)). The globally convergent methods can converge to a solution
when the initial estimate is further away from solution but are usually slow. CONLES
(Shacham (1986)) is a program with three methods each with one of the convergence properties
discussed earlier. The expanded region Levenberg Marquadt method, overcomes the problem of
singular or near singular Jacobian matrices, whilst the continuation method is used if the
Newton Raphson method fails. Shacham (1983) has successfully tested this algorithm with a
series of chemical engineering problems. CONSOL (Morgan (1987)) is a continuation method
that requires no initial values and finds all solutions for a set of polynominal equations. Hence,
it could be used to generate initial estimates for the CONLES algorithm, CONSOL has problems
with systems with more than 10 equations as it is computationally intensive. However, the
system can usually be reduced manually so that fewer paths have to be tracked. Although the
increasing power of computers has helped in the use of more complex methods, it would be
potentially faster to use computers with parallel processing facilities such as transputers when all

the paths are tracked.

70

CHAPTER FIVE

71

A GRAPHICAL METHOD FOR GENERATING THE PROCESS
TOPOLOGY

5.0 Introduction

Chemical engineers use process flow diagrams (PFD's) to represent the flows of material
between the process unit. These diagrams show the process units and how each flow is
connected. PFD's summarise the process information for design and performance calculations.
They also provide a visual means of communicating the process plant arrangement. The design
of a control system will result in much more information about the plant instrumentation. This
can be added to the PFD to form a Process and Instrumentation Diagram (PID). PFD's and

PID's provide much of the information required for the simulation of chemical processes.

Each process unit in the real plant must be represented within the simulation. This is
achieved using process modules within the simulator, also referred to as flowsheet units. Each

flowsheet unit is a model representing a complete process unit or a part of a process unit.

In this work, a graphical program developed by Preece et al (1987) is used to provide PID
and PFD information for the DASPII simulator. The program is modified to output data in a file
suitable for use by DASPIL. This file is further processed by an interface program BTOPOL
which uses a database developed using BTRIEVE (Anon. (1986) and see Appendix D) and

generates a dialogue with the user to complete the information needed by DASPIL

5.1 Methods of Topology description

The connections between the process units must be entered into the process simulator.
This information is available in the PFD and PID diagrams. The information must be converted
into the form required by each simulator for the simulation to be possible. A decision must be
taken about each process unit as to which flowsheet unit or units will represent it. This modifics
to PFD, introducing extra flows where a process unit is represented by more than one flowsheet
unit. One way of achieving this step is to construct a block diagram illustrating the connectivity
of the flowsheet units from the information on the PFD, or PID if the control system is also to
be simulated. An example of a block diagram is shown in Figure 5.1. Such a block diagram is

an aid to understanding, showing the decisions taken to modify the PFD or PID topology.

Different chemical process simulators need the process topology in a variety of formats.
For instance, in SPEEDUP (Pantalides (1986)) the user must describe the topology in its special
input language where each output from a unit must either be connected to an input of another
unit or be declared as a product. Streams that terminate at a unit but not emanating from another
unit are declared as feeds. Control signals are passed through special streams called
connections. Once the flowsheet topology is created it is translated. During the translation
SPEEDUP ensures that models exist for all the units declared in the flowsheet, stream
input/output connections are compatible and that streams are not used more than once. This
error checking is a useful feature of SPEEDUP although the user must be familiar with the input
language. The user is also required to know the stream variable details, i.e. how many and
which variables are passed in each stream, the number of streams in each model and the stream
types to ensure compatible stream linkages. As this information is kept in different sections of
the problem description the task of correctly constructing the flowsheet can be onerous.
especially if the different sections of the problem description and the models have been written

by somebody else.

¥

In DASPI (Ogbonda (1987)) the flowsheet topology is described in one of the input files,
the topology file. This is essentially numerical. Each flowsheet model has predefined stream
connection types. The user is then required to define the units connected to each unit by its
predefined stream connections. For instance in Figure 5.2 the connection information for unit 2

1s as follows:

3 (number of connections)

1,3,4 (input 1, output 1, input streams)

The process topology information for DASP I is provided in an ASCII text file. No
keywords are required in the file. As the data is mostly numerical, difficulties are encountered in
deciphering an old flowsheet topology file without its associated block diagram. The stream

details are also included in this file.

A similar method is used in SEQUEL (Stadtherr and Hilton (1982)) where the user creates
an input file by a text editor. The data is prepared in a fixed format. As in DASP I most of the
information supplied is numerical. The streams and units are assigned unique numerical codes

which are then used to describe the flowsheet connections.

An intermediate method of flowsheet description to that used in SPEEDUP and DASP I is
used in QUASILIN (Hutchinson (1986)). In the QUASILIN approach the flowsheet is
described in a text input file as in DASP I but special keywords are used which are similar to the
input language used in SPEEDUP. This input file is read by an input processor. The input
processor generates a main program and unit calling routine which are specific to the problem.

and a data file.

74

C F
\/ ’
¥ >
G
el [L
8
10
A — Partial Condenser F — Heat Exchanger
B — Mixer G - Distillation Column
C — Hydrolysis Reactor H - Condenser
D — Evaporator K - Splitter
E — Evaporator

Figure 5.1a Flowsheet for a section of an ethylene glycol plant

73

2 7
C , Fool
6
> D E
Y 1
H
Y B
G -
. K
9

10

Figure S5.1b Block diagram for the section of ethylene glycol plant in
figure 5.1 a

76

Y
(o]
y
W

Figure 5.2 Connection of block modules

77

The data file contains the stream and unit information which is used by QUASILIN to perform

the simulation.

Each of the methods used by the simulators described earlier, require the user to have prior
knowledge of the stream details adopted in the library models to be used to simulate any
flowsheet. This is required to ensure stream compatibility. Simulators utilising input
processors also have the overhead of extensive translation times even for minor modifications
although they can filter out errors occuring in the flowsheet, before the simulation run 1s
commenced. Other simulators which use text files for the flowsheet topology input, require the
user to know the file layout. This can result in errors during the generation of the topology file.

This problem is increased as this type of simulator usually provides limited error checking.

An ideal simulator would help the user to construct the flowshect topology. This can be
achieved in at least two ways; the first method is a conversational procedure where the user
responds to questions posed by the simulator, whilst the second method is a graphical flowsheet
generator, which involves the user constructing a flowsheet using graphical techniques. Both of
these methods create a flowsheet topology file in a suitable format for the simulator, hence

overcoming the need for the user to be familiar with the topology file protocol.

Although, the conversational method takes the user through each step of the flowsheet
generation, this method can become tedious for experienced users. Another advantage of the
graphical flowsheet generation is that a diagram of the flowsheet is created which can'be easily
checked to ensure that the flowsheet generated matches the required flowsheet. The graphical
flowsheet also offers a simple and rapid method of flowsheet comparison between different

cases.

Various graphical methods of flowsheet topology generation for simulators have been
developed. All of the methods involve the user selecting from a collection of predefined

symbols representing different parts of the flowsheet. Some allow user definition of symbols.
78

Such symbols are known also as ikons or schematics by different authors. Some of these
methods are described in section 5.2, where the suitability of their features is discussed in

relation to the requirements of DASP II.
5.2 Methods for the graphical representation of the flowsheet

AGPSS (Singh and Camahan (1981)) was one of the first interactive graphical interfaces
to be linked to a simulation package. The data, including both picture and process information,
are organised in a relational data structure. Fortran routines are used for addition, retrieval and
deletion of the data. Although schematics of various unit operations are provided, new
schematics can be produced by the use for new models. This may seem useful but can cause
problems such as multiple definition of the same unit and the whole system becomes user

specific.

Liang (1985) described another integrated simulation system which allows the generation
of a graphical chemical process flowsheet. This system incorporates dynamic simulation in the
form of DYNSIM. The graphical flowsheet generator must be used on graphics terminals hence
universal usage is not possible. Keywords are used to generate the flowsheets. The unit
schematics are chosen by using keywords then positioned using a graphics cursor. However,
this method can become tedious when applied to the stream definition, which requires the line
description keyword to be entered together with the source and sink unit numbers. A topology
data file is produced. The whole package is integrated with the simulator and thercfore; allows a
simulation to be executed from within the package. Flowsheet construction is undertaken by
selecting the appropriate schematics which are then connected by using streams at assigned ports
on the equipment schematics. The convergence criteria of stream parameters are entered at this
stage. The program also calculates the enthalpy of the streams by calling the appropriate
physical property routines. During a simulation the user can interrupt the calculation and change
the valucs of parameters. All the data including the graphical flowshect is stored in a database. _

This is an interesting concept but may be restrictive for experienced users who may not want to
79

reconstruct the whole flowsheet to slightly modify the topology for the simulator. As IDFP
requires the user to learn the keywords to generate flowsheets, it negates some of the benefits of

autogeneration of the topological information.

Naess and Loeken (1985) describe a front end which enables a graphical front end to be
generated, which in turn provides the topological information for PROCESS (Brannock er al
(1979)). A schematic program enables the user to build a library of graphical symbols which are
then used to draw a flowsheet. A flowsheet extractor program combines the topological
information with the respective simulator keywords and fills in the unit operation and stream
identifiers. A database management system is used to handle the flowsheet data and the
keywords to the process simulator. This front end produces a data input file which is then

accessed by the simulator.

Other researchers such as Preece er al (1987) and Curtis et al (1981) have worked on
production of stand alone graphical flowsheet generators. Curtis et al (1981) described a system
which lays out the flowsheet drawings from the numerical connection data. This work is
designed to provide a means for producing standardised output from flowsheeting studies. It
can also be used as a visualization device for presenting alternative process networks generated
by process synthesis programs. This mechanism of automatically generating the flowsheet has
little significance in making it easier for a user to set up the topological information for a
simulator. However, the aim of producing output from simulators for visual comparison would

be useful in a complete simulation package.

A more promising graphical process flowsheet generator is discussed by Preece er al
(1987). They have developed two 2-D graphics packages, the first is the graphical process
flowsheet generator PFG and the other being a piping and instrumentation generator PIG.
These packages enables the user to interactively construct 2-D process flowsheets and piping
and instrumentation diagrams using ikon and menu driven input techniques. The PFG/PIG

packages can be interfaced with simulation packages to automatically produce the topologicial
80

information for the simulators. As PFG/PIG automates the generation of the process topology
information in a highly interactive manner they would be ideal for making DASPII into a more
interactive and robust simulation system. Although, operation of simulation packages can be
speeded up by using graphical flowsheets which automatically generates the topological
information, some of the advantages are negated if the graphics package produces unnecessary
flowsheet details. At present PFG produces the actual stream connection whilst the
instrumentation information is added using PIG. This level of detail is not required during the
creation of the process topology and one system combining PFG and PIG is sufficient. This

version of PFG allows 18 types of process equipment.

In this section the general features available in some graphical process flow diagram
generators are described. This is then used as a basis for formulating the requirements for a

process flowsheet generator for DASPII, these are described in section 5.3.

5.3 Requirements for a process flowsheet generator for DASPII

The objectives of the graphical system required to generate the topological information for

DASPII are:-

1. The package must be highly interactive, enabling the user to simply create a flowsheet
from standard items of process equipment for which simulation models are available.

2. A method of selecting the models available within the DASPII model library.

3. The topological information must be automatically generated for DASPII from a graphical
representation of the process.

4. The package should enable instrumentation to be included with other process equipment in
one package and therefore be included in the topological information.

5. The package must be able to retrieve a partially or fully created flowsheet for modification.

6. A mechanism for modifying the topological information and the graphical flowsheet once

the user has left the graphical front end and is in the simulation mode. This would

81

overcome the need for the user to return to the graphical front end when a small

modification of the flowsheet is required once the user is in the simulation mode.

It is evident from the literature survey that PFG fulfills most of the requirements of a
graphical flowsheet topology generator for DASPIL. Although, PFG has some limitations,
which are discussed in section 5.4, it is a good base from which a suitable graphical front end

can be developed for DASP II.

5.4 The limitations of PFG as a flowsheet topology generator for
DASPII

1. At present PFG generates the topological information for specific simulators. The PFG
source code needs to be modified to supply the correct topological information for each
simulator. A simpler method would involve dumping all the possible topological
information into a standardised text file. Each simulator would then require a specific
interface which would extract the relevant information in order to generate the required
simulator topology input.

2. Most simulators require a flowsheet that consists of the process flow diagram and a basic
process and instrumentation diagram. The usual PIG details illustrating the different
controllers and valves on a flowsheet is not required.

3. Only 18 unit symbols are available in PFG to represent all possible units in a process
flowsheet. As simulators usually have more than one model for each unit, there lS no way
of selecting the required model from those available in the simulator library.

4. PFG at present requires all modifications no matter how small to be made in the graphics
mode. This means that the user needs to return to the graphics mode of PFG from the
simulator even for minor modifications.

5. PFG does not differentiate between streams. Although, it allows streams of different
thicknesses to be used in the flowsheet, there is no mechanism of defining different stream]

types. such as vapour, liquid, mixed phase ctc.
82

An interface between PFG and DASPII has been developed, this overcomes the limitations

described in this section. The interface is described in the next section together with the

mechanisms used to overcome the limitations with PFG.

5.5

BTOPOL - The interface between PFG and DASPII

The main objective of BTOPOL is to create an efficient interface between PFG and

DASPII, so that by utilising all the useful features of PFG and overcoming all its limitations an

easy to use environment is created for generating the flowsheet topology for DASPII.

Overcoming the limitations of PFG

1)

2)

Maoadification of the source code to generate flowsheet topology

As discussed in the previous section one of the major weaknesses of PFG is that the PFG
source code has to be modified to generate the process topology information for each
simulator. The best way of overcoming this limitation is to dump all the unit information
and their connection data into a file. BTOPOL reads this data file and by interrogating the
user, generates the required flowsheet topology file for DASPII. This required the
modification of the PFG source code, so that all the topological information is durlnpcd into

a data file, see figure 5.3.

PFG has been modified so that a valve and controller symbol are available in PFID mode.
This is in line with the DASPII requirement of a mixed PFD/PID. This allows the

selection of general valves and controllers in the flowsheet hence enabling a flowsheet

topology to be generated for DASPII, without having to revert to PIG which now becomes
redundant.

3) The limit of 18 symbols in PFG would be too restrictive for realistic chemical process
representation. This limitation can be overcome in two ways : the first involves increasing
the number of symbols so that each model isrepresented by a unique symbol. The
alternative method involves constructing the flowsheet with the symbols that are currently
available, these

symbols are used as generic flowsheet units and are defined more closely in BTOPOL.

The former method has certain weaknesses which would hinder its use as an effective
topology generator. The main weakness would be the constant need to modify the PFG symbol
list to match a usually growing simulator model library. This limitation would be avoided by the
alternative method as the symbols are generic. Therefore this method is implemented in
DASPII. The flowsheet is represented in PFG by using the generic symbols. A flowsheet
topology file is then created in terms of the generic units. PFD also saves files in its own
format. BTOPOL reads this file and by interrogating the user with the aid of database files via
BTRIEVE (Anon (1976)), it creates a more detailed topology file for DASPII (see Figure 5.3).
BTOPOL is also able to modify the files of the flowsheet saved by PFG to reflect changes made
by the user. This is optional. Information of all the available DASPII library models for each
generic PFG symbol is retrieved from the database files and displayed. The user then selects an
appropriate library model to represent the flowsheet unit. If no library models are available for

each unit the user has a number of options. These are as follows:

i Remove the unit from the flowsheet. This will be discussed in (4).
ii. Select another model as a replacement, from the complete list of library models.
iii. To choose a model that is not currently in the library. A dummy model is written into

the topology file. All of the relevant model information must then be added to

8

4)

the topology file once the new model has been generated. This technique overcomes
the need for PFG or BTOPOL to be modified as the DASPII model library is
developed. The only updates required are to the database files, which can be made
easily by the user.
PFG only allows modification to the flowsheet in the graphics mode. These flowsheet
modifications can be required during various states of a simulation study. One such stage is
when suitable library models must be selected for the generic units chosen in PFG (see 3).
Two of the options available to the user could benefit from modifications to the flowsheet
data saved by PFG other than by using PFG. For instance if a unit is to be represented by a
different model type then the accompanying PFG - process flowsheet diagram description
should be modified accordingly. This should also be the case if the unit is to be completely
removed from the flowsheet. Another potential use of this feature is during an actual
simulation run where parts of the flowsheet can be removed to overcome flowsheet latency
(Ogbonda (1987)). It would also be extremely useful during a conceptual design study
where variations of a process flowsheet are simulated to evaluate the best design. Therefore
a copy of the existing flowsheet and modifications of this copy would allow a great deal of

simulation experimentation with various flowsheet configurations.

The removal of a flowsheet unit has been implemented in DASPII during the construction
of the flowsheet topology file via BTOPOL. This feature can be illustrated with the aid of
Figure 5.5. The flowsheet represents a distillation column (unit 3) with its feed from
mixer 2 (unit 2). Three feeds are mixed in mixer 1 (unit 1) with its output being one of the
feeds of mixer 2. The fourth system feed being the second inlet stream of mixer 2. If for
example mixer 2 needs to be removed from the flowsheet then feed 4 must either be added
to mixer 1 or directly to the distillation column. BTOPOL prompts the user to select the
sink unit for feed stream 4. Built-in rules allow the unit to be removed from the PEG

flowsheet description and its feed stream (stream 11) is rerouted to the selected unit.

85

nuaw STOGNAS Ut Aedsip nuajy pue S|oquAS G N3

vVddv
NOILLVIWYOANI

aAeS

sjoquikg a9

uonisod MmaN

SIPON 2ul"]

9[eos

sjoquig Suimer(

VIV ONIMVId

§1200paY SI9[10}
lopnnxy 221§ -[onuo) SIATBA ST -eredog SISXTA s1auqg
s101® $10S$ 123ueyox?
godeag | seoewnng | -oxdwony | SIOSSPA | si0W0€SY | suwno) 4 sdung

1894

87

Mixer 1 Mixer 2

7
(o))

Mixer 1

Figure 5.5 The removal of unit 2 from the flowsheet

88

Distillation
column

Distillation
column

11

Y

5)

In Figure 5.5 stream 11 becomes the fourth feed stream of mixer 1. The main rules
implemented in BTOPOL to modify PFG flowsheet diagram description files are as

follows:-

i If the feed stream to the unit is at the vertical position as the exit stream from the unit
then the end point of the feed stream is extended to meet the start point of the exit
stream (see Figure 5.6).

ii. If the exit stream starts at a higher vertical position than the end point of the feed
stream, the start point of the exit stream is moved to the vertical co-ordinate of the feed
stream. The end point of the feed stream is extended to meet the start of the exit stream
(see Figure 5.8).

ii If the exit stream starts at a lower vertical position than the end point of the feed
stream, the start point of the exit stream is started at the vertical co-ordinate of feed
stream. The end point of the feed stream is extended to meet the start point of the exit
stream (see Figure 5.9).

iv. Streams with the same source and sink units as a result of unit removal are completely
removed from the flowsheet. For example if unit 2 is removed in figure 5.6, stream 1
begins and ends with unit 1; as it has become redundant, stream 4 would be removed.

Stream Definition

DASPII requires each flowsheet stream to be clearly defined as belonging to a specific
type (Ogbonda (1987)), for instance as liquid flow, vapour flow etc. Streams must also
be assigned stages to enable differentiation. Although, PFG allows the use of streams of
different thickness, there is no mechanism of stream definition such as that required by

DASPIL

This stream information is obtained by BTOPOL by interrogating the user. The user
shown the stream number and is then prompted to enter information such as the stream ta;

description and type. The data is then written in a suitable format to CTOPOL - the DASPII

89

Figure 5.7 The removal of a recycle stream

> UNIT o

Figure 5.6 Connecting lines at the same vertical
co-ordinets

90

L UNIT

Figure 5.8 Connecting lines with an exit stream
at a higher vertical position than the feed stream

- UNIT

Figure 5.9 Connecting lines with an exit stream at a
lower vertical position than the feed stream

91

USER

PFG

ASCIT DATA FILES

BTOPOL —=CTOPOL

BTRIEVE

Figure 5.10 Structure of the graphics front end

92

topology filc (see Figure 5.10). All the DASPII model information including the models
in the DASPII model library suitable for each PFG symbol type is stored in the database
files - PFUNIT, PFDMNO and DPUNIT. The information is retrieved by BTOPOL
through BTOPOL. The PFD data files are also accessed and modified by BTOPOL as

required by the user so that the PFD remains consistent with the DASPII topology file.

5.7 Concluding Remarks

All process simulators require the connectivity information to be supplied in a form that
can be understood. Several mechanisms are adopted by the different simulators. The two most
popular methods are the use of an input language which includes the use of special keywords
and the use of a simple and normally numerical description of the stream supplied in ASCII data
files. Each method has its disadvantages. The first requires the user to learn the language and
also requires a software translater to convert the input language to a form understood by the

simulator. The second method requires the user to know the format of the data file.

PFG enables users to provide a graphical method of representing a flowsheet. PFG can
then be modified so that it creates the resulting topological information in a suitable format for
the required simulator. However, this method requires PFG to be modified every time PFG is
used with a new simulator. A much more flexible method has been developed for the
PFG/DASPII link. This method has been described in this chapter and involves the use of an
interface - BTOPOL, between a modified PFG and DASPIL.

PFG has becn modified so that all the topological information is deposited into a data file.
BTOPOL accessces this file and generates a more specific topological data file for DASPII. It can
also modify files used by PFG. This method overcomes the nced for repeated modifications
when PFG is linked with other simulators. PIG has also been merged with PFG so that excess

information is not generated.

93

The use of the modified PFG for DASP has significant benefits. One of the most
important benefits is the substantial increase in the usability of such a simulator. As DASP
requires the topological information to be provided in a particular alpha-numerical format, the
user was required to provide this information manually. However, by using PFG the user can
visually create the flowsheet with errors and the required information is automatically generated.
PFG is itself highly interactive using ikon and menu driven input techniques. PFG has required
major changes to enable instrumentation to be drawn and included in the topological data for the
front end. Another modification allows the generation of a topological data file that can be used

by BTOPOL to generate a suitable topology data file for DASP.

