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SUMMARY

The conformational characteristics of  poly(dimethylsiimethylena),
poly(dimethylsilethene), poly(dimethylsilethane) and a related matarial,

poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentans), have been investigatsd
using the method of molecular mechanics. in this method, a quantitative
analysis of the factors affecting the nature and magnitude of ihe bond

rotation potentials governing their conformational behaviour has been
undertaken. Along with their structural data, the results obtained were
employed to calculate a variety of conformationally-dependent properties for
these polymers, including the characteristic ratio, the dipole moment ratio and

the mean-square radius of gyration.

In addition, the dielectric relaxation behaviour of two samples of
poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane) with molar masses
M, =28000 and M, =46000 respectively, have been studied as a function
of temperature (179K-205K) and frequency (100-10%Hz). Activation energies
for the a-relaxation process and Davidson-Cole empirical distribution faciors,
3, have been calculated.

KEYWORDS: STATISTICAL WEIGHT, CHARACTERISTIC RATIO, DIPOLE
MOMENT RATIO, DAVIDSON-COLE RELAXATION, ACTIVATION ENERGIES.
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CHAPTER 1

INTRODUCTION

Computer Simulation of Molecular Systems

Computational chemistry is a branch of chemistry that has enjoyed a
growing interest from experimental chemists during recent vearsV In this
discipline, chemical problems are investigated by the application of
computational methods. In many cases, such investigations involve
programming computers to simulate complex malecular systems. The aim of
these computer simulations is to compute macroscopic behaviour from

microscopic interactions.

The two main contributions that a microscopic analysis can offer is an
understanding and interpretation of experimentally determined results and the
capability to interpolate or extrapolate experimental data into regions that are
extremely difficult to access in the laboratory. With the arrival of ever more
powerful computers, many previously unexplored realms of theorefical

chemistry are now open to such computational examination.

The recent growth in the number of computer simulation meathods
used in chemistry and physics is directly related to the rapid increage in
computing power over the last three decades. The ratio of price {0

parformance has also increased by an order of magnitude every five to gavan

18



years1, and there is no sign of any weakening in the trend. As the power and

performance of computers continues to increase, the ability of computer
simulations to complement experimentally determined results will become

more and more prominent.

Conformational Analysis of Polymers

It is well known that the conformational behaviour of a palymer molecula
is an important factor in determining its chemical and physical properties. For
example, the overall dipole moment of a polymer molecule can be attributed
to the vectorial sum of the individual bond dipoiesQ, or the probability that a
polymer will dissolve in a particular solvent will he depandent upon how tha
conformational properties of the polymer are affeciad in the solvent
environment3#4. For this and other reasons, the use of computational
methods in the investigation of conformationally-dependent properties of

polymers has become increasingly popular during the last twenty years.

Early investigations into conformational behaviour concentrated on the

5 and

n-alkanes® and simple polymer structures such as polymethylene
polypropyieneﬁ. However, during the 1970's and 1980's, the general interest
in molecular modelling and conformational analysis techniques increased, and
to date many flexible molecules and polymers with very varied molacular
structures have been subjected to a theoretical investigation. The currant [iaf

of palymers that have now been examined in this way includes, palysilanes’,

polysiloxanesa, polvkstonesg and polypaptidasm,

20



The three most common conformational-dependent quantities that are

usually calculated in order to characterise a polymer chain are

1. The mean-square distance between chain ends, <r2>i
2. The mean-square dipole moment, <H2>: and
3. The mean-square radius of gyration, <g?>,

In general, the theoretical calculation of the above three quantities is
based on short range interactions occurring between atoms separated by anly
a few skeletal bonds. Long range interactions hetween remote sections of the
chain and possible solvent effects are ignored. In recagnition of this fact,
they are commonly referred to as unperturbed quantities and are dssignated

by the subscript zero.

The unperturbed mean-square distance between the chain ends, <r2>0,
is an important quantity in characterising a polymer chain since it is a
measure of the average chain dimensions. Polymers for which <r2>0 is large

tend to be stiff, extended chains whereas polymers with low values tend to

be chains that are flexible and more coiled.

The unperturbed mean-square dipole moment, <p‘2>0, is an important
quantity when characterising a polymer chain with polar bonds or polar

branched side groups. The value of <u2

>, can indicate the potential use of
a polymer as a dielectric material and can be an important paramater in the
study of polymer liquid-crystals. Polymers with large values of «:uz‘)ﬂ tend

to exhibit better dielectric properties when compared to polymers with low

valuss. Since most of the inferest in the pasi has bean concernad with tha

o
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mechanical properties of polymers, considerable work is now being performed
examining their electrical and dielectric properties, particularly their potential

use in the electronics industry.

The unperturbed mean-square radius of gyration, <52>0, is a measure
of the average distance of a chain element from the centre of gravity of the
chain, and for sufficiently large chains it is related to the quantity <r2>a by

the equation
2 — 2
<ré>,=6<8%> (1-1)

In most scientific literature, the quantities <r‘2>0, <;412:>0 and <32>-Q
are usually expressed as ratios relative to their random flight statistics. For a
polymer chain consisting of identical bonds, the characteristic ratio and
mean-square radius of gyration ratio are defined as <r2>0/nl2 and
<32>0/nl2 respectively, with the denominators representing the product of
the number of bonds in the polymer chain and the square of the individual
bond lengths. The dipole moment ratio is defined as <u2>o/nm2. Here m is

equal to the magnitude of the individual bond dipoles.

Correlation Between Theory and Experiment

in order to correlate the theoretically calculated values of <r2>m,
<u?>, and <s2>, with experimental results, it is impartant to consider the
perturbatation caused by long-range interactions and polymer-salvent effects.

In dilute solutions, the extent of coil perturbatation by long range intaractions



and solvent effects can be measured by an expansion factor, a, first
introduced by Flory?-f”. The square of the expansion factor is defined as the
ratio of the perturbed and unperturbed values of a particular quantity. Hence,
if <rl> represents the perturbed value of the mean-square distance betwean
chain ends with ~<r2>o representing its unperturbed value, the expansion

factor may be expressed by the equation2

a = (<ri>/<r?> )12 (1-2)

The extent of coil expansion is determined by two effects. The first
results from the physical interaction between two remote parts of the
polymer chain. This type of interaction tends fo reduce the number of
conformations available to the chain and also lowers the probability that
tightly coiled conformations will be favoured. The second effect is observed
with polymers in solution. In a good solvent, the smaller solvent molecules
may become intermingled within the polymer chain causing even more
extended conformations to exist. Since these two factors affect the volume a

polymer chain may occupy, they are commonly known as excluded volume

effects.

The expansion factor o is dependent upon the femperature of the
polymer solution and on the particular solvent used. By dissolving a polymear
in a poor solvent or theta solvent?, in which the solvent malecules do nof
significantly interact with the polymer moleculs, the temperature may ba

adjusted until the value of the expansion factor becames unity. At this paint,

[
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called the theta pointz, a direct comparison of theoretically calculated

guantities with experimentally determined values becomes possible.

2 2

Experimental Determination _jg_LQZD, <pc>,and <8 >4

A popular experimental method employed to determine <r2>D for dilute
solutions depends upon the relationship between the viscosity of a polymer
solution and its molecular mass. For a polymer dissolved in a suitable theta
solvent and if the measurements are carried out at the theta point, then it is
assumed that the limiting viscosity'", [nlg. is proportional to the square root
of the molar mass, M1/2. Experimental values of <r2>0 may then he
determined from the magnitude of the gradients produced from plots of [vlg

against M1/2,

The mean-square dipole moment, <u2>0, of a polymer chain is usually
determined experimentally from various dielectric and density measurements
performed on a range polymer fractions. Many different methods are available
which may be used to calculate <u2>0 from such data. For instance, for a
polymer in solution, <“2>o may be calculated according the method
proposed by Guggenheim and smith'2. However, for an undiluted polymer,
<LL2>D is usually calculated according to the method of Ongagerms The
choice of which method to use when calculating <u2>G is depsndent upan

the properties and conditions of the polymar system under consideration,



The direct experimental determination of the parameter <52>O can be
achieved from light-scattering experiments, since for sufficiently large chains,
the intensity distribution of the light scattered by a polymer in solution is

dependent upon its molecular shape”.

Polycarbosilanes

During recent years, there has been intense activity into the synthesis,
characterisation, and the investigation of the physical properties of
polycarbosilanes.  Originally, interest focused upon ftheir use as
thermally-stable high-tensile fibres'®, and on their importance as precursars
for silicon carbide based ceramics'®. Howsver, it is becoming increasingly
evident that polycarbosilanes and related materials may have other uses,
such as surfactants, liquid-crystals and other electro-active materials.
Although a great deal of work has been carried out concerning the
measurement of the mechanical properties of polycarbosilanes, relatively little

is known about their general chemical and physical properties.

Polyv(dimethyvlsilmethylene)

Initially, interest in this polymer was concerned with its mechanical
propertiesm, since early experiments suggested that fibre formation in
carbon-silicon polymers was a field of considerable potential. Only racently
has the focus on poly(dimethylsilmethylene) bean concerned with its alecirical
and dielectric nature. Dielectric measurements'8:1718 pnarfarmad on hexalkyl

derivatives of disilamethanes have indicated that a dipole moment of 0.6 |8

26



associated with the Si-C bond in poly(dimethylsilmethylene). Since carbon is
more electronegative than silicon, the negative end of the skeletal bond dipole

probably exists on the carbon atoms.

A synthetic route commonly used to produce poly(dimethylsilmethylens)
involves the ring opening polymerisation of 1,1,3,3-teramethyl-1,3-
disilacyclobutane. The monomer, 1,1,3,3~tetramethyl—‘l,B—disilacyciobutanem
is not available commercially, but may be synthesized by the following

methods.

The first method relies on a Grignard  process  using
(chioromethyl)dimethyichlorosilane as reporied by Kriner?0. On investigation
of this process, Kriner found that normal Grignard addition gives poor yields,
while an inverse addition produced vyields approaching 50%. To account for
the success of the inverse addition process, Kriner proposed the following

mechanism29, illustrated in Figure (1-1).

The mechanism suggests that the reason for the success of inverse
addition is that the process favours the production of
CICH,(CH3)5SiCH,Si(CH3),Cl. This is because only small amounts of
CIMgCH,Si(CH3),Cl  will  be formed in an environment rich in
(chloromethyl)dimethylchlorosilane.  This  advantage holds unfil  the
concentration of CICH,(CH3)9SICH,SI(CHA)oCl bacomes appreciable. The
normal method, in contrast, produces a relatively high concentration of

CIMgCH,Si(CH4)»Cl resulting in chain lengthening reactions.



CI{CH2),SiCH,Cl + Mg = CI(CH3),SiCH,MgCl

CHCH4),SiCH,MgCl + CI(CH3),SiCH,CI .

CICH,(CH3),SiCH,Si(CH3),Cl
+ CHCH4) ,SiCH,MgCl

1 CHCHa),SiCH,CI

v

-MgCl, ! #= [(CH3),SiCH5l,
1.1.3,3-tetramethyl-1,3-disilacyclobutane

Figure (1-1). Proposed mechanism for the success of inverse addition.

An alternative method to produce 1,1,3,3-tetramethyl-1,3-
disilacyclobutane, illustrated in Figure (1-2), was recently proposed by
Chmielecka and Stanczykm. Their synthetic approach involves the generation
of chloro(lithiomethyl)dimethylsilane from (bromomethyl)chlorodimethylsilane.
Chloro(lithiomethyl)jdimethylsilane eliminates lithium chloride spontaneously to
give an intermediate unsaturated silicon species. This intermediate then
undergos  cycloaddition to give the product, 1,1,3,3-tetramethyl-
1,3-disilacyclobutane. The resulting vyields obtained from this methad have
been reported as higher than those usually obtained from the inverse Grignard

method.
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RLi{Li) -LiCl
(CH3)pSi(CIICH,Br—>(CH3),Si(CIICH, Li* [(CH,),»SiCH,I,

Me,Si=CH,

Figure (1-2). Synthesis of 1,1,3,3-tetramethyl-1,3-disilacyclobutane.

Paly(dimethylsilethene)

The synthesis of poly(dimethylsilethene) has heen investigated by
Andrianov, Pakhomov, Gel'perina and Semenova??. In the presence of
catalytic amounts of KOH, they found that at high temperatures allcoxy
derivatives of disilylethylenes?3 react with the precipitation of alkaxy silanes
and the formation of polymers. The reaction scheme they propossd far the

synthesis of poly(dimethylsilethene) is illustrated in Figure (1-3).

KOH,(210°-220°C)

(CH3),(C,Hg0)SiCH = CHSI(C,Hg0)(CH,), -

Figure (1-3). Synthesis of poly(dimethyisilethene).

Dielectric Relaxation in Polymers

For polymers in the amorphous state a relaxation region associatad with
the glass transition is usually observed at temperatures at ar around TQ‘ This

relaxation is labelled a and is referred to as the glass-rubber relaxation.
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mechanism observed in amorphous polymers. From a molecular point of view
it is widely accepted that the a-relaxation process results from large-scale
conformational rearrangements of the polymer chain backbone. These
rearrangements occur by a mechanism of hindered rotation about the

main-chain bonds.

In addition to a-relaxation, many amorphous polymers also exhibit ai
least one secondary relaxation region. These secondary l0ss regions (B, y, &
relaxations) result from motions from within the polymer in the glass-lika
state. In this state the main chains are effectively 'frozen in' so that these
relaxations cannot be due to large scale rearrangements of the main palymar
chain. Since the molecules of many amorphous polymers contain branchad
side groups that are capable of undergoing hindered rotations independently
of the chain backbone, these secondary relaxations are often ascribed to

such rotations.

However, certain linear polymers considered to be largely amaorphous
show dielectric B-relaxation that cannot be the result of side-group rotations.
Hence, some limited local motions of the chain backbone may be possible in

the glassy state.

A third type of relaxation process known as y-relaxation is oftan
observed in crystalline polymers containing linear (-CHy-), sequences. Thega
low temperature loss peaks are thought to ariginate from limited mations of

ralatively short chain segments. One such mechanism for y-relaxtion proposad
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by Schatzki2? is known as the 'crankshaft' mechanism and is illustrated in

Figure (1-4).

Fiqure (1-4). lllustration of the crankshaft mechanism.

The crankshaft mechanism involves the simultaneous rotation about the two
bonds 1 and 7, such that the intervening carbon atoms move in a manner

similar to that of a crankshaft.

Finally, it should be noted that relaxation effects can also arise from the
presence of impurities of low molecular weight. The precise mechanism of

relaxations of this type are often not clearly understood.



CHAPTER 2

THEORETICAL CONCEPTS OF

CONFORMATIONAL ANALYSIS

2.1 Introduction

Most of the conformation-dependent properties of long chain molecules
of interest are combinations of vectorial quantities associated with the
individual bonds or repeating sequences within the chain. For instance, the
overall dipole moment of a molecule may be attributed to the sum of the
individual bond dipoles. For chains with fixed bond lengths and fixed bond
angles, some correlation exists between these bond vectors in the sense that
the direction of a given bond is influenced by the direction of its
predecessors. However, the overall magnitude of such a series of bond
vectors is primarily dependent upon the molecular conformation of the
polymer which in turn is determined by the molecular conformational energy;
the majority of polymer molecules tending to exist in the conformations with
the lowest energies. It is therefore essential when investigating such
properties that a quantitative account of the factors involved in determining

the molecular conformation of a polymer is included.

The conformational energy of a polymer molecule originates from the

intramolecular interactions between non-bonded atoms within the chain.
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These interactions generate rotational energy potentials for all the bonds in
the chain. Neighbouring bond rotation potentials interact with each other
resulting in the creation of energetically favourable rotational states and
energetically unfavourable rotational states for each bond. Since most of the
bonds will probably occupy the more favourable rotational states, the

molecular conformation of the molecule is established.

Presented in this chapter is a quantitative description of the nature of
bond rotation potentials, their interactions with each other and their
relationship to the conformational energy of a polymer molecule. Also
included is a description of the relative assumptions made and the
mathematical methods used which allow us to calculate statistical

mean-square moments of vectorial quantities associated with polymer chains.

2.2 Bond Rotation Potentials

Investigations as to the nature of bond rotation potentials of flexible
molecules?® have indicated that they may be described generally as mainly
repulsive interactions between non-bonded atoms superimposed on an
inherent torsional rotation potential. The former may be easily explained as
originating from the repulsion between the electron clouds of two or more
non-bonded atoms in close proximity to each other and may be expressed, to

a good approximation, by the Lennard-Jones2% (6-12) potential

Eng = (ay/r 2 - (Cy/Ou) (2-1)
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The labels k and | index the atom pair, where ry; is the distance between

them and ay, and cy, are constants characteristic of the atom pair.

-

The latter arises from electron-electron repulsions, nuclei-nuclei
repulsions and polarization effects associated with the bonds. It may be

expressed mathematically by the empirical equation25
Etr = (E®/2)(1-cosn¢) (2-2)

where E° is the height of the rotational barrier and ¢ is the angle of rotation.
The factor n indicates the number of rotational states the bond may occupy,

this usually being three for a simple sp3 hybridized bond.

In cases where certain bonds of the polymer carry dipole moments, an

additional electrostatic term may be required, this being equal to
Es = +/- [(4nqeq) / r?y] (2-3)

where q, and q; are the partial charges on atoms k and | respectively, ry

being the distance between them.

Combining these contributions, the bond rotational potential for a

particular bond may be expressed as
Ey) = (E®/2)(1-cosnd) + Zllay/r'2y) - (cy/rByl +/- Tllanayq) / 2l (2-4)

The first term includes the bond subject to rotation, the second term includes
all atom pairs whose distance of separation ry| depends on the rotation angle

¢ and the third term, if necessary, is summed over all atoms assigned a

¢
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partial charge, this term being negative for unlike charges and positive for like

charges.

2.3 The Rotational Isomeric State Approximation

The rotation potential for n-butane? as a function of the rotation angle ¢,
about the central bond is illustrated in Figure (2-1). The height of the barrier
occurring at 60° is approximately 3.5 kcal/mol while the barrier height at
180° is unknown but is thought to be large. The curve is shown over the
range 0° to 180° for the central bond angle. The region between -180° to Q°

may be obtained by reflection through the ordinate axis.

The three potential energy minima, one for the trans (0°) and two for the
gauche conformations (+/-1200°) are the features of most importance in this
example. The potential wells of these three minima are sufficiently steep to
confine the majority of the molecules to a state of torsional oscillation about
one of these minima. Molecules confined to the regions of the three potential
minima in this way are well differentiated, and in this sense three
conformations of n-butane may be distinguished. They are designated
trans(t), gauchet(g™) and gauche’(g’), respectively. On the same basis we
would expect six distinguishable rotational conformers for n-pentane, these
being tt, tg*, tg-, gTg*., g'g° and gtg . Experimental evidence for the

existence of discrete rotational states is presented in Appendix A.

A description of the conformations of these and other simple molecules

in terms of distinct rotational isomeric forms is both convenient and well
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justified by physical circumstances and it may be applied to long chain
molecules where similar potentials affect the rotations of the more numerous

skeletal bonds. This is the basis of the rotational isomeric state

approximationz.

In the rotational isomeric state approximation each molecule, or bond, is
treated as occurring in one or another of several discrete rotational states.
These states ordinarily are chosen 10 coincide with potential minima.

Fluctuations about the minima are ignored although their occurrence is not

denied.
E(¢,),kcaI/moI L B R B R I/l
40 +— ]
30.___ J—
20 — —_
10 — -
AN N I T I T B

00 0% 40° 60° 80° 1000 100 10T 1607 10
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Fiqure (2-1). The conformational energy of n-butane? as a function of

the rotation angle ¢ about the central bond.
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2.4 Effect of Independent and Interdependent Bond Rotational Potentials on

the Conformational Enerqy of a Polymer Molecule

For a chain with independent bond rotation potentials the rotational state
of a particular bond, say bond i, is totally independent of the rotational states
of the neighbouring bonds, both preceding and succeeding bond i. This
allows us to separate the overall conformational energy of the chain, E(¢),
into a sum of energies E;, one such energy contribution being associated with
the conformational state of each skeletal bond i in relation to its neighbours,
terminal bonds excepted. The conformational energy for bond i may be
appropriately designated by E;(¢);, the bond rotational potential for bond i, and

according to the assertion that the energy is separable

E(¢) = TEl), i = 2ton-1 (2-5)

1
This assumption of independence of bond rotational potentials is seldom
acceptable. Instead, interdependent bond rotation potentials must be
assumed. Interdependence of bond rotation potentials is manifested in the
dependence of E; on ¢;.1 and ¢; .1 as well as on ¢;. The total conformational
energy of a molecule must then be expressed as a sum of energies for first

neighbour pairs. In generalz,

E((b) = X Ei(d)i-]’ (bl) =X EC i = 2ton-1 (2'6)

nit
where { denotes the state of bond i-1 and n that of bond i, with the first term

in the sum being a function of one angle only. The energy ECn?i = Eldi.q, ¢
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is regarded as the contribution to E(¢) associated with its assignment of bond
i to the state m with bond i-1 in the state {. By adopting this view point the
dependence of the energy on ¢;,q is not overlooked, since the dependence
of the energy on ¢;, 1 is merely reversed for the next term in the sum. Thus,
the total energy for a long chain molecule may be reckoned systematically as

a sum of terms each dependent upon a pair of consecutive rotation angles.

2.5 The Statistical Weight Matrix

We may represent the energies Ez;n;i associated with the various
rotational states of an interdependent bond pair in terms of statistical
weights. For a given state, the statistical weight Urysi corresponding to the

energy ECn?i may be defined by invoking the reiationship2

uCnFi = exp(—ECn;i/RT) (2-7)
The statistical weights assigned in this way may be conveniently expressed in
the form of a statistical weight matrix

with states (£) for bond i-1 indexing the rows and those (n) for bond i the
columns. The subscript i may be omitted for a chain in which all the bonds

are identical.

