

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please read our <u>Takedown Policy</u> and <u>contact the service</u> immediately

Chemical Modifications of Polymers

by

Li Jin

(Department of Chemical Engineering and Applied Chemistry)

A Thesis Submitted for the Degree of Doctor of Philosophy

at

The University of Aston in Birmingham

April 1988

This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with its author and that no quotation from the thesis no information derived from it may be published without the author's prior, written consent.

THE UNIVERSITY OF ASTON IN BIRMINGHAM

Chemical Modifications of Polymers

Li Jin

A Thesis Submitted for the Degree of Doctor of Philosophy

April 1988

Summary

Based on the knowledge of PVC degradation and stabilisation, chemical modifications were imposed on degraded PVC and raw PVC with the aim of obtaining non-migrating additives. The modifications were carried out mainly in the presence of dibutyl maleate(DBM), and the resulting polymer contained dibutyl maleic residues. Such modifications result in a polymer which contain substantive additives which resist migration under aggressive environments.

Previous studies have shown that stable nitroxyl radicals function as stabilisers in polymer during processing (e.g. PP, PVC) by deactivating a large number of kinetic chains via a redox process whereby the concentrations of the nitroxyl and its reduced form, the hydroxylamine, fluctuate reciprocally and rhythmically. In order to understand the major reactions involved in such systems, a simulation method was used which resulted in a mathematical model and some rate constants, explaining the kinetic behaviour exhibited by such system. In the process of forming a suitable model, two nonlinear oscillators were proposed, which could be of interest in the study of nonlinear phenomenon because of their chaotic behaviour.

Keywords: PVC, Poly(vinyl chloride), Polypropylene, Thermal Degradation, Chemical Modification, Chemical Oscillation

Acknowledgement

I would like to express my deepest gratitude to Professor G. Scott and Dr S. Al-Malaika for their supervision and constant encouragement during this research. Especially, in the second part of the work, it might not have been possible without their tolerance and help.

I am grateful to the Ministry of Education of the People's Republic of China and the British Council for financial support throughout my research work.

I acknowledge the help of the technical staff in the Chemistry Department, the help from Dr J. Jones and Miss I. Whittier of Engineering Computing Office, and mathematical encouragement from Dr B. Martin of Department of Computer Science and Applied Mathematics.

To my wife Suibo, so much is owed, and no written words can express my profound gratitude for her patience and sacrifice.

Declaration

The work described herein was carried out at the University of Aston in Birmingham between April 1985 and April 1988.

It has been done independently and submitted for no other degrees.

April 1988

Contents

Title Page	1
Summary	2
List of Figures	9
Part I Chemical Modifications of PVC by Plasticiser	
Chapter1 Introduction	
1.1 General Aspects of PVC Degradation	10
1.1.1 Polyene Formation during Degradation	11
1.1.1.1 Radical Mechanism .	12
1.1.1.2 Ionic Mechanism	14
1.1.2 Secondary Reactions	16
1.2 Chemical Modifications of Polymers	19
1.2.1 Characteristics of Polymer Modifications	21
1.2.2 Heterounit Structure of Modified Polymer	27
1.2.3 Typical Chemical Modification Reactions of Polymers	28
1.2.3.1 Substitution	3 0
1.2.3.2 Cross-linking	3 1
1.2.3.3 Degradation	3 2
1.2.3.4 Addition	3 2
1.2.3.5 Elimination	3 2
1.2.3.6 Isomerisation	3 3
1.2.3.7 Exchange Reaction	3 3
1.3 Objectives of the Present Work	3 4
스타 12	

Chapter2 Experimental Procedures	37
2.1 Materials	37
2.2 Degradation of PVC	37
2.2.1 PVC Powder Degradation	37
2.2.2 PVC Film Degradation	3 8
2.3 Processing	38
2.4 Film Preparation	39
2.4.1 Film Casting	39
2.4.2 Compression Moulding of Film	39
2.5 Modification Reactions	39
2.5.1 Reactions between Degraded PVC and DBM	39
2.5.2 Radical Initiated Reaction between PVC and DBM	40
2.6 Extraction	40
2.7 Colour Development	40
Chapter3 Results and Discussions	42
3.1 Thermal Degradation of PVC	42
3.1.1 Polyene Development	42
3.1.2 Simulation of Polyene Growth	46
3.2 Chemical Modification of PVC by Plasticiser	56
3.2.1 Reaction of Degraded PVC with DBM	56
3.2.2 Radical Initiated Modification of Undegraded PVC	63
Chapter4 Conclusions and Suggestions for Further	Work
	77
4.1 Conclusions	77

Part II The Study of Oscillation in Nitroxyl- and Nitroxyl Precursor-Polypropylene Reaction Systems

Chapter5 The Study of Oscillation in Nitroxyl- and	Nitroxyl
Precursor-Polypropylene Reaction Systems	79
5.1 Background	79
5.2 Brief Experimental Description	8 1
5.2.2 Experimental Procedures	8 1
5.2.3 Experimental Observations	82
5.3 Chemical Oscillation Models	8 5
5.3.1 Thermodynamic Aspects of Chemical Oscillation	8 5
5.3.2 Oscillation Models	87
5.3.2.1 Mathematical Models	87
5.3.2.1.1 Lotka-Volterra Model	87
5.3.2.1.2 The Brusselator	90
5.3.2.2 The Oregonator	91
5.4 The Study of Oscillation in a Nitroxyl	.
Polymer System	97
5.4.1 Modified Brusselator	97
5.4.2 The Detailed Model of Nitroxyl Polymer System	112
5.4.2.1 Reaction Mechanism	112
5.4.2.1 Reaction Mechanism 5.4.2.2 Model for Oxygen Concentration Changes	11:
J.T.L. MIUGOI IOI ONJEON CONCONTRATION CHANGE	

5.4.3 Simulation Results	118
5.4.3.1 Results under Restricted Oxygen Access	119
5.4.3.2 Results under Excess Oxygen Concentration	120
5.5 Conclusions and Suggestions for Further Work	130
References	133
Appendix A Program to Simulate Binary Copolymerisation	142
Amendia P. Program to Simulate NO PR Recetion System	146
Appendix B Program to Simulate NO-PP Reaction System	140
Appendix C Design of a Small Database for Polymer Additives	
Information	153
Appendix D Program Listing of the Database	161
Appendix E Samples of Database Running	202

List of Figures

Figure	Page	Figure	Page
Figure1.1	20	Figure 5.1	83
Figure 1.2	27	Figure 5.2	84
Figure 1.3	29	Figure 5.3	89
Figure 1.4	30	Figure 5.4	92
		Figure 5.5	93
Figure3.1	43	Figure5.6	94
Figure3.2	45	Figure 5.7	96
Figure3.3	47	Figure 5.8	102
Figure3.4	48	Figure 5.9	103
Figure3.5	52	Figure5.10	104
Figure3.6	53	Figure5.11	105
Figure3.7	54	Figure 5.12	107
Figure3.8	57	Figure 5.13	108
Figure3.9	59	Figure 5.14	109
Figure3.10	60	Figure 5.15	110
Figure3.11	65	Figure 5.16	111
Figure3.12	66	Figure 5.17	117
Figure 3.13	69	Figure 5.18	121
Figure3.14	71	Figure5.19	122
Figure3.15	72	Figure 5.20	123
Figure3.16	73	Figure 5.21	124
Figure3.17	75	Figure 5.22	126
. -		Figure 5.23	127
		Figure 5.24	128
		Figure 5.25	129

Part I

Chemical Modifications of PVC by Plasticiser

Chapter1 Introduction

PVC is one of the most studied subject in the field of polymer degradation and stabilisation. In spite of this, the basic details 1~9 of the mechanism of PVC degradation have not been elucidated clearly and a fundamental understanding of the stabilisation methods 10, some of which have been used empirically for many years, still needs to be clarified. However, on the basis of what is known about the degradation and stabilisation of PVC, it is possible to apply this knowledge to study the modification of PVC. This study is mainly concerned with chemical modification of PVC and degraded PVC by plasticisers. Therefore, in the following sections, the general chemical methods of polymer modification will be discussed with particular emphasis on the reactions of degraded PVC.

1.1 General Aspects of PVC Degradation

The main outward manifestations of PVC degradation (at temperatures sensibly below those of pyrolytic decomposition and combustion) are the evolution of hydrogen chloride (HCl), discolouration and deterioration of physical, chemical and electrical properties. The thermal degradation of PVC starts¹¹ at about 110 ^{OC}, which is much lower than the degradation temperatures for low molecular weight analogues used as models for PVC structures, e.g. 2,4,6-trichloroheptane¹². It has therefore been assumed that the low stability of PVC under thermostatic conditions is caused by irregular

structures in the polymer chain, although during processing 1 3 degradation is largely caused by thermomechanical action. Therefore, the following factors have been considered to be important for the understanding of PVC degradation:

Initiator residues;
Unsaturation chain ends;
Internal unsaturation;
Branches;
Head-to-head structures;
Oxidation structures;
Chain scission caused by mechanical shear.

Although there has not been a single widely agreed factor responsible for the initiation of PVC degradation, it is commonly recognised that once degradation starts, the major process afterwards involves the loss of HCl from PVC molecules with formation of polyene. It is the formation of such conjugated structures and their reactions that will be our major concern.

1.1.1 Polyene Formation During PVC Degradaton

Irrespective of the nature of the initiation site, the evolution of HCl is accompanied by the formation of polyenes in PVC. The discolouration of degraded PVC has been considered to be due to polyene formation. One important feature of polyene generation is the restricted length of the resulting polyene sequences. The average length of conjugated double bonds has been reported to be 4~6

units 14,15~17. The sequence distribution does not gradually change towards higher mean values. Instead, long sequences are observed even at low levels of degradation 18 and the distribution is shifted towards shorter sequences at higher conversions 14,16,18. The fast development of long sequences has been ascribed to a rapid 'zipper' process for the growth of the polyenes.

Over the years, several different mechanisms for the formation of conjugated double bonds have been discussed. The proposed mechanisms include radical, ionic and unimolecular (concerted) paths.

1.1.1.1 Radical Mechanism

This mechanism^{19,20} can be illustrated in Scheme1.1. As support for a radical mechanism, the following observations have been made:

- (1) increased rate of degradation in the presence of radical initiators²¹,22, γ -irradiation¹¹,23~25 and UV irradiation²⁶~28.
- (2) the presence of radicals as detected by ESR spectroscopy 15,29~33.
- (3) grafting of methylmethacrylate to PVC during degradation³⁴.
- (4) the retarding effect of radical traps^{35,36}.
- (5) increased rate of degradation of polymethylmethacrylate^{37~39} and polypropylene³⁵ in the presence of PVC.

(6) exchange reaction³⁴ with labelled ¹⁴C toluene.

An immediate question is where does R come from at the beginning of this propagation process. Under thermostatic condition, it is hard to find a reason. But under processing condition, this may well be attributed to thermomechanical effect, i.e. shear-induced polymer chain scission 13. Although there have been so many observations to support the radical mechanism, using the same experimental techniques, there have been some other studies which are contradictary with the above.

Scheme1.1

For example, it was reported that the presence of radical initiators 40,41 or inhibitors 5,42 have no effect on the rate of degradation of PVC. It has also been claimed that the observed ESR-signals originate from species which are not active in the polyene propagation but are due to thermoactivated electrons in the polyene systems 43 or to radicals connected with aromatic structures formed in secondary reactions 44 (see section 1.1.2). Although it has been argued that the catalytic effect of HCl is consistent with radical mechanisms, many workers consider the influence of HCl as strong evidence against a radical mechanism 25, and ionic processes have been suggested.

1.1.1.2 Ionic Mechanism

The ionic mechanism assumes the following process for the growth of polyenes during PVC degradation:

-(CH=CH)_n CHCICH₂ -
$$\longrightarrow$$
 -(CH=CH)_n $\overset{\leftarrow}{\text{CH}}$ -(CH=CH)_n $\overset{\leftarrow}{\text{CH}}$ -(CH=CH)_{n+1} $\overset{\leftarrow}{\text{CHCH}}$ etc Scheme1.2

The observations which support this mechanism are:

(1) The rate of dehydrochlorination in solution is influenced by the nature and dielectric constant of the solvent 41,45,46.

- (2) The degradation is catalysed by HCl^{47,48}, other acids⁴⁹, strong bases^{42,50}, and some metal salts^{40,45,51,52}.
- (3) The degradation behaviour of low molecular weight compounds 53.
- (4) The degradation of PVC follows first order kinetics⁴.

Some workers find support for a concerted mechanism from the elimination behaviour of low molecular weight compounds^{2,54}. The observation of first order kinetics is also in accordance with a concerted reaction mechanism.^{41,42}

Resonance stabilisation has been assumed to be an important factor in explaining the restricted length of the polyene sequences 4,17,20,55. At increasing length an additional HCl elimination will be less and less favourable. Molecular orbital calculation showed that this assumption is not valid for neutral polyenes and that the incremental conjugation energy is constant 56,57. This calculation also revealed that the positive charge shows a strong tendency to concentrate in the center of polyenyl cation. This effect is considered to be an important factor in restricting the length of polyene 9,56,57. The limitation of polyene growth may also be due to other reasons, e.g. the presence of chloromethyl branches 14.

Stereoregularity is another important structural feature which influences the propagation and the termination of poylene sequences.

syndiotacticity, both in thermal^{58~62} and UV degradation⁶³. The increased length may be due to faster propagation along favoured (trans-trans) conformation^{59~63}.

The above discussion shows that the views concerning the initiation of PVC degradation vary widely. But the formation of poylene sequences in the degraded PVC is a widely agreed phenomenon, and these structures are able to undergo various secondary reactions.

1.1.2 Secondary Reactions

The early work⁶⁴ in PVC degradation showed that insoluble material was formed during degradation. The tendency to molecular enlargment was also indicated by increased solution viscosity before gel point^{21,40}. Using GPC in combination with viscosity measurement the molecular weight increases could be followed in more detail^{14,65,66}. In solid state degradation, gel formation started around 1% dehydrochlorination and became extensive^{65,66} after 2%. After the gel point, the molecular weight and the viscosity of the soluble material decreases rapidly^{66,68}.

The gel formation was assumed to occur by intermolecular HCl elimination between growing poylene sequences and ordinary methylene groups 64,65. This mechanism would account for the increased crosslinking and decreased mean poylene length observed at increased degradation temperature 65. It has also been considered to explain the decrease in polyene length at increasing degree of degradation 65. But this assumption is questionable. It has been

suggested that Diels-Alder cycloaddition between two polyenes^{69~73} is more likely to agree with experimental facts(see Scheme1.3). It has been shown that this mechanism accounts for a major part of crosslinking⁶⁹. By treating degraded, but still soluble PVC with maleic anhydride(MA), a decrease in the high molecular weight material formed during degradation was observed. For samples degraded beyond the gel point, a considerable decrease in the gel content was also observed. These observations were explained by the displacement in the Diels-Alder/retro-Diels-Alder equilibrium in Scheme1.4. The existence of other corsslinking mechanisms was not excluded, but it was said that at least 60-70% of crosslinking during thermal degradation of PVC is due to Diels-Alder reactions between different chains which contain conjugated unsaturation.

Scheme1.3

Scheme1.4

The formation of volatile aromatic pyrolysates, mainly benzene during thermal degradation of PVC is another result of secondary reactions 74. At the conditions characteristic of PVC processing and stability test, about 0.01 mole benzene per mole evolved HCl was reported to be formed 68. It was pointed out 75 that the cyclic product in Scheme 1.3 could be a precursor of benzene. However, further investigations with deuterium-labelled PVC have shown that benzene must be formed via an intramolecular route. Degradation of mixtures of PVC and PVC-d3 results in benzene-h6 and benzene-d6 with traces of other labelled benzenes 75~77. Four different intramolecular routes 77~80 have been suggested to explain the formation of aromatic compounds. One of them involves cyclisation of polyenes formed at the end of polymer chain. It was found 78 that

the evolution of benzene was dependent on the molecular weight, i.e. the concentration of end-groups, and several benzene molecules were evolved per initial chain after extensive degradation. This process is shown in Scheme 1.5:

Scheme1.5

However, several other facts make this mechanism questionable. The content of 1-chlorovinyl ends is very low and the formation of vinyl radicals is unlikely⁸⁰. The most frequent unsaturated end-groups in raw PVC molecules were found to remain unchanged during degradation⁸¹.

1.2 Chemical Modifications of Polymers

The chemical modification of polymers together with polymerisation and ploycondensation is one of the ways to synthesize new high molecular weight compounds (see Fig.1.1):

Fig.1.1 Different processes leading to the synthesis of polymers

Chemical modification of polymers is a process in which the initial polymer is subjected to chemical influences, as a result of which it is converted into a new polymer with a different chemical structure.

The first polymer modification reaction⁸² can be dated back to 1833, when nitrocellulose was produced by treating cellulose with nitric acid. Similar reactions were later carried out on a series of natural polymers. Subsequently synthetic polymers such as PVC, polystyrene, polyethylene and others were subjected to chemical modifications⁸².

Such use of the modification methods originates from the fact that the initial polymers do not meet all the required practical properties. Thus many insoluble polymers can be converted into soluble products by modification. A striking example of this kind is provided by cellulose, whose esters are readily soluble in organic solvents. The introduction of carboxy- and amino- groups into polystyrene imparts

to it acid or basic properties respectively. Such products are used as ion-exchange resins. The introduction of nitrate ester group into cellulose imparts explosive properties to the latter. The introduction of phosphate groups as well as chlorine, fluorine, bromine and certain other elements into polymer renders them incombustible 85.

Thus the modification of polymers constitutes an extremely general method whereby it is possible to vary within a wide range of their physical and chemical properties to meet special needs. Because of this, the modification of polymers has become one of the most important procedures for the synthesis of new polymers. In industry, modification processes have found extensive applications in the synthesis of many polymers, produced on a large scale, such as nitrocellulose, acetylcellulose, other cellulose esters and ethers, poly(vinyl alcohol), etc. There is no doubt that in the future modification will acquire still greater importance in industry.

1.2.1 Characteristics of Polymer Modifications

A characteristic feature of the polymer modification processes is that all reactions of this kind do not as a rule go to completion and are accompanied by side reactions, which has a significant influence on the process and its results. This is caused by the influence of a number of physical and chemical factors, manifested in a specific manner in various polymer modification reactions. Such factors include the influence of the nature of the reagents and catalysts, the structure and degree of crystallinity of polymers, temperature, the nature of solvent, etc. Ultimately, the reactions result in a mixture of

macromolecules of different structures, each of which contains different units in a wide variety of combinations. The final polymer is chemically inhomogeneous, or has a heterounit structure.

Consequently reactions in the polymer chain obey much more complex rules than the analogous reactions of low molecular weight compounds. The reason is that not only the structure of the reacting groups but also a number of specific influences, determined by the macromolecular nature of one or both reactants, play a significant role here. The chain effect, the effect of neighbouring groups and configurational, conformational, electrostatic, and supermolecular effects are usually considered to be the most important factors.

The relative steric disposition of different groups in the polymer chain has a significant steric or electrostatic (polar) influence on their reactivity. This influence can be shown both in the activation and deactivation by neighbouring groups. The increase of the rate of reaction under the influence of a neighbouring group, known as 'anchimeric assistance', is exhibited mainly when five- or sixmembered rings can be formed. Thus it is observed for succinate esters. In exactly the same way, owing to the steric proximity of a neighbouring group, isotactic poly(methyl mehtacrylate) hydrolyses faster than the syndiotactic and atactic polymers, because in the isotactic polymer the neighbouring functional groups are distributed more favourably for their interactions with one another, leading to the formation of an intermediate cyclic anhydride. The distribution function of the compositions of polymers has been considered in a

number of investigations 83,84.

As already stated, one of the causes of the formation of anomalous units in polymer modification processes is the influence of neighbouring units which have already reacted (the "neighbouring effect") 85. A characteristic example of the acceleration of the reaction by the "neighbouring effect" is the hydrolysis of the methacrylate-methacrylic acid copolymer⁸⁵:

Scheme 1.6

However, as a result of the "neighbouring effect", not all the initial hydrolysis products in poly(vinyl alcohol) are converted into acetal by treatment with aldehydes. According to calculation⁸⁶, approximately 13.53% of the hydroxyls should remain unsubstituted or, a statistical basis:

Scheme1.7

Examples are known in which different effects are superimposed 87. Thus the alkaline hydrolysis of polymethacrylamide does not go to completion. The loss of reactivity of the amide groups occurs both as a consequences of their being blocked by two ionised carboxyl groups and as a result of the electrostatic repulsion by the latter of hydroxide ions which catalyse the hydrolysis.

Attention should be drawn to the fact that, in order to characterise fully the polymer formed as a result of chemical modification, it is important to establish not only the presence of anomalous units and their number but also their sequences in the

polymeric molecules. Thus the physical properties of vulcanised rubbers are determined not only by the ratio of the cis- and transunits but also by their sequences in the macromolecules.

When the causes responsible for the chemical inhomogeneity of modified polymer through the formation of heterounit polymers, are considered, it is important to recoginse that the physical structure of the initial polymer plays a by no means subsidiary role. Its role is particularly important when the reaction takes place in a two-phase system, for example, there is no suitable solvent for the reaction system or when one has to retain the initial form of the polymer, as, in the treatment of fibers and films. The tendency towards the manufacture of polymers with the greatest possible elimination of all solvents has been recently assuming an increasing importance. Together with economical and ecological causes, this is associated with the fact that reactions in solution are sensitive to the nature of the solvent and to the properties of the solution, which can be reflected in the degree of the conversion and in the structure of modification products formed.

The solubility of the polymer in the solvent is also significant, because, as the reaction proceeds, their composition changes very considerable with a corresponding changes of their properties. Incompatibility is due to phase separation and results in the localisation of the reaction on the surfaces of compact coils. The accessibility of the functional groups of the polymer to the low molecular weight reagent is thus limited by diffusion, which affects

_:- : .

the degree of the modification reaction and the structure of the products⁸⁸.

Factors such as the supermolecular structure of the polymers, the orientation of the macromolecules in solution and the solubility and compatibility of the polymer and reagents in solution also exert a considerable influence on the result of reactions involving substitution in macromolecules. When the solid polymer is acted upon by liquid reagents, the rate and degree of conversion is dependent on the rate of diffusion of the liquid reagent into the bulk of the polymer structure. Diffusion takes place more readily in an amorphous polymer and in the amorphous region of crystalline polymers. Macromolecules in the amorphous regions react faster and are more fully acted upon by reagents than macromolecules in the ordered crystalline state.

In view of the above characteristics of the reactions in heterogeneous system, in chemical modification reactions, attempts should be made to dissolve the polymer or at least to obtain them in swollen state since this will facilitates the reaction process.

As mentioned above, the polymer modification reactions never go to completion and they therefore lead to polymers containing the initial units as well as the final and intermediate unit. The study of the resulting polymers shows that the substituents are usually distributed at random along the polymer chain⁸⁵. Fig1.2 diagramatically illustrates the distribution of substituents for different degrees of substitution.

Fig 1.2 distribution of substituents in modified polymer: (a) initial polymer; (b) partial and irregular substitutions; (c) ideal case of complete substitution.

1.2.2 The Heterounit Structure of Modified Polymer

One of the characteristic features of polymer modification reactions as shown in Fig1.2 is the incompletness of the reactions, as a consequence of which some of the initial functional groups do not react and remain in the unchanged state. At the same time, there is a possibility of a wide variety of side reactions, which also lead to the formation of units of a different chemical type and give rise to chemical heterogeneity in the macromolecules, usually referred to as the heterounit structure of polymers 90.

The heterounit polymer obtained by various modification

reactions differ due to the presence of anomalous units in the macromolecule, i.e., they are chemically heterogeneous. Thus unlike the structure of a normal formula $(-M)_X$, the macromolecule of a heterounit polymer contains anomalous unit A:

Consequently the structure of a heterounit polymer can be represented by the following formula in general cases:

$$-(-M-)_m-(-A-)_n-]_x$$

where M is normal unit, A is anomalous unit, m and n are coefficients indicating a statistical distribution of the units in the macromolecule of the heterounit polymer obtained by modification 90.

Fig1.3 illustrates the potential reactions - both normal and secondary reactions - which can occur in the modification of polymers.

1.2.3 Typical Chemical Modification Reaction of Polymer

Polymer modification processes are based on the use of a variety of chemical reactions, each of which has a specific influence on the structure of the polymer chain structure. Fig1.4 illustrates sheematically the changes in the structure of macromolecules occuring as a result of the modification reactions.

It is necessary to bear in mind not only the chemical nature of the reaction but also the way in which it is carried out (in solution, in melt, in emulsion state or in solid), since the result of the process depends on the physical state of the polymer.

Fig1.3 Potential and actual modification reactions of polymer.

Fig1.4 Schematic representation of changes in the structures of macromolecules after modification reactions

1.2.3.1 Polymer Modification Reactions Involving Substitution 90-93

The substitution reaction can be divided into the following groups:

(1) substitution of a hydroxyl by acyl and alkyl

groups as well as inorganic acid;

- (2) substitution of a hydrogen atom by a hetero group;
- (3) hydrolysis of derivatives of polymeric carboxylic acids;
- (4) substitution of a halogen and other groups for a hydroxy- or amino-group;
- (5) oxidation of side group.

These reactions have certain common features consisting in the nature of the alteration of the structure and the properties of the resulting polymers. We may note that the replacement of a hydroxyl group in a polymer by an acid residue or by an alkyl makes the polymer soluble in organic solvents. In contrast, the substitution of an alkyl group in an ether by a hydroxy group impairs the solubility of such a polymer in organic solvents.

The majority of polymer modification reactions involving substitution belong to the type designated as polymer-analogue reactions. Their characteristic feature is retention of the main macromolecular skeleton, only the nature of the substituents along the main chains being changed.

1.2.3.2 Polymer Modification Reactions Involving Structural Changes 93-96

The modification of polymers by cross-linking formation is a process in which the macromolecules pass through a stage with branched structures and are ultimately converted into infusible and insoluble three-dimensional structures. In the first stage of this

process the polymer interacts with the cross-linking agent, which leads to the formation of bonds between the macromolecules. A typical industrial structure formation process is vulcanisation, which is widely used to give improved physical behaviour in the processing of polymers, particularly elastomer. Vulcanisation imparts to rubbers resistance to wear and mechanical action and resistance to solvents.

1.2.3.3 Polymer Modification Reactions Involving Degradation 97,98

Degradation is a process directly opposed to structure formation and is used to decrease the molecular weight of polymers or to introduce reactive sites on the polymeric molecules. Degradation is particularly used in the processing of natural polymers such as rubber and cellulose to reduce the molecular weight. With the aid of degradation by mechanochemical and oxidative methods, it is possible to obtain polymers with the optimum size of the macromolecules for specific applications.

1.2.3.4 Polymer Modification Reactions Involving Addition 99~102

Addition reactions are used as for the modification of polymers when polymers contain multiple carbon-carbon bonds. Thus halogen, hydrogen, and other reagents may be added to them. At the same time, there also exist metathetical reactions resulting rearrangement of carbon-carbon double bonds in unsaturated cyclo-olefines.

1.2.3.5 Polymer Modification Involving Elimination 103~106

The elimination of low molecular weight substances such as water, alcohol, hydrogen halides, etc. is one of the important modification methods. As a result of the elimination of low molecular weight

compounds, a double or triple bond or even a heterocycle is formed in the macromolecule of the initial polymer.

As an example of a reaction leading to the formation of a heterounit polymer in such processes, we may quote the dehydochlorination of PVC:

This process is of considerable importance in the study of PVC degradation and stabilisation (see section 1.1), and it is the subject of present work (see section 1.3).

1.2.3.6 Polymer Modification Involving Isomerisation 107, 108

In all the polymer modification reactions considered above, the composition of the resulting product differs from the initial polymer. However, in the isomerisation reactions, the modificatin process proceeds without changing the elementary composition of the polymer and consists in the rearrangement of the basic skeleton on the macromolecule. Isomerisation requires a vigorous treatment, such as heating, sometimes combined with high pressure.

1.2.3.7 Polymer Modification Involving Exchange 109

All the modification methods explained so far led to the formation of polymers in which the chain structure of the initial polymer remained unchanged in most cases. In contrast to this, there is another modification method, based on the breaking and reforming

of bonds in the polymer backbone, which leads to the formation of a polymer containing the units of both initial polymers in the chain. The macromolecules of this polymer therefore constitute in essence a block copolymer whose overall composition corresponds to that of the initial mixture of polymers. Consequently, this modification method also constitutes an unusual copolymerisation method.

1.3 Objectives of the Present Work

From the discussions of the previous sections (see section1.1), it is clear that an enormous amount of research has been done on the chemical behaviours of PVC under variours conditions. The major concern of PVC research has been to improve the thermal and photochemical instability. To achieve this, a range of additives have been developed, such as stabilisers, plasticisers, lubricants, etc. This has however been associated with a growing concern because the migration of additives, especially stabilisers and plasticisers from PVC composition. There are basically two ways to prevent the loss of additives from the polymer bulk:

- (1) by binding additives to the polymer chain.
- (2) by synthesizing polymeric additives. This kind of additive may have increased substantivity in certain polymers.

The first method requires the additives to have multifunctional structures. The second method requires the additives to be polymerisable. In most polymers, this leads to compatibility

problems.

The purpose of this work is to find a method which can be used to form non-migrating additives for PVC. Possible ways of achieving this available to us are as follows:

1. Reactions through Conjugated Double Bonds in PVC

Publications dealing with the degradation of PVC (in an inert atmosphere) mostly agree that a dehydrochlorination process and the simultaneous formation of conjugated double bond sequences in the polymer chain are involved. As a result, PVC after degradation would very much look like:

It is known¹¹⁰, ¹¹¹ that the Diels-Alder reaction between conjugated dienes and dienophiles is one way of removing conjugated unsaturation in degraded PVC (see Scheme1.8). Obviously, because the degraded PVC contains many conjugated dienes on its chain, it is possible to bond an additive which may act as dienophile for the degraded PVC chain. The additive chosen to experiment with for this purpose is maleic anhydride and its butyl ester, which is a plasticiser:

Scheme1.8

2. Radical Initiated Modification of PVC

It is also known that free radicals play an important role, which may lead to the evolution of HCl and the cross-linking of PVC molecules. The formation of reactive sites provides us an opportunity to add an additive molecule to the PVC chain.

To summarise, the objectives of this work are to modify PVC and degraded PVC by maleic derivatives through Diels-Alder reactions and radical initiated bonding of additive to PVC. It is anticipated that these methods can also be extended to other additives, especially stabilisers.

Chapter2 Experimental Procedures

2.1 Materials

General reaction reagents and solvents were supplied by the chemical store of the Chemistry Department. They were used without additional purifications.

PVC resin: PVC homopolymer was supplied by BP. It is unstabilised, free of additives. Gel permeation chromotography of the polymer gave the following characteristics (provided by supplier):

Mn=30750, Mw=75000, Mz=188000, Mv=67400 Mw/Mn=2.44, Mz/Mn=6.11

Maleic Anhydride (MA): purchased from Aldrich Chemicals Co., 99%, bp 200 ^OC, FW 98.06.

Dibutyl Maleate (DBM): purchased from Aldrich Chemicals Co., 98%, bp 281 ^OC, FW 228.29.

Azobisiobutyronitrile (AIBN): purchased from Alfa Chemicals, 99%, mp 107 ^OC, FW 162.21.

2.2 Degradation of PVC

2.2.1 PVC Powder Degradation

1.0g PVC resin was heated in a flask sealed with a stopper which has nitrogen inlet and outlet. The flask was preheated to different temperatures according to experimental requirement. PVC resin was kept in the flask for different duration of time under nitrogen protection. The degraded PVC resin was collected for later use.

The conversion to unsaturation was calculated by the weight decrease in the sample.

2.2.2 PVC Film Degradation

A piece of PVC resin film (see section2.4 for the making of film) weighed was added into a flask sealed with a stopper which has nitrogen inlet and outlet. The flask was preheated to different temperatures according to experimental requirement. PVC resin was kept in the flask for different periods of time under nitrogen protection. The degraded PVC film was collected for later use.

The conversion to unsaturated PVC was calculated by the weight decrease in the sample.

2.3 Processing

PVC formulations for processing were prepared by carefully mixing accurately weighed additives with the polymer. Processing the formulations was carried out in a RAPRA torque rheometer which is used as reactor simulator.

A processing temperature 170°C and rotor speed of 60 rpm were used throughout and the variation of torque during processing was recorded. The chamber, the rotors, the ram and the hopper were

carefully cleaned prior to the sample processing. The processed composition was rapidly withdrawn, chilled in clean water, dried and stored in sealed plastic bags.

2.4 Film Preparation

2.4.1 Film Casting

PVC resin or degraded PVC powder was dissolved in THF to form a clean solution. The solution was carefully poured onto a shiny glass surface. The glass was kept in a dasecater for 48 hours. The the film was removed from the glass surface and dried. Uniform films of thickness $3x10^{-3}$ cm were chosen for later usage.

2.4.2 Compression Moulding of Film

The processed polymer was powdered by gentle abrasion and the powder was compression moulded between stainless steel plates at 170 °C for 75 seconds, using 550 PU grade cellophane to separate the polymer from the metal. The polymer was preheated between the plates of the press for 45 seconds prior to application a ram pressure of 100 kg cm⁻². Uniform films of thickness $3x10^{-3}$ were chosen for analysis, thermal and UV exposure studies.

2.5 Modification Reactions

2.5.1 Reaction between Degraded PVC (dPVC) and DBM

Degraded PVC was added to dibutyl maleate in a round bottomed reaction flask, according to the ratio of 1:10 by weight. The mixture was heated to different reaction temperatures according to

experimental requirement, and dPVC dissolved in DBM. The reaction was carried out for period of time under continous stirring and nitrogen protection. After reaction, methanol was used to separate polymer and dibutyl maleate. The polymer sample was then dried and kept for analysis.

2.5.2 Radical Initiated Reactions between PVC and DBM

PVC (undegraded) was added into dibutyl maleate in a round bottomed reaction flask according to the ratio of 1:10 by weight. The mixture was heated to the required temperature. The the radical initiator AIBN was distributedly added into the reaction system in three separate steps during the whole reaction time. The reaction was carried out under continous stirring and nitrogen protection.

The polymer sample was separated from the rest by treating the whole mixture with methanol. The polymer sample was then dried and weighed for later use.

2.6 Extraction

Polymer films and powdered polymer were suitably contained in a cellulose thimble and subject to continous extraction. The apparatus used was a Soxhlet extraction unit. The extraction was carried out over various time by hexane as extracting solvent to remove dibutyl maleate.

2.7 Colour Development

Colour formation in PVC films of uniform thickness 3x10-3 cm,

was expressed as the total colour difference relative to the calibrated reference films cast from a 5% THF solution of the unprocessed polymer. The measurement was carried out using the MEECO Colormaster ModeV in transmission. Readings were obtained by using red, green and blue filters and the total colour differences ΔT was calculated by following equation:

$$\Delta T = \sqrt{\Delta R^2 + \Delta G^2 + \Delta B^2}$$

where ΔR , ΔG and ΔB are the differences between the instrument readings of the test sample and the reference sample using the red, green and blue filters respectively.

Chapter3 Results and Discussions

According to the objectives of the project (see section1.3), the work was carried out in two steps. The first step was to investigate the degradation of PVC under controlled condition in order to follow the development of polyenes in the PVC molecules. The second step was to carry out modification reactions on PVC itself and degraded PVC under controlled conditions. The results and discussions are given in this chapter.