BTOPOL - the link program between PFG and DASP uses a commercially available
database management system BTRIEVE (Anon (1986)) and adopts an interactive conversational
procedure to generate the topological information for DASPII. The PFG symbols are treated as
unit types and BTOPOL enables the user to select appropriate models from the DASP library to
represent the units in the flowsheet. This technique is more suitable as symbols are not required

for each model as in AGPSS (Singh and Camahan (1981)).

Since this would be user specific BTOPOL also enables the user to modify the flowsheet
without reverting back to PFG graphics mode. This facility is further enhanced by the ability to
modify the corresponding PFG graphical flowsheet from within BTOPOL, so that the two
flowsheets are not out of step. Therefore this method of conversational ﬂowshcét can be

effectively used in other areas of DASPIL

Another useful feature of BTOPOL is the mechanism of automatically removing redundant
lines which have the same sink and source as another line in the flowsheet. Whilst in PFG the
redundant linc is added to the line which has the same connections as the redundant line.
Streams that have the same sink and source resulting from the removal of unit in a recycle loop

are removed from the flowsheet.

94

No distinction is made between the lines in PFG and they are considered as just
connections. This distinction is made in BTOPOL by interrogating the user who enters suitable
codes for each line. The highly interactive system created by the implementation of a modified
PFG and BTOPOL has resulted in an extremely usable system which promotes experimentation.
As the topology data files for DASP are the same as before the user can still create them

manually using a system editor or word processor.

95

CHAPTER SIX

96

MODELS AND THEIR SOLUTION

6.0 Introduction

The simulation of chemical processes using mathematical models is discussed in Chapter
One. A suitable mathematical model must adequately represent all the aspects of the chemical
system that are to be investigated. All of these aspects must be contained in the model without
the inclusion of unnecessary detail. The consideration of what is essential and what is
unnecessary will depend upon the requirement for which the simulation is undertaken. In
general purpose simulation, the full range of requirements will not be known in advance.
Therefore, a useful general purpose simulator will contain flexibility allowing different choices
to be made by users with different needs. This flexibility can be provided by alternative models
of the same process unit. This is inflexible because to change between models is a flowsheet
change. In this work the flexibility is provided within process unit models to provide flexibility
for the user without changing the flowsheet. This flexibility extends beyond simply changing
the parameter set or specifications. Variables and parameters can be exchanged, allowing the

user to specify a process variable without restructuring the problem.

The most common use of simulation involves standard unit models to be provided by
model builders in simulator libraries (see Chapter Two), requiring the user to simply select the
appropriate models for a particular flowsheet. Hence, to fully utilise the specification flexibility
offered by the equation oriented approach various different methods of model design age used in

simulators.

One method of avoiding including redundant equations is to evolve the model so that the
complexity of the process model is increased progressively. This technique also enables the
process model to be validated at every stage of development, thereby increasing confidence in
the model. Models can be validated by comparing process observations with the predictions

from the model under identical conditions or by comparing different versions. Such a stepwise

97

evolution is very easy if the changes are included in the unit models. The unit mathematical
models are composed of sets of differential and algebraic equations, in which the variables
represent particular characteristics of the process unit. Steady state simulation produces time
independent solutions to their equations. The different strategies adopted for solving the model

equations in process simulators are described in Chapter Two.

The equation oriented approach, which is implemented in DASP II, in theory enables the
user to set any variables in the system as long as the problem is correctly defined.
Implementation of this and other common difficulties occurring in model generation are
discussed in Section 6.1. Modelling formulations and methods adopted for problem
specification in various equation oriented simulators are assessed in Section 6.2. A method for
defining the problem specification in DASPII which overcomes some of the major drawbacks
associated with other methods is described in Section 6.3. An interactive method for generating

the simulation control options is described in Section 6.4.

6.1 Model Building and Associated Difficulties

Simulators cannot be used to solve the model equations until the problem has been
properly defined. If there are n equations and m system variables, (m-n) further variables must
be arbitrarily specified in order to fully define the system. These extra specifications are termed
degrees of freedom. In theory with the equation oriented approach any (m-n) system variables
can be specified by the user with the remaining n variables being evaluated using the model
equations. However, in reality this is not the case. If for instance all the variables are specified
in a particular equation then the equation has become redundant. This results in a singular
system which cannot be solved. This issue is further complicated during dynamic analysis
which involves the incorporation of differential terms. In this case no differential term or
differential variable (i.e. a variable which is included in a differential form anywhere in the
system) can be specified as a known variable, as the system integrator will evaluate these

variables. Another problem with dynamic systems has been discussed by Pantelides er al

98

(1987). This occurs during the solution of differential - algebraic equations (DAE's). They
describe a classification method for DAE's according to their index, where they define the index
of a system to be the minimum number of differentiations with respect to time that the system of
equations have to undergo to be converted into a set of ordinary differential equations.
Therefore the number of variables for which arbitrary initial values may be specified is less than
the number of differential equations and similar numerical methods can be used to solve them.
Problems of index greater than one arise when two or more state or differential variables are
related. Examples of this occur in phase equilibrium processes, which commonly generate DAE
systems of index 2 and greater. This usually occurs because the differential variables introduced
by the material and energy balances are not independent, but related through the phase
equilibrium processes. This problem of index greater than unity systems can be sometimes
overcome by more rigourous models of the system. This provides an additional advantage for

models with internal flexibility.

6.2 Modelling Strategies Implemented in Process Simulators

Three different strategies have been used for the formulation of the DAE problem in

equation oriented simulators, they are as follows:-

i. Quter - inner method

This method simultaneously solves the differential equations, whilst the coupled algebraic
equations are solved within an inner loop of the iteration process. This is therefore
commonly referred to as the "outer-inner" convergence loop. This method was
implemented in FLOWSIM V4.0 (Babcock (1981)) and can produce inaccurate simulation
results because of this partial decoupling. It also renders the algebraic variables as local
variables which therefore makes it impossible to allow them to be globally manipulated if
this is required in design and optimization studies. In ASCEND (Kuru (1981)) and

DYNAMIC QUASILIN (Smith (1985)) a velocity variable is introduced for each
99

ii.

1il.

differential equation, as shown in Chapter Three. This increases the dimension of the
problem and also requires equations with more than one derivative term to be manipulated
to state variable form.

Linearly implicit DAE's

This formulation requires the derivatives to have coefficient values of one or zero. Hence
all equations with variable coefficients must be manipulated to be brought to the correct
form. BOSS (Joglekar and Reklaitis (1984)) is a simulator which adopts this formulation.

The general format

This formulation allows more than one derivative term in any equation and derivatives to
have variable coefficients. This approach does not have the same restrictions as the two
former formulations. Other advantages offered by this approach include no distinction to
be made between the algebraic and differential equations, introduction of new variables is
not required and the model equations are not required in state variable format. This is the
modelling strategy implemented in DASPII. In order to fully utilise the flexibility of the
equation oriented approach, simulators have adopted many unique methods of enabling

users to select the desired specification for each model.

For instance in QUASILIN (Hutchinison (1986)) various specification configurations are

selected by the model builder for each model. These specification options are hard coded into

the model. For a truly flexible system it is obvious that there will be a vast number of options

for large models. This would require the user to have prior knowledge of the complete
specification information for each option in order to select the desired specification. A similar
method is implemented in DASPI where a special model parameter is selected by the user to
define the variable specification details required for each model. Subsequently DASPI loses the

benefits of using the general formulation strategy for the model equations.

In ASCEND II (Kuru (1981)) the interconnection betwecen units and their equations and

variables are represented by a GEV diagram. The GEV diagram is composed of Generators,

Equation packets and Variable packets. A generator is a group of FORTRAN subroutines which

100

produces the partial derivatives and equation residuals. The generators undertake the
calculations using the equations stored in equation packets which in turn uses the variables
stored in the variable packets. A unit is a collection of generators. The user can change vanable
values and the variable specification by selecting the appropriate variable, and equation packets

for each generator.

6.3 Selection Of Model Variable Specification

The objective of this part of the project was to enhance the model formulation strategy
adopted in DASP II, to create a truly flexible simulation approach. This technique will also aid

the user in the provision of a correct variable specification. This is achieved in two parts:

i) The model construction phase.

i) An interactive front end which helps the user to correctly define the problem.

Each of these phases will be discussed in turn in this section.

6.3.1 Model Structure

The DASP II library models retain the same basic structure as in DASP I, in that the model
is divided into several sections, each performing a separate function. The main modifications
have occurred in the initialisation section, which initialises the model variables and parameters.

and the function evaluation section which contains the model equations.

The initialisation section in the models has been modified to read a new data file -
VCODES, containing variable and parameter codes. This enables the user to choose the known
and unknown variables in each model. The variable and parameter values are passed to the

model via data files in a similar way to DASPL

101

The model builder writes the model equations using the general formulation strategy. One

set of equations is required because the equations are independent of the specification. This is

unlike DASPI, which required the model builder to write n sets of equations, where n was the

number of variable specification options available in each model. Consequently, the new

technique saves the model builder time and reduces the program size.

i)

v)

For each model, the model builder selects certain types of variables. These include:

Differential variables - Variables included in differential terms. During dynamic simulation
these variables cannot be specified as known because this results in an equation system
with a singular Jacobian matrix.

Preset real parameters - These are real variables that are not allowed to be defined as
unknowns such as liquid density. This can reduce the risk of structurally singular
problems.

Pre-defined unknown variables - These are variables which must always be defined as
unknowns. An example of such variables is pressure in a phase equilibrium process.
This can result in index greater than unity problems.

Real parameters/variables - All the remaining real variables Any of these variables can be

selected as knowns or unknowns.

This strategy can be shown using a proportional and integral controller as an example.

The model equations are:- i

ERROR = AXN * (SP - MV)

d(INTERR) (CONTOP-INTERR)
dt - TI

CONTOP = GAIN * ERROR + INTERR

IF (MV < XD MV =7ZI

IE (MV > RI) MV =RI

102

[F (CONTOP < Z0) CONTOP =Z0O
[F (CONTOP > RO) CONTOP =RO

Where
ERROR - the controller error
Z1 - the zero of input signal
RI - range of input signal
20 - zero of output signal
RO - range of output signal
N - controller action
TI - integral time
MV - measured variable
SP . set point
INTERR - integral of the error

The equation classification used for this controller is:-

1) Differential variables : INTERR
il) Preset real parameters : ZI, RI, ZO, RO
i) Predefined unknown variables : none

iv) Real variables : TI, AXN, SP, MV, CONTOP, ERROR, GAIN

The model builder inputs this information into database files, which are used in the
interactive variable specification interface described in section 6.3.2. This is achieved by
entering the data via XTRIEVE (Anon. (1986)) (see Figure 6.1) which is an interactive user
interface to database files managed by BTRIEVE (Anon. (1986)).

103

Initialisation

Function
Evaluation

Model Builder

BTRIEVE

DATABASE FILES

Figure 6.1 Model generation by the model builder

104

6.3.2 Interactive variable specification interface

An interactive interface - CUNIN has been developed to interrogate the user using the
model information retrieved from database files via BTRIEVE. This information is provided by
the model builder as described in Section 6.3.2. The interrogation is totally dependent on the
flowsheet topology, therefore the interface accesses the DASPII topology file - CTOPOL which
is created by BTOPOL the DASPII topology interface (see Chapter Five).

CUNIN prompts the user for values of the integer parameters for each model. This is
done by retrieving the integer parameter list for the model from the database files and then
appending this information to standard questions. The parameter values and their respective

codes are written into the variable specification data file - CUNIT.

A similar technique is used for the variable specification definition, although this has
increased complexity as a result of the user being required to select unknown and known
variables for each model. Several rules have been applied to this procedure to overcome some
of the modelling difficulties described in Section 6.1. The primary rule is to fulfill the degrees
of freedom for the system. Another rule prevents the risk of structurally singular problems.
Sections of the model can be switched on and off easily in order to modify the flowsheet that is
being modelled. Once the user selects the known and unknown variables, their values are
requested from the user again by the use of standard equations appended with data from the
database files. The variable and parameter values are written in CUNIT. Their respective codes
are also written into a variable specification coder file - VCODES (see Figure 6.2). These data

files are accessed by the model initialization sections to initialise and define the equation system.

105

The equation system for the flowsheet is constructed by DASP II. Each library model
accesses CUNIT and VCODES during the initialization phase of the analysis to set up the

equations, as shown in Figure 6.3.

6.4 Generation of the Simulation Control Options

In order to carry out the simulation with a flexible simulation system such as DASP II a
range of simulation control options must be provided to give the user control of the simulation.
The options include parameters defining the simulation model such as dynamic or steady state,
source of model routines, numerical tolerances, plotting requirements and numerical methods
required to undertake the simulation. The different simulation modes will require different
option requirements. For instance with steady state simulation, options referring to integration
methods available will not be required. Consequently, an intelligent interface has been
developed which interrogates the user to produce a control options data file which can then be

used by DASPII to carry out the necessary simulation.

Database files are again used to store information regarding the control options. The
stored information includes the option, description, name and limits. The interface - CINDAN,
retrieves information from the database files through the database manager BTRIEVE (see
Figure 6.4). This information is displayed appended to standard questions and prompts the user
to supply suitable values for the desired option. Once all the simulation control option
information is supplied, the user selected option values and codes are written to an ASCII file

CINDAT. This file is then accessed by DASPII once a simulation run is commened.

108

6.5 Concluding Remarks

Most of the methods implemented in simulators for the definition of variable specification
do not offer methods for aiding the user in the most difficult task of correctly defining the
variable specification. SPEEDUP (Pantelides (1988)) offers a compromise, by having a section
which allows the user to specify the problem but the variable values must be entered at a later
stage. The problem also requires a translation once the values have been entered, which
becomes a limiting factor for large problems. More importantly problems which result in

singular Jacobian matrices are not prevented.

A more practical approach is implemented in DASPII, this involves the model builder
classifying the model variables with all this information stored in a database which the user
accesses through an interactive interface. This interface aids the user to correctly define the
system and prevents modelling difficulties such as index greater than one problems and singular
Jacobian matrices by using the model builder's knowledge. In conjunction with this is the
ability to rapidly modify the variable specification without exhaustive translation procedures.
These features are further enhanced by the models requiring only one set of equations no matter
what variable specification is selected. This helps to keep the model library size to a minimum,
hence enabling DASP II to meet one of the requirements of this project. The complete variable
specification system is made compact by using database files with the aid of a database
management system. This has yielded a system which is useful both for the model builder and
more importantly the user who can use the flexibility and the power of an equation: oriented
simulator with a simple method of problem definition commonly associated with the sequential
modular approach. Resulting in a system which provides an excellent method for experimenting

with the flowsheet.

110

CHAPTER SEVEN

111

DEMONSTRATION OF DASP 1I

7.0 Introduction

The objective of this chapter is to demonstrate the features implemented in DASPII. As the
aim of this project is to bring together various different sections of research to generate an
interactive, flexible and robust simulation system, each of the new developments are illustrated
with literature examples. Although each of the main aims of the project seem not to be related.
they are in fact very closely linked. However, the main feature offering the most towards each
of these aims will be tested to demonstrate the abilities of DASPII. The graphical representation
of the process flowsheet and the subsequent generation of the topology information for DASPII

will be used to illustrate the interactiveness of DASPII.

This is demonstrated in Section 7.1 where the topology information for a methanol mixer
tank is generated from a graphical representation of its flowsheet. The methanol mixer tank is
also used to illustrate the benefits of the new modelling and variable definition technique
described in Chapter 6. This is shown in Section 7.2, where the variable definition is modified

so that the system configuration is changed.

The robustness of the simulator has been improved by investigating the area of solution of
non-linear algebraic equations. This is a vital area as systems of NLAEs are required to be
solved repeatedly during many different operations. In Section 7.3 the performance of
CONLES is compared with that of Broyden's method on a series of equations taken from

literature.

iy [The generation of a DASPII flowsheet topology input file for a

methanol mixer tank problem with the aid of BTOPOL

A simple flowsheet of a methanol mixer tank (Figure 7.1) will be used to illustrate the

interactive generation of the topology information for DASPII.

The system consists of a perfectly stirred tank with one water feed, two methanol solution
feeds, one concentrated and the other dilute. The methanol solution feed streams are controlled
by two-position actuator valves which can be fully on or fully off only. Control valves on the
water feed stream and the tank outlet stream are used to regulate the flow of the respective
streams. Two control loops manipulate these control valves to keep the level in the tank at 0.8 m
and the mole fraction of methanol at 0.4 in the outlet stream. The tank acts as a perfect mixer
with no heat transfer. The flowsheet generated by PFG for the system is shown by Figure 7.2
Control and instrumentation equipment is included in the diagram in the form of the composition
and level controllers together with the inlet water feed valve and the outlet methanol valve. A
heat exchanger is used to heat the dilute methanol feed. The symbols representing the units are

shown in Table 7.1

113

CONCENTRATED ALCOHOL

EXTERNAL HEAT

EXCHANGER

DILUTE ALCOHOL

LC

INLET VALVE

WATER FEED

[

OUTLET VALVE

NN N N N AR T AT

St

blem

mixer pro

Figure 7.1 Simple flowsheet of methanol

114

WISAS U] JOXTW [OURYIAW Y3 JO 123ysmop D4d V 'L 2In31g

IXH| TTY] BTd] 6n) 80T 21| 9va] SW| bI| €D 2n[TJn

fiey

—

LTS

of | X

O|

— V(.

115

45

D, s

DA ;mTHJ’

.
>
-

-y
QU

1] § -

Unit Equipment Tag Equipment
Number Name Name
1 WF1 Water feed
2 V2 Water feed valve
3 CC3 Composition controller
4 T4 Composition transmitter
P M5 Mixer tank
6 DA6 Dilute methanol feeder
7 T7 Level transmitter
8 LC8 Level controller
9 V9 Outlet control valve
10 P10 Product sink
11 All Concentrated methanol feeder
12 DAH1 Dilute methanol heater
TABLE 7.1

The equipment list for the methanol mixer tank

The intermediate topology information file created by PFG is used by BTOPOL to

interrogate the user. The file for the methanol mixer tank is given in Appendix A.

The purpose of the interrogation is to resolve the user's choice of the model type code
assigned for each unit. The PFG unit code is used to retrieve information about the suitable
model types from the database files. This information which includes the particulér models
available for each model type is displayed and the user is required to select the most appropriate
model for the units in the flowsheet. An example of this is shown in Figure 7.3. There are
other options available. These are to delete the PFG unit, and to add new PFG units, making

appropriate changes to the topology.

116

“** MODELS AVAILABLE FOR THE C_CONT UNIT ARE
1 = PROPORTIONAL ONLY CONTROLLER
2 = Pl CONTROLLER
3 = PID CONTROLLER

ENTER THE CODE FOR THE MODEL REQUIRED

> 2

ENTER UNIT TAG, MAX 10 CHARACTERS

> AC1053

THE MODELS AVAILABLE IN THE DASPII LIBRARY FOR PFG
UNIT TYPE CONTROLLER ARE LISTED AND THE USER IS
PROMPTED TO SELECT THE MOST SUITABLE.

Figure 7.3 Model selection for the units in the flowsheet

117

*** WARNING ***

NO MODEL IS AVAILABLE FOR PFG UNIT HEATEX
IS THIS UNIT STILL REQUIRED ?
>N

UNIT 12 MAY BE REPLACED BY THE FOLLOWING UNITS
[ENTER UNIT NUMBER]

6
>6

LINE 12 CONNECTED SOURCE UNIT 6 WITH REMOVED SINK
UNIT 12. CHOOSE A SUITABLE REPLACEMENT SINK UNIT
FOR THIS LINE FORM THE FOLLOWING LIST

[ENTER THE UNIT CODE] :

PFG UNIT TYPE TANK CODE 5
>5

DO YOU WISH TO MAKE THESE CHANGES TO THE
FLOWSHEET ?

>Y

FIGURE 7.4 Selection of an altemnative sink for an old stream

118

For the removal option the user is prompted to select an alternative sink unit for the old
streams terminating at the unit (see Figure 7.4). The same changes are also made to the PFG file
describing the block diagram. This gives the user the ability to modify the PFG diagram during
an interactive text session to keep it consistent with the changed problem structure in the final
topology file passed to DASPII. This is illustrated using the methanol mixer tank problem.
This initially has a heat exchanger unit in the flowsheet. However, as there are no heat
exchanger models in the DASPII library, the heat exchanger - unit 12 is removed resulting in the

block diagram shown in Figure 7.5.

The topology information is completed by the user typing and labelling the streams as
shown in Figure 7.6. All the user supplied information is merged with the information provided
by PFG to produce a DASPII topology file. The topology file for the methanol mixer tank is

shown in Appendix A.

7.2 Generation of the Problem Description information using
CUNIN and CINDAN

In Section 7.2.1 the generation of the simulation control options file is undertaken for the
methanol mixer problem with the aid of CINDAN which is described in Chapter 6. The next
stage, shown in Section 7.2.2, is the creation of the problem description file for the methanol

mixer problem using CUNIN, which is also described in Chapter 6.

7.2.1 Interactive generation of the simulation control information

A series of questions are posed to the user to produce a simulation control option file, as
described in Chapter 6. Some of the questions depend on the options selected earlier during this

procedure.

119

I193ueYOX2 183y Pa3j B Inoylim

wdISKS ue) IAXTW [OUBYIAW Y} JO 193YSMop} DJd V §'L 2In3ig

119

g1d

6N

801

L1

Md

SK

bl

€20

Zn

1an

fiey

o

O|x|

Ol

o=

120

LINE FROM TO

1 1 2

2 2 S 0 INFORMATION
3 3 Z 1 LIQUID

4 4 3 2 VAPOUR/LIQUID
5 5 4 3 LIQUID

6 6 9 4 MIXED LIQUID/SOLID
7 5 9 5 SOLID

8 9 10

9 11 5

10 5 8

11 8 7

12 6 12

13 12 5

ENTER STREAM 1
TYPE CODE ? 3

NAME { MAX. 5 CHRAS. } ? ST1

THE SINK AND SOURCE OF EACH LINE IN THE FLOWSHEET IS
DESCRIBED AND THE USER IS PROMPTED TO ENTER THE STREAM
TYPE AND A STREAM TAG FOR EACH FLOWSHEET STREAM.