The overall statistical weight for a particular conformation of the chain is

given by the equation:2
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Q(d)) = HUCT];i , i = 2 ton-1 (2'9)

which follows at once from Eq. (2-6). The first term in the product carries a
single index for the reason noted earlier. The assigned statistical weights
must appropriately take into account neighbour dependence. They must also
yield the correct statistical weight for any conformation of the molecule as a
whole when they are multiplied in the combination prescribed by the

conformation.

The generalised form of the statistical weight matrix2 for a polymer chain
consisting of identical bonds, each bond occupying one of only three discrete

states (t, g1 and g7) is illustrated in Eq. (2-10)

(t) (g*) (g’)
(t) 1 c c |

U= (gt |1 oW oW (2-10)
(g’) 1 cw o

with states for bond i-1 indexing the rows and those for bond i the columns.

The terms o, v and o are defined by Eq. (2-7) with the energies Etg+,

E Eg+g+_, E.-.- and Eg+g- being relative to the all trans state. By

tg™’ gg

adopting the convention, whereby the statistical weights are assigned at each
step on the premise that all succeeding bonds are trans, renders the elements

in the first column equal to unity.
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It has been assumed so far that the bond rotational interdependence
does not extend beyond first neighbours. Interdependence beyond first
neighbours may be safely ignored since intramolecular encounters of much

longer range are statistically more improbable.

2.6 The Configuration Partition Function

The configuration partition function, Z, for a particular chain is defined as
the sum of all the statistical weights of all the conformations of the chain. It

may be expressed by the equation2

Z = EQ(d)) = 2J1 UCﬂ];i ; i =1ton-1 (2-11)

The task of evaluating the partition function by forming the sum of products
of statistical weights Urn for each conformation as directed by Eq. (2-11)
would be very time consuming for a chain having more than about 500
bonds, even with aid of high speed computers. However, the configuration

partition function may be alternatively expressed by the equation2

Z = J*¥IIY}d,i = 2ton-2 (2-12)
where J* = [1 0 O] and JT = [1 1 1], respectively.

For a flexible chain in which all the bonds are identical Equation (2-12)

reduces to

z = Jxuinl gy (2-13)
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The evaluation of the configuration partition function for large n may be
achieved by consecutive squaring of the matrix U prior to solving Equation

(2-12).

2.7 Mean Sguare Moments of Chain Molecules

If we consider a long chain molecule as a collection of atoms we may
designate the spatial arrangement of these atoms by the term configuration.
The configuration of a long chain molecule may be determined by specifying
the relative positions of all the atoms in the chain. In a hypothetical chain
consisting of n bonds, illustrated in Figure (2-2), the bonds may be
represented by bond vectors I, numbered from 1 to n. The configuration of

the chain is therefore determined by the set of bond vectors {ly, Iy,

Figure (2-2). Schematic representation of a long chain molecule.
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By assigning a bond vector to each bond in the chain, the displacement

between the terminal atoms, rag, may be represented by the equation
AR = |1 + |2 + l3 ...... + |n_1 + |n (2-14)

=2 |

i, i =T1ton (2-15)
The square of the distance between the terminal atoms of the chain, rag,

may now be calculated by evaluating the dot product of the vector rag with

itself

Due to the equivalence of Ii.lj and I.L

i-li Eq. (2-16) may be rewritten as

(rap)? =212 + 22 () , i & = 1 tonwithi < (2-17)

In order to construct a scheme for formulating the required scalar
products Ii.lj, we must define a coordinate system (x, y, z) for each bond in
the chain. Each bond vector may then be expressed in its own coordinate
system. For simplicity, let the axis x; of the coordinate system affixed to bond
i be taken in the direction of the bond. Let the axis y; lie in the plane of bonds
i-1 and i, with its positive direction chosen to render its projection on X 4
positive. The axis z; may then be directed to complete a right-handed

Cartesian coordinate system as shown in Figure (2-3).

Each bond may now be treated as a vector | with components |, ly and

|, in its respective coordinate system and expressed as a column matrix
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=1l (2-18)

where I, is the bond length, I, = 1, = 0.

Yi

Figure (2-3). Cartesian coordinate system assigned to bond i.

A transformation matrix, T;, may now be introduced. The transformation
matrix? is an orthogonal matrix which by premultiplication transforms a vector
I, with components I, I, and I, expressed in reference frame i+1, to its

representation I', with coordinates I,', I,' and I," in the reference frame i.

Mathematically,

i = Tl (2-19)
The matrix T;
cosb; sind; 0
T, = |sinf,.cosy; -cosO;.cosd; sind, (2-20)
sinB;.sind;  -cosb;.sing; -cos¢,
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is dependent on 6;, the bond angle supplement, and ¢;, the bond rotation
angle for bond i as defined in Figure (2-3). By assigning a transformation

matrix to each bond in the chain, we may evaluate the scalar products Ii.lj

L= T T T Tk i <] (2-21)

where Ideenotes the transpose of I; (ie. its row matrix representation).

Equation (2-21) is limited in the sense that it represents only one
configuration of the chain. However, Eqg. (2-21) is considerably simplified
when applied to real polymer chains. This is due to real polymer chains
having fixed bond lengths and bond angles and aithough the bond rotation
angles (¢'s) may take on a number of values, this number is usually limited
due to the nature of the rotation potentials for each bond. These
simplifications allow the term configuration (dependent on ¢, 6 and I) to be
replaced by the term conformation (dependent on ¢ only). Equation (2-21)

now becomes

|| - IiT<Ti‘Ti+1'Ti+2 ........ T'“ (2-22)

"

where the angled brackets denote the statistical mechanical average over all

conformations of the chain.

By substituting Eg. (2-22) into Eq. (2-17) the expression for the

mean-sguare average distance <r?> becomes

<i?> = Zl;g + QZ(iiT<Timm,,=,,Tj,-,>ij)i P& =1tonwithi <j (2-23]

(™
1

Pk

Lad
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The forgoing expressions are applicable also, with only nominal
alterations, to the scalar product of any pair of vectors associated with bonds
i and j. Suppose m; and m; to be two such vectors which are uniquely defined

in the respective reference frames of bonds i and j. Then,

<M?2> =3m? + 22(m T <Tj..ooo T 4>m), i &j = 1tonwithi >j(2-24)

The vectors m; and m; may, for example, be dipole moments associated with
the respective bonds and the substituents rigidly attached to them. In this

case, <M?2> would represent <u2>, the mean-square dipole moment for

the polymer chain.

Equations (2-23) and (2-24) are quite general. No assumptions have been
made concerning the nature of the bond rotation potentials. It is only in the
determination of the statistical average of the product of transformation
matrices, <Tj.......... T.1 >, that the nature of the bond rotation potentials has

to be established.

In the following sections, this term <T;j.......... Tj.1> shall be evaluated
for two cases,

1. Chains with independent bond rotation potentials, and

2. Chains with interdependent bond rotation potentials.
For simplicity it will be assumed that in both cases of the above the
chain under consideration contains identical bonds connected to identical

atoms, that the bond rotation potential for each bond is 3-fold, and that a
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vector m is associated with each bond in the chain, this vector being

invarient to the chain conformation.

2.7.1. Mean Square Moments of Chains with Independent Bond Rotation

Potentials

By assuming the independence of the bond rotation potentials (or the
separability of the conformational energy, see section 2.4), the statistical
average product of transformation matrices may be replaced by the product

of the averages of the individual transformation matrices, i.e.

<Tioooooo... Tj-1 > = II<T;> , where h = itoj-1 (2-25)

the averaged transformations for the individual bonds being given by the

equation2

XT,.expl-EL(dy)/RT]
<T> = (2-26)
Eexp[—Eh(th)/RT]

The denominator in Eq. (2-26) is frequently referred to as the bond rotational

partition function, Z, and the sums extend over all rotation angles.

Treatments of the various properties of chain molecules may be greatly
simplified by the forgoing factorisation based on the separability of the
conformational energy, however, instances where such separation is justified

are the exception rather than the rule.

Under the stated conditions the average of the transformation matrices

<T,> are the same for all i. Hence
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<M2> =nmm? + 22 m'<T>Mm, i < | (2-27)
or

=1 + (2/nm2)mT[Eﬁ<T>k—Zk<T>k]m, k = 1 ton-1 (2-

N
N
o0

Evaluation of these two sums give52

<M2>/n = m[(E + <T>)(E- <T>)"
S (2<T>/MIE- <T>ME- <T>)2Im (2-29)

If m is to be identified as the bond vector i, which is expressed in its own

coordinate system by Eqg. (2-18), then the preceding results take the form

Ch= <r?>,/n% = [(E + <T>)(E- <T>)"

- (2<T>/M)E - <T>M(E- <T>)2144 (2-30)

where C, is known as the characteristic ratio and the subscripts on the

brackets denotes the 1,71 element.

Equations (2-27) to (2-30) may be applied to any chain for which the
separate averaging of the T matrices is legitimate. They hold, irrespective of
the nature of the geometrical constraints on the bond connections.

Separability of energy according to Eq. (2-5) is the necessary condition.

2.7.2. Mean Square Moments of Chains with Interdependent Bond Roiation

Potentials

General relationships were derived in section 2.7.1 for chains in which

the bond rotations are independent, and the statistical average of the product

2
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of transformation matrices may be replaced by the product of averages of the
individual transformation matrices. For chains of interdependent bond
rotations such separation is not possible and the unfactored product must be

averaged over all conformations of the chain.

The statistical mechanical average of the product of orthogonal matrices,

<Tiiionen. Tj>, is expressed to a good approximation2 by the equation
T, 2Tioeennn, Tj).exp[-E{dJ}/RT].d{(b}
<T‘ .......... TJ> - (2‘31)
Lo, Yexpl-E{¢}/RT].d{¢}

where E{¢} is the energy of the conformation {¢}, R is the gas constant, and
T is the absolute temperature. By substituting “gn-izeXp('Ecn'i/RT) into Eq.
(2-31), we find that the denominator is equivalent to the configuration

partition function, Z

Z =2ITu i = 1ton-1 (2-32)

i
which may be solved by the well known scheme presented in section 2.6 for

generating all of the statistical weights by multiplication of the matrices U
Z = J*IIYld ,i = 2ton-2 (2-33)
By applying the same scheme to the numerator, Eq. (2-317) reduces to
<TU> = z7Ta*=ut2) x EJ[U x ENTIIut™ig) x g (2-34)

where E is the identity matrix and is required only to make the matrix U

canformable with 1iTI, this being equal to

I
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T(dq)

HTH

"‘:.J
(¥ ]
r

T(d3)
Substitution of Eg. (2-34) into Eq. (2-24),

derived in section 2.7, gi
the mean

square moment for a polymer chain with interdependent bond
rotation potentials
<M2> = nm?
+ 2z U N E@mNu@BITNI N E@mU™ TS (2-36)

where the sum extends over the

erange O < i < j-1 < n.

Equation (2-36) is very difficult to solve in its present form. However

mathematical methods have been devised? which allow Eq

. (2-36) to be
expressed in the more convenient form
<M2> =272"g+*gMg (2-37)
where 8* and 9 are the row and column matrices
=[100000000000000]
$' = [0000000 000001111
respectively, and the matrix? G is
U  (U@miITi  (m2/2)u]
G = |0 (UBNTH U@m (2-38)
0 g i



Equation (2-38) is exact in the sense that no mlathematicai
approximations have been introduced in its derivation. It is applicable to
chains of any length consisting of any variety of skeletal bonds in any
specified order, provided only that their rotational potentials admit of
approximation by a set of discrete rotational states.

The supermatrix G is often referred to as the generator matrix since it
generates all the correct matrix products in the correct order, one such matrix
being defined for each bond pair in the chain of interest. The orders of the
submatrices comprising this supermatrix for a bond with a v-fold rotational
potential is as follows

VXV v X 3v vV XV
3vxv 3vx3v 3vXV,
V XV vx3v vXV

the order of G as a whole being 5v x 5v. If v differs for successive bonds,
the corresponding G-matrices (and U-matrices) will be rectangular instead of
square. The generator matrix G; contains all the required information relating
to bond i. It combines geometrical parameters (d)'q;i and 6;) from the T, for the
various rotational states accorded to bond i, the statistical weights form U;,
and the bond moments m; associated with bond i and as with the U-matrix, it

may be solved for large n by consecutive matrix squaring.

7.8 Polycarbosilanes and Related Materials

in order to apply the principles described in this chapter 10

polycarbosilanes, certain  information concerning the polymars wndar



examination must be established. Since the projected analysis is conceived in
terms of the structure of the molecule under examination, data for
polycarbosilanes consisting of bond angles and bond lengths are required for
its application to these molecules. Data of this nature is usually at hand with
ample accuracy for our purposes. This is not, however, sufficient.
Unambiguous deduction of the properties of a chain molecule further requires
an adequate understanding of the intramolecular energy as a function of the
conformation. The conformational energy is usually described in terms of
potentials associated with the various bond rotations, or combinations of
such rotations. Enough must be known concerning these potentials to permit
the selection of rotational isomeric states at or near potential minima, and

also allow the statistical weights for the states so chosen to be evaluated.

Originally, the only case where such information was wholly available
was for the n-alkanes. However, in recent years, interest in the structural
properties of polycarbosilanes has yielded some information concerning their

structure and the nature of their intramolecular interactions.

In general, however, the best that can be done is to outline the
gualitative character of the conformational energy on the basis of structure,
aided by inferences from the analogous molecules and by approximaia
estimates of the principal contributions to the energy. These contributions
include inherent torsional potentials (see section Z.2) of the various bonds,

. etc. Appropriate sets of rotational isomeric states can

Lre

and steric interaction
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usually be selected. Their statistical weights ordinarily cannot be evaluated
quantitatively, but may be estimated from inspection of the structure of the
molecule and from experimentally determined properties. One such method of
evaluating the statistical weights for a polymer chain is known as the

hard-sphere model.

In the hard-sphere model, the statistical weights are either assigned a
value of zero or one, depending on whether the interaction under
consideration is subject to significant steric hinderence, or negligible steric
hinderence respectively. In such cases only the structural information for the
molecule needs to be known and thus where the data concerning the
intramolecular interactions in a particular polymer molecule is scarce or the

structure of the molecule is complex, the hard-sphere model will be applied.

[
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CHAPTER 3

COMPUTER PROGRAM DEVELOPMENT

3.1 Introduction

Since a large part of this project was concerned with the development of
complicated computer programs, based on the mathematical framework
presented in the previous chapter, it was important to establish a firm
foundation from which reliable results could be obtained. In many cases,
computer software contains small errors or 'bugs' which may severely reduce
the performance of the application. It is therefore important to eradicate such
errors by developing the software in stages, with each stage undergoing a

rigorous test to assess the reliability of the results produced.

In this chapter, a brief description of the methods employed to develop

reliable computer programs for use in this work is presented.

3.2 Conformational Analysis of Poly(dimethylsilmethylene) and

Poly(dimethylsilethene).

The computer programs required to analyze the conformational propertias

performing similar analyses on polymer malecules that had already baan

studied. These ‘test polymers’ wers polymethyiana,

palypropylene. By comparing the results ohtained fram our calculations with

LE
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those published for the test polymers, the reliability of the programs could be

established.

Of the many structural properties associated with polymers, one property
common to all polymer molecules is that each contains a skeletal backbone
with branched atoms or side groups attached to it. The simplest polymer
exhibiting these properties is polymethylene. Polymethylene has been studied
by Jernigan and Fiory5 and the results of the conformational energy
calculations performed on this polymer are well documented. For this reason,
polymethylene was the first test polymer used.

Since both poly(dimethylsiimethylene) and poly(dimethylsilethene)
contain silicon atoms, the second test polymer io be studied was polysilane.
Again this is a relatively simple structure whose conformational and structural

properties have recently been studied by Mark, DeBolt and Welsh’ and also

by Damewood and West27.

The third polymer to be studied was the syndiotactic form of
polypropylene whose conformational properties have been studied by Suter
and Flory6= The reason for studying this polymer stems from the fact that the
syndiotactic form of polypropylene exhibits two branched methyl groups, one
either side of the skeletal backbone. This structural feature is present in boih
poly(dimethylsilmethylene) and poly(dimsthylsilethene]. Figure {3-1} illusiraiss

gach stage in the development of the programs.

£
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Polymethylene
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Poly(dimethylsiimethylene)

)
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{SiCH=CHSICH=CH Si}
CH 3 CH 3 CH 3
Poly(dimethylsilethene)

Figure (3-1). The development of the computer programs. Al sach siags
{where possible) the results obtained from our calculations were comparad

with thoss published.
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3.2.1. Polymethylene

Figure {3-2). Section of polymethylene used in the calculations

:(
]
g
o

Using the structural and interatomic interaction parameters published by
Jernigan and Flory5, a conformational energy contour map for the section of
polymethylene illustrated in Figure (3-2) was generated. The energies
associated with the various conformations were calculated according to the

equation5

Eldg.dp) = Z (E?/2)(1-cos3¢) + I [ayexpl-byry) - (Cif/ri B (3-1)
for ¢, = ¢, = 0O° to 360°,

The resulting energy map was found to be in exact agreement with fhat

published by Jernigan and Fiaryg’:

pei]
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3.2.2. Polysilane

G

Figqure (3-3). Section of polysilane used in the calculations.

The conformational energies for the section of polysilane illustrated in

Figure (3-3) were calculated by the equation7

Elh,dy) = = (E%/2)(1-cos30) + = [a/rg'?) - (cy/rig®) (3-2)

using parameters published by Mark, DeBolt and Welsh’ for by = O = 0% to
360°. The resulting energy contour map was compared with that published.

Although the two energy maps were nearly identical, small differences wars

[}

found in the relative positions of the two sets of contour lines. A possibls
explanation for this discrepancy lies in the fact that Mark's calculations

included partial relaxation about the terminal bonds 1 and 4, indicated in

Ly
[



Figure (3-3). In our calculations, the terminal bonds 1 and 4 were fixed in

their respective trans conformations.

3.2.3. Polypropylene

VARV ARV
awe

H CH4

Fiqure (3-4). Section of syndiotactic polypropylene used in the

calculations.

The conformational energy map generated for the section of syndiotactic
polypropylene illustrated in Figure (3-4) was calculated according to Eqg. (3-2)
using the parameters published by Suter and Ftﬁryﬁ. The conformational
energies calculated for each conformation (d,, ¢p) were minimised by allowing
partial relaxation about the two pendent methyl groups. The conformational
energy map produced from our calculations was identical to that published by

Suter and Fioryﬁa



3.3 The Calculation of Characteristic Ratios and Dipole Moment Ratios

The development of these computer programs was again based on the
results obtained by performing similar calculations on two polymers that had

previously been studied; polymethylene and poly(dimethylsiloxane).

3.3.1. Polymethylene

The characteristic ratio of polymethylene was calculated for chains of
different lengths according to the equation

o

}—1 g* GTG{WZ}G'—‘Q {3-3)

9 I R
<re > /nle = 2{Znl f

The G-matrices were consiructed using parameiers published by Flory™ af a
temperature of 140°C, with the matrices Gy and G, represanting the tarminal

bonds. The results obtained were in exact agreement with the published

values.

3.3.2, Poly(dimethylsiloxane)

The characteristic ratios and dipole moment ratios for varying lengths of
poly(dimethylsiloxane) chains have been previously calculated by MarkB.
Using the parameters specified in his work, the characteristic ratio and dipole
moment ratio of poly(dimethylsiloxane) were calculated according fo the

equation8

<M2> /nm? = 2(znm?)1 §¥G7(G,.Gp) G, 8 (3-4)

6B



at various temperatures for a chain beginning and ending with silicon atoms.
The matrix G, represents a pair of interdependent bonds flanking an oxygen
atom, whereas the matrix G, represents a pair of bonds flanking a silicon

atom. Again the results were in exact agreement with those published.

3.4 Conclusion

Based on the success of the test programs, it is believed by the author
that the results presented in this work concerning the calculation of
conformational energy maps, characteristic ratios and dipole moment ratios

for polycarbosilanes are both accurate and rsliabie.
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CHAPTER 4

CONFORMATIONAL ANALYSIS OF

POLY(DIMETHYLSILMETHYLENE)

4.1 Introduction

The molecular structure of a section poly(dimethyisiimethylens) chain i

(6]

iilustrated below

“Si(CH3) 5-CHy-Si(CHg) 9-CHa-Si(CH3) 5-CHa-

fu

silicon and

v}

The skeletal hackbone of this poiymer chain cansists of alternating

o

carbon atoms with two branched mathyl groups attachad o &ach silican
atom. On inspection of the above section, it may be seen that there are two
distinguishable interdependent bond pairs, one pair flanking a -CHy- group,
and one pair flanking a -Si(CH3)p- group respectively. The bond pair
interdependence in poly(dimethylsiimethylene) arises from the severe steric
hinderence between the four branched methyl groups attached to a pair of

neighbouring silicon atoms.

In this chapter the conformational energy arising from this bond pair
interdependence shall be calculated and a set of distinct rotational isomeric
states chosen for each bond in the chain. Based an the results obfained the
characteristic ratio, <r2>/ni2, and the dipole moment ratio, <u®>/nm?, for

varying chain lengths will be calculated far this polymar, according to the

o
o




equations derived in Chapter 2 for a chain with interdependent bond

rotational potentials.

4.2 Molecular Geometry

The structural information used in the calculations of the conformational
energy of poly(dimethylsilmethylene) were based on the molecular structure

of bis(trimethylsilyimethane, iliustrated in Figure (4-1).

Fiqure (4-1). Molecular structure of bis(trimethylsilylymethane.

Fjeldberg, Lappert and Thorne28 investigated the molecular structure of
gaseous bis(trimethylsilyllmethane using electron diffraction techniques. One
of the most important conclusions derived from their results was that thera
were severe steric repulsions between the branched methyl groups attached
to the neighbouring silicon atoms. The steric hinderence was &0 &avare that

the central Si-C*-Si bond angle was found to have an unusually large valua,
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this value being 123.2°. The large value of this bond angle was explained on
the grounds that it allowed partial steric relief between the branched methyl
groups. Other investigation529 into the molecular structure of this molecule
using Raman infra-red spectroscopy have also indicated an unusually largs

central bond angle of ~120°. It therefore seemed logical to assume similarly

oW

large angle for the Si-C-Si bond in poly(dimethylsiimetnylene), this valus beaing
set at 123°. The values of the parameters calculated by Fjeldberg et al® and

those used in our calculations? are displayed in Table (4-1).