3.1 Thermal Degradation of PVC

3.1.1 Polyene Development

The degradation of PVC is marked by the evolution of HCl and the development of colour (see section1.1). The discolouration has been attributed to the formation of conjugated double bonds (polyene sequences), which are formed through a 'zipper' mechanism¹¹². It is thought that discolouration occurs when the sequence length exceeds about five units¹¹³.

The development of polyene sequences during thermal degradation has been often followed by ultraviolet-visible spectroscopy. It is well known that absorption increases with increasing conversion of PVC. A typical UV spectrum of degraded PVC is shown in Fig3.1.

It has been shown that every peak in the absorption spectrum

Fig.3.1 UV spectrum of dPVC of 1.0% conversion at 180 C

could, to a good approximation, be related to a certain sequence length of polyene¹¹⁴, although it has been argued that the peak absorption might be the result of the superimposing effect of different length of polyenes¹¹⁵. The logrithm of polyene concentration versus degradation time is shown in Fig3.2. It can be seen that at the early stage, the change is linear, but deviates from linearity at later stage of degradation, which may indicate the onset of secondary reactions between degraded PVC molecules¹¹⁶ (also see section1.1.2). The concentration of polyene denoted by Hn in Fig3.2 was calculated from equation(3.1)¹¹⁷:

$$Hn = (A/m)\varepsilon_n \tag{3.1}$$

where n is the number of conjugated double bonds, A is the absorption of the examined solution of the wavelength corresponding to the polyene sequence of length n, m is the concentration of the examined solution in monomeric units mol/litre, and ε_n is the molar extintion coefficient related to the polyene sequence length n. ε_n was calculated 117 by

$$\varepsilon_{n}=10,000 + (n+1)x20,000$$
 (3.2)

where ε_n is expressed in litre/mol cm¹¹⁸. From the values of Hn, it is possible to calculate an average polyene sequence length, n. A value of about 6 was obtained in our case.

From Fig3.2, the ratio:

Fig.3.2 Log concentration of even polyene lengths as a function of degragation time for PVC degraded at 180 C under nitrogen protection

was calculated to show the relative amounts of polyenes of different length. It was found that this value was almost constant throughout the whole period of degradation. A typical ratio was found to be:

$$H_2:H_4:H_6:H_8:H_{10}=1:0.6:0.5:0.3:0.1$$

This phenomenon suggests that polyenes with different length have an equal probability to develop. Although the total numbers of the polyene of different length increases with the degradation time, their relative concentrations remain constant. This ratio also shows that the longer the polyene length the less amount there is in the mixture. The ratio is shown in Fig3.3.

The colour formation in PVC films was measured by the total colour difference (see section 2.7), the result is shown in Fig 3.4.

3.1.2 Simulation of Different Length Polyene Formation

From section 3.1.1, it is clear that the development of polyene sequence has a feature of randomness. Many attempts have been made to study the kinetic process of PVC degradation 119. Because of the complexity of the process, it is only possible to study some very comprehensive aspects. As regards to the development of different length polyenes, it is almost impossible to analyse this by conventional kinetic method. Therefore, it is necessary to seek other ways, especially computer simulation.

The degraded PVC has the following molecular structure(see section 1.1.1):

~CH-CH=CH-[CH=CH]
$$_{\rm n}$$
-CH=CH-CH-CH $_{\rm 2}$ ~

CI

Fig.3.3 Relation between the length of polyene and the relative quantity

Fig.3.4 Effect of Processing on the formation of colour when PVC was processed at 180 °C

If this molecule is considered as a polymer itself instead of a product of PVC degradation, then it is a copolymer between the following two monomers:

Although there has been no direct experimental copolymerisation of acetylene and vinyl chloride, it is still possible in principle. Such as the development of polyenes during degradation of PVC is random, the same is true for the copolymerisation of the above two monomers. If we carry out a numeric simulation of copolymerisation, then it is possible to have some knowledge of the distribution of the polyenes in the PVC molecule.

It is known¹²⁰ that when a monomer M1 is copolymerised with another monomer M2 the relation between the composition of the copolymer and the composition of the monomer mixture is given by

$$\frac{dm1}{dm2} = \frac{M1(r_{12}M1+M2)}{M2(r_{21}M2+M2)}$$
(3.3)

where

m 1 moles of monomer M1 entering copolymer
m 2 moles of monomer M2 entering copolymer
M1 moles of monomer M1 in monomer mixture
M2 moles of monomer M2 in monomer mixture
r₁₂,r₂₁ monomer reactivity ratios

The monomer reactivity ratios r_{12} , r_{21} , for any monomer pair are the ratios of the rate constants of different propagation reactions as defined by the following equations:

The above processes can be generalised as

$$\sim Mi + Mj \xrightarrow{k_{ij}} \sim MiMj$$
 (i,j=1,2)

~M' represents a polymer chain ending in a radical derived from monomer M. The reactivity ratio is

$$r_{ij} = k_{ii}/k_{ij} \tag{3.5}$$

which is based on the experimental data kii and kij.

The probability of a given chain end Mi reacting with a particular monomer Mj is given by

$$P_{ij} = \frac{1}{1 + r_{ij}x_i/(1 - x_i)}$$
 (3.6)

where x_i is the mole fraction of Mi in the monomer mixture feed. Because there is only two monomers,

$$P_{ii} + P_{ij} = 1$$
 (3.8)

Then it is possible to devise a numerical procedure to carry out the simulation of copolymerisation.

The basic idea in the simulation is to relate the probability of copolymerisation propagation with the random number generated by computer. Therefore, the mechanism of using this random number facility decides the statistical reliability. The flow chart 121 for simulation is shown in Fig3.5. This flow chart only simulates a single copolymer chain, and does the calculation on this single chain. If the number of units is large enough (usually larger then 1,000 units), the result is considered reliable 121. However, if we modify the procedure in Fig3.5, so that, instead of synthesizing a single chain of fixed units each time, we synthesize a fix number of chains whose units are randomly generated by the computer in every run, then, we use random number to generate the number of every chain and simulate the growth of the chain. The modified version is shown in Fig3.6. The implementation of it is given in Appendix A.

Fig3.7 gives the molar ratios of different length polyenes in the copolymerised "degraded PVC" molecules, which is very similar to

Fig.3.5 Flow chart for simulation of binary copolymerisation

With the state of the state of

Fig.3.6 Flow chart for simulation of binary copolymerisation

Fig.3.7 Simulated relation between the length of polyene and the relative quantity

the experimental observation for experimental degradation (see Fig3.3).

A few more points about the simulating program. This program stores the polymer chain as it is produced so that not only the copolymer composition can be calculated, but also the distribution can be computed. Furthermore, visual display of the chain is also possible.

When analytical treatment of a problem is almost impossible, it is useful to apply the techniques we used (often referred to as a Monte Carlo simulation). The application of computer and numerical methods in physical sciences is a rapidly expanding technique and polymer science is no exception 122,123. In fact, because the mathematical treatment of polymeric problem involves large magnitude of numbers, it seems more necessary here than in many others. The above treatment is only an elementary attempt to use the techniques available, further work is obviously possible.

The method used above is not a direct treatment of PVC degradation. It is clear that more convinsing simulation of polyene growth should be based on degradation process. However, because the complexity and the lack of kinetic data of PVC degradation reactions, the work done in this project tried another way. The validity of it, of course, remains to be argued. The important idea here is not the simulation itself, but the idea of viewing degraded PVC as a copolymer. Compared with the degradation process of PVC, the copolymerisation suggested above is more controllable, which

may provide a method to study PVC degradation more accurately.

3.2 Chemical Modification of PVC by Plasticisers

The modification of PVC and its degraded products were carried out separately. They will be discussed in the following sections.

3.2.1 Reaction of Degraded PVC with Dibutyl Maleate

It was seen above (see section 1.1.2) that conjugated unsaturation and dienophile can react:

by the Diels-Alder reaction. When PVC is degraded for a long time, it is observed that there is cross-linking in the polymer. There might be several explanations for this, but the reactions between two PVC chain through the Diels-Alder mechanism cannot be ruled out (see section1.1.2). That is to say, the conjugated unsaturation developed on PVC has the potential to react with a dienophile. This is the basis of our modification reaction.

Fig3.8 gives the UV spectra of degraded PVC after reacting with dibutyl maleate for different period of time, which shows the

Fig.3.8 Decreases of UV absorption of polyenes due to the reaction with maleic anhydride at 120°C for different reaction time

reduction of conjugated unsaturations as a result of the reaction between them and DBM.

Fig3.9 shows the IR spectra of degraded PVC and the degraded PVC which was reacted with DBM at 1200C for 3 hours and then extracted by hexane for 24 hours. It can be seen that the degraded PVC reacted with the maleate has a clear absorption at 1740 cm⁻¹, which indicates the existence of carbonyl group in PVC molecule. It can also be noted that both spectra have an absorption at 1600 cm⁻¹, which is usually due to the absorption of unsaturation, but the unreacted sample has a more intense unsaturation absorption than the reacted one. This suggests reaction between the conjugated unsaturation of degraded PVC and the maleate. However, due to the nature of the Diels-Alder reaction, there is always isolated unsaturation left. As in other polymer modification reactions (see section 1.2), the reaction cannot go to completion for various reasons. In the reaction between dPVC and DBM, the incompletness of the reaction may be expressed in Scheme3.1. This may explain why the reacted sample still has absorption at 1600 cm⁻¹, and the reaction can not go to completion.

Fig3.10 gives the result of colour change of degraded PVC as a result of reaction with dibutyl maleate. It is clear, as the reaction time increases, the colour reduces. But, after certain time, it reaches an equilibrium level.

From the appearance of the sample, it was observed that the degraded PVC was rigid and deeply colour, and after reaction with

Fig3.9 Comparison of IR spectra of dPVC and dPVC reacted with DBM 1: dPVC, 1B: 1600 cm 2: dPVC after reaction(120 C for 3 hrs), 2A: 1740 cm 2B: 1600 cm

Fig. 3.10 Reduction of total colour difference of dPVC with the time of reaction with dibutyl maleate at 120°C

DBM and the removal of unreacted DBM from PVC sample, it became soft and less coloured. The amount of DBM reacted to dPVC reached 20~30%.

R = n-Butyl group

Scheme3.1

The extent of reaction is lower than expected. Apart from the reason presented in Scheme3.1, i.e., the production of isolated double bond, which is not able to react with dibutyl maleate further, other factors, like the reactions between two degraded PVC molecules:

may also be considered. In fact, secondary reactions between degraded PVC molecules were observed experimentally, which lead to the formation of cross-linking.

Although as the experiment has shown that it is possible to bind additives to degraded PVC through Diels-Alder reaction, the double bond left in the product is not desirable when the product is to be used as additive in polymer.

3.2.2 Radical Initiated Modification of Undegraded PVC by DBM

It has long been believed that the nucleophilic substitution of chlorine in PVC is a possible way to introduce modifying groups into PVC, but this reaction is extremely difficult in view of the ease of elimination of HCl which then leads to the degradation of PVC. By using some special reagents 124 (for example, N,N-dialkyldithiocarbomate), it is possible to achieve nucleophlic substitution (see Scheme3.3), but the cost of the special reagents makes it less favourable in practical applications.

-CH=CH-
$$\begin{array}{c|c}
Nu \xrightarrow{b} & H & \alpha \\
\hline
(b) & I \xrightarrow{b} & \alpha \\
-HCI & -CH & CH \\
\hline
(CI) & -CI & -CH \\
\hline
(PVC)
\end{array}$$
-CH -CH-
Nu

Scheme3.2

From the discussion earlier (see section 1.1.1), we know that radicals are involved in the degradation process. If we could intentionally generate radicals in PVC and allow the radicals to react with added reagents before it degrades, then modification might be achieved. This technique has been used successfully in polyolefine 125. It is the purpose of this section to see whether PVC may also be modified in this way.

When we choose a radical intiator, it is necessary to take into account of the efficiency and the working temperature so that the

maximum initiation effect can be obtained while the temperature is not high enough to cause severe degradation of PVC. There are many radical initiators with different working temperatures ¹²⁶. We know that PVC starts to degrade at temperature above 120 °C. Therefore, the working temperature of chosen initiator must be lower than that. From the available literature, it seems that AIBN is a potential candidate since its useful initiation temperature range is $40\sim60^{\circ}C^{127}$, although it was also reported to be higher than this ¹²⁶.

The procedure outlined in Fig3.11 was carried out to ensure that after reaction there is no unreacted dibutyl maleate was left in the polymer.

Fig3.12 gives the result of the reaction between PVC and DBM initiated by AIBN and shows that the amount of DBM taken by PVC at different temperature for certain period of time. It can be seen that as the temperature increases, the amount of reaction increases too, but at higher temperatures, the increase is not as large as at lower temperatures. The reaction time is also important. From Fig3.12, it can be seen that, after certain time of reaction, the extent of reaction does not increases any further, and the highest amount of dibutyl maleate taken by PVC only reached about 30.0% of PVC by weight (at 90°C). The proposed mechanism of this modification reaction is presented in Scheme3.3, but according to this free radical reaction mechanism, the extent of reaction of DBM with PVC should theoretically be much higher. One reason for this lower uptake actually observed by experiment is probably due to the neighbouring

Fig.3.11 Procedure for Purification of Modified PVC

Fig.3.12 Temperature influence on the reaction between PVC and DBM initiated by AIBN (reaction temperature displayed on the curve)

$$(CH_3)_2 CN = NC(CH_3)_2$$

$$(CH_3)_2 CN + N_2$$

$$(AIBN)$$

$$(CH_3)_2 CN + OCCOOR$$

$$(CH_3)_3 CN + OCCOO$$

Scheme3.3

group effect during the modification reaction, which is a common phenomenon in the polymer modification. This effect is usually considered to be caused by steric interference which limits the extent of polymer modification reaction (see section1.2). This possible influence is shown in Scheme3.4:

Scheme3.4

However, even when this factor is taken into account, the expected extent of the reaction should be 185%, which is much much higher than 30%. There must be some other reasons for the low values actually obtained.

Fig3.13 shows the effect of solvent extraction. The chemically modified PVC and PVC plasticised by DBM (the amount of plasticiser

Fig. 3.13 Extraction results of modified PVC and plasticised PVC with the same initial content of plasticisers (30% of PVC by weight)

MPVC
Plasticised PVC

corresponds to the amount of DBM in modified PVC) were extracted by hexane for various times. The initial amount of plasticiser in both samples was 30.0% of PVC by weight. It can be seen that, the plasticised sample lost almost all plasticiser after 20 hours extraction, which is in accordance with other related research 128, wherase the sample of modified PVC still retained a substantial amount of plasticiser in the sample. This is because the plasticizer in the plasticized sample is only a physical solution in the polymer and when it is subjected to exhaustive extraction, the plasticizer is readily removed. In fact, even without extraction, under normal condition, the plasticised PVC may lose some of the plasticisers as a result of diffusion. However, the plasticizers (or more precisely the plasticizing functional groups) in the modified PVC are chemically bound to the polymer chain, making it impossible to remove the plasticizer by extraction. Unless, the chemical bond is broken, or the PVC is depolymerised, the plasticizers will remain in the polymer. Actually, the modified PVC is a polymeric plasticizer on its own right. The difference between plasticised PVC and plasticiser modified PVC with regard to the action of extraction is shown diagramatically in Fig3.14.

Fig3.15 shows the difference in the mechanical test of modified PVC and raw PVC. It can be seen that the modified PVC shows the characteristics of plasticised PVC¹²⁹, which reflects the fact that modified PVC does contain plasticisers.

Fig3.16 is the result of creep test which is often used to measure

Fig.3.14 Schematic representation of MPVC and plasticised PVC before and after extraction.

- (a1) modified PVC before extraction; (a2) after extraction; (b1) plasticised PVC before extraction; (b2) after extraction

Fig.3.15 Stress-Strain curve for the modified PVC and plasticised PVC

PVC

modified PVC

Fig.3.16 Creep test of PVC and modified PVC under 10kg/cm for 48hrs

the plasticity of a material. It can be seen that modified PVC shows a great deal more plasticity, wherease the raw PVC is relatively rigid.

There was no colour formation in plasticiser modified PVC, no HCl could be detected as a product of the reaction. Even when the reaction was carried out at 90°C for 10 hours, there is still no discolouration. The polymer remained as powder after purification and drying. Fig3.17 is the infrared spectra of PVC and modified PVC. The film made from this modified PVC is completely clean, transparent and soft.

It is known that maleate derivatives are stabilisers 165,166. The mechanism for the stabilisation has been considered to be the Diels-Alder reaction between the maleate and conjugated double bonds in PVC, which inhibits the further development of polyene. However, the result in this work seems to suggest that there is a possibility that the maleate interacts with PVC through a radical mechanism:

Scheme3.5

Fig3.17 Infrared spectrum of modified PVC, A: absorption of carbonyl 1740 cm⁻¹.

The competition between process (a) and (b) determines whether PVC degrades to develop unsaturation or reacts with maleic reagents. The results presented here suggest that process (b) is easier than (a), this is the reason why DBM reacted to PVC and no HCl was detected during modification reaction. This is important for understanding the stabilisation mechanism of maleic compounds.

Chapter4 Conclusions and Suggestions for Further Work

4.1 Conclusions

From the work done so far, the following points can be made:

- 1. Thermal degradation of PVC gives rise to the formation of polyene sequences with different length. The development of unsaturation is random, and the relative amount of polyenes of different length is constant.
- 2. Through the Diels-Alder reaction mechanism, it is possible to introduce maleic derivatives into degraded PVC, the discolouration of degraded PVC can be reduced substantially as a result of the removal of conjugated unsaturation.
- 3. By using a radical initiator, is is possible to introduce maleic derivatives (typically dibutyl maleate) along the PVC chain. PVC modified by DBM has the properties of plasticised PVC, but, because the plasticising functional groups in this modified PVC are chemically bound to the polymer chain, when they are subject to exhaustive extraction, they cannot be removed by solvent extraction. This feature may make this kind of material useful where non-migrating additives are needed (e.g. food packaging).

4. Besides the Diels-Alder reaction mechanism of maleic derivatives in the PVC stabilisation, this work also suggests that the maleate may also act by a radical mechanism.

4.2 Suggestions for Further Work

The present work has concentrated on the possibility of using maleic derivative as reagents to introduce functional groups into the PVC molecule. As the physical loss of additives from polymers has attracted the attention of polymer scientists and technologists, it is logical to extend the techniques used in this work to introduce other functional groups through maleic compound into polymer. Such functional groups may be, for example, UV absorbers, antioxidants, thermal stabilisers, and the combinations.

Another line of work which is of importance is to use some other radical initiators to initiate the reactions between PVC and maleic derivatives. Para-mathane, hydroperoxide, benzyl peroxide and cumyl peroxide should be examined.

Part II

The Study of Oscillation in Nitroxyl- and Nitroxyl Precursor-Polypropylene Reaction Systems

Chapter5

The Study of Oscillation in Nitroxyl- and Nitroxyl Precursor-Polypropylene Reaction System

5.1 Background

During the last decade, oscillations in chemical reactions have undergone a process of being rejected as a fundamental concept to being widely recognised as experimental phenomena by chemists 103,131. Oscillation phenomena in homogeneous chemical can be dated back to 1921, but the recognition of their importance has been slow, a situation very common in the development of scientific understanding of nature. As philosopher of science, Thomas Kuhn 132 has pointed out, the development of scientific principles involves the accumulation stage of normal science and the emergence of new paradigms. This is also true in the case of chemical oscillation. The rejection by chemists of chemical oscillation was largely due to the fact that at early times chemists tended to interpret the nonequilibrium phenomena in terms of equilibrium thermodynamics, which inevitably would mean that chemical oscillation is contrathermodynamic. Therefore, indisputable experimental evidence and a theory to understand it were urgently needed.

It is natural to think that this kind of theory would be about nonequilibrium situation and because of the work by Onsager and Prigogine, the theory of nonequilibrium thermodynamics was established 133~135. This theory says that, although chemical oscillation about equilibrium is indeed unlikely, oscillation far from equilibrium is perfectly within the scientific paradigm and

inherently consistent with physical laws.

As theoretical understanding of oscillatory reactions were developed, further experimental work continued to emerge. The best-known chemical oscillation is the Belousov-Zhabotinski(BZ) reaction 136,137,138, in which under appropriate conditions an initially homogeneous layer of BZ reagents unstirred develop an elaborate pattern of concentric rings whose colour and composition differ from that of the bulk of the medium 139. This reaction can actually oscillate both in time and space. The detailed study of this reaction system has stimulated both experimental and theoretical study into chemical oscillations.

Our view of nature changes with time. Chemical oscillation is no longer strange to most chemists 140, and in fact many investigations have been made to discover more oscillations, especially chemical oscillations based on organic systems. It is believed 130 that the oscillation phenomena still to be discovered are far more varied than originally anticipated, and the possible applications are far wider than initially perceived.

It was against such a background then we began to investigate some of the findings which were made in the study of polymer stabilisation and antioxidation action. There is a class of antioxidants 141,142 whose action depends on the generation of their complimentary reduced or oxidised forms, and they form pairs of components which are regenerated at the expense of each other during the reaction process. The experimental results suggest that the mechanisms involved in these regeneration processes are oscillatory. As the chemical nature of antioxidants is important to the

understanding of their antioxidation action, the same is true of their dynamical behaviours, that is, it is of practical importance to study the kinetics of anioxidants or stabilisers within the polymer during processing or in later applications.

This part of my work has been to collect experimental results from previous researches on the nitroxyl-polypropylene reaction system which show the oscillation pattern, and try to study representative examples mathematically, using available chemical oscillation methods and computational techniques to reach a reasonable explanation of the experimental results.

5.2 Brief Experimental Description 142

5.2.1 Experimental procedures

The nitroxyl radical (>NO°, which will be denoted as NO° for simplicity) as additive was mixed with unstabilised polypropylene (PP) at concentration of $1.16x10^{-5}$ mol/g, and processed at 180° C in a torque rheometer which was used as a reactor simulator. The experimental procedures were carried out in two ways:

- (1) The mixer is closed (CM). It has been shown that although the whole reactor is closed, there is evidence that slow diffusion of air into the system does occur during reaction;
- (2) The mixer is left open (OM), so as to investigate the reaction system under the condition of full oxidation.

On completion of mixing, the processed polymer samples which now contained fully mixed additive were rapidly removed from mixer and quenched in cold water to prevent further oxidation or other reactions. The polymer was then compression moulded at 180 C for

certain time into thin films. Exhaustive extraction of polymer films were carried out in Soxhlet extractor by using dichloromethane as solvent for 12 hours with the protection of nitrogen. The extracts were examined by electron spin resonance spectroscopy (ESR) to measure the concentration of nitroxyl radicals.

Measurement of the concentration of free hydroxylamine (NOH, which will be denoted as NOH) which was generated by the reaction between nitroxyl radical NO and some polymeric species, was achieved by quantitatively converting NOH to the corresponding NO and measuring the total concentration of NO. Because the concentration of NO was already known, the concentration of NOH was obtained by subtracting the independently measured concentration of NO from the total concentration of NO in the sample.

5.2.2 Experimental Observation

It was observed that when the reaction was carried out under the condition of closed mixing, which implies that the presence of oxygen is limited, the concentrations of NO and NOH were found to exhibit an oscillatory pattern (see Fig.5.1). Under condition of open mixing, the oscillation decayed rapidly, and the concentrations of NO and NOH vanished after a certain time (see Fig.5.2).

This phenomenon has practical meaning in polymer stabilisation, that is, in the nitroxyl-polypropylene reaction system, both NO and NOH are actually involved in a regenerative cycle and it is this pair of chemical components that are responsible for the stability of the polymer irrespective of whether the initial additive is NO or NOH. On the other hand, this oscillatory behaviours also requires kinetic attention and, under the extreme complicated condition of polymeric

Fig5.1 Changes in [NO'], [NOH] and [NO'] + [NOH] (CM) starting with [NO']

Fig5.2 Changes in [NO'], [NOH] and [NO'] + [NOH] concentrations (OM), starting with [NO']

mixing environment, the existence of oscillatory reactions suggests that chemical oscillation is general chemical process which can occur in other ploymer system.

Another important experimental observation is that hydroperoxide POOH was not detected experimentally in the closed mixing. This is important for the later formulation of the reaction mechanism.

5.3 Oscillation Models

In order to form a reasonable model for the oscillation observed in our experimental research, the basic chemical oscillation models will be discussed briefly in this section.

5.3.1 Thermodynamic Aspects of Chemical Oscillation

Among the various states of a system, some can be designated as oscillatory in the sense that repeated maxima and minima in the value of some properties can occur in time and space. These ordered states have been named as dissipative structures 143, because the ordering exists by virtue of the dissipation energy in the irreversible processes.

One of the important thermodynamic parameters of a system is entropy, which is given by

$$dS=deS + diS$$
 (5.1)

where deS is the entropy flow due to the exchange of matter and energy between the system and its environment, and diS is the entropy production due to the irreversible processes taking place within the system itself. There can be many kinds of irreversible processes, but in the case of chemical oscillations the main concerns

are chemical reactions and diffusion of reagents.

The second law of thermodynamics requires that for any process dis > 0. If the system is isolated, deS=0 and equilibrium is the only process possible. In the thermodynamic steady state, dS=diS=0. If the system is closed to exchange of matter with its sorroundings but is maintained at constant temperature and pressure, the Gibbs free energy is the parameter of significance. At equilibrium, the Gibbs energy (G) is at a minimum with respect to any hypothetical change of state and the system will return monotonically to equilibrium after any perturbation. So, in a closed system, oscillations about the equilibrium position are impossible. (This was the reason why chemists rejected chemical oscillation in the early studies, see section 5.1).

If the system is open to exchange of matter and entropy with its environment, there may be any number of steady-state processes during which the entropy of the system itself remains constant, i.e., dS=0. For any such steady state:

$$deS=-diS < 0 (5.2)$$

Because entropy is flowing to the environment, the system may maintain a steady state with considerable internal order. Some of these steady states may be oscillatory, but stable undamped oscillations can only occur in open system. This statement is analogous to the requirement that undamped mechanical and electrical oscillators must receive energy from their surroundings.

There are three types of dissipative structures 144 that could develop in chemical systems. These are:

(1) Temporal oscillations of concentration of intermediates about

their steady state values.

- (2) Symmetry breaking instabilities such that concentrations of intermediates undergo spontaneous organisation in a previously homogeneous system;
- (3) multiple kinetic steady states leading to hysteresis effect.

Until now, only the first two have been observed with certainty in actual chemical systems (Belousov-Zhabotinski reaction and the concentric rings formed by it).

Therefore, irreversible (nonequilibrium) thermodynamics require that sustained chemical oscillations occur only in systems that are open to exchange of matter and energy with their environment; they are far from equilibrium so that thermodynamic forces and fluxes are not linearly related, and they obey kinetic laws such that at least one term arises from a reaction which is subject to feedback mechanism. Rapidly damped oscillations may also occur for limited period of time in closed system far enough removed from equilibrium.

5.3.2 Oscillatory Models 145

There are two kinds of models of chemical oscillation. One is a purly mathematical representation which is derived from a postulated reaction mechanism and displays oscillatory behaviours. A second is based on actual chemical reaction mechanisms whose kinetic constants are used to explain the experimental oscillation.

5.3.2.1 Pure Mathematical Models

5.3.2.1.1 Lotka-Volterra Model¹⁴⁶

This is the first mathematical model based on an assumed chemical reaction mechanism to give rise the sustained oscillation.

The reaction mechanism of the Lotka-Volterra oscillator is:

$$A + X \xrightarrow{k1} 2X$$

$$X + Y \xrightarrow{k2} 2Y$$

$$Y \xrightarrow{k3} E$$
(R1)

In this model, the concentrations of components A and E remain constant in time, only X and Y change. By applying the law of mass action, the ordinary differential equations (ODEs) describing this system are:

$$\dot{\mathbf{X}} = \mathbf{k}_1 \mathbf{A} \mathbf{X} - \mathbf{k}_2 \mathbf{X} \mathbf{Y}$$

$$\dot{\mathbf{Y}} = \mathbf{k}_2 \mathbf{X} \mathbf{Y} - \mathbf{k}_3 \mathbf{Y}$$
(5.3)

The general relation between X and Y is

$$Y_e(K-Y)=e^{X}/X$$
 (5.4)

where K is a constant determined by the initial conditions. This equation defines the trajectories of X and Y in their phase plane. The equation actually denotes a family of closed curves, each corresponding to a given value of K (see Fig.5.3). In other words, a small perturbation in the initial condition of the system is sufficient to change the behaviour of it to a new oscillatory pattern corresponding to a different frequency. Another interesting feature of this system is that the average concentration of X and Y over an arbitrary cycle are equal to their steady state values. It is very hard to experimentally reproduce the characteristics exhibited by this model. Over the years, the Lotka-Volterra model has been acting as

Fig5.3 Phase portrait of Lotka-Yolterra oscillator

inspiration for the study of chemical oscillation and nonlinear dynamics 147.

5.3.2.1.2 The Brusselator

The Brusselator is another important model formed to study the chemical oscillation. It was formulated by Prigogine and coworkers 148 on the basis of a chemical reaction mechanism postulated by a computer scientist Turing 149 to explain some striking spatial organisations.

The reaction mechanism for the Brusselator is as follows:

$$A \xrightarrow{k1} X$$

$$B+X \xrightarrow{k2} Y+D$$

$$2X+Y \xrightarrow{k3} 3X$$

$$X \xrightarrow{k4} E$$
(R2)

In this system, A and B are the starting chemicals which are maintained constant; D and E are the products also maintained constant, and X and Y are the intermediates. The ODEs for this system are:

$$\dot{X}=k_1A+k_3X^2Y-k_2BX-k_4X$$

 $\dot{Y}=k_2BX-k_3X^2Y$ (5.5)

Usually, the Brusselator is expressed in the following way:

$$\dot{\mathbf{X}}=\mathbf{A}-\mathbf{B}\mathbf{X}+\mathbf{X}^2\mathbf{Y}-\mathbf{X}$$

$$\dot{\mathbf{Y}}=\mathbf{B}\mathbf{X}-\mathbf{X}^2\mathbf{Y}$$
(5.6)

which is the result of letting all Ks in (5.5) be unity for the purpose of simplicity. It is easy to find that this system has the steady state

 $X_0=A, Y_0=B/A$. The normal mode analysis of equation (5.6) shows that when:

$$B > 1 + A^2$$
 (5.7)

The steady state becomes unstable and oscillatory solutions might occur(see Fig.5.4). Another important feature of the Brusselator is the limit cycle behaviour which means that under such condition any initial point in the phase plane of X and Y approaches the same periodic trajectory with time (see Fig.5.5).

As chaos is observed in almost every physical science 150,151, many attempts have been made to study the chaotic phenomena observed experimentally. The Brusselator has also been modified by adding a forcing factor into equation (5.6) so that it displays chaos. The forced Brusselator is as follows 152:

$$\dot{X}$$
=A-BX+X²Y-X + acos(ft)
 \dot{Y} =BX-X²Y (5.8)

Fig. 5.6 showes the chaotic trajectory of this system.

5.3.2.2 The Oregonator

The real academic interest into chemical oscillation may be said to begin with the experimental discovery of Belousov and Zhabotinskii136,137. The classical BZ reaction consists of the oxidation by bromate ion in an acidic medium of easily brominated organic material, catalyzed by weak one-electron oxidants. There may be many variations of the BZ reaction, depending on the metalion catalyst and the organic substrate. However, the requirement for bromate ion in the system seemes to be essential.

Fig5.4 Brusselator oscillation with A=1.0,B=2.4.

Fig5.5 Limit cycle behaviour of the Brusselator, withA=1.0, B=3.0.

Fig5.6 Chaptic trajectory of Forced Brusselator(A=0.4,B=1.22,a=0.05,F=0.9>

Because the complexity of the system (it is generally believed that there are 18 elementary reactions involved), a model has to be formed to study the oscillatory behaviour observed experimentally. The model derived 153,154 to describe BZ reaction is called the Oregonator which is the only oscillation model which can be derived from the experimental observation and it has been studied in great detail. It contains the following reaction mechanism:

$$A+X \xrightarrow{k1} X$$

$$X+Y \xrightarrow{k2} P$$

$$B+X \xrightarrow{k3} 2X+Z$$

$$2X \xrightarrow{k4} Q$$

$$Z \xrightarrow{k5} fY$$

$$R3$$

where A and B are reactants, P and Q are products, X,Y,Z are the intermediates of interest. $k_1 - k_5$ are the rate constants for each reaction, f is the stoichiometric coefficient.

The ordinary differential equations to describe this scheme are:

$$\dot{X}=k_1AY-k_2XY+k_3BX-2k_4X2$$

$$\dot{Y}=-k_1AY-k_2XY+fk_5Z$$

$$\dot{Z}=k_3BX-k_5Z$$
(5.9)

The detailed analysis of this system is rather hard mathematically 155,156 and a detailed description is beyond the scope of this work.

Fig5.7 Brusselator oscillation with A=1.0.8=2.4.x(0)=y(0)=0.0.

5.4 The Study of Oscillation in a Nitroxyl Polymer System

As it has been shown that it is necessary to formulate a reaction mechanism in order to obtain the ODEs which will describe the kinetic behaviour of the reaction system. Although in the system we are going to study there are only two starting reagents, the actual reactions taking place are extremely complex because the characteristics of polymer. It is thought 157 that reactions in (R4) might occur in nitroxyl polypropylene (NO - P) system. However, not all of these reactions to the same extent influence on the kinetic behaviour of the reaction system. Our main interest is to form a model which will exhibit the kinetic behaviour of NO and NOH under two reaction condition (open mixing and closed mixing).

5.4.1 Modified Brusselator

From the models discussed above (see section 5.3), it is natural to think that the Brusselator is the suitable model to start with in the present study. But because the two variables in the Brusselator are the true intermediates, which means that even when their initial concentrations are zero it is still possible to observe oscillation (see Fig.5.7), and the oscillating components in the nitroxyl polypropylene are not all intermediates, at least one of them is a necessary starting material in the experiment(see section 5.2), it is then important to modify the Brusselator for our particular need.

The experimental observation shows that the oscillation is between NO and NOH. Therefore, the proposed model should contain a regeneration step between NO and NOH. It is also known that the crucial step in the Brusselator is the autocatalytic step (see R2) which forms the feedback mechanism causing oscillation. By taking into

account of these points and the reactions listed in (R4), we devised the following mechanism for the nitroxyl polypropylene system.

1. Reaction for NO to produce NOH

$$NO+P$$
 NOH+C=C (5.10)

2. Reaction for NOH to produce NO

3. Autocatalytic step between NO and NOH

4. Conversion of NO into stable molecular products

The ODEs for this scheme are:

$$d[NO]/dt=k_{2}[POO][NOH]+k_{3}[NO]^{2}[NOH]-k_{1}[P][NO]-k_{4}[B][NO] (5.14)$$

$$d[NOH]/dt=k_{1}[P][NO]-k_{3}[NO]^{2}[NOH] (5.15)$$

where B denotes a reagent which transformes NO into a stable product. [POO], [P] and [B] are constant.