Figure 7.6 Stream typing and labelling

121

THE OPTIONS FOR THE MODEL WATER_F ARE

0=ALL MODELS FROM DASP ; 1=DASP AND USER SUPPLIED;
2=USER SUPPLIED

ENTER THE CHOICE OF OPTION KMODEL

i

THE USER IS PROMPTED TO DESCRIBE THE SOURCE OF
MODELS FOR THE FLOWSHEET SELECTED. THREE OPTIONS
ARE AVAILABLE. THE INTERNAL OPTION NAME IS KMODEL

Figure 7.7 The standard prompt during the generation of the
simulation control options

FOR THE CONTROL1 MODEL ENTER ICODEI
WHICH IS THE CODE NUMBER.

THE FOLLOWING COMMENTS MAY BE NOTED :
THIS IS THE CODE NUMBER OF AN INPUT VARIABLE.

ENTER A VALUE FOR THIS PARAMETER ?

>

Figure 7.8 A typical integer parameter enquiry

*** DEFAULT UNKNOWN VARIABLES ARE ***
2 = PSIGN

PLEASE ENTER <ENTER> TO CONTINUE

DO YOU WISH TO KEEP THESE VARAIBLES
ENTERYORN ?

>N

HOW MANY WOULD YOU LIKE TO CHANGE
{(MAX 1} ?

>1

ENTER THE NUMBERS OF THE DEFAULT VARIABLES
YOU WISH TO CHANGE

CHOOSE 1 FROM

61 ZI 62 RI
63 ZO 64 RO
67 YO 68 AXN
69 GAIN 88 CMAN
71 TI 70 SP
>70

IN THIS EXAMPLE THE SET POINT OF A CONTROLLER HAS
BEEN SELECTED AS THE UNKOWN VARIABLE INSTEAD OF THE
CONTROL SIGNAL.

Figure 7.9 Selection of default real variables

124

The user prompts are standard questions appended with information from database files, an
example of this is shown in Figure 7.7. A simulation control option file generated for the

methanol mixer tank problem is shown in Appendix A.2.

T2:2 Interactive generation of the variable specification

The generation of the variable specification for a system is carried out by CUNIN as
described in Chapter 6. The process commences with the topology file (as created in Section
7.1) being read to determine the models required to simulate the system. The methanol mixer
tank is used to illustrate the method adopted in DASPII for variable specification. This is
followed by the retrieval of the integer parameter for each unit and displayed with the prompts
requesting the user to provide suitable valves (see Figure 7.8). The next stage involves the
selection of the known and unknown variables for the model All of the unknown variables
allowed (see Chapter 6 for the variable classification) are displayed and the user is prompted to

either select the defaults or choose from the list of real variables (see Figure 7.9).

The methanol mixer tank system is used to demonstrate variable specification switching.
Two different variable specifications are used for this problem, in effect representing two

different system configurations.

a) The standard configuration - the controlled system

Composition and level controllers are both active in this configuration (see Figure 7.1).
This is achieved by declaring the controller set points as known variables. The controller
outputs are declared as the unknown variables and are calculated by the controller models.
The resulting variable specification file for this system is shown in Appendix A.2. The
simulation results are shown graphically in Figures 7.10 to 7.13. It can be seen that the

product

125

Liquid height (m)

1.00

...

0.00 020 0.40 0.60 0.80 1

Time (hrs)

Figure 7.10 Tank level versus time for the controlled system

126

.00

Methanol mole fraction

(.55
0,80 crecrrins T T T N
0.
0.
0.25 ,
0.00 Q.20 0.40 0.60 0.80

Time (hrs)

Figure 7.11 Methanol mole fraction in the tank versus time
for the controlled system

127

.00

Inlet valve flowrate (kmol/hr)

180.

175

X705

165.

160.

155.

150.

145.

140.

.00 -

00

00

00 -

00

00

00 —

00

00

0.00 6.20 0.40 0.60 0.80 :

Time (hrs)

Figure 7.12 Inlet water flowrate versus time for the
controlled system

128

00

Outlet valve flowrate (kmol/hr)

400.00

350.00d............

B00.. 00— ~~ommenie sy
250 i _____________
oot fat Xes e
Rl VAN T S
100,00 oo S — S —
P ____________ T

0.00

0.00 0.20 0.40 0.60 0.80 1

Time (hrs)

Figure 7.13 Liquid flowrate through tank outlet valve
for the controlled system

129

Liquid height (m)
5.00

0.00 0.20 0.40 0.60 0.80 1.00

Time (hrs)

Figure 7.15 Tank liquid level versus time for the
uncontrolled system

131

Uis

Methanol mole fraction in tank

53]

0.00 0.20 0.40 0.60 0.80 '

Time (hrs)

Figure 7.16 Methanol mole fraction in tank versus time
for the uncontrolled system

132

00

Inlet valve flowrate (kmol/hr)

168.00

166.

164.

162.

160.

188.

156,

154.

0.00

Time (hrs)

Figure 7.17 Water flowrate into the tank versus time
for the uncontrolled system

Outlet valve flowrate (kmol/hr)

300.00
250,00 fcrrr oo
20000 Yivmisvsor s
TP | R S SR R S
100': 00 dvslss senvaess
UNPVA W, SN SR SN S T—
D00 | I T |
0.00 0.20 0.40 0.60 0.80 :

Time (hrs)

Figure 7.18 Liquid flowrate through the tank outlet valve
versus time for the uncontrolled system

134

b)

stream is suffering from underdamped level control, whilst the composition controller
exerts more stable control over the water dilution stream. These results are consistent with
the expected results and also with those obtained by Smith (1985). The different controller
responses can be attributed to the widely differing gains for the two controllers. Figures
7.10 and 7.11 show that the level is controlled quite closely to the set point of 0.8 m,
whilst, the composition controller offers poor performance in maintaining a methanol tank
concentration of 0.4 mole fraction.
The alternative configuration - semi controlled system
In this system (see Figure 7.14) the controller output is fixed (known variable) by
allowing the set point (unknown variable) of the controller to float. This can be achieved
by producing another variable specification input file by using CUNIN or by simply
modifying the input file used in Case A, resulting in the file shown in Appendix A.2. In
can be seen from the graphical results shown in Figures 7.15 to 7.18 that the product
flowrate is constant, whilst the level in the tank is varying and not controlled. On the other
hand, the concentration controller is still attempting to maintain the correct methanol
concentration by manipulating the water flow. The level controller is operating but not

controlling as the set point in varing to maintain a constant output.

This example illustrates the ease with which the model variable specification can be modified in

DASPII. This technique is available for any variables which are suitably described in the unit

model.

7.3

The Solution of Non-linear algebraic equations

T3l Comparison of CONLES with Brovden's method

Chapter Four describes the solution of non linear algebraic equations and its importance in

the simulation of chemical processes. Several literature problems will be used to compare

135

CONLES, the new NLAE solver implemented in DASPII, with Broyden's method, the method

used in DASPI.

Problem 1. Solution for reaction rate equations (Shacham (1986))

The equations in this problem represent the rate of different steps in a chemical reaction.

The equation set is as follows:

rn = 1-X1-K; X1 Xg+Krp X4

r) = 1-X3-Kjp X9 Xg+Krp X5

13 = -X3 + 2K3 X4 X5

4 = K1 X1 X6 - Kry X4 - K3 X4 X5

s = 1.5 (K72 X3 Xg - Krp X5) - K3 X4 X5
I6 = 1-X4-Xs5-Xg

where X to Xg are the quantities in moles of the different species present in this reaction; K,
Kri, K7, Krj and K3 are specified rate coefficients, and r| to rg are the reaction rates. At steady

state the reaction rates are zero. The coefficients values are given in Appendix A.

This is a problem that has several real solutions although most of the solutions are
infeasible. Two initial sets of estimates are used for this system, both are shown in Appendix
A.l. Initial estimate set B is quite different to initial estimate set A, which is used by Shacham
(1986). Set A is a perfectly valid initial estimate when solving this problem using the NLAE
solver in standalone format. However, set B is more likely to be used in a simulation
environment because similar types of variables are assigned with the same starting points, as
providing individual initial estimates for a large set of variables would prove an unnecessary
overhead. It can be seen from the results in Appendix A, that Broyden's method and CONLES
both converge to solutions from the initial estimate Set A although the latter requires more
iterations to converge. Broyden's method fails to converge after 500 iterations with initial

estimate set B, whereas CONLES solves the problem after 85 iterations.
136

The results obtained from CONLES for this problem are different from those obtained by
Shacham (1986, 1983) for this problem. The discrepancy between the results is quite
considerable, the difference in one variable being as large as 550%. It is clear that either or both
of the results are not correct or there is more than feasible solution. However, if Shacham's
results (1986) are substituted in to the equations the residual values of the first and third
equations are much larger than any realistic steady state convergence tolerance. Whereas, the
results obtained by CONLES in this work yields residual values that can be classified as

converged. It is likely that there is a typographical error in Shacham (1986) .

Problem 2. Combustion of propane in air (Hiebert (1982
This chemical equilibrium problem represents the combustion of propane in air and

consists of 10 equations. The equation set is as follows:-

f(l)= X;+X4-3=0

f2)= 2X;+Xp+ X4+X7+Xg+Xo+2X10-R=0
f3)= 2Xp+2Xs+Xg+X7-8=0

f(4)= 2X3+Xs5-4R=0

f(5)= X;+Xs5-0.193X3X4=0

f(6)= Xg (X2)12 - 0.002597 (X3 X4 X5)12=0

f(7)= X7 (X4)12 - 0.003448 (X] X4 X5)12=0

f8)= XgX4-1.799x105 Xy Xs5=0

f9)= XgXs-2.155x 104 X; (X3 Xs5)12=0

f(10) = X0 X42-3.846 x 105 X42X5=0

where

137

{X;) are the amounts of chemicals which must be non-negative at
the solution.

R is the parameter of value 10

The functions in the equation set containing square root terms cannot be evaluated when
any of the variables forming arguments of the square root terms are negative. This would yield
complex solutions which are not detected by this type of solver. As in problem (1) two different
starting points were used (see Appendix A.l). The first set is again taken from Shacham
(1986) whilst the second is a more realistic one to use in a simulation environment. Broyden's
method solved this problem from the first initial in the same number of iterations as CONLES.
although the former method required fewer function and Jacobian evaluations. With the second
starting set Broyden's method failed to converge in 500 iterations, whilst CONLES converged

to the required solution well within this limit of iterations.

Problem 3. Chemical equilibrium problem (Hiebert (1982

The following equations represent a chemical equilibrium system:-

fiX) = X1+ Xz + X4 -0.001

f,X)= Xs+ Xg-55.0

f3(X) = X) + X3 + X34 2X5 4+ Xg - 110.001
f4X) = X1-0.1X2

fs(X) = Xp-104X3 Xy

fe(X) = Xs5-55x 1014 X3 Xg

Four of the equations are linear and the remaining equations are mildly non-linear,
however the difficulty with this equation set arises with their scaling. The most extreme
example of this is the sixth equation which has a coefficient for the second term of 55 x 1014,
whereas the coefficient for the first term has a value of 1.0. The solution requires all variables to

have positive values. Four starting points, (Appendix A.1) were used for this problem and they -

138

were the same as those used by Hiebert (1982). These were used as they represented most
possible starting points. For instance one starting point is near the actual solution, the other
three are uniform values similar to those that might be used in a simulator. The results in
Appendix A show that both CONLES and Broyden's method solve the problem for all the
starting points. These results differ slightly with those obtained by Hiebert, who failed to obtain
solution with starting point A when using a Quasi-Newton method. However, Broyden's
method solved the problem from the same starting point. In all these runs CONLES required a
greater number of iterations and therefore function evaluations than Broyden's method. This

means that badly scaled problems are well handled by Broyden and CONLES.

Problem 4. Eight variable problem (Ferrari's and Tronconi (1986))

Ferraris and Tronconi (1986) put forward this eight variable problem as a good test for
NLAE solvers from bad starting estimates. The equations are as follows:-
fiixX)= Xy
f2(X) = X2-X112-exp (X)) - 15
f3(X) = X3-X; X2/100-sin (X;) - 1.0
f4aX) = X4-(Xo+X;+X3/2)2+150
fs(X) = Xs - (X4 - X2)/(X1X2X3)
f6(X) = Xe- X5 X1 13 - exp (Xs)
f7(X) = X7- (X1 - X412 - X52). exp (Xs)
fg(X) = Xg-Xi-Xs5-Xe-X3
The starting points, shown in Appendix A, are intentionally selected far from lhf..;“ solution.
This is further exacerbated close to the solution where the Jacobian becomes ill-conditioned as
the exp terms are much greater than the remaining terms in these equations. Powell's method
(1970) was unable to solve this problem in 600 iterations. A similar result was obtained with
Broyden's method which also failed to converge after 500 iterations. Whereas Ferraris and
Tronconi (1986) solved this problem in 38 iterations, with their algorithm which updates only
the non zero, non constant elements in the Jacobian matrix. As shown in Appendix A

L)

CONLES solved this problem in 267 iterations.
139

Problem $. Partial oxidation of methane (Carnahan (1969))

Seven equations are used in this problem to represent the material and energy balances for
the possible reactions between methane and oxygen. One equation is linear whilst the other
equations show varying degrees of non linearity. Multiple solutions are possible for this
problem with the feasible solution having positive mole fractions. The equation set is as

follows:-

fi(X) = 0.5X; + X2 + 0.5X3 - X¢/X7

fr(X) = X3+ X4 +2X5-2/X7

fiX)= X;+X2+Xs5-1/X7

fa(X) = - 28837X; - 139009X, - 78213X3 + 18927X4
+ 8427X5 + 13492/X7 - 10690X¢/X7

fsX)= X1 +Xo+X3+X4+X5-1

fo(X) = 400X X43 - 1.7837 X 105 X3 X5

f7(X) = Xj X3- 2.6058 Xp X4

Two starting points, originally proposed by Carnahan (1969), were used for this problem.
Both starting points are shown with the results in Appendix A.1. The results show that from the
first starting point both CONLES and Broyden's method easily solve the problem. Unlike the
previous systems CONLES requires only 60% of iterations required by Broyden's method to
solve the equation system. With the second starting point Broyden's method fails to cc;mvergc in
500 iterations whilst CONLES is able to solve the equation set in 31 iterations. The second
starting point is actually closer to the solution than the first starting point, this means that the

solution path is not a simple function but very much non linear.

140

1:3.2 Solution of NLAEs for multiple solutions using CONSOL

Most chemical engineering problems yield NLAEs with multiple solutions, some of which
are infeasible. However, all of the solvers used in chemical process simulators implement
methods which are able to locate only a few of the real solutions depending on the starting points
used. CONSOL will be used to evaluate the viability of determining all solutions to NLAEs.

Several literature problems will be used to evaluate CONSOL.

Problem 1. Burning of fuel (Morgan (1987))

This equation set represents the combustion of fuel in a combustion chamber. The aim is

to evaluate the composition of various components at a point during the combustion phase.

The coefficients of the system are derived from reaction constants and component

conversion totals which are now related to temperature. The model equations are:-

fiX)= Xo+2Xg+Xg+2X19-TH

£,(X)= X3+ Xg-Tc

f3(X)= X1+ X3+2X5+2Xg+ X9+ Xj10-T,
faX)= X4+2X7-TN

fsX)= Kj Xs- X2

fo(X) = Kz Xg- X2?

f7X)= K3 X4 -Xq?

fg(X) = KaqXg - X1 X3

foX) = Ks5Xg-X;X2

floX) = Keg Xi0- X1 X22

where To, Ty, T and T are totals, K to K7 are the reaction coefficients. The total degree of the
system (see Chapter Four) is (25) or 96. This means there are 96 possible solutions for this

equation system. However the equation set can be reduced so that the number of possible -

141

solutions are reduced thereby reducing the computational effort required for solution. A

possible reduced equation is:-

fil X) = a1 X1 X2+a1p X1 Xp+213 X2 +ayg X2 +a5

fol (X) = ag1 X3 + a2 X12 Xy + 233 X12 + ap4 X X2 + a5 X

Xo+ a6 X1 + a7

where ajj ajs and ayg ap7 are parameters generated from the reduction of the original
equation set. The new equation set has a total degree of 3 x 3 i.e. 9. These solutions are shown
in Appendix A.4, where one of the solutions is complex and the remaining eight are real. Of
these real solutions only one solution is feasible for this problem, the other solutions yield
solutions with negative values. As these variables represents component compositions negative

values are impossible.

Problem 2. Chemical Equilibrium problem (Hiebert (1982))

This problem has already been described in section 7.3.1. It is composed of the following

six equations:-

f1X) = Xj+ X2 +X4-0.001

H(X)= X5+ Xg-550

f3X) = X+ X2+ X3+ 2Xs5+ Xg - 110.001
f4X)= X;-0.1 X3

fs(X)= Xj-104X3X4

fo(X) = Xs5-55x 1014 X3 X¢g

Hiebert (1982) and Shacham (1985) both attempted to solve this problem with various
codes implementing a range of non-linear algebraic equation solving methods. They

independently found that several methods including Powell's method and Brent's method

142

converged to a number of infeasible solutions depending on the initial starting point selected.
CONSOL offers a technique for solving for all possible solutions to a problem without the
requirement of starting point estimates. The equation set in its original form has a total degree of
2.2. Therefore this system has only four solutions and does not require system reduction. The
four solutions obtained by CONSOL are shown in Appendix A.4. It can be seen that three of
the solutions are real with the remaining one being a complex solution,. Two of the real
solutions are indeed infeasible and may have been those located by Hiebert (1982) and Shacham
(1985) test codes. The infeasibility of these solutions is due to of the existence of several
negative variable values. The feasible real solution obtained by CONSOL was consistent with

those obtained by Hiebert (1982) and Shacham (1985).

Problem 3. Solution of reaction rate equations (Shacham (1986))

This equation set which represents a chemical reaction system has been solved by

CONLES and is problem number 1 in Section 7.3. The equation set is:-

fiX)= 1-X;-K;X)Xg +Krj X4
f,(X) = 1-X3-KyXyXg +Krp Xs
f3(X) = - X3 +2K3X4 X5

f4(X) = Ky X1 X6 - Kr1 X4- K3 X4 X5
fs(X) = 1.5 (K2 X3 X6 - Kr2 Xs) - K3 X4 X5
foX)= 1-X4-Xs5-Xs

The parameter vales K1, Kry, K, Krp and K3 are specified in Appendix A.4, X; to
X are moles of different species present in the species. Multiple solutions have been found by
Shacham (1986) for this solution. As discussed in Section 7.1 it appears that Shacham (1986)
has made a mistake in either defining the equations or the parameter values, since the results

obtained from CONLES are not consistent with those reported by Shacham (1986, 1983).
143

In the current form the total degree of this equation set is 25 or 32. Hence 32 possible
solutions exist for this problem. Equation reduction to reduce the total degree of the system was
not possible. Therefore the equation set was solved in its original form and 32 solutions were

located.

Three of the 32 solutions are found to be real, whilst the remaining 29 solutions are
complex. Of the three real solutions two are infeasible because of the existence of negative
variable values. The remaining real solution is feasible and is consistent with the solution
obtained with CONLES. The two infeasible real solutions are different from the two infeasible
solutions obtained by Shacham (1986), further evidence that the equation set proposed by

Shacham (1986) is not the set used to obtain the results reported.
7.4 CONCLUSION

A simulation problem has been successfully undertaken, starting from the generation of the
topology information through to the actual simulation. The system considered is simple but
representative of the type of problem generally simulated in chemical engineering process
analysis. The simulation analysis commenced with the generation of the process topology with
the aid of a modified PFG. The ability to modify the graphical flowsheet during the
conversational procedure has been demonstrated. A problem variable definition was
successfully generated using the interactive user interface. A similar procedure ‘has been
demonstrated for the creation of the simulation control option file. These files were then used
with the models in the new model format which allows the same model equations to be used for
different variable specifications. The standard methanol mixer tank problem, with both
controllers active, generated the same results as those obtained by Smith (1985). As this was
the original aim of this simulation exercise the results were considered to be satisfactory.
However, this simulation was taken a step further by the modification of the variable

specification, so that the level controller on the tank was effectively removed with the aid of
144

BTOPOL. The results obtained were consistent with expectations. This demonstrates the great
flexibility present in DASPII to allow simulation of systems with different configurations in a

simple and effective manner.

Non-linear algebraic equations problems from literature have been used to compare the
solution methods present in DASPI, with a new method which offers local, expanded and global
convergence, instead of just local convergence. The results illustrate the benefit of having a
solution which offers an expanded region of convergence. Although the problems had fewer
variables than those likely to be encountered in industrial problems, the problems had unusual

characteristics which would be similar to those likely to exist in chemical engineering problems.

CONSOL found all possible solutions to the NLAE test problems without requiring the
provision of any starting points. Both real and complex solutions were located, however the
time taken to solve for all possible solutions was high. System reduction offers a technique for
reducing the time taken to solve the problem by removing linear equations from the system

consequently fewer solutions are required to be located.

These examples show that DASPII offers a flexible method for simulating chemical
processes, with increased robustness due to the addition of CONLES, which offers an expanded
region of convergence for non-linear algebraic equations. The methanol mixer example
illustrates the efficiency and the robustness of the interactive front end which removes the need

for the user to have detailed prior knowledge of the models available in the model librafy.

145

CHAPTER EIGHT

146

DISCUSSION AND FUTURE WORK

8.0 General Discussion

Dynamic and steady state simulation of chemical processes within an equation oriented
environment has been examined in this work. Of the various approaches to chemical process
simulation, the equation oriented approach overcomes most of the problems encountered by the
other methods regarding design, optimisation, flow pressure modelling and coupling in
dynamics. It also offers greater flexibility in the formulation of the model equations and their
subsequent solution. Implementation of this method however requires the solution of several
problems inherent in this approach. Ogbonda (1987) tackled some of these problems whilst
designing DASPI (Fletcher and Ogbonda (1987)). The requirements fulfilled in the design of
DASPI are the implementation of an efficient integration method which enables the simultaneous
solution of sets of differential algebraic equations and the detection of discontinuities (Ogbonda
(1987)). Ogbonda (1987) also developed a methodology for assembling the model equations

from modules with the aid of an executive structure which controls the complete package.