Bond Length?® |Bond Angle?  |Bond Length? |Bond AngleP
(R) (6°) (&) (67

Si-C* 1.89 1.89

Si-CHy |1.87 1.87

C-H 1.1 1.1

Si-C*-Si 123.2 123

C*-Si-C 112.4 110

Table (4-1). Geometrical parameters for CH5(8i{CHgl3).

A value?2’ of 110° was assigned to the bond angle C*-Si-C rather than
the value of 112.4° calculated by Fjeldberg. The reasoning hsahind this
decision lay in the fact that in poly(dimethylsiimethylene) the branched methyl

groups are flanked on both sides by the skeletal backbona of the chain,




terminal groups excluded. In bis(trimethylsilyllmethane the methyl groups are
only flanked on one side by other structure allowing the bond angle to
increase slightly to 112.4° to allow steric relief. All other angles in the chain

were set to their normal tetrahedral values.

4.3 Conformational Energy

The conformational energy associated with the interdependent bond pair

flanking a -CHs,- group was calculated using the section of

poly(dimethylsilmethylene) illustrated in Figure (4-2).

Figure (4-2). Poly(dimethylsilmethylens) dyad usad in the calculations.




Sections of polymer chains with two distinguishable interdependent bond
pairs, as illustrated in Figure (4-2), are commonly referred to as dyads. Their
conformational energies, E($, ¢y, may be calculated by using either the "no
relaxation® technique, the “partial relaxation™ technique, or the "full

relaxation” technique over the range 0°% - 360° for ¢, and d,.

The "no relaxation® technique, NR, assumes that all the bond lengths

4

and bond angles are rigid and the conformational energy is solely dependen
on ¢, and ¢,. The “partial relaxation” technique, PR, is similar to the NR

technique except that the energies of the conformations are minimised with

o

respect to the branched methyl groups, these being allowed 1o rolale io

achieve the lowest confarmational energy for a particular state dsfinsd by

-

and ¢p,. The "full relaxation” technique, FR, allows additional relaxation in the
dyad by considering flexible bond lengths and flexible bond angles. The latter
technique is more computationally intensive and more accurate than either
the NR or the PR techniques but it requires an intricate knowledge of the
bond length and bond angle force constants. Another difference between the
three techniques is that in the NR and PR cases the entire conformational
energy space is investigated (ie. ¢, and ¢y, are varied over the range oo -
360°), whereas the FR technique is geared to locating local potential energy

minima only.

For present purposes it will be sufficient to apply the PR technigue in

calculating the conformational energies of the poly(dimethylaiimaethylene)




dyad. This is because the computational speed and affordability of these
calculations will permit the use of fine grids to scan the full range of
conformational space (rather than seeking local energy minima only). Thus,
the entire conformational terrain may be traversed to determine the domain
sizes and rotational barriers needed for a complete analysis of the dynamic
flexibility of the chain and hence its conformation-dependent properties.

.

LI“.’

Contributions to the conformational energy of the dyad were considere
to arise from three sources, the intrinsic torsional potentials attributable 1o
the bonds themselves, the van der Waals repulsions between non-bondesd

atoms and the dispersion attractions between non-bonded atoms. Ths

[W}]

conformational energy of the dyad may therefors be calculated Trom ihe

equation, (see section 2.2)
E(d, ) = Z (E%/2)(1-cos3) + = [a/rg'?) - (c/rg®)] (4-1)

The first term in the summation includes all the bonds allowed to rotate;
these include the branched methyl groups attached to neighbouring silicon
atoms. The second term includes all the non-bonded atom pair interactions,

ki, whose distance of separation depends on the rotation angles ¢, and ¢p.

The torsional barrier height, E®, for the Si-C bond was set at 0.6
kcal/molt, this value being empirically chosen to fit ohserved expearimental

data in substituted disilanes30. The constants ay and cy, characteristic of the

! kcal/mole are the prefered units in conformational analysis and will ba usad

throughout this waork, 1 kecal = 4.186 KJ
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Lennard-Jones  (6-12) potentiai%, were calculated  from  atomic

polarizabilities31 by application of the Slater-Kirkwoad equation25 and are

tabulated in Table (4-2).

A conformational energy map, illustrated in Figure (4-3), based on the FR
calculations was generated by using Equation (4-1) and scanning the eniire
conformational energy space, 0° - 3609, for both ¢, and ¢y in steps of 1 0o,
The corresponding conformational energies, Eldg.¢p), were minimised by
allowing rotation of the branched methyl groups betwesen 00 - 380Y in sieps

of 59,

i T "

Si----Si 7.26E+06 3060

Si----C 1.7.1E+06 1050

Si----H 2.62E+05 374.1

C----C 3.95E+05 363.0

C----H 5.63E+04 127.0

H----H 7.27E+03 47.1

Tahle (4-2). Non-bonded potential energy parameters. *Units are such 1o

give Eyg in kcal/mal far vy in f.




180° -150° -120° 90 60° -30° ¢ 30° 60° 90° 107 180" &

G

Fiqure (4-3). Conformational energy map for the poly(dimethysiimethyiens]

7/ | |

dyad as determined by the PR calculations. The energy. given in kcal/maol
relative to the conformational energy minima designated by "+ " on the map,
is shown as contour lines with some values iliustrated in the Top right

quadrant. Local potential energy minima are located by the dotis.
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Analysis of the conformational energy contour map shows the existence
of eighteen potential energy minima. These minima approximately occur at
the rotation angles, (158°, 159), (-15°, -159), (20°, 1309), {-20°, 1059, (20°,
~105%), (-20°, -130°), {105°, -20%), (130°, 20°), (-105°, 20°), (-130°, -20°),
(105°, 105°), (135%, 135%), (-105°, -105°), (-135°, -135%), (100°, -130%,

(130°, -100°), (-100°, 130°) and finally (-130°, 1009, where the angles are

0

expressed in the format (5, §,). At first this system seems very complicated
indeed. However, from a symmetrical point of view the eighteen diffe
potential energy minima may be considered 1o be equivalent to ning
distinguishable energy minima. Each of these nine minima is split into a
rapidly interconverting "doublet”™, the rapidity of ths interconvaision making it
impossible to distinguish between either minima in the doublet. The case for
adopting this idea lies in the fact that the potential energy barrier between
each minima in a "doublet" is very low (~0.2 kcal/mol) when compared to the
potential energy barriers between the other minima > 1.5 kcal/mol. This trait

has also been observed in polymethy!eneB.

Inspection of the generated potential energy map now reveals that
adoption of the familiar three-state (T, G*, G) scheme would suffice, sach
bond allowed to occupy one of three states thus producing nine
conformational states for the dyad. These nine states correspond fo the nine

energy minima on the conformational energy map.
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4.4 Rotational States

incorporation of the results shown in Figure (4-3) in a rotational isomeric
state scheme requires allocation of every element of conformational space

(5, &) for which the energy is not excessive to one of the appropriately

chosen states, as illustrated in Figure (4-4). All regions for which E < &
kcal/mol relative to the tt state are included in the areas demarcatsd as

]

]

shown. The dots denote values of the forsional angles averaged over thess

¢
{

regions (see Table (4-3}).

The partition function z, average energy <E>, and averaged rotation

angles <, ¢, > for each rotational state s were caiculated

-]
fuv]
bl
L
[
.
o
@
—
C

zg = L X expl-E/RT) {4-Zj
<E>¢ =z | LT Epexpl-E,/RT) (4-3)
<§>¢ = 25 T Zoexpl-EL/RT) (4-4)

where the first sum is over all angles ¢,, and the second sum is over all
angles ¢, in each state s. The subscript k refers to the energy of each
conformation (¢,, ¢p) and j is either a or b. The Boltzmann factors were
calculated from the energies El(d,, §p) at 10° intervals and the summations

were carried out over the regions specified in Figure (4-4).

Partition functions z, average energies <E>, and average rotafion angles
<@, hp> calculated at three temperatures (300K, 400K and BOOK) for the

nine regions or states in Figure (4-4) are listed in Table (4-3).
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Figure (4-4). Regions representing isomeric states for the

poly{dimethylsiimethylene} dyad.
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z <E> <¢a,¢b>
300K |400K |500K |300K |400K |500K § 300K 400K 500K
i 1073 (0.76 [0.77 }0.63 |0.73 |0.82 1114,-114 [114,-114 |114,-114
it 10.9 0.92 |0.83 [0.58 |0.68 |0.76 |116,1 116, 1 1161
Hi 0.81 0.83 (0.84 }0.62 |[0.71 0.78 (117,117 117,117 117,117
iv 10.9 0.92 ]0.93 }(0.58 |0.68 |0.76 |}-1,-116 -1,-116 -1,-116
\ 1 1 1 0.54 {0.64 |0.72 0,0 0.0 0.0
Vi 10.9 0.92 {0.83 }0.58 |0.68 |0.76 [-1.116 -1.116 1,116
Vil 10.81 0.83 10.84 J0.62 {0.71 0.78 |-117,-117-117,-117 -117,.-107
Viii 0.9 0.92 |0.83 0.58 |[0.68 |0.76 -116,1 -116,1 -116,1
ix 10.73 |0.76 |0.77 [0.63 |0.73 |0.82 }-114.114 ---’ir'lli-,’l 14 |-114.114

Table (4-3). Conformational averages for dyad conformation.

Energies are given relative to the tt state in Figure (4-3). The partition

functions are expressed relative to a value 2z

rotation angles are nearly independent of temperature.

4.5 Statistical Weights

Each of the nine regions in Figure (4-4) may be represented by a

combination of rotational isomeric states centred ar 09, 116° and -116° (see

1 for this state. The averaged

Table (4-3)). These states may be denoted by T, G* and G” respectivaly.




The statistical weights corresponding to first-order interactions (ie. those
determined by rotation about one bond only) are illustrated in Figure (4-5).
The statistical weights ©, o' and o" may be used for the second-order
interactions between the pairs of groups CHy and CHy, CHg and CHjy, CHg

and CH3 respectively, each group separated by four bonds.

Figure (4-5). Newman projections along bond i illustrating the basic

first-order interactions.

The features of the conformational energy surface in Figure (4-3) up to at

least 6 kcal/mol above the tf minimum are well represented by the statistical

weight matrix

t gt g
t nzmn?_ nm;mﬂ T](D‘G)w
u" = gt |neooe" o? o' (4-5)

g [no'a" o'n m‘2
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The matrix U" contains all the first-order interactions and second-order
interactions that occur within the poly(dimethylisiimethylene) dyad. In
addition, it also contains the first-order interactions that would occur betwesn

an adjacent pair of dyads in the polymer chain, i.e. the first order interactio

m

for the pair of interdependent bonds flanking a -Si{CH3)5- group. Since this
information is contained in the matrix U®, the second-order interactions for
the interdyad pair illustrated in Figure (4-6) need toc be determined. This may

be achieved by application of the hard-sphere model.

I
mv
CAJ‘
ﬂl

CH

L0

Figure (4-6). Interdependent bond pair flanking a -8i{CH3ls-.

It can be seen that for this interdependent bond pair no significant
second-order interaciions (interactions between groups separated by fouy
honds) occur except for the GTG/G'G™ conformational states. The sisfic

hinderence betwaen the methyl groups is so severe that a value of zaro may
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be assigned for the statistical weights of these conformations, all others may
be allocated a value of one. The statistical weight matrix containing the

second-order interactions for the interdyad pair therefore becomes

1 1 1
u =11 1 0 {(4-6)
1 0 1

Thus, the statistical weight matrix U that describes all the intramolecuiar
interactions occurring in a section of poly(dimethylsiimethylene) chain
containing the two neighbouring interdependent bond pairs, and therefore
applicable to the mathematical methods derived in the last chapter, is simply

the product of the matrices U' and U" in that order, i.e.
u=u.u" (4-7)

The matrix U" may be considerably simplified and its elements directly
compared with the calculated values in Table (4-3) by normalising every

element in the matrix with respect to the tt state. Mathematically

1 a B
u" =la B v (4-8)
o vy B
where a = o'/ne"), B = m‘z/(nzm"z) and y = (1}/(1";203"}‘ Since o, [} and v

represent the products of statistical weights they may themselves be defined

as such by invoking the expressions

o = ooexp(-E,/RT) (4-8)
B = Boexp(Ey/RT) 410
Yy = *fﬂdxpf’ﬁ{/ﬁj‘} 4-11]




The energies E_, E[3 and EY were calculated from the averaged energies

tabulated in Table (4-3) according to the equations

E, = <E > - <Ey> = 0.07 kcal/mol

g+g+
E, = <Egyq.> - <Ey> = 0.09 kcal/mol

these values remaining approximately constant over the three temperatures

¥)
-
9‘
eb}
s
<
[es
®,
B
[qn)
[¢y]
o
—
—
T
e

considered. The factors o, B, and v, quantify th
domains or regions defined in Figure (4-4) and were calculated from

Equations (4-9) to (4-11), the results being o, = 0.97, B, = 0.91 and v, =

0o
o]

0.
It is now possible to quantitatively account for the chain statistics of the

two neighbouring interdependent bond pairs of poly{dimethylsilmethylene) at

any temperature using the matrix U, where

and o =0.97exp(-0.04/RT), B=0.91exp(-0.07/RT) and y=0.86exp{-0.09/RT}. |

These results may now be used to calculate conformationally-depandant

properties of poly(dimethylsilmethylene).



4.6 Characteristic Ratio of Poly(dimethylsilmethylene), (PDMSM)

The characteristic ratio C,, = <r2>0/nl2 for poly(dimethyisilmethyiene)

was calculated according to the equation

<r2> iz = 2Zni?) 1 8% 616G 8 (4-13]

B
using the three-state model formulated on the potential energy calculations
and geometrical parameters derived in the previous sections. The mairices Gy

and G, representing the terminal bonds were calculated according o
Equation (2-38) by replacing the matrix U with the identity matrix E. The

matrix G is defined by the equation
G = G.G" {(4-14]

where G' and G" are also calculated by Equation (2-38) by using the matrices
U' and U" respectively. The parameters required for construction of the
matrices T'q, T'p, T'g, and T"4, T",, T"3 were taken from Table (4-1) and the
components of the bond vector | were given the values I, = 1.89, iv = 0

and 1, = O.

Figure (4-7) shows the dependence of C on the length of the polymer at

the three temperatures 300K, 400K and 500K respectively.




Charactsristic

Ratio
6.00
o =
=]
590 — : ;
"
v
580 —
570 —
5.60 — "
1
5.50 —
5.40 | | | | |

0 200 400 600 800 1000 1200

No. of Repaat Uniis

Figure (4-7). Characteristic Ratio of PDMSN at 300K (8}, 400K (8) and

BO0K (9).

77




4.7 Dipole Moment Ratio of Poly(dimethylsiimethylene}, (PDMSM])

The dipole moment ratio, <p2

>0/nm2, for poly({dimethyisiimethylene)
was calculated using the equation

<p?>,/nm? = 2(znm?)1 8% GGG 9 (4-15)

again based on the three state model. The matrices G, Gy and G, were
calculated according to the procedure described in section 4.6.

Investigations into the dielectric behaviour of other organo-silicon
CDﬁ”iDUUﬁdS'E‘"?‘]B have indicated that a bond dipols of 0.6D is associated

with the Si-C bond. Based on this information the componenis of the vactor

m were given the values m, = +0.6, m, = 0 and m, = O for a 5i-C bond,

and m, = -0.6, m,, = 0 and m, = O for a C-Si bond.

Figure (4-8) shows the dependence of <u2>0/nm2 on chain length at

the three temperatures 300K, 400K and 500K respectively.

4.8 Discussion of the Results

The limiting values of <r2>0/m2 thus obtained in these calculations at
300K, 400K and 500K are 5.97, 5.91 and 5.90 respectively. Similarly the
limiting values of <u?>,/nm? at 300K, 400K and BOOK are 0.437, 0.432

and 0.430 respectively.
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The nature of the results seem to indicate that the characteristic ratio
and the dipole moment ratio of poly(dimethylsilmethylene) are very nearly
independent of temperature. The near temperature independence of
<r2>0/n|2 and <uz>0/nm2 may occur because the rotations about
Si-CH,-Si bond pairs merely serve to interchange CH, groups with CHj

6.32 5f other chain molecules

groups and vice versa. Conformational analyses
have employed the reasonable assumption that CH, and CHg groups are

sterically very nearly equivalent.

This assumption may also explain why the characteristic and dipole
moment ratios calculated for poly(dimethylsilmethylene) are relatively low
compared to values calculated for other polymers at similar temperatures. For
instance, the characteristic ratio of polymethylene has been calculated33 to
be 7.9 at 300K. This large value arises since polymethylene shows a strong
preference for the all-trans conformation, a distinctive feature of polymers in
general. By assuming that CH, and CHg groups are sterically equivalent,
poly(dimethylsilmethylene) shows no preference for any conformation

resulting in a lower characteristic ratio.

Values for the characteristic ratio and dipole moment ratio have been
experimentally determined for poly(dimethyisiimethylene} by Mark et al
Using results obtained from viscosity and dipole moment expsrimenis
performed on poly(dimethylsiimethylene) fractions, Mark calculated values for

<i?> /ni® and <p®>./nm? at various temperatures. His resuits for

G
[



<r2>o/m2 and <uz>0/nm2 at 303K are 5.32 and 0.355 respectively,

compared with the theoretically calculated values of 5.97 and 0.437.



CHAPTER 5

CONFORMATIONAL ANALYSIS OF

POLY(DIMETHYLSILETHENE)

5.1 Introduction

The molecular structure of a section of poly(dimethylsilethene) chain is
ilustrated below

-Si{CH3) »-CH = CH-Si(CHg) 5-CH = CH-Si(CH3) »-

Poly(dimethylsilethene) possesses unusual structural features that make it a
very interesting polymer from a conformational point of view. The skeletal
backbone of the polymer consists of alternating silicon atoms separated by
planar carbon-carbon double bonds which restrict its conformational freedom.

35 optained from bis(trimethylsilyl)ethene

In addition, experimental evidence
suggests that the carbon-carbon double bonds exist solely in the trans state.
This may be expected due to the large steric repulsion between the Si(CH3)5
groups if the double bonds were to exist in the cis conformation. Adherence
of all double bonds to the planar trans conformation permits the spatial
configuration of the chain to be described in terms of hypothetical virtual

bonds?: 10, with each virtual bond connecting successive silicon atoms. This

is illustrated in Figure (5-1).

o0
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Figure (5-1). Spatial arrangement of a section poly(dimethylsilethene} as

described by the virtual bonds i and i+ 1 (dashed lines).

Since each carbon-carbon double bond adopts a planar trans
conformation, the virtual bonds i and i+1 in Figure (5-1) make up an
interdependent bond pair. The conformational energy for such an
interdependent bond pair is therefore dependent upon the skeletal bond
rotation angles ¢, and ¢,. However, due to the rigid nature of the planar
carbon-carbon double bond, rotations about neighbouring virtual bonds may
be ignored. For instance, rotations about the virtual bonds i-1 and i+ 2 do not
interfere with the intramolecular interactions associated with the virtual bond
pair i and i+ 1. The conformational energy of the virtual bond pair | and i+
is therefore unaffected. By treating the polymer as consisting of isolated pairs

of rotation angles, with members of the same pair strongly interdapandant,
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the whole configurational statistics for the chain may be evaluated by

quantitatively analysing the interdependence of a virtual bond pair.

In this chapter the conformational energy associated with such an
interdependent  pair of virtual bonds will be calculated for
poly(dimethylsilethene). Based on the results obtained the characteristic ratio,
<r?>/nl?, and the mean-square radius of gyration, <s?>/nl?, for varying
chain lengths will be calculated according to the principles derived in Chapter

2 for a chain with independent bond pairs.

5.2 Molecular Geometry

Due to the small amount of experimental structural data concerning the
polycarbosilanes, the structural parameters used in our calculations for
poly(dimethylsilethene) were derived from a quantitative study performed by
" Tribble and Allinger36. In their study of various methylsilanes and vinylsilane,
structural parameters such as bond lengths, bond angles and bond angle
bending constants were calculated based on experimental data. Some of the
structural parameters derived by Tribble and Allinger were used in the present
study since it was highly unlikely that they would differ significantly in

poly(dimethylsilethene). These are illustrated in Table (5-1).

However, since the steric environment of the double bond in vinylsilane
differs somewhat from that in poly(dimethylsilethene), it was important to

establish if the value of the bond angles assigned to the Si-C=C-Si groups
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would be significantly perturbed by the additional intramolecular energy

arising from the different steric surroundings.

Bond Bond Angle Bending Constant36
Length (&) |Angle (6°) | kqlkcal mol! deg™?)

Cep3 - Si 1.87 - -

Cgp2 - Si 1.85 - ]

C-H 1.1 - ]

C=¢C 1.34 - _

C-Si-C - 110.2 0.022

C=C-Si - 122.5 0.018

Si -Cgpp - H - 118.4 | 0.010

Table (5-1). Geometrical parameters used for poly(dimethylsilethene).

Using the parameters displayed in Tables (5-1) and (5-2), the intramolecular
energy of the section of poly(dimethylsilethene) illustrated in Figure (5-1) was
calculated for the four conformations, tt, tg, g°g” and g*g’, according to the
Lennard-Jones (6-12) potential described in Chapter 2. In each case, the
C =C-Si bond angles were then varied about their equilibrium values and the
intramolecular energy calculated again with the inclusion of the associated
bond angle strain36, ES=4*(O.O‘I8/2)(9—122.50). The results are illustrated in

Figures (5-2) to (5-5).
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Figure (5-2). Dependence of C=C-Si bond angle in the trans-trans
conformation.
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Figure (5-3). Dependence of C=C-Si bond angle in the trans-gauche

conformation.
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Figure (5-4). Dependence of C=C-Si bond angle in the gauche(-)-gauche(-)
conformation.
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Figure (5-5). Dependence of C=C-Si bond angle in the gauche( +)-gauche(-)

conformation.
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In three of the conformations, tt, tg, and g°g", the value of the C=C-Si bond
angle associated with the minimum conformational energy was the
equilibrium value of 122.5°. In the gtg conformation the value of the
C=C-Si bond angle generating the minimum energy conformation was
distorted to a value of 123°, but since the distortion was very slight it was

decided to retain the value of 122.5° for use in the calculations.