By introducing following notations:

$$a=k_1[P]$$
, $b=k_4[B]$, $c=k_2[POO]$, $X=[NO]$, $Y=[NOH]$

Then we have

$$\dot{X} = cY + k_3 X^2 Y - (a+b) X$$

 $\dot{Y} = aX - k_3 X^2 Y$ (5.16)

which admits the steady states:

$$X_0=0.0, X_0=0.0$$
 and $X_0=\sqrt{ac/k_3b}$ $Y_0=X_0(b/c)$

In order to see under what condition the steady states become

unstable, we consider infinitesimal perturbation in the form

$$X=X_0 + xe^{\overline{\omega}t}$$

$$X=Y_0 + ye^{\overline{\omega}t}$$
(5.17)

where

$$\left| \frac{x}{x} \right| \ll 1$$
 $\left| \frac{y}{Y} \right| \ll 1$

By introducing equation (5.17) with X_0 and Y_0 being non-zero values into equation (5.16), and neglecting higher-order terms in X and Y, we then obtain the dispersion equation for ϖ in equation (5.17):

$$b(a-b-\varpi)x + (a+b)cy=0$$

 $abx + (ac+b\varpi)y=0$ (5.18)

In these algebraic equations, nonzero values of x and y are possible only if

$$\begin{vmatrix} b(a-b-\varpi) & (a+b)c \\ ab & (ac+b\varpi) \end{vmatrix} = 0$$

or

$$\varpi^2 + \varpi(b^2 + ac - ab)/b + 2ac = 0$$
 (5.19)

This characteristic or secular equation in general has two eigenvalue solutions 158 : ϖ_1 and ϖ_2 . If the real parts of ϖ_1 and ϖ_2 are both negative, an infinitesimal perturbation of the steady state will decay to zero. If the real part of either eigenvalue is positive, the perturbation will grow and the system will leave the steady state. The detailed examination of these eigenvalues will disclose whether

motion toward or away from the steady state is monotonic or oscillatory.

It is clear that the real part of one of the eigenvalues becomes positive whenever

$$(b^2+ac-ab)/b < 0$$

Or, if the rate constants and other parameters satisfy:

$$k_4[B]-k_1[P]+k_1[P]k_2[POO]/(k_4[B]) < 0$$
 (5.20)

The steady state of the system will be unstable, and the oscillatory phenomenon might appear.

Let us change equation(5.20) into

$$k_1[P](k_2[POO]-k_4[B]) > (k_4[B])^2$$
 (5.21)

and see what it actually means in the reaction model(5.10) to (5.13). From (5.21), it is obvious that

$$k_2[POO] > k_4B$$

in order to maintain an unstable steady state. That is, the rate of the reaction(5.11) must be faster than that of the reaction(5.13) in the model so that the unstable steady state can be maintained to allow the onset of oscillations. From chemical point of view, this is more understandable. Because reaction(5.13) converts NO into inert product, if its rate is very high, the whole dynamic process could not be maintained due to depletion of NO which would soon decay, in other words, if the steady state is stable there is no chance for the appearance of oscillation in such a situation.

Knowing the relation between the parameters of this system, we can carry out some numerical experiment. The results are shown in Fig.5.8 to Fig.5.10. These are the basic patterns we may observe from the system. Fig.5.11 gives the similar oscillatory behaviour to the

Fig5.8 Oscillaton of modified Brusselator(a=4.0,b=1.0,c=2.0).

Fig5.9 Oscillation of modified Brusselator(a=6.0,b=1.0,c=2.0).

Fig5.10 Oscillation of modified Brusselator(a=4.0,b=1.0,c=1.0).

Fig5.11 Simulation result From modified Brusselator(x=[N0],y=[N0H]).

experimental observation(see Fig.5.1). The rate constants used for this are:

$$k_1=4.0 \times 10^5$$
 litre mol⁻¹ s⁻¹
 $k_2=5.0 \times 10^5$ litre mol⁻¹ s⁻¹
 $k_3=1.4 \times 10^9$
 $k_4=1.0 \times 10^4$ s⁻¹

k₂ is from experimental value ¹⁵⁹. There are no experimental values for other rate contants. The chemical significance of reaction (5.12) is not clear. Its unusually high rate constant makes it unacceptable as a real reaction mechanism in view of the fact that it produces a hydrogen atom. However, as a modified version of the Brusselator, it has some characteristics worth mentioning. First, it has two steady states. Second, also the most important feature, is that in certain parameter range this model displayes chaotic behaviour(see Fig.5.12 and Fig5.13) which is not exhibited by the Brusselator. In fact, only the forced Brusselator displays this chaotic bahaviour. This feature may make this model useful in the study of chemical chaos and may be used in the study of some other chemical oscillation phenomenon. Like forced Brusselator, it is also possible to introduce sinusoidal forcing function into Eqs(5.16) to obtain the forced form of it:

$$\dot{X}$$
-cY + $k_3 X^2 Y$ -(a+b)X+\acos(ft) (5.16a)
 \dot{Y} -aX- $k_3 X^2 Y$

This oscillator displays very strong nonlinearity. One feature of it is that it can display the behaviours of forced Brusselator and other known oscillations. Some of the phase diagrams from this oscillator are shown in Figs 5.14 5.16.

a de la

Fig5.12 Chaotic behaviour of modified Brusselator(a=8.0,b=0.5,c=1.0).

Fig5.13 Phase diagram from Fig5.12.

Fig5.14 Complex periodic trajectory with a=1.0,b=0.01,c=0.1.

Fig5.15 Chaotic trajectory with a=4.5,b=0.5,c=1.0

Fig5.18 Chaotic trajectory with a=0.5,b=0.01,c=0.1.

5.4.2 The Detailed Model of Nitroxyl Polypropylene System

The model devised in section 5.4.1 displayes oscillation, but because one of the reaction mechanisms used in it is chemically unacceptable, we need to look at more details into the actual reaction mechanism in the nitroxyl polypropylene system. From experimental observation (see section 5.1), it is known that oxygen plays a crucial role in the regeneration process of NO and NOH. Actually, the closed mixing and open mixing procedures differ from each other in that in one case there is only limited amount of oxygen present in the reaction system, and in the other case the oxygen is in excess. Therefore, in a reasonable model for this reaction process, it is necessary to consider the influence of oxygen. The reactions used for the model should be based on experimental evidence.

5.4.2.1 Reaction Mechanism

It is known^{142,160} that two phenomena are clear. One is that when the oscillation occures, the total concentrations of NO and NOH remain almost constant. The second is that the hydroperoxide did not appear to accumulate in large amount. However, the most probable reaction of NOH leading to regeneration of NO would also lead to the formation of hydroperoxide (see reaction (5.11)). This suggests to us that in the nitroxyl-polypropylene reaction system there must be a mechanism for the consuming of POOH formed by the reaction between NOH and POO. By comparing the available data, especially the reactions listed in the (R4), we can diagramatically express the regeneration process and other related reactions in Scheme5.1. From this scheme, it is clear that as long as the decomposition of NO into

NOH can be maintained, provided that certain amount of oxygen is present in the system. However, when the transformation of NO into stable end products is fast, there will not be enough NO to generate NOH which in turn would be able to form NO by reacting with peroxide and other species. Our modelling is then based on these considerations.

Scheme 5.1 Reaction mechanism in nitroxyl-polypropylene (NO-P)
reaction system

The corresponding reaction steps for this scheme are as followes:

$$P + O_2$$
 k_1 POO' (5.22)
 $P + NO'$ k_2 $NOH + C = C$ (5.23)
 $NOH + POO'$ k_3 $NO' + POOH$ (5.24)
 $NOH + POOH$ k_4 $NO' + PO' + H_2O$ (5.25)
 $NOH + PO'$ k_5 $NO' + POH$ (5.26)
 $NO' + PO$ $NO' + POH$ (5.26)
 $NO' + PO$ $NO' + POH$ (5.27)
 $NO' + O_2$ k_7 $NOH + P'$ (5.28)

In this scheme, reaction (5.28) is actually consisted of following three steps:

HO
$$\begin{array}{c} \text{CH}_3\\ \text{VCH}_3\\ \text{N-O}\\ \text{CH}_3\\ \text{CH}_3\\ \text{HO} \\ \begin{array}{c} \text{CH}_3\\ \text{N-O}\\ \text{CH}_3\\ \text{CH}_3\\ \text{CH}_3\\ \text{CH}_3\\ \text{CH}_3\\ \text{CH}_3\\ \text{(stable product)} \end{array}$$

For the reason of simplicity, only the overall process of NO being converted to stable product is represented in the reaction mechanism. It is thought that, under the condition of closed mixing, this conversion is very limited, which is denoted by smaller value of k_7 , and under the condition of open mixing, the conversion is considerable, which is denoted by larger value of k_7 .

By introducing the following notations:

 $C_0 = [O_2]_0$

 $C_1=[P]$

 $C_2=[P]$

 $C_3=[PO]$

 $X_1=[NO]$

 $X_2=[NOH]$

 $X_3 = [O_2]$

 $X_4=[POO]$

 $X_5=[POOH]$

The ODEs for this reaction model are:

$$\dot{X}_1 = k_3 X_2 X_4 + k_4 X_2 X_5 + k_5 X_2 C_3 - k_2 X_1 C_2 - k_6 X_1 C_1 - k_7 X_1 X_3$$
 (5.29)

$$\dot{X}_2 = k_2 X_1 C_2 + k_6 X_1 C_1 - k_3 X_2 X_4 - k_4 X_2 X_5 - k_5 X_2 C_3$$
 (5.30)

$$\dot{X}_{4} = k_{1}C_{2}X_{3} - k_{3}X_{2}X \tag{5.31}$$

$$\dot{X}_5 = k_3 X_2 X_4 - k_4 X_2 X_5 \tag{5.32}$$

5.4.2.2 Model for Oxygen Concentration

From the reaction mechanism, it is clear the concentration of O₂ play a very important role, because the chemical components involved in the regeneration process of NO and NOH are also related to oxygen. Without oxygen, there is no formation of peroxide (POO'), and the subsequent reactions of NO and POO', POOH and NOH would

not be possible. It is not known exactly how the concentration of oxygen changes during the reaction due to the experimental difficulties in measuring it. However, from the analysis of the experimental conditions, it can be said that the diffusion of oxygen into the system is very limited, and because the varying rate of reaction of O₂ in the reaction process, there may be a periodic fluctuation of the amount of oxygen existed in the reaction system. Since in the reaction mechanism proposed above O₂ is consumed, the total amount of oxygen tends to decay in exponential term if the operation involved is closed mixing. Therefore, the overall changing pattern of oxygen changes may be assumed to be exponential reduction with a periodic fluctuation. The following function may serve this purpose:

$$[O_2]=C_0(1.0 + A\cos(\omega t))e^{(D_f-K_1C_2)t}$$
 (5.33)

where

 D_f _____ diffusion rate of O_2 A _____ amplitude of O_2 oscillation ω _____ oscillation frequency of O_2 t ____ reaction time

The others are the same as in the Eq(3.22) to Eq(3.28). The change pattern is shown in Fig.5.17. Therefore, the full model for this reaction system is:

$$\dot{X}_1 = k_3 X_2 X_4 + k_4 X_2 X_5 + k_5 X_2 C_3 - k_2 X_1 C_2 - k_6 X_1 C_1 - k_7 X_1 X_3$$
 (5.34)

$$\dot{X}_2 = k_2 X_1 C_2 + k_6 X_1 C_1 - k_3 X_2 X_4 - k_4 X_2 X_5 - k_5 X_2 C_3$$
 (5.35)

$$\dot{X}_3 = C_0 \{ (Df - k_1 C_2)[1.0 + A\cos(\omega t)] - A\omega\sin(\omega t) \} e^{(Df - K_1 C_2)t}$$
 (5.36)

$$\dot{X}_4 = k_1 C_2 X_3 - k_3 X_2 X$$
 (5.37)

$$\dot{X}_5 = k_3 X_2 X_4 - k_4 X_2 X_5 \tag{5.38}$$

Fig5.17 Change pattern of oxygen concentration in the model.

Obviously, this ODE system can only be solved by numerical method. The numerical method used is the fourth order Runge-Kutta method. The implementation of this method for our particular need is listed in Appendix B.

5.3.3 Simulation Results

The known parameters in the above model are:

$$C_0 = 2.0 \times 10^{-3} \text{ mol g}^{-1}$$
 (ref. 142)
 $C_1 = 2.0 \times 10^{-5} \text{ mol g}^{-1}$
 $k_1 = \sim 10^6 \text{ l}^{-1} \text{ mol s}^{-1}$ (130 ^{0}C) 159
 $k_3 = 5.0 \times 10^5 \text{ l}^{-1} \text{ mol s}^{-1}$ (130 ^{0}C) 161
 $k_6 = \sim 10^4 \text{ l}^{-1} \text{ mol s}^{-1}$ (130 ^{0}C) 162

C₁ was calculated on the basis of assuming the average molecular weight of polypropylene used in the reaction to be 500,000. Because the values of rate constants listed above are the values obtained at reaction temperature of 130 °C, our experiments were carried out at 180 °C, it is necessary to adjust the values of the rate constants. The adjustment of these values was according to the rule of thumb, i.e., the K values will be increased by one order of magnitude. Therefore,

$$k_1 = \sim 10^7 \text{ l}^{-1} \text{ mol s}^{-1}$$
 (180 ^{0}C)
 $k_3 = 5.0 \times 10^6 \text{ l}^{-1} \text{ mol s}^{-1}$ (180 ^{0}C)
 $k_6 = \sim 10^5 \text{ l}^{-1} \text{ mol s}^{-1}$ (180 ^{0}C)

Other parameters were chosen basically by trail and error. The known parameters and the estimated values of other parameters were introduced into the Eqs(5.34) -(5.38), and the solutions were compared with the experimental parameters to decide the choice of parameter. In this way, values for other parameters were selected as follows:

$$C_2=1.0 \times 10^{-6} \text{ mol g}^{-1}$$
 $C_3=1.0 \times 10^{-5} \text{ mol g}^{-1}$
 $k_1=5.01 \times 10^7 \text{ l}^{-1} \text{ mol s}^{-1}$
 $k_2=1.0 \times 10^6 \text{ l}^{-1} \text{ mol s}^{-1}$
 $k_3=5.0 \times 10^6 \text{ l}^{-1} \text{ mol s}^{-1}$
 $k_4=1.0 \times 10^5 \text{ l}^{-1} \text{ mol s}^{-1}$
 $k_5=1.0 \times 10^5 \text{ l}^{-1} \text{ mol s}^{-1}$
 $k_6=1.0 \times 10^5 \text{ l}^{-1} \text{ mol s}^{-1}$

These values were used throughout the numerical experiments.

Other parameters depend on whether the operation were closed mixing or open mixing. The numerical results are listed below.

5.4.3.1 Results under restricted oxygen access

In this case, the oxygen concentration were assumed to change as described in section 5.4.3. The parameters for oxygen changes were:

$$D_f=5.0 \text{ s}^{-1}$$

 $\omega=1.0 \text{ s}^{-1}$
 $A=0.5$

Reaction(5.28) is formulated to take into account of the decomposition of No. In the case of closed mixing, its rate is very small comparing with other reactions, $k_7=1.0 \times 10^2 \, l^{-1} \, mol \, s^{-1}$. From Eqs(5.34) - (5.35), it is known that the rate of total concentration ([NO] + [NOH]) change is:

$$\mathring{X} = \mathring{X}_1 + \mathring{X}_2 = -k_7 X_1 X_3$$
 (5.39)

because X_1 is about 10^{-5} and X_3 10^{-3} , this makes \dot{X} to be 10^{-6} . This means that the rate of total concentration changes is negligible as observed exprimentally in the case of closed mixing (see section 5.2)

and Fig5.1).

(1) When NO is the reagent

The initial conditions are:

$$X_1(0)=1.16 \times 10^{-5} \text{ mol g}^{-1}$$

 $X_2(0)=0.0 \text{ mol g}^{-1}$
 $X_3(0)=C_0 \text{ mol g}^{-1}$
 $X_4(0)=0.0 \text{ mol g}^{-1}$

 $X_5(0)=0.0 \text{ mol g}^{-1}$

The result is shown in Fig.5.18, which corresponds to experimental result shown in Fig.5.19.

(2) When NOH is the reagent

The initial conditions are:

$$X1(0)=0.0 \text{ mol g}^{-1}$$

 $X_2(0)=1.16 \text{ x } 10^{-5} \text{ mol g}^{-1}$
 $X_3(0)=C_0 \text{ mol g}^{-1}$
 $X_4(0)=0.0 \text{ mol g}^{-1}$
 $X_5(0)=0.0 \text{ mol g}^{-1}$

The result is shown in Fig.5.20, which corresponds to the experimental result shown in Fig.5.21.

5.4.3.2 Results under excess oxygen concentration

In the case of open mixing, two characteristics must be taken into account: (a). decomposition of NO into stable molecular product, which means the rate of reaction(5.28) must be higher than that in the case of closed mixing, since the oxygen does not decay in this case, thus k7 was chosen to be 2.5 x 10⁴; (b). oxygen concentration changes differently from the case of closed mixing. It does not decay

Fig5.18 Simulation result(NO is starting reagent).

Fig5.19 Changes in [NO'], [NOH] concentrations (CM), starting with [NO']

Fig5.20 Simulation result(NOH is starting reagent).

Fig5.21 Changes in [NO*] and [NOH] (CM), starting with [NOH]

as it does in the closed mixing, which requires the exponential term in (5.36) should remain almost 1, and the oscillation term should also nearly vanish, i.e., A-0, ω -0. Therefore, for open mixing:

$$K_7=2.5 \times 10^4 \, l^{-1} \, \text{mol s}^{-1}$$
 $D_f=5.1 \, s^{-1}$
 $\omega = 0.05$
 $A=0.01$

(1) When NO is the starting reagent

The initial conditions are:

$$X1(0)=1.16 \times 10^{-5} \text{ mol g}^{-1}$$

 $X_2(0)=0.0 \text{ mol g}^{-1}$
 $X_3(0)=C_0 \text{ mol g}^{-1}$
 $X_4(0)=0.0 \text{ mol g}^{-1}$
 $X_5(0)=0.0 \text{ mol g}^{-1}$

The result is shown in Fig.5.22, which corresponds to the experimental result shown in Fig.5.23..

(2) When NOH is the starting reagent

The initial conditions are:

$$X1(0)=0.0 \text{ mol } g^{-1}$$
,
 $X_2(0)=1.16 \times 10^{-5} \text{ mol } g^{-1}$,
 $X_3(0)=C_0 \text{ mol } g^{-1}$,
 $X_4(0)=0.0 \text{ mol } g^{-1}$,
 $X_5(0)=0.0 \text{ mol } g^{-1}$

The result is shown in Fig.5.24, which corresponds to the experimental result shown in Fig.5.25.

Fig5.23 Changes in [NO*], [NOH] concentrations (OM), starting with [NO*]

Fig5.24 Simulation result(OM, NOH is reagent).

Fig5.25 Changes in [NO*] and [NOH] (OM), starting with [NOH]

5.4 Conclusions and Suggestions for Further Work

From the discussions in sections 5.1 to 5.4, it is clear that chemical oscillation has become a very important part of chemistry. The extensive research into this phenomenon has provided insight into some fundamental aspects of chemical reactions. As regard to our work on polymer mixing, the following points may be made:

- 1. The oscillation of nitroxyl concentration during their reaction with polymer molecules in the presence of small amount of oxygen is a genuine phenomenon. The explanation of this phenomenon helps us to understand the major reactions in the stabilisation process of polypropylene by nitroxyl radicals.
- 2. So far, chemical oscillations have mainly been found in the gas phase and liquid phase, or the heterogeneous phase of both. The reactions of nitroxyl radicals with polymer molecules were carried out in the polymer melt. It is reasonable to say that this oscillation should belong to a new catagory.
- 3. The first mathematical model(see section 5.3) formed in this research has similarity to the Brusselator. But, this was found to be a modification. Firstly, the Brusselator only describes the intermediates. In other words, even when the initial concentrations of two variables are zero, it is still possible to observe subsequent oscillations. In our model, one component is necessary at the beginning of the reaction process. Secondly, this model not only displays steady state and sustained periodic oscillation as does the

Brusselator but, it also exhibits chaotic behaviour in certain parameter range.

This latter characteristics makes this model more flexible.

4. The detailed modelling on the basis of an actual experimental data derived the model (5.34) (5.38). Numerical simulations gave the results which are in good agreement with the experimental observations both in the case of closed mixing and open mixing. The rate constants given by the model may serve as basis for further study in the reactions of nitroxyl and polypropylene.

. . . .

On the basis of the work done so far, the following further works are recommended:

- 1. Experimentally, the collection of data should be carried out over a longer time period, and at shorter time intervals in order to investigate the kinetic processes in more detail.
- 2. It would be very interesting to carry out the experiment under the condition of the artificially made oscillation of oxygen concentration, because the model proposed for the changes of oxygen concentration involves certain degree of oscillation. Therefore, if we could experimentally create observable oscillation of oxygen concentration, it is of interest to investigate its influence on the changes of [NO] and [NOH].
- 3. It is of interest to observe the effect of the nitroxyl oscillation on

the properties of polymer, e.g. oven aging performance, etc.

- 4. The mathematical model can be modified to include the temperature effect. The values used for the simulation were fixed for one temperature. If the temperature dependence of rate constants were introduced into the model, then it is possible to predict the behaviours of [NO-PP] under different temperatures.
- 6. It is possible to simulate the oscillation behaviour of galvinoxyl system 163 by using the model constructed.
- 7. The oscillation of nitroxyl radical concentration in PVC¹⁶⁴can also be treated in the similar way.

References

- 1. W. C. Geddes, Rubb. Chem. Tech., 40, 177(1967).
- M. Onozuka and M. Asahina, J. Macromol. Sci., Rev. Macromol. Chem., C3,235(1969).
- 3. D. Braun, Pure Appl. Chem., 26, 173(1971).
- 4. Z. Mayer, J. Macromol. Sci., Rev. Macromol. Chem., C10, 263(1974).
- 5. G. Ayrey, et al, J. Polym. Sci., Macromol. Rev., 8, 1(1974)
- D. Braun, in Degradation and Stabilisation of Polymers, G. Geuskens,
 Ed., John Wiley, New York, 23(1975)
- 7. W. H. Starnes, Adv. Chem. Ser., 169, 309(1978).
- 8. D. Braun, in Developments in Polymer Degradation-3, N. Grassie, Ed., Applied Science Publishers, London, 101(1981).
- 9. W. H. Starnes, in Developments in Polymer Degradation-3, N. Grassie, Ed., Applied Science Publishers, London, 135(1981).
- 10. G. Scott, Ed., Developments in Polymer Stabilisation-2, Applied Science Publishers, London (1980).
- 11. G. Palma and M. Carenza, J. Appl. Polym. Sci., 14, 1737(1970).
- 12. M. Asahina and M. Onozuka, J. Polym. Sci., A1, 2, 3505,3515(1964).
- 13. G. Scott, M. Tahan and J. Vyvoda, Eur. Polym. J., 14, 377(1978).
- 14. K. B. Abbas and E. M. Sorvik, J. Appl. Polym. Sci., 19, 2991(1075).
- 15. W. C. Geddes, Eur. Polym. J., 3, 747(1967).
- 16. F. Tudos and T. Kelen, in Macromolecular Chemistry, Vol.8, K. Saarela, Ed., Butterworths, London, 393(1973).

- K. B. Abbas and R. J. Lawrence, J. Polym. Sci., Polym. Chem. Ed.,
 13, 1889(1975).
- 18. F. Tudos, et al, Pure Appl. Chem., 38, 201(1974).
- 19. R. R. Stromberg, et al, J. Polym. Sci., 35, 355(1959).
- 20. D. E. Winkler, J. Polym. Sci., 35, 3(1959).
- 21. E. J. Arlman, J. Polym. Sci., 12, 547(1954).
- 22. C. H. Stapfer and J. D. Granick, J. Polym. Sci., A1, 9, 2625(1971).
- 23. R. V. Albarino, et al, J. Polym. Sci., A1, 9, 15(1971).
- 24. T. Nakagawa and M. Okawara, J. Polym. Sci., A1, 6, 1975(1968).
- 25. G. Palma and M. Carenza, J. Appl. Polym. Sci., 16, 2485(1972).
- 26. W. H. Gibb and J. R. MacCallum, Eur. Polym. J., 7,1231(1971).
- 27. W. H. Gibb and J. R. MacCallum, Eur. Polym. J., 8,1223(1971).
- 28. E. D. Owen and R. J. Bailey, J. Polym. Sci., A1, 10, 113(1972).
- 29. Y. Landler and P. Lebel, J. Polym. Sci., 48, 477(1960).
- 30. V. P. Gupta and L. E. St Pierre, J. Polym Sci., A1, 8, 37(1970).
- 31. A. Guyot, et al, J. Polym. Sci., A1, 8, 1596(1970).
- 32. S. A. Liebman, et al, J. Polym. Sci., A1, 9, 1823(1971).
- 33. I. Ouchi, J. Polym. Sci., A1, 3, 2685(1970).
- 34. C. H. Bamford and D. F. Fenton, Polymer, 10, 63(1969).
- 35. R. A. Papko and V. S. Padov, Polym. Sci. USSR, 16, 1636(1974).
- 36. V. N. Myakov and B. B. Troitskii, Vysokomol. Soyed., 4, 876(1962).
- 37. I. C. McNeil and D. Neil, Makromol. Chem., 117, 265(1968).
- 38. I. C. McNeil and D. Neil, Eur. Polym. J., 6, 143 (1970).
- 39. I. C. McNeil and D. Neil, Eur. Polym. J., 6, 569(1970).

- 40. B. Baum, S. P. E. J., 17, 71(1961).
- 41. D. Braun and R. F. Bender, Eur. Polym. J. (Suppl.), 269(1969).
- 42. W. I. Bengough and H. M. Sharpe, Makromol. Chem., 66, 31(1963).
- 43. J. N. Hay, J. Polym. Sci., A1, 8, 1201(1970).
- 44. B. B. Troitsikii, et al, J. Polym. Sci., Polym. Symp., 42, 1347(1973).
- 45. G. C. Marks, et al, S. C. I. Monogr., 26, 204(1967).
- 46. M. M. Zafar and R. Mahmood, Eur. Polym. J., 12, 333(1976).
- 47. Z. Mayer, et al, Chem. Ind. (London), 508(1965).
- 48. S. Van der Ven and W. F. DeWit, Angew. Makromol. Chem., 8, 143(1969).
- 49. Z. J. Wolkober, J. Polym. Sci., 58, 1311(1962).
- 50. Y. Shindo and T. Hirai, Makromol. Chem., 155, 1(1972).
- 51. A. Reiche, et al, Kunststoffe, 52, 265(1962).
- 52. L. S. Troitskaya and B. B. Troitskii, Plast. Massy, 7, 46(1966).
- 53. T. V. Hoang, et al, Eur. Polym. J., 11, 469(1975).
- 54. I. K. Varma and S. S. Grover, Makromol. Chem., 175, 2515(1974).
- 55. A. A. Berlin, et al, in Aging and Stabilisation of Polymers, M. B. Neiman, Ed., Consultants Bureau, New York, 175(1968).
- 56. R. C. Hardon and W. H. Starnes, Polym. Prepr., 18, 505(1977).
- 57. R. C. Hardon and W. H. Starnes, ACS Adv. Chem. Ser., 169, 333(1978).
- 58. G. Martinez, et al, J. Macromol. Chem., A17, 1129(1982).
- 59. J. Millan and J. Guzman, Eur. Polym. J., 12, 299(1976).
- 60. J. Millan, et al, Angew. Makromol. Chem., 45, 172(1975).
- 61. G. Martinez, et al, Makromol. Chem., 180, 2937(1979).
- 62. J. Millan, et al, J. Polym. Sci., Polym. Chem. Ed., 18, 505(1980).

- 63. K. Mitani and T. Ogata, J. Appl. Polym. Sci., 18, 3205(1974).
- 64. D. Druesedow and C. G. Gibbs, Nat. Bur. Stand. Circular., 525, 69(1953).
- 65. K. B. Abbas and E. M. Sorvik, J. Appl. Polym. Sci., 17, 3577(1973).
- 66. T. Hjertberg and E. M. Sorvik, J. Appl. Polym. Sci., 22, 2415(1973).
- 67. T. T. Nagy, et al, Polym. Bull., 3, 613(1980).
- 68. T. Kelen, J. Macromol. Sci. Chem., A12, 349(1978).
- 69. T. Kelen, et al, Polym. Bull., 1, 79(1978).
- 70. G. A. Razuvaev, et al, Dokl. Akad. Nauk. SSSR. Khim., 170, 1342(1966).
- 71. B. B. Troikii and V. N. Myakov, Plast. Massy, 3, 13(1967).
- 72. E. N. Zilberman, et al, Vysokomol. Soyed., B16, 46(1974).
- 73. M. M. O'Mara, Pure Appl. Chem., 49, 649(1977).
- 74. S. A. Liebman, et al, J. Polym. Sci., Polym. Chem. Ed., 16, 3139(1978).
- 75. M. M. O'Mara, Pure Appl. Chem., 49, 649(1977).
- 76. R. P. Lattimer and W. J. Kroenke, J. Appl. Polym. Sci., 25, 101(1980).
- 77. R. P. Lattimer and W. J. Kroenke, J. Appl. Polym. Sci., 27, 1355(1982).
- 78. V. Bellenger, et al, Eur. Polym. J., 18, 337(1982).
- 79. G. A. Rasuvayev, et al, J. Polym. Sci., A1, 9, 2637(1971).
- 80. T. T. Nagy, et al, Polym. Bull., 3, 613(1980).
- 81. T. Suzuki, et al, J. Polym. Sci., C33, 281(1971).
- 82. V. V. Korshak, Russ. Chem. Rev., No.1, 1979.

- 83. A. B. Robertson, et al, Polym. Prepr., 12,620(1971).
- 84. M. L. Bender and N. S. Neveu, J. Amer. Chem. Soc., 80, 5388(1958).
- 85. H. Morawetz, in Macromolecular Reactions, E. Fetts, Ed., John Wiley, New York, 1968.
- 86. P. Flory, J. Amer. Chem. Soc., 61, 1518(1939).
- 87. C. L. Arcus, J. Chem. Soc., 2732(1949).
- 88. N. G. Gaylord, J. Polym. Sci., C24, 1(1968).
- 89. H. Morawetz, in Chemical Reactions of Polymers, M. Fetts, Ed., Interscience Publishers, New York, 110(1964).
- 90. V. V. Korshak, Russ. Chem. Rev., 2, 1201(1980).
- 91. A. Weihe, Kunststoffe, 31, 52(1941).
- 92. G. B. Bachmann, et al, J. Org. Chem., 12, 108(1947).
- 93. R. C. Fuson, et al, Org. React., 1, 63(1942).
- 94. R. C. Houtz, et al, J. Amer. Chem. Soc., 55, 1609(1933).
- 95 A. Charlesby, Proc. Roy. Soc. (London), SerA, 215, 187(1952).
- 96. B. T. Hayes, et al, Chem. Ind., 1162(1957).
- 97. R. H. Kienle, et al, J. Amer. Chem. Soc., 61, 2258(1939).
- 98. A. H. Frazer, et al, J. Polym. Sci., A2, 1157(1964).
- 99. D. B. Porrit, Trans. Faraday Soc., 16, 81(1921).
- 100. K. Tada, J. Makromol. Chem., 71, 71(1964).
- 101. N. Grassie, Chemistry of High Polymer Degradation Processes, Butterworths, New York, 1958.
- 102. O. Bayer, Angew. Chem., A59, 257(1947).
- 103. B. D. Coleman, J. Amer. Chem. Soc., 77, 5472(1947).

- 104. A. H. Frazer, J. Polym. Sci., A2, 1137(1964).
- 105. C. S. Marvel, J. Amer. Chem. Soc., 81, 448(1959).
- 106. N. W. Johnston, et al, J. Polym. Sci., C, 591(1969).
- 107. S. Iamoda, Nature, 193, 261(1962).
- 108. N. Joda, J. Polym. Sci., B4, 551(1966).
- 109. H. Batzer, Makromol. Chem., 8, 217(1952).
- 110. E. R. Bertozzi, J. Polym. Sci., 19, 17(1956).
- 111. T. Hjertberg and E. M. Sorvik, in Dedradation and Stabilisation fo PVC, E. D. Owen, Ed., Appllied Science Publishers, 21(1984).
- 112. A. J. Arlman, J. Polym. Sci., 12, 547(1954).
- 113. W. C. Geddes, Rubb. Tech. Chem., 40, 177(1967).
- 114. D. Braun, Makromol. Chem., 99, 59(1966).
- 115. K. B. Abbas, J. Appp. Polym. Sci., 19, 2991(1975).
- 116. T. T. Nagy, et al, Polym. Bull., 3, 613(1980).
- 117. K. B. Abbas, J. Macromol. Sci., Chem., A12, 479(1978).
- 118. K. P. Popov and L.V. Smirnov, Optika Spectroskopiya, 14, 787(1963).
- 119. T. Kelen, Polymer Degradation, VNR, 1983.
- 120. J. Brandrup and E. H. Immergut, Polymer Handbook, John Wiley, II-141(1967).
- 121. P. F. Marconi, et al, Chemica ei' industria, Suppl., 7, 1(1971).
- 122. K. F. O'Driscoll, in Computers in Polymer Sciences, J. S. Mattson, Ed., Marcell Dekker Inc., New York, 100(1977).
- 123. J. S. Mattson, ed., Computers in Polymer Sciences, Marcell Dekker Inc., New York, 1977.

- 124. M. Okawara and Y. Ochinai, in Modification of Polymers, C. E. Carraher, Jr., Ed., ACS Symp. Ser121, 41(1980).
- 125. Abdull, PhD Thesis, Aston University (1987).
- 126. J. E. Bras, et al, in Chemical Reactions of Polymers, M. Fetts, Ed., Interscience Publishers, New York, 204(1964).
- 127. H. R. Allcock and F. W. Lampe, Contemporary Polymer Chemistry, Prentice-Hall, New Jersey, 58(1981).
- 128. T. R. Crompton, Chemical Analysis of Additives in Plastics, Pergamon Press, 30(1971).
- 129. J. K. Sears and J. R. Darby, The Technology of Plasticizers, John Wiley, 480(1982).
- 130. I. Epstein, Chem. Eng. News, March, 2436(1987).
- 131. I. Epstein, Physica 7D, 47(1983).
- 132. T.S. Kuhn, The Structure of Scientific Revolution, University of Chicago Press, Chicago, 2nd ed., (1970).
- 133. L. Onsager, Phys. Rev., 37, 405(1931).
- 134. L. Onsager, Phys. Rev., 38, 2265(1931).
- 135. I. Prigogine, Introduction to Nonequilibrium Thermodynamics, New York, Wiley-Interscience (1962).
- 136. B. P. Belousov, Sbornik Referatov po Radiatsionni Meditsine, Medgiz, Moscow, 145(1951).
- 137. A. M. Zhabotinskii, Biofizika, 9, 306(1964).
- 138. R.J. Field and M. Burger, Oscillation and Travelling Waves, John Wiley & Sons (1985).
- 139. A. T. Winfree, Science, 175, 634(1972).
- 140. S. Scott, Chem. Brit., December, 1987.