Smith (1985) highlighted two main styles of use of simulation packages within the
chemical industry. The first is the case where the simulation system is used by process plant
based engineers with limited expert support. In this environment the complete package must be
user friendly and offer a high degree of robustness. In the second situation simulation
specialists provide a simulation service to process engineers within the company. The experts
also provide models, in which the process engineer is only required to formulate his problem
with these pre-prepared models. In this instance user friendliness is mainly needed in the
simulation specification and analysis sections of the system. This is in line with the general
view that equation oriented simulators are so user unfriendly that they verge on the hostile. The
robustness of equation oriented simulators has also been questioned (Chen and Stadtherr
(1985)) because of the need to solve large sets of non-linear equations simultaneously. The

work described in this project has been undertaken to overcome the serious limitations described

147

above by creating an interactive and robust simulation package DASPII. This has been achieved
by merging together various different ideas and are highlighted in this discussion. Consequently
this work has been carried out to overcome the serious limitations described above, by creating

an interactive and robust simulation package DASPII.

The use of a process flowsheet block diagram generator enables block diagrams to be
created without the user requiring to have prior knowledge of special input languages, keywords
or fixed format topology files as used in other equation oriented simulators. The technique of
block diagram generation is more flexible than those implemented in other types of simulators.
For instance unique icons are not used for particular models but are used in a generic manner,
whereby a general icon is used to represent a set of similar types of models in the library. This
does not overwhelm the user with too much information. Also confusion is avoided during the
addition of new models, as new models added to the DASPII model library are classified in the
appropriate generic model types and new icons need not be added to the flowsheet generator as
in other simulation systems. The question and answer session reduces the risk of the user
entering incorrect entries into the topology file. The generation of the process topology for

DASPII is undertaken in a most efficient and user friendly manner.

It is well known (Chen and Stadtherr (1985)) that the equation oriented approach offers the
most flexible technique of simulation. In principle any variable within the equation system may
be calculated, unlike the modular methods which calculated with output variables for a unit given
the inlet variables. However, with this added flexibility the user has a more difficult task of
correctly specifying the problem. The interactive method implemented in DASPII assists the

user in correctly defining the problem and executing the simulation.

The variable specification information for each model supplied by the model builder, is
retrieved from the database. The information is used to interrogate the user in a question and
answer session. As for the topology generation the need for the user to have knowledge of

input languages, keywords or file formats is avoided. This interactive procedure also ensures

148

that the correct number of specifications have been fulfilled. Most importantly the user is
prevented from incorrectly defining the problem, so that modelling difficulties such as singular
systems do not arise, since the user has the model builders knowledge. Consequently in
DASPII the enormous flexibility of the equation oriented approach is available in a truly user
friendly environment, hence overcoming one of the major weaknesses prevalent in equation

oriented simulators.

The flexibility of DASPII has been enhanced by the application of a model structure which
enables almost any variable within the model to be calculated from one set of model equations.
These equations can be used for both steady state and dynamic simulation without any
modification. This together with the interactive variable specification definition allows the user
to make changes to the specification in a simple manner. Unlike other simulators which
implement special languages or keywords, no information translation is required, hence the turn
around time for flowsheet modification is very low. This has been demonstrated with the
methanol mixer tank problem. Single sets of equations in models, results in a compact and

concise model library which reduces the time taken in coding and debugging.

Locally convergent NLAE solvers usually offer the most rapid convergence if they are
given good starting points otherwise they fail to solve the problem. Solvers offering global

convergence do not require good starting points but tend to be much slower.

It is ironic that most equation oriented simulators, which are required to solve very large
sets of non-linear algebraic equations simultaneously employ NLAE solvers with <;nly local
convergence characteristics. Since the successful solution of NLAE:s lies at the heart of steady
state simulation and is vital in dynamic simulation where DAEs are integrated to form large sets
of NLAEs, it is quite clear why the robustness of equation oriented simulators has until now
been questioned. CONLES, the NLAE solution system that has been added to DASPII, offers
three methods each having one of the three possible forms of convergence characteristics.

CONLES has been compared with the method implemented in DASPI on a range of NLAE .

149

systems from different starting points. Although the test systems were much smaller than those
likely to be encountered in an industrial chemical processes simulation, each of the test problems
have difficulties associated with them which are of the type likely to occur in simulation
problems. From these tests CONLES was found to converge to the correct solution, when the
starting point was further away from the solution than was possible with Broyden's method. In
simulators reasonable default starting points are usually provided for classes of variables. This
means that a truly global equation solver that is computationally intensive is not vital. The
conclusion of this assessment was that CONLES provides an expanded region of convergence
that would be suitable for most chemical engineering simulations and it offers robustness and yet

is still efficient in the most critical area of the simulator.

The means of providing an initial starting point for dynamic simulation were investigated.
In most instances a steady state of the problem can be used as the starting point. Therefore the
search for an initialisation technique was concentrated in the steady state area. Although
CONLES can be used as the solver it can only locate a single starting point depending on its
own initial estimate. Hence CONSOL was tested because of its ability to locate multiple
solutions without the need of any initial estimates. However these benefits are available at the
expense of considerable computational effort. This can be overcome to some extent by reducing
the equation set by hand so that the total degree of the problem is reduced, hence less effort is
needed to find the solutions. In practice this would not be a viable operation for a simulation
system as it would require too much effort from the user. However equation reduction has been
tackled by programs such as REDUCE (Hearn (1983)). This method would enable the
simulation system to undertake the reduction and subsequently solve the problem. Since real

and complex solutions are found the user is required to discount the infeasible solutions.

In DASPII the strengths of DASPI (Ogbonda (1987)) have been enhanced whilst the main
weaknesses have been overcome to produce an equation oriented simulation system that is

numerically accurate and efficient and yet is user friendly and robust.

8.1 Recommendations for future work

At present DASPII has been tested on small problems. In order to simulate realistic

chemical processes the range of unit operation models need to be extended.

Some industrial chemical processes require process units to be modelled in a 'distributed’
manner, which give rise to systems of partial differential equations. At present DASPII is
unable to solve such systems and requires the manual conversion of the PDEs to sets of ODEs
by using the method of lines. Process units such as detailed pipe models, heat exchangers,
tubular reactors and packed tower models must be sometimes modelled as distributed units.
DASP II needs to be developed so that the PDEs arising from the distributed system can be
converted to ODEs without the user's intervention, thereby ensuring the robustness and

interactiveness of package is not lost.

Further work is also required on the topology information generation. Although, PFG
enables block diagrams to be represented graphically there are several weaknesses with this
version of PFG. The main drawback being the limited space in which diagrams can be drawn,

this can be overcome by two possible ways:

a) The first strategy creates the flowsheet on different levels. For instance in the top level of
diagrams only the general chemical processes are represented. So that a top level diagram
of a refinery flowsheet might show the crude storage, crude stabilisation, light component
separation, heavy component separation and product storage as separate blocks on the
block diagram. The next level down would show the diagram of one of the blocks in the
top level. For the light component separation we would have for example: methane and
hydrogen separation, ethane separation, propane separation, butane separation, and
pentane separation. All represented as separate blocks. The third level down would be a
detailed representation of the blocks in the second level. Therefore for the ethane

separation we would have the. deethaniser column, partial condenser, feed heat

151

exchangers, reboiler product pumps, reflux drum, side stream product drum. etc. Hence
the flowsheet gets more detailed as the user goes further down the diagram levels.

b) The second approach is the development of a window type system as used in several
commercial drawing packages such as Decwrite (Anon (1990)) where the computer screen
represents a portion of the actual drawing area. Cursor movement will allow the user to
pan the complete drawing area. Therefore a large and complex flowsheet can be drawn on
one level starting at one point and then just building the flowsheet by moving the cursor

up, down, left and right.

There are drawbacks with both of these techniques. In the first strategy the user is
required to generate n diagrams, where n is the number of levels. However there is no limit on
the size of diagram that can be generated. Although, the drawing area is increased in the second
approach there is still limits on the size of diagram that can be generated, this is dependent on

the actual size of the new drawing area.

DASPII enables the process topology to be altered during a simulation so that non
functional units are in effect removed from the flowsheet. At present this is carried out by the
user defining the latent units and modifying the stream connections with the aid of a
conversational procedure. This can be done more interactively by allowing the user to modify a
graphical block diagram. Since a graphical block diagram of the flowsheet is available in

DASPII this development can be undertaken with minimal effort.

152

8.2 CONCLUSION

In this project a mechanism has been developed for gathering together recent algorithms
and methods from various disciplines to design a robust and user friendly simulation system
DASPII, which retains the strengths of the equation oriented approach. DASPII demonstrates
that the ideas implemented work, therefore the objectives of this project are fulfilled. Hence a
robust and user friendly equation oriented simulator has been created by the implementation of a
new NLAE solver, a graphical topology information generator and an interactive front end
which uses a commercial database management system. The flexibility of the system is

enhanced by the model format implemented.

It is evident from this project that future simulators must possess the numerical accuracy of
the equation oriented approach whilst having the usability of the sequential modular approach. A
great deal more research effort must therefore be expended on the further developments of the

usability and general robustness of the equation oriented simulators.

153

REFERENCES

154

REFERENCES

Alcock P. (1985), "Dynamic simulation as an engineering support tool". Process

Engineering: September 1985.

Anon. (1967), "The continuous system simulation language (CSSL)".
Simulation, Vol. 9, No 6: December 1967.

Anon. (1976), "Advanced continuous simulation language (ACSL)". User
Guide/Reference Manual, Mitchell and Ganthcer Ass. Inc., Concord Mass.

1976.

Anon. (1980), "Standards for dynamic simulation language"”. Digest No
1980/17, Inst of Electrical Eng. London, 1980.

Anon. (1984), "Control of Industrial major accident hazard registries", Stat.
Instrument No. 1902, HMSO, London, 1984.

Anon. (1988), "SPEED-UP - user guide". Prosys Tech. Cambridge, 1988.
Anon. (1990), "DecWrite User guide", Digital Equipment Corporation, 1990.

Aylot M.R., Ponton J.W. and Lott D.H. (1985), "Development of a dynamic
flowsheeting program". IChemE Symposium Series No 92. pp 55-66, 1985.

Biegler L.T. (1989), "Chemical process simulation". Chemical Eng. Prog. Vol
85. No 10. 1989.

Briggs D.E. (1974), "DISCO - An interactive executive program for dynamic
simulation and control of chemical processes”. 78th National AIChE Meeting,
Salt Lake City.

Broyden G.G. (1969), "A new method for solving non linear simultaneous
equations”. Comp J Vol 12 (1), 94 1969.

Burchell G. (1989), "Simulators for chemical operator training". Paper
presented at the Nonsuch Branch IChemE Meeting, 1989.

Burton P.J. and Mortan W. (1987), "Differential arc length homotopy
continuation 1n equation oriented simulatuon”. CEF 87 AV1il Congress, 19d7.
Cameron I.T. (1981), "Numerical solution of differential algebraic systems in

process dynamics”. PhD Thesis, University of London, 1981.

Carnaham M. and Stewart W.E. (1985), "Sensitivity analysis of initial value
problems with mixed ODES and algebraic equations”. Comput. Chem. Eng. Vol
9, No 4, pp 359-365.

Carvar M.B. (1978), "Efficient integration over discontinuities in ODE
simulations”. Math and Comput in simulation xx, pp 190-196, 1978.

Chen H.S. and Stadtherr M.A. (1981), "A modification of Powell's dogleg
method for solving systems of nonlinear equations". Comput. Chem. Eng. 5, p
153

Chen H.S. and Stadtherr M.A. (1985), "A simultaneous modular approach to
process flowsheeting and optimization - Part I and II". AICheE J Vol 31, No 11,
pp 1843-1881. November, 1985.

Chow S.N., Hallet-Paret J. and Yorke J.A. A homotopy method for locating all
zeros of system at polynominals in functional differential equations and
approximation at fixed points. Peitgen H.O. and Waltner H.O., edd; Springer-
Verlag Lecture Notes in Math 730, New York, 1979. pp 228-237.

Christensen Y.S. and Rudd D.F. (1964) AIChEJ, Vol. 15. No. 94, 1964.

Cook J. (1989), "An accident waiting to happen”. Unwin Hyman, 1989.
Cosnard N.Y. "A comparison of four methods for solving systems of nonlinear
equations”. Tech. Rep 75-248, Department of Computer Science, Cornell

University, Ithaca, New York (1975).

Curtis B., Sood M.K. and Reklaitis J.G.V. "Computer aided flowsheet drawing
I: Equipment layout”. Computers and Chem. Engng 5 (4) (1981).

Dennis J.E. and Schnabel R. "Numerical methods for unconstrained optimization
and non linear equations”. Prentice-Hall, Englewood Cliffs, NJ, 1983.

156

Duft 15 (1977), “"MA28 - A set ot fortran subroutines for sparse unsymmetric
linear equations". AERE Report R.8730, HMSO, London 1977.

Evans L.B. (1980), "Advances in process flowsheeting systems". in Mah
R.S.H. and Seider W.D. (Eds), Foundations of computer-aided chemical process
design, Proceeding of an International Conference, Henniker, New Hampshire,
July 1980.

Ferraris G.B. and Tronconi E. (1986), "BUNLSI - A Fortran program for
solution of systems of non linear algebraic equations". Comput Chem Eng Vol
10, No 2, pp 129-141.

Franks R.G.E. (1972), "Modelling and simulation in chemical engineering".
John Wiley Interscience, New York, 1972.

Franks R.G.E. (1982), "DYFLO update: DYFLO2". 1982 Summer Computer
Simulation Conference Denver, Colorado. July 19-21, 1982, pp 507-513.

Gear C.W. (1971c), "Simultaneous numerical solution of differential algebraic
equations”. IEEE Trans on Circuit Theory, CT - 18. No 1, pp 89-95, 1971.

Georg K. "Numerical integration at the Davidenko equation, in numerical
solution of nonlinear equations"”. Allgover E., Glashoff K., Peitgen H.O. eds.,
Springer-Verlag Lecture Notes in Math. 878, New York, 1981.

Gerczynski E.W., Hutchinson H.P. and Wajih A.R.H. (1979), "Development of
a modularly organized equation - oriented process simulator”. Comput Chem

Eng, Vol 3, pp 353-356.

Hearn A.C., "Reduce user's manual”. Rand Publication CP78 (4/83), The Rand
Corporation, Santa Monica, California, 1983.

Hiebert M.C., "An evaluation of mathematical software that solves systems of
nonlinear equations”. ACM Trans. Math. Softw., 8, 5-20 (1982).

Hindmarth A.C. and Byrne G.D. (1975). UCID - 30112, Lawrence Livermore
Lab. Rept., California Univ.

157

Hlavacek V. (1977), "Analysis of « complex plant - steady state and transient
behaviour”. Comput Chem Eng. Vol 1, pp 75-100, 1977.

Holland C.D. and Liapis A.I. (1985), "Computer methods for solving dynamic
separation problems"”. McGraw - Hill, New York.

Hutchinson H.P., Jackson D.J. and Morton W. (1986), "The development of an
equation-oriented flowsheet simulation and optimization package I: The
QUASILIN PROGRAM", Comput Chem Eng Vol 10, No 1 pp 19-29, 1986.

Jirapongphan S., "Simultaneous modular convergence concept in process
flowsheet optimization". PhD Thesis. MIT, (1980).

Joglekar G.S. and Rekbaitis G.V. (1984), "BOSS - A simulator for batch and
semi-continuous processes”. Comput Chem Eng. Vol 8, No 6, pp 315-327,
1984.

Kletz. (1988), "Learmning from accidents in Industry". Butterworth, 1988.

Kohlert W., Siegismund B., Hartmass K. and Vrba J. (1985), "Equation
oriented simulation of technological systems". Coll. Czech Chem. Commun. Vol
50, 198s.

Korn D.A. and Wait J.V. (1978), "Digital continuous systems simulation".
Prentice-Hall Inc, Inglewood Cliffs, NJ USA, 1978.

Kovach III J.W. and Seider W.D. (1987), "Hetrogeneous azeotropic distillation.
Experimental and simulation results". AIChE J Vol 33, No 8, 1987.

Kubicek H. (1976), "Algorithm 502 - Dependence of solution of nonlinear
systems on a parameter". ACM Trans Math Software, Vol 2, pp 98-107, 1976.

Kuru S. (1981), "Dynamic simulation with an equation-based flowsheeting
system". PhD Thesis, Camnegie Mellon University, Pittsburgh.

Liang W.C. (1985), "An interactive dynamic flowsheet simulation program".
PhD Thesis, Lehigh University.

Liu Y.C. and Brosilow C.B. (1987), "Simulauon of lurge scaie dynamic sy stems
- I modular integration methods". Comput Chem Eng, Vol II, No 3. pp 241-253,
1987.

Locke M.H. (1981), "A CAD tool which accommodates an evolutionary strategy
in engineering design calculations". PhD Thesis, Camegie-Mellon University,
Pittsburgh.

Mitchell E.E.L. (1978), "Advanced continuous simulation language (ACSL)".
In numerical methods for differential equations and simulation, Bennett A.W. and
Vichnevetsky (eds), IMACS, North Holland Publishing Company, pp 139-146,
1978.

Mix T., Dweck J. and Weinberg M. (1977), "The potential energy conversion in
distillation". Paper present at 70th Annual AIChE Meeting, New York, 1977.

More J.J. and Cosnard M.H., "Brenth, a Fortran subroutine for the numerical
solution of systems of nonlinear equations". ACM Trans. Math. Softw., 6, 240-

251 (1980).

Morgan A.P. (1987), "Solving polynomial systems using continuation for
scientific and engineering problems". Prentice-Hall, 1987.

Mould R.F. (1988), "Chernobyl the real story", Pergamon Press 1988.

Naess L. and Loeken R.A., "Graphical input to a process simulator”. PSE 85
Cambridge in AIChE Symp. Ser. 92, 542, (1985).

Ogbonda J.E. (1987), "Dynamic simulation of chemical plant". PhD Thesis,

University of Aston, Birmingham.

Pagani G., Arminio Mon forte A. and De Mitri A. (1989), "Improving an
equation - oriented package". Comput Chem Eng, Vol 13, No 8 pp 931-945.

Paloshi J.R. (1982), "The numerical solution of nonlinear equations representing
chemical processes”. PhD thesis, University of London, 1982.

1'59

Pantelides C.C., "The consistent initialisation of differential-algebraic syvstems”.
Submitted for publication (1986).

Pantelides C.C., Gritsis D., Morison K.R. and Sargent RW.H. (1987), "The
mathematical modelling of transient systems using differential-algebraic
equations”. Proceedings of the XVIII Congress on the use of computers in
Chemical Engineering. CEF '87, Giardini Naxes, Sicily, Italy. April 26-30,
1987.

Pantelides C.C. (1988), "SPEEDUP - Recent advances in process simulation".
Comput Chem Eng, Vol 12, No 7, pp 745-755, 1988.

Pathe D.C. (1986), "Simulator a key to successful plant start-up”. OGJ Report
7th April, 1986.

Patterson G.K. and Rozsa R.B. (1980), "DYNSYL - A general purpose dynamic
simulator for chemical process"”. Comput. Chem Eng Vol 4, pp 1-20, 1980.

Perkins J.D. and Sargent R W.H. (1982), "SPEED-UP - a computer program
for steady state and dynamic simulation and design of chemical processes”.
AIChE Symp Ser. No 214, Vol 78 AIChE, NY.

Petzold L. (1983), "A description of DASSL: A differential-algebraic system
solver". Scientific Computing with R Stephenman et al (eds), IMACS/North

Holland Publ Co, 1983, pp 65-68.

Pierucci S.J., Ranzi E.M.and Biardi G.E. "Solution of recycle problems in a
sequential modular approach”. AIChE Joumnal, 28, 820, (1982).

Ponton J.W. (1983), Comput. Chem. Eng., Vol 7, No 1 pp 13-17

Ponton J.W. and Vasek V. (1986), "A two level approach to chemical plant and
process simulation”. Comput Chem Eng Vol 10, No 3, pp 277-286, 1986.

Powell M.J.D. (1970), "A hybrid method for nonlinear equations". In

"Numerical methods for nonlinear algebraic equations". Rabinowitz P., ed,
Gordon & Breach, London, 1970.

160

Preece P.E., Bader A.S.A.R., Davila Pernia J.L... Evans J.A.C. and Giller M K.
(1987), 1 he development ot a 2-D grapiical process tiowsncet generator (PFG)
and a piping and instrumentation generator (PIG)". Comput Chem Eng Vol II,
No 3, pp 279-289.

Pritsker A.A.B. and Hurst N.R. (1973), "GASP IV - a combined continuous -
discrete Fortran based simulation language”. Simulation, Sept pp 65-71, 1973.

Prokopakis C.J. and Seider W.D. (1983), "Dynamic simulation of azeotropic
distillation towers". AIChE Vol 21, No 6, pp 1017-1029, 1983.

Reklaitis G.V., Curtis B. and Sood M.K. "Computer aided flowsheet drawing -
I equipment layout". Comput chem Engng 5, 277, (1981).

Rheinboldt W.C., "On the computation of critical boundaries on equilibrium
surfaces". SIAM J Numer. Anal. 19 (1982), pp 653-669.

Rosen E.M. (1980), "Steady state chemical process simulation - A state-of-the-
art review". In computer applications to chemical engineering, R.G. Squires and

G.V. Reklaitis (Eds), ACS Symp Ser, Vol 124, (3), 1980.

Sargent R.W.H. and Westerberg S.E. (1964), "SPEED-UP in chemical
engineering design". Trans Inst Chem Engrs, 42, TI90, 1964.

Sargent R W.H. (1981), "A review of methods for solving nonlinear algebraic
equations”. In R.S.H. Mah and W.D. Seider (eds). Foundations of computer-
aided chemical process design, Vol 1, pp 27-76, Engineering Foundation NY.

Sasnow S. (1989), ‘Well heads on the seabed". New Scientist 18 March, 1989.

Schubert L.K. (1970), "Modification of a Quasi-Newton method for non linear
equations with a sparse jacobian". Math Comp Vol 24, pp 27-31.

Seader J.D. (1985), "Computer modelling of chemical processes”. AIChE
Monograph Ser, Vol 81, No 15, 1985.