5.3 Conformational Energy

) -Silicon Atom ‘ -Carbon Atom O -Hydrogen Atom

Fiqure (5-6). Section of poly(dimethylsilethene) used in the calculations.

To investigate the interdependence occurring within a virtual bond pair,
the section of poly(dimethylsilethene) illustrated in Figure (5-6) was used as

the basis for the calculations.
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By assuming that each carbon-carbon double bond adopts a b!anar trans
conformation, and is not subject to rotation, the intramolecular energy for the
virtual bond pair in Figure (5-6) is dependent upon the two bond rotation
angles ¢, and ¢,. Since the section of poly(dimethylsilethene) under
consideration contains six branched methyl groups, it was decided to
calculate the conformational energy for the structure using the "partial
relaxation” technique. That is, the conformational energy calculated for each
set of bond rotation angles ¢, and ¢, was minimised by allowing the six
branched methyl groups to rotate independently to achieve the lowest

conformational energy possible.

It was assumed the conformational energy, E(¢,,¢p), arising from
rotations about ¢, and ¢, consisted of a combination of additive
contributions from the intrinsic torsional potentials of all rotatable bonds and
from the van der Waals interactions between non-bonded atoms. The
interactions included in the latter contribution were from those atom pairs
whose intramolecular separation depended upon one or more rotatable bonds.

Equation (5-1) incorporates all of the contributions described above.
E(d,0p) = Z (E°/2)(1-cos30) + Zllag/ry ) - (c/rg®)  (5-1)

The intrinsic torsional potential of each pendent Si—Csp3 bond was
assigned a 3-fold character with a barrier height of 0.5 kcal/mol”.
!nvestigations36 into the nature of the Si-Cspz torsional potential have

indicated a barrier height of zero. In addition, studies? performed on
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-~

analogous structures in which a single bond connects a tetravalent carbon
atom to a doubly bonded one, have suggested that the conformation of
lowest energy is that in which one of the pendent bonds of the former

eclipses the double bond. This is illustrated in Figure (5-7).

& Co2

C SI\

CH
H CH

3

Figure {5-7). Lowest energy conformation for a tetravalent Si atom bonded

to a doubly bonded C atom.

This property of rotational potentials for single bonds adjoining double bonds
can be reconciled with the bond staggering rule by regarding the double bond

3

as two single bonds drawn together from their normal sp~ positions.

The constants a, and cy characteristic of the Lennard-Jones (6-12)
potential were calculated from atomic polarizabi!iﬁesB1 by application of the

Slater-Kirkwood2® equation and are tabulated in Table (5-2).
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a” C’
Si-----Cgpz |1.71E+06 | 1050
Si-----Cgpp |1.96E+06 | 1300
Cep3-—-Csp3 |3-95E+05 | 363.0
Cgp3—C 4.48E+05 | 447.2
Csp2——-Csp2 |5-10E+05 | 652.9
Si----H 2.62E+05 | 374.1
Cepa-—-H |5.63E+04 | 127.0
Cepo-——-H |6.39E+04 | 158.8
H------H 7.27E+03 | 47.1

Table (5-2).

Non-bonded potential energy parameters. *Units are such as to

give Eppg in kcal/mol for ry; in A.

A conformational energy map, illustrated in Figure (5-8), based on the PR

calculations was generated by using Eqg. (5-1) and scanning the entire
conformational energy space, 0° to 360°, for both ¢, and ¢, in steps of 10°.
The corresponding conformational energies, El(¢5,¢,) were minimised by
allowing rotation of the branched methyl groups between 0° and 360° in

steps of 5°.
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P,

Figure (5-8). Conformational energy map for the pair of bond rotation angles

¢, and ¢, as determined by the PR calculations. The energy, given in kcal/mol
relative to the conformational energy minima designated by " +" on the map,
is shown as contour lines with some values illustrated in the top right

quadrant. Local potential energy minima are located by the dots.
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Analysis of the conformational energy contour map shows the existence
of nine potential energy minima. These occur in the tt, tg*, tg, gtt, g't,
gtg*, gg, g*tg and ggt conformational states with the gtg* and g'g’
being the lowest energy conformations. Due to the rigid carbon-carbon
double bonds restricting the rotational freedom of the molecule, the overall
steric hinderence arising from short range intramolecular interactions within
the molecule is reduced. This results in the relatively low conformational
energies calculated for most of the conformational states (<2 kcal/mol). The
only exception occurs when the molecule exists in the cis-cis state where the
steric hinderence is so severe that conformational energies greater than 6
kcal/mol have been calculated. The excessive conformational energy

calculated for the cis-cis state originates from the intramolecular interaction

occurring between the two hydrogen atoms (H*), illustrated in Figure (5-9).

\C H H—-—

0a=180°" b= 180\\

SICH

H_

Figure (5-9). The H*-H* interaction occurring in the cis-cis state.
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In the cis-cis state, the intramolecular distance between the two hydrogen
atoms labelled in Figure (5-9) is significantly less than the sum of their van
der Waals radii. This leads to severe steric interactions which result in the

large conformational energies for this state.

5.4 Configurational Statistics for Poly(dimethylsilethene)

In order to calculate the characteristic ratio and mean-square radius of
gyration using the concept of independent virtual bond pairs, it is necessary
to derive a transformation matrix, T;, dependent upon the bond rotation
angles ¢, and ¢, which will enable us to transform the representation of a
vector quantity in one virtual reference frame, say i+ 1, to its corresponding
representation in the preceding virtual reference frame i. To do this a
Cartesian coordinate system must be assigned to each virtual bond in the
chain. For simplicity, let the X-axis of the coordinate system coincide with the
direction of the virtual bond itself. The Y-axis may then be taken in the plane
of the carbon-carbon double bond with the Z-axis defined so as to complete
an right-handed orthogonal coordinate system as illustrated in Figure (5-10).
Let the coordinate systems (xyz) for the various skeletal bonds be defined in

accordance with the conventions described in Chapter 2.

Derivation of a virtual bond transformation matrix T;, dependent upon the
bond rotations of the skeletal bonds, requires that a relationship between the
virtual bond coordinate systems and the skeletal bond coordinate systems be

developed. Consider two Cartesian reference frames, xyz and x'y'z'. Let
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Figure (5-10). The coordinate system assigned to each virtual bond.

the rotation a, centred about the z'-axis of the reference frame x'y'z, render
the x-axis of the former reference frame coincident with the x'-axis of the
latter reference frame. Now let the rotation B, about the now common X-axes,
render the two reference frames coincident. Based on this relationship
between the two reference frames, a matrix R(a,f) may be defined that
transforms the representation of a vector expressed in the reference frame

x'y'z" to its corresponding representation in the reference frame Xyz as?

cosa sina 0
R(a,f) = | -sina.cosB cosa.cosP sinf (5-2)
sina.sinfB -cosa.sinfB  cosp

Since the axes X;, 1 Yj 1 Zj, of the virtual bond i+ 1 are related to the xyz

coordinate system of the skeletal bond siP-cY in the sense that they may be

brought into coincidence (see Figure (5-11)), the matrix Rla,B), with a=-n

L

95



| l SE)G H-1 |
H Zl A\ H
CH3 CH,

Figure (5-11). Geometrical representation of the relationship between the

virtual bonds i and i+ 1 and the skeletal bonds Ca-SiB

and SiP-¢”.

and B=-¢,, may be used to transform a vector guantity from the reference
frame of the virtual bond i+ 1 to the reference frame of the skeletal bond
SiB-CY. The matrix R(-n,-¢y,) is given by the equation2
cosM -sinm 0
R(-n,-0,) = | sinm.cosfy, cosn.cosdy -singy (5-3)
sinm.sing,  cosm.sind, cosoy,

The transformation of a vector quantity from the reference frame of the

skeletal bond SiP-CY to the reference frame of the preceding skeletal bond

Ca~SiB, involves the rotations =0 and B =n-¢, (the rotation 3 is displaced by

180° from -¢, due to the conventions used). Hence, the matrix R(6,7-¢,)

which performs this task is given by2
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cosO sin® 0
= |sinB.cosp, -cosO.cosd, sing, (5-4)
sin@.sing, -cos0.sing, -coso,

R(6,7-0,)

Finally, the transformation from the skeletal bond c®siP to the virtual
bond i involves a single rotation oo =§, with 3 =0. It is represented by2
cosE  sing 0

R(E,0) = | -sin§ cosg O (5-5)
0 0 1

By combining the above matrices, a transformation matrix, T;{¢,,0,), may
be defined that transforms the representation of a vector quantity from the
reference frame of virtual bond i+ 1, to its corresponding coordinates in the

reference frame of virtual bond i, by the equation
Tl(d)a’d)b) = R(&JO)-R(eln_d)a)R(“n/”d)b) (5‘6)

The above equation is taken to represent the relationship between two
vector guantities associated with the pair of virtual bonds i and i+ 1. Since
the whole of the poly(dimethylsilethene) chain may be described in terms of
such identical, independent virtual bond pairs, the index i may be dropped
since the matrix <T> is the same for all bond pairs. In such cases, the

statistical average matrix <T> may be calculated by the equation
<T> = R(,0).<R(0,7-¢,).R(-n,-¢p) >

= RI,0).{Z"ZR(0,1-0,).R(-n,-0p).exp[-Eld,,d,) /RTI} (5-7)
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where Z is the partition function and Eq. (5-7) is summed over 0° to 360°, for

both ¢, and ¢, in steps of 10°.

Calculations performed on poly(dimethylsilethene) resulted in the
evaluation of the parameters & = 14°10', 8 = 69°48' and n = 14°210".
Based on these results and the results obtained from the conformational
energy calculations, the statistical average transformation matrix, <T>, for
poly(dimethylsilethene) was calculated at three temperatures, 300K, 400K

and 500K. The resulting matrices are illustrated below

0.30  0.015 o |
0 0 0.022
0.313 0.0284 0

0 0 0.029
b -
0.315 0.035 0

<T>gpok = | -0.137 0.0036 0 (5-10)

0 0 0.034
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5.5 Calculation of the Characteristic Ratio and the Mean-Square Radius of

Gyration for Poly(dimethylsilethene)

The characteristic ratio for poly(dimethylsilethene) may be calculated
according to Eqg. (2-30), derived in Chapter 2, for a chain with independent

bond rotations

C,= <r2>.nl2 = [E+<T>}E<T>)"

H{2<T > /ME-<T>M(E-<T>)2]q; (5-11)

The corresponding ratio of the mean-square radius of gyration is given by the

equation2

<s2>/nl, =[n+2)/6(n+ NIE+ <T>)(E-<T>)q,
ST (E-<T>) 21 /(n+1) +  2[<T>2(E-<T>)3];1/(n+1)?
- 2[<T>3E-<T>M(E-<T>)Hq4/(nin+1)?) (5-12)

In both equations, E is the identity matrix and n is the number of repeat units.
The parameter |, represents the length of the virtual bonds and was

calculated to be 4.5R.

The characteristic ratio and mean-square radius of gyration were
calculated for poly(dimethylsilethene) according to Eg. (5-11) and Eg. (5-12)
respectively. The calculations were performed at temperatures of 300K, 400K
and 500K using the <T> matrices derived in the previous section. The

results are illustrated in Figure (5-12) and Figure (b-13) respectively.
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Figure (5-12). Characteristic ratio of poly(dimethylsilethene) at 300K (),

400K (a) and 500K (¢).
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Figure (5-13). Mean-square radius of gyration of poly(dimethylsilethene) at

300K (@), 400K (&) and 500K (#).
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5.6 Discussion of Results

The limiting values of the characteristic ratio of poly(dimethylsilethene) at
300K, 400K and 500K are 1.98, 1.99 and 2.00 respectively. The limiting
values of the mean-square radius of gyration of poly(dimethylsilethene) at

300K, 400K and 500K are 0.330, 0.332 and 0.334 respectively.

The characteristic ratios calculated for poly(dimethylsilethene) are
extremely low compared to those of polymethylene, poly(dimethylsiloxane)
and poly(dimethylsiimethylene). In these polymers, bond pair interdependence
occurs throughout the chain as a whole. This tends to reduce the number
tightly coiled conformations available to the polymers producing more
extended chains and large characteristic ratios. By presuming neighbouring
bond pairs are independent of each other, the conformational flexibility of the
poly(dimethylsilethene) chain is dramatically increased resulting in more

tightly coiled conformations and lower characteristic ratios.

Although no experimental data could be found concerning the
characteristic ratio of poly(dimethylsilethene), calculations performed on other
structures for which the assumption of independent bond pairs is valid, have
yielded similar results. These include polyglycine2 (<r2>0/an2 = 1.79), and

poly(L-lactic acid)? (<r?> /nl,2 = 1.24).
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CHAPTER 6

CONFORMATIONAL ANALYSIS OF POLY(DIMETHYLSILETHANE)

AND

POLY(2,2,5,5-TETRAMETHYL-1-OXA-2,5-DISILAPENTANE)

USING THE HARD-SPHERE MODEL

6.1 Introduction

The conformational analyses of poly(dimethylsiimethylene) and
poly(dimethylsilethene), described in preceding chapters, have been
concerned with polymers with relatively simple molecular structures. The
methods employed in the evaluation of the random coil statistics for these
polymers have therefore been quite detailed and have involved complicated
computational analysis. However, for polymers with more complicated and
varied molecular structures, such detailed analyses become extremely difficult
to perform. The more complicated and varied the structural backbone of a
polymer, the greater the number of U-matrices are required to describe it.
Since each individual U-matrix would have to be evaluated based on the
variation of the particular intramolecular interactions involved, the task of
evaluating the random coil statistics by this method is very complex and very

time consuming.
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By analysing the conformational properties of complicated polymers
using the hard-sphere model, a less detailed analysis results in a simpler
method of evaluating their random coil statistics. Although less detailed, the
hard-sphere model is still very useful when determining the characteristic
ratio and dipole moment ratio of a polymer and has been used by several

workers in the past32.

In this chapter, the principles of the hard-sphere model will be briefly
described. This will be followed by the evaluation of the random coil statistics
of poly(dimethylsilethane), and poly(2,2,5,5-tetramethyl-1-0xa-2,5-

disilapentane) using the hard-sphere model.

6.2 The Hard-Sphere Model

In the hard-sphere model, the individual atoms (or in some cases certain
functional groups, eg. CHjy ) forming a particular polymer structure are
assumed to be made of hard spheres, whose radii are equivalent to the van
der Waals radii of the atoms or groups involved. When the structure of the
polymer in question is then examined, the proximity of particular atoms or
groups involved in the determination of the U-matrices are compared with the
sums of their respective van der Waals radii. For interactions in which the
distance of separation between the atoms or groups in a particular
conformation are equal to or larger than the sums of their van der Waals radii,
a value of unity is assigned to the element of the U-matrix responsible for

that conformation. In conformations where an interaction between two atoms
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or groups has a distance of separation that is significantly less than the sum
of their van der Waals radii, a value of zero is assigned to the element of the
U-matrix responsible for that conformation. A value of zero may also be
assigned if there is significant steric hinderence occurring from the
interactions of branched groups, usually methyl groups, within a particular
conformation. The three cases described above are illustrated in Figures

(6-1(a)), (6-1(b)) and (6-1(c)) respectively.

By analysing the conformations of complicated structures in this way, a
set of U-matrices may be constructed that have values equal to unity or zero.
The resulting matrices may then be used to describe the conformational
behaviour of the polymer in question. The characteristic ratio and dipole
moment ratio can then be determined according to the methods described in

Chapter 2.

6.3 Poly(dimethylsilethane)

The molecular structure of a section of poly(dimethylsilethane) is

illustrated below
—Si(CH3)2CH2Csti(CH3)ZCH2CH28i(CH3)2-

The skeletal backbone of this polymer chain consists of alternating silicon
atoms separated by ethane type groups giving this polymer considerable
conformational flexibility. In accordance with the rotational isomeric state
approximation, each rotational skeletal bond in the chain is assigned to one of

a small number of discrete rotational states, in this case three, situated at the
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van der Waals radii

a). u=1

van der Waals radii

b).

van der Waals radii
c).

Figure (6-1). The diagrams above illustrate three conditions that may be
utilized to determine the values of the U-matrix elements
when applying the hard-sphere model. The shaded areas

indicate steric hinderence.
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rotational angles 0° (t), 120° (g¥) and 240° (g).

6.3.1. Molecular Geometry

Some of the structural parameters used in the conformational analysis of
poly(dimethylsilethane) were derived from the quantitative study performed
by Tribble and Allinger3®. The values of the bond lengths and bond angles
associated with the skeletal carbon-carbon group were taken to be equivalent
to the values found in n-alkanes®. The values used in the calculations are

illustrated in Table (6-1).

Bond Length (R) |Bond Angle (6°)

Si-C 1.89 -

CH,-CH, 1.53 -

C-H 1.1 -
Si-CH,-CH, - 112
CHy-CHy-Si - 112
CH,-SI-CH, - 110
Si-C-H - 109

Table (6-1). Geometrical parameters for poly(dimethylsilethane).
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6.3.2. Construction of the Statistical Weight Matrices

Since rotations about the Si-CH,, CH,-CH, and CH,-Si skeletal bonds all
give rise to different intramolecular interactions, the poly(dimethylsilethane)
chain requires three U-matrices for its characterization. These three matrices,

U,, U, and Uy are illustrated in Figure (6-2).

VAR VAN 1/
NN
AN AN

Figure (6-2). Assigning the U-matrices required to describe a section

of the poly(dimethylsilethane) chain.

Since each rotatable skeletal bond is assumed to exist in one of three
distinguishable rotational states (t, g*t, g), each U-matrix will consist of nine
matrix elements corresponding to the nine conformational states tt, tg*, tg’,
gtt, gtg*, gt g, gt, gg* and gg. In order to evaluate the value of each

matrix element for a particular U-matrix, it is necessary to examine the
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intramolecular interactions occurring within each of the nine conformations

that determine that matrix.

1. The Matrix U;

C
CH o @\D{W Si

/

Y )

In the all-trans conformation, there are no significant intramolecular
interactions between any atoms or groups and so the matrix element u(tt)

was assigned a value of unity.

In the tg* conformation, severe intramolecular interactions occur
between the two methyl groups CH3B and CH36. Their distance of separation
in this conformation was calculated to be 1.78R compared with the value of
4.0R for the sum of their van der Waals radii3’. For this reason a value of
zero was assigned to the matrix element u1(tg+). Since the conformation tg

is a mirror image of the conformation tg*, a similar interaction occurs in this
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conformation between the two methyl groups CH;* and CH3', giving a value

of zero for the matrix element uq(tg’).

The two conformations gt and g't are very similar to the all-trans
conformation in the sense that rotation about ¢4, with ¢, remaining equal to
zero, simply results in an exchange of positions between the two methyl
groups, CH3® and CH3B, and a CH, group. The matrix elements uq(g™t) and

uq(gt) may therefore be assigned a value of unity.

Due to the similarity between the all-trans, g7t and g't conformations, it
will be apparent that in the remaining four conformations, g*g*, g*g’, gg™
and g'g’, there are severe interactions occurring between the groups, CH3°‘
and CH3®, CH, and CH3", CH, and CH53%, and CH3P and CH3! respectively. In
all of these interactions, the distance of separation between each respective
group was again calculated to be 1.78A, compared with a value of 4.0A for
the sum of the van der Waals radii. Therefore the matrix elements u1(g+g+),

u1(g+g‘), u1(g“g+) and uq(g’g’) are assigned a value of zero.

The matrix Uy may now be represented by the equation

1 0 O
Uu; =|1 0 © (6-1)
1 0 O
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180°

CH, Cio Si

After a close inspection of the structure A, defining U,, it became
apparent that this structure was related to the structure B, defining U, via a
rotation of 180° about a central axis of symmetry. By invoking this

symmetrical relationship between the two structures, the matrix U, may be
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defined as the transpose of the matrix Uy, since the net result of this

operation is to interchange the rotational angles ¢, and ¢,. Hence,

Uyldadp) = Uq(dpdy) =UqT(dy0p)

Since the matrix Uy is known, the matrix Uj is simply

T 1 1
U, =U;T =|0 0 O
0O 0 ©

3. The Matrix U3

Bow,  %a b &y

< OAN,

/\C '
CH3  CHg

(6-2)

(6-3)

For the all-trans conformation, the matrix element us(tt) was assigned a

value of unity, since no significant intramolecular interactions occur in this

conformation.

The matrix elements u3(tg+), uz(tg’), u3(g+t) and ugz(g't) representing

the conformations tg™t, tg”, g*t and gt were also assigned values of unity

since no significant interactions occur in these conformations.

112



For the g*g*, gg, g*tg and gg* conformations any possible
intramolecular interactions would occur between the two terminal groups
CH»* and CH26. In the g g™ and g°g” conformations the distance between
these two groups was calculated to be 4.05R and so the matrix elements
u3(g+g+) and us(g’g’) were given values of unity. However, the distance
between these two groups in the gtg and agt conformations was
calculated to be 3.22R8 compared with the value of 4.0R for the sum of their
van der Waals radii. The values of the matrix elements us(g'g*) and uz(g'g™)

were therefore assigned values of zero.