- R. Bagheri, K.B. Charkraborty and G. Scott, Polym. Deg. and Stab.,
 5,145(1983).
- 142. S. Al-Malaika, E.O. Omikorede and G. Scott, J. Appl. Polym. Sci., 33,703(1987).
- 143. I. Prigogine and R. Lefever, J. Chem. Phys., 48, 1695(1968).
- 144. Noyes, Field, Adv. Chem. Phys., 109, (1971).
- 145. R. J. Field and M. Burger, Oscillations and Travelling Waves in Chemistry, Johne Wiley & Sons (1985).
- 146. A. J. Lotka, J. Am. Chem. Soc., 42, 1595(1920).
- 147. P. Heinz-Otto, The Beauty of Fractals, Springer-Verlag, (1986).
- 148. I. Prigogine and R. Lefever, J. Chem. Phys., 48, 1695(1968).
- 149. A. Turing, Phil. Trans. Roy. Soc. London, B237, 37(1952).
- 150. Hao Bai-Lin, Chaos, World Scientific Press, Singapore, (1985).
- 151. A. V. Holden, Chaos, Manchester University Press, (1985).
- 152. K. Tomita and T. Kai, Phys. Lett., 66A, 91(1978).
- 153. R. J. Field, et al, J. Am. Chem. Soc., 94, 8649(1972).
- 154. ibid, J. Chem. Phys., 60,1877(1974).
- 155. S. P. Hastings and J. D. Murray, SIAM J. Appl. Math., 28, 678(1975).
- 156. I. D. Hsu, J. Math. Anal. Appl., 55, 61(1976).
- 157. Maslov and Zaikov, in Developments in Polymer Stabilisation-8, Ed. G. Scott, Applied Science Publisher, 1(1987).
- 158. R. M. Noyes and R. J. Field, Ann. Rev. Phys. Chem., Vol.25, 95(1974).
- 159. E. T. Denisov, in Developments in Polymer Stabilisation-5, Ed. G.

- Scott, Applied Science Publisher, (1982).
- 160. S. Al-Malaika, E.O. Omikorede and G. Scott, Ploym. Commun., 27, 173(1986).
- 161. J. T. Brownlie and K. U. Ingold, Can. J. Chem., 45, 2427(1967)
- 162. S. Kavun, et al, Vysokomolek Soed., 9B, 661(1967).
- 163. K. B. Chakraborty and G. Scott, Ploym. Deg. Stab., 5, 145(1983).
- J. B. Adenyi, S. Al-Malaika and G. Scott, J. Appl. Polym. Sci., 32, 6063(1986).
- 165. B. B. Cooray and G. Scott, in Developments in Polymer Stabilisation-2, Ed., G. Scott, Applied Science Publishers, 53(1980).
- 166. St epek Jiri, Additives for Plastics, Springer-Verlag, New York, 90(1983).

Appendix A Program to Simulate Binary Copolymerisation

```
0001
        C PROGRAM TO SIMULATE BINARY COPOLYMERISATION
0002
        C THE INPUTS FOR PROGRAM INCLUDE NUMBER OF MOLECULES TO
        C SYNTHESIZE AND THE REACTIVITY RATIOS OF TWO MONOMERS AND
0003
0004
        C THE MOLAR RATIO OF ONE MONOMER. JUN-1987
0005
                 PARAMETER (NUM=100, NUPM=10000)
0006
                 INTEGER NOU(NUM)
0007
                 INTEGER COM(NUM, NUPM), UM1(NUM, NUPM), UM2(NUM, NUPM)
0008
                 INTEGER MAL1(NUM), MAL2(NUM), MUS1(NUM), MUS2(NUM)
0009
                 REAL RAT1(NUM, NUPM), RAT2(NUM, NUPM), PDIS(NUPM)
0010
                 REAL SEED
0011
                 EXTERNAL RAN
0012
        C READ INPUT
0013
                 TYPE *,'ENTER R12,R21,X1,NM'
0014
                 READ(5,*) R12, R21, X1, NM
0015
                 P12=1.0/(1.0+R12*X1/(1.0-X1))
0016
                 P21=1.0/(1.0+R21*(1.0-X1)/X1)
0017
                 P11=1.0-P12
0018
                 P22=1.0-P21
0019
                 Y=P21/(P12+P21)
0020
                 SEED=1.0
0021
        C START SIMULATION
0022
                 DO IM=1,NM
        C GENERATE RANDOM NUMBER AS UNITS OF A MOLECULE 100<NOU<NUPM
0023
0024
                   NOU(IM)=1000*INT(RAN(SEED))
0025
                   RN=RAN(SEED)
0026
                   IF (RN .GT. Y) THEN
0027
                      M=2
0028
                   ELSE
0029
                     M=1
0030
                   ENDIF
0031
                   I-1
0032
                   MHASH=M
                   IF (M .GT. 1) THEN
0033
        10
0034
                     P=P22
0035
                   ELSE
0036
                     P=P11
0037
                   ENDIF
0038
                   RN=RAN(SEED)
0039
                   IF (RN .GT. P) THEN
0040
                     M=2
0041
                   ELSE
0042
                     M=1
0043
                   ENDIF
0044
                   COM(IM,I)=M
                   IF (I .LT. NOU(IM)) THEN
0045
0046
                     I=I+1
0047
                     GOTO 10
0048
                   ENDIF
0049
                 ENDDO
0050
        C THE FOLLOWING UNIT COUNTS AMOUNTS OF DIFFERENT MONOMERS OF
        C DIFFERENT LENGTH IN THE COPOLYMER.
0051
0052
                 DO IM=1,NM
0053
                   LUM=1
0054
                   I=1
0055
                   MAL1(IM)=0
0056
                   MAL2(IM)=0
0057
                   DO WHILE (I .LE. NOU(IM))
                     IF (COM(IM,I+1) .NE. COM(IM,I)) THEN
IF (COM(IM,I) .EQ. 1) THEN
0058
0059
0060
                         UM1(IM,LUM)=UM1(IM,LUM)+1
```

```
IF (LUM .GT. MAL1(IM)) MAL1(IM)=LUM
0061
0062
                          LUM=0
0063
                        ELSE IF (COM(IM, I) .EQ. 2) THEN
0064
                          UM2(IM,LUM)=UM2(IM,LUM)+1
0065
                          IF (LUM .GT. MAL2(IM)) MAL2(IM)=LUM
0066
                          LUM=0
0067
                        ENDIF
0068
                      ENDIF
0069
                     I=I+1
0070
                     LUM=LUM+1
0071
                   ENDDO
0072
                   MUS1(IM)=0
0073
                   MUS2(IM)=0
0074
                   DO I=1, MAL1(IM)
0075
                     MUS1(IM)=MUS1(IM)+UM1(IM,I)
0076
                   ENDDO
0077
                   DO I=1,MAL2(IM)
0078
                     MUS2(IM)=MUS2(IM)+UM2(IM,I)
0079
                   ENDDO
0080
                 ENDDO
        C CALCULATE THE RATIO OF DIFFERENT LENGTH MONOMER IN SAMPLE
0081
0082
                 DO IM=1,NM
0083
                   DO I=1, MAL1(IM)
0084
                      RAT1(IM,I)=UM1(IM,I)/MUS1(IM)
0085
                   ENDDO
0086
                   DO I=1,MAL2(IM)
0087
                     RAT2(IM,I)=UM2(IM,I)/MUS2(IM)
0088
                   ENDDO
0089
                 ENDDO
0090
        C INITIALISE DISPLAY DEVICE
0091
                 CALL START
0092
        C DISPLAY THE RATIO OF EACH LENGTH MONOMER VS LENGTH
0093
                 DO I=1,NM
0094
                   NPT=MAL1(IM)
0095
                   DO J=1,NPT
0096
                      PDIS(J)=RAT1(I,J)
0097
                   ENDDO
0098
                   CALL DISPLAY(NPT, PDIS)
0099
                 ENDDO
0100
                 CALL FINISH
0101
                 END
0001
0002
        C DISPLAY ROUTINE
0003
                 SUBROUTINE DISPLAY(NPT,Y)
0004
                 REAL Y(NPT)
0005
                 XSN=20.0
0006
                 YSN=20.0
0007
                 XLEN=200.0
8000
                 YLEN=150.0
0009
                 XBEG=1.0
0010
                 XEND=REAL(NPT)
0011
                 YBEG-0.0
0012
                 YEND-1.0
0013
                 XF=XLEN/(XEND-XBEG)
0014
                 XC=XSN-XF*XBEG
0015
                 YLENTH=YEND-YBEG
0016
                 YF=YLEN/(YEND-YBEG)
0017
                 YC=YSN-YF*YBEG
0018
        C DRAW COORDINATE FRAME
0019
                 CALL CORDNT(XSN, YSN, XLEN, YLEN, XBEG, XEND, YBEG, YEND)
0020
                 CALL LINCOL(6)
0021
                 GX=XBEG*XF+XC
0022
                 GY=YBEG*YF+YC
0023
                 CALL MOVTO2(GX,GY)
0024
                 DO I=1,NPT
```

```
0025
                    GX=XF*REAL(I)+XC
0026
                    GY=Y(I)*YF+YC
                    CALL MOVTO2(GX,GY)
0027
0028
                    CALL SYMBOL(8)
0029
                 ENDDO
0030
                 RETURN
0031
                 END
0001
0002
         C DISPLAY THE CHAIN STRUCTURE OF POLYMER IN THE 2D
0003
                  SUBROUTINE DISMOL(NPT,UM)
0004
                 INTEGER UM(NPT)
0005
                 DOUBLE PRECISION G05CAF, SEED
0006
                 CALL HSVDEF(4,180.0,0.8,1.0)
0007
                 CALL HSVDEF(6,290.0,0.7,1.0)
0008
                 XMAX=200.0
                 XMIN=40.0
0009
0010
                 YMAX=160.0
0011
                 YMIN=20.0
0012
                 R=5.0
0013
                 PI=3.141596
0014
                 GX=120.0
0015
                 GY=90.0
0016
         C THIS UNITS DRAWS LINE SEGMENTS IN A RANDOM MANNER
0017
         C BUT WITH THE ASSIGNMENT. COLOUR ACCORDING TO WHAT
0018
         C MONOMER IT REPRESENTS. RANDOM GENERATOR IS USED
0019
         C TO ALTER THE ORIENTATION OF SEGMENT. THE WHOLE SIZE
0020
         C IS CONTROLLED BY CHECK IF THE NEXT MOVE IS OUT OF
0021
         C THE WINDOW AREA.
0022
                 CALL MOVTO2(GX,GY)
U023
                 CALL G05CBF(0)
0024
                 DO I=1,NPT
0025
                    ID=I
0026
                    J=0
0027
         100
                    SEED=DBLE(ID)
0028
                   BETA=2.0*PI*REAL(G05CAF(SEED))
0029
                   X=R*COS(BETA)
0030
                   Y=R*SIN(BETA)
0031
                   CALL POSPIC(GX,GY,Z)
0032
                   GX=GX+X
0033
                   GY=GY+Y
0034
                   J=J+1
0035
                   ID=J
0036
                   IF (GX .GE. XMAX .OR. GX .LE. XMIN) GOTO 100
0037
                   IF (GY .GE. YMAX .OR. GY .LE. YMIN) GOTO 100
0038
                   IF (UM(I) .EQ. 1) THEN
0039
                     CALL LINCOL(6)
0040
                   ELSE
0041
                     CALL LINCOL(4)
0042
                   ENDIF
0043
                   CALL LINBY2(X,Y)
0044
                 ENDDO
0045
                 RETURN
0046
                 END
0001
0002
        C INITIALISE THE DISPLAY ROUTINE
                 SUBROUTINE START
0003
0004
                 CALL GINO
0005
                 CALL T4107
0006
                 CALL WINDO(2)
0007
                 CALL HSVDEF(0,0.0,0.0,0.0)
0008
                 RETURN
0009
                 END
0001
```

0002 0003 0004 0005 0006	C RELEAS	SE DISPLAY DEVISE SUBROUTINE FINISH CALL GINEND RETURN END
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010		SUBROUTINE CORDNT(AXS,AYS,XLEN,YLEN,XBEG,XEND,YBEG,YEND) REAL*4 XBEG,XEND,YBEG,YEND,AXS,AYS,XLEN,YLEN CALL LINCOL(10) CALL AXIPOS(1,AXS,AYS,XLEN,1) CALL AXIPOS(1,AXS,AYS,YLEN,2) CALL AXISCA(3,9,XBEG,XEND,1) CALL AXISCA(3,9,YBEG,YEND,2) CALL AXIDRA(1,1,1) CALL AXIDRA(1,1,1) CALL AXIDRA(-1,-1,2) CALL MOVTO2(AXS,AYS+YLEN)
0012		CALL LINBY2(XLEN, 0.0)
0013		CALL LINBY2(0.0,-YLEN)
0014		RETURN
0015		END

Appendix B Program for NO-PP Reaction System

```
************************************
 0001
 0002
         C***
                PROGRAM TO SOLVE THE SYSTEM CONSISTING OF
         C***
                                                                    ***
 0003
                  SIX ORDINARY DIFFERENTIAL EQUATIONS BY
         C***
                                                                    ***
 0004
                  THE FOURTH ORDER RUNGE-KUTTA METHODS
         C***
 0005
                   WITH SPECIAL APPLICATION TO
         C***
 0006
                       CHEMICAL KINATICS
 0007
         C***
                                                                    ***
 0008
         C***
                                                                    ***
                                           JAN-1988
         C*** NOTE: This program calls GINO for graphics and
 0009
                                                                    ***
         C***
 0010
                    screen management routines(SMG$) for the
         C***
                                                                    ***
 0011
                    arrangement of text on the screen.
 0012
         C***
                    For given problem, it is necessary to supply ***
         C***
 0013
                    the equations in subroutine DF. The maximum
 0014
                     is now set to 10, but it can easily be
                                                                    ***
         C***
                    readjusted to larger number.
                                                                    ***
 0015
         C***
         ************************************
 0016
 0017
         C PARAMETER VALUES
 0018
         C NCOEF..... NUMBER OF COEFFICIENTS USED IN RUNGE-KUTTA
 0019
         C MNRC ..... MAXIMUM NUMBER OF REACTIONS
 0020
         C MNVR ..... MAXIMUM NUMBER OF DES IN SYSTEM
 0021
         C MINPT ..... MAXIMUM NUMBER OF INPUT VALUES
 0022
         C OSCPAR ..... OSCILLATION PARAMETER
 0023
         C ADCON ..... CONSTANT CONCENTRATION VALUES
 0024
         C KV ..... RATE CONSTANT FOR EACH REACTION IN SYSTEM
 0025
         C SV ..... STARTING VALUE USED IN RUNGE-KUTTA
 0026
         C PV ..... VALUE PASSED TO THE INTEGRATION FUNCTION
         C X,Y ..... VARIABLE OF INTEREST FOR DISPLAY
 0027
 0028
         C PROMP ..... PROMPT TEXT FOR INPUT
 0029
                  PROGRAM NITROMOD
 0030
                  PARAMETER(N=50000,NCOEF=4,MNVR=10,MINPT=50,
                            NPROMP=10, NADV=8, NOSC=3, NADC=4, MNRC=20)
 0031
 0032
                 REAL X(N), Y(N), GT(N), SV(MNVR), PV(MNVR)
 0033
                 REAL CV(NCOEF, MNVR)
 0034
                 REAL OSCPAR(NOSC), ADCON(NADC)
 0035
                 REAL KV(MNRC), INPT(MINPT)
 0036
                 INTEGER DIS, PAS, KBD, VROW, VCOL
 0037
                 CHARACTER*1 IRECT
 0038
                 CHARACTER*4 ANS
 0039
                 CHARACTER*25 PROMP(NPROMP)
 0040
                 LOGICAL MODE
 0041
                 DATA PROMP/'Rate const. of reaction','Initial conc. of comp',
                             'Diffusion rate','Osc. freq.','Amplitude'
              $$$
 0042
                             'Concentration of Cl','Concentration of C2', .
 0043
                             'Concentration of C3', 'Reaction time(min)',
 0044
 0045
                             'Step size'/
 0046
                 COMMON /GVAR/OSCPAR
 0047
                  COMMON /RTCONS/KV
 0048
                  COMMON /VINIT/ADCON
 0049
                 COMMON /DISID/ DIS, PAS INCLUDE '($SMGDEF)'
 0050
 0834
                 MODE=.FALSE.
0835
         C INITIALISE THE GRAPHICS DISPLAY DEVICE
 0836
                  CALL START
 0837
                  CALL WINDOW(2)
 0838
                 CALL CHAMOD
 0839
         C CREATE SCREEN MANAGEMENT DISPLAY
 0840
                 CALL SMG$CREATE_VIRTUAL_DISPLAY(23,50,DIS)
CALL SMG$CREATE_VIRTUAL_KEYBOARD(KBD)
 0841
 0842
                  CALL SMG$CREATE PASTEBOARD(PAS)
 0843
                 CALL SMG$PASTE_VIRTUAL DISPLAY(DIS, PAS, 1, 1)
```

```
0844
                 IBPI=30
0845
        10
                 VROW=1
0846
                 VCOL=20
        C INPUT THE NECESSARY PARAMETERS AND INTIAL CONDITIONS
0847
                 CALL SMG$PUT CHARS(DIS,'Please enter the data', VROW, VCOL)
0848
0849
                 VROW=3
0850
                 VCOL=5
0851
                 CALL SMG$PUT_CHARS(DIS,'How many reactions?',VROW,VCOL)
                 CALL SMG$SET_CURSOR_ABS(DIS,VROW,VCOL+IBPI)
0852
0853
                 READ(5,*) NRC
0854
                 VROW=VROW+1
                 CALL SMGSPUT CHARS(DIS, 'How many equations?', VROW, VCOL)
0855
0856
                 CALL SMG$SET CURSOR ABS(DIS, VROW, VCOL+IBPI)
0857
                 READ(5,*) NVR
0858
                 NBASE=NRC+NVR
0859
                 NINPT=NBASE+NADV
0860
                 DO I=1, NINPT
0861
                   VROW=VROW+1
                   IF (VROW .EQ. 22) THEN
0862
0863
                     CALL SMG$DELETE LINE(DIS, 3, 20)
0864
                     VROW=3
0865
                   ENDIF
0866
                   IDPR=I-NBASE+2
0867
                   IF (I .LE. NRC) IDPR=1
0868
                       (I .GT. NRC .AND. I .LE. NBASE) IDPR=2
0869
                   CALL SMG$PUT CHARS(DIS, PROMP(IDPR), VROW, VCOL)
0870
                   IF (I .LE. NBASE) THEN
0871
                     IF (I .LE. NRC) THEN
0872
                        WRITE(UNIT=IRECT, FMT='(I1)') I
0873
                        IPS=23
0874
                     ELSE
0875
                        WRITE(UNIT=IRECT, FMT='(I1)') I-NRC
0876
                        IPS=21
0877
                     ENDIF
                      CALL SMG$PUT CHARS(DIS, IRECT, VROW, VCOL+IPS)
0878
0879
                   ENDIF
                   CALL SMG$SET CURSOR ABS(DIS, VROW, VCOL+IBPI)
0880
0881
                   READ(5,*) INPT(I)
0882
                 ENDDO
0883
        C ASSIGN VALUES FOR COMMON BLOCK
0884
                 CORR=210.0/30.0
0885
                 NT=INT(CORR*INPT(NINPT-1))
0886
                 DH=INPT(NINPT)
0887
                 DO I=1,NRC
0888
                   KV(I)=INPT(I)
0889
                 ENDDO
0890
                 DO I=1,NOSC
0891
                   OSCPAR(I)=INPT(NBASE+I)
0892
                   ADCON(I+1) = INPT(NBASE+NOSC+I)
0893
                 ENDDO
0894
                 ADCON(1) = INPT(NRC+3)
0895
                 CALL SMG$PUT_CHARS(DIS,'Press spacebar to continue',23,10)
0896
                 CALL SMG$READ KEYSTROKE(KBD, TMC)
0897
                 CALL SMG$DELETE LINE(DIS,1,24)
0898
        C START THE SOLUTION OF THE SYSTEM BY RUNGE-KUTTA METHOD
0899
        100
                 DO I=1,NVR
                   SV(I)=INPT(NRC+I)
0900
0901
                   PV(I)=SV(I)
0902
                 ENDDO
0903
                 X(1)=SV(1)
0904
                 Y(1)=SV(2)
0905
                 T=0.0
                 DO I=2,NT
0906
0907
                   T=T+DH
0908
                   DO J=1,NCOEF
0909
                     IF (J .EQ. 1) THEN
```

```
TV=T
0910
0911
                       DO K=1,NVR
0912
                         PV(K)=SV(K)
0913
                       ENDDO
0914
                     ELSE IF(J .EQ. NCOEF) THEN
0915
                       TV=T+DH
                       DO K=1,NVR
0916
0917
                         PV(K)=SV(K)+CV(J,K)
0918
                       ENDDO
0919
                     ELSE
0920
                       TV=T+DH/2.0
0921
                       DO K=1,NVR
0922
                         PV(K)=SV(K)+CV(J,K)/2.0
0923
                       ENDDO
0924
                     ENDIF
0925
                     DO K=1,NVR
0926
                       CV(J,K)=DH*DF(TV,K,PV(1),PV(2),PV(3),PV(4),PV(5),
             $
0927
                                     PV(6), PV(7), PV(8), PV(9), PV(10))
0928
                     ENDDO
0929
                   ENDDO
0930
                   DO J=1,NVR
0931
                     SV(J)=SV(J)+(CV(1,J)+2.0*CV(2,J)+2.0*CV(3,J)+CV(4,J))/6.0
0932
                   ENDDO
0933
                   X(I)=SV(1)
0934
                   Y(I)=SV(2)
0935
                ENDDO
0936
        C CALL DISPLAY ROUTINE
0937
                 CALL PLOTGR(NT, X, Y, GT, DH, MODE)
0938
                 CALL CHAMOD
0939
        C DISPLAY THE PARAMETERS USED SO FAR
0940
                 CALL SMG$READ KEYSTROKE(KBD, TMC)
0941
                 CALL SMG$PUT CHARS(DIS,'CONTINUE?',23,30)
0942
                 CALL SMG$READ STRING(KBD, ANS, , 1, , , , , DIS)
0943
                 CALL SMG$DELETE LINE(DIS,1,23)
0944
                 CALL CLEAN
0945
                 CALL CHAMOD
0946
                 IF(ANS .NE. 'N') GOTO 10
0947
                 CALL FINISH
0948
                END
0001
0002
        C**********************
0003
        C ROUTINE TO DISPLAY THE SPECTRA AND PHASE DIAGRAM
0004
                SUBROUTINE PLOTGR(N,X,Y,GT,DH,MODE)
0005
        C**********************
0006
                PARAMETER (MAXNP=5000)
0007
                COMMON /DISID/DIS, PAS
0008
                 INTEGER DIS, PAS, TMC
0009
                REAL X(N), Y(N), GX(MAXNP), GY(MAXNP), GT(N)
0010
                LOGICAL MODE
0011
                CALL CHAMOD
0012
                CALL SMG$CREATE_VIRTUAL_KEYBOARD(KBD)
0013
                CALL CLEAN
0014
                CALL MAXMIN(N,X,Y,XM,XN,YM,YN)
0015
                GM=AMAX1(XM,YM)
0016
                GN=AMIN1(XN, YN)
0017
        C CORRELATION OF TIME SCALE
0018
                CORR=30.0/21.00
0019
                TMIN=GT(1)*CORR
0020
                TMAX=GT(N)*CORR
0021
        C SET VIEWPORT ON DISPLAY DEVICE
0022
                SXN=25.0
0023
                SXM = 225.0
0024
                SYN=15.0
0025
                SYM=165.0
0026
                XLEN=SXM-SXN
```

```
0027
                 YLEN=SYM-SYN
0028
                 DT=XLEN/REAL(N)
0029
                 YK=YLEN/(GM-GN)
0030
                 YC=SYM-YK*GM
0031
                 IF (MODE) THEN
0032
                   TK=XLEN/(TMAX-TMIN)
0033
                   TC=SXM-TK*TMAX
0034
                 ENDIF
0035
        C MAPPING THE DISPLAY
                 DO I=1,N
0036
                   GX(I)=X(I)*YK+YC
0037
0038
                   GY(I)=Y(I)*YK+YC
0039
                   GT(I)=GT(I)*TK+TC
0040
                 ENDDO
                IF (.NOT. MODE) THEN
0041
0042
                   TMIN=0.0*CORR
0043
                   TMAX=CORR*DH*REAL(N)
0044
                   DO I=1, N
0045
                     GT(I)=SXN+REAL(I-1)*DT
0046
                   ENDDO
0047
                 ENDIF
0048
        C DRAW COORDINATES AND ILLUATRIIVE TEXT
                 CALL CORDNT(SXN,SYN,XLEN,YLEN,TMIN,TMAX,GN,GM)
0049
0050
                 CALL MOVTO2(SXN,SYM)
0051
                 CALL LINBY2(XLEN, 0.0)
0052
                 CALL LINBY2(0.0,-YLEN)
0053
                 CALL CHAENQ(IT, WID, HEIT, NI, AI, AN)
0054
                 CALL MOVTO2(180.0,155.0)
0055
                 CALL LINCOL(6)
0056
                 CALL LINBY2(10.0,0.0)
0057
                 CALL CHASTR(' X*.')
0058
                 CALL MOVTO2(180.0,150.0)
0059
                 CALL LINCOL(5)
0060
                 CALL LINBY2(10.0,0.0)
0061
                 CALL CHASTR(' Y*.')
0062
                 CALL LINCOL(10)
0063
                 CALL MOVTO2(110.0,5.0)
0064
                 CALL CHASTR(' Time(min)*.')
0065
                 CALL CHASWI(1)
0066
                 CALL CHAANG(90.0)
0067
                 CALL MOVTO2(5.0,80.0)
0068
                 CALL CHASTR('Concentration*.')
0069
                 CALL CHAANG(0.0)
0070
                 CALL CHAMOD
0071
                 NSFT=0
0072
                 CALL SMG$DELETE LINE(DIS,1,23)
0073
                 XBK=GX(1)
0074
                 YBK=GY(1)
0075
                 TLAS=SXN
                 DO I=2,N
0076
0077
                    J=I+NSFT
0078
                   PX=GT(I)
0079
                   PY=GX(J)
0080
                   CALL LINCOL(6)
0081
                    CALL MOVTO2(TLAS, XBK)
0082
                   CALL LINTO2(PX,PY)
0083
                   XBK=PY
0084
                   PY=GY(J)
0085
                   CALL LINCOL(5)
0086
                    CALL MOVTO2(TLAS, YBK)
0087
                   CALL LINTO2(PX,PY)
0088
                   TLAS=PX
0089
                   YBK=PY
0090
                 ENDDO
0091
                 CALL CHAMOD
0092
                 CALL SMG$READ_KEYSTROKE(KBD, TMC)
```

```
0093
                CALL CLEAN
0094
        C DRAW THE PHASE DIAGRAM OF THE PREVIOURS SPECTRA
                CALL CORDNT(SXN, SYN, XLEN, YLEN, YN, YM, XN, XM)
0095
0096
                CALL MOVTO2(SXN,SYM)
0097
                CALL LINBY2(XLEN, 0.0)
0098
                CALL LINBY2(0.0,-YLEN)
0099
                CALL MOVTO2(110.0,SYM+5.0)
0100
                CALL LINCOL(2)
0101
                CALL CHASTR('Phase Diagram*.')
0102
                CALL LINCOL(10)
0103
                CALL MOVTO2(110.0,5.0)
                CALL CHASTR('Concentration of Y*.')
0104
0105
                CALL CHAANG(90.0)
0106
                CALL MOVTO2(5.0,70.0)
0107
                CALL CHASTR('Concentration of X*.')
0108
                CALL CHAANG(0.0)
0109
                CALL CHAMOD
0110
                CALL SMG$DELETE LINE(DIS,1,23)
        100
0111
                XK = (SXM - SXN)/(YM - YN)
0112
                XC=SXM-XK*YM
0113
                YK = (SYM - SYN) / (XM - XN)
0114
                YC=SYM-YK*XM
                DO I=1,N
0115
0116
                  X(I)=X(I)*YK+YC
0117
                  Y(I)=Y(I)*XK+XC
0118
                ENDDO
0119
                CALL LINCOL(7)
0120
                CALL MOVTO2(Y(1),X(1))
0121
                DO I=2,N
0122
                  CALL LINTO2(Y(I),X(I))
0123
                ENDDO
0124
                CALL CHAMOD
0125
                MODE=.FALSE.
0126
                RETURN
0127
                END
0001
0002
        C*********************************
0003
                SUBROUTINE OF INITAILISE DEVICE
0004
                SUBROUTINE START
0005
        C*********************************
0006
                CALL GINO
0007
                CALL T4107
0008
                CALL HSVDEF(0,0.0,0.0,0.0)
0009
                RETURN
0010
                END
0001
0002
        C*********************************
0003
        C***
                SUBROUTINE OF RELEASING DEVICE
0004
                SUBROUTINE FINISH
0005
        C****************************
0006
                CALL CLEAN
0007
                CALL GINEND
0008
                RETURN
0009
                END
0001
0002
        C*********************************
0003
        C***
                                                       ***
                CLEAN THE SCREEN
0004
                SUBROUTINE CLEAN
0005
        C************************
0006
                CALL LINCOL(0)
0007
                CALL RFILL(0,0,0.0,0.0,240.0,180.0)
8000
                RETURN
0009
                END
```

```
0001
       C********************************
0002
                SERCH THE MAXIMUM AND MINIMUM VALUES
0003
       C***
0004
               SUBROUTINE MAXMIN(NP, X, Y, XM, XMN, YM, YMN)
       C******************************
0005
0006
               REAL*4 X(NP),Y(NP)
0007
               REAL*4 XM, XMN, YM, YMN
0008
               XM=X(1)
0009
               XMN=X(1)
0010
               YM=Y(1)
0011
               YMN=Y(1)
               DO 100 I=1,NP
0012
0013
               IF(X(I) .LT. XMN) XMN=X(I)
0014
               IF(X(I) .GT. XM) XM=X(I)
0015
               IF(Y(I) .LT. YMN) YMN=Y(I)
0016
               IF(Y(I) .GT. YM) YM=Y(I)
0017
       100
               CONTINUE
0018
               RETURN
0019
               END
0001
0002
       C***********************************
0003
               DRAW THE COORDINATES FOR DISPLAY
0004
               SUBROUTINE CORDNT(AXS,AYS,XLEN,YLEN,XBEG,XEND,YBEG,YEND)
0005
       0006
               REAL*4 XBEG, XEND, YBEG, YEND, AXS, AYS, XLEN, YLEN
0007
               CALL LINCOL(10)
8000
               CALL AXIPOS(1,AXS,AYS,XLEN,1)
0009
               CALL AXIPOS(1,AXS,AYS,YLEN,2)
0010
               CALL AXISCA(3,9,XBEG,XEND,1)
0011
               CALL AXISCA(3,9,YBEG,YEND,2)
0012
               CALL AXIDRA(1,1,1)
0013
               CALL AXIDRA(-1,-1,2)
0014
               CALL MOVTO2(AXS, AYS+YLEN)
0015
               CALL LINBY2(XLEN, 0.0)
0016
               CALL LINBY2(0.0,-YLEN)
0017
               RETURN
0018
               END
0001
0002
       C***********************************
0003
       C THE DIFFERENTIAL EQUATIONS FOR SOLUTION
               REAL FUNCTION DF(T,ID,X1,X2,X3,X4,X5,X6,X7,X8,X9,X10)
0004
       C**********************
0005
0006
               PARAMETER (MNRC=20, NOSC=3, NADC=4)
0007
               COMMON /GVAR/OSCPAR
8000
               COMMON /RTCONS/ K
0009
               COMMON /VINIT/ADCON
0010
               REAL OSCPAR(NOSC), ADCON(NADC)
0011
               REAL K(MNRC)
0012
               DFC=OSCPAR(1)
0013
               FC=OSCPAR(2)
0014
               CEF=OSCPAR(3)
0015
               CO=ADCON(1)
0016
               C1=ADCON(2)
0017
               C2=ADCON(3)
0018
               C3=ADCON(4)
0019
               CK=K(1)*C2
0020
               DIF=DFC-CK
               GOTO (100,101,102,103,104,105,106,107,108,109),ID
0021
               DF=K(3)*X2*X4+K(4)*X2*X5+K(5)*X2*C3-K(2)*X1*C2-
0022
       100
0023
            $
                  K(6)*X1*C1-K(7)*X1*X3
0024
               GOTO 200
               DF=K(2)*X1*C2+K(6)*X1*C1-K(3)*X2*X4-K(4)*X2*X5-K(5)*X2*C3
0025
       101
0026
               GOTO 200
```

0027	102	DF=CO*(DIF*(1.0+CEF*COS(FC*T))-CEF*FC*SIN(FC*T))*EXP(DIF*T)
0028		GOTO 200
0029	103	DF=K(1)*C2*X3-K(3)*X2*X4
0030		GOTO 200
0031	104	DF=K(3)*X2*X4-K(4)*X2*X5
0032		GOTO 200
0033	105	DF=NULL
0034		GOTO 200
0035	106	DF=NULL
0036		GOTO 200
0037	107	DF=NULL
0038		GOTO 200
0039	108	DF=NULL
0040		GOTO 200
0041	109	DF=NULL
0042	200	END

Appendix C The Design of A Small Database

The basic intention was to form an application which will store chemical information for polymer additives and allow easy access of stored information.

Necessity:

The accumulation of chemical and practical data about polymer stabilisers have been piled up quickly. It is desired to have a fast, efficient, accurate way to access the data of the known or widely used stabilisers both for research and application purposes. Although there have been various database environment or even chemical information system, unavailability in our particular site or speciality makes it seem proper to write our own applications.

Requirements:

The storage and access of both text and graphical data, especially the chemical structure data, such as chemical structure, spectroscopic data, etc.

Possibility:

The program skill and the facility should allow such programming be done in a fairly short period of time.

Strategy:

Identify the basic processes involved in such a system. Then design the program. Some of the basic aspects are discussed in the following sections. They are:

- (1) design of an interactive drawing procedure of chemical structures, and a procedure of storing spectroscopic data.
- (2) data storage file design
- (3) processing operations
- (4) flow of the program
- (5) general layout
- (6) implementation
- 1. Interactive Drawing of Chemical Structures and the Storing of Spectroscopic Data
- 1.1 Chemical Structure Drawing Basic Idea:
 - (1) display a set of basic structures or structural entities used in the polymer stabilisation chemistry (it can easily be extended to general chemistry if necessary);
 - (2) user pick up structures to build his own structure: this requires a mechanism to locate the choice and positioning of the structure chosen; free motion of chosen structure; the deletion of the chosen structure; the restoring mechanism in case of unsatisfaction; the storing of the structures built. Many ways have been tried. It finally was found to characterise each basic structure by the coordinates of its center. In this way, the anchoring and the redisplay of a structure can be done accurately. The basic flow of this procedure is as follows:

(3) picking structure: when a search cursor indicate that a structure is chosen, the identity of it is known by the following way

ENDDO

ENDDO

where, NSPR is number of basic structures per row, NR is number of rows of displaying basic structures. xl, xr,yb,yt define the rectangle in which the basic structure dwell. XC and YC are the coordinates of picking cursor.

1.2 Storing the Spectroscopic Data

The spectrum are viewed as curve. Therefore, it can be stored easily by the coordinates of each point on the curve. Two ways may be used to input the curve. The efficient way is to use graphical input facilities available on the graphics terminal. Another way is to input the peak table.