161

Shacham M., Macchietto S., Stutzman L.F. and Babcock P. (1952). "Equation-
oricnted approuch io prucess i:0w saccunig - Conput. Chem Eng, Vo. 6, No Z.
pp 79-95, 1982.

Shacham M., "Comparing software for the solution of nonlinear algebraic
equations arising in chemical engineering”. Comput. Chem. Eng., 9, 103-112
(1985).

Shacham M. (1986), "Numerical solution of constrained non linear algebraic
equations”. IntJ Num Meth in Eng. Vol 23, pp 1455-1481, 1986.

Singh S.P. and Cranhan B., "An interactive process flowsheeting and simulation
system based on relational data structures”. Comput Chem Eng Vol 5, No 4,
1981.

Slaver E.R. (1986), "Dynamic simulation in 1991: An Exxon viewpoint".
Proceedings of the 1986 Summer Computer Simulation Conference, pp 292-296.

Smith G.J. (1985), "Dynamic simulation of chemical processes”. PhD Thesis,
University of Cambridge 1985.

Speckhart F.H. and Green W.L. (1976), " A guide to using CSMP - the
continuous system modelling program". Prentice Hall Inc., Englewood Cliffs NJ
1976.

Stadtherr M.A. and Hilton M. (1982b), "Development of a new equation-based
process flowsheeting systems: numerical studies". In selected topics on
computer-aided process design and analysis (eds R.S. Mah & G.V. Reklaitis)
AIChe Symp Ser (1982).

Stadtherr M.A. and Wood E.S. (1984), Comput Chem Eng, Vol 8, No 9 1984,

Stover W. (1985), "The chemical industry after Bhopal"., Proceedings of a
symposium, IBC Tech. Services, London, 1985.

Thambynayagom R.K.M., Wood R.K. and Winter P. (1981), "DPS - An

engineers tool for dynamic process analysis”. The Chemical Engineer. pp 58-65
1981.

g2

Trevinu-Lozaio K.A., Lyvaiss Lo, pild Ho. andg voston J.r. (199)),
"Simultaneous modular process simulation and optimization”. Symp. Ser. 92, pp
25-36.

Watson L.T., Billups S.C. and Morgan A.P., HOMPACK: "A suite of codes for
globally convergent homotopy algorithms". Research Publication GMR - 5344,
GM Research Laboratories, Wahgu, H I 48090, June, 1986.

Westerberg A.W. and Director S.W. (1978), "A modified least squares algorithm
for solving sparse n*m sets of non linear equations". Comput Chem Eng, Vol 2,
1978.

Westerberg A.W., Hutchinson H.P., Motard R.L. and Winter P. (1979),
"Process Flowsheeting". Cambridge University Press, Cambridge 1979.

Westerberg A.W. (1981), "Computer-aided design tools in chemical engineering
process design". Proceedings of the IEEE, Vol 69, No 10, pp 1232-1239.

Westerberg A.W. and Bengamin D.R. (1985), "Thoughts on a future equation-
oriented flowsheeting system". Comput Chem Eng, Vol 9, No 5, pp 517-526.

Wood R.K., Thambynayagom R.K.M., Noble R.G. and Sebastion D.J. (1984),
"DPS - A digital simulation language for the process industries”. Simulation pp
221-233.

Woodman M.R. (1989), "Simulation of three phase azeotropic ditillation
columns", PhD Thesis, University of Cambridge, Cambridge.

Zangwill C.B. and Garcia C.B., "Pathways to solutions, fixed points and
equilibria". Prentice-Hall, Englewood Cliffs, NJ (1981).

163

APPENDICES

164

LIST OF CONTENTS FOR THE APPENDICES
Page
APPENDIX A Results of example problems

A.l The solution of NLAEs with CONLES and

Broyden's method 167
A2 The data files generated for the methanol

mixer tank problem using the interactive

front end 187
A3 The dynamic simulation of the methanol
mixer tank system 190
A4 Locating multiple solutions of NLAEs using
CONSOL 198
APPENDIX B Execution of PFG 208
B.1 Introduction 208
B.2 Execution of PFG 208
B.3 Execution of the interactive front end FRONT 210
B.4 Execution of DASP 11 210
B.4.1 Introduction 210
B.4.2 Initial region 212
B.4.3 Dynamic region 214
B.4.4 Terminal region 215
APPENDIX C Variable and parameter types and
system errors 217
C:1 Introduction 217
Ci2 Variable types 218
€3 Integer types 224
C4 Error messages 225

165

APPENDIX D The management of the database

D.1
D.2
D.3
D.4

information using XTRIEVE

Introduction

Manipulation of data in DASP II using XTRIEVE
The database dictionary

The XTRIEVE setup

166

Page

228

228
229
231
231

A.1 Comparison of CONLES nnd Provden’s maothod

A.1 Problem 1 Solution for reaction rate equations (Shacham (1986))

The following parameters values were used in this problem:

k; =31.24
kr; =2.062
k, =0273
kr, =0.02
ks = 303.03

1. CONLES method starting point 1 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION
hkkhkhkhhhkhhkkhkhkkkhkhkhkhkkhkkhkhkhhhkkhkkkkk

Maximum number of iterations (KMAX) : 100
Equation solver method flag (MFALG) : 4
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC): 0

STATISTICS OF THE SIMULATION

NO OF FUNCTION EVALUATIONS : 26
NO OF JACOBIAN EVALUATIONS
NO OF ITERATIONS TAKEN

ww

RESULT S o F SIMULATTION®
Kokkhkkkhkkhkkhkhhk kA Ak hkkkkhhk kA A AR AR AR AR A Ak Ak kK

Total number of variables: 6
Total number of equations: 6
S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4

167

1 .99000D+00 .50000D-01 .50000D-01 .99000D+00

2 .97424D+00 .98283D+00N ,815130-01 .935670+00
S/N VARIABLE 5 VARIABLE 6
1 .50000D-01 .00000D+00
2 .90840D-04 .64238D-01

2. Broyden's method starting point 1 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION
Khkkkhkkkhkhkhhkhkkhkhdkhkhkkhokkokkkdhokkkokkkkkkkk

Maximum number of iterations (KMAX) : 100
Equation solver method flag (MFALG): 2
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC) : 0

STATISTICS OF THE SIMULATION

NO OF FUNCTION EVALUATIONS : 11
NO OF JACOBIAN EVALUATIONS : 1
NO OF ITERATIONS TAKEN : 2

RESULTS O F SIMULATTION
KAk khk kA Ak RARAAR KA KA KA A KA Rk Ak kkhkkkkkkkkhkkdkkkkk

Total number of variables: 6
Total number of equations: 6
S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
3 .99000D+00 .50000D-01 .50000D-01 .99000D+00
2 .97415D+00 .98277D+00 .51700D-01 .93567D+00

168

S/N VARIABLE 5 VARIABLE 6

1 .50000D-01 .00000D+00
2 .78581D-04 .64250D-01

3. CONLES method starting point 2 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION
Khhkkhhhkhkhhhhhhhkkhhhhhkhhhkdhkkkkkkhkkx

Maximum number of iterations (KMAX) : 500
Equation solver method flag (MFALG) : 4
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC) : 0

STATISTICS OF THE SIMULATION

NO OF FUNCTION EVALUATIONS : 676
NO OF JACOBIAN EVALUATIONS : 84
NO OF ITERATIONS TAKEN ~ 85

*RESULTS O F SIMULATTION *
e e S S e o i o

Total number of variables: 6
Total number of equations: 6
S/N VARIABLE 1 VARIARBRLE 2 VARIABLE 3 VARIABLE 4
1 .50000D+00 .50000D+00 .50000D+00 .50000D+00
2 .97424D+00 .98283D+00 .51513D-01 .93567D+00

169

S/N VARIABLE 5 VARIABLE 6

.50000D+00 .50000D+00
.90840D-04

4. Broyden's method starting point 2 - Failed run

EQUATION SOLVER AND MATRIX INFORMATION
K Kk d Kk kK K ek dook ok ok Kk k ok ok ok kK kK kR ok ok ok ok Kk ok Kk ok ke ok

Maximum number of iterations (KMAX): 500
Equation solver method flag (MFALG): 2
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC): 0

NO OF FUNCTION EVALUATIONS : 98
NO OF JACOBIAN EVALUATIONS : 8
NO OF ITERATIONS TAKEN . 35

* RESULTS Q F SIMULATTION®*
Akhk Ak hhkhkhkhhhhkhhhkhhhhhkhhhhAh KA Ak kA kkkkkkkhkk k%

Total number of variables: 6
Total number of equations: 6
S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .50000D+00 .50000D+00 .50000D+00 .50000D+00

170

failed

VARIABLE 5

1 .50000D+00
2 failed

failed

VARIABLE 6

——— - ————— ——

.50000D+00
failed

171

failed

failed

A.1 Combustion of propane in air (Hiebert(1982))
1. Broyden's method starting point 1 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION
Akkhkhkkhkhkhkkkhhkkhhkhkhhkhkkhhhkkhkhhhkhkkhkkkkkk

Maximum number of iterations (KMAX) : 100
Equation solver method flag (MFALG) : 2
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC) : 0

NO OF FUNCTION EVALUATIONS : 49
NO OF JACOBIAN EVALUATIONS : 3
NO OF ITERATIONS TAKEN : 12
*RESULTS OF SIMULATION *
AhkhkhkhkhkhkARAhkhkhhkAhAhhAhkArAARARAkhkAkhk kA Ahhkkhk kA hkkhkkhkkhkkhkkhkkxk
Total number of variables: 10
Total number of equations: 10
S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .10000D+01 .10000D+01 .10000D+02 .10000D+01
2 .27561D+01 .38823D+01 .19968D+02 .18637D+00
3 .28812D+01 .39511D+01 .19984D+02 .11882D+00
S/N VARIABLE 5 VARIABLE 6 VARIABLE 7 VARIABLE 8
1 .10000D+01 .10000D+01 .00000D+00 .00000D+00
2 .47994D-01 .82038D=-02 .99144D-01 .16540D+00
3 .31408D-01 .46843D-02 .30241D-01 .14617D-01

S/N VARIABLE 9

.00000D+00
.31127D+00
.11430D+00

VARIABLE 10

.00000D+00

-.41893D+00

.42667D-02

172

3. Broyden’s method starting point 2 - failed after 500 iterations

Blustiuiv 00Lwvon fAiwp enTrodla 1ECraiss 1uls
AAhkAkAkAKAAkAAARAAkAk AR A A AAAAkhkhkhkAhkkhkhhAhhhkhkhkhhkkkxk

Maximum number of iterations (KMAX): 500
Equation solver method flag (MFALG): 2
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC) : 0

4. CONLES method starting point 2 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION

AhkkhkkhkkkhkhkhhhkAhhhhhkhkhkhkhkhhkkhkdhkhhkhkkkhkhkhhkk

Maximum number of iterations (KMAX) : 500
Equation solver method flag (MFALG): 4
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC) : 0

NO OF FUNCTION EVALUATIONS : 656
NO OF JACOBIAN EVALUATIONS : 54
NO OF ITERATIONS TAKEN : 58

* RESULTS O F SIMULATTION®*
%k % % 3 ok s %k sk ok s ok ok K ok ok ok ok o ok ok gk ke ok ok ok ok ok ok e ok ek kR ok ok ok ok ok ok ok

Total number of variables: 10
Total number of equations: 10

S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .10000D+02 .10000D+02 .10000D+02 .10000D+02
2 .86818D+01 .76718D+01 .10497D+02 .96182D+01
3 .75508D+01 .54145D+01 .10984D+02 .92192D+01
4 .28801D+01 .39507D+01 .19984D+02 .11989D+00

173

S/N

B wh

S/N

W

VARIABLE 5

.10000D+02
.10006D+02
.99328D+01
.31741D-01

VARIABLE 9

.10000D+02
.93570D+401
.87856D+01
.12056D+00

VARIABLE 6

.10000D+02
.10269D+02
.10992D+02
.46846D-02

VARIABLE 10

.10000D+02
.97285D+01
.95300D+01
.10438D-02

174

VARIABLE 7

.10000D+02
.91755D+01
.84338D+01
.30484D-01

VARIABLE 8

.10000D+02
.93569D+01
.87854D+01
.16088D-01

A.1 Problem 3 Chemical equilibrium problem (Hiebert (1986))

1. Broyden’s method starting point 1 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION
hhkhkhkhkkhhkkhkhhkhkhkhhhkdkkhkhkhkkkhhkkkhkhkk*

Maximum number of iterations (KMAX): 100
Equation solver method flag (MFALG) : 2
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC): 0

STATISTICS OF THE SIMULATION

NO OF FUNCTION EVALUATIONS : 49
NO OF JACOBIAN EVALUATIONS : 4
NO OF ITERATIONS TAKEN : 16

*RESULTS OF SIMULATTION *
kkhkhkkhkhkhkhkhkhhhkhhkkkhhkhhkhhhhhhhhkkhkhkkkhkhkkkkk*

Total number of variables: 6

Total number of equations: 6

S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .00000D+00 .00000D+00 .00000D+00 .00000D+00
2 .82650D-04 .82650D-03 .89937D-04 .90850D-04
S/N VARIABLE 5 VARIABLE 6

1 .00000D+00 .00000D+00 .00000D+00

2 .00000D+00 .55000D+02 -.36420D-06

2. CONLES method starting point I - successful solution

175

EQUATION SOLVER AND MATRIX INFORMATION

krhkhkhkhkhkhkhkhhkhkhkhkrhkhhhhkrhhkrhhhdrrhhk>drhkdhkh

Maximum number of iterations (KMAX): 500
Equation solver method flag (MFALG) : 4
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC): 0

STATISTICS OF THE SIMULATION

NO OF FUNCTION EVALUATIONS 563
NO OF JACOBIAN EVALUATIONS : 68
NO OF ITERATIONS TAKEN 76

* RESULT S O F SIMULATTION*

e Fe ke % de gk e v e d de o de g e %k de gk kv sk e doode % gk e gk ok %k e gk ok sk gk ko sk ko g ok ke ok
Total number of wvariables: 6
Total number of equations: 6
S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .00000D+00 .00000D+00 .00000D+00 .00000D+00
2 .72146D-02 .14019D-01 .41610D-01 .70767D-02
3 .71410D-02 .13864D-01 .41454D-01 .70323D-02
4 .42367D-02 .78393D-02 .33987D-01 .51463D-02
5 .82621D-04 .82621D-03 .90622D-04 .91171D-04
S/N VARIABLE 5 VARIABLE 6
1 .00000D+00 .00000D+00
2 .55537D-01 .62500D-01
3 .60475D+00 .62108D-01
4 .22355D+02 .45453D-01
5 .55000D+02 .11035D-09

3. Broyden's method starting point 2 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION

J ok ok ok Kk ok g ok sk sk K vk kg sk ks ok sk ok gk ke v sk sk sk ke ok sk ok sk e ok ok ok

176

Maximum number of iterations (KMAX): 500
Ecquation solver method flzg (MFRLG): 4
Jacobian availabiiity flag (LJ=.): 3
Initial Jacobian flag (KJAC): 0

NO OF FUNCTION EVALUATIONS : 5L
NO OF JACOBIAN EVALUATIONS : 69
NO OF ITERATIONS TAKEN 3 77

* RESULTS OF SIMULATTION®*
Khkhkhkhkhkkhkkhkhkhkkhkhhkhkhkkhkhhkhhkhkkhkkkkhkkkk k& *

Total number of variables: 6
Total number of equations: 6

S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .00000D+00 .00000D+00 .00000D+00 .00000D+00
2 .72146D-02 .14019D-01 .41610D-01 .70767D-02
3 .71410D-02 .13864D-01 .41454D-01 .70323D-02
4 .49602D-02 .93192D-02 .36137D-01 .56467D-02
5 .82621D-04 .82621D-03 .90622D-04 .91171D-04

S/N VARIABLE 5

VARIABLE 6

1 .00000D+00 .00000D+00
2 «55537D~-01 .62500D-01
3 .60475D+00 .62108D-01
4 .16917D+02 .49872D-01
L} .55000D+02

AL 03BD=09

4. CONLES method starting point 2 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION

dhkhkhkhk kA hkhkhkhkhkhkkhhhkhhhhkhhkhkhhkhrhhkhkhkhkkhkhk

Maximum number of iterations (KMAX) : 100
Equation solver method flag (MFALG) : 2
Jacobian availability flag (LJAC) : F

177

Initial Jacobian flag (KJAC) : 0

NO OF FUNCTION EVALUATIONS 61
NO OF JACOBIAN EVALUATIONS : 5
NO OF ITERATIONS TAKEN 20
*RESULTS OF SIMULATTION *
hhkhkhkhkhhhhkhhkhhkhkhkhkhkhhkhrA kA A kAR kAR kA XAk A Ak hkkkk*
Total number of variables: 6
Total number of equations: 6
S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .00000D+00 .00000D+00 .00000D+00 .00000D+00
2 .82622D-04 .82622D-03 .90651D-04 .91154D-04
3 .82621D-04 .82621D-03 .90622D-04 .91171D-04
S/N VARIABLE 5 VARIABLE 6
1 .00000D+00 .00000D+00
2 .55000D+02 .11960D-06

3 .55000D+02

.11037D-09

178

A.1 Problem 4 Eight variable problem (Ferraris and Tronconi (1986))

1. Broyden’s method starting point 1 - solution not reached after 500 iterations

EQUATION SOLVER AND MATRIX INFORMATION
Ak kkkRhk KAk Ak AR Kk AA R ARk KRR AR K AR AR AR KAk kKK

Maximum number of iterations (KMAX) : 500
Equation solver method flag (MFALG) : 2
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC): 0

STATISTICS OF THE SIMULATION

NO OF FUNCTION EVALUATIONS : 1511
NO OF JACOBIAN EVALUATIONS : 101
NO OF ITERATIONS TAKEN : 500

RESULT S OF SIMULATTION
AAkKkARAAARAAARAA AR kA hhhhhhkhhhhhhhhhkhkhhhhhkhkkhkkk

Total number of variables:
Total number of equations:

S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .10000D+01 .20000D+02 .22000D+401 .10000D+03
2 .10000D+01 .18718D+02 .20287D+401 .27984D+03
3 .10000D+01 .18718D+02 .20287D+01 .27984D+03
4 ,10000D+01 .18718D+02 .20287D+01 .27984D+03
5 .10000D+01 .18718D+02 .20287D+01 .27984D+03
6 .10000D+01 .18718D+02 .20287D+01 .27984D+03
7 .10000D+01 .18718D+02 .20287D+01 .27984D+03
8 .10000D+01 .18718D+02 .20287D+01 .27984D+03
9 .10000D+01 .18718D+02 .20287D+01 .27984D+03

10 .10000D+01 .18718D+02 .20287D+01 .27984D+03

11 .10000D+01 .18718D+02 .20287D+01 .27984D+03

12 .10000D+01 .18718D+02 .20287D+01 .27984D+03

13 .10000D+01 .18718D+02 .20287D+01 .27984D+03

14 .10000D+01 .18718D+02 .20287D+01 .27984D+03

15 .10000D+01 .18718D+02 .20287D+01 .27984D+03

16 .10000D+01 .18718D+02 .20287D+01 .27984D+03

17 .10000D+01 .18718D+02 .20287D+01 .27984D+03

18 .10000D+01 .18718D+02 .20287D+01 .27984D+03

19 .10000D+01 .18718D+02 .20287D+01 .27984D+03

20 .10000D+01 .18718D+02 .20287D+01 .27984D+03

21 .10000D+01 .18718D+02 .20287D+01 .27984D+03

179

22
23
<4
25
26

.10000D+01
.10000D+02
.10000D+0L
.10000D+01
.10000D+01

S/N VARIABLE 5

CoJoubk WNE

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

.20000D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01
.68766D+01

.68766D+01

.68766D+01

.68766D+01
.68766D+01

.18718D+02
L1871PD402
10671070z
.18718D+02
.18718D+02

VARIABLE 6

.80000D+01
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03
.97616D+03

.20287D+01
. PNZ287T4013
. AUL&?UTO;
.20287D+01
.20287D+01

VARIABLE 7

-.60000D+02
.48499D+07
.68470D+07
.88329D+07
.10812D+08
.12788D+08
.14760D+08
.16730D+08
.18698D+08
.20665D+08
.22630D+08
.24595D+08
.26559D+08
.28522D+08
.30485D+08
.32447D+08
.34409D+08
.36370D+08
.38331D+08
.40292D+08
.42252D+08
.44212D+08
.46172D+08
.48132D+08
.50091D+08
.52050D+08

.27984D+03
.27884D+02
i d v EaETUd
.27984D+03
.27984D+03

VARIABLE 8

.15000D+02
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03
.98606D+03

2. CONLES method starting point 1 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION

Maximum number of iterations (KMAX) :
Equation solver method flag (MFALG) :

Jacobian availability flag
Initial Jacobian flag (KJAC) :

(LJAC) :

NO OF FUNCTION EVALUATIONS

LS S S EESEEEEEEEEESESESEEEEEEEEEEESERE]

JACOBIAN EVALUATIONS
ITERZTIONS FI¥ew

* RESULT S O F SIMULATTION®*
Akhkhkhhhkkk kA hhhkh kA khk kA kA kA kR ARk ARAA KA ARk Ak kk k%