The matrix Uz may now be represented by the equation

T 11
U =11 1 0 (6-4)
1 0 1

6.3.3. Characteristic Ratio

For an unperturbed poly(dimethylsilethane) chain starting and ending
with silicon atoms, the characteristic ratio was calculated according to the

equation
2 2 _ 2\v-Tq+* X
<r¢>,/nle = 2(Znl?) ' 8*G1.(G1.G,.G3), G,.G,9 (6-5)

Using the geometrical parameters tabulated in Table (6-1) and the three
U-matrices, U,;, U, and Uj, the characteristic ratio <r2>0/nl2 of
poly(dimethylsilethane), in the limit n => infinity, was calculated to be 4.63 at

all temperatures.
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The values of the characteristic ratio calculated for
poly(dimethylsilmethylene) were slightly higher than 4.63, indicating
increased flexibility in the poly(dimethylsilethane) chain. The reason for the
increased flexibility can be seen on examination of the two structures since,
ineffect, the skeletal CH, group is being replaced with the more flexible

CHy»-CH, group.

Due to the lack of experimental dielectric data concerning this polymer,
the dipole moment ratio could not be computed. lts existence, however,

cannot be ruled out.

6.4 Poly(2,2,5,b-tetramethyl-1-oxa-2,5-dislapentane)

The molecular structure of a section of poly(2,2,5,5-tetramethyl-1-oxa

-2,b-dislapentane) is illustrated below
~Si(CH3)Z-O—Si(CH3)2CH2CH28i(CH3)2-O-Si(CH3)2CH2CHZSE(CH3)2—

As in the case of poly(dimethylsilethane), each rotational skeletal bond in
this chain was allowed to occupy one of three discrete rotational states

situated at 0° (t), 120°(g*) and 240°(g’).

6.4.1. Molecular Geometry

Some of the structural parameters used in the conformational
calculations for poly(dimethylsilethane) were derived from the guantitative
study performed by Tribble and A!linger36. The values of the bond lengths

and bond angles associated with the skeletal carbon-carbon group were taken
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to be equivalent to the values found in n-alkanes®, while the bond lengths
and bond angles associated with the Si-O-Si link were taken from structural
studies performed on po!y(dimethylsiloxane)8. The values used in the

calculations are illustrated in Table (6-2).

Bond Length (&) |Bond Angle (6°)

Si-C 1.89 -

Si-0O 1.64

CH,-CH, 1.53 -

C-H 1.1 -
Si-CH,-CH, . 112
CHy-CHy-Si - 112
CH,-SI-CH, : 110
Si-0-Si - 143
Si-C-H - 109

Table (6-2). Geometrical parameters used to describe the structure of

poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane).
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6.4.2. Construction of the Statistical Weight Matrices

In order to fully characterise poly(2,2,5,5-tetramethyl-1-oxa-2,5-
disilapentane), we need to assign five U-matrices to account for all of the
intramolecular interactions associated with the chain. The allocation of each

U-matrix is illustrated in Figure (6-3).

CHy CHz  CHg

e \/ |
KK
A

CHy  CHj

Figure (6-3). Assigning the U-matrices required to describe

poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane).

Five matrices are required for this polymer since rotations about Si-O-Si,
0-Si-CH,, Si-CH,-CHy, CH»-CH»-Si and CH,-Si-O all produce a different
combination of intramolecular interactions. Since each skeletal bond is
assumed to exist in one of three discrete rotational states (0°, 120° and

240°), each of the five U-matrices will consist of nine matrix elements.
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CH3 CH3 CH3

\/¢a M/
AN,

For the all-trans conformation, the distance between the methyl groups
CH3* and CH3%, and CHg® and CHg?, were calculated to be 4.98 and 3.958
respectively. A similar situation occurs between the methyl groups CH3B and
CH3Y, and CH3B and CH35. Since the sum of the van der Waals radii3/ for
two methyl groups was calculated to be 4.0R, the matrix element uq(tt) was

assigned a value of unity.

Since rotations about ¢, and ¢, only serve to interchange the positions of
CH3 and CH, groups, both of which have the same van der Waals radii

(2.0R), values of unity were assigned to all the other matrix elements of U,.

The matrix U4 is therefore given by the equation

1 1 1
U, =11 1 1 (6-6)
1T 1 1
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In the all-trans conformation, the distance between the methyl groups
CH3%, CH3B, CH38 and CH" are the same as those in the structure defining

U,, hence the matrix element u,(tt) was assigned a value of unity.

It may be seen from the above diagram that rotations about ¢, with
bp =0, and rotations about ¢y, with $,=0, do not produce any significant
intramolecular interactions. In fact, the former rotations tend to relieve any
steric hinderence present. The matrix elements u,(tgt), u,(tg), uylg™t) and

u,(gt) were therefore assigned values of unity.

For the gtg™ and g'g” conformations, the closest distance of separation
occurs between the groups CH3® and CH,", and CH3B and CH,® respectively.
The distance between these two pairs of groups was calculated to be 3.958.

Since this value is nearly identical with the sum of their respective van der
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Waals radii, a value of unity was assigned to the matrix elements uz(g+g+)

and u,y(g'g).

The only severe intramolecular interactions that are present in this
structure occur in the g¥g and g'g™ conformations. In these conformations,
the distance between the groups CH5" and CH,®, and CH3[3 and CH,® were
calculated to be 3.118 respectively. Since the sum of their van der Waals
radii in both cases was calculated to be 4.08, values of zero were assigned

to the matrix elements u,(g *g’) and uz(g‘g+) respectively.

The matrix U, may now be represented by the equation

111
U, = {1 1 0 (6-7)
1 0 1

3. The matrix !3
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For the all-trans conformation no significant interactions occur. Hence,

the matrix element uj(tt) was assigned a value of unity.

However, in the tg"™ and tg~ conformations, severe intramolecular
interactions occur between the methyl groups CH36 and CH3%, and CH3" and
CH3B respectively. The distance between these two pairs of groups was
calculated to be 1.788, compared with a value of 4.0R for the sum of their
van der Waals radii. Values of zero were therefore assigned to the matrix

elements u3(tg+) and uj(tg’) respectively.

Since rotations about ¢,, with ¢, =0, serves only to interchange the
positions of the three groups O, CH36 and CH', the matrix elements ug(g *1)

and us(g’t) were assigned values of unity.

In the g*tg™ and g'g” conformations, the distance between the groups
CH5' and CHg% and CH3® and CH4”, were both calculated to be 1.788,

resulting in values of zero being assigned to the matrix elements us(g*g™)

and u3(g‘g').

Similar interactions occur in the g*tg~ and gg*t conformations between
the groups O and CH3OL, and O and CH3ﬁ respectively. The distance between
these two pairs of groups was calculated to be 1.883, compared to a value
of 3.48 for the sum of their van der Waals radii. For this reason, the matrix

elements u3(g+g') and u3(g‘g+) were also assigned values of zero.
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The matrix Uy is therefore given by the equation

1 0 0
U = |1 0 0
1 0 0
4. The matrix Uy
o
CHg gH 3

ba ¢QQ\ //
AN

f

> b 180°
— ==
Y )
CHy CHq
xs/ dp ba g
O/ % \
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It can be seen from inspection that the matrix U, is related to the matrix
Uy in the same way that the matrix U, was related to Uy in the analysis of
poly(dimethylsilethane). That is the matrix U, is equal to the transpose of the
matrix Uz due to the fact that the two structures that define the matrices Uy
and Uy are related by a central axis of symmetry. The matrix Uy is therefore

equal to U3T. Hence,

Since the matrix Uz is known, the matrix Uy is simply

T 11
U, =Ug" =|0 0 0 (6-10)
0O 0 O

5. The Matrix Ug

Again, from the diagram overleaf it may be seen that the structure
defining Ug is related to the structure defining the matrix U, by a central axis
of symmetry. Hence, the matrix Ug is equal to the transpose of the matrix

U,. The matrix Ug is therefore given by

T 1
Us =U," =11 1 0 (6-11)
1T 0 1
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6.4.3. Characteristic Ratio

For an unperturbed poly(2,2,5,5-tetramethyl-1-oxa-2,5-dislapentane)
chain starting and ending with silicon atoms, the characteristic ratio was

calculated according to the equation

<r2> /2 =2(Zn?)18*G1.(G1.G5.G3.G4.Gg) XG1.G,G3.G49 (6-12)
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Using the geometrical parameters tabulated in Table (6-2) and the five
U-matrices, U4, Uy, Uz, U, and Ug, the characteristic ratio <r2>0/nl2 of
poly(2,2,5,5-tetramethyl-1-oxa-2,5-dislapentane), in the limit n = infinity,

was calculated to be 4.79 at all temperatures.

6.4.4. Dipole Moment Ratio

Experimental analyses performed on poly(dimethylsiloxane)38 and other
organo-silicon Compunds16'17 containing a siloxane bond, has revealed that
the Si-O bond has a dipole moment of 0.6D. Based on this information, the
dipole moment ratio for an unperturbed poly(2,2,5,5-tetramethyl-1-oxa-2,5-
dislapentane) chain, starting and ending with silicon atoms, was calculated

according to the equation
<p?>,/nm? = 2(Znm?)18*Gr.(G1.G,.G3.G4.G5) ¥G1.G,G3.G49 (6-13)

Again, the geometrical parameters tabulated in Table (6-2) and the five
U-matrices Uq, Uy, Ug, Uy and Ug, were used in the calculation. The dipole
moment ratio was calculated, in the limit n = infinity, to be 0.187 at all

temperatures.

6.5 Disscusion of Results

If the characteristic ratios calculated for poly(dimethylsiimethylene) and
poly(dimethylsilethane) are compared, it is seen that the latter value is slightly
lower than the former value. As mentioned earlier, this may be due to the

increased flexibility of the poly(dimethylsilethane) chain. However, another

124



factor that may explain the difference in the values is the sterib’ hinderence
occurring between the branched methyl groups within each polymer. The
steric hinderence occurring between the branched methyl groups in
poly(dimethylsilethane) may be reduced, with respect to that in
poly(dimethylsiimethylene), by replacing a -CH,- group in the skeletal

backbone with a -CH,»-CH,- group.

The same trend is observed when comparing the characteristic ratios and
dipole moment ratios of poly(2,2,5,5-tetramethyl-1-oxa-2,5-dislapentane)
with those of the closely related structure, poly(dimethylsi!oxane)8'39. The
characteristic ratio and dipole moment ratio of
poly(2,2,5,5-tetramethyl-1-oxa-2,5-dislapentane) are slightly less than the
corresponding values of poly(dimethlysiloxane). Again, the introduction of
alternate -CH»-CHy- groups into the skeletal backbone of
poly(dimethylsiloxane) to produce poly(2,2,5,5-tetramethyl-1-oxa-2,5-
dislapentane), may reduce the overall steric hinderence within the polymer

thereby, reducing the calculated characteristic ratio and dipole moment ratio.
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CHAPTER 7

MATERIALS

7.1 Introduction

The materials used in this study were a combination of samples of
poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane) donated by Dow Corning
and one compound, poly(dimethylsilmethylene), synthesized by the author. In
this chapter the synthesis and characterisation of poly(dimethylsiimethylene)

will be described along with a g.p.c. analysis of the donated polymers.

7.2 Poly(2,2.5,5-tetramethyl-1-oxa-2,5-disilapentane)

Two samples of poly(2,2,5,6-tetramethyl-1-oxa-2,5-disilapentane) were
supplied by Dr. D. Thomas of Dow Corning, Barry, South Wales. These
experimental samples were labelled sample 10423-1 and sample 10423-9

respectively.

7.2.1. G.P.C. Analysis of the Samples 10423-1 and 10423-9

The distribution of molecular weights in these samples was ascertained
using gel permeatation chromatography which was performed by RAPRA
Technology Ltd. The g.p.c. chromatographs for samples 10423-1 and
10423-9 are illustrated in Figures (7-1) and (7-2) respectively. The results are

expressed as the "polystyrene equivalent” molecular masses.
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Figure (7-1). G.P.C. chromatograph of sample 10423-1.
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Figure (7-2). G.P.C. chromatograph of sample 10423-9.
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The g.p.c. results show that each polymer sample contains a high
molecular weight component along with a relatively small amount of low
molecular weight material. The average molecular weights, M,,, of the main
components in the samples 10423-1 and 10423-9 are approximately 28000

and 46000 respectively.

7.3 A Synthetic Route to Poly(dimethylsiimethylene)

The ring opening polymerisation of 1,1,3,3-tetramethyl-1,3
-disilacyclobutane, to produce poly(dimethylsilmethylene) has been
investigated by several groups of workers including Kriner29, Weyenberg and
Nelson40, and Bamford, Lovie and Watt?!. The unusual reactivity of
1,3-disilacyclobutanes is attributed to the severe ring strain present in these
rings. The compound 1,1 ,3,3—tetramethyl—1,3—disilacyc|obutane19 polymerises
on heating above 200°C although generally the polymers so obtained are of
relatively low molar mass. A popular polymerisation technique involves the

use of group VIHI metal compounds such as chloroplatinic acid

(H,PtClg.6H,0).

The compound 1,1,3,3-tetramethyl-1,3-disilacyclobutane is not available
commercially and had to be synthesized by an inefficient "inverse” Grignard
process?—o. The synthetic route to poly(dimethylsilmethylene) is illustrated in

Figure (7-3).
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CH,Cl

/\

n (CH3),Si + 2n Mg ——> n (CH3),Si Si(CH3)p
Cl \CHQ/
(Chloromethyl}dimethyl- 1,1,3,3-tetramethyl-1,3-disila-
chlorosilane cyclobutane
l HoPtClg.6H,0

CH3(Si(CH3),CHy) 5 H
Poly(dimethylsilmethylene)

Figure (7-3). Synthetic route to poly(dimethylsilmethylene).

7.4 Preparation of 1,1,3,3-tetramethyl-1,3-disilacyclobutane

(Chloromethyl)dimethylchlorosilane (143g, 1 mol; Dow Corning) in
tetrahydrofuran (400 ml) was contained in a 1 litre, three-necked round
bottomed flask. Magnesium (26g, 1 mol+excess) was added portion-wise
over a two and a half hour period keeping the reaction temperature between
34°C and 36°C by cooling with water. During the addition the reaction
mixture was vigourously stirred. The reaction was completed by stirring
continuously for two hours with gentle heating to keep the reaction mixture
at a temperature of 40° C. When the reaction mixture was cool, three 100m|
portions of distilled water were added at 15 minute intervals. The organic
layer was separated and washed with distilled water and the monomer was
isolated by fractional distillation under reduced pressure (bpt. 59°C, 99

mm/Hg; yield 20%).
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7.4.1. Infra-red Spectroscopy

An Infra-red spectrum for the product is shown in Figure (7-4). The
spectrum was obtained from the pure product using a Perkin-Elmer 599B

infra-red spectrophotometer.

1),

7

Characteristic absorptions (v cm”

2960s, 2900s - C-H stretching; 1250s - symmetrical stretching; 940s- cyclic

methylene wagging; 860s, 820s - silicon methyl wagging.

7.4.2. Nuclear Magnetic Spectroscopy

A nuclear magnetic resonance spectrum for the product is shown in
Figure (7-5). The spectrum was obtained from the pure product using a

Varian EM-300X n.m.r. spectrophotometer operating at 30 MHz.

Characteristic peaks (1);

10.0 - 12H, strong; 10.3 - 4H, strong;

7.5 Polymerisation of 1,1,3,3-tetramethyl-1,3-disilacyclobutane

The cyclic monomer (6g) with a solution of chloroplatinic acid (0.3% by
weight), in propan-2-ol was contained in a sealed dry flask and placed in a
water bath at a temperature of 30°C. The pressure in the flask was reduced
to approximately half the atmospheric pressure. Subsequent analysis showed
that within 30 minutes the monomer had polymerised to form low molecular

weight poly(dimethylsilmethylene).
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Figure (7-4). Infra-red spectrum of 1,1,3,3-tetramethyl-1,3-disilacyclobutane.
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Figure (7-5). N.M.R. spectrum of 1,1,3,3-tetramethyl-1,3-disilacyclobutane

relative to T.M.S.

7.5.1. Infra-red Spectroscopy

An infra-red spectrum for poly(dimethylsilmethylene) is shown in Figure
(7-6). The spectrum was obtained from the pure product using a Perkin-Elmer

539B infra-red spectrophotometer.

1).

7

Characteristic absorptions (v cm”

2980s, 2950s, 2930s - C-H stretching; 1250s - symmetrical stretching;

1050s- methylene wagging; 840s, 820s - silicon methyl wagging.
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7.5.2. Gel Permeation Chromatography

Samples of the polymer were sent to RAPRA Technology Ltd. for g.p.c.
analysis. The results of the analysis are illustrated in Figure (7-7). Again the
molecular weights are expressed as the "polystyrene equivalent”. The results
indicate the sample consists of a major component with a molecular mass of

400, with a high molecular mass 'tail' stretching up to 10%.
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Figure (7-7). G.P.C. chromatograph of poly{dimethylsiimethylene).
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CHAPTER 8

DIELECTRIC RELAXATION

8.1 Introduction

In this chapter a theoretical basis will be provided for the interpretation

of the dielectric data acquired for the polymer samples.

8.2 Dielectrics in Static Electric Fields

Consider a parallel-plate capacitor consisting of two parallel plates of
surface area A, and separation d. On application of a static electric field E,
the potential difference V, between the two plates in vacuo, is given by the

product E,d. Accordingly, the capacitance of the system is defined as*2

Co = Qu/Vs (8-1)

where Q. is known as the true charge since it represents the actual electric

charge on each plate of the capacitor.

When the space between the plates of a capacitor is completely filled
with an insulating material, called a dielectric, the potential difference across
the capacitor is reduced to a value V, with the result that the capacitance of

the system is augmented to a value C, given by

C = Qq/V (8-2)
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where Q4 is known as the free charge since it is the portion of the true

charge which contributes to the voltage V.

[ O O ©

A

_ -' Plate
’:P

’”_P

CP '+ ' Hate

E - Bound Charge @ - Free Charge - Polarized Molecule

Figure (8-1). Schematic representation of dielectric polarization.

This effect has been described traditionally by introducing the static

permittivity, or static dielectric constant, g5, which is defined as*2

e = CIC, (8-3)

The difference between the true and free charges is known as the bound
charge (Q, - Qq). This charge is bound by an adjacent charge of equal

magnitude but of opposite sign which lies at the surface of the dielectric
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material and originates from the polarization occurring within the dielectric

itself. This is illustrated in Figure (8-1).

The surface density of the bound charge is equal to the polarization of
the dielectric P. Hence, if it is assumed the condenser is of a large area so

that edge effects may be ignored

P = (1/A)Qq - Qq) (8-4)

= Qo - U1 (8-5)

where g, and g are the surface densities of the true and free charges. These
two charge densities define the electric displacement D, and the electric field

strength Eg
D, = 4nq, (8-6)
Eo = 4nqq (8-7)

The relationship between the electric displacement and the electric field

strength is given by the equation

gs = Dy/Eq (8-8)

and it may be shown that
D, = E, + 4nP (8-9)

The origins of dielectric polarization lie in the nature of the dielectric
material and its response when subjected to an applied electric field. For

dielectrics that consist of polar molecules with permanent dipole moments,
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the applied electric field interacts with the dipoles so that they tend to align
against the field. In the case of non-polar dielectrics, the applied electric field
induces polarization in the molecules of the dielectric, creating temporary
dipoles which tend to align against the field. In both cases the effect is a
reduction in the magnitude of the effective electric field between the plates

resulting in the reduction of the potential difference across the capacitor.

8.3 Dielectrics in Time Varying Electric Fields

The application of a variable-frequency sinusoidal electric field to a polar
liquid dielectric causes the molecules to partly reorientate before the field
reverses. At low frequencies there is usually no lag between the reorientation
of the molecules and the variation of the alternating electric field. Under these
conditions there is no measurable phase difference between the dielectric
displacement, D, and the varying electric field, E, and consequently the ratio
D/E will be defined by a constant equal to the static value of the dielectric
constant gs. However, as the frequency of the electric field is increased the
molecular reorientation fails to keep up with the varying field and a phase
angle difference, 8, arises between the D and E vectors. Consequently, the D

and E vectors must then be expressed as

Doexplilot - 8)] (8-10)

and

Eoexpliot) (8-11)
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respectively, so that,
D/E = e* = Dyexplilot - 8) / Eqexpliot)] (8-12)

D, and E, are the amplitudes of the respective vectors, ® is the angular
frequency of the electric field and €* is the complex value of the dielectric

constant defined by
e* =¢'-ig" (8-13)

where €' is the real part of the dielectric constant and €" is the imaginary part

of the dielectric constant often referred to as the dielectric loss factor.
The two dielectric constants, ¢' and ¢", are linked by the equation
g"/e' = tan & (8-14)

where tan &8 is known as the dissipation factor. The latter quantity is the ratio

of the energy loss per cycle to the energy stored per cycle.

As the frequency of the electric field approaches zero, the present

description must become identical with the case of a static electric field, thus
g'(w) = g, e"(w) = 0O, as o= 0 (8-15)

A further relation may be added, namely
e'(0) = g, as o —=> infinity (8-106)

where g; is the value that &'(o) approaches at frequencies that are large

relative to i,y (S€€ section 8.3.1.).
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8.3.1. Single Relaxation Behaviour

The frequency dependence of €' and €" was first described by Debye43.
For a single relaxation process Debye showed that
e* =g + Ueg-g) /(1 + i07)] (8-17)
The real and imaginary parts of Eq. (8-17) yield
') = & + [(eg-€) / (1 +0°12)] (8-18)
and

e"(0) = [otleg -€)] / (1 +02T?) (8-19)

where ¢; is the high frequency permittivity, €4 is the static permittivity, o is
the angular frequency of the electric field and t is the relaxation time for the
process. The plots of €' and &" versus log o are illustrated in Figure (8-2). It
can be seen that ¢" attains a maximum at o =1/t or f = 1/2%t, where f is the
frequency of the electric field in Hz. At this frequency, the maximum value of

¢" becomes equal to
e"(max) = (gg - §)/2 (8-20)
and ¢' assumes the value
e = (eg + g)/2 (8-21)
From Egs. (8-14), (8-18) and (8-19) the dissipation factor may be written as

tan 6 = [ot(eg - &)] / (&g + aimzrz) (8-22)
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Figure (8-2). Debye dielectric dispersion and absorption curves for a single
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The maximum value of tan §, at which d(tan 8)/de = O, occurs at a frequency

Omax = (85/85'[2)1/2 (8-23)

attaining a value of

(tan 8) ax = (8g - &) / [2(egg) /2] (8-24)

The frequency portion of the maximum of tan & is not coincident with that of
€"(max): 1he displacement of the tan & peak depends upon the difference
between the value of ¢ and g;.