2. Data File

The way of the data stored should allow the easy access of the content under each entry by different routes. For example, an entry may be accessed by either its chemical name or commercial names. It should also allow the relational access of the data. For instance, users may enquire by manufacturer's name, major usage, etc. It is possible to achieve all this by simply having the data sorted in different way in many different data files. But, the immediate problem is the storage capacity and the efficiency concern. So, if the data can be stored in a single file or a small number of files, and the above performances may be achieved, it is very useful. In our case, because the text data and graphical data are involved, and it is required that program should allow the updating of any section of the data under each entry, the data file holding all entries and their

contents must be carefully designed.

The chosen structure of the data for each entry is as following:

field1-fieldn are the identities of this block of data, which can be used as access routes to it, section1-section--- are detailed information stored for each entry, they have indicators IND1,etc, which are used to specify what are stored in each section and how much, etc.

3. Processing Operations

Some simple processing operations like the comparision of the spectroscopic data of different samples, the extraction of the stored information in the database including graphical data and text to form a format which could be useful in the writing of report and the likes,

list of products of manufacturer, list of products of a specified year, list of products according to function, etc. This small database also provides facility to set up private data in the system, so only the user who supplies the data has access to the stored data. Therefore, although the whole database is public, but if it is used as a research tool in a group, it also provides facility to set up privately owned data, of cause, they can be made public on specification.

It is planned that when this database has taken enough information, it should also incorporate some expert system functions, like the identification of a not very complicated compound, the recommendation of use of certain compounds under certain conditions, the advice of processing formulation, etc.

4. Flow of the Program

The major flow of the program is between the core data file which holds all entries and the information under them, and the user interface:

But the routes can be various. That is, the actual processes are the subroutines which does the operation chosen. A typical process looks like:

Therefore, the overall flow would be as following:

The shadowed layer where each operation has to go through when it

adds information to the core data file is a process which conforms the information going to the core data file into a suitable format for the reason of storage.

5. General Layout

The general layout is done in graphical form. This makes the appearance better and easy to manage. The communication is by two ways, one is using mouse to indicate the choice, especially the menu items; another way is typing simple commands or response through keyboard. The long text information will remain text form, and can be managed by the screen management routines provided by the system services, on VAX computers, these are SMG\$ routines.

6. Implementation

The program was written in FORTRAN on VAX machines, graphical routines can either be from GINO package, or from my own graphical primitives for Tektronix terminals. It is planned to write the same program in C, which will be tested on Apollo work station, and graphical routines will be based on international standard GKS. The implementation of the chemical structure drawing program on Macintosh is now in progress.

Note: Enclosed are some sample plots from the program and the listing of it.