Total number of variables: 8
Total number of equations: 8
S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABRLE 4
1 .10000D+01 .20000D+02 .22000D+01 .10000D+03
2 .79903D+00 .18935D+02 .21090D+01 .10034D+03
3 .66182D+00 .18259D+02 .20215D+01 .10058D+03
4 .56020D+00 .17753D+02 .19396D+01 .10078D+03
5 .48071D+00 .17335D+02 .18614D+01 .10094D+03
6 .41804D+00 .16974D+02 .17873D+01 .10110D+03
7 .36953D+00 .16663D+02 .17184D+01 .10123D+403
8 .33619D+00 .16423D+02 .16618D+01 .10134D+4+03
9 .10009D+01 .18478D+02 .21294D+01 .26265D+03
10 .10033D+01 .18473D+02 .21297D+01 .26265D+03
s .10061D+01 .18467D+02 .21302D+01 .26265D+03
12 .10092D+01 .18462D+02 .21310D+01 .26265D+03
13 .10118D+01 .18457D+02 .21317D+01 .26266D+03
14 .10146D+01 .18452D+02 .21326D+01 .26266D+03
15 .10174D+01 .18447D+02 .21335D+01 .26266D+03
16 .10203D+01 .18442D+02 .21345D+01 .26266D+03
17 .10232D+01 .18437D+02 .21355D+01 .26266D+03
18 .10163D+01 .18521D+02 .21035D+01 .26780D+03
19 .10114D+01 .18580D+02 .20811D+01 .27141D+03
20 .10080D+01 .18622D+02 .20654D+01 .27393D+03
21 .10056D+01 .18651D+02 .20544D+01 .27570D+03
22 .10039D+01 .18671D+02 .20467D+01 .27694D+03
23 .10027D+01 .18685D+02 .20413D+01 .27781D+03
24 .10019D+01 .18695D+02 .20375D+401 .27842D+03
25 .10011D+01 .18704D+02 .20339D+01 .27899D+03
26 .10000D+01 .18718D+02 .20287D+01 .27984D+403

S/N VARIABLE 5

S o s WNEF

.20000D+01
.21343D+01
.21932D+01
.21917D+01
.21536D+01
.21068D+01
.20689D+01

VARIABLE 6

.80000D+01
.88590D+01
.93444D+01
.96698D+01
.99236D+01
.10139D+02
.10322D+02

181

VARIABLE 7

.60000D+02
.60025D+02
.60049D+02
.60074D+02
.60098D+02
.60122D+02
.60147D+02

VARIABLE 8

.15000D+02
.14904D+02
.14855D+02
.14824D+4+02
.14799D+02
.14776D+02
.14756D+02

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

.20440D+01
o RGN (Y]
.34100D+01
.33693D+01
.33306D+01
.33010D+01
.32728D+01
.32458D+01
.32202D+01
.31959D+01
.42897D+01
.50605D+01
.56027D+01
.59836D+01
.62508D+01
.64382D+01
.65695D+01
.66923D+01
.68766D+01

.10461D+02
PPN
.22126D+02
.22145D+02
.22169D+02
.22190D+02
.22211D+02
.22233D4+02
.22255D+02
.22277D+02
.73489D+02
.16011D+03
.27492D+03
.40155D+03
.52378D+03
.63110D+03
.71851D+03
.81180D+03
.97616D+03

.60168D+02
SR ge
.35%67D+05
.35967D+03
.35968D+03
.35968D+03
.35968D+03
.35969D+03
.35969D+03
.35970D+03
.22793D+04
.63481D+04
.12637D+05
.20336D+05
.28320D+05
.35683D+05
.41879D+05
.48681D+05
.61080D+05

.14740D+02
L.28720D402
.28710D+0z2
.28709D+02
.28709D+02
.28708D+02
.28707D+02
.28707D+02
.28706D+02
.28705D+02
.80950D+02
.16830D+03
.28363D+03
.41061D+03
.53310D+03
.64059D+03
.72813D+03
.82153D+03
.98606D+03

182

A.1 Problem 5 Eight variable problem (Carnaham et al (1969))

1. CONLES method starting point 1 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION
K K K K K kK k ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok ok ok ok X

Maximum number of iterations (KMAX) : 100
Equation solver method flag (MFALG) : 4
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC): 0

NO OF FUNCTION EVALUATIONS : 62
NO OF JACOBIAN EVALUATIONS 6
NO OF ITERATIONS TAKEN 6
* RESULT S O F S I MULATTION*
hhkkkhkhkhkhhhkkhhkhkhkhkkAhkhAhhrhhkhkkAkhhkhhhhkAhhkhrhhhkhkhkxk
Total number of variables: 8
Total number of equations: 8
S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .50000D+00 .00000D+00 .00000D+00 .50000D+00
2 .32287D+00 .92235D-02 .46017D-01 .61817D+00
S/N VARIABLE 5 VARIABLE 6 VARIABLE 7
1 .00000D+00 .50000D+00 .20000D+01
2 -37169D-02 .57672D+00

2. Brovden's method starting point 1 - successful solution

18

EQUATION SOLVER AND MATRIX INFORMATION

P o e e e 1

Maximum number of iterations (KMAX):
Equation solver method flag (MFALG) :
Jacobian availability flag (LJAC):

Initial Jacobian flag (KJAC):

NO OF FUNCTION EVALUATIONS
NO OF JACOBIAN EVALUATIONS
NO OF ITERATIONS TAKEN

*RESULT S
% ok e Kk ok ok Kk kK ok kg ko kK ok ok Kk ok ok ok ok ok ok ok ke ok ok ok dk ko k ok ok ok k ok k ok ok k

Total number of wvariables:

Total number of

equations:

Q F

SIMU

LATION®*

S/N VARIABLE 1

1 .50000D+00
2 .32287D+00

S/N VARIABLE 5

1 .00000D+00
2 .37169D-02

VARIABLE 2

.00000D+00
- 92235D~02

VARIABLE 6

.50000D+00
.57672D+00

VARIABLE 3

.00000D+00
.46017D-01

VARIABLE 7

.20000D+01
.29779D+401

VARIABLE 4

.50000D+00
.61817D+00

3. CONLES method starting point 2 - successful solution

EQUATION SOLVER AND MATRIX INFORMATION

Je ok e de ok sk e sk sk sk ok sk ok vk vk e sk sk ko de sk sk ok sk gk de ek ok e ke ok ok ok ok Kk

184

Maximum number of iterations (KMAX): 100
g Sign epdsay et had f0aw fyempgey z
Jacobian availapility fiag (LJAC) : F
Initial Jacobian flag (KJAC) : 0

NO OF FUNCTION EVALUATIONS 295
NO OF JACOBIAN EVALUATIONS 29
NO OF ITERATIONS TAKEN 3.
RESULTS OF SIMULATION
F ok odeodk ok gk ko gk ko e gk gk gk ok Jk Kk %k K gtk %k s gk b %k s gk sk %k s ok e gk g de gk ok %k sk ek &
Total number of wvariables: 8
Total number of equations: 8
S/N VARIABLE 1 VARIABLE 2 VARIABLE 3 VARIABLE 4
1 .22000D+00 .75000D-01 .10000D-02 .58000D+00
2 .28065D+00 .49038D-01 .10428D-01 .64264D+00
3 .32287D+00 .92235D-02 .46017D-01 .61817D+00
S/N VARIABLE 5 VARIABLE 6 VARIABLE 7
1 .12500D+00 .43600D+00 .23500D+01
2 .17947D-01 .55258D+00 .28406D+01
3 .37169D-02 .57672D+00 .29779D+401

4. Broyden's method starting point 2 - diverging after 100 iterations

EQUATION SOLVER AND MATRIX INFORMATION
Ak A AKAKRAA A+ A Ak krhkkh Ak kA hhhhhkhkk+ *kkk

Maximum number of iterations (KMAX) : 100
Equation solver method flag (MFALG): 2
Jacobian availability flag (LJAC): F
Initial Jacobian flag (KJAC) : 0

185

NO OF FUNCTION EVALUATIONS
NO OF JACOBIAN EVALUATIONS : 23
ITERATIONS TAKEN

RESULTS O F SIMULATTION
Ak Rk K AKRAK A Ak A kA ARk khhkkkkkkkkkhkkhkkhkkkkkkkkkk

Total number of wvariables: 8
Total number of equations: 8

S/N VARIABLE 1

VARIABLE 2

VARIABLE 3

VARIABLE 4

2 .22000D+00 .75000D-01 .10000D-02 .58000D+00
2 .11390D+05 -.19640D+06 .13734D+05 -.20727D+06
3 .18119D+03 .54426D+01 .28713D+02 .38916D+03
4 .95480D+01 .90135D+00 .49475D+01 .20083D+02
5 .86941D+01 .38766D+00 .54114D+00 .12475D+02

S/N VARIABLE 5

VARIABLE 6

VARIABLE 7

1 .12500D+00 .43600D+00 .23500D+01
2 -.17451D+05 .36588D+05 .55617D+05
3 .49583D+03 .35341D+06 .53753D+06
P .85370D+02 .82242D+07 .12508D+08
5 .33191D+08

.50479D+08

186

A.2 Typical data files cenerated hy the interactive front end for DASP I1

These data files are those generated for the methanol mixer tank problem (see sections
7.1and 7.2)

CINDAT - The simulation control options file

________ 11 . — i ————
"PROBLEM NO 1, METHANOL-MIXER SYSTEM’ L SINGH ' , ’"EXAM-
PLE 1.’ , 718-04-1990’

2 . 06 , 31 , @ , 2 , 0
(mode, kmodel, lcomp, ktol, lprnt, nonneq)
2 , 0 ; 0 ; 0 ; .FALSE.
(index, lterm, jfbs, kjac, 1ljac)

a ., 1. , 0 ; 0

.0 ; .00 , 1 4, ©

QUTPUT

4

2,5,7,9

INFORMATION

=1
5
2
|

2, 1
, 0.0
1
0

o™~

5
0,
21 , 0 , ©

7 0.4 ; 050 ; 0.0

.00001,0.00001,0.00001,0.00001

, =1 . 1 , 1

"TIME EVENT 1’,'STATE EVENT’,’'TIME EVENT 2’,’'TIME EVENT 3’

-

HOOOOHOHM
.O" - - :

COMDT - The components information file

PROBLEM NO 9 - MIXED-TANK SYSTEM GENERAL DATA
2,0, 0,0

1 . 2

32 , 18

CUNIT - The variable and parameter specification file

PROBLEM NO 9, METHANOL-MIXER SYSTEM REF.
FEED1 DATA

5

21 ; 22 ; 44 ; 50 , 351

0.0 ; 1.0 ; 166.67 , 2.5B5 ; 293.0
VALVE1l DATA

1, 44 , 44 , 0

-5000.0 , 5000.0 , 0.0 , 5555.56 , 0.0 , 166.667 , 1.0
166.67

CONTROL1 DATA

21 , 44 , 0

187

0. 1.8 , =5000.0 , 50060.0 ., 0.0 , =1.0 , 75.0 , Q0.0 , 1.9

&) B e)

Fi .;.
1.5,0.1
TRANSMIT DATA
21 , 21, 0

.0 , 1.0 , 0.0 , 1.0 , ©.0. , 0.0 , 0.003 , 1.0
0.5

MIXED TANK DATA

3 s 2 0 0

34.214 , 1.7672 , 1.
0.661 , 0.5 , 0.5
FEED2 DATA

4 21, 22, 44 , 51
0.0714 , 0.9286 , 70.0 , 293.0

CONTROL2 DATA 49 , 44 , 0

0.0 , 1.6 , -5000.0 , 5000.0 , 0.0 , -1.0 , 400.0 , 0.0 ,
1.0 , 0.8

-55.6,0.139

TRANSMIT2 DATA

44 , 44 , 0O

-5000.0, 5000.0, -5000.0, 5555.56, 0.0, 0.0, 0.0015, 4.0
-55.6

VALVE2 DATA

0, 44 , 44 , 0

-5000.0 , 5000.0 , 0.0 , 5555.56 , 0.0 , 273.712 , 1.0
S5, T12

OUTLET DATA

2

44 , 50

273.712 ; 1.0D5

FEED3 DATA

4

21 , 22 ,44 , 51

0.9 . 0.1 ; 100.0 & 293.0

0D5 , 293.0

188

ClTOPOL - The topology description file

PROBLEM NO 9, TOPOLOGY DATA CREATED FOR MOD DASP LS15/5/90
UNITS DATA

11 1, 2,3,4,5,6,17,8, 9, 10, 11 0,

¥X. p i 1 4% 8 50 + 8 5 3 3 12 5 0; ©

0; 4.:3 ;1510 1;1; 4.; 060

"FEED1’ , 'VALVEl’,’CONTROL1’,’TRANSMIT1’,’MIXED-TANK’ |,

'FEED2’, 'CONTROL2’ , ’TRANSMIT2’ , ’'VALVE2’ , ‘OUTLET’,

' FEED3'’ STREAMS DATA

12

1,2,3,4,5,6, 7,8, 9,10, 11, 12

1. 3 2 . B ; 8285 6 8 3 T ; 8 ; B, O It

2 .8 ;2.3 ,44:5,;17;8; 9, 9,105
3,3,0,0,0,3,0,0,0,3,3,3

rs1’, 's2’, 's3’, 's4’, 's5', 'sé’, 'S71’, 'sS8’, 's9’, ’'Si0’,

ng1Yr , 1E12Y
CONNECTION MATRIX FOR METHANOL-MIXER SYSTEM
UNIT NO 1 (FEED1)

1 2

UNIT NO 2 (VALVE1l)

3 1, 5 , 3
UNIT NO 3 (CONTROL1)

2 4 , 2

UNIT NO 4 (TRANSMIT1)
2 5 , 3

UNIT NO 5 (MIXED TANK)
6 2 ; 6 3 A2 5 9 4 o 7
UNIT NO 6 (FEED2)

1 5

UNIT NO 7 (CONTROL2)

2 5, 8

UNIT NO 8 (TRANSMIT2)
2 7, 9

UNIT NO 9 (VALVE2)

3 5 , 10 , 8
UNIT NO 10 (OUTLET)

1 9

UNIT NO 11 (FEED3)

1 5

189

A3 Dyvnamic simulation study of the methanol mixer tank system

This problem was used as the dynamic simulation example in Chapter 7. The process flow-
sheet is dllustrated in Figure 7.1. The system description is as follows :

Water feed control valve

Minimum flowrate 2 0.0 Kmol/hr
Maximum flowrate : 1800. Kmol/hr
Gain . 1.0

Composition controller

Reverse acting Proportional and Integral action control

Integral action time : 4.0 hrs
Proportional constant 15.0
Set point : 0.4

Composition transmitter
Proportional gain : 5.
Time constant : 0.003 hrs

Mixer tank

Cross-sectional area 1.7672 m2
Initial methanol mole fraction : 0.5
Density of mixture : 28.29 Kmol/m3

Concentrated methanol feed
Methanol mole fraction: 0.9
Flowrate : 100 Kmol/hr

Dilute methanol feed

Methanol mole fraction: 00714

Flowrate ; 70 Kmol/hr

190

l.evel controller

INEVLISE a(.ll.llt', Pltliauahuum Gl el plas deiul LU
Proportional gain : 400
Integral action time : 5 hrs

Qutlet valve

Proportional gain : =

Time constant : 0.0015 hrs
Minimum flowrate : 0.0 Kmol/hr
Maximum flowrate ' 2829.33 Kmol/hr
Events

i Run with methanol solution feeds off unitl either mole fraction of methanol <=
0.4 or 25 minutes have elapsed.
11 Run with concentrated stream on, dilute stream off for 5 minutes.

iii Run with both solution feeds on for 10 minutes.

The results for the controlled system are shown in section A3.1, whilst the uncontrolled

system simulation results are shown in A3.2

A3.1 The controlled methanol mixer system

* Dynamic Analysis and Simulation Package *
* DASP - Version 2.1 , 1990 *

TITLE: PROBLEM NO 1, METHANOL-MIXER SYSTEM

* U & E R A ND J O B DESCRTIPTTION

AAKAARAAARKRKAR AR AR AR AR A A AR AR AT S Ak hhhhhhkh L hhhkhkkhkhhhkk

User of simulator: L SINGH
Name of Project: EXAMPLE 1.
Date of Execution: 18-04-1990

——— e R Em e S S = m S Sm R R AR AR e e e e R R e e e e e R e e e e e e e e e = e - e = e w

INTEGRATION PARAMETERS

191

hkkkhkhkhkrhkhkkkhkkhkkhkkhkhkkkhkkhki

Inatse. Eime ©f fipuleiticn ATTY) IEF) TGN TED =S
Final time of simulation (TEIN) (HK): .10000D+01
Current time of simulation (TIME) (HR): .00000D+00
Integrator method flag (MFDYN) : 1
DAE solution flag (KDAE): 0
SIMUI‘ATION OPTIONS J %k %k ok %k dc d ok ko ok ok ok otk ok %k ok
Mode of simulation (MODE) : 2
Model routines option (KMODEL) : 0
Error tolerance option (KTOL): 0
Nonnegativity option (NONNEG) : 0
Model discontinuity option (IDISCN) : 0
Mono/multicomponent option (LCOMP) : 1
Output level option (INDEX) : 2
Output interval option (LPRNT): 1
Plotting option (LPLOT) : 0
Event processing option (LEVENT) : 1
Integration stepsize option (MDEFLT) : 0
Jacobian matrix structure option (JFBS): 0
I/O DATA FILES USED hAhkkhkkhkkhkkhkAhAhkhkAhkAhAhhkxhkkhkkhk

General input data file (CINDAT): CINDATS
Topology data file (CTOPOL) : CTOPOLY
Output/Result data file (CRESLT) : RES9.AN
Initial values data file (CUNIT) : CUNIT9.N
DASP work file (CWORK) : WKFILE.D
Components data file (COMDT) : COMDT9

e o e e e e e e e e e e e e e e e

VALUES OF ERROR TOLERANCES
AAKKKRKAKKAKKA KA KA KKK A KA KK KK X

.10000D-02 .00000D+00

STATISTICS OF THE SIMULATION

NO OF FUNCTION EVALUATIONS : 1342
NO OF JACOBIAN EVALUATIONS : 72
NO OF STEPS TAKEN : 160
NO OF ERROR TEST FAILURES : 21

RESULTS O F SIMULATTION®
ARAKKAKRRAKRKRAAKAA AR AR AKRAKRAARKAAA KKK A AR AR A KK AKX

192

* UNIT NO = 2 MODULE NAME = VALVE1l *
S kRFFembFrimFrcFF A R e AR & SR R e I
S/N TIME LRATE
HR kgmol/hr

1 .00000D+00 .16667D+03
2 .54979D-01 .16724D+03
3 .13798D+00 .16469D+03
4 .23798D+00 .16132D+03
5 .30468D+00 .15976D+03
6 .40468D+00 .15809D+03
7 .50468D+00 .15687D+03
8 .60468D+00 .15587D+03
9 .70468D+00 .15500D+03
10 .80468D+00 .15418D+03
11 .90468D+00 .15339D+03
12 .10000D+01 .15266D+03

* UNIT NO = 5 MODULE NAME = MIXED-TANK *

hAhkhkhkhkhkhhkhkhkhkkhkhkhkhkhhhkhkhkhkkhkhkhkhkhAkdhhkkhkhkhkhkhhkrhkhkkhkhkkkhkkhxk

S/N TIME LHGHT XCOMP XCOMP
HR m kgmol/kgmol kgmol/kgmol
1 .00000D+00 .66100D+00 .50000D+00
.50000D+00 2 .54979D-01 .72066D+00
.40000D+00 .60000D+00 3 .13798D+00
.79298D+00 .37163D+00 .62837D+00 4
.23798D+00 .83995D+00 .33130D+00 .66870D+00
5 .30468D+00 .83978D+00 .31588D+00
.68412D+00 6 .40468D+00 .83535D+00
.30302D+00 .69698D+00 7 .50468D+00
.83105D+00 .29689D+00 .70311D+00 8
.60468D+00 .82732D+00 .29416D+00 .70584D+00
9 .70468D+00 .82406D+00 .29315D+00
.70685D+00 10 .80468D+00 .82116D+00
.29296D+00 .70704D+00 11 .90468D+00
.81858D+00 .29320D+00 .70680D+00 12
.10000D+01 .81636D+00 .29362D+00 .70638D+00
* UNIT NO = 7 MODULE NAME = CONTROLZ2 *

I E S SRR REE SRS S E LTRSS EEESEEEEEEEEEEEREESEEEEES SRS S

S/N TIME LRATE VARIABLE VARIABLE
HR kgmol/hr - -

1 .00000D+00 -.55600D+02 .13900D+00

.00000D+00 2 .54979D-01 -.34015D+02

-.79340D-01 -.22790D+01 3 .13798D+00 -

.62320D+01 -.70151D-02 -.34259D+01 4

.23798D+00 .13539D+02 .39953D-01 -.24421D+01

5 .30468D+00 .14549D+02 .39783D-01 =

193

.13640D+01 6 .40468D+00 .14280D+02
L3534 =-00 ; Lt 2= Er 7 E02EET+ET
.13886D+02 .5.047D-01 .14674D+01 &
.60468D+00 .13562D+02 .27324D-01 .26329D+01
9 .70468D+00 .13282D+02 .24057D-01
.36589D+01 10 .80468D+00 .13026D+02
.21160D-01 .45619D+01 11 .90468D+00
.12786D+02 .18576D-01 .53556D+01 12
.10000D+01 .12567D+02 .16365D-01 .60210D+01
* UNIT NO = 9 MODULE NAME = VALVE2

*

hkhkhkhkhkhkhhhkhkhhhhhhkAhk kAo hkhkhhhkhhhdkhhkhkhkhkkhkhkdhkhkkhkkhkkkxk

1 .00000D+00
2 .54979D-01
3 .13798D+00
4 .23798D+00
5 .30468D+00
6 .40468D+00
7 .50468D+00
8 .60468D+00
9 .70468D+00
10 .80468D+00
11 .90468D+00
12 .10000D+01

LRATE

kgmol/hr

«27371D+03
.13658D+03
.24812D+03
.32761D+03
.33190D+03
.33086D+03
.32928D+03
.32798D+03
.32685D+03
+.32583D+03
.32487D+03
.32399D+03

* Dynamic Analysis and Simulation Package *
* DASP - Version 2.1 , 1990 *

194

TITLE: PROBLEM NO 1, METHANOL-MIXER SYSTEM

* USER A ND J O B DESCRIPTTION

hhkhkhkhkhkhhkhhhhkhkhhkhhhhhohhhkhhkkhkhkhhkkhhkhhhkhhrhhkhhhkhkhkhkkhkhxkhk

User of simulator: L SINGH
Name of Project: EXAMPLE 1.
Date of Execution: 18-04-1990

INTEGRATION PARAMETERS
KkhkAkKkkhkhAkkhkhkkhkhkkkk k&%

Initial time of simulation (T0) (HR): .00000D+00
Final time of simulation (TFIN) (HR) : .10000D+01
Current time of simulation (TIME) (HR): .00000D+00
Integrator method flag (MFDYN): 1
DAE solution flag (KDAE) : 0