The frequency dependence of " on €' may be used to test how well the

Debye model fits the real case. Eliminating the parameter ot between Egs.

(8-18) and (8-19) gives
' - (eg + &)/2] + &"2 = [lgg - /212 (8-25)

This is the equation of a circle having a centre at [(eg + g)/2, O] and a radius
of (g5 - /2. Since negative values of €' are not permissible, a plot of "

against €' should be a semicircle, as shown in Figure (8-3(a)).

8.3.2. Multiple Relaxation Behaviour

The curves for dielectric loss in polymers are broad and have lower loss
maxima than those predicted by the Debye model. This led Cole and Cole™*
to suggest the following semi-empirical equation for dielectric relaxation in

polymers

e* =g + leg-g) /(1 + (lot)T* (8-26)
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(a) semi circular Cole-Cole plot €
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(b) Cole-Cole plot with the centre situated below the axis
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(c) Davidson-Cole plot
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Figure (8-3). Cole-Cole plots.
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where O < a < 1, and « is an empirical quantity specifying the broadness of

the distribution.

Equation (8-26) better describes a broad dispersion, and gives an g"
versus &' plot in which the centre of the fitted semicircle is depressed below

the abscissa, as shown in Figure(8-3(b)).

The flatter or more shallow the circular arc then the greater is the span

of relaxation times associated with the relaxation process.
The centre of the semicircle is given by
(eg - §)/2, -lleg - gj)/2]cotan(Br/2) (8-27)
where B=1-a. The radius of the semicircle is given by
[(eg —g;)/2]cosec(Br/2) (8-28)

Although the exact form of the distribution of relaxation times in the
Cole-Cole equation is not based on any particular molecular model, the
empirical parameter a is convenient for specifying the broadness of the
experimental relaxation peaks, and it has been extensively used for this

purpose.

Referring to Figure (8-3(b)), the angle between the line connecting C to g;
on the real axis is equal to an/2. Note that, in the case of a = O, the locus of
the Cole-Cole plot approaches the ¢' axis at 90° and Eqg. (8-26) reduces to Eq.

(8-17), i.e. single relaxation.
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The empirical Cole-Cole equation relates only to dispersion and
absorption curves that are symmetrical about the position ot = 1. It is often
found, for polymers, that the dielectric loss curves have a high frequency
broadening and the Cole-Cole plots are said to be skewed. Davidson and

Cole?® attempted to fit the experimental results to the following function

e*(0) = & + leg + &) / (14 i01)P] (8-29)

S

where B is a parameter, 0 < < 1.

Also
(£'(0) - &) / (&g - &) = (cos(p))Picos(B)) (8-30)
and
€"(0) - &) / (&g - &) = (coslp)Pisin(Bo)) (8-31)
where tan(¢) = oT,.
For maximum loss @t, = 1, butis given by
Omax® = tan {1/(B +1)(n/2)} (8-32)

where o{max) is the angular frequency corresponding to maximum loss.

Figure (8-3(c)) shows a typical Davidson-Cole arc plot. At low
frequencies the curve approaches the abscissa along a straight line. The
angle between this line and the abscissa is Bn/2. Many measurements on
solutions of polymers in low molecular weight solvents often give results that

may be fitted by the Davidson-Cole function.
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It is apparent from the preceding discussion that Cole-Cole plots are a
very convenient graphical method for the representation of the entire
dielectric properties of a chemical system. For a complete set of relaxation
data, the limiting values of €, and g may be obtained from the intersection of

the locus of Cole-Cole plots on the €' axis.

8.4 Temperature and Dielectric Relaxation

The concept of thermal activation over a potential energy barrier was
first applied to dielectric phenomena by Eyring46. He showed that the rate
constant for the movement of molecular dipoles between two or more

possible equilibrium positions separated by a potential energy barrier was
Ko = (kT/h)exp(-AF/RT) (8-33)

where k is the Boltzmann constant, h is Planck's constant and R is the gas
constant. Here AF is the free energy of the dipolar relaxation and is defined

as
AF = AH - TAS (8-34)

where AH is the activation energy of dipole relaxation and AS is the entropy
of activation.In terms of the Eyring model, the dipole relaxation time, 1, is, by

definition, the inverse of K, so that
© = (h/kT)exp(AH/RT)exp(-AS/R) (8-35)

or, in logarithmic form
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InT = (AH/RT) - InT + [In{h/k) - (AS/R}] (8-36)

Since the last term on the right-hand side of Eq. (8-36) is independent of
temperature and because the contribution from the InT term is small and
varies only slowly with changes in temperature, a plot of Int against 1/T
would be expected to be a straight line. This is an example of the Arrhenius
law, and, in practice it is usual to plot logf,,, against 1/T to obtain a straight

line possessing a gradient of ~AH/(2.303R).
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CHAPTER 9

EXPERIMENTAL METHODS

9.1 Introduction

This study is concerned with the measurement of experimentally
observable quantities to yield information concerning the structure and

dynamic properties of some silicon containing polymers.

The parallel electrical capacitance, C,, and the dissipation factor, tan o,
are quantities from which the dielectric constant, €', and the dielectric loss,
e", can be calculated. A considerable amount of information concerning the
motion and flexibility of polymer molecules can be deduced from the
temperature and frequency dependence of & and €". In addition, the

activation energies, AH, for the molecular processes involved can be

calculated.

The apparatus and techniques used to facilitate these measurements will

be described in this chapter.

9.2 Dielectric Apparatus for the Measurement of C, and tan 6 at Various

Freguencies

The measurement of the electrical capacitance and the dissipation factor

was carried out using a GenRad 1689 RLC Digibridge connected to a
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dielectric cell containing the polymer sample under test. The following
sections describe the apparatus used to maintain accurate control of the
temperature. The performance and reliability of the dielectric cell was
established using a test polymer, PPG2025 + 1 mole %HgCl, (see Appendix

C), which had been previously subjected to a rigorous dielectric study47.

Electrical connections between the Digibridge and the dielectric cell were
made using a four-terminal, guarded GenRad 1657-3600 extender cable. The
" high", "low" and guard terminals were connected to the cell via a "three
way" insulated adapter. The Digibridge was "zeroed" prior to the introduction
of the polymer sample to the dielectric cell in order to compensate for stray

capacitances occurring in the system.

9.3 The Dielectric Cell

The dielectric cell used in this study was of the parallel-plate capacitor
construction, the exact specifications of the cell are described in Appendix D.

A diagram of the cell is shown in Figure (3-1).

The cell was constructed from two copper coated glass-fibre plates
separated by glass spacers. An epoxy based resin was used to secure the cell
together and also to act as a seal to prevent sample leakage. A J-type
thermocouple, supplied by RS Components Ltd., with a temperature range
-199% to 199° C was attached to the side of the cell prior to the cell being

wrapped in PTFE sealing tape. The "high" and "low" electrical connections to
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Guard electrode connections

J-type thermocouple

"High" and "low" connections
(stiff copper wires)

Guard electrode

<— Capacitor plates

Figure (9-1). The dielectric cell prior to wrapping in PTFE thread tape.
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the cell were made using stiff copper wires to minimise possible variable inter
lead stray capacitance, while the connection to the guard electrode was
made using flexible insulated copper wire. The capacitor had a sample volume
of approximately 1.6 cm? and was contained inside a glass tube containing a
silicone oil as a contact fluid. The electrical capacitance of the empty cell was
approximately 33pF. This cell was used to measure the electrical capacitance

and dissipation factor of three polymer samples.

The guard electrode was introduced into the design of the cell in order to
compensate for sample contraction during cooling, and to allow for the

distorted electric field at the upper edges of the "high" and "low" electrodes.

9.4 Temperature Control in the Region 203K-238K

Accurate temperature control in the range 203K to 298K was required
for the measurement of the dielectric relaxation for the test polymer PPG2025
+ 1 mole %HgCl,. This was achieved using a "Minus Seventy"” Thermostat
Bath, Bridge Control Model (Townson and Mercer Ltd., Croydon, UK). A
cross-sectional diagram of this apparatus showing its general constructional
features is shown in Figure (9-2). The heat exchanger vessel was half-filled
with acetone and dry ice. The temperature control vessel was filled with
acetone. The glass tube containing the dielectric cell was suspended in the
temperature control vessel so that the cell was submerged below the level of
the acetone. The temperature was measured by a J-type thermocouple

connected to a J/K type digital thermometer, both items supplied by RS
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\\\§ <——— Controller

Connections to Digibridge

Figure (9-2). Cross-sectional diagram of the "Minus Seventy” bath.
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Components Ltd. The temperature control of this apparatus was +/- 0.1K.

9.5 Measurement of Electrical Capacitance and Dissipation Factor in the

Range 203K-298K

The acetone in the temperature control vessel was cooled to the required
temperature. A period of ten minutes was allowed for the equilibration of
temperature between the bath and the cell before undertaking the
measurment of electrical capacitance and dissipation factor. Ten
measurements were taken at ten spot frequencies in the frequency range
100Hz to 10°Hz and automatically averaged by the Genrad bridge. This
procedure was repeated at five different temperatures spanning the

temperature range 203K to 298K.

9.6 Apparatus for Temperature Control Below 203K

Temperature control in this lower range was required for the Dow
polymer samples 10423-1 and 10423-9. A cross-sectional diagram of the
cooling apparatus designed for this purpose is shown in Figure (9-3). The
vessel was constructed using two Dewar flasks, one fitting inside the other.

The gap between the Dewar flasks was filled with liquefied N,.

Sixty resistors, each of resistance 22k(), were connected in parallel to
form three resistor "bracelets”, each bracelet containing 20 resistors. The
three bracelets were then assembled on top of each other and connected in

parallel giving the configuration a total resistance of 366(2. This assembly
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Figure (9-3). Apparatus for temperature control below 203K.
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was then inserted into the inner Dewer to form a uniform heating "cage".
Electrical connections were made between the resistors and a 30V power
supply. The dielectric cell was suspended inside the inner Dewar so as to be
completely surrounded by the heating cage. The inner Dewar was then sealed

with a lid fashioned from expanded polystyrene.

The temperature was measured using a J-type thermocouple connected

to a J/K digital thermometer, both supplied by RS Components Ltd..

9.7 Measurement of Electrical Capacitance and Dissipation Factor Below

203K

The dielectric cell was placed in the cooling vessel and the sample was
allowed to cool. A small current, producing approximately 2.5 watts of
heating in the resistor network was then applied to stabilize the temperature
of the sample in the loss region. At the temperature of interest the power
supply was disconected for measurement purposes, as simultaneous
operation of the Digibridge in measure mode and the power supply was not

possible due to electrical interference.

The average of ten measurements were taken at up to ten spot
frequencies in the frequency range 100Hz to 10%Hz. This procedure was

repeated at five different temperatures for each sample.
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9.8 Measurement of Static Dielectric Permittivities

In order to make accurate measurements of the static dielectric
permittivities associated with the polymer samples, the stray capacitance
associated with the dielectric cell must be taken into account. The stray
capcitance of a dielectric cell originates in the connecting wires which link the
cell to the measuring device, in this case a GenRad 1689 precision RLC
Digibridge, and also from edge effects inherent to the cell itself. By assuming
that the stray capacitance, AC, of the dielectric cell does not change upon
the introduction a polymer sample, it may be eliminated from the calculations

by substitution.

The capacitance of the dielectric cell when empty, C,, when filled with a
standard dielectric (HPLC grade toluene from Aldrich), Cg, and when filled
with the polymer sample, C,, may be expressed by Egs. (9-1), (9-2) and (9-3)

respectively,

Cy = (epA/d) + AC (9-1)
Cs = (gg8sA/d) + AC (9-2)
C, = (e48,A/d) + AC (9-3)

where ¢, is the permittivity of free space, g is the dielectric constant of the
standard deilectric, &, is the dielectric constant of the polymer sample, A is
the surface area of the cell plates, and d is the distance between the plates.

By manipulating the above equations to eliminate AC, it may be shown that
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(Cy - Call(Cq - Cg) = (e~ N/ieg- 1) (9-4)
which gives
g, = 1 + [(Cy- Co)/(Cg - Cyllleg - 1) (9-5)

For simplicity, the Digibridge was "zeroed" prior to the introduction of the
polymer sample under test. This was equivalent to setting C, to zero.

Equation (9-5) then reduces to
gy = 1 + (Cy / Cglleg - 1) (9-6)

The values of C, and Cg were taken directly from the Digibridge at the

required temperatures while the values of &g were calculated over the

temperature range -90° to 0° using the equation48

(dlogq e / dT) = -0.045 (9-7)
and over the temperature range 0° to +90° using the equation®8
(deg / dT) = -0.243 (9-8)

The values listed in Equations (9-7) and (9-8) were obtained from National

Bureau of Standards Circular 514 for HPLC grade toluene?8.
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CHAPTER 10

DIELECTRIC RESULTS

10.1 Dielectric Properties of Dow Polymer Samples 10423-1 and 10423-9

The dielectric relaxation behaviour of the two polymer samples of
poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane), 10423-1 (M (avg) =
28000) and 10423-9 (M, (avg) = 46000), have been studied, as a function
of temperature (205K - 179K) and frequency (100Hz - 10%Hz), using the

dielectric apparatus described in Chapter 9.

10.2 Dielectric Loss Resulits

The variation of " with respect to log f/(Hz), at various temperatures, is
shown as a series of normalised plots for the Dow polymer samples 10423-1

and 10423-9, in Figures (10-1) and (10-2), respectively.

The presence of a broad a-type relaxation process for these samples is
readily discernible. The loss curves are asymmetric, showing broadening on
the high frequency side which is typical of the behaviour found for the o-type
process in organic amorphous polymers above Tg. The movement of f .
which is the frequency corresponding to maximum loss, within the frequency
range 100-10° Hz, occurs over a temperature interval of approximately 20K.
The width of the loss curves at half-height is approximately three decades of

frequency.
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10.3 Measurement of Dielectric Relaxation Activation Energy

Arrhenius plots of the logarithm of the frequency corresponding to
maximum dielectric loss, plotted as a function of the reciprocal of the
absolute temperature, for Dow samples 10423-1 and 10423-9, are shown in
Figures (10-3) and (10-4) respectively. All plots are linear and have a slope

which is proportional to the activation energy for the dielectric loss.

10.4 Cole-Cole Plots

Cole-Cole plots of €" against ¢' are presented in Figures (10-5) to (10-8)
for the Dow samples at various temperatures. The curves are skewed-arcs
and are consistent with the empirical analysis of Davidson and Cole discussed

in Chapter 8.

The limiting low frequency permittivity value, € is measured by

s
extrapolating the circular arc onto the e-axis. The limiting high frequency
permittivitiy value, g, is estimated from the plots where the data is more
complete by a linear extrapolation onto the e-axis. A single g;is estimated in
this way for each sample and is assumed to be constant over the small range
of temperatures at which the measurements were carried out. The derivation
of £, and g in this manner combined with the values of f(p;), determined
from Figures (10-1) and (10-2), permitted the calculation of the

Davidson-Cole distribution factor, B, by the computer program listed in

Appendix B.
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For the Dow sample 10423-1, g has the value 2.16 +/-0.02 while &4
varies slightly between 2.27 +/-0.02 and 2.41 +/-0.02. For the Dow sample
10423-9, g has the value 2.13 +/-0.02 while &g varies between 2.37

+/-0.02 and 2.44 +/-0.02.

An examination of the values of the maximum dielectric loss showed that
for both samples this value varied between 0.10 and 0.20 with the changing

temperature.

10.5 Calculation of Dielectric Activation Energies

The dielectric activation energies, AH,.,, for polymer samples 10423-1
and 10423-9 were calculated from Eqg. (8-36) using Figures (10-3) and

(10-4). The results are given below
AH,.4(10423-1) = 39 kcal/mol
AH,.(10423-9) = 40 kcal/mol

As far as the author is aware no studies concerning AH,q, for linear
poly(2,2,5,5~tetramethyl-1—oxa-2,5‘disi|apentane) have been published to

date.

10.6 Davidson-Cole Analysis of the Dielectric Data

Values of the Davidson-Cole empirical distribution parameter, B, for
polymer samples 10423-1 and 10423-9 are presented in Table (10-1). The

values shown are average values of f measured over a small temperature
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range. The B values were calculated using the computer program listed in

Appendix B.
Sample M, T (K)
B
10423-1 28000 193-179 0.45
10423-9 46000 197-183 0.40

Table (10-1). Davidson-Cole distribution parameter, 3, for samples

10423-1 and 10423-9.

10.7 Discussion of Results

Studies49:90 performed on amorphous samples of linear
poly(dimethylsiloxane) have reported AH,. values in the range 46-155
kcal/mol. The values of AH,., calculated for poly(2,2,5,b-tetramethyl-1-oxa-
2,5-disilapentane) are considerably lower, 39 kcal/mol and 40 kcal/mol for
polymer samples 10423-1 and 10423-9 respectively. This difference may be
explained as resulting from the increased flexibility of poly(2,2,5,5
-tetramethyl-1-oxa-2,5-disilapentane) compared to poly(dimethylsiloxane) (see
section 6.5). The increased flexibility in the former resulting in lower energy
barriers for molecular reorientation. However, the corresponding [ values
calculated for the two polymers are identical, indicating a similar span of

relaxation times for the molecular reorientation processes.
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CHAPTER 11

DISCUSSION/FURTHER WORK

The major part of this study has been concerned with the development
of computer programs with which to simulate and investigate the
conformational behaviour of a range of polycarbosilanes and the related

material poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane).

The calculation of a series of U-matrices describing the intramolecular
interactions occurring within each polymer, along with their associated
structural data, has permitted the calculation of a variety of macroscopic

conformationally-dependent properties from microscopic information.

The reliability ~of any calculations  made concerning  the
conformationally-dependent properties of polymer molecules using computer

simulations will basically depend on two factors;

1. The choice of the molecular model and force field, and

2. A thorough search of the conformational space accessible to the

polymer for the conformations of lowest energy.

The selection of a particular model and force field will initially depend upon
the availability of the relevant structural information and interatomic

interaction parameters for the polymer system under consideration. In
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addition, the size of the section of chain to be considered and the complexity
of the force field chosen must take into account the type of computer
facilities available and the time required for the calculations, since the
application of the rotational isomeric state approximation is only valid if the

whole of the conformational energy space is analysed.

In the case of poly(dimethylsilmethylene) and poly(dimethylsilethene) the
application of these two conditions was achieved. The corresponding
characteristic ratio, dipole moment ratio and mean-square radius of gyration,
calculated for these polymers were determined by examining the entire
conformational energy space associated with each polymer, prior to the

application of the rotational isomeric state approximation.

Due to the structural complexity of poly(dimethylsilethane) and
poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane) an  analysis of their
conformational behaviour was not possible according to the factors described
above with the computer facilities available. Instead, each rotatable bond was
simply assumed to exist in three distinguishable conformations, t, gt and g
Although this assumption was not based on any examination of the
conformational energies of these polymers, it is a valid assumption since each
rotatable bond considered in this way was formed by sp3 hybridized atoms.
in general, sp3 hybridized bonds exhibit a 3-fold rotational potential with the

minimum energy conformations at t, gt and g. However, attention must be
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drawn to this fact when considering the conformationally-dependent

properties determined for these polymers in this study.

The prediction of conformationally-dependent properties of polymers by
computer simulation is certainly not accurate enough to justify abandoning
the measurement of such properties experimentally. If a measurement is not
too difficult to obtain experimentally, then it should always be preferred to a
prediction made by a computer simulation. The utility of computer simulation
studies does not lie in the possibility of replacing experimental measurement,
but rather in its ability to complement experimental results. For instance, the
effects of microscopic quantities that are inaccessible to experimental
determination can be monitored or altered in a computer simulation. The
resulting consequences for the macroscopic behaviour may be evaluated,
with the possibility of gaining valuable insights into the molecular processes
occurring. In addition, the computer simulation of a polymer system enables
the investigation of its behaviour during extreme conditions that may be

inaccessible in the laboratory.

Although the accuracy of a prediction may be estimated by considering
the approximations and simplifications of the model and computational
procedure, the final test lies in a comparison of theoretically predicted and
experimentally measured properties. In order to provide a firm basis for the
application of computer simulation methods for the calculation of

conformationally-dependent properties of polycarbosilanes, the results should
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be compared with experimental data wherever possible. Currently,
information of this nature is very scarce and any future work in this subject
should concentrate on developing a database of experimentally determined
values for comparison. In this context, it must be stressed that good
agreement between calculated and experimental data does not necessarily
mean that the theoretical model underlying the calculations is correct. Good
agreement may be due to a number of reasons. Firstly, the
conformationally-dependent property that is compared may be insensitive to
the assumptions made or the values of the parameters assigned to that
model. Secondly, a compensation of errors, either by chance or by
intentionally adjusting the parameters of the model to give the desired
properties, may result in a good agreement with experiment. Finally, care
must be taken when attempting to ascertain experimental values for
conformationally-dependent properties of polymers, since any discrepancy
between calculated and experimental values may be due to experimental

error.

The measurement of the frequency dependence of the dielectric loss, at
various temperatures, for two samples of poly(2,2,5,5-tetramethyl-1-0xa-2,5-
disilapentane) has permitted the calculation of the dielectric relaxation
energies and the empirical relaxation time distribution factor, B, for this
polymer. The relatively low values of AH,. calculated for this polymer
compared to those calculated for the closely related structure,

poly(dimethylsiloxane), may result from the increased conformational
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flexibility —observed in poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane).
However, more work must be undertaken to examine the combined
conformational and dielectric relaxation behaviour of other polymers to

establish a possible link.
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APPENDIX A

THE USE OF EXPERIMENTAL TECHNIQUES

TO DETERMINE CONFORMATIONAL BEHAVIOUR

A.1.Introduction

Presented in this appendix are a number of important experimental
methods which have been used to determine the conformational behaviour of
polymer molecules. They include infrared spectroscopy, high resolution

N.M.R. spectroscopy and calorimetry techniques.