Appendix D Program of the Database

```
0001
          C PROGRAM TO BUILD A DATABASE OF CHEMICAL INFO
 0002
                   PROGRAM AIS
 0003
          C ROUTINE FOR STORING THE SPECTRUM DATA
 0004
                   PARAMETER (MAXNM=10,NCRTV=2)
 0005
                   INTEGER SMGID, PBD, KBD, VROW, VCOL
 0006
                  REAL XMS(MAXNM), YMS(MAXNM)
 0007
                 . CHARACTER*20 ANSCRT(NCRTV), ANSDB
 8000
                  CHARACTER*20 PRTEXT(MAXNM)
 0009
                  LOGICAL AISINF, PROMP
 0010
                   COMMON /PSCREN/ ORX, ORY, XALEN, YALEN
                  COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
 0011
 0012
                                    BVXLEN, BVYLEN, BVXST, BVYST
 0013
                  COMMON /DSHVMW/ DSBFH, DSBFV, WIDEMF, FINT, DFHEIT
 0014
                  COMMON /VIEWSIZE/ ANSCRT, ANSDB
                  COMMON /SMGPAR/ SMGID, PBD, KBD, VROW, VCOL COMMON /LOGVAR/ AISINF
 0015
 0016
 0017
                  COMMON /DFTCHAR/ DCHWD, DCHHT
                  DATA (PRTEXT(I), I=1,4)/'Large or Small View',' ','Start',
 0018
                                          'NAME, COMM, MANF, ASTC'/
 0019
 0020
                  DATA ANSCRT/'LARGE','LARGE VIEW'/
 0021
                  INCLUDE '($SMGDEF)'
 0805
          C BASIC PARAMETERS OF SCREEN
 0806
                  ORX=0.0
 0807
                  ORY=0.0
 0808
                  XALEN=238.0
 0809
                  YALEN=178.0
 0810
          C SET AIS INFORMATION ON
 0811
                  AISINF=.TRUE.
 0812
          C INITIALISE THE DEVICE
 0813
                   CALL START
 0814
                  CALL WINDOW(2)
 0815
          C DEFAULT CHARACTER SIZE
 0816
                  CALL CHAENQ(ITO, DCHWD, DCHHT, NIO, ANO, AIO)
 0817
          C CREATE SCREEN MANGAMENT DISPLAY
 0818
                  CALL CHAMOD
 0819
                  NROW=24
 0820
                  NCOL=80
 0821
                  CALL SMG$CREATE VIRTUAL DISPLAY(NROW, NCOL, SMGID)
 0822
                  CALL SMG$CREATE VIRTUAL KEYBOARD(KBD)
 0823
                  CALL SMG$CREATE PASTEBOARD(PBD)
 0824
                  CALL SMG$PASTE VIRTUAL DISPLAY(SMGID, PBD, 1, 1)
 0825
          C CALL A STARING PROCEDURE
 0826
                  CALL BEGIN
          C DISPLAY THE MAIN MENUE AND INTRODUCTION
 0827
 0828
          1000
                  PROMP=.TRUE.
 0829
                  CALL CLEAR(BUXST, BUYST, BUXST+BUXLEN, BUYST+BUYLEN)
. 0830
                  CALL MAINPAD
 0831
                  IF (.NOT. AISINF) CALL GENDIS
 0832
          C DISPALY INDICATOR FOR ALLOCATION OF OPERATION
 0833
                   CALL MENUID(10, IDM)
 0834
          100
                   CALL MENUCL
                  GOTO (200,201,202,203,204,205,206,206,206,206),IDM
 0835
 0836
          200
                  CALL SETVW
 0837
                  GOTO 1000
 0838
          201
                  CALL LISTENTR
 0839
                  GOTO 1000
 0840
                  CALL ADDENTRY
         202
 0841
                  GOTO 1000
 0842
                  CALL DELENTRY
          203
 0843
                  GOTO 1000
```

```
0844
         204
                 CALL SEARCH
0845
                 GOTO 1000
         205
0846
                 CALL UTILTY
0847
                 GOTO 1000
0848
         206
                 CALL CHAMOD
0849
                 CALL FINISH
0850
                 END
0001
0002
         C STARTING PROCEDURE
0003
                 SUBROUTINE BEGIN
0004
                 COMMON /PSCREN/ ORX, ORY, XALEN, YALEN
0005
                 XC=XALEN/2.0
0006
                 YC=YALEN/2.0
0007
                 REML=170.0
8000
                 RECL=REML
0009
                 IDSEG=1
0010
                 DO WHILE (RECL .GT. 0.0)
0011
                   RCX=XC-RECL/2.0
0012
                   RCY=YC-RECL/2.0
0013
                   ICOL=MOD(ICOL, 8)+1
                   CALL LINCOL(ICOL)
0014
0015
                   CALL MOVTO2(RCX,RCY)
0016
                   CALL LINBY2(0.0, RECL)
0017
                   CALL LINBY2(RECL, 0.0)
0018
                 . CALL LINBY2(0.0,-RECL)
0019
                   CALL LINBY2(-RECL, 0.0)
0020
                   RECL=RECL-2.0
0021
                 ENDDO
0022
                 ICOL=0
0023
                 CALL LINCOL(ICOL)
0024
                 DO WHILE (RECL .LE. REML)
0025
                   RCX=XC-RECL/2.0
0026
                   RCY=YC-RECL/2.0
0027
                   CALL MOVTO2(RCX,RCY)
0028
                   CALL LINBY2(0.0, RECL)
0029
                   CALL LINBY2(RECL, 0.0)
0030
                   CALL LINBY2(0.0,-RECL)
0031
                   CALL LINBY2(-RECL, 0.0)
0032
                   RECL=RECL+2.0
0033
                 ENDDO
0034
                 RETURN
0035
                 END
0001
0002
        C DISPLAY AN INDICATOR FOR ALLOCATION OF MENU ITEM
0003
                 SUBROUTINE MENUID (NMENIT, IDM)
0004
                 PARAMETER (MAXNEM=10)
0005
                 REAL YMS(MAXNEM)
                 COMMON /GFEVEN/KEY, IMPKEY, IMPDAT, NSEG, XIND, YIND,
0006
0007
              $ .
                                  NARGS, ARGS (80)
0008
                 COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0009
              $
                                   BVXLEN, BVYLEN, BVXST, BVYST
0010
                 COMMON /DSHVMW/ DSBFH, DSBFV, WIDEMF, FINT, DFHEIT
0011
        100
0012
                 XSIND=BVXST+WIDEMF-DSBFH
0013
                 YSIND=BVYST+BVYLEN-DSBFH
0014
                 CALL INDICATOR (IND, XSIND, YSIND)
0015
                 CALL DRAG(IND)
0016
                 CALL PICDEL(IND)
0017
                 YSMF=BVYST+BVYLEN
0018
                 DO IM=1, NMENIT
0019
                   YMS(IM)=YSMF
0020
                   YSMF=YSMF-FINT
0021
                 ENDDO
0022
                 DO IM-1, NMENIT
```

```
IF (YIND .LT. YMS(IM) .AND.
0023
0024
                        YIND .GT. YMS(IM+1) .AND.
0025
                        XIND .GT. BVXST .AND.
0026
                        XIND .LT. (BVXST+WIDEMF)) THEN
0027
                      IDM=IM
0028
                      RETURN
0029
                    ENDIF
0030
                 ENDDO
0031
                 GOTO 100
0032
                 END
0001
0002
         C CLEAR A SPECIFIED AREA
0003
                  SUBROUTINE CLEAR(RXS,RYS,RXE,RYE)
0004
                 CALL LINCOL(0)
0005
                 CALL RFILL(0,0,RXS,RYS,RXE,RYE)
0006
                 RETURN
0007
                 END
0001
        C CLEAR THE MENU AREA
0002
0003
                  SUBROUTINE MENUCL
                 COMMON /DSHVMW/ DSBFH, DSBFV, WIDEM, FINT, DFHEIT
0004
                 COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0005
                                   BVXLEN, BVYLEN, BVXST, BVYST
0006
                 CALL CLEAR(BUXST, SVYST, BVXST+WIDEM, SVYST+SVYLEN)
0007
0008
                 RETURN
0009
                 END
0001
0002
         C SET VIEWPORT SIZE
0003
                  SUBROUTINE SETVW
0004
                  PARAMETER(NDM=2,NCRT=2)
0005
                  CHARACTER*15 DMENT(NDM)
0006
                  CHARACTER*20 ASCRT(NCRT), VPTCS
0007
                 COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
              S
0008
                                   BVXLEN, BVYLEN, BVXST, BVYST
0009
                 COMMON /VIEWSIZE/ ASCRT, VPTCS
0010
                 COMMON /DSHVMW/ DSBFV, DSBFH, WIDEMF, FINT, XSMF, YSMF
0011
                 DATA DMENT/'Large View', 'Small View'/
0012
                 HEITMF=NDM*FINT
0013
                 ICF=8
0014
                 ICT=6
0015
                . CALL MENUDR(XSMF, YSMF, WIDEMF, HEITMF, FINT, ICF,
0016
                               NDM, DMENT, ICT)
0017
                 CALL MENUID(NDM, IDM)
0018
                 CALL MENUCL
0019
                 CALL STR$UPCASE(VPTCS, DMENT(IDM))
0020
                 RETURN
0021
                 END
0001
0002
        C CLEAR DIALOG TEXT
0003
                  SUBROUTINE DIATCL
0004
                  INTEGER SMGID, PBD, KBD, VROW, VCOL
0005
                  COMMON /SMGPAR/ SMGID, PBD, KBD, VROW, VCOL
0006
                  CALL CHAMOD
0007
                 CALL SMG$DELETE_LINE(SMGID, VROW, 1)
8000
                 RETURN
0009
                 END
0001
0002
        C DISPLAY PROMPT IN DIALOG BOX
0003
                 SUBROUTINE PROMPT(TEXT, ANSER, PROMP)
0004
                 INTEGER SMGID, PBD, KBD, VROW, VCOL
0005
                 CHARACTER*20. ANSER
```

```
0006
                 CHARACTER*20 TEXT
0007
                 LOGICAL PROMP
                 COMMON /DSHVMW/ DSBFH, DSBFV, WIDEM, FINT
8000
                 COMMON /DIABOX/ DFXS, DFYS, WIDEPR, DFHEIT
0009
                 COMMON /SMGPAR/ SMGID, PBD, KBD, VROW, VCOL
0010
0011
                 COMMON /DFTCHAR/ DCHWD, DCHHT
0012
                 CALL CHAENQ(ITO, WDO, HTO, NIO, AIO, ANO)
0013
                 CHWD=DCHWD
0014
                 CHHT=DCHHT
0015
                 CALL CHASIZ (CHWD, CHHT)
0016
                 WIDEPR=80.0
0017
                 BXS=DFXS+DSBFH
0018
                 BYS=DFYS+DSBFV
0019
                 BXE=DFXS+WIDEPR-DSBFH
0020
                 BYE=DFYS+DFHEIT-DSBFV
0021
                 IF (PROMP) THEN
0022
                   CALL LINCOL(6)
0023
                   CALL MOVTO2(DFXS+WIDEPR, DFYS)
0024
                   CALL LINBY2(0.0, DFHEIT)
0025
                 ENDIF
0026
                 CALL LINCOL(4)
0027
                 CALL MOVTO2(BXS, BYS+DSBFV)
0028
                 CALL CHASTR(TEXT)
0029
                 CALL CHAMOD
0030
                 VROW=24
0031
                 VCOL=31
0032
                 CALL SMG$SET CURSOR ABS(SMGID, VROW, VCOL)
0033
                 READ(5,111) ANSER
0034
                 CALL DIATCL
0035
                 CALL CLEAR(BXS, BYS, BXE, BYE)
0036
        111
                 FORMAT(A)
0037
                 CALL CHASIZ(WDO, HTO)
0038
                 RETURN
0039
                 END
0001
0002
        C*********************************
0003
                  ROUTINE TO SCAN IR SPECTRUM
0004
                 SUBROUTINE IRSCAN(NP, XRC, YRC)
0005
        C*********************************
0006
                 PARAMETER (MAXP=50000)
0007
                 REAL XRC(MAXP), YRC(MAXP), RCX(MAXP), RCY(MAXP)
8000
                 CHARACTER*20 ASCRT(2), VPTCS
0009
                 COMMON /VIEWSIZE/ ASCRT, VPTCS
0010
                 COMMON /PSPCHART/ XSSPC, XESPC, YSSPC, YESPC
0011
                 COMMON /BCHTREGN/ BVCXS, BVCXE, BVCYS, BVCYE
0012
                 COMMON /GFEVEN/KEY, IMPKEY, IMPDAT, NSEG, XPIC, YPIC,
0013
                                 NARGS, ARGS (80)
0014
                 CALL CURSTR('SER')
0015
        10
                 CALL IRCHART
0016
                 IND-1000
0017
                 XSIND=(XSSPC+XESPC)/2.0
0018
                 YSIND=(YSSPC+YESPC)/2.0
0019
                 CALL INDICATOR (IND, XSIND, YSIND)
0020
                 IP=1
0021
        100
                 CALL MOVTO2(XPIC, YPIC)
0022
        500
                 CALL DRAG(IND)
0023
                 GOTO(100,1000,10,200),KEY
0024
        200
                 RCX(IP)=XPIC
0025
                 RCY(IP)=YPIC
0026
                 CALL LINCOL(8)
0027
                 CALL MOVTO2(RCX(1),RCY(1))
0028
                 DO JP=1, IP
0029
                   CALL LINTO2(RCX(JP),RCY(JP))
0030
                 ENDDO
0031
                 CALL IRCHART
```

```
0032
                 IP=IP+1
0033
                 GOTO 500
0034
         1000
                 NP=IP-1
         C THE GRAPHICAL DATA ARE STORED AS IF THEY WERE DONE IN LARGE VIEWPT
0035
0036
                 IF (VPTCS .NE. ASCRT(1) .AND. VPTCS .NE. ASCRT(2)) THEN
                    CALL TRANSFM(NP, RCX, RCY, XRC, YRC, BVCXS, BVCXE, BVCYS, BVCYE,
0037
                                             XSSPC, XESPC, YSSPC, YESPC)
0038
              $
0039
                 ENDIF
0040
                 RETURN
0041
                 END
0001
         C**********************************
0002
0003
                  ROUTINE TO DISPLAY IR SPECTRUM IN RECORD
         C***
0004
                 SUBROUTINE IRDISP(NP, XRC, YRC, ICOL)
0005
                 PARAMETER (MAXP=5000)
0006
                 REAL XRC(NP), YRC(NP), DSX(MAXP), DSY(MAXP)
0007
                 CHARACTER*20 ASCRT(2), VPTCS
0008
                 LOGICAL COMPAR
0009
                 COMMON /VIEWSIZE/ ASCRT, VPTCS
                 COMMON /PSPCHART/ CTXS, CTXE, CTYS, CTYE
0010
                 COMMON /BCHTREGN/ BVCXS, BVCXE, BVCYS, BVCYE
0011
0012
                 COMMON /COMPARISON/ COMPAR, IDNM
0013
                 IF (.NOT. COMPAR .OR. IDNM .LE. 1) THEN
0014
                   CALL IRCHART
0015
                 ENDIF
0016
         C CONVERT DATA TO FIT THE CHART
0017
                 IF (VPTCS .NE. ASCRT(1) .AND. VPTCS .NE. ASCRT(2)) THEN
                    CALL TRANSFM(NP, XRC, YRC, DSX, DSY, CTXS, CTXE, CTYS, CTYE,
0018
0019
                                             BVCXS, BVCXE, BVCYS, BVCYE)
              $
0020
                 ELSE
                    CALL TRANSFM(NP, XRC, YRC, DSX, DSY, BVCXS, BVCXE, BVCYS, BVCYE,
0021
             $
0022
                                             CTXS, CTXE, CTYS, CTYE)
0023
                 ENDIF
0024
                 CALL LINCOL(ICOL)
0025
                 CALL MOVTO2(DSX(1),DSY(1))
0026
                 DO I=1,NP
0027
                    CALL LINTO2(DSX(I),DSY(I))
0028
0029
                 RETURN
0030
                 END
0001
0002
        C DRAW THE IR CHART
0003
                 SUBROUTINE IRCHART
                 CHARACTER*3 INTS
0004
0005
                 CHARACTER*4 WAVN
0006
                 CHARACTER*15 XASTR, YASTR
0007
                 CHARACTER*20 ASCRT(2), VPTCS
0008
                 COMMON /VIEWSIZE/ ASCRT, VPTCS
0009
                 COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0010
              $
                                   BVXLEN, BVYLEN, BVXST, BVYST
                 COMMON /DSHVMW/ DSBFH, DSBFV, WIDEM, FINT, XSMF, YSMF, TFHEIT
0011
0012
                 COMMON /PARGENPAD/ HGENPAD
0013
                 COMMON /PSPCHART/ XST, XED, YST, YED
0014
                 COMMON /PRSPEC/ XSCR, YSCR, XECR, YECR
0015
                 COMMON /BCHTREGN/BVCXS, BVCXE, BVCYS, BVCYE
0016
        C ENQUIRE THE SIZE OF THE CHARACTER
0017
                 CALL CHAENQ(ITO, WDO, HTO, NO, AIO, ANO)
0018
        C DECIDE THE WINDOW SIZE FOR SPECTRUM
0019
                 SHN=4.0
0020
                 ANSH=2.0
0021
                 CHWD=WDO
0022
                 CHHT=HTO
0023
                 BVCXS=BVXST+SHN*DSBFV+SHN*DSBFV
0024
                 BVCXE=BVXST+BVXLEN-DSBFH-DSBFV
```

```
0025
                 BVCYS=SVYST+SHN*DSBFH
0026
                 BVCYE=SVYST+SVYLEN-DSBFH
                 IF (VPTCS .EQ. ASCRT(1) .OR. VPTCS .EQ. ASCRT(2)) THEN
0027
0028
                   XST=BVCXS
0029
                   XED-BVCXE
0030
                   YST=BVCYS
0031
                   YED=BVCYE
0032
                   XYPOS=YST-ANSH*DSBFH-DSBFV
0033
                   YXPOS=XST-ANSH*DSBFH-DSBFV
0034
                   XSCR=BVXST
0035
                   XECR=BVXST+BVXLEN
0036
                   YSCR=SVYST
0037
                   YECR=SVYST+SVYLEN
0038
                 ELSE
0039
                   XST=SVXST+SHN*DSBFH
0040
                   XED=SVXST+SVXLEN-DSBFH
0041
                   YST=SVYST+HGENPAD+SHN*DSBFH+DSBFV+TFHEIT
0042
                   YED=SVYST+SVYLEN-DSBFH
0043
                   XYPOS=YST-ANSH*DSBFH
0044
                   YXPOS=XST-ANSH*DSBFH
0045
                   XSCR=SVXST+DSBFV
0046
                   XECR=SVXST+SVXLEN-DSBFV
0047
                   YSCR=SVYST+HGENPAD+TFHEIT+DSBFH
0048
                   YECR=SVYST+SVYLEN-DSBFV
0049
                   CHWD=WDO/2.0
0050
                   CHHT=HTO/2.0
0051
                 ENDIF
0052
                 CALL CHASIZ (CHWD, CHHT)
0053
                 CALL CLEAR(XSCR, YSCR, XECR, YECR)
0054
                 XLEN=XED-XST
0055
                 YLEN: YED-YST
0056
                 XXPOS=XST+XLEN/2.0
0057.
                 YYPOS=YST+YLEN/2.0-DSBFH
0058
                 ICAT=14
0059
                 CALL HSVDEF(ICAT, 0.0, 0.0, 0.3)
0060
                 CALL LINCOL(ICAT)
0061
                 CALL MOVTO2(XST, YST)
0062
                 CALL LINBY2(0.0, YLEN)
0063
                 CALL LINBY2(XLEN, 0.0)
0064
                 CALL LINBY2(0.0,-YLEN)
0065
                 CALL LINBY2(-XLEN, 0.0)
0066
                 NHUNIT=56
0067
                 WUNIT=XLEN/NHUNIT
0068
                 HUNIT-WUNIT
0069
                 NVUNIT=INT(YLEN/HUNIT)
                 DO I=1, NHUNIT
0070
0071
                   CALL MOVTO2(XST+I*WUNIT, YST)
0072
                   CALL LINBY2(0.0, YLEN)
0073
                 ENDDO
0074
                 DO I=1, NVUNIT+1
0075
                   CALL MOVTO2(XST, YST+I*HUNIT)
                   IF (I .EQ. NVUNIT+1) CALL MOVTO2(XST,YST+YLEN)
0076
0077
                   CALL LINBY2(XLEN, 0.0)
0078
                 ENDDO
0079
        C PUT SCALE VALUES ON THE CHARTAXISES
0080
                 CALL LINCOL(4)
0081
                 PX=XST-WUNIT
0082
                 PY=YST-DSBFH-DSBFV
0083
                 NWAV=4000
0084
                 DO I=1,5
                   WRITE(UNIT=WAVN, FMT='(I4)') NWAV
0085
0086
                   CALL MOVTO2(PX,PY)
0087
                   CALL CHASTR(WAVN)
0088
                   PX=PX+5*WUNIT
0089
                   NWAV=NWAV-500
0090
                 ENDDO
```

```
0091
                 PX=PX-WUNIT
0092
                 NWAV=1800
                 DO I=1,10
0093
                   WRITE(UNIT=WAVN, FMT='(14)') NWAV
0094
0095
                   CALL MOVTO2(PX, PY)
0096
                   CALL CHASTR(WAVN)
0097
                   PX=PX+4*WUNIT
0098
                   NWAV=NWAV-200
0099
                 ENDDO
0100
                 NWAV=0
0101
                 NLP=3
0102
                 PX=XST-2.0*DSBFH
0103
                 PY=YST-CHHT/2.0
0104
                 NUNIT-10
0105
                 VINT=YLEN/FLOAT(NUNIT)
0106
                 DO I=1, NUNIT+1
                   WRITE(UNIT=INTS, FMT='(13)') NWAV
0107
0108
                   CALL MOVTO2(PX,PY)
0109
                   CALL CHASTR(INTS)
0110
                   PY=PY+VINT
0111
                   NWAV=NWAV+10
0112
                 ENDDO
0113
        C PUT TITLE
0114
                 XASTR='Wavenumber'
                 YASTR='Transmittence'
0115
0116
                 CALL MOVTO2(XXPOS, XYPOS)
0117
                 CALL CHASTR(XASTR)
0118
                 CALL CHASWI(1.0)
0119
                 CALL CHAANG(90.0)
0120
                 CALL MOVTO2(YXPOS, YYPOS)
0121
                 CALL CHASTR(YASTR)
0122
                 CALL CHAANG(0.0)
0123
        C RESTORE THE ORIGINAL SIZE OF CHARACTER
0124
                 CALL CHASIZ(WDO, HTO)
0125
                 RETURN
0126
                 END
0001
0002
        C*********************
0003
                  ROUTINE TO SCAN UV SPECTRUM
0004
                 SUBROUTINE UVSCAN(NP, XRC, YRC)
        C********************************
0005
0006
                 PARAMETER (MAXP=50000)
0007
                 REAL XRC(MAXP), YRC(MAXP), RCX(MAXP), RCY(MAXP)
0008
                 CHARACTER*20 ASCRT(2), VPTCS
                 LOGICAL SCAN
0009
0010
                 COMMON /VIEWSIZE/ ASCRT, VPTCS
                 COMMON /PSPCHART/ XSSPC, XESPC, YSSPC, YESPC COMMON /BCHTREGN/ BVCXS, BVCXE, BVCYS, BVCYE
0011
0012
                 COMMON /GFEVEN/KEY, IMPKEY, IMPDAT, NSEG, XPIC, YPIC,
0013
0014
              4
                                 NARGS, ARGS (80)
0015
                 COMMON /SCANORDISP/SCAN
0016
                 SCAN=.TRUE.
0017
                 CALL CURSTR('SER')
        10
0018
                 CALL UVCHART
0019
                 IND=1000
0020
                 XSIND=(XSSPC+XESPC)/2.0
0021
                 YSIND=(YSSPC+YESPC)/2.0
0022
                 CALL INDICATOR (IND, XSIND, YSIND)
0023
0024
        100
                 CALL MOVTO2(XPIC, YPIC)
0025
        500
                 CALL DRAG(IND)
0026
                 GOTO(100,1000,10,200),KEY
0027
        200
                 RCX(IP)=XPIC
0028
                 RCY(IP)=YPIC
0029
                 CALL LINCOL(8)
```

```
0030
                 CALL MOVTO2(RCX(1),RCY(1))
0031
                 DO JP=1,IP
0032
                    CALL LINTO2(RCX(JP),RCY(JP))
0033
                 ENDDO
0034
                 CALL IRCHART
0035
                 IP=IP+1
0036
                 GOTO 500
0037
         1000
                 NP=IP-1
         C THE GRAPHICAL DATA ARE STORED AS IF THEY WERE DONE IN LARGE VIEWPT
0038
                 IF (VPTCS .NE. ASCRT(1) .AND. VPTCS .NE. ASCRT(2)) THEN
0039
                    CALL TRANSFM(NP, RCX, RCY, XRC, YRC, BVCXS, BVCXE, BVCYS, BVCYE,
0040
0041
                                             XSSPC, XESPC, YSSPC, YESPC)
0042
                 ENDIF
0043
                 RETURN
0044
                 END
0001
         C***********************************
0002
0003
                  ROUTINE TO DISPLAY UV SPECTRUM IN RECORD
0004
                 SUBROUTINE UVDISP(NP, XRC, YRC, ICOL)
0005
                 PARAMETER (MAXP=5000)
0006
                 REAL XRC(NP), YRC(NP), DSX(MAXP), DSY(MAXP)
0007
                 LOGICAL SCAN, COMPAR
0008
                 CHARACTER*20 ASCRT(2), VPTCS
0009
                 COMMON /VIEWSIZE/ ASCRT, VPTCS
                 COMMON /PSPCHART/ CTXS, CTXE, CTYS, CTYE
0010
                 COMMON /BCHTREGN/ BVCXS, BVCXE, BVCYS, BVCYE
0011
0012
                 COMMON /SCANORDISP/ SCAN
0013
                 COMMON /UVSCALE/WAVS, WAVE, APSS, APSE
0014
                 COMMON /COMPARISON/ COMPAR, IDNM
0015
                 SCAN=.FALSE.
0016
                 IF (.NOT. COMPAR .OR. IDNM .LE. 1) THEN
0017
                   CALL UVCHART
0018
                 ENDIF
0019
        C CONVERT DATA TO FIT THE CHART
0020
                 IF (VPTCS .NE. ASCRT(1) .AND. VPTCS .NE. ASCRT(2)) THEN
0021
                   CALL TRANSFM(NP, XRC, YRC, DSX, DSY, CTXS, CTXE, CTYS, CTYE,
0022
              $
                                             BVCXS, BVCXE, BVCYS, BVCYE)
0023
                 ELSE
0024
                   CALL TRANSFM(NP, XRC, YRC, DSX, DSY, BVCXS, BVCXE, BVCYS, BVCYE,
              $
0025
                                             CTXS, CTXE, CTYS, CTYE)
0026
                 ENDIF
0027
                 CALL LINCOL(ICOL)
0028
                 CALL MOVTO2(DSX(1),DSY(1))
0029
                 DO I=1,NP
0030
                   CALL LINTO2(DSX(I),DSY(I))
0031
                 ENDDO
0032
                 RETURN
0033
                 END
0001
0002
        C DRAW THE UV SPECTRUM CHART
0003
                 SUBROUTINE UVCHART
0004
                 CHARACTER*5 WAVL, APSV
0005
                 CHARACTER*15 XASTR, YASTR
0006
                 CHARACTER*20 ASCRT(2), VPTCS, MESSG.
0007
                 LOGICAL SCAN
8000
                 COMMON /VIEWSIZE/ ASCRT, VPTCS
0009
                 COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0010
                                   BVXLEN, BVYLEN, BVXST, BVYST
0011
                 COMMON /DSHVMW/ DSBFH, DSBFV, WIDEM, FINT, XSMF, YSMF, TFHEIT
0012
                 COMMON /PARGENPAD/ HGENPAD
0013
                 COMMON /PSPCHART/ XST, XED, YST, YED
0014
                 COMMON /PRSPEC/ XSCR, YSCR, XECR, YECR
0015
                 COMMON /BCHTREGN/BVCXS, BVCXE, BVCYS, BVCYE
0016
                 COMMON /UVSCALE/ WAVS, WAVE, APSS, APSE
```

```
0017
                 COMMON /SCANORDISP/ SCAN
                 DATA MESSG /'Wmin, Wmax, Absn, Absm'/
0018
0019
        C ENQUIRE THE SIZE OF THE CHARACTER
0020
                 CALL CHAENQ(ITO, WDO, HTO, NO, AIO, ANO)
0021
        C DECIDE THE WINDOW SIZE FOR SPECTRUM
0022
                 SHN=5.0
0023
                 ANSH=3.0
0024
                 CHWD=WDO
0025
                 CHHT=HTO
                 BVCXS=BVXST+(SHN+1.0)*DSBFH+SHN*DSBFV
0026
                 BVCXE=BVXST+SVYLEN-DSBFH-DSBFV
0027
0028
                 BVCYS=SVYST+SHN*DSBFH
0029
                 BVCYE=SVYST+SVYLEN-DSBFH
0030
                 IF (VPTCS .EQ. ASCRT(1) .OR. VPTCS .EQ. ASCRT(2)) THEN
0031
                   XST=BVCXS
0032
                   XED=BVCXE
0033
                   YST=BVCYS
0034
                   YED=BVCYE
0035
                   XYPOS=YST-ANSH*DSBFH-DSBFV
0036
                   YXPOS=XST-(ANSH+1.0)*DSBFH-DSBFV
0037
                   XSCR=BVXST
0038
                   XECR=BVXST+BVXLEN
0039
                   YSCR=SVYST
0040
                   YECR=SVYST+SVYLEN
0041
                 ELSE
0042
                   XST=SVXST+(SHN+1.0)*DSBFH
0043
                   YST=SVYST+HGENPAD+SHN*DSBFH+DSBFV+TFHEIT
0044
                   YED=SVYST+SVYLEN-DSBFH
0045
                   XED=XST+YED-YST
0046
                   XYPOS=YST-ANSH*DSBFH
0047
                   YXPOS=XST-(ANSH+1.0)*DSBFH
0048
                   XSCR=SVXST+DSBFV
0049
                   XECR=SVXST+SVXLEN-DSBFV
0050
                   YSCR=SVYST+HGENPAD+TFHEIT+DSBFH
0051
                   YECR=SVYST+SVYLEN-DSBFV
0052
                   CHWD=WDO/2.0
0053
                   CHHT=HTO/2.0
0054
                 ENDIF
0055
                 CALL CHASIZ (CHWD, CHHT)
0056
                 CALL CLEAR(XSCR, YSCR, XECR, YECR)
0057
                 XLEN=XED-XST
0058
                 YLEN=YED-YST
0059
                 XXPOS=XST+XLEN/2.0
0060
                 YYPOS=YST+YLEN/2.0-DSBFH
0061
                 ICAT=14
0062
                 CALL HSVDEF(ICAT, 0.0, 0.0, 0.3)
0063
                 CALL LINCOL(ICAT)
0064
                 CALL MOVTO2(XST, YST)
0065
                 CALL LINBY2(0.0, YLEN)
0066
                 CALL LINBY2(XLEN, 0.0)
0067
                 CALL LINBY2(0.0,-YLEN)
00E3
                 CALL LINBY2(-XLEN, 0.0)
0069
                 NHUNIT=10
0070
                 NVUNIT=NHUNIT
0071
                 WUNIT=XLEN/NHUNIT
0072
                 HUNIT=YLEN/NVUNIT
0073
                 DO I=1, NHUNIT
0074
                   CALL MOVTO2(XST+I*WUNIT,YST)
0075
                   CALL LINBY2(0.0, YLEN)
0076
                 ENDDO
0077
                 DO I=1, NVUNIT
0078
                   CALL MOVTO2(XST, YST+I*HUNIT)
0079
                   IF (I .EQ. NVUNIT) CALL MOVTO2(XST, YST+YLEN)
0080
                   CALL LINBY2(XLEN, 0.0)
0081
                 ENDDO
0082
        C TAKE SCALE VALUES
```

```
0083
                  IF (SCAN) THEN
 0084
                     CALL READVAL(MESSG)
 0085
                  ENDIF
 0086
          C PUT SCALE VALUES ON THE CHARTAXISES
 0087
                  CALL LINCOL(4)
 0088
                  PX=XST-5.0*CHWD/2.0
                  PY=YST-DSBFH-DSBFV
 0089
 0090
                  WAV=WAVS
                  WAVINT=(WAVE-WAVS)/NHUNIT
 0091
 0092
                  DO I=1, NHUNIT-4
                     WRITE(UNIT=WAVL, FMT='(F5.1)') WAV
 0093
 0094
                     CALL MOVTO2(PX, PY)
 0095
                     CALL CHASTR(WAVL)
 0096
                     PX=PX+2*WUNIT
 0097
                     WAV=WAV+2.0*WAVINT
 0098
                  ENDDO
 0099
                  NWAV=0
 0100
                  NLP=3
 0101
                  PX=XST-ANSH*DSBFH
 0102
                  PY=YST-CHHT/2.0
- 0103
                  APSINT=(APSE-APSS)/NVUNIT
 0104
                  APS=APSS
 0105
                  DO I=1, NVUNIT-4
 0106
                    WRITE(UNIT=APSV, FMT='(F5.3)') APS
 0107
                     CALL MOVTO2(PX, PY)
 0108
                     CALL CHASTR(APSV)
 0109
                     PY=PY+2.0*HUNIT
 0110
                     APS=APS+2.0*APSINT
 0111
                  ENDDO
          C PUT TITLE
 0112
 0113
                  XASTR='Wavelength'
 0114
                  YASTR='Absorption'
 0115
                   CALL MOVTO2(XXPOS, XYPOS)
 0116
                  CALL CHASTR(XASTR)
 0117
                   CALL CHASWI(1.0)
 0118
                   CALL CHAANG(90.0)
 0119
                  CALL MOVTO2(YXPOS, YYPOS)
 0120
                  CALL CHASTR(YASTR)
 0121
                  CALL CHAANG(0.0)
 0122
          C RESTORE THE ORIGINAL SIZE OF CHARACTER
 0123
                  CALL CHASIZ(WDO, HTO)
 0124
                  RETURN
 0125
                  END
 0001
 0002
          C READ VALUES FROM DIALOG BOX
 0003
                  SUBROUTINE READVAL (TEXT)
 0004
                   INTEGER SMGID, PBD, KBD, VROW, VCOL
 0005
                   CHARACTER*20 ANSER
                  CHARACTER*20 TEXT
 0006
 0007
                  LOGICAL PROMP
                  COMMON /DSHVMW/ DSBFH, DSBFV, WIDEM, FINT
 8000
                  COMMON /DIABOX/ DFXS, DFYS, WIDEPR, DFHEIT
 0009
                  COMMON /SMGPAR/ SMGID, PBD, KBD, VROW, VCOL
 0010
 0011
                   COMMON /DFTCHAR/ DCHWD, DCHHT
 0012
                   COMMON /UVSCALE/VAL1, VAL2, VAL3, VAL4
 0013
                   CALL CHAENQ(ITO, WDO, HTO, NIO, AIO, ANO)
 0014
                   CHWD=DCHWD
 0015
                   CHHT=DCHHT
 0016
                   CALL CHASIZ (CHWD, CHHT)
 0017
                  WIDEPR=80.0
 0018
                  BXS=DFXS+DSBFH
 0019
                  BYS=DFYS+DSBFV
 0020
                  BXE=DFXS+WIDEPR-DSBFH
 0021
                  BYE=DFYS+DFHEIT-DSBFV
 0022
                  CALL LINCOL(6)
```

```
0023
                 CALL MOVTO2(DFXS+WIDEPR, DFYS)
0024
                 CALL LINBY2(0.0, DFHEIT)
0025
                 CALL LINCOL(4)
0026
                 CALL MOVTO2(BXS,BYS+DSBFV)
0027
                 CALL CHASTR(TEXT)
0028
                 CALL CHAMOD
0029
                 VROW=24
0030
                 VCOL=31
                 CALL SMG$SET CURSOR ABS(SMGID, VROW, VCOL)
0031
0032
                 READ(5,*) VAL1, VAL2, VAL3, VAL4
0033
                 CALL DIATCL
                 CALL CLEAR(BXS, BYS, BXE, BYE)
0034
0035
                 CALL CHASIZ(WDO, HTO)
0036
                 RETURN
0037
                 END
0001
0002
        C TRANSFORM THE DATA TO A SPECIAL WINDOW
0003
                SUBROUTINE TRANSFM(NPT, X, Y, RX, RY, TXN, TXM, TYN, TYM,
0004
                                              OXN, OXM, OYN, OYM)
0005
                 REAL X(NPT), Y(NPT), RX(NPT), RY(NPT)
                 XK = (TXM - TXN) / (OXM - OXN)
0006
0007
                 XC=TXN-XK*OXN
0008
                 YK = (TYM - TYN) / (OYM - OYN)
0009
                 YC=TYN-YK*OYN
0010
                 DO I=1,NPT
0011
                 RX(I)=X(I)*XK+XC
0012
                  RY(I)=Y(I)*YK+YC
0013
                 ENDDO
0014
                 RETURN
0015
                 END
0001
0002
        C DRAW A SYMBOL AS INDICATOR
0003
                 SUBROUTINE INDICATOR (IND, XST, YST)
0004
                 ICOL=15
0005
                 CALL HSVDEF(15,0.0,0.0,1.0)
0006
                 CALL PICBEG(IND)
0007
                    CALL LINCOL(ICOL)
0008
                    CALL MOVTO2(XST, YST)
0009
                    CALL MOVTO2(XST-1.0, YST)
0010
                    CALL LINBY2(2.0,0.0)
                    CALL MOVTO2(XST, YST-1.0)
0011
0012
                    CALL LINBY2(0.0,2.0)
0013
                 CALL PICEND
0014
                 RETURN
0015
                 END
0001
        C*********************************
0002
        C****
0003
                   MAIN MENU AND GENERAL INFORMATION PAD ****
0004
                 SUBROUTINE MAINPAD
0005
        C***********************
0006
                 PARAMETER (NMMAX=10, MNTEXT=100)
0007
                 CHARACTER*15 MENIT(NMMAX)
8000
                 CHARACTER*20 MESSG, ASFD
0009
                 CHARACTER*80 INTRT(MNTEXT), OPGIDE(MNTEXT)
0010
                 LOGICAL AISINF, PROMP
0011
                 COMMON /PSCREN/ ORX, ORY, SXLEN, SYLEN
0012
                 COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0013
                                  BVXLEN, BVYLEN, BVXST, BVYST
0014
                 COMMON /DSHVMW/ DSBFH, DSBFV, WIDEMF, FINT, XSMF, YSMF
                 COMMON /DIABOX/ DFXS, DFYS, WIDEPR, DFHEIT
0015
                 COMMON /LOGVAR/ AISINF
0016
0017
                 DATA (MENIT(I), I=1,7)/'Set Viewport','List Entries',
                                         'Add New Entry', 'Delete Entry',
0018
             $
```

```
0019
                                         'Search','Utilities','Exit'/
0020
                 DATA MESSG /'[RET] to start'/
0021
                 NMENIT=7
        C DISTANCE BETWEEN FRAME
0022
0023
                 DSBFV=2.0
0024
                 DSBFH=5.0
0025
        C DRAW THE LARGE SURROUNDING
0026
                 CALL LGFRAME
0027
        C DISPLAY THE TITLE
0028
                 TFHEIT=8.0
0029
                 TFWIDE=SXLEN-2.0*DSBFH
0030
                 TFXS=ORX+DSBFH
                 TFYS=ORY+SYLEN-TFHEIT-DSBFV
0031
0032
                 CALL FEFRAME(TFXS, TFYS, TFWIDE, TFHEIT, 7)
0033
                 CALL LINCOL(5)
0034
                 CALL MOVTO2(TFXS+TFWIDE/3.0, TFYS+DSBFV)
0035
                 CALL CHASTR(' A I S*.')
0036
        C DISPLAY THE MENU
0037
                 DFHEIT-10.0
0038
                 HEITMF=SYLEN-4.0*DSBFV-TFHEIT-DFHEIT
                 WIDEMF=40.0
0039
0040
                 FINT=14.2
0041
                 XSMF=TFXS
0042
                 YSMF=TFYS-DSBFV
0043
                 ICOLF=7
0044
                 ICOLT=6
0045
                 CALL MENUDR(XSMF, YSMF, WIDEMF, HEITMF, FINT, ICOLF,
0046
                              NMENIT, MENIT, ICOLT)
0047
        C DRAW DIALOG FRAME AT BOTTOM
0048
                 DFWIDE=SXLEN-2.0*DSBFH
0049
                 DFXS=XSMF
0050
                 DFYS=ORY+DSBFV
0051
                 CALL FEFRAME(DFXS, DFYS, DFWIDE, DFHEIT, 6)
0052
        C INFORMATION PAD ABOUT AIS
0053
                 CALL CHAENQ(ITO, WDO, HTO, NIO, AIO, ANO)
0054
                 WDICH=2.0*WDO
0055
                 HTICH=HTO
0056
                 SHN=3.0
0057
                 IF (AISINF) THEN
0058
        C READ INTRODUCTION AND OPERATION GUIDE TEXT FROM A FILE
0059
                   OPEN(UNIT=12,STATUS='OLD',FILE='INTRTEXT.AIS')
0060
                     READ(12,111) NINTEX
0061
                     DO I=1, NINTEX
0062
                        READ(12,222) INTRT(I)
0063
                     ENDDO
0064
                     READ(12,111) NOPTEX
0065
                     DO I=1, NOPTEX
0066
                        READ(12,222) OPGIDE(I)
0067
                     ENDDO
0068
                   CLOSE(UNIT=12)
0069
                   CALL CHASIZ(WDICH, HTICH)
0070
                   TOPHEIT=60.0
0071
                   TOPWIDE=SXLEN-3.0*DSBFH-WIDEMF
0072
                   TOPXS=ORX+2.0*DSBFH+WIDEMF
0073
                   TOPYS=TFYS-DSBFV-TOPHEIT
0074
                   CALL FEFRAME (TOPXS, TOPYS, TOPWIDE, TOPHEIT, 7)
0075
                   XSPIT=TOPXS+SHN*DSBFH
0076
                   YSPIT=TOPYS+TOPHEIT-SHN*DSBFH
0077
                   CALL MOVTO2(XSPIT, YSPIT)
0078
                   CALL LINCOL(8)
0079
                   CALL CHASTR(INTRT(1))
0080
                   CALL CHASIZ(WDO, HTO)
0081
                   CALL LINCOL(5)
0082
                   DO I=2, NINTEX
0083
                     YSPIT=YSPIT-DSBFH
0084
                     CALL MOVTO2(XSPIT, YSPIT)
```

```
0085 .
                     CALL CHASTR(INTRT(I))
0086
                   ENDDO
0087
                   BOTHEIT=HEITMF-TOPHEIT-DSBFV
0088
                   BOTWIDE=TOPWIDE
0089
                   BOTXS=TOPXS
0090
                   BOTYS=TOPYS-DSBFV-BOTHEIT
                   CALL FEFRAME(BOTXS, BOTYS, BOTWIDE, BOTHEIT, 7)
0091
0092
                   XSPIT=BOTXS+SHN*DSBFH
0093
                   YSPIT=BOTYS+BOTHEIT-(SHN+1.0)*DSBFH
0094
                    CALL CHASIZ (WDICH, HTICH)
0095
                    CALL LINCOL(8)
0096
                    CALL MOVTO2(XSPIT, YSPIT)
0097
                    CALL CHASTR(OPGIDE(1))
0098
                    CALL CHASIZ(WDO, HTO)
0099
                    CALL LINCOL(6)
0100
                   DO I=2, NOPTEX
0101
                      YSPIT=YSPIT-DSBFH
0102
                      CALL MOVTO2(XSPIT, YSPIT)
0103
                      CALL CHASTR(OPGIDE(I))
0104
                   ENDDO
0105
                    PROMP=.FALSE.
0106
                    CALL PROMPT(MESSG, ASFD, PROMP)
0107
0108
                 AISINF -. FALSE.
0109
                 CALL CHAMOD
0110
        C PARAMETERS FOR SMALL AND LARGE VIEWPORT
0111
                 SVXST=BOTXS
0112
                 SVYST=BOTYS
0113
                 SVXLEN=BOTWIDE
0114
                 SVYLEN=TOPHEIT+BOTHEIT+DSBFV
0115
                 BVXST=DFXS
0116
                 BVYST=DFYS
0117
                 BVXLEN=DFWIDE
0118
                 BVYLEN=HEITMF+DFHEIT+DSBFV
0119
        111
                 FORMAT(5X,I)
0120
        222
                 FORMAT(5X,A)
0121
                 RETURN
0122
                 END
0001
0002
        C DRAW MENU WITH TEXT
                 SUBROUTINE MENUDR(XPOS, YPOS, WIDE, HEIT, DINT, ICF, NTEXT, TEXT, ICT)
0003
0004
                 COMMON /DSHVMW/DSBFH, DSBFV, WIDEMF, FINT
0005
                 COMMON /SIZMNC/ CHAWIDE, CHAHEIT
0006
                 CHARACTER*15 TEXT(NTEXT)
0007
                 CHAWIDE=2.0
8000
                 CHAHEIT=3.0
0009
                 XS=XPOS
0010
                 YS=YPOS
0011
                 CALL FEFRAME(XPOS, YPOS, WIDE, -HEIT, ICF)
0012
                 CALL HSFRAME(XPOS, YPOS, WIDE, HEIT, -DINT)
0013
                 XS=XS+DSBFV
0014
                 YS=YS-DINT/2.0
0015
        C ENQUIRE PREVIOUR CHARACTER SIZE
0016
                 CALL CHAENQ(ITO, WDO, HTO, NO, AIO, ANO)
0017
                 CALL CHASIZ (CHAWIDE, CHAHEIT)
0018
                 CALL LINCOL(ICT)
0019
                 DO I=1,NTEXT
0020
                    CALL MOVTO2(XS, YS)
0021
                    CALL CHASTR(TEXT(I))
0022
                    YS=YS-DINT
0023
                 ENDDO
0024
                 CALL CHASIZ (WDO, HTO)
0025
                 RETURN
0026
                 END
```

```
0001
0002
         C DRAW THE GENERAL INFORMATION PAD
0003
                 SUBROUTINE GENPAD
                 PARAMETER (MAXNL=20, HGENPAD_DFT=120.0, HEITFT_DFT=10.0,
0004
                             TFHEIT DFT=25.0, CHWDT DFT=5.0, CHHTT DFT=5.0,
0005
0006
                             NCRTV=2, NSUB=6)
0007
                 REAL FTXS(MAXNL), FTYS(MAXNL), VLXS(MAXNL), VLYS(MAXNL)
8000
                 REAL CHXP(MAXNL), CHYP(MAXNL)
                 REAL TBWIDE(MAXNL), TBHEIT(MAXNL), TBXS(MAXNL), TBYS(MAXNL)
0009
0010
                 REAL ASXP(MAXNL), ASYP(MAXNL)
0011
                 CHARACTER*20 ANSCRT(NCRTV), VPTCS
0012
                 CHARACTER*15 GMITEM(MAXNL), DMENT(NSUB)
0013
                 COMMON /PSCREN/ ORX, ORY, SXLEN, SYLEN
0014
                 COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0015
                                   BVXLEN, BVYLEN, BVXST, BVYST
0016
                 COMMON /DSHVMW/ DSBFH, DSBFV, WIDEMF, FINT, XSMF, YSMF, TFHEIT
                 COMMON /DIABOX/ DFXS, DFYS, WIDEPR, DFHEIT
0017
0018
                 COMMON /VIEWSIZE/ ANSCRT, VPTCS
0019
                 COMMON /GINFITEM/ NITEM, GMITEM
0020
                 COMMON /POSITEM/ ASXP, ASYP
0021
                 COMMON /PARGENPAD/ HGENPAD
0022
                 COMMON /PRSPEC/ XSCR, YSCR, XECR, YECR
0023
                 COMMON /SUBMENU1/ NSUBM, DMENT
0024
                 DATA (GMITEM(I), I=1,14)/'Chemical Name', 'Commercial Names',
                        '1','2','3','Manufacturer','Aston Code','Cost',
0025
0026
                        'Mol. Weight', 'Melting Point', 'Boiling Point',
              $
0027
                        'Colour','Other Descp. ','Note'/
                 DATA (DMENT(I), I=1, NSUB)/'Set View', 'Chem. Structure', 
'Infrared Spectr', 'UV Spectr',
0028
              $
0029
0030
                                            'Other Inf.','Quit'/
0031
                 NITEM=14
0032
                 NSUBM=NSUB
0033
         C ASSIGN SOME BASIC PARAMETERS FOR FRAMES
0034
                 IF (VPTCS .EQ. ANSCRT(1) .OR. VPTCS .EQ. ANSCRT(2)) THEN
0035
                   HGENPAD=HGENPAD DFT
0036
                   HEITFT-HEITFT DFT
0037
                   TFHEIT=TFHEIT DFT+DSBFV
0038
                   CHWDT=CHWDT DFT
0039
                   CHHTT-CHHTT DFT
0040
                   CHTXS=SVXLEN/4.0
0041
                   CHTYS=2.0*TFHEIT/5.0
0042
                   DSBTF=DSBFH
0043
                   CALL CLEAR(SVXST,SVXST,SVXST+SVXLEN,SVYST+SVYLEN)
0044
                 ELSE
0045
                   HGENPAD=HGENPAD DFT/2.0
0046
                   HEITFT-HEITFT DFT/2.0
0047
                   TFHEIT=TFHEIT DFT/2.0
                   CHWDT=CHWDT DFT/2.0
0048
0049
                   CHHTT=CHHTT DFT/2.0
0050
                   CHTXS=SVXLEN/3.0
0051
                   CHTYS=2.0*TFHEIT/5.0
0052
                   DSBTF=DSBFV
0053
                   CALL CLEAR (SVXST, SVYST, SVXST+SVXLEN, SVYST+SVYLEN)
0054
                 ENDIF
0055
                 RTCY=SVYST+HGENPAD
0056
                 WIDEFT=SXLEN/3.0
0057
                 WIDESF=(SVXLEN-DSBFV)/4.0
0058
        C DRAW THE SURROUNDING FRAME
0059
                 CALL FEFRAME(SVXST,SVYST,SVXLEN,SVYLEN,7)
0060
        C DRAW THE TITLE AND FRAME WITH IT
0061
                 TFXST=SVXST
0062
                 TFYST=SVYST+HGENPAD+DSBTF
0063
                 TFWIDE=SVXLEN
0064
                 ICGENPAD=7
0065
                 CALL LINCOL(ICGENPAD)
```

```
0066
                 CALL FEFRAME(TFXST, TFYST, TFWIDE, TFHEIT, 7)
                 CALL CHAENQ(ITO, WDO, HTO, NO, AIO, ANO)
0067
0068
                 CALL CHASIZ (CHWDT, CHHTT)
0069
                 CALL MOVTO2(TFXST+CHTXS, TFYST+CHTYS)
0070
                 CALL LINCOL(8)
                 CALL CHASTR('General Information*.')
0071
0072
                 CALL CHASIZ(WDO, HTO)
        C DRAW OTHER FRAMES IN THE GENPAD
0073
        C ASSIGN HORIZONTAL LINES' COORDINATES
0074
0075
                 FTXS(1)=SVXST
0076
                 FTYS(1)=RTCY-HEITFT
0077
                 FTXS(2)=SVXST
0078
                 FTYS(2)=RTCY-4.0*HEITFT
0079
                 FTXS(3)=SVXST+2.0*WIDEFT/3.0
0080
                 FTYS(3)=RTCY-2.0*HEITFT
0081
                 FTXS(4)=FTXS(3)
0082
                 FTYS(4)=RTCY-3.0*HEITFT
0083
                 NHL=12
0084
                 DO I=5, NHL
0085
                   FTXS(I)=SVXST
0086
                   FTYS(I)=RTCY-FLOAT(I)*HEITFT
0087
                   IF ( I .GT. 9) THEN
0088
                     FTYS(I)=RTCY-FLOAT(I-1)*HEITFT
0089
                   ENDIF
0090
                   IF (I .EQ. 9) THEN
0091
                     FTXS(I)=FTXS(I-1)+2.0*WIDESF+DSBFV
0092
                     FTYS(I) = FTYS(I-1)
0093
                   ENDIF
0094
                 ENDDO
0095
                 CALL LINCOL(ICGENPAD)
0096
                 CALL HOLINE(SVXST, RTCY, SVXLEN)
0097
                 DO I=1,NHL
0098
                   WIDEF=SVXLEN
0099
                   IF (I .EQ. 3 .OR. I .EQ. 4) THEN
0100
                     WIDEF=SVXLEN-2.0*WIDEFT/3.0
0101
                   ENDIF
0102
                   IF (I .EQ. 8 .OR. I .EQ. 9) THEN
0103
                     WIDEF=2.0*WIDESF
0104
                   ENDIF
0105
                   CALL HOLINE(FTXS(I),FTYS(I),WIDEF)
0106
                 ENDDO
0107
        C ASSIGN VERTICAL LINES' COORDINATES
0108
                 WIDECM=5.0*WIDEFT/6.0
0109
                 VLXS(1)=SVXST+WIDECM
0110
                 VLYS(1)=FTYS(1)
0111
                 VLXS(2)=SVXST+2.0*WIDEFT/3.0
0112
                 VLYS(2)=FTYS(2)
0113
                 VLXS(3)=SVXST+WIDEFT
0114
                 VLYS(3)=VLYS(2)
0115
                 VLXS(4)=VLXS(1)
0116
                 VLYS(4) = FTYS(7)
0117
                 VLXS(5)=SVXST+WIDESF
0118
                 VLYS(5) = FTYS(10)
0119
                 VLXS(6)=VLXS(5)+WIDESF
0120
                 VLYS(6)=VLYS(5)
0121
                 VLXS(7)=VLXS(6)+DSBFV
0122
                 VLYS(7)=VLYS(6)
0123
                 VLXS(8)=VLXS(7)+WIDESF
0124
                 VLYS(8)=VLYS(7)
0125
                 VLXS(9)=VLXS(1)
0126
                 VLYS(9)=SVYST
0127
                 NVL=9
0128
                 DO I=1,NVL
0129
                   HEITSF=3.0*HEITFT
0130
                   IF (I .EQ. 1) THEN
0131
                     HEITSF=HEITFT
```

```
ELSE IF(I .GE. 5 .AND. I .LE. 8) THEN
0132
0133
                      HEITSF=2.0*HEITFT
0134
                    ENDIF
0135
                    CALL VELINE(VLXS(I), VLYS(I), HEITSF)
0136
                  ENDDO
0137
         C ASSIGN COORDINATES FOR THE DESCRIPTERS IN PAD
0138
                  CHXS=WIDEFT/5.0
0139
                  CHYS=HEITFT/3.0
0140
                  CALL LINCOL(6)
0141
                  TBWIDE(1)=WIDECM
0142
                  TBHEIT(1)=HEITFT
0143
                  TBWIDE(2)=(2.0*WIDEFT/3.0)
0144
                  TBHEIT(2)=(3.0*HEITFT)
0145
                  DO I=3,5
0146
                    TBWIDE(I) = (WIDEFT/3.0)
0147
                    TBHEIT(I)=HEITFT
0148
                  ENDDO
0149
                 DO I=6.8
0150
                    TBWIDE(I)=WIDECM
0151
                    TBHEIT(I)=HEITFT
0152
                 ENDDO
0153
                 DO I=9,12
0154
                    TBWIDE(I)=WIDESF
0155
                    TBHEIT(I)=HEITFT
0156
                  ENDDO
0157
                 DO I=13, NITEM
0158
                    TBWIDE(I)=WIDECM
0159
                    TBHEIT(I)=HEITFT
0160
                  ENDDO
0161
                 DO I=1.NITEM
0162
                    TBXS(I) = TBWIDE(I)/5.0
0163
                    TBYS(I) = TBHEIT(I)/4.0
0164
                  ENDDO
0165
                  DO I=1, NITEM
0166
                    CHXP(I) = FTXS(I) + TBXS(I)
0167
                    CHYP(I) = FTYS(I) + TBYS(I)
0168
                    IF (I .GT. 5) THEN
0169
                      CHXP(I) = FTXS(I-1) + TBXS(I)
0170
                      CHYP(I) = FTYS(I-1) + TBYS(I)
0171
                    ENDIF
0172
                    IF (I .EQ. 2) CHYP(I) = FTYS(4) + HEITFT/2.0
0173
                    IF (I .EQ. 5) THEN
0174
                      CHXP(I)=FTXS(3)+TBXS(I)
0175
                      CHYP(I) = FTYS(2) + TBYS(I)
0176
                    ENDIF
                    IF (I .EQ. 10 .OR. I .EQ. 12) THEN
0177
0178
                      CHXP(I) = CHXP(I-1) + 2.0 * WIDESF + DSBFV
0179
                      CHYP(I)=CHYP(I-1)
0180
                    ENDIF
0181
                    IF (I .GT. 12) THEN
0182
                      CHXP(I) = CHXP(1)
0183
                      CHYP(I)=FTYS(10)-FLOAT(I-12)*HEITFT+TBYS(I)
0184
0185
                    CALL MOVTO2(CHXP(I), CHYP(I))
0186
                    CALL CHASTR(GMITEM(I;)
0187
                  ENDDO
0188
                 ASXP(1)=CHXP(1)+TBWIDE(1)
0189
                 ASYP(1) = CHYP(1)
0190
                 DO I=2, NITEM-1
0191
                    ASXP(I)=CHXP(I+1)+TBWIDE(I+1)
0192
                    ASYP(I)=CHYP(I+1)
0193
                 ENDDO
0194
         C SET WINDOW VALUES FOR SPECTRUM CHART
0195
                  IF (VPTCS .EQ. ANSCRT(1) .OR. VPTCS .EQ. ANSCRT(2)) THEN
0196
                    XSCR=BVXST
0197
                    XECR=BVXST+BVXLEN
```

```
0198
                   YSCR=SVYST
0199
                   YECR=SVYST+SVYLEN
0200
                 ELSE
                 . XSCR=SVXST+DSBFV
0201
0202
                   XECR=SVXST+SVXLEN-DSBFV
0203
                   YSCR=SVYST+HGENPAD+TFHEIT+DSBFH
0204
                   YECR=SVYST+SVYLEN-DSBFV
0205
                 ENDIF
0206
                 RETURN
0207
                 END
0001
0002
        C LIST ALL ENTRIES IN THE BASE, ENTRIES ARE SORTED
0003
                 SUBROUTINE LISTENTR
0004
                 PARAMETER (MAXENTRY=1000, MAXITM=20, NMSG=2)
0005
                 CHARACTER*2 EOS
0006
                 CHARACTER*20 MESSG(NMSG), ANSFD
0007
                 CHARACTER*20 ITEMS(MAXENTRY, MAXITM), ENTRL(MAXENTRY)
0008
                 COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0009
                                  BVXLEN, BVYLEN, BVXST, BVYST
                 COMMON /DSHVMW/ DSBFH, DSBFV
0010
                 DATA (MESSG(I), I=1, NMSG)/'Continue?','[RET] to continue!'/
0011
0012
                 DATA EOS/'*.'/
0013
        C READ ALL ENTRIES FROM THE NAMELIS FILE
0014
                 NIT=6
0015
                 NST=3
0016
                 NENT-0
0017
                 OPEN(UNIT=12,STATUS='OLD',FILE='NAMELIS.AIS')
0018
                   REWIND(UNIT=12)
0019
                   DO WHILE(.TRUE.)
0020
                     NENT=NENT+1
0021
                     DO I=1,NIT,NST
                       READ(12,111,END=100) (ITEMS(NENT,J),J=I,I+NST-1)
0022
0023
0024
                     ENTRL(NENT)=ITEMS(NENT,1)
0025
                   ENDDO
0026
        100
                 CLOSE(UNIT=12)
                 NENT=NENT-1
0027
0028
        C DISPLAY THE FIRST NAME ALL IDENTITIES, IT IS POSSIBLE TO
0029
        C EXTEND TO COVER ALL IDENTIFYING NAMES OR REQUEST
0030
                 CALL CLEAR(SVXST,SVYST,SVXST+SVXLEN,SVYST+SVYLEN)
0031
                 CALL FEFRAME(SVXST,SVYST,SVXLEN,SVYLEN,7)
0032
                 TLHEIT=10.0
0033
                 TYS=SVYST+SVYLEN-TLHEIT
0034
                 CALL FEFRAME(SVXST, TYS, SVXLEN, TLHEIT, 7)
0035
                 CALL MOVTO2(SVXST+40.0,TYS+3.0)
0036
                 CALL LINCOL(8)
                 CALL CHASTR('Entries in the Database*.')
0037
0038
                 NLPP=15
0039
                 NST=10
0040
                 TXN=SVXST+DSBFH
0041
                 RTX=SVXST+SVXLEN-DSBFH
0042
                 TPY=TYS-2.0*DSBFH
0043
                 BTY=SVYST+DSBFH
0044
                 YSHT=2.0*DSBFH
0045
                 CALL LINCOL(4)
0046
               DO I=1, NENT
0047
                   IF (I .EQ. 1 .OR. TXS .GT. RTX) THEN
0048
                     TXS=TXN
0049
                     TYS=TYS-YSHT
0050
0051
                     CALL POSPIC(XRTC, YRTC, ZRTC)
0052
                     TXS=XRTC+DSBFV
0053
                   ENDIF
0054
                   IF (TYS .LT. BTY) THEN
0055
                     CALL CLEAR (TAXS, TAYS, TAXE, TAYE)
```

```
0056
        C DISPLAY PROMP TO DECIDE CONT. OR QUIT
0057
                     PROMP=.FALSE.
0058
                     CALL PROMPT(MESSG(1), ANSFD, PROMP)
                     IF (ANSFD .EQ. 'N' .OR. ANSFD .EQ. 'NO') GOTO 200
0059
0060
                     TYS=TPY
0061
                     TXS=TXN
0062
                   ENDIF
0063
                   CALL MOVTO2(TXS, TYS)
0064
                   CALL CHASTR(ENTRL(I))
0065
                 FORMAT(10X, 3A20)
0066
        111
0067
                 CALL PROMPT(MESSG(2), ANSFD, PROMP)
0068
        200
                 RETURN
0069
                 END
0001
0002
        C ADD NEW ENTRY TO THE DATABASE
0003
                 SUBROUTINE ADDENTRY
0004
                 PARAMETER (MAXNL=20, MAXENTRY=1000)
0005
                 INTEGER IDSTRN(MAXENTRY)
0006
                 REAL XP(MAXNL), YP(MAXNL)
0007
                 CHARACTER*15 GMITEM(MAXNL)
8000
                 CHARACTER*20 GINFRP(MAXNL), DSITEM(MAXNL)
0009
                 CHARACTER*20 SITEM(MAXENTRY), TSITEM(MAXENTRY, MAXNL)
0010
                 LOGICAL PROMP
0011
                 COMMON /GINFITEM/ NITEM, GMITEM
0012
                 COMMON /AVGENINF/ NDITEM, GINFRP
0013
                 COMMON /POSITEM/ XP, YP
0014
                 EXTERNAL STR$CONCAT
0015
        C DISPLAY THE GENERAL INF. PAD
0016
                 CALL GENPAD
0017
        C NUMBER OF DISPLAYED ITEMS
0018
                 NDITEM-NITEM-1
0019
                 DSITEM(1)=GMITEM(1)
0020
        C CONCAT FUNCION
0021
                 DO I=2,4
                   CALL STR$CONCAT(DSITEM(I),GMITEM(2),GMITEM(I+1))
0022
0023
                 ENDDO
0024
                 DO I=5, NDITEM
0025
                   DSITEM(I)=GMITEM(I+1)
0026
                 ENDDO
0027
        C READ INPUT AND DISPLAY IT IN GENPAD
0028
                 PROMP=.TRUE.
0029
                 DO I=1, NDITEM
0030
                   CALL PROMPT(DSITEM(I),GINFRP(I),PROMP)
0031
                   CALL LINCOL(5)
0032
                   CALL MOVTO2(XP(I), YP(I))
0033
                   CALL CHASTR(GINFRP(I))
0034
                 ENDDO
0035
        C STORE THE INPUTS TO THE MAIN FILE
0036
                 NSTEP=3
0037
                 OPEN (UNIT=12, STATUS='OLD', ACCESS='APPEND',
0038
              $
                        FILE='MFILE.AIS')
0039
                   WRITE(12,111) NDITEM
0040
                   DO I=1, NDITEM, STEP
0041
                     IF ((NDITEM-I) .LT. NSTEP) THEN
0042
                        JE=NDITEM
0043
                     ELSE
0044
                       JE=I+NSTEP-1
0045
                     ENDIF
0046
                     WRITE(12,222) (GINFRP(J),J=I,JE)
0047
                   ENDDO
0048
                 CLOSE(UNIT=12)
0049
        C STORE THE IDENTIFYING NAMES IN NAMELIS FILE
0050
                 NIT=6
0051
                 NST=3
```

```
0052
                 OPEN (UNIT=12,STATUS='OLD',ACCESS='APPEND',
0053
                        FILE='NAMELIS.AIS')
0054
                   DO I=1, NIT, NST
0055
                      WRITE(12,222) (GINFRP(J), J=I, I+NST-1)
0056
                   ENDDO
0057
                 CLOSE(UNIT=12)
         C SORT THE NAMELIS FILE ACCORDING TO FIRST NAME (CHEM. NAME)
0058
0059
         C READ ALL ENTRYIES IN NAMELIS FILE
0060
                 NENT=0
0061
                 OPEN(UNIT=12, STATUS='OLD', FILE='NAMELIS.AIS')
0062
                    REWIND(UNIT=12)
0063
                   DO WHILE (.TRUE.)
0064
                      NENT=NENT+1
0065
                      DO I=1, NIT, NST
                        READ(12,222,END=100) (TSITEM(NENT,J),J=I,I+NST-1)
0066
0067
0068
                      SITEM(NENT)=TSITEM(NENT, 1)
0069
                      IDSTRN(NENT)=NENT
0070
                   ENDDO
0071
         100
                 CLOSE(UNIT=12)
0072
                 NENT=NENT-1
0073
                 CALL SSORT(NENT, SITEM, IDSTRN)
0074
         C STORE THE SORTED ENTRIES BACK TO NAMELIS FILE
0075
                 OPEN (UNIT=12, STATUS='NEW', FILE='NAMELIS.AIS')
0076
                   DO I=1, NENT
0077
                      IDS=IDSTRN(I)
0078
                      DO J=1,NIT,NST
0079
                        WRITE(12,222) (TSITEM(IDS,K), K=J, J+NST-1)
0080
0081
                   ENDDO
0082
                 CLOSE(UNIT=12)
0083
         C CALL INPUT PROCEDURE FOR THE DETAILED CONTENTS
0084
                 CALL INPTINF
0085
         111
                 FORMAT(10X,I)
0086
         222
                 FORMAT(10X, 3A20)
0087
                 RETURN
0088
                 END
0001
0002
        C INPUT THE INFORMATION INDICATED BY USER
0003
                 SUBROUTINE INPTINF
                 PARAMETER (MAXGF=20, MSTRC=100, MAXSPD=2000, MNLT=10, MNLPT=500,
0004
0005
                            NSEC=4, MAXM=10, MNDM=10, NCRT=2)
0006
                 INTEGER IDST(MSTRC)
0007
                 REAL XCST(MSTRC), YCST(MSTRC)
8000
                 REAL PXAC(MAXSPD), PYAC(MAXSPD)
                 CHARACTER*15 DMENT(MAXM), UNAVLM
0009
0010
                 CHARACTER*20 ASFD, ASCRT(NCRT), VPTCS
0011
                 CHARACTER*10 SECID, AVLSEC(NSEC), DSECID(NSEC)
0012
                 CHARACTER*20 GFITEM(MAXGF), REQUST, UPIT
0013
                 CHARACTER*80 TEXTPL(MNLPT)
0014
                 LOGICAL PROMP, NEWSTRC
0015
                 COMMON /PSCREN/ ORX, ORY, XALEN, YALEN
0016
                 COMMON /AVGENINF/ NGFIT, GFITEM
0017
                 COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0018
                                   BVXLEN, BVYLEN, BVXST, BVYST
0019
                 COMMON /VIEWSIZE/ ASCRT, VPTCS
0020
                 COMMON /DSHVMW/ DSBFV, DSBFH, WIDEMF, FINT, XSMF, YSMF
0021
                 COMMON /PSPCHART/ XSSPC, XESPC, YSSPC, YESPC
0022
                 COMMON /PRSPEC/ XSRSP, YSRSP, XERSP, YERSP
0023
                 COMMON /SECTID/ DSECID
0024
                 COMMON /SUBMENU1/ NDM, DMENT
0025
                 COMMON /UVSCALE/WAVS, WAVE, APSS, APSE
0026
                 DATA UNAVLM/'Not Available'/
0027
                 DATA DSECID/'STRUCTURE', 'IRSPECTR', 'UVSPECTR', 'LONTEXT'/
0028
        C PARAMETERS FOR STORING DATA
```

```
0029
                 NST=3
0030
                 NIDN=6
0031
                 NSSC=3
0032
                 NSP=4
0033
                 HEITMF=NDM*FINT
0034
                 ICF=8
0035
                 ICT=6
0036
         C DISPLAY THE WORKING MENU
                 OPEN (UNIT=12,STATUS='OLD',ACCESS='APPEND',
0037
0038
              $
                        FILE='MFILE.AIS')
0039
                 CALL GENDIS
0040
         100
                 CALL CLEAR(BVXST,SVYST,BVXST+WIDEMF,SVYST+SVYLEN)
0041
                 CALL MENUDR(XSMF, YSMF, WIDEMF, HEITMF, FINT, ICF,
0042
              $
                               NDM, DMENT, ICT)
0043
                 CALL MENUID (NDM, IDK)
0044
                 CALL MENUCL
0045
                 IDM=IDK-1
0046
                 GOTO(300,301,302,303,304,304),IDK
0047
         300
                 CALL SETVW
                 CALL GENDIS
0048
                 GOTO 100
0049
0050
         301
                 NEWSTRC=.TRUE.
0051
                 CALL CHEMSDC(NEWSTRC, NSTRC, IDST, XCST, YCST)
0052
                 CALL CLEAR(ORX, ORY, XALEN, YALEN)
0053
                 CALL MAINPAD
0054
                 WRITE(12,111) DSECID(IDM), NSTRC
0055
                 DO IS=1, NSTRC, NSSC
0056
                    IF ((NSTRC-IS) .LT. NSSC) THEN
0057
                      JE=NSTRC
0058
                    ELSE
0059
                      JE=IS+NSSC-1
0060
                    ENDIF
0061
                    WRITE(12,222) (IDST(JS),XCST(JS),YCST(JS),JS=IS,JE)
0062
                 ENDDO
0063
                 GOTO 100
0064
         302
                 CALL IRSCAN(NSPT, PXAC, PYAC)
0065
                 WRITE(12,111) DSECID(IDM), NSPT
0066
                 DO I=1, NSPT, NSP
0067
                    IF ((NSPT-I) .LT. NSP) THEN
0068
                      JEN=NSPT
0069
                    ELSE
0070
                      JEN=I+NSP-1
0071
                    ENDIF
0072
                    WRITE(12,333) (PXAC(J), PYAC(J), J=I, JEN)
0073
                 ENDDO
                 IF (VPTCS .EQ. ASCRT(1) .OR. VPTCS .EQ. ASCRT(2))THEN
0074
0075
                    CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0076
                 ENDIF
0077
                 GOTO 100
0078
         303
                 CALL UVSCAN(NUVSP, PXAC, PYAC)
0079
                 WRITE(12,111) DSECID(IDM), NUVSP
0800
                 WRITE(12,444) WAVS, WAVE, APSS, APSE
0081
                 DO I=1, NUVSP, NSP
0082
                    IF ((NUVSP-I) .LT. NSP) THEN
0083
                      JEN=NUVSP
0084
                    ELSE
0085
                      JEN=I+NSP-1
0086
                    ENDIF
0087
                   WRITE(12,333) (PXAC(J), PYAC(J), J=I, JEN)
0088
                 ENDDO
0089
                 IF (VPTCS .EQ. ASCRT(1) .OR. VPTCS .EQ. ASCRT(2)) THEN
0090
                    CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0091
                 ENDIF
0092
                 GOTO 100
0093
         304
                 CLOSE(UNIT=12)
00.94
         111
                 FORMAT(10X,A10,I)
```

```
0095
        222
                 FORMAT(10X,3(I3,2F8.3))
0096
        333
                 FORMAT(10X,8F8.3)
0097
        444
                 FORMAT(10X,2F5.1,2F5.3)
0098
                 RETURN
0099
                 END
0001
0002
        C THIS ROUTINE SORTE THE STRINGS
                 SUBROUTINE SSORT(NS, INS, IDOS)
0003
0004
                 CHARACTER*20 INS(NS), TEMP
0005
                 INTEGER FIRST, PASS, IDOS(NS)
0006
                 LOGICAL NOEXCH
0007
                 NOEXCH = .FALSE.
8000
                 PASS = 1
0009
                 DO WHILE (.NOT. NOEXCH)
0010
                    NOEXCH = .TRUE.
0011
                    DO FIRST = 1,NS-1
0012
                        IF (INS(FIRST) .GT. INS(FIRST+1)) THEN
                           TEMP = INS(FIRST)
0013
0014
                           INS(FIRST) = INS(FIRST+1)
                           INS(FIRST+1) = TEMP
0015
0016
                           IDT = IDOS(FIRST)
0017
                           IDOS(FIRST) = IDOS(FIRST+1)
0018
                           IDOS(FIRST+1) = IDT
0019
                           NOEXCH = .FALSE.
0020
                         ENDIF
0021
                    ENDDO
0022
                    PASS = PASS + 1
0023
                 ENDDO
0024
                 RETURN
0025
                 END
0001
0002
        C DELTE AN ENTRY FROM THE BASE, ACTUALLY DELETES ENTRIES BOTH
0003
        C IN NAMELIS AND MFILE
0004
                 SUBROUTINE DELENTRY
                 PARAMETER (MAXGF=20, MSTRC=100, MAXSPD=2000, MNLT=10, MNLPT=500,
0005
0006
              $
                            NSEC=3, NMESG=2)
0007
                 INTEGER IDST(MSTRC)
0008
                 REAL XCST(MSTRC), YCST(MSTRC)
0009
                 REAL PXAC(MAXSPD), PYAC(MAXSPD)
0010
                 CHARACTER*10 SECID, AVLSEC(NSEC), DSECID(NSEC)
0011
                 CHARACTER*20 ENTRYNM, MESSG(NMESG)
0012
                 CHARACTER*20 GFITEM(MAXGF), REQUST, UPIT
0013
                 CHARACTER*80 TEXTPL(MNLPT)
0014
                 LOGICAL PROMP
0015
                 DATA MESSG /'Please enter name','Not found, try again'/
0016
                 NIT=6
0017
                 NST=3
0018
                 PROMP=.TRUE.
0019
                 CALL PROMPT(MESSG(1), ENTRYNM, PROMP)
0020
                 CALL STR$UPCASE(ENTRYNM, ENTRYNM)
0021
        C DELETE THE ENTRY FROM NAMELIS FILE
0022
                 OPEN (UNIT=13,STATUS='NEW',FILE='TEMP.AIS')
                 OPEN (UNIT=12,STATUS='OLD',FILE='NAMELIS.AIS')
0023
0024
                   DO WHILE(.TRUE.)
0025
        100
                     DO I=1,NIT,NST
0026
                        READ(12,111,END=200)(GFITEM(J),J=I,I+NST-1)
0027
                     ENDDO
0028
                     DO I=1,NIT
0029
                        CALL STR$UPCASE(UPIT,GFITEM(I))
0030
                        IF (UPIT .EQ. ENTRYNM) THEN
0031
                          GOTO 100
0032
                        ENDIF
0033
                     ENDDO
0034
                     DO J=1,NIT,NST
```

```
0035
                       WRITE(13,111)(GFITEM(K),K=J,J+NST-1)
0036
                     ENDDO
0037
                   ENDDO
        200
0038
                 CLOSE(UNIT=12)
0039
                 CLOSE(UNIT=13)
                 CALL LIBSSPAWN('RENAME TEMP.AIS NAMELIS.AIS')
0040
        111
0041
                 FORMAT(10X, 3A20)
0042
                 RETURN
0043
                 END
0001
0002
        C SEARCH AN ENTRY IN THE BASE
0003
                 SUBROUTINE SEARCH
0004
                 PARAMETER (MAXNL=20)
0005
                 CHARACTER*20 REQUST, ITEMS(MAXNL), UPIT
                 CHARACTER*20 DIAMT(3), ASFD
0006
0007
                 EXTERNAL STR$UPCASE
0008
                 LOGICAL PROMP
                 DATA DIAMT /'Please enter name', 'Request found!',
0009
                              'Not found, try again?'/
0010
0011
                 NIT=6
0012
                 NSL=3
0013
        10
                 PROMP=.TRUE.
0014
                 CALL PROMPT(DIAMT(1), REQUST, PROMP)
0015
        C CHECK NAMELIS FILE TO SEE IF THE REQUEST IS IN THE BASE
0016
        C IF YES THEN OPEN THE MAIN FILE TO LOAD THE INFORMATION
0017
                 OPEN (UNIT-12, STATUS='OLD', FILE='NAMELIS.AIS')
0018
        100
                   DO I=1,NIT,NSL
0019
                     READ(12,111,END=200)(ITEMS(J),J=I,I+NSL-1)
0020
                   ENDDO
0021
                   DO I=1, NIT
0022
                     CALL STR$UPCASE(UPIT, ITEMS(I))
0023
                     CALL STR$UPCASE(REQUST, REQUST)
0024
        C LOAD THE CONTENTS OF THE REQUEST FOUND IN BASE
0025
                     IF (UPIT .EQ. REQUST) THEN
0026
                       PROMP=.FALSE.
0027
                        CALL PROMPT(DIAMT(2), ASFD, PROMP)
0028
                        CALL LOADINF(REQUST)
0029
                        CALL DISINF
0030
                       RETURN
0031
                     ENDIF
0032
                   ENDDO
0033
                   GOTO 100
0034
        200
                 CLOSE(UNIT=12)
        C DISPLAY THE UNAVAILABLE MESSAGE
0035
0036
                 PROMP=.FALSE.
0037
                 CALL PROMPT(DIAMT(3), ASFD, PROMP)
0038
                 IF (ASFD .EQ. 'YES' .OR. ASFD .EQ. 'Y') THEN
0039
                   GOTO 10
0040
                 ENDIF
0041
        111
                 FORMAT(10X,3A20)
0042
                 RETURN
0043
                 END
0001
0002
        C LOAD THE CONTENTS OF A REQUESTED ENTRY
0003
                 SUBROUTINE LOADINF(REQUST)
                 PARAMETER (MAXGF=20, MSTRC=100, MAXSPD=2000, MNLT=10, MNLPT=500,
0004
0005
                            NSEC=4)
0006
                 INTEGER IDST(MSTRC)
                 REAL XCST(MSTRC), YCST(MSTRC)
0007
                 REAL PXAC(MAXSPD), PYAC(MAXSPD), PXUV(MAXSPD), PYUV(MAXSPD)
8000
                 CHARACTER*10 SECID, AVLSEC(NSEC), DSECID(NSEC)
0009
                 CHARACTER*20 GFITEM(MAXGF), REQUST, UPIT
0010
                 CHARACTER*80 TEXTPL(MNLPT)
0011
               LOGICAL SCAV(NSEC), SECAV, ENDSEC
0012
```

```
0013
                  COMMON /AVLOG/ SCAV, SECAV
0014
                  COMMON /AVGENINF/ NGFIT, GFITEM
0015
                  COMMON /PARSTRC/NSTRC, IDST, XCST, YCST
0016
                  COMMON /PARSPEC/NSPT, PXAC, PYAC
0017
                  COMMON /PUVSPEC/NUVSP, PXUV, PYUV
0018
                  COMMON /PARTEXT/NTEXT, TEXTPL
0019
                  COMMON /SECTID/ DSECID
0020
                  COMMON /UVSCALE/ WAVS, WAVE, APSS, APSE
0021
         C READ THE NUMBER OF GENERAL INF. AND THE CONTENTS AFTERWARS
0022
                 NST=3
0023
                  NIDN=6
0024
                 NSSC=3
.0025
                 NSP=4
                  OPEN (UNIT=12,STATUS='OLD',FILE='MFILE.AIS')
0026
                    READ(12,111,END=100) NGFIT
0027
         10
0028
         20
                    DO I=1,NGFIT,NST
0029
                      IF ((NGFIT-I) .LT. NST) THEN
0030
                        JE=NGFIT
0031
                      ELSE
0032
                        JE=I+NST-1
0033
                      ENDIF
0034
                      READ(12,222)(GFITEM(J),J=I,JE)
0035
                    ENDDO
0036
                    ENDSEC=.FALSE.
0037
         50
                    READ(12,333,ERR=100,END=100) SECID,NCONT
0038
                    IF (SECID .EQ. DSECID(1)) THEN
0039
                      SCAV(1) = .TRUE.
0040
                      NSTRC=NCONT
0041
                      DO IS=1, NSTRC, NSSC
0042
                        IF ((NSTRC-IS) .LT. NSSC) THEN
0043
                          JE=NSTRC
0044
                        ELSE
0045
                          JE=IS+NSSC-1
0046
                        ENDIF
0047
                        READ(12,444)(IDST(J),XCST(J),YCST(J),J=IS,JE)
0048
                      ENDDO
0049
                   ELSE IF(SECID .EQ. DSECID(2)) THEN
0050
                      SCAV(2) = .TRUE.
0051
                      NSPT=NCONT
0052
                      DO IP=1, NSPT, NSP
0053
                        IF ((NSPT-IP) .LT. NSP) THEN
0054
                          JE=NSPT
0055
                        ELSE
0056
                          JE=IP+NSP-1
0057
                        ENDIF
0058
                        READ(12,555)(PXAC(J),PYAC(J),J=IP,JE)
0059
                      ENDDO
0060
                   ELSE IF(SECID .EQ. DSECID(3)) THEN
0061
                      SCAV(3) = .TRUE.
0062
                      NUVSP=NCONT
0063
                      READ(12,666) WAVS, WAVE, APSS, APSE
0064
                      DO IP=1, NUVSP, NSP
0065
                        IF ((NUVSP-IP) .LT. NSP) THEN
0066
                          JE=NUVSP
0067
                        ELSE
0068
                          JE=IP+NSP-1
0069
                        ENDIF
0070
                        READ(12,555)(PXUV(J),PYUV(J),J=IP,JE)
0071
0072
                    ELSE IF(SECID .EQ. DSECID(4)) THEN
0073
                      SCAV(4) = .TRUE.
0074
                      NTEXT=NCONT
0075
                      DO IT=1,NTEXT
0076
                        READ(12,777)TEXTPL(IT)
0077
                      ENDDO
0078
                   ELSE
```

```
0079
                       ENDSEC=.TRUE.
0880
                       NGFIT=13
0081
                       GOTO 100
0082
                    ENDIF
0083
                    GOTO 50
         100
0084
                    DO I=1, NIDN
0085
                       CALL STR$UPCASE(UPIT,GFITEM(I))
0086
                       IF (UPIT .EQ. REQUST) THEN
                         SECAV=.TRUE.
0087
0088
                         GOTO 200
0089
                       ENDIF
0090
0091
         C SET LOGICAL VALUE FOR ALL SECTIONS TO FALSE
0092
                    DO I=1, NSEC
0093
                       SCAV(I) = .FALSE.
0094
0095
                    IF (ENDSEC) THEN
0096
                       GOTO 20
0097
                    ELSE
0098
                       GOTO 10
0099
                    ENDIF
         C READ THE REST OF THE INFORMATION
0100
0101
         200
                  CLOSE(UNIT=12)
0102
         111
                  FORMAT(10X,I)
0103
         222
                  FORMAT(10X, 3A20)
         333
                  FORMAT(10X,A10,I)
0104
0105
         444
                  FORMAT(10X,3(13,2F8.3))
0106
         555
                  FORMAT(10X,8F8.3)
0107
         666
                  FORMAT(10X, 2F5.1, 2F5.3)
0108
         777
                  FORMAT(10X,A)
0109
                  RETURN
0110
                  END
0001
0002
         C DISPLAY ALL AVAILABLE INFORMATION ON REQUEST
0003
                  SUBROUTINE DISINF
0004
                  PARAMETER (MAXGF=20, MSTRC=100, MAXSPD=2000, MNLT=10, MNLPT=500,
0005
               $
                              NSEC=4, MAXM=10, NMESG=2, NCRT=2)
0006
                  INTEGER IDST(MSTRC)
0007
                  REAL XCST(MSTRC), YCST(MSTRC)
                  REAL PXAC(MAXSPD), PYAC(MAXSPD), PXUV(MAXSPD), PYUV(MAXSPD)
0008
0009
                  CHARACTER*10 SECID, AVLSEC(NSEC), DSECID(NSEC)
0010
                  CHARACTER*15 DMENT(MAXM)
0011
                  CHARACTER*20 ASFD, ASCRT(NCRT), VPTCS
0012
                  CHARACTER*20 GFITEM(MAXGF), REQUST, UPIT, MESSG(NMESG)
0013
                  CHARACTER*80 TEXTPL(MNLPT)
0014
                  LOGICAL SCAV(NSEC), SECAV, PROMP
0015
                  COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
                                    BVXLEN, BVYLEN, BVXST, BVYST
0016
0017
                  COMMON /VIEWSIZE/ ASCRT, VPTCS
                  COMMON /DSHVMW/ DSBFV, DSBFH, WIDEMF, FINT, XSMF, YSMF
0018
0019
                  COMMON /AVLOG/ SCAV, SECAV
0020
                  COMMON /PARSTRC/NSTRC, IDST, XCST, YCST
0021
                  COMMON /PARSPEC/NSPT, PXAC, PYAC
                  COMMON /PUVSPEC/NUVSP,PXUV,PYUV
COMMON /PARTEXT/NTEXT,TEXTPL
COMMON /PRSPEC/ XSRSP,YSRSP,XERSP,YERSP
COMMON /AVGENINF/ NITEM, GFITEM
0022
0023
0024
0025
                  COMMON /SUBMENU1/ NDM, DMENT
0026
                  COMMON /UVSCALE/WAVS, WAVE, APSS, APSE
0027
                  DATA (MESSG(I), I=1, NMESG)/'Not Available','[RET] continue!'/
0028
0029
         C IF ANY SECTIONS AVAILABLE THEN DISPLAY GENERAL INF.
0030
         C AND THE MENU FOR THE REST
0031
                  HEITMF=NDM*FINT
0032
                  ICF=8
0033
                  ICT=6
```

```
0034
                 CALL GENDIS
0035
         100
                 IF (SECAV) THEN
0036
                    CALL MENUDR(XSMF, YSMF, WIDEMF, HEITMF, FINT, ICF,
              $
0037
                                 NDM, DMENT, ICT)
0038
                    CALL MENUID(NDM, IDK)
0039
                    CALL MENUCL
0040
                    IDM=IDK-1
0041
                    GOTO(300,301,302,303,304,304),IDK
0042
         C SET VIEWPORT
0043
         300
                  CALL SETVW
0044
                  CALL GENDIS
0045
                  GOTO 100
0046
         C DISPLAY CHEMICAL STRUCTURE
0047
         301
                 IF (SCAV(IDM)) THEN
0048
                    NEWSTRC=.FALSE.
0049
                    CALL CHEMSDC(NEWSTRC, NSTRC, IDST, XCST, YCST)
0050
0051
                    PROMP=.FALSE.
0052
                    CALL PROMPT(MESSG(1), ASFD, PROMP)
0053
                 ENDIF
0054
                  GOTO 100
0055
         C DISPLAY SPECTRUM
                 IF (SCAV(IDM)) THEN
0056
         302
0057
                    CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0058
                    CALL IRDISP(NSPT, PXAC, PYAC, 8)
0059
                    PROMP=.FALSE.
0060
                    CALL PROMPT(MESSG(2), ASFD, PROMP)
                    IF (VPTCS .EQ. ASCRT(1) .OR. VPTCS .EQ. ASCRT(2)) THEN
0061
0062
                      CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0063
                    ENDIF
0064
                 ELSE
0065
                    PROMP=.FALSE.
0066
                    CALL PROMPT(MESSG(1), ASFD, PROMP)
0067
                  ENDIF
0068
                  GOTO 100
0069
         303
                  IF (SCAV(IDM)) THEN
0070
                    CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0071
                    CALL UVDISP(NUVSP, PXUV, PYUV, 8)
0072
                    PROMP=.FALSE.
0073
                    CALL PROMPT(MESSG(2), ASFD, PROMP)
0074
                    IF (VPTCS .EQ. ASCRT(1) .OR. VPTCS .EQ. ASCRT(2)) THEN
0075
                      CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0076
                    ENDIF
0077
                  ELSE
0078
                    PROMP=.FALSE.
0079
                    CALL PROMPT(MESSG(1), ASFD, PROMP)
0080
                 ENDIF
0081
                  GOTO 100
0082
         C OTHER TEXT INFORMATION
0083
         304
                    RETURN
0084
                  ELSE
0085
                    PROMP=.FALSE.
0086
                    CALL PROMPT(MESSG(1), ASFD, PROMP)
0087
                    RETURN
0088
                  ENDIF
0089
                  END
0001
0002 .
         C UTILITY ROUTINE FOR INFORMATION RETRIEVAL
0003
                  SUBROUTINE UTILTY
0004
                  PARAMETER (NDM=2, NCRT=2)
0005
                  CHARACTER*15 DMENT(NDM)
                  CHARACTER*20 ASFD, ASCRT(NCRT), VPTCS
0006
0007
                  COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0008
              $
                                   BVXLEN, BVYLEN, BVXST, BVYST
0009
                  COMMON /VIEWSIZE/ ASCRT, VPTCS
```

```
0010
                 COMMON /DSHVMW/ DSBFV, DSBFH, WIDEMF, FINT, XSMF, YSMF
0011
                 DATA DMENT/'Compare Spectra','Quit'/
0012
        C IF ANY SECTIONS AVAILABLE THEN DISPLAY GENERAL INF.
0013
        C AND THE MENU FOR THE REST
0014
                 HEITMF=NDM*FINT
0015
                 ICF=8
0016
                 ICT=6
        100
0017
                 CALL MENUDR(XSMF, YSMF, WIDEMF, HEITMF, FINT, ICF,
              $
0018
                              NDM, DMENT, ICT)
                 CALL MENUID (NDM, IDM)
0019
0020
                 CALL MENUCL
0021
                 GOTO(300,301), IDM
0022
        300
                 CALL COMPSPECT
0023
                 GOTO 100
0024
        301
                 RETURN
0025
                 END
0001
0002
        C COMPARE SPECTRA OF SEVERAL SAMPLES
0003
                 SUBROUTINE COMPSPECT
                 PARAMETER (MAXGF=20, MSTRC=100, MAXSPD=2000, MNLT=10, MNLPT=500,
0004
              $
0005
                            NSEC=4, MNCOMP=10)
                 INTEGER IDST(MSTRC),NIRSP(MNCOMP),NUVSP(MNCOMP)
0006
0007
                 REAL XCST(MSTRC), YCST(MSTRC)
                 REAL PXIR(MAXSPD), PYIR(MAXSPD), PXUV(MAXSPD), PYUV(MAXSPD)
8000
0009
                 REAL IRXCP(MNCOMP, MAXSPD), IRYCP(MNCOMP, MAXSPD)
0010
                 REAL UVXCP(MNCOMP, MAXSPD), UVYCP(MNCOMP, MAXSPD)
0011
                 REAL WVS(MNCOMP), WVE(MNCOMP), APS(MNCOMP), APE(MNCOMP)
0012
                 CHARACTER*10 SECID, DSECID(NSEC)
0013
                 CHARACTER*20 GFITEM(MAXGF), REQUST(MNCOMP), UPIT
0014
                 CHARACTER*20 MESSG(MNCOMP), ASFD
0015
                 CHARACTER*80 TEXTPL(MNLPT)
                 LOGICAL SCAV(MNCOMP, NSEC), SECAV(MNCOMP), ENDSEC(MNCOMP), PROMP
0016
0017
                 COMMON /SECTID/ DSECID
0018
                 COMMON /NAMESTOCOMP/ NBNMS, REQUST
0019
                 COMMON /NIRUV/NIRSP, NUVSP
0020
                 COMMON /IRCOMP/ IRXCP, IRYCP
0021
                 COMMON /UVCOMP/ UVXCP, UVYCP, WVS, WVE, APS, APE
                 DATA (MESSG(I), I=1,2)/'How many samples', 'Enter name'/
0022
0023
        C READ IN NAMES OF SAMPLES TO COMPARE
0024
                 PROMP=.TRUE.
0025
                 CALL PROMPT(MESSG(1), ASFD, PROMP)
0026
                 READ(UNIT=ASFD, FMT='(12)') NBNMS
0027
                 CALL READNAME (MESSG(2))
0028
        C READ THE NUMBER OF GENERAL INF. AND THE CONTENTS AFTERWARS
0029
                 NST=3
0030
                 NIDN=6
0031
                 NSSC=3
0032
                 NSP=4
0033
                 OPEN (UNIT=12, STATUS='OLD', FILE='MFILE.AIS')
0034
                 DO 200 IDN=1, NBNMS
0035
                   REWIND(UNIT=12)
0036
                   READ(12,111,END=100) NGFIT
0037
        20
                   DO I=1,NGFIT,NST
0038
                         ((NGFIT-I) .LT. NST) THEN
0039
                        JE=NGFIT
0040
                      ELSE
0041
                        JE=I+NST-1
0042
                      ENDIF
0043
                      READ(12,222)(GFITEM(J),J=I,JE)
0044
                   ENDDO
0045
                   ENDSEC(IDN) = . FALSE.
0046
                   READ(12,333,ERR=100,END=100) SECID,NCONT
0047
                   IF (SECID .EQ. DSECID(1)) THEN
0048
                      SCAV(IDN,1)=.TRUE.
0049
                     NSTRC=NCONT
```

```
0050
                      DO IS=1, NSTRC, NSSC
0051
                        IF ((NSTRC-IS) .LT. NSSC) THEN
0052
                          JE=NSTRC
0053
                        ELSE
0054
                          JE=IS+NSSC-1
0055
                        ENDIF
                        READ(12,444)(IDST(J),XCST(J),YCST(J),J=IS,JE)
0056
0057
                      ENDDO
0058
                   ELSE IF(SECID .EQ. DSECID(2)) THEN
0059
                      SCAV(IDN, 2) = .TRUE.
0060
                      NIRSP(IDN)=NCONT
0061
                      DO IP=1, NIRSP(IDN), NSP
0062
                        IF ((NIRSP(IDN)-IP) .LT. NSP) THEN
0063
                          JE=NIRSP(IDN)
0064
0065
                          JE=IP+NSP-1
0066
                        ENDIF
0067
                        READ(12,555)(PXIR(J),PYIR(J),J=IP,JE)
0068
0069
                    ELSE IF(SECID .EQ. DSECID(3)) THEN
0070
                      SCAV(IDN, 3) = .TRUE.
0071
                      NUVSP(IDN)=NCONT
0072
                      READ(12,666) WAVS, WAVE, APSS, APSE
0073
                      DO IP=1, NUVSP(IDN), NSP
0074
                        IF ((NUVSP(IDN)-IP) .LT. NSP) THEN
0075
                          JE=NUVSP(IDN)
0076
                        ELSE
0077
                          JE=IP+NSP-1
0078
                        ENDIF
                        READ(12,555)(PXUV(J),PYUV(J),J=IP,JE)
0079
0080
0081
                    ELSE IF(SECID .EQ. DSECID(4)) THEN
0082
                      SCAV(IDN, 4) = .TRUE.
0083
                      NTEXT=NCONT
0084
                      DO IT=1,NTEXT
0085
                        READ(12,777)TEXTPL(IT)
0086
                      ENDDO
0087
                    ELSE
0088
                      ENDSEC(IDN)=.TRUE.
0089
                      NGFIT=13
                      GOTO 100
0090
0091
                    ENDIF
0092
                    GOTO 50
0093
         100
                    DO I=1, NIDN
0094
                      CALL STR$UPCASE(UPIT,GFITEM(I))
0095
                      CALL STR$UPCASE(REQUST(IDN), REQUST(IDN))
0096
                      IF (UPIT .EQ. REQUST(IDN)) THEN
0097
                        SECAV(IDN)=.TRUE.
0098
                        DO IR=1, NIRSP(IDN)
0099
                          IRXCP(IDN,IR)=PXIR(IR)
0100
                          IRYCP(IDN,IR)=PYIR(IR)
0101
                        ENDDO
0102
                        WVS(IDN)=WAVS
0103
                        WVE(IDN)=WAVE
0104
                        APS(IDN)=APSS
0105
                        APE(IDN)=APSE
0106
                        DO IUV=1,NUVSP(IDN)
0107
                          UVXCP(IDN, IUV)=PXUV(IUV)
0108
                          UVYCP(IDN, IUV)=PYUV(IUV)
0109
                        ENDDO
0110
                        GOTO 200
0111
                      ENDIF
0112
                    ENDDO
0113
         C SET LOGICAL VALUE FOR ALL SECTIONS TO FALSE
0114
                    DO I=1,NSEC
0115
                      SCAV(IDN+1,I)=.FALSE.
```

```
0116
                    ENDDO
                    IF (ENDSEC(IDN)) THEN
0117
0118
                      GOTO 20
0119
0120
                      GOTO 10
0121
                    ENDIF
        C READ THE REST OF THE INFORMATION
0122
         200
0123
                 CONTINUE
0124
                  CLOSE(UNIT=12)
                  CALL DISCOMP
0125
         111
0126
                  FORMAT(10X,I)
         222
0127
                  FORMAT(10X,3A20)
0128
         333
                 FORMAT(10X,A10,I)
         444
0129
                 FORMAT(10X,3(13,2F8.3))
         555
0130
                  FORMAT(10X,8F8.3)
0131
         666
                  FORMAT(10X,2F5.1,2F5.3)
0132
         777
                  FORMAT(10X,A)
0133
                  RETURN
0134
                  END
0001
0002
         C DISPLAY THE COMPARISION OF IR AND UV SPECTRA
0003
                  SUBROUTINE DISCOMP
                  PARAMETER (MAXGF=20, MSTRC=100, MAXSPD=2000, MNLT=10, MNLPT=500,
0004
              $
0005
                             NSEC=4, MAXM=10, NMESG=2, NCRT=2, MNCOMP=10, NDM=4)
0006
                  INTEGER NIRSP(MNCOMP),NUVSP(MNCOMP)
0007
                 REAL IRXCP(MNCOMP, MAXSPD), IRYCP(MNCOMP, MAXSPD)
8000
                  REAL UVXCP(MNCOMP, MAXSPD), UVYCP(MNCOMP, MAXSPD)
0009
                  REAL XDS(MAXSPD), YDS(MAXSPD)
                  REAL WVS(MNCOMP), WVE(MNCOMP), APS(MNCOMP), APE(MNCOMP)
0010
0011
                  CHARACTER*20 REQUST(MNCOMP)
0012
                  CHARACTER*20 MESSG(MNCOMP)
0013
                  LOGICAL PROMP, COMPAR
0014
                  CHARACTER*10 SECID, AVLSEC(NSEC), DSECID(NSEC)
0015
                  CHARACTER*15 DMENT(MAXM)
0016
                  CHARACTER*20 ASFD, ASCRT(NCRT), VPTCS
0017
                  COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0018
                                   .BVXLEN, BVYLEN, BVXST, BVYST
0019
                  COMMON /VIEWSIZE/ ASCRT, VPTCS
                  COMMON /DSHVMW/ DSBFV, DSBFH, WIDEMF, FINT, XSMF, YSMF COMMON /PRSPEC/ XSRSP, YSRSP, XERSP, YERSP
0020
0021
0022
                  COMMON /COMPARISON/ COMPAR, IDN
0023
                  COMMON /NAMESTOCOMP/ NBNMS, REQUST
0024
                  COMMON /NIRUV/ NIRSP, NUVSP
0025
                  COMMON /IRCOMP/ IRXCP, IRYCP
0026
                  COMMON /UVCOMP/ UVXCP, UVYCP, WVS, WVE, APS, APE
0027
                  COMMON /UVSCALE/ WAVS, WAVE, APSS, APSE
0028
                  DATA (MESSG(I), I=1, NMESG)/'Not Available','[RET] continue!'/
                  DATA (DMENT(I), I=1, NDM)/'Set View', 'Infrared Spect',
0029
0030
              $
                                            'UV Spectra', 'Quit'/
0031
                  COMPAR = . TRUE .
0032
         C IF ANY SECTIONS AVAILABLE THEN DISPLAY GENERAL INF.
0033
         C AND THE MENU FOR THE REST
0034
                  HEITMF=NDM*FINT
0035
                  ICF=8
0036
                  ICT=6
0037
         100
                  CALL MENUDR(XSMF, YSMF, WIDEMF, HEITMF, FINT, ICF,
0038
                               NDM, DMENT, ICT)
0039
                  CALL MENUID(NDM, IDK)
0040
                  CALL MENUCL
0041
                  IDM=IDK-1
0042
                  GOTO(300,301,302,303),IDK
0043
         C SET VIEWPORT
0044
         300
                  CALL SETVW
0045
                  CALL GENDIS
0046
                 GOTO 100
```

```
C DISPLAY SPECTRUM
0047
0048
         301
                 CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0049
                 DO IDN=1, NBNMS
0050
                    DO J=1,NIRSP(IDN)
                      XDS(J) = IRXCP(IDN, J)
0051
                      YDS(J) = IRYCP(IDN, J)
0052
0053
                    ENDDO
0054
                    CALL IRDISP(NIRSP(IDN), XDS, YDS, IDN+1)
0055
                 ENDDO
0056
                 PROMP=.FALSE.
                 CALL PROMPT(MESSG(2), ASFD, PROMP)
0057
                 IF (VPTCS .EQ. ASCRT(1) .OR. VPTCS .EQ. ASCRT(2)) THEN
0058
0059
                    CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0060
                 ENDIF
0061
                 GOTO 100
0062
         302
                 CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0063
                 DO IDN=1, NBNMS
0064
                    WAVS=WVS(IDN)
0065
                    WAVE=WVE(IDN)
0066
                   APSS=APS(IDN)
0067
                   APSE=APE(IDN)
0068
                    DO J=1, NUVSP(IDN)
0069
                      XDS(J)=UVXCP(IDN,J)
0070
                      YDS(J)=UVYCP(IDN,J)
.0071
                 . ENDDO
0072
                    CALL UVDISP(NUVSP(IDN), XDS, YDS, IDN+1)
0073
                 ENDDO
0074
                 PROMP=.FALSE.
0075
                 CALL PROMPT(MESSG(2), ASFD, PROMP)
                  IF (VPTCS .EQ. ASCRT(1) .OR. VPTCS .EQ. ASCRT(2)) THEN
0076
0077
                    CALL CLEAR(XSRSP, YSRSP, XERSP, YERSP)
0078
                 ENDIF
0079
                  GOTO 100
         C OTHER TEXT INFORMATION
0080
0081
         303
                  COMPAR = . FALSE .
0082
                 RETURN
0083
                  END
0001
0002
         C ROUTINE TO READ IN A LIST OF NAMES
0003
                  SUBROUTINE READNAME (TEXT)
0004
                  PARAMETER (MNAME=10)
0005
                  INTEGER SMGID, PBD, KBD, VROW, VCOL
0006
                  CHARACTER*20 IDNAME
                  CHARACTER*20 NAMES(MNAME)
0007
0008
                  CHARACTER*20 TEXT
0009
                  CHARACTER*25 DISPRP
0010
                  LOGICAL PROMP
0011.
                  COMMON /DSHVMW/ DSBFH, DSBFV, WIDEM, FINT
0012
                  COMMON /DIABOX/ DFXS, DFYS, WIDEPR, DFHEIT
0013
                  COMMON /SMGPAR/ SMGID, PBD, KBD, VROW, VCOL
0014
                  COMMON /DFTCHAR/ DCHWD, DCHHT
0015
                  COMMON /NAMESTOCOMP/ NINPT, NAMES
0016
                  CALL CHAENQ(ITO, WDO, HTO, NIO, AIO, ANO)
0017
                  CHWD=DCHWD
0018
                  CHHT=DCHHT
0019
                  CALL CHASIZ (CHWD, CHHT)
0020
                  WIDEPR=80.0
0021
                  BXS=DFXS+DSBFH
0022
                  BYS=DFYS+DSBFV
0023
                  BXE=DFXS+WIDEPR-DSBFH
0024
                  BYE=DFYS+DFHEIT-DSBFV
0025
                  VROW=24
0026
                  VCOL=31
0027
                  DO IN=1, NINPT
0028
                    WRITE(UNIT=IDNAME, FMT='(12)')IN
```

```
0029
                   CALL LINCOL(6)
0030
                  CALL MOVTO2 (DFXS+WIDEPR, DFYS)
0031
                   CALL LINBY2(0.0, DFHEIT)
0032
                   CALL LINCOL(4)
                   CALL STR$CONCAT(DISPRP, TEXT, IDNAME)
0033
                   CALL MOVTO2(BXS,BYS+DSBFV)
0034
0035
                   CALL CHASTR(DISPRP)
0036
                   CALL CHAMOD
                   CALL SMG$SET CURSOR ABS(SMGID, VROW, VCOL)
0037
                   READ(5,111) \overline{N}AMES(\overline{I}\overline{N})
0038
0039
                   CALL DIATCL
                   CALL CLEAR(BXS, BYS, BXE, BYE)
0040
0041
                 ENDDO
0042
                 CALL CHASIZ(WDO, HTO)
        111
0043
                 FORMAT(A)
0044
                 RETURN
0045
0001
0002
        C ROUTINE TO DISPLAY THE GENERAL INFORMATION PAD AND CONTENTS
0003
                 SUBROUTINE GENDIS
0004
                 PARAMETER (MAXGF=20)
0005
                 REAL XPG(MAXGF), YPG(MAXGF)
0006
                 CHARACTER*20 GMITEM(MAXGF)
                 COMMON /AVGENINF/ NITEM, GMITEM COMMON /POSITEM/ XPG, YPG
0007
8000
                 CALL GENPAD
0009
0010
                 DO I=1, NITEM
0011
                    CALL LINCOL(5)
0012
                    CALL MOVTO2(XPG(I), YPG(I))
0013
                    CALL CHASTR(GMITEM(I))
0014
                 ENDDO
0015
                 RETURN
0016
                 END
0001
0002
         C DRAW HORIZONTOL LINE
0003
                  SUBROUTINE HOLINE(XSPOS, YSPOS, XLEN)
0004
                  CALL MOVTO2(XSPOS, YSPOS)
                  CALL LINBY2(XLEN, 0.0)
0005
0006
                 RETURN
0007
                  END
0001
         C DRAW VERTICAL LINE
0002
0003
                  SUBROUTINE VELINE(XSPOS, YSPOS, YLEN)
0004
                  CALL MOVTO2(XSPOS, YSPOS)
0005
                  CALL LINBY2(0.0, YLEN)
0006
                 RETURN
0007
                  END
0001
0002
         C********************
0003
         C** 6
                   ROUTINE TO DRAW A FRAME
0004
                  SUBROUTINE FEFRAME(XSPOS, YSPOS, FWIDE, FHEIT, FCOL)
0005
                  INTEGER FCOL
0006
                  CALL LINCOL(FCOL)
0007
                  CALL MOVTO2(XSPOS, YSPOS)
8000
                  CALL LINBY2(0.0, FHEIT)
0009
                  CALL LINBY2(FWIDE, 0.0)
0010
                  CALL LINBY2(0.0,-FHEIT)
0011
                  CALL LINBY2(-FWIDE, 0.0)
0012
                  RETURN
0013
                  END
```

```
0001
        C**********************************
0002
        C***
                DRAW HORIZONTAL INTERVALED FRAME
0003
                SUBROUTINE HSFRAME(XSPOS, YSPOS, FWIDE, FHEIT, FINTV)
0004
                NFR=INT(ABS(FHEIT/FINTV))
0005
0006
                XS=XSPOS
                YS=YSPOS
0007
                DO I=1,NFR
0008
0009
                  YS=YS+FINTV
0010
                  CALL MOVTO2(XS,YS)
0011
                  CALL LINBY2(FWIDE, 0.0)
0012
                ENDDO
0013
                RETURN
0014
                END
0001
        C***********************************
0002
                DRAW VERTICAL INTERVALED FRAME
0003
                SUBROUTINE VSFRAME(XSPOS, YSPOS, FWIDE, FHEIT, FINTV)
0004
0005
                XS=XSPOS
0006
                YS=YSPOS
0007
                NFR=INT((FWIDE/FINTV))
8000
               DO I=1,NFR
0009
                  XS=XS+FINTV
0010
                  CALL MOVTO2(XS,YS)
0011
                  CALL LINBY2(0.0, FHEIT)
0012
                ENDDO
0013
                RETURN
0014
                END
0001
0002
0003
        C**********************************
0004
        C****
                  DRAW THE LARGE FRAME
0005
                SUBROUTINE LGFRAME
        C*******************************
0006
0007
                COMMON /PSCREN/XST, YST, XLEN, YLEN
0008
                ICOL=8
0009
                CALL FEFRAME(XST, YST, XLEN, YLEN, ICOL)
0010
                RETURN
0011
                END
0001
0002
        C SUBROUTINE TO DISPLAY AND CONSTRUCTE CHEMICAL STRUCTURES
0003
                SUBROUTINE CHEMSDC(NEWSTRC, NCSG, ID, XPS, YPS)
0004
                PARAMETER (NCSTC=200, NCRITV=2)
0005
                INTEGER ID(NCSTC)
0006
                REAL XPS(NCSTC), YPS(NCSTC)
0007
                CHARACTER*20 ASCRIT(NCRITV), VIEWCS
0008
                LOGICAL NEWSTRC
0009
                COMMON /PSCREN/ ORX, ORY, XALEN, YALEN
0010
                COMMON /VIEWPT/ SVXLEN, SVYLEN, SVXST, SVYST,
0011
                                 BVXLEN, BVYLEN, BVXST, BVYST
0012
                COMMON /VIEWSIZE/ ASCRIT, VIEWCS
                COMMON /DSHVMW/ DSBFH, DSBFV, WIDEMF, FINT, XSMF, YSMF, TFHEIT
0013
0014
                 COMMON /PARGENPAD/ HGENPAD
0015
                COMMON /BSTCSIZ/HEIT, WIDS, R
0016
        C DEFINE KEYS
0017
        C F..... FETCH THE OBJECT
0018
        C P..... PLACE IT
0019
        C M..... MOVE THE OBJECT CHOSEN
0020
        C D..... DELETE THE OBJECT
0021
        C C..... CLEAN OUT EVERYTHING HAS BEING DRAWN
0022
        C Q..... QUIT CONSTRUCTION OPERATRION
0023
        C E.... END CONSTRUCTION
0024
                CALL CURSTR('FPMDCQE')
```

```
0025
        C GLOBAL VARIABLES FOR THE SIZE OF BASIC STRUCTURES
0026
                 HEIT=12.0
0027
                WIDS=10.0
0028
                 R = 3.0
        C DEFINE A REGION FOR THE DISPLAY OF STRUCTURE IN AIS
0029
                 IF (VIEWCS .EQ. ASCRIT(1) .OR. VIEWCS .EQ. ASCRIT(2)) THEN
0030
                   XSDR=BVXST
0031
0032
                   XEDR=BVXST+BVXLEN
                   YSDR=SVYST
0033
0034
                   YEDR=SVYST+SVYLEN
                ELSE
0035
                   XSDR=SVXST+DSBFV
0036
0037
                   XEDR=SVXST+SVXLEN-DSBFV
0038
                   YSDR=SVYST+HGENPAD+2.0*DSBFV+TFHEIT
0039
                   YEDR=SVYST+SVYLEN-DSBFV
0040
                 ENDIF
0041
                 CALL CLEAR(XSDR, YSDR, XEDR, YEDR)
0042
                 XCDR=XSDR+(XEDR-XSDR)/2.0
0043
                 YCDR=YSDR+(YEDR-YSDR)/2.0
                 IF (NEWSTRC) THEN
0044
0045
                    CALL CLEAR(ORX, ORY, XALEN, YALEN)
0046
                    CALL CHEMFORM(NCSG, ID, XPS, YPS)
0047
0048
        C DISPLAY THE STRUCTURE IN A DEFINED REGION
0.049
                    CALL MOVTO2(XSDR+10.0, YSDR+DSBFV)
0050
                    CALL LINCOL(5)
0051
                    CALL CHASTR('Chemical Structure*.')
0052
                    CALL LINCOL(6)
0053
                    CALL MAXMIN(NCSG, XPS, YPS, XMAX, XMIN, YMAX, YMIN)
0054
                    XCST=XMIN+(XMAX-XMIN)/2.0
0055
                    YCST=YMIN+(YMAX-YMIN)/2.0
0056
                    DO I=1,NCSG
0057
                       XCDS=XPS(I)+(XCDR-XCST)
0058
                       YCDS=YPS(I)+(YCDR-YCST)
0059
                       CALL DRBSTC(ID(I), XCDS, YCDS)
0060
                    ENDDO
0061
                 ENDIF
0062
                 RETURN
0063
                 END
0001
0002
        C*************************
0003
                 SUBROUTINE CLEARBUF(NSTC)
0004
        C**********************
0005
        C CLEAR ALL PICTURE SEGMENTS
0006
                 DO I=1,NSTC
0007
                    CALL PICDEL(I)
8000
                 ENDDO.
0009
                 RETURN
0010
                 END
0001
0002
        C PROGRAM TO DRAW SOME SIMPLE CHEMICAL STRUCTURES INTERACTIVELY
0003
        C NR ..... NUMBER OF ROWS WHICH DISPLAY THE BASIC STRUCTURES
0004
        C NBS ..... NUMBER OF BASIC STRUCTURES IN EACH ROW
0005
        C HEIT ..... HEIGHT OF BASIC STRUCTURE
0006
          WIDS ..... WIDTH OF BASIC STRUCTURE
0007
        C R ..... RADIUS OF CIRCLE IN BENZENE RING
0008
                 SUBROUTINE CHEMFORM(NSEG, STRC, XPS, YPS)
0009
                 PARAMETER (NR=2, NBS=12, NBST=24, MSEG=2000)
0010
                 REAL XL(NR, NBS), XR(NR, NBS), YB(NR, NBS), YT(NR, NBS)
0011
                 REAL XPS(MSEG), YPS(MSEG)
                 INTEGER STRC(MSEG)
0012
0013
                 COMMON /BSTCSIZ/HEIT, WIDS, R
0014
                 COMMON /GFEVEN/KEY, IMPKEY, IMPDAT, NSG, XCRT, YCRT,
```

```
NARGS, ARGS (80)
0015
0016
                 CALL FRAME
                 RLEN=20.0
0017
0018
                 RHEIT=15.0
        C SET THE COORDINATES RANGE FOR EACH STRUCTURE
0019
                 DO I=1,NR
0020
                    DO J=1,NBS
0021
                        XL(I,J)=(J-1)*RLEN
0022
0023
                        XR(I,J)=J*RLEN
                        YB(I,J)=(I-1)*RHEIT
0024
                        YT(I,J)=I*RHEIT
0025
0026
                    ENDDO
0027
                 ENDDO
0028
        C PICK UP A STRUCTURE
0029
                 NSEG=0
        10
                 CALL INDICAT(XRC, YRC, IKEY)
0030
0031
                 GOTO (101,102,103,104,105,106,107,10), IKEY
        101
0032
                 DO I=1,NR
0033
                    DO J=1,NBS
                        IF (XRC .GT. XL(I,J) .AND. XRC .LT. XR(I,J) .AND.
0034
              $
0035
                            YRC .GT. YB(I,J) .AND. YRC .LT. YT(I,J)) THEN
0036
                           ID STRC=(I-1)*NBS+J
0037
                           GOTO 10
0038
                        ENDIF
0039
                     ENDDO
                 ENDDO
0040
        C IF THE POSITION INDICATED FOR PLACING STRUC. IS INTO MENU AREA
0041
0042
        C THEN START OVER AGAIN
        102
                 IF (YRC .LE. 30.0) GOTO 10
0043
        C PLACE THE STRUCTURE AND START AS A NEW SEGMENT
0044
0045
                 NSEG=NSEG+1
0046
                 XPS(NSEG) = XRC
0047
                 YPS(NSEG)=YRC
0048
                 STRC(NSEG)=ID STRC
0049
                 CALL PICBEG(NSEG)
                 CALL LINCOL(6)
0050
0051
                 CALL MOVTO2(XRC, YRC)
                 CALL DRBSTC(ID_STRC, XRC, YRC)
0052
                 CALL PICEND
0053
                 GOTO 10
0054
         103
                 CALL DRAG(NSEG)
0055
0056
                 XPS(NSEG)=XCRT
                 YPS(NSEG)=YCRT
0057
0058
                 STRC(NSEG)=ID STRC
0059
                 GOTO 10
                 CALL PICDEL(NSEG)
         104
0060
                 GOTO 10
0061
0062
         105
                 CALL CLEARBUF(NSEG)
0063
                 NSEG=0
                 GOTO 10
0064
0065
         107
                 CALL CHAMOD
                 CALL CLEARBUF(NSEG)
0066
         106
0067
         1000
                 RETURN
0068
                 END
0001
0002
         C DRAW THE FRAME WITH THE DISPLAY OF BASIC STRUCTURES
0003
                 SUBROUTINE FRAME
0004
                 PARAMETER (NR=2, NBS=12)
0005
                 REAL XC(NR, NBS), YC(NR, NBS)
0006
                 CHARACTER*20 MENITM(7)
0007
                 DATA MENITM /'E ... End ','Q ... Quit',
8000
              $
                                'C ... Clean '
                                                'D ... Delete ',
0009
              $
                                              ,'P ... Posit',
                                'M ... Move '
              $
0010
                                'F ... Fetch '/
0011
                 COMMON /BSTCSIZ/HEIT, WIDS, R
```

```
0012
                 XS=0.0
0013
                 YS=0.0
0014
                 XLEN=238.0
0015
                 YLEN=178.0
0016
                 CALL LINCOL(8)
                 CALL MOVTO2(XS, YS)
0017
0018
                 CALL LINBY2(0.0, YLEN)
                 CALL LINBY2(XLEN, 0.0)
0019
                 CALL LINBY2(0.0,-YLEN)
0020
                 CALL LINBY2(-XLEN, 0.0)
0021
0022
                 HETTT=YLEN-20.0
                 CALL MOVTO2(0.0, HETTT)
0023
                 CALL LINBY2(XLEN, 0.0)
0024
0025
        C DISPLAY TITLE
0026
                 XPT=35.0
0027
                 YPT=HETTT+5.0
0028
                 CALL CHAENQ(IENQ, OWID, OHET, NENQ, AEM, AEN)
0029
                 CALL CHASIZ(5.0,5.0)
0030
                 CALL MOVTO2(XPT, YPT)
0031
                 CALL LINCOL(4)
0032
                 CALL CHASTR('Interactive Drawing of Structures*.')
0033
                 CALL CHASIZ (OWID, OHET)
0034
        C DRAW FRAMES FOR THE BASIC STRUCTURES
0035
                 CALL LINCOL(8)
0036
                 RHEIT=30.0
0037
                 CALL MOVTO2(0.0, RHEIT)
0038
                 CALL LINBY2(XLEN, 0.0)
0039
                 CALL MOVTO2(0.0,RHEIT/2.0)
0040
                 CALL LINBY2(XLEN, 0.0)
0041
                 RLEN=20.0
                 DO I=1,12
0042
0043
                    CALL MOVTO2(I*RLEN,RHEIT)
0044
                    CALL LINBY2(0.0,-RHEIT)
0045
                 ENDDO
0046
        C DRAW AREA FOR THE MENUE
0047
                 XST=10*RLEN
0048
                 YST=RHEIT
0049
                 CALL MOVTO2(XST, YST)
0050
                 CALL LINBY2(0.0, HETTT-RHEIT)
0051
                 CALL MOVTO2(XST, HETTT-20.0)
0052
                 CALL LINBY2(38.0,0.0)
0053
        C ASSIGN COODINATES OF CENTER FOR EACH BASIC STRUCTURE
0054
        C AND DISPLAY THEM
0055
                 CALL LINCOL(4)
0056
                 DO I=1,NR
0057
                    DO J=1,NBS
0058
                        XC(I,J)=RLEN/2.0+(J-1)*RLEN
0059
                        YC(I,J)=RHEIT/4.0+(I-1)*(RHEIT/2.0)
0060
                        ID STRC=(I-1)*NBS+J
0061
                        CALL DRBSTC(ID STRC,XC(I,J),YC(I,J))
0062
                    ENDDO
0063
                 ENDDO
        C DISPLAY THE MENUE ON THE RIGHT HAND SIDE OF THE FRAME
0064
0065
                 CALL LINCOL(5)
0066
                 CALL MOVTO2(XST+15, HETTT-10.0)
0067
                 CALL CHASTR('KEYS*.')
0068
                 DO I=1,7
0069
                    CALL MOVTO2(XST+5,RHEIT+I*10.0)
0070
                    CALL CHASTR(MENITM(I))
0071
                 ENDDO
0072
                 RETURN
0073
                 END
0001
0002
         C ***********************
0003
                 SUBROUTINE INDICAT(XRC, YRC, IKEY)
```

```
COMMON /GFEVEN/KEY, IMPKEY, IMPDAT, NSEG, XPIC, YPIC,
0004
                                  NARGS, ARGS (80)
0005
                 IND=1000
0006
                 XST=120.0
0007
                 YST=60.0
0008
                 CALL PICBEG(IND)
0009
                     CALL LINCOL(3)
0010
                     CALL MOVTO2(XST, YST)
0011
                     CALL MOVTO2(XST-1.0, YST)
0012
                     CALL LINBY2(2.0,0.0)
0013
                     CALL MOVTO2(XST, YST-1.0)
0014
                     CALL LINBY2(0.0,2.0)
0015
0016
                 CALL PICEND
                 CALL LINCOL(4)
0017
0018
                 CALL DRAG(IND)
                 CALL PICDEL(IND)
0019
0020
                 IKEY=KEY
0021
                 XRC=XPIC
0022
                 YRC=YPIC
0023
                 RETURN
0024
                  END
0001
         C DRAW BASIC STRUCTURES FOR DISPLAY OR CONSTRUCTION
0002
                  SUBROUTINE DRBSTC(IDS, XANC, YANC)
0003
                  XRC=XANC
0004
                  YRC=YANC
0005
                  GOTO (201,202,203,204,205,206,207,208,209,210,211,212,
0006
                        213,214,215,216,217,218,219,220,221,222,223,224),IDS
              $
0007
         201
0008
                  CALL STRC1(XRC, YRC)
                  GOTO 10
0009
0010
         202
                  CALL STRC2(XRC, YRC)
0011
                  GOTO 10
0012
         203
                  CALL STRC3(XRC, YRC)
                  GOTO 10
0013
0014
         204
                  CALL STRC4(XRC, YRC)
                  GOTO 10
0015
         205
                  CALL STRC5(XRC, YRC)
0016
                  GOTO 10
0017
                  CALL STRC6(XRC, YRC)
0018
         206
0019
                  GOTO 10
                  CALL STRC7(XRC, YRC)
0020
         207
                  GOTO 10
0021
         208
0022
                  CALL STRC8(XRC, YRC)
0023
                  GOTO 10
         209
                  CALL STRC9(XRC, YRC)
0024
0025
                  GOTO 10
         210
0026
                  CALL STRC10(XRC, YRC)
0027
                  GOTO 10
         211
0028
                  CALL STRC11(XRC, YRC)
0029
                  GOTO 10
         212
                  CALL STRC12(XRC, YRC)
0030
0031
                  GOTO 10
0032
         213
                  CALL STRC13(XRC, YRC)
0033
                  GOTO 10
0034
         214
                  CALL STRC14(XRC, YRC)
0035
                  GOTO 10
0036
        .215
                  CALL STRC15(XRC, YRC)
0037
                  GOTO 10
0038
         216
                  CALL STRC16(XRC, YRC)
0039
                  GOTO 10
0040
         217
                  CALL STRC17(XRC, YRC)
0041
                  GOTO 10
0042
         218
                  CALL STRC18(XRC, YRC)
0043
                  GOTO 10
0044
         219
                  CALL STRC19(XRC, YRC)
```

```
GOTO 10
0045
        220
                 CALL STRC20(XRC, YRC)
0046
                 GOTO 10
0047
        221
                 CALL STRC21(XRC, YRC)
0048
                 GOTO 10
0049
        222
                 CALL STRC22(XRC, YRC)
0050
                 GOTO 10
0051
        223
                 CALL STRC23(XRC, YRC)
0052
                 GOTO 10
0053
        224
                 CALL STRC24(XRC, YRC)
0054
        10
0055
                 RETURN
0056
                 END
0001
         C SUBROUTINE TO DRAW A BENZENE RING
0002
                  SUBROUTINE STRC1(XC,YC)
0003
0004
                  COMMON /BSTCSIZ/HEIT, WIDS, R
0005
                 X TOP=XC
                   TOP=YC+HEIT/2.0
0006
                  CALL BENS1 (-WIDS, -HEIT, X TOP, Y TOP)
0007
                 CALL BENS1 (WIDS, -HEIT, X TOP, Y TOP)
0008
0009
                  CALL CIRCL(XC,YC,R)
                 RETURN
0010
0011
                  END
0001
         C DRAW CIRCLE
0002
                  SUBROUTINE CIRCL(XC,YC,R)
0003
0004
                  NP=20
                  TWPI=2.0*3.141596
0005
0006
                  THINC=TWPI/NP
0007
                  THETA=0.0
0008
                  CALL MOVTO2(XC+R,YC)
0009
                  DO I=1,NP+1
                     X=XC+R*COS(THETA)
0010
                     Y=YC+R*SIN(THETA)
0011
0012
                     CALL LINTO2(X,Y)
0013
                     THETA=THETA+THINC
                  ENDDO
0014
0015
                  RETURN
                  END
0016
0001
         C DRAW TWO SIDES OF A BENZENE RING
0002
0003
                  SUBROUTINE BENS1 (HMOV, VMOV, XS, YS)
0004
                  CALL MOVTO2(XS,YS)
0005
                  CALL LINBY2(0.5*HMOV,VMOV/4.0)
0006
                  CALL LINBY2(0.0,VMOV/2.0)
0007
                  CALL LINBY2(-0.5*HMOV,VMOV/4.0)
8000
                  RETURN
0009
                  END
0001
0002
         C DRAW TWO SIDES OF A HBENZENE RING
0003
                  SUBROUTINE BENS2(HMOV, VMOV, XS, YS)
0004
                  CALL MOVTO2(XS,YS)
0005
                  CALL LINBY2(HMOV/4.0,0.5*VMOV)
                  CALL LINBY2(HMOV/2.0,0.0)
0006
                  CALL LINBY2(HMOV/4.0,-0.5*VMOV)
0007
8000
                  RETURN
0009
                  END
0001
0002
         C DRAW HRIZONTAL BENZENE RING
0003
                  SUBROUTINE STRC2(XC,YC)
0004
                  COMMON /BSTCSIZ/HEIT, WIDS, R
```

```
X TOP=XC-HEIT/2.0
0005
0006
                 Y TOP=YC
                 CALL BENS2(HEIT, WIDS, X TOP, Y TOP)
0007
                 CALL BENS2(HEIT, -WIDS, X TOP, Y TOP)
0008
0009
                 CALL CIRCL(XC,YC,R)
0010
                 RETURN
0011
                 END
0001
0002
       . C DRAW NITROXYL STRUCTURE
0003
                 SUBROUTINE STRC3(XC,YC)
0004
                 COMMON /BSTCSIZ/HEIT, WIDS, R
0005
                 CALL BSD3(WIDS, HEIT, XC, YC)
0006
                 CALL BSD3(WIDS,-HEIT,XC,YC)
0007
                 RETURN
0008
                 END
0001
        C DRAW BACKWARD NITROXYL
0002
0003
                 SUBROUTINE STRC4(XC,YC)
0004
                 COMMON /BSTCSIZ/HEIT, WIDS, R
0005
                 CALL BSD3(-WIDS, HEIT, XC, YC)
0006
                 CALL BSD3(-WIDS,-HEIT,XC,YC)
0007
                 RETURN
0008
                 END
0001
        C BASIC DRAWING ROUTINE
0002
0003
                 SUBROUTINE BSD3(HMOV, VMOV, XC, YC)
0004
                 XS=XC+HMOV/2.0
0005
                 YS=YC
0006
                 CALL MOVTO2(XS,YS)
0007
                 CALL LINBY2(-HMOV/4.0,VMOV/3.0)
0008
                 CALL LINBY2(-HMOV/2.0,0.0)
0009
                 CALL POSPIC(XN, YN, ZN)
0010
                 CALL LINBY2(-HMOV/8.0,-VMOV/8.0)
0011
                 CALL MOVTO2(XN, YN)
0012
                 CALL LINBY2(-HMOV/8.0, VMOV/6.0)
0013
                 CALL MOVTO2(XN,YN)
0014
                 CALL LINBY2(HMOV/8.0, VMOV/6.0)
0015
                 NC=ICHAR('N')
0016
                 XS=XC-HMOV/3.0
0017
                 YS=YC
0018
                 CALL DRACHA(NC, XS, YS)
0019
                 RETURN
0020
                 END
0001
        C DRAW STRUCTURE OCO
0002
0003
                 SUBROUTINE STRC5(XC, YC)
0004
                 COMMON /BSTCSIZ/HEIT, WIDS, R
0005
                 CLEN=HEIT/4.0
0006
                 NC=ICHAR('O')
0007
                 XS=XC-1.0*CLEN
0008
                 YS=YC
0009
                 CALL DRACHA(NC, XS, YS)
0010
                 NC=ICHAR('C')
0011
                 XS=XC
0012
                 CALL DRACHA(NC, XS, YS)
0013
                 NC=ICHAR('O')
0014
                 XS=XC+1.0*CLEN
0015
                 CALL DRACHA(NC, XS, YS)
0016
                 RETURN
0017
                 END
0001
```