SIMULATION OPTIONS

hkhhkhkhkhkhkhkhkkhkkhkkhkhkhkkhkkhkkk
Mode of simulation (MODE) : 2
Model routines option (KMODEL) : 0
Error tolerance option (KTOL) : 0
Nonnegativity option (NONNEG) : 0
Model discontinuity option (IDISCN): 0
Mono/multicomponent option (LCOMP) : 1
Output level option (INDEX) : 2
Output interval option (LPRNT): 1|
Plotting option (LPLOT): 0
Event processing option (LEVENT) : 1
Integration stepsize option (MDEFLT) : 0
Jacobian matrix structure option (JFBS): 0

I/0 DATA FILES USED
hhkkkkhkhkhhkhhhkkrkhkkkkk

General input data file (CINDAT): CINDATY
Topology data file (CTOPOL) : CTOPOLY
Output /Result data file (CRESLT): RES9.AN
Initial values data file (CUNIT) : CUNITY9.N
DASP work file (CWORK) : WKFILE.D
Components data file (COMDT) : COMDT9

STATISTICS OF THE SIMULATION

195

NO OF FUNCTION EVALUATIONS

NO OF JACOBIAN EVALUETIONS T3
NO OF STIErS TAXEL e
NO OF ERROR TEST FAILURES 23

* RESULT S OF SIMULATTION*
KAk Kk KA KK AKAKA KA KK AR A KA KK KA KA R KA KA KRR KA KA Kk KK

* UNIT NO 2 MODULE NAME VALVEl s
Khkhhkkhhkhhhh Ak hkhh Ak hhhh kA khkhh Ak hhkkkhkk kA hkkkk kx k&

S/N TIME LRATE
HR kgmol/hr
1 .00000D+00 .16667D+03
2 .56189D-01 .16722D+03
3 .13919D+00 .16465D+03
4 .23919D+00 .16219D+03
5 .30589D+00 .16103D+03
6 .40589D+00 .15968D+03
7 .50589D+00 .15858D+03
8 .60589D+00 .15761D+03
9 .70589D+00 .15670D+03
10 .80589D+00 .15584D+03
11 .90589D+00 .15500D+03
12 .10000D+01 .15423D+03
* UNIT NO = 5 MODULE NAME = MIXED-TANK *
AAAAAAAAAAKRAAAA KRR A A A AR AR AA KR KAk khkkhkhxhkkkdhkhkhkkkkkkhhkhkxk
S/N TIME LHGHT XCOMP XCOMP
HR m kgmol/kgmol
kgmol/kgmol = —-=== Se=s-s-s-ocoo- So-o-------- —---o-
—————————————————— 1 .00000D+00
.66100D+00 .50000D+00 .50000D+00 2
.56189D-00 .76780D+00 .40000D+00 .60000D+00
.13919D+00 .10434D+01 .37138D+00 .62862D+00
4 .23919D+00 .14989D+01 .34267D+00
.65733D+00
5 .30589D+00 .18080D+01 .33156D+00
.66844D+00 6 .40589D+00 .22695D+01
.32113D+00 .67887D+00 7 .50589D+00
.27289D+01 .31478D+00 .68522D+00 8
.60589D+00 .31867D+01 .31059D+00 .68941D+00
.70589D+00 .36429D+01 .30764D+00 .69236D+00
10 .80589D+00 .40976D+01 .30548D+00 .69452D+00
11 .90589D+00 .45510D+01 .30387D+00 .69613D+00
12 .10000D+01 .49764D+01 .30273D+00 .69727D+00

196

197

* UNIT NO = 7 MODULE NAME = CONTROL2 *
kAhAkAAAkAkAAAAkAkAkA Ak AhkAhkhkhhkhkhkhkhkAhAAkhhkhAhkhrhhhkhkhkhbhkhhkhkhkkkxx
S/N TIME SP VARIABLE
VARIABLE HR - -
------------ 1 .00000D+00 .80000D+00
.13900D+00 .00000D+00 2 .56189D-01
.89921D+00 -.13141D+00 -.30380D+01 3
.13919D+00 .11643D+01 -.12094D+00 -.72245D+01
4 ,23919D+00 .16083D+01 -.10943D+00 -.11828D+02
5 .30589D+00 .17024D+01 .10238D+00 .14650D+02
6 .40589D+00 .16926D+01 .92633D-01 .18547D+02
7 .50589D+00 .16838D+01 .83817D-01 .22073D+02
8 .60589D+00 .16758D+01 .75841D-01 .25264D+02
9 .70589D+00 .16686D+01 -.68624D-01 -.28150D+02
10 .80589D+00 .16621D+01 -.62094D-01 -.30762D+02
11 .90589D+00 .16562D+01 -.56185D-01 -.33126D+02
12 .10000D+01 .16511D+01 -.51139D-01 -.35144D+02
* UNIT NO = 9 MODULE NAME = VALVE2 *
Ak AhkhkhkhkhkhhkhkhkhkhkhdhkhkhhkhkhhkhkhkhkhkhbhkAhhdhdhhkhhbhbhkhkhkhkhkhkhkihhhhihik
S/N TIME LRATE
HR kgmol/hr
.00000D+00 .27371D+03
.56189D-01 .51312D+02
.13919D+00 .51312D+02
.23919D+00 .51312D+02
.30589D+00 .51312D+02
.40589D+00 .51312D+02
.50589D+00 .51312D+02
.60589D+00 .51312D+02
.70589D+00 .51312D+02
.80589D+00 .51312D+02
.90589D+00 .51312D+02
.10000D+01 .51312D+02

A.4 The location of multiple solutions of NLAEs using CONSOL

Each separate solution is tracked by unique paths. In this section the path statistics are
given for the example problems in section 7.3.2.

A.4.1 Problem 1 - Burning of fuel (Morgan(1987))

The values of the parameters used in this example are as follows:

all =0.194997e48 al2 =0.131824e23

al4=1.0 al5 = 3.000000e-5
a22 =0.115344e48 a23 =0.309912¢26

a25 = -0.87235e25 a26 = -0.26249¢21

Nine solutions exist for this problem.
PATH NUMBER = 1
FINAL VALUES FOR PATH
PATH NUMBER = i

TOTAL NUMBER OF STEPS = 284

NUMBER OF STEPS THAT SUCCEEDED
NUMBER OF STEPS THAT FAILED

TOTAL CORRECTOR ITERATIONS ON PATH

TOTAL LINEAR SYSTEMS SOLVED ON
PATH ARC LENGTH = .3269D+01

NUMPAT= 1
REAL SOLUTION

.100000000000000D+01
REAL PART
-.3920D-24
~+9290D=23
.3980D-16

X (1)
X (2) =
NORM OF RESIDUAL =

CONDITION AND DETERMINANT OF

COND = .2206D+11 DET =
PATH NUMBER = 2
FINAL VALUES FOR PATH
PATH NUMBER = 2

TOTAL NUMBER OF STEPS = 297
NUMBER OF STEPS THAT SUCCEEDED
NUMBER OF STEPS THAT FAILED

al3 =0.321383e22
a2l =0.118048e51
a24 = -0.86209¢47
a27 = -0.80000e-9

258
26

611
895

nn

PATH

IMAGINARY PART
.3582D-33
+2603D=13

DF (X) AT END OF PATH
.1887D+00 -.1350D+02

269
28

nn

198

TOTAL CORRECTOR ITERATIONS ON PATH = 651

TR YTV PR SESLENS SLLIEDR oM ZRDE - CLE
PATH ARC LENGTH = .2833D+01

NUMPAT= 2
REAL SOLUTION
T = .100000000000000D+01

REAL PART IMAGINARY PART

X(1) = -.1282D-24 .1188D-38
X(2) = -.6478D-13 «86030D=27
NORM OF RESIDUAL = .2967D-15

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .1351D+12 DET = .5757D-01 -.2177D+01

PATH NUMBER = 3

FINAL VALUES FOR PATH

PATH NUMBER = 3
TOTAL NUMBER OF STEPS = 241
NUMBER OF STEPS THAT SUCCEEDED = 223
NUMBER OF STEPS THAT FAILED = 18
TOTAL CORRECTOR ITERATIONS ON PATH 477

TOTAL LINEAR SYSTEMS SOLVED ON PATH 718
PATH ARC LENGTH = .3979D+01

NUMPAT= 3
REAL SOLUTION
T = .100000000000000D+01

REAL PART IMAGINARY PART

X (1) = .1491D-14 .1647D-28
X (2) = .3212D-18 .3555D-32
NORM OF RESIDUAL = .1444D-14

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .1256D+04 DET = -.1716D+07 -.1614D+07

PATH NUMBER = 4
FINAL VALUES FOR PATH

PATH NUMBER = 4
TOTAL NUMBER OF STEPS = 4395
NUMBER OF STEPS THAT SUCCEEDED 233
NUMBER OF STEPS THAT FAILED 22
TOTAL CORRECTOR ITERATIONS ON PATH = 523
TOTAL LINEAR SYSTEMS SOLVED ON PATH 778
PATH ARC LENGTH = .7932D+01

NUMPAT= 4

199

REAL SOLUTION

4 = .100000000000000D+01

REAL PART IMAGINARY PART
X(1) = .1491D-14 -.2718D-29
X (2) = =.3212D-18 .6045D-33
NORM OF RESIDUAL = .1380D-14

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .1256D+04 DET = .1716D+07 .1614D+07

PATH NUMBER = 5
FINAL VALUES FOR PATH

PATH NUMBER = 5
TOTAL NUMBER OF STEPS = 255
NUMBER OF STEPS THAT SUCCEEDED = 233
NUMBER OF STEPS THAT FAILED = 22
TOTAL CORRECTOR ITERATIONS ON PATH
TOTAL LINEAR SYSTEMS SOLVED ON PATH
PATH ARC LENGTH = .1832D+01

517
7 8.

NUMPAT= L
REAL SOLUTION
T = .100000000000000D+01
REAL PART IMAGINARY PART
X(1) = -.1282D-24 .1468D-38
X(2) = .6478D-13 =, 7256D~-27
NORM OF RESIDUAL = .7828D-17

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .1359D+12 DET = .5071D-01 -.2197D+01

PATH NUMBER = 6
FINAL VALUES FOR PATH

PATH NUMBER = 6
TOTAL NUMBER OF STEPS = 230
NUMBER OF STEPS THAT SUCCEEDED = 213
NUMBER OF STEPS THAT FAILED = 17
TOTAL CORRECTOR ITERATIONS ON PATH
TOTAL LINEAR SYSTEMS SOLVED ON PATH
PATH ARC LENGTH = .3105D+01

428
658

NUMPAT= 6
REAL SOLUTION

T = .100000000000000D+01
REAL PART IMAGINARY PART
X(1) = -.1491D-14 .1569D-21

200

Z(2) = -.1690D-25 ~+3212D~18

TThDYe o DG T o amAn= _qr
. i T PR, -

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .1293D+04 DET = -.1660D+07 .1681D+07

PATH NUMBER = 7

FINAL VALUES FOR PATH

PATH NUMBER = 7
TOTAL NUMBER OF STEPS = 288
NUMBER OF STEPS THAT SUCCEEDED = 261
NUMBER OF STEPS THAT FAILED = 27
TOTAL CORRECTOR ITERATIONS ON PATH = 634
TOTAL LINEAR SYSTEMS SOLVED ON PATH = 922
PATH ARC LENGTH = .2614D+01

NUMPAT= 7
COMPLEX SOLUTION
T = .100000000000000D+01

REAIL. PART IMAGINARY PART

X 1) = .0000D+00 .0000D+00
X 2) = -.1938D+01 .5934D+00
NORM OF RESIDUAL = .6879D-17

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .3147D+12 DET = =-.2332D-01 .9415D+00

PATH NUMBER = 8

FINAL VALUES FOR PATH

PATH NUMBER = 8
TOTAL NUMBER OF STEPS = 276
NUMBER OF STEPS THAT SUCCEEDED = 252
NUMBER OF STEPS THAT FAILED = 24
TOTAL CORRECTOR ITERATIONS ON PATH = 582
TOTAL LINEAR SYSTEMS SOLVED ON PATH = 858
PATH ARC LENGTH = .7810D+01

NUMPAT= 8
REAL SOLUTION
T = .100000000000000D+01

REAL PART IMAGINARY PART

X (1) = =-.1491D-14 -.1569D-21
X(2) = -.1690D-25 .3212D-18
NORM OF RESIDUAL = .4252D-15

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH

201

COND = ,1293D+04 DET = .1661D+07 -.1681D+07

PATH NUMBER = 9

FINAL VALUES FOR PATH

PATH NUMBER = 9
TOTAL NUMBER OF STEPS = 320
NUMBER OF STEPS THAT SUCCEEDED = 289
NUMBER OF STEPS THAT FAILED = 31
TOTAL CORRECTOR ITERATIONS ON PATH = 727
TOTAL LINEAR SYSTEMS SOLVED ON PATH = 1047
PATH ARC LENGTH = .5532D+01

NUMPAT= 9 REAL SOLUTION
T = .100000000000000D+01

REAL PART IMAGINARY PART

X (1) = -.3920D-24 -.3582D-33
X (2) = -.9290D-23 -.2603D-13
NORM OF RESIDUAL = .2848D-15

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .2167D+11 DET = .4840D+00 -.1360D+02

TOTAL CORRECTOR ITERATIONS 5150

TOTAL LINEAR SYSTEMS SOLVED = 7596

TOTAL ARC LENGTH = .3891D+02

A.4.2 Problem 2 - Chemical equilbrium problem (Hiebert(1982))

Four solutions exit for this problem.

PATH NUMBER = 1
FINAL VALUES FOR PATH

PATH NUMBER = 1
TOTAL NUMBER OF STEPS = 167
NUMBER OF STEPS THAT SUCCEEDED 148
NUMBER OF STEPS THAT FAILED = 19
TOTAL CORRECTOR ITERATIONS ON PATH
TOTAL LINEAR SYSTEMS SOLVED ON PATH
PATH ARC LENGTH = .4935D+03

422
589

202

NUMPAT= 1
FEAL SOLUTTNN

T = .100000000000000D+01
REAL PART IMAGINARY PART

X (1) = .1000D-03 -.5530D-15

X (2) = .1000D-02 -.5530D-14

X (3) = -.1000D-03 -.5529D-14

X (4) = -.1000D-03 .6082D-14

X (5) = .5500D+02 -.1249D-13

X (6) = -.1000D-09 .5529D-20
NORM OF RESIDUAL = .3034D-09

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .2666D+10 DET = .1370D+04 .1222D+04

PATH NUMBER = 2

FINAL VALUES FOR PATH

PATH NUMBER = 2
TOTAL NUMBER OF STEPS = 112
NUMBER OF STEPS THAT SUCCEEDED = 98
NUMBER OF STEPS THAT FAILED = 14
TOTAL CORRECTOR ITERATIONS ON PATH = 256
TOTAL LINEAR SYSTEMS SOLVED ON PATH = 368
PATH ARC LENGTH = .9305D+02

NUMPAT= 2
REAL SOLUTION
T = .100000000000000D+01

REAL PART IMAGINARY PART

X (1) = .8264D-04 -.8344D-15
X 2) = .8264D-03 -.8344D-14
X (3) = .9091D-04 -.1010D-13
b o | 4) = .9091D-04 .9179D-14
X (5) = .5500D+02 -.1498D-14
X (6) = .1100D-09 .1222D-19
NORM OF RESIDUAL = 43580 =10 Sessridaadareee e e

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .2026D+09 DET = -.2749D+03 -.4024D+03

PATH NUMBER = 3

FINAL VALUES FOR PATH

PATH NUMBER = 3
TOTAL NUMBER OF STEPS = 78
NUMBER OF STEPS THAT SUCCEEDED = Tl
NUMBER OF STEPS THAT FAILED = 7
TOTAL CORRECTOR ITERATIONS ON PATH = 158

203

TOTAL LINEAR SYSTEMS SOLVED ON PATH = 236
2000 ETC TEYERE = T FTESS

NUMPAT= 3
COMPLEX SOLUTION
T = .100000000000000D+01
REAL PART IMAGINARY PART
X(1) = =-.1863D+14 .9159D+12
X(2) = =-.1863D+15 .9159D+13
X(3) = .0000D+00 .0000D+00
X(4) = .2049D+15 -.1007D+14
X(5) = .2049D+15 -.1007D+14
X (6) = =-.2049D+15 .1007D+14

NORM OF RESIDUAL = .2165D~12

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .5795D+07 DET = .1266D+05 -.1102D+06

PATH NUMBER = 4

FINAL VALUES FOR PATH

PATH NUMBER = 4
TOTAL NUMBER OF STEPS = 96
NUMBER OF STEPS THAT SUCCEEDED
NUMBER OF STEPS THAT FAILED
TOTAL CORRECTOR ITERATIONS ON PATH
TOTAL LINEAR SYSTEMS SOLVED ON PATH

PATH ARC LENGTH = .8145D+02
NUMPAT= 4
REAL, SOLUTION
T = .100000000000000D+01
REAL PART IMAGINARY PART
X (1) = -.1000D-09
X 2) = ~-.1000D-08
X (3) = -.1000D-10
X(4) = .1000D-02 =z,
XA 5) = .5500D+02 =
X (6) = -.1000D-02 =
NORM OF RESIDUAL = .4047D-12

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
.3179D+03

COND = .1141D+07 DET =

TOTAL CORRECTOR ITERATIONS =

204

.2746D-21
.2746D-20
.2745D-22

5840D-19

.3655D-14
.2745D-14

1060

.5681D+03

TOTAL LINEAR SYSTEMS SOLVED = 1513
TOTAL ARC LENGTH = .7382D+03
A.4.3 Problem 3 - Solution of reaction rate equations (Shacham(1986))
Thity five solutions exit for this problem. However only the path statistics are given for the

Real solutions.

PATH NUMBER = 7

FINAL VALUES FOR PATH

PATH NUMBER = 7

TOTAL NUMBER OF STEPS = 63

NUMBER OF STEPS THAT SUCCEEDED = 56

NUMBER OF STEPS THAT FAILED - 7

TOTAL CORRECTOR ITERATIONS ON PATH = 131

TOTAL LINEAR SYSTEMS SOLVED ON PATH = 194

PATH ARC LENGTH = .6339D+01
XNP1= - .6232698204D-01 .4119090159D-01
NUMPAT= q

REAL SOLUTION

T = .100000000000000D+01

REAL PART IMAGINARY PART

X (1) = .5195D-02 -.4592D-17

X (2) = .3368D+00 -.3598D-15

X (3) = .1990D+01 -.1831D-14

X (4) = -.6411D-03 .6990D-18

X (5) = =-.5121D+01 .3656D-14

X (6) = .6122D+01 -.4690D-14

NORM OF RESIDUAL = .3896D-15

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .3208D+04 DET = -.2119D+00 -.2259D+00

PATH NUMBER = 8

FINAL VALUES FOR PATH

PATH NUMBER = 8
TOTAL NUMBER OF STEPS = 55
NUMBER OF STEPS THAT SUCCEEDED = 50
NUMBER OF STEPS THAT FAILED = 5

107
162

TOTAL CORRECTOR ITERATIONS ON PATH
TOTAL LINEAR SYSTEMS SOLVED ON PATH
PATH ARC LENGTH = .8197D+01

o

205

XNP1= .1486315485D-01

HUMPAT=
REAL SOLUTION

8

T = .100000000000000D+01

REAL PART IMAGINARY PART
X 1) = .1030D+01

Xt 2) = .1020D+01

X (3) = -.6086D-01 -
X(4) = -.1003D-03 =
X(5) = .1001D+01

X (6) = =-.9517D-03 -

NORM OF RESIDUAL .3275D-15

CONDITION AND DETERMINANT OF DF (X)
COND .1382D+03 DET

PATH NUMBER 11

FINAL VALUES FOR PATH

PATH NUMBER =
TOTAL NUMBER OF
NUMBER OF STEPS
NUMBER OF STEPS THAT FAILED
TOTAL CORRECTOR ITERATIONS ON PATH
TOTAL LINEAR SYSTEMS SOLVED ON PATH
PATH ARC LENGTH .4978D+01

11
STEPS 70
THAT SUCCEEDED

XNP1l= .3926951297D-02
NUMPAT= 1l
REAL SOLUTION
T = .100000000000000D+01
REAL PART IMAGINARY PART
XA 1) = -.5454D-01 =
X(2) = .2970D+00 =
X(3) = .2109D+01
XA 4) = -.7703D+01 =
XA 5) = -.4518D-03
XA 6) = .8703D+01

NORM OF RESIDUAL .4102D-13

CONDITION AND DETERMINANT OF DF (X)

.5024D+00

-.1296089376D+00

.2026D-15
.2882D~-15
.1528D-16
+2318D=19
+2337D=15
.2311D-18

AT END OF PATH
.2542D+00

.1653040288D-02

.1364D-15
.1191D-14
.6771D-14
.6985D-13
.2224D-17
.7069D-13

AT END OF PATH
-.4943D-05

COND = .9627D+05 DET = .1714D-06
FINAL VALUES FOR PATH
PATH NUMBER = 39

TOTAL NUMBER OF STEPS = 85

NUMBER OF STEPS THAT SUCCEEDED = T7

206

NUMBER OF STEPS THAT FAILED = 8
TOTAL CORRECTOR ITERATIONS ON PATH
TOTAL LINEAR SYSTEMS SOLVED ON PATH
PATH ARC LENGTH = .9314D+02

185
270

XNP1= -.2642917378D-01 -.1619146299D-01
NUMPAT= 19
REAL SOLUTION
T .100000000000000D+01
REAL PART IMAGINARY PART
XA 1) = .9742D+00 .3261D-15
X(2) = .9828D+00 .3839D-15
X(3) = +9151Db=-01 .3316D-16
X(4) = .9357D+00 .4197D-15
X(5) = .9084D-04 .2762D~19
X 6) = .6424D-01 . 3231D-1:6

NORM OF RESIDUAL = .2344D-12

CONDITION AND DETERMINANT OF DF (X) AT END OF PATH
COND = .7104D+04 DET = .1004D-02 -.1350D-02

TOTAL CORRECTOR ITERATIONS 5891

Il

TOTAL LINEAR SYSTEMS SOLVED 8739

TOTAL ARC LENGTH = .5494D+03

207

APPENDIX B

B.1 Introduction

Appendix B is a mini manual and illustrates how DASP II can be run on a IMB PC.