A.2 Infrared Spectroscopy

In many cases most of the infrared spectroscopic data regarding the
conformation of a polymer is lost due to the overlap of the multitude of
absorption bands produced by these large molecules to form continua. This
usually limits the use of infrared spectroscopy as an analytical tool to
investigate their conformational behaviour. However, in some situations this
complexity may be by-passed by using deuterium substitution in order to
uncouple and isolate a single vibration whose frequency exhibits a strong
conformational dependence. In this way some aspects of the conformational

structure of a polymer may be revealed from its infrared spectrum.

181




-~

1 containing a low

The infrared spectrum of dueterated po!yethylene5
concentration (approx. 5%) of CD, groups is illustrated in Figure (A-1). In this
spectrum the bands associated with the presence of trans-trans and

trans-gauche bonds appear in the region 800-500 cm 1.
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Figure (A-1). Infrared spectrum of CD,-doped polyethy|ene51 at 120°cC.

In this case the vibration of interest is a methylene rocking mode which

for a CH, group is essentially the motion of the hydrogen atoms. The mass
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effect resulting from deuterium substitution reduces the frequency of this
mode by a factor of approximately 272 5o that the rocking mode of an
isolated CD, group in an extended chain occurs at a frequency ~620 cm T,
well below the absorption band for the methylene rocking mode in the
undeuterated polymer chain. Because of the mild coupling between the CD,
group and its two immediate CH, neighbours, the frequency of the CD,
rocking mode is significantly dependent upon the conformation of the bonds
connecting these neighbours to the CD, group. If the adjoining bonds are
both trans, the frequency of the rocking mode is 622 cm™t. However, when
one bond is in the trans conformation while the other is in the gauche

conformation, the frequency of the rocking mode occurs at 652 cml.

When this technique is applied to polymers over a range of temperatures,
the ratio of the concentration of TT and TG pairs can be determined. In the
case of polyethylene, as the temperature is increased there is a significant
increase in the concentration of the TG pairs even before the melting point of
the polymer is reached. In the liquid state, the ratio of the concentration of
TT and TG pairs can be determined, and is found to be somewhat higher than
that calculated using the rotational isomeric state modelZ. Thus this method
can not only be used to identify bond conformers but also to measure their

relative concentrations.

This same technique has been employed to study the conformational

behaviour of crystalline polyethylene. For this purpose, the spectra of

e}

|7
N
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samples doped with CD,CD, entities provides additional information in that
the rocking mode frequencies of this isotopic impurity are dependent upon

the conformation of three adjoining bonds.

A very useful quantity, the spectroscopic entropy, may also be
determined from infrared spectroscopy. When this quantity is compared with
the value determined from measurements of the heat capacity of a substance
(see section A.3.), any disagreement between the two can indicate the

presence of a rotational barrier to rotation.

A.3.High Resolution N.M.R. Spectroscopy

Polymer molecules may exist in any or all of their possible conformations
at any one time. The rate of their interconversion between different
conformational states is quite rapid when compared to the N.M.R. timescale.
In general, the freezing out of conformers at low temperatures, in order to
slow this rate of interconversion and observe their N.M.R. spectra, has not
been feasible for polymers since the rotational barriers between different
conformers is usually small. An additional difficulty arises from the poor
resolution obtained from polymers in solution. For these reasons, the use of
N.M.R. data to obtain conformational information for polymers has not been

as successful as for smaller organic molecules.

However, some information regarding their conformational behaviour
may be obtained from the measurement of the coupling constants related to

the polymers structure. An example of the conformational data obtained from
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N.M.R. coupling constants is the study of the 9F and TH N.M.R. spectra of
chlorotrifluroethylene-isobutylene alternating Copolymers52. A section of
chlorotrifluroethylene-isobutylene is illustrated in Figure (A-2). By assuming a
familiar three-fold rotational potential for the bond between the C(CI)(F) and
CH» skeletal carbon atoms, the possible conformational states for this bond

are simply trans(t), gauche ¥ (g ™) and gauche’(g’).
cl F C C
\ / N/
/\/@/\
A6

Figure (A-2). Trans conformation of a section of chlorotrifluroethylene-

isobutylene copolymer.

The observed H-F coupling constants®? for this structure are Jax = 0.5
+/- 1 Hz and Jgy = 33.5 +/- 1 Hz. These values are in fact the
conformationally averaged coupling constants for the three conformations t,
gt and g". By assigning a probability factor to each conformational state, the

specific values for the trans and gauche couplings may be individually
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determined. In the case of the above example, calculations have indicated Jg
< < J; suggesting a dominance of trans conformations for these particular

bonds in the structure.

An alternative approach to correlating N.M.R. coupling constants and
conformational behaviour is to predict the magnitude of the coupling between
atoms from conformational populations based on the rotational isomeric state
approximation53. This type of investigation has been undertaken by several

workers including Flory and Yoon®4, and Tonelli et al®®.

A.3.Calorimetry

The determination of the enthalpy and entropy associated with flexible
molecules from calorimetry measurements can uncover many facts regarding

their conformational behaviour.

The enthalpy of combustion of most compounds may be determined by
placing a sample of the compound in a bomb under a pressure of oxygen and
igniting it. The bomb is enclosed in a calorimeter so that its change in
temperature may be determined. Provided that the heat capacity of the system
is known, the observed temperature increase corresponds to the amount of

heat released by the combustion of the sample.

The entropy of a polymer may be determined calorimeterically by
measuring its heat capacity. Most substances form crystals at absolute zero
which are perfectly ordered, and hence the entropy of the substance may be

assumed to be zero. By cooling the sample to as near absolute zero as
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possible, then adding heat in measured increments and noting the temperature
rise, the entropy of the sample may be determined up to room temperature

which is adequate for most purposes.

When the calorimetric entropy, determined as above, and the
spectroscopic entropy are compared, they are often found to be identical.
Frequently, however, it is found that the calorimetric value is somewhat lower.
These occurrences are usually the result of assuming free rotation about a
single bond in the calculation of the calorimetric entropy. In real molecules a
barrier to rotation often exists, the amount of restriction being dependent upon
the height of the rotational barrier. Thus, a thermodynamic method for
determining rotational barriers consists of calculating the barrier height which
will bring the calorimetric and spectroscopic entropies into agreement. Teller
and Topley56 used this argument to suggest, as early as 1935, that in ethane
a three-fold rotational barrier to rotation would reconcile most of the then

available experimental data.

To date, the heights of many rotational barriers have subsequently been

determined in this way.
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APPENDIX B

COMPUTER SIMULATION OF

POLY(DIMETHYLSILMETHYLENE) AND POLY(DIMETHYLSILETHENE)

B.1. Introduction

Presented in this appendix are the computer programs used to generate
the conformational energy maps for poly(dimethylsiimethylene) and

poly{dimethylsilethene), illustrated in Figures (4-3) and (5-8) respectively.

Both of the programs presented in this appendix were written in Vax
Fortran and were run on the VAX 8650 mainframe computer in the

Department of Computer Science, Aston University.

B.2. A Brief Description of the Important Subroutines

SUBROUTINES CCXYZ AND HHXYZ

These subroutines calculate the positions, in vectorial format (X,Y,Z), of all
the atoms in Figures (4-2) and (5-6) relative to the first skeletal atom. By
calculating the position of each atom in this way, the corresponding

interatomic distances may be determined.

188




SUBROUTINE XX_DIST

This set of subroutines where XX may equal HH, SH, CH, CC, CH or SS
calculates the interatomic distances of the hydrogen (H), silicon (S), carbon

(C) atoms that are dependent upon the rotation angles ¢, and ¢y,.
SUBROUTINE XX ENERGY

These subroutines where XX may equal HH, SH, CH, CC, CH or SS calculate
the interaction energies from the interatomic distances using the

Lennard-Jones (6-12) potential.
SUBROUTINES E TOR AND E_TOR1

These two subroutines calculate the contribution to the conformational
energy from torsional rotations about ¢, and ¢, and the branched methyl

groups respectively.
SUBROUTINE T_MAT

This subroutine calculates the values of the transformation matrix from bond
angle supplements (180°-8, where 6 =Bond Angle) and bond rotation angles

b, and ¢, according to Eq. (2-20).
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B.3. Computer Simulation of Poly(dimethylsiimethylene): Program
Listing.

DIMENSION TMAT(3,3), TMAT1(3,3), TMAT2(3,3)

DIMENSION XYZ(3),CXYZ(3,5),HXYZ(3,22)

DIMENSION AXYZ(3,27),XPHI(4),XPHI1(4),APHI(6)

DIMENSION SC(6),SH(16),CC(9),CH(108),HH(138)

OPEN(1,FILE="ENERGY1.DAT',STATUS ="NEW")

OPEN(2,FILE="ROTATE.DAT',STATUS ="'"NEW")

XPI=3.14159265359

XPHI{1)=0.

XPHI{4)=0.

CALL SET_XYZ(CXYZ,HXYZ)

DO 5 A=0,360,10

XPHI{2) =A*(XPI/180.)

DO 10 B=0,360,10

XPHI(3) =B*(XP1/180.)

ETOTAL =100000000000.

CALL CCXYZ(CXYZ,XPHI, XYZ, TMAT, TMAT1)

CALL HHXYZ(CXYZ,HXYZ,XPHI, XYZ, TMAT, TMAT1)

CALL HHXYZ1(CXYZ ,HXYZ,XPHI, XYZ, TMAT, TMAT1)

CALL ORG_XYZ(AXYZ,CXYZ,HXYZ)

CALL CC DIST(CC,AXY2)

CALL SC _DIST(SC,AXYZ2)

CALL E_TOR(XPHI,ETOR)

CALL CC_ENERGY(CC,CCENERGY)

CALL SC_ENERGY(SC,SCENERGY)

DO 15 C= 0,120,5

XPHI1(1) =C*(XPI1/180.)

DO 20D=0,120,5

XPHI1(2) =D*(XP1/180.)

DO 25 E=0,120,5

XPHIT(3) =E*(XP1/180.)

DO 30 F=0,120,5

XPHI1(4) =F*{XPI/180.)

CALL HHXYZ2(CXYZ,HXYZ XPHI, XYZ, TMAT, TMAT1,XPHI1)

CALL HHXYZ3(CXYZ HXYZ,XPHI, XYZ, TMAT, TMAT1,XPHI1)

CALL ORG1_XYZ(AXYZ,CXYZ,HXYZ)

CALL CH_DIST(CH,AXYZ)

CALL SH_DIST(SH,AXYZ)

CALL HH _DIST(HH,AXYZ)

CALL CH_ENERGY{CH,CHENERGY)

CALL SH_ENERGY{SH,SHENERGY)

CALL HH_ENERGY(HH,HHENERGY)

CALL E_ TOR1(XPHI1,ETOR1)

ETOTAL1 =ETOR+ETOR1 + CCENERGY + SCENERGY + CHENERGY + SHENERGY +
HHENERGY

IF (ETOTALT .LT. ETOTAL) THEN

ETOTAL=ETOTAL1

APHI(1) =A

APHI(2) =B

APHI(3)=C

APHI{4) =D

APHI(S) =E

APHI(6)=F
ENDIF
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CONTINUE

CONTINUE

CONTINUE

CONTINUE

CALL O_PUT(APHI,ETOTAL)
CONTINUE

CONTINUE

CLOSE (1)

CLOSE (2)

END

SUBROUTINE TEST(AXYZ)

DIMENSION AXYZ(3,27)

AA=3

BB=23

CC=5

DD=23

YY = (AXYZ(1,AA)-AXYZ{1,BB))**2+(AXYZ(2,AA)-AXYZ(2,BB))**2
YY =(YY +(AXYZ(3,AA)-AXYZ(3,BB))**2)**0.5

272 =(AXYZ(1,CC)-AXYZ(1,DD))**2 +(AXYZ(2,CC)-AXYZ(2,DD))**2
27 =(2Z +(AXYZ(3,CC)-AXYZ(3,DD))**2)**0.5

PRINT*,YY,Z2Z

RETURN

END

SUBROUTINE O_PUT(APHI,ETOTAL)
DIMENSION APHI(6)

XP1=3.14159265359

WRITE(1,*} APHI(1),APHI(2},ETOTAL
WRITE(2,*}) APHI(3),APHI(4),APHI(5),APHI(B)
PRINT*,APHI(1),APHI(2)

RETURN

END

SUBROUTINE HH_DIST(HH,AXYZ)

DIMENSION AXYZ(3,27),HH(138)

DO5A=12,27
HH(A-11) = (AXYZ(1,10)-AXYZ(1,A))**2 + (AXYZ(2,10)-AXYZ(2,A))**2
HH(A-11) = (HH(A-11) + (AXYZ(3,10)-AXYZ(3,A))**2)**0.5
HH(A +5) = (AXYZ(1,11)-AXYZ(1, AN **2 + (AXYZ(2,11)-AXYZ(2,A})**2
HH(A +5) = (HH(A + 5) + (AXYZ(3,11)-AXYZ(3,A))**2)**0.5

CONTINUE

DO 10 A=14,27
HH{A +18) = (AXYZ(1,12)-AXYZ(1,A)**2 + (AXYZ(2,12)-AXYZ(2,A))**2
HH(A +19) =(HH(A + 19} + (AXYZ(3,12)-AXYZ(3,A))**2)**0.5
HH(A +33) = (AXYZ{1,13)-AXYZ(1,A))**2 + (AXYZ(2,13)-AXYZ(2,A))**2
HH(A +33) = (HH(A + 33) + (AXYZ(3,13)-AXYZ(3,A))**2)**0.5

CONTINUE

DO 15 A=186,27
HH(A +45) = (AXYZ(1,14)-AXYZ(1,A))**2 + (AXYZ(2,14)-AXYZ(2,A))**2
HH(A +45) = (HH(A + 45) + (AXYZ(3,14)-AXYZ(3,A))**2)**0.5
HH(A +57) = (AXYZ(1,15)-AXYZ(1,A))**2 + (AXYZ(2,15)-AXYZ(2,A))**2
HH(A +57) =(HH(A +57) + (AXYZ(3,15)-AXYZ(3,A))**2)**0.5

CONTINUE

DO 20 A=19,27
HH(A +66) = (AXYZ(1,16)-AXYZ(1,A))**2 + (AXYZ(2,16)-AXYZ(2,A))* *2
HH(A + 66) = (HH(A + 66) + (AXYZ(3,16)-AXYZ(3,A))**2)**0.5
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HH(A +75) = (AXYZ(1,17)-AXYZ(1,A)**2 +(AXYZ(2,17)-AXYZ(2, A))**2
HH(A + 75) = (HH{A + 75) + (AXYZ(3,17)-AXYZ(3,A))**2)**0.5 o
HH(A + 84) = (AXYZ(1,18)-AXYZ{1,A)**2 + (AXYZ(2,18)-AXYZ(2,A))**2
HH(A + 84) = (HH(A + 84) + (AXYZ(3,18)-AXYZ(3,A))**2)**0.5

20 CONTINUE
DO 25 A=22,27
HH(A +90) = (AXYZ{1,19)-AXYZ{1,AN**2 + (AXYZ(2,19)-AXYZ(2,A))**2
HH(A + 90) = (HH(A + 90) + (AXYZ(3,19)-AXYZ(3,A))**2)**0.5
HH(A + 96) =(AXYZ(1,20)-AXYZ(1,A))**2 + (AXYZ(2,20)-AXYZ(2,A))**2
HH(A + 96) = (HH(A + 96) + {AXYZ(3,20)-AXYZ(3,A))**2)**0.5
HH{A +102) =(AXYZ({1,21)-AXYZ(1, A} ** 2+ (AXYZ(2,21)-AXYZ(2,A)}**2
HH(A +102) = (HH{A + 102) + (AXYZ(3,21)-AXYZ(3,A)})**2)**0.5
25 CONTINUE
DO 30 A=25,27

HH(A + 105) = (AXYZ(1,22)-AXYZ{1,A)**2 + (AXYZ(2,22)-AXYZ(2,A)) **2
HH(A + 105) = (HH(A + 105) + (AXYZ(3,22)-AXYZ(3,A))**2)**0.5
HH(A +108) = (AXYZ(1,23)-AXYZ(1,AN**2 + (AXYZ(2,23)-AXYZ(2,A)}**2
HH(A +108) = (HH(A + 108) + (AXYZ(3,23)-AXYZ(3,A))**2)**0.5
HH(A +111) =(AXYZ(1,24)-AXYZ(1,A))**2 + (AXYZ(2,24)-AXYZ(2,A))**2
HH(A +111)=(HH(A + 111) + (AXYZ(3,24)-AXYZ(3,A))**2)**0.5
30 CONTINUE
RETURN
END

SUBROUTINE SH_DIST{SH,AXYZ)
DIMENSION SH({16),AXYZ(3,27)
DO5A=10,11
SH(A-9) = (AXYZ(1,4)-AXYZ{1,A))**2 + (AXYZ(2,4)-AXYZ(2,A))**2
SH(A-9) =(SH(A-9) + (AXYZ(3,4)-AXYZ(3,A)) **2)**0.5
5 CONTINUE
DO 10 A=14,15
SH(A-11) =(AXYZ(1,2)-AXYZ{1,A))**2 + (AXYZ(2,2)-AXYZ(2,A))* *2
SH(A-11) =(SH(A-11) + (AXYZ(3,2)-AXYZ(3,A))**2)**0.5
10 CONTINUE
DO 15 A=22,24
SH(A-17) = (AXYZ{1,2)-AXYZ({1,A))**2 + (AXYZ(2,2)-AXYZ(2,A}) **2
SH(A-17) = (SH(A-17) + (AXYZ(3,2)-AXYZ(3,A)) **2}**0.5
15  CONTINUE
DO 20 A=25,27
SH(A-17) = (AXYZ(1,2)-AXYZ(1,A)**2 + (AXYZ(2,2)-AXYZ(2,A))* *2
SH{A-17) = {SH(A-17) + (AXYZ(3,2)-AXYZ(3,A))**2)**0.5
20  CONTINUE
DO 25 A=16,18
SH(A-5) = (AXYZ(1,4)-AXYZ(1,A))**2 + (AXYZ(2,4)-AXYZ(2,A})**2
SH(A-5) = (SH(A-5) + (AXYZ(3,4)-AXYZ(3,A))* *2)**0.5
25 CONTINUE
DO 30 A=19,21
SH(A-5) = {AXYZ(1,4)-AXYZ(1,A)**2 + (AXYZ(2,4)-AXYZ(2,A)}**2
SH(A-5) = (SH(A-5) + (AXYZ(3,4)-AXYZ(3,A))**2)**0.5
30 CONTINUE
RETURN
END

SUBROUTINE CH_DIST(CH,AXYZ)
DIMENSION CH(108),AXYZ(3,27)
DO5A=12,13
CH{A-11) =(AXYZ(1,A)**2 + AXYZ(2,A)**2 + AXYZ(3,A)**2)**0.5
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CH(A-9) = (AXYZ(1,5)-AXYZ(1,A)**2 + (AXYZ(2,5)-AXYZ(2,A))**2
CH(A-9) = (CH(A-9) + (AXYZ(3,5)-AXYZ(3,A))**2)**0.5
CH(A-7) = (AXYZ(1,6)-AXYZ{1,A)* *2 + (AXYZ(2,6)-AXYZ(2,A))**2
CH(A-7) = (CHIA-7) + (AXYZ(3,6)-AXYZ(3,A) * *2)**0.5
CH(A-5) = (AXYZ(1,7)-AXYZ(1,A) **2 + (AXYZ(2,7)-AXYZ(2,A))**2
CH(A-5) = (CH(A-5) + (AXYZ(3,7)-AXYZ(3,A))**2)**0.5
CH(A-3) =(AXYZ(1,8)-AXYZ(1,A)**2 + (AXYZ(2,8)-AXYZ{2,A))**2
CH(A-3) = (CH(A-3) + (AXYZ(3,8)-AXYZ(3,A)})**2)**0.5
CH{A-1) = (AXYZ(1,9)-AXYZ(1,A))**2 + (AXYZ(2,9)-AXYZ(2,A))* *2
CH(A-1) = (CH(A-1) + (AXYZ(3,9)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 10 A=10,11
CHI(A +3) =(AXYZ(1,3)-AXYZ(1,A) **2 + (AXYZ(2,3)-AXYZ(2,A}))**2