0013 0014 0015			STRUCTURE COO SUBROUTINE STRC6(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R CLEN=HEIT/4.0 NC=ICHAR('C') XS=XC-1.0*CLEN YS=YC CALL DRACHA(NC,XS,YS) NC=ICHAR('O') XS=XC CALL DRACHA(NC,XS,YS) XS=XC CALL DRACHA(NC,XS,YS) XS=XC+1.0*CLEN CALL DRACHA(NC,XS,YS) RETURN END
			STRUCTURE tBu SUBROUTINE STRC7(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R CLEN=HEIT/4.0 NC=ICHAR('t') XS=XC-1.0*CLEN YS=YC CALL DRACHA(NC,XS,YS) NC=ICHAR('B') XS=XC CALL DRACHA(NC,XS,YS) NC=ICHAR('u') XS=XC+1.0*CLEN CALL DRACHA(NC,XS,YS) RETURN END
0001 0002 0003 0004 0005 0006		DRAW	CHARACTER C SUBROUTINE STRC8(XC,YC) NC=ICHAR('C') CALL DRACHA(NC,XC,YC) RETURN END
0001 0002 0003 0004 0005 0006		DRAW	CHARACTER H SUBROUTINE STRC9(XC,YC) NC=ICHAR('H') CALL DRACHA(NC,XC,YC) RETURN END
0001 0002 0003 0004 Cu05 0006 0007 0008	С	DRAW	CH2 SUBROUTINE STRC10(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R CLEN=HEIT/4.0 NCH=ICHAR('2') CALL BSD5(CLEN,NCH,XC,YC) RETURN END
0001 0002 0003 0004 0005 0006	C	DRAW	CH3 SUBROUTINE STRC11(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R CLEN=HEIT/4.0 NCH=ICHAR('3')