B.2 Execution of PFG

The cursor throughout this version of PFG is moved by using the cursor

keys. All selections are made by positioning the cursor at the desired location

followed by a carriage return. PFG is resident in directory

C:/USERS/PFG/PFGOBIJ and is executed by entering PFG at the DOS prompt.

The following steps are required to create a graphical flowsheet with PFG:

1i1)

Enter a three character plant/process name when prompted. This

name will be used as an extension for the files generated for this

flowsheet.

Enter the number of process units NUNITS comprising the

flowsheet including input/output modules.

For each unit enter the following:

a. Unit tagname (maximum 3 characters)

b. Unit description (maximum 12 characters)

One the PFG graphics screen has displayed, selected PFD from

the options menu.

For each unit in the flowsheet do the following operation:

a. Select a tagname from the TAGNAME MENU

b. Select the symbol from the SYMBOLS MENU

c. Select the symbol size using the SCALE option from the
OPTIONS MENU

vii)

x1)

d. Select the location of the svymbol in the DRAWING
SCREEN

To draw lines, the LINE option is selected from the OPTIONS

MENU. Once this selection has been made the LINE MENU

replaces the SYMBOLS MENU.

Select the LINE option from the OPTIONS MENU

For each line, starting with line number 1, in the flowsheet the

following procedure is required:

a. Select the starting point of the line ensuring that the starting
point either touches or is embedded in the source symbol.

b. Select the end point of the line, again ensuring the end

point either touches or is embedded in the sink symbol.

The lines can be composed of one or more segments. In this case
the segments must be drawn in order starting from segment 1.
The start point of segment 2 is the end point of segment 1, this
procedure is repeated until the desired line is generated.

Lines may be deleted by selecting the ERASE option from the
OPTIONS MENU followed by the selection of the desired line.

To return to the PFD screen the PFG option is selected from the
OPTIONS MENU.

The graphical flowsheet can be saved by selecting the SAVE/EXIT
option from the OIPTIONS MENU. At this point the program

returns to the standard alphanumeric format.

B.3 Execution of the interactive front end - FRONT

FRONT the interactive front end generates the problem description for
DASP together with the process topological data. This information is stored in a
suite of a suite of ASCII files, which are then accessed by DASP. FRONT interacts

with the user via a conversational procedure and the following steps are tiaken.

1) Are the simulation control options to be generated by using
CINDAN.

ii) If yes then CINDAN is executed.

itb) If no, the program requests the mode of operation and the
componential information.

iii) Enquire is the topological information is to be generated for
DASP.

iiib) If yes, BTOPOL is executed.

iv) Enquire is the model variable/parameter information is to be
generated.

V) If yes, CUNIN is executed.

B.4 Execution of DASP

B.4.1 Introduction

The following files in C:/USERS/DASP/VER?2 are needed to run DASPII:

1 PDASP.BAT

PDASP1.EXE
DASP.BAT

= W N

DASP.LINK

210

5 MESFLE.D

1 All the files generated by FRONT in Appendix Bl (i.e. CINDAT,
CUNIT, CTOPOL, VCODES. D and COMDT if chemical species are
present in the system).

2 "PDASP" is entered at the DOS prompt.

% The topology data file name is entered. The program then prompts the
user for the maximum lengths of the real and integer work spaces, CORE
(*) and ICORE (*) arrays used by DASP. PDASP uses the topology data
file to prepare two routines, the main program - DASP and the rubroutine
GETSUB in the file MDASP.FOR. This routine is then compiled to
produce MDASP.OBJ as the object file.

4 "MDASP" is entered at the DOS prompt. This links MDAPS.OBJ with
the DASP programs and libraries creating the executabler file:
DASP.EXE.

5 DASP is then executed by entering "DASP" at the DOS prompt.

In order to run the DASP program, the user should do the following:

1 Prepare the necessary data files as described in Appendix B.

2 The user must code the new routines in DASP format. These routines
must then be compiled and linked with DASP library programs to produce
the executable file, DASP.EXE.

The package is run by typing:

"DASP" <ENTER>

The system displays the following:

Welcome to DASP
(Dynamic Analysis and Simulation Package)
Version 1.1 1986, 1987

** Initialization Region **

Press < ENTER > to continue ...

The last message was produced by a routine that clears the screen if the <
ENTER > key is depressed on the keyboard. A similar routine clears the screen
automatically. The first option gives the user the opportunity to view the displayed

message before it disappears.

B4.2 Initial Region

The following message will appear:

** Enter units used for input data **
1 = SI Units 2 = British Units

There are only two types of units supported, and the user can only use
either of the two to input his data to DASP (see Appendix B8 for details of these
units). However, if UM option is used, then it does not matter which of these is

used as the user can describe the problem consistently in any units.

The user is prompted to enter the names of the data files and the result

files. Note that if any typing errors are made, the user has up to 3 tnals after which

-2
—
12

execution is stopped. When any input data file name is read. it is opened for
sequential access and the values in the file are read. If any errors are detected in the
input data files, the execution is terminated. If scalar relative error tolerance option
is to be used (KTOL = 0) then the user is prompted to enter the scalar error
tolerance. If any discontinuity will occur in the model at a specified time, TSTOP,
then the user is prompted for the value of TSTOP. If the user wants output to be
given at specified output intervals, then the value of this interval is prompted. If the
user wants output at specified time interval (in dynamic simulation option or after as
number of iterations (in steady state simulation option, then he is prompted for the
value of HOUT, the output time interval or NOUT, the number of iterations before

output.

Afterwards the following is displayed:

*Enter interrupt/break flag (LINTRP) as follows **

0 = No break/interrupt

1 = Break after a given number of steps/iterations
2 = Break at every step/iteration

-1 - Interrupt/stop simulation now

If LINTRP = 0, then integration will proceed from initial time,
TO to the final time, TFIN without any break, except when an event has occurred.
If LINTRP = 1, then the user wants control returned to him via the MODIFY
routine (explained in Chapter 8) after a given number of steps/iterations. In this
case he is prompted for the value of NINTRP the number of iterations before break.
For LINTRP = 2, this is equivalent to a break after every iteration or step.
However, if LINTRP = -1 is entered, the simulation is abandoned and a message

asking the user whether to stop or restart the simulation is displayed.

213

The plotting routine is called to initialize the plotting parameters, if plotting
option is specified. Note that if the UM option is being executed, then the initial
section of the subroutine USRSUB (i.e. JS = 00 is called to do any initializations
specified by the user. To end the initialization process, the consistency of the
values of the simulation variables are verified and if any inconsistency is detected,
simulation is abandoned. Finally, the MODIFY routine is called. On exit from the

MODIFY routine, simulation enters the dynamic region.

B4.3 Dynamic Region

This region carries out the numerical calculations of the steady state and
dynamic simulation sessions. At the end of every step or iteration, control is passed
to the Executive program to check which flags have been set. First it checks if any
error has occurred (i..e. if IFLAG < 0), in which case the relevant error message is
displayed and control is passed to the error analysis section of the Terminal Region.
It then checks if the end of simulation has been reached (LEND=TRUE_, in which
case control is passed to the Rerun/End simulation section of the Terminal Region.
It then checks if the event flag, LEVENT and/or break flag, LINTRP has been set in
which case the event processing interface routine, STESUB or the MODIFY routine
is called to carry out the necessary procedure. Note that the user can abandon the
simulation during this time by setting LINTRP to a negative value using option 10
of the MODIFY routine.

If none of these flags has been set, but the user has requested for output at
specified time intervals or after a certain number of iterations, then the routine,
OUTPUT is called to write the values of variables and derivatives to the work file,
WKFILE and to the screen if LTERM=1. Finally, on return from any of the above
routines, a check is made to find out if any errors were detected, in which case the

relevant error message is displayed and control passed to the error analysis section

214

of the Terminal Region. Otherwise, if the user has set LINTRP to a necative value.

signifying an interrupt, then the simulation is abandoned and the message

SIMULATION ABONDONED BY USER AT THE TIME.....

Select an option as follows:
0 = STOP

1 RESTART

If O is selected, than all open files are closed after the results have been
written to the result file and the simulation is abandoned. If 1 is selected, then the
results are written to the results file, all open files closed, the pointers reset to zero

and the simulation is restarted.

If no interrupts or errors were found, then the relevant simulation interface
routine (DERIV for dynamic and ASSUB for steady state) is called to continue the
simulation. This procedure is repeated until the final time, TFIN is reached and

control is passed to the Terminal Region.

B4.4 Terminal Region

At the terminal region, if any errors have occurred typified by IFLAG <
0,m then using the absolute value of the flag, the relevant error messages are
displayed on the screen and further messages from the message file, MESFLE and

execution is stopped. Otherwise, the following message appears:

#kx44t TERMINAL REGION ***¥x

Terminal Menu is

215

0 = Exit/End simulation

1 = Rerun present system after perturbation
2 = Runanew system with data in same files
3 = Runanew system using new data files
4 = Modify, plot or view variables/parameters

** Select an option number **

To exit, you must select option 0 above, in which case, the results are
written to the result file and all files closed before stopping the simulation by

returning control to the main program, accompanied by the display of the message.

NORMAL END OF SIMULATION

To view the latest results or plot the values of variables against time (if any
plotting routines are available) select option 4, which calls the MODIFY routine. To
rerun present system after a call to the MODIFY routine, select option 1. The user
can restart the simulation starting from any step between the initial values and the
latest variable values. Choosing option 2 means that the user wants to start a new
simulation of a problem whose data are in the same files, placed just after the data
for a previous simulation. In this case the result of the previous simulation is

written to the result file, and an initialization of a new run will be started.

In option 3 the present simulation is ended and a reinitialization activated
for a new run. Since all previous data files are closed, a new run must use new data

files.

Depending on the option chosen, after a return from the Terminal Region,

the Executive directs the simulation to the relevant region.

fPPENDIX €

VARIABLE AND PARAMETER TYPES AND SYSTEM ERRORS

C.1 Introduction

This section presents the variable and parameter types defined in DASP.
At present 100 variable and parameter types have been defined and each is given a
unique positive code number and a name. In order to handle an equilibrium stage as
a unit module, the vapor and liquid variable types are distinguished. Also the units
which can be used to input and output the values of these variables and parameters
are given. Two types of units have been defined, name SI and British Units. The
user can only use one type of units for all the variables and parameters as there is no
conversion between units. Note that the distinction between variables and
parameters is arbitrary, as this may depend on the modelling assumptions made and
what the model is intended to bt used for. Also, the code numbers of the integer
type parameters are also given. This was intended to be used in conjunction with an

input language.

G2 MARpr: LY TYPES

Variable Variable Code SI Unit British
Type Name Number Unit
Vapor kgmole Ibmole
mole YCOMP 1-20

fractions kgmole 1bmole
Liquid kgmole 1bmole
mole XCOMP 21-40

fractions kgmole 1bmole
Vapor

holdup VHOLD 41 kgmol Ibmole
Liquid

holdup LHOLD 42 kgmole 1bmole
Total vapor

flow rate VRATE 43 kgmole/hr 1bmole/hr
Total liquid

flow rate LRATE 44 kgmole/hr 1bmole/hr
Vapor volume VVOL 45 m3 ft3

Liquid volume LVOL 46 m3 ft3
Vapor

density VDENS 47 kgmole/m3 1bmole/ft3

Variable

Code

SI Unit

British

Variable

Type Name Number Unit
Liquid

density LDENS 48 kgmole/m3 1bmole/ft3
Liquid level LHGHT 49 m ft

Pressure PRES 50 Pa atm
Temperature TEMP 51 K F

Vapor

enthalph VENTH 52 kJ/kgmole Btu/1bmole
Liquid

enthalph LENTH 53 kJ/kgmole Btu/1bmole
Percentage PCENT 54 o Yo
Pneumatic

control signal PSIGN 55 psig psig
Electronic

signal ESIGN 56 mA mA

Heat load HTLOAD 57 kJ/hr Btu/hr

219

Variable Variable Code SI Unit British

Type Name Number Unit
Unspecified
variable VARIABLE 58-60 - -
Zero of ZI 61 Same as Same as
input the input the input
variable variable
Range of RI 62 Same as Same as
input the input' the input
variable variable
Zero of 20 63 Same as Same as
output the output the output
variable variable
Range of RO 64 Same as Same as
output the output the output
variable variable
Time constant TAU 65 hrs hrs
Zero offset X0 66 Same as Same as
of input input input
Bias or YO 67 Same as Same as
manual reset output output
variable variable

]
]
o

vaFiabic vanaui Code St Lt British
Type Name Number Unit
Controller
action AXN 68 -
+1 for direct
-1 for reverse
System or GAIN 69 Unit of output Unit of output
process gain

Unit of input Unit of input
Set point of SP 70 Same as Same as
controller input input

variable variable

Integral
time TI il hrs hrs
Derivative
time D 72 hrs hrs
Damping
ratio DAMP 73 - -
Value
constant Cv 74 kgmole/hr Pa2 1bmole/hratm2

IJ
2

“Yarinlle Tarialy' Core ST o b il
Type Name Number Unit
Fractional

valve opening AV 75 -

Equal %

value trim ALFV 76 - -
constant

Individual/

composite HIO 77 kJ/hr m2K Btu/hrft2°F
heat transfer

coefficient

Overall heat

transfer UHTC 78 kJ/hr m2K Btu/hrft2°F
coefficient

Diameter DIAM 79 m ft

Area AREA 80 m2 ft2
Efficiency EFF 81 - -

Ratio

(eg. reflux or RATIO 82 - -

split fraction)

Mass of metal, MASS 83 kg 1b
material etc

(]
]
(B

Variable Variable Code SI Unit British
Type Name Number Unit
Molecular

weight MOLWT 84 - .

Heat capacity CP 85 kJ/kgmole-K Btu/1bmole-°F
Latent heat

of vapor- HVAP 86 kJ/kgmole Btu/Ibmole
ization

Heat of

reaction HTR 87

Controller CMAN 88 Same as Same as
manual output output
setting variable variable
Number of

revolutions RPM 89 1/min 1/min
per minute

Unspecified

parameter PARAMETER 90-100 - -

223

C.3 INTEGER PARAMETERS

Parameter Code Description
Name Number
MOPTN 1 The model option variable, which gives the

various options based on the modelling
assumptions,eg. isothermal or adiabatic
option.

MPARAM 2 The parameter option variable, which gives
the various options available for a specified

parameter, eg. set point is constant or

variable.
ICODEI 3 Code number of input variable
ICODEO = Code number of output variable
IDERIV 5 Derivative avaialability option, which has

values as follows:
= 1 derivatives of variable supplied,

= (0 derivatives not avaialable

NIS 8 No of input streams
NR 10 No of reaction paths
JOPTN 11 Controller mode option
NC 12 No of comps in model

[§S]
1J
N

C4

ERROR MESSAGES

The amount of integer type workspace available for this problem is
insufficient. The array ICROE should be increased as indicated in the
accompanying message.

The amount of real type workshace available for this problem is
insufficient. The array CORE should be increased as indicated in the
accompanying message.

The number of variables/equations in the system to be solved should be
greater than zero.

The erro tolerance(s) specified are too stringent. As a guide, they should
be greater than the machine round-off number as given in the message
above.

The local error test during the numerical calculation could not be satisfied,
probably because a zero component was specified in both the relative
(RTOL) and absolute (ATOL) error tolerances.

I/O error. An end of file occurred during an input/output operation. This
normally happens when data is being read from a sequential file without
first rewinding the file.

I/O error. The system was unable to access a file for input/outpur. Maybe
the file does not exist or has not been properly connected or the access
mode used was wront.

File connection erro. The file whose logical unit number is given above
could not be connected for input/output. Either the file does not exist
when it should or vice vise aor the mode of access is wront.

The initial derivatives of the state variables could not be computed by the
code. This could happen when the inital approximations to the derivatives
are not good enough or the derivatives consistent with the initial values

given do not exist.

12
(]
]

10

11

12

13

14

15

16

17

18

19

The specified number (KMAX) of iterations has been taken without
convergence. You may have another go for anothe KMAX number of
iterations.

The code has taken about 500 steps in the numerical integration towards
the communication interval (TOUT) without reaching there. You may

have another go for another 500 steps.

Incorrect input value(s) were detected which were outside the range of
values for these variable(s).

Incorrect input. The permissible number of incorrect input trials has been

exceeded. Bye.

The matrix of partial derivatives is singular. Maybe some of the equations

are redunant or there is no solution to this problem or the solution is not

unique.

The function values could not be computed by the code. Maybe some of
the iterates./state variables values will cause a division by zero or overflow

or uhderflow, etc.

The Jacobian values could not be computed by thde code. Maybe some of
the iterates/state variable values will cuase a division by zero or overlow or
underflow etc.

Convergence problem. Reoeated error test failures occurred during the
last test in the numerical itegration. This may be due to singualarity
probnlem of the Jacobian matrix.

There was a multiple convergence test failures preceeded by multiple error
test failurs on the last attempted step. It is possible that the prioblem is ill-
posed or cannot be solved by this code or there is singularity/discontinuity
in the prioblem.

The funcuon/jacobian values were crudely approximnated for the last step
and as a result there was repeated erro test failures for the last attempted

step.

21

22

23

24

2

26

Ar error condition was renorted hat nother wos dane to re -Jdy i+ before
the code was called gain. You cannot continue the execution in this
situation.

The value of a variable/parameter could not be locatd4ed in a storage
location. This may happen when there wront input data was given
expecially during topology or variable code numbers input.

A dummy subroutine was called/referenced by the code. This option is
not yeat available.

The code was unable to set up the sparse matrix structure. Maybe some of
the module routines do not include this option. The dense matrix structure
has been assumed but this may require more work spce than is available.
There is error in the sparse Jacobinan matrix sturcture which becam
appraent when equation/variable numbers were referenced. You may
restart the execution after correcting the mistake or use the dense matrix
option.

The code has modified a user input value due to wrong input. Further
computations make use of the new value.

No further merssage included for this type of error.

t2
12
~J

APPENDIX D

THE MANAGEMENT OF THE DATABASE INFORMATION USING
XTRIEVE

D1 Introduction

XTRIEVE is a menu based file management program that enables rapid
information management and analysis. It requires BTRIEVE - the record
management program. The database is a collection of database files. Each piece of
information is stored in a field. The files make up a record. Together, the fields
and records make up a file of related information. Information can be retrieved
from a database file by using an index. An index is a field in the file that is used to
locate a specific entry or record. The information required in fields and the fields
used as indexes called the file definition. The file definition includes a description
of each field in the file. Each field has a name, a data type and a size. The data type
tells XTRIEVE what type of information is stored in a field, such as a number or a
name. The data size tells XTRIEVE the length of the data that will be stored in a
field. After the database file has been defined, XTRIEVE stores the file definition

in a data dictionary.

The data is entered and can be manipulated and displayed in a suitable
format. This is done by creating a view for the data. A view is a collection of data
that can be built up from one or more files. It allows a convenient mechanism for
displaying the ata and its manipulation. However, in DASPII a single view is used

for each database file.

B8]
(]
oC

D.2 Manipulation of data in DASPII using XTRIEVE

Throughout XTRIEVE, the menu selections are made by moving the
cursor using the cursor keys or by entering the first letter of the desired option,

followed by a carriage return. An escape key exits to the neu above the current

menu.

The following procedure is undertaken to modify data in database files

using XTRIEVE:

i) XTRIEVE is located in C:/SOFTW/XTRIEVE and is executed by
entering XTRIEVE at the DOX prompt in the above directory.

ii) The program displays the main menu, from which the VIEW
option is selected.

iii) The MANAGE option is then selected from the VIEW menu.

iv) The RECALL option is selected from the MANAGE option.

V) A list of view names are displayed which represent the files in the

database. The views available for DASPII are shown in Table D1.

XTRIEVE DASP

VIEW Database files
CONTROL OPTIONS CONTOP.DAT
DASP MODEL TYPES DPUNIT.DAB
DASP MODELS FOR PFG PFDMNO.DAB
DATA FOR UNITS UNITS.DAB
INT PARAMETERS INTPAR.DAB
MODEL DEFINITION VARCOD.DAB
MODEL DETAILS UNITDDF.DAB
MODEL INTEGERS INTCOD.DAB
PFG UNITS PFUNIT.DAB
VARIABLE DESCRIPTION RLVAR.DAB

TABLE D1 XTRIEVE VIEWS
for the database files

When the required view is selected the field headings are displayed.

vi) An <ESCAPE> is used to return to the MANAGE menu, were
BROWSE or EDIT is selected to either scan or edit the chosen
database file. The file can be edited by moving the cursor between
the fields using TABULATE to move forward and a SHIFT
TABULATE to move backwards. The new field entry is written
over the existing value following by a carriage RETURN. Once
the editing session has been completed the program then prompts
the user if the editing session is complete or if the changes are not

required.

A new record is added by selected ADD in the MANAGE menu and the

user enters the field values followed by a carnage returmn.

2
lsd
—
S

D3 The Database Dictionary

The file definition is stored in the dictionary. To review field and index

definitions for a file, the following steps are required:

i) The DICTIONARY option is selected from the MAIN menu.

i) This is followed by the selection of the SHOW option from the
DICTIONARY menu - XTRIEVE displays a list of all the files in
the dictionary.

i1) The desired file is selected, XTRIEVE displays the filed and index
definitions for that file. It also displays the total number of records
in the file and the total number of unique values tored in each

index.

D4 The XTRIEVE set-up

XTRIEVE is located in C:/SOFTW/XTRIEVE. BTRIEVE the record
manage must be executed before the execution of XTRIEVE. As BTRIEVE is a
memory resident program is needs to be executated only once during a session.
BTRIEVE is located in C:/SOFTW/BRIEVE. It is executed in the above directory
by issuing BTRIEVE at the DOS prompt. Once the program is loaded it informs the
user that BTRIEVE has been loaded.

After returning to the XTRIEVE directory the user enters XTRIEVE at the
DOS prompt. The database files are stored in C:/USERS/DATA. Whilst the view
files are stored in C:/lUSERS/XVIEW.