0007 0008 0009			CALL BSD5(CLEN,NCH,XC,YC) RETURN END
0001 0002 0003 0004 0005 0006 0007	С	DRAW	DOT . SUBROUTINE STRC12(XC,YC) CALL MOVTO2(XC,YC) CALL DOT(0.3) RETURN END
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012	С		COMBINED CHARACTER SUBROUTINE BSD5(CHLEN,NC,XC,YC) CLEN=CHLEN XS=XC-1.0*CLEN YS=YC CALL STRC8(XS,YS) XS=XC CALL STRC9(XS,YS) XS=XC+1.0*CLEN YS=YC-CLEN/2.0 CALL DRACHA(NC,XS,YS) RETURN END
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010	c	DRAW	A VERICAL LINE SUBROUTINE STRC13(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R XS=XC YS=YC+HEIT/4.0 CALL MOVTO2(XS,YS) CALL LINBY2(0.0,-HEIT/2.0) RETURN END
0001 0002 0003 0004 0005 0006 0007 0008 0009	С	DRAW	A HORIZONTAL LINE SUBROUTINE STRC14(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R XS=XC-HEIT/4.0 YS=YC CALL MOVTO2(XS,YS) CALL LINBY2(HEIT/2.0,0.0) RETURN END
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011	С	DRAW	A DOUBLE VERTICAL LINE SUBROUTINE STRC15(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R DIS=HEIT/8.0 XNC=XC-DIS/2.0 YNC=YC CALL STRC13(XNC,YNC) XNC=XNC+DIS CALL STRC13(XNC,YNC) RETURN END
0001 0002 0003 0004	С	DRAW	A DOUBLE HORIZONTAL LINE SUBROUTINE STRC16(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R

0005 0006 0007 0008 0009 0010 0011			DIS=HEIT/8.0 YNC=YC+DIS/2.0 XNC=XC CALL STRC14(XNC,YNC) YNC=YNC-DIS CALL STRC14(XNC,YNC) RETURN END
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013 0014	С	DRAW	CHARACTER SUBROUTINE DRACHA(NCHAR, XC, YC) COMMON /BSTCSIZ/HEIT, WIDS, R CALL CHAENQ(IT, OSX, OSY, NI, AI, AN) CSX=HEIT/4.0 CSY=HEIT/4.0 CALL CHASIZ(CSX, CSY) XS=XC-CSX/4.0 YS=YC-CSY/2.0 CALL MOVTO2(XS, YS) CALL CHAASC(NCHAR) CALL CHASIZ(OSX, OSY) RETURN END
0001 0002 0003 0004 0005 0006	С	DRAW	LEFT INCLINED LINE SUBROUTINE STRC17(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R CALL BSD4(WIDS,HEIT,XC,YC) RETURN END
0001 0002 0003 0004 0005 0006 0007	С	DRAW	RIGHT INCLINED LINE SUBROUTINE STRC18(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R CALL BSD4(WIDS,-HEIT,XC,YC) RETURN END
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010	С	DRAW	INCLINED LINE SUBROUTINE BSD4(RLEN,RHEIT,XC,YC) HMOV=RLEN/2.0 VMOV=RHEIT/4.0 XS=XC-HMOV/2.0 YS=YC-VMOV/2.0 CALL MOVTO2(XS,YS) CALL LINBY2(HMOV,VMOV) RETURN END
0001 0002 0003 0004 0005 0006 0007	С	DRAW	CHARACTER N SUBROUTINE STRC19(XC,YC) NC=ICHAR('N') CALL DRACHA(NC,XC,YC) RETURN END
0001 0002 0003 0004 0005	С	DRAW	CHARACTER O SUBROUTINE STRC20(XC,YC) NC=ICHAR('O') CALL DRACHA(NC,XC,YC)

0006 0007	RETURN END
0001 0002 0003 0004 0005 0006 0007	C DRAW CHARACTER P SUBROUTINE STRC21(XC,YC) NC=ICHAR('P') CALL DRACHA(NC,XC,YC) RETURN END
0001 0002 0003 0004 0005 0006	C DRAW CHARACTER S SUBROUTINE STRC22(XC,YC) NC=ICHAR('S') CALL DRACHA(NC,XC,YC) RETURN END
0001 0002 0003 0004 0005 0006	C DRAW CHARACTER X SUBROUTINE STRC23(XC,YC) NC=ICHAR('X') CALL DRACHA(NC,XC,YC) RETURN END
0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 0011 0012 0013	C DRAW CHARACTER Me SUBROUTINE STRC24(XC,YC) COMMON /BSTCSIZ/HEIT,WIDS,R CLEN=HEIT/4.0 NC=ICHAR('M') XS=XC-CLEN/2.0 YS=YC CALL DRACHA(NC,XS,YS) NC=ICHAR('e') XS=XC+CLEN/2.0 CALL DRACHA(NC,XS,YS) RETURN END

CRETI to start		Exit	Ubilities	Search	Delete Entry	Add New Entry	List Entries	Set Viewport	
		the screen. Another is by the screen. Another is by the the dialog box at the bottom	Operation Guide There are two ways to communicate with the				This is a small database for the management of chemical information about polymer additives. It		A I S

[RET] to continue!							
	č	SOM	MOD+	MOD	CHEM		,
	ocarpore		MO05	MOD	CHNGM	Entries in the Database	0
	8	TECT	NEW 1	M001	DHBP		
		TECTN	NEWS	M002	DTBP		

	- = \ / z o -	OH N COOCH 2 CH 2 OOC ✓ N	Interactive Drawing of Structures
I	סר		ruct
СН2	S		ures
СНЗ	×		
	30	KEYS Fatch Pasit Dalete Quit	

							Quit	polici Titt.	Office Total	UU Spectr	Infrared Spectr	Chem. Structure	Set View ~	
	Note	Other Descp.	Bailing Paint	Mol. Weight	Cost	Aston Code	Manufacturer		Cammerclal Name		Chemical Name	S	D.	я І
				508.0				ω	n	-		a	5	S
					128.8	10001				Abso	ОНВР	1 L	- - -	
			Colour	Melting Paint	B/d					Absorber		acter at Turni macro-	2	
			Yellowish	128.8 C									J	

DRETT continue!									Quit	Other Inf.	UU Spectr	Infrared Spectr	Chem. Structure	Set View ~	
	Other Descp.	Point	180	Aston Code	Manufacturer	Commercial Name	Chemical Name		Chemical Structure						A I S
		Colour Colour	128.0 p/g	UU881		Rbsorber	DHBP	General Information			(
		nt Teb. 0 C													