{
H(A +3) = (CH(A + 3) + (AXYZ(3,3)-AXYZ(3,A))**2)**0.5
CH(A +5) = (AXYZ(1,5)-AXYZ(1,A)}**2 + (AXYZ(2,5)-AXYZ(2,A))**2
H(A +5) = {CH(A +5) + (AXYZ(3,5)-AXYZ(3,A)} * *2)**0.5
HIA +7) = (AXYZ(1,6)-AXYZ(1,A)) **2 + (AXYZ(2,6)-AXYZ(2,A)}**2
CH(A +7) = (CHI(A +7) + (AXYZ(3,6)-AXYZ(3,A))**2)**0.5
CH(A +9) = (AXYZ(1,7)-AXYZ(1,A) **2 + (AXYZ(2,7)-AXYZ(2,A))* *2
CH(A +9) = (CH(A +9) + (AXYZ(3,7)-AXYZ(3,A))* *2)**0.5
CH(A +11) =(AXYZ(1,8)-AXYZ(1,A)* *2 + (AXYZ(2,8)-AXYZ(2,A}}**2
CH(A+11)=(CH(A +11) +(AXYZ(3,8)-AXYZ(3,A))**2)**0.5
CH(A + 13) = (AXYZ(1,9)-AXYZ{1,A)* *2 + (AXYZ(2,9)-AXYZ(2,A))**2
CH(A +13) = (CH(A + 13) + (AXYZ(3,9)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 15 A=14,15
CH(A + 11) ={AXYZ(1,A)**2 + AXYZ(2,A)**2 + AXYZ(3,A)**2)**0.5
HIA +13) = (AXYZ(1,3)-AXYZ(1,A)) **2 + (AXYZ(2,3)-AXYZ(2,A}}**2
H(A + 13) ={CH(A + 13) + (AXYZ(3,3)-AXYZ(3,A))**2)**0.5
CH(A +15) = (AXYZ(1,8)-AXYZ(1,A))* *2 + (AXYZ(2,6)-AXYZ(2,A))**2
H(A + 15) = (CH(A + 15) + (AXYZ(3,6)-AXYZ{3,A)}**2)**0.5
HIA +17) = (AXYZ(1,7)-AXYZ(1,A)* *2 + (AXYZ(2,7)-AXYZ(2,A)}* *2
CH(A +17) = (CH(A +17) + (AXYZ(3,7)-AXYZ(3,A))**2)**0.5
CH(A +19) = (AXYZ(1,8)-AXYZ(1,AN)* *2 + (AXYZ(2,8)-AXYZ(2 A} **2
CH(A +19) = (CH(A + 19) + (AXYZ(3,8)-AXYZ(3,A)}**2)**0.5
CH(A +21) = (AXYZ(1,9)-AXYZ{1,A))**2 + (AXYZ(2,9)-AXYZ(2,A))**2
CH(A +21)=(CH(A+21) + (AXYZ(3,9)-AXYZ(3,A)**2)**0.5
CONTINUE
DO 20 A=16,27
CHA +21) = (AXYZ(1,A)**2 + AXYZ{2,A)**2 + AXYZ(3,A)**2)**0.5
CH(A +33) = (AXYZ(1,3)-AXYZ(1,A) **2 + (AXYZ(2,3)-AXYZ(2,A)) **2
CH(A +33) = (CH(A + 33) + (AXYZ(3,3)-AXYZ(3,A))**2)**0.5
CH(A + 45) = (AXYZ(1,5)-AXYZ{1,A))* *2 + (AXYZ(2,5)-AXYZ(2,A))* *2
CH(A +45) = (CH(A +45) + (AXYZ(3,5)-AXYZ(3,A))**2)}**0.5
CONTINUE
DO 25 A=19,27
CH(A +54) = (AXYZ(1,8)-AXYZ(1,A))**2 + (AXYZ(2,6)-AXYZ{2,A))* *2
CH(A +54) = (CH(A + 54) + (AXYZ(3,6)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 30 A=16,18
CH(A +66) = (AXYZ{1,7)-AXYZ{1,A)}**2 + (AXYZ(2,7)-AXYZ(2,A)) **2
CH(A + 66) = (CH(A +66) + (AXYZ(3,7)-AXYZ(3,A}}**2)**0.5
CONTINUE
DO 35 A=22,27
CH(A +63) = (AXYZ(1,7)-AXYZ{1,A) **2 + (AXYZ(2,7)-AXYZ(2,A)) **2
CH(A +63) = (CH(A + 63) + (AXYZ(3,7)-AXYZ(3,A))**2)**0.5
CONTINUE
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DO 40 A=16,21
CHI(A +75) =(AXYZ(1,8)-AXYZ(1,A)) ** 2+ (AXYZ(2,8)-AXYZ(2,A)}* *2
CH(A +75) = (CH(A + 75) + (AXYZ(3,8)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 45 A=25,27
CH(A +72) =(AXYZ(1,8)-AXYZ(1,A) **2 + (AXYZ(2,8)-AXYZ(2,A))* *2
CH{A+72)=(CH(A +72) + (AXYZ(3,8)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 50 A=16,24
CH{A + 84) ={AXYZ(1,9)-AXYZ(1,AN**2 + (AXYZ(2,9)-AXYZ(2,A))**2
CH(A +84) = (CH{A + 84) + (AXYZ(3,9)-AXYZ(3,A)}**2)**0.5
CONTINUE

RETURN

END

SUBROUTINE CC _DIST(CC,AXYZ)
DIMENSION CC(9),AXYZ(3,27)
CC(1) =(AXYZ({1,5)**2+AXYZ(2,5)**2+AXYZ(3,5)**2)**0.5
DO5A=8,9
CC(A-B) =(AXYZ(1,A)**2 + AXYZ(2,A)**2 + AXYZ(3,A)**2)**0.5
CONTINUE
DO 10 A=6,7
CC(A-2) = (AXYZ(1,5)-AXYZ(1,A))**2 + (AXYZ(2,5)-AXYZ(2,A})**2
CC(A-2) =(CC(A-2) + (AXYZ(3,5)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 15 A=8,9
CC(A-2) =(AXYZ(1,6)-AXYZ(1,A))**2 + (AXYZ(2,6)-AXYZ(2,A})**2
CC{A-2) =(CC(A-2) + (AXYZ(3,6)-AXYZ(3,A))**2)**0.5
CC(A) = (AXYZ(1,7)-AXYZ(1,AN**2 + (AXYZ(2,7)-AXYZ(2,A}}**2
CC(A) =(CC(A) + (AXYZ(3,7)-AXYZ(3,A))**2)**0.5
CONTINUE
RETURN
END

SUBROUTINE SC_DIST(SC,AXYZ)
DIMENSION SC(6),AXYZ(3,27)
SC(1)=(AXYZ(1,4)**2+AXYZ(2,4)**2 + AXYZ(3,4)**2)**0.5
SC(2) = (AXYZ(1,5)-AXYZ(1,2))**2 + (AXYZ(2,5)-AXYZ(2,2))* *2
SC(2) =(SC(2) + (AXYZ(3,5)-AXYZ(3,2))**2)**0.5
DO5A=6,7
SC(A-3) = (AXYZ(1,4)-AXYZ(1,A)}**2+ (AXYZ(2,4)-AXYZ(2,A))**2
SC(A-3) = (SC(A-3) + (AXYZ(3,4)-AXYZ(3,AN**2)**0.5
CONTINUE
DO 10 A=8,9
SC(A-3) = (AXYZ{1,2)-AXYZ{1,AN**2 + [AXYZ(2,2)-AXYZ(2,A))**2
SC(A-3) =(SC(A-3) + (AXYZ(3,2)-AXYZ(3,A))**2)**0.5
CONTINUE
RETURN
END

SUBROUTINE CH_ENERGY(CH,CHENERGY)
DIMENSION CH(108)
CHENERGY =0.
A3=5.63*(10**4)
C3=127.
DO 5 A=1,108
CHENERGY = CHENERGY + (A3/(CH{A)**12))-(C3/{CH(A)**6))
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CONTINUE
RETURN
END

SUBROUTINE HH_ENERGY(HH,HHENERGY)
DIMENSION HH(138)
HHENERGY =0.
A2=7.27*(10**3)
C2=47.1
DO5A=1,138
HHENERGY =HHENERGY + (A2/(HH({A)* *12))-(C2/(HH(A)* *6))
CONTINUE
RETURN
END

SUBROUTINE CC_ENERGY(CC,CCENERGY)

DIMENSION CC(9)

CCENERGY =0.

A1=3.95*(10**5)

C1=363.

DO5A=1,9

CCENERGY = CCENERGY + (A1/(CC(A)**12))-(C1/(CC(A)**6))
CONTINUE

RETURN

END

SUBROUTINE SC_ENERGY(SC,SCENERGY)
DIMENSION SC(6)
SCENERGY =0.
A4=1.71*(10**6)
C4 =1050.
DOB5A=1,6
SCENERGY =SCENERGY + (A4/(SC(A}**12))-(C4/(SC(A)* *6))
CONTINUE
RETURN
END

SUBROUTINE SH_ENERGY(SH,SHENERGY)
DIMENSION SH(16)
SHENERGY =0.
A5=2.62*(10**5)
C5=371.4
DO5A=1,16
SHENERGY =SHENERGY + (A5/(SH(A)* *12))-(C5/(SH(A)**6))
CONTINUE
RETURN
END

SUBROUTINE E_TOR(XPHLETOR])
DIMENSION XPHI(4)
ETOR=0.
DO5A=23
ETOR=ETOR +(0.5/2)*(1-COS(3. * XPHI(A)))
CONTINUE
RETURN
END
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SUBROUTINE E_TOR1(XPHI1,ETOR1)
DIMENSION XPHI1(4)
ETOR1=0.
DOB5A=1,4
ETOR1 =ETOR1 +(0.5/2)*(1-COS(3.*XPHI1(A)))
CONTINUE
RETURN
END

SUBROUTINE ORG_XYZ(AXYZ,CXYZ,HXYZ)

DIMENSION AXYZ(3,27),CXYZ(3,5),HXYZ(3,22)

DO5A=1,5
AXYZ(1,A)=CXYZ{1,A)
AXYZ(2,A)=CXYZ(2,A)
AXYZ(3,A)=CXYZ(3,A)

CONTINUE

DO 10A=13
AXYZ(A,6) =HXYZ(A,2)
AXYZI(A,7) =HXYZ(A,7)
AXYZ(A,8) =HXYZ(A,4)
AXYZ(A,9) =HXYZ(A,9)
AXYZ(A,10)=HXYZ(A,1)
AXYZ(A,11)=HXYZ(A,6)
AXYZ(A,12)=HXYZ(A,3)
AXYZ(A,13) =HXYZ(A,8)
AXYZ(A,14)=HXYZ({A,5)
AXYZ(A,15)=HXYZ(A,10)
CONTINUE

RETURN

END

SUBROUTINE ORG1_XYZ(AXYZ,CXYZ,HXYZ)
DIMENSION AXYZ(3,27),CXYZ(3,5),HXYZ(3,22)
DO5A=13
AXYZ(A,16) =HXYZ(A,11)
AXYZ(A,17)=HXYZ(A,12)
AXYZ(A,18) =HXYZ(A,13)
AXYZ(A,19) =HXYZ(A,14)
AXYZ(A,20) =HXYZ(A,15)
AXYZ(A,21)=HXYZ(A,16)
AXYZ(A,22) =HXYZ{A,17)
AXYZ(A,23) =HXYZ(A,18)
AXYZ(A,24) =HXYZ(A,19)
AXYZ(A,25)=HXYZ(A,20)
AXYZ(A,26) =HXYZ(A,21)
AXYZ(A,27) =HXYZ(A,22)
CONTINUE
RETURN
END

SUBROUTINE HHXYZ3(CXYZ HXYZ,XPHI,XYZ, TMAT, TMAT1,XPHI1)
DIMENSION CXYZ(3,5),HXYZ(3,22),XPHI(4),XYZ(3)

DIMENSION TMAT(3,3),TMAT1(3,3),XPHI1{4)
XPI=3.14159265359

THETA1=67.6*(XP1/180.)

THETA2 =56.8*(XPI/180.)

THETA3 =70.*{XP1/180.)
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XYZ{1)=1.101
XYZ(2) =0.
XYZ(3)=0.
DO5A=1,2

IF (A .EQ. 1) THEN
ZPHI1 = XPHI1(3)-(2.15*(XPI/180.))
ZPHI = XPHI(1)
CALL T MAT(TMAT,ZPHI, THETA1)
DO 10B=1,3
DO 15C=1,3
TMAT1(B,C) =TMAT(B,C)
CONTINUE
CONTINUE
ZPHI = XPHI(2)
CALL T_MAT(TMAT,ZPHI, THETAZ2)
CALL T_SQR{TMAT, TMATT1)
ZPHI=XPHI3) +(122.93*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQR{TMAT, TMAT1)
ENDIF
IF (A .EQ. 2) THEN
ZPHI1 = XPHI1(4) +{2.15*(XP1/180.))
ZPHI = XPHI(1)
CALL T_MAT(TMAT,ZPHI, THETAT1)
DO 20 B=1,3
DO 25C=1,3
TMAT1(B,C)=TMAT(B,C)
CONTINUE
CONTINUE
ZPHI = XPHI{2)
CALL T_MAT(TMAT,ZPHI, THETA2)
CALL T_SQR{TMAT, TMAT1)
ZPHI = XPHI{3) +(237.07*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETAS3)
CALL T_SQR(TMAT, TMATT1)
ENDIF
DO30D=1.,3
{F (D .EQ. 1) THEN
ZPHI =ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQRT{TMAT, TMAT1)
ENDIF
IF {D .EQ. 2) THEN
ZPHI={120.*(XP1/180.})) + ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQRT(TMAT,TMATT1)
ENDIF
{F {D .EQ. 3) THEN
ZPHI=({240.*(XPi/180.}) + ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQRT(TMAT, TMAT1)
ENDIF
XXX =0.
YYY =0.
222 =0.
DO 35B=1,3
XXX = XXX +TMAT(1,B)*XYZ(B)
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YYY=YYY +TMAT(2,B)*XYZ(B)
227 =277 +TMAT(3,B) *XYZ(B)
35 CONTINUE
IF (A .EQ. 1) THEN
HXYZ(1,D+16) = XXX +HXYZ(1,4)
HXYZ(2,D+16)=YYY +HXYZ(2,4)
HXYZ(3,D+16)=2ZZ+HXYZ(3,4)
ENDIF
IF (A .EQ. 2) THEN
HXYZ(1,D+19) = XXX +HXYZ(1,9)
HXYZ{2,D+19)=YYY +HXYZ(2,9)
HXYZ(3,D+19)=2Z2Z+HXYZ(3,9)
ENDIF
30 CONTINUE
5 CONTINUE
RETURN
END

SUBROUTINE HHXYZ2(CXYZ,HXYZ,XPHI,XYZ, TMAT, TMAT1,XPHI1)
DIMENSION CXYZ(3,5),HXYZ(3,22),XPHI(4),XYZ(3)

DIMENSION TMAT(3,3), TMAT1(3,3),XPHI1(4)
XP1=3.14159265359

THETA1 =70.*(XP1/180.)

XYZ{1)=1.101
XYZ{2)=0.
XYZ(3)=0.
DO5A=1,2

[F (A .EQ. 1) THEN
ZPHI1 = XPHI1(1)-(2.15*(XPI/180.))
ZPHI=XPHI{1) +{122.83*(XP1/180.))
CALL T_MAT{TMAT,ZPHI, THETA1)

DO 10B=1,3
DO15C=1,3
TMAT1(B,C)=TMAT(B,C)
15 CONTINUE
10 CONTINUE
ENDIF

IF (A .EQ. 2) THEN
ZPHI1T =XPHI1{2) +(2.15*(XP1/180.))
ZPHI=XPHI{1) +{237.07*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA1)
DO 20B=1,3
DO 25C=1,3
TMAT1(B,C) = TMAT(B,C)
25 CONTINUE
20 CONTINUE
ENDIF
DO30D=1,3
[F (D .EQ. 1) THEN
ZPHI =ZPHIN
CALL T_MAT(TMAT,ZPHI, THETA1)
CALL T_SQRU(TMAT, TMAT1)
ENDIF
IF (D .EQ. 2) THEN
ZPHI={120.*(XP1/180.}) + ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA1)
CALL T_SQRT(TMAT, TMAT1)
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ENDIF
IF (D .EQ. 3) THEN
ZPHI=(240.*(XP1/180.)) + ZPHI1
CALL T_MAT(TMAT,ZPHI, THETAT)
CALL T_SQR1(TMAT, TMAT1)
ENDIF
XXX =0.
YYY =0.
2772 =0.
DO 35B=1,3
XXX =XXX+TMAT(1,B)*XYZ(B)
YYY =YYY +TMAT(2,B)*XYZ(B)
2727 =777 + TMAT(3,B)*XYZ(B}
CONTINUE
{F (A .EQ. 1) THEN
HXYZ{1,D + 10} = XXX +HXYZ(1,2)
HXYZ(2,D+10)=YYY +HXYZ(2,2)
HXYZ(3,D+ 10} =2ZZ + HXYZ(3,2)
ENDIF
IF (A .EQ. 2) THEN
HXYZ(1,D+ 13} = XXX +HXYZ(1,7)
HXYZ(2,D+13)=YYY +HXYZ(2,7)
HXYZ(3,D+13)=2ZZ+HXYZ(3,7)
ENDIF
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE HHXYZ1(CXYZ HXYZ,XPHI,XYZ, TMAT, TMAT1)
DIMENSION CXYZ(3,5),HXYZ(3,22),XPHI(4),XYZ(3)
DIMENSION TMAT(3,3), TMAT1(3,3)

XP1=3.14159265359

THETA1 =67.6*(XP1/180.)

THETA2 =56.8*(XP1/180.)

THETA3 =70.*(XPI/180.)

THETA4 =71.*(XP1/180.)

DOS5A=1,4

ZPHI = XPHI(A)

IF (A .EQ. 1) THEN
XYZ(1})=1.874
XYZ(2)=0.
XYZ(3)=0.

ZPHI=ZPHI+(237.07*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA3)
ENDIF
IF (A .EQ. 2} THEN
XYZ{1}=1.101
XYZ{2}=0.
XYZ(3)=0.
YPH! =XPHI(1)
CALL T_MAT(TMAT,YPHI, THETA1)
DO 10B=1,3
DO 156 C=1,3
TMAT1(B,C)=TMAT(B,C)
CONTINUE
CONTINUE
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ZPHI=ZPHI[+{230.5*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA4)
CALL T_SQR1(TMAT, TMAT1)

ENDIF

IF (A .EQ. 3) THEN
XYZ{1)=1.874
XYZ(2)=0.
XYZ(3)=0.
YPHI = XPHI{2)

CALL T_MAT(TMAT,YPHI, THETA2)
CALL T_SQR(TMAT,TMAT1)

ZPHI =ZPHI +(237.07*(XPI/180.))
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQR1(TMAT,TMAT1)

ENDIF

IF (A .EQ. 4) THEN
XYZ{1)=1.101
XYZ(2)=0.
XYZ{3) =0.
YPH! = XPHI(3)

CALL T MAT(TMAT,YPHI, THETA1)
CALL T_SQR(TMAT,TMAT1)
ZPHI =ZPHI +(230.5* (XPI/180.))
CALL T_MAT(TMAT,ZPHI, THETA4)
CALL T_SQR(TMAT,TMATT)

ENDIF

XXX =0.

YYY =0.

222 =0.

DO 20 B=1,3
XXX = XXX + TMAT(1,B) *XYZ(B)
YYY =YYY + TMAT(2,B) *XYZ(B)
727 =777 + TMAT(3,B)*XYZ(B)

CONTINUE
HXYZ(1,A+86)=XXX+CXYZ(1,A+1)
HXYZ(2,A+6)=YYY +CXYZ(2,A+1)
HXYZ(3,A+6)=2ZZ+CXYZ(3,A+1)

CONTINUE
RETURN
END

SUBROUTINE HHXYZ(CXYZ,HXYZ,XPHI,XYZ, TMAT, TMAT1)
DIMENSION CXYZ(3,5),HXYZ(3,22),XPHI(4),XYZ(3)
DIMENSION TMAT(3,3),TMAT1(3,3)

XP1=3.14159265359

THETA1=67.6*(XPl/180.)

THETA2 =56.8*(XPI1/180.)

THETA3 =70.*(XPI/180.)

THETA4=71.*(XP1/180.)

DO5A=1,4

ZPHI = XPHHA)

IF (A .EQ. 1) THEN
XYZ{1}=1.874
XYZ{2)=0.
XYZ(3)=0.

ZPHI =ZPHI +{122.93*({XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA3)
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ENDIF
[F (A .EQ. 2) THEN

XYZ(1)=1.101
XYZ(2)=0.
XYZ{3)=0.
YPHI = XPHI(1)
CALL T_MAT(TMAT,YPHI, THETA1)
DO 10B=1,3
DO 15C=1,3
TMAT1(B,C) =TMAT(B,C)
CONTINUE
CONTINUE
ZPH! =ZPH! +{129.5*(XPI/180.))
CALL T_MAT(TMAT,ZPHI, THETA4)
CALL T_SQRT(TMAT, TMAT1)
ENDIF
IF (A .EQ. 3) THEN
XYZ(1)=1.874
XYZ(2)=0.
XYZ(3)=0.
YPHI = XPHI(2)
CALL T_MAT(TMAT,YPHI, THETA2)
CALL T_SQR(TMAT, TMAT1)
ZPHI=ZPHI +(122.93*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQRT(TMAT, TMAT1)
ENDIF
IF (A .EQ. 4) THEN
XYZ{1)=1.101
XYZ(2)=0.
XYZ{3)=0.
YPHI = XPHH3)
CALL T_MAT(TMAT,YPHI, THETA1)
CALL T_SQR(TMAT, TMAT1)
ZPH!=ZPH!l +(129.5*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA4)
CALL T_SQR1(TMAT, TMAT1)
ENDIF
XXX =0.
YYY =0.
27272 =0.
DO 20B=1,3
XXX =XXX+TMAT(1,B}*XYZ(B)
YYY=YYY +TMAT(2,B}*XYZ(B)
2272 =777+ TMAT(3,B) *XYZ(B)
CONTINUE
HXYZ(1,A+1)=XXX+CXYZ(1,A+1)
HXYZ{2,A+1)=YYY +CXYZ{2,A+1)
HXYZ(3,A +1)=2ZZ+CXYZ(3,A+1)
CONTINUE
RETURN
END

SUBROUTINE CCXYZ(CXYZ, XPHI, XYZ, TMAT, TMAT1)
DIMENSION CXYZ(3,5),XPHI{4),XYZ(3)

DIMENSION TMAT(3,3),TMAT1(3,3)
XP1=3.14159265359
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THETA1=67.6*(XP1/180.)
THETA2 =56.8*(XP1/180.)
DO 5 A=1.3
ZPHI = XPHI{A)
IF (A .EQ. 1) THEN
XYZ{1)=1.889
XYZ{2)=0.
XYZ(3)=0.
CALL T_MAT(TMAT,ZPHI, THETA1)
DO10B=1,3
DO15C=1,3
TMAT1(B,C)=TMAT(B,C)
CONTINUE
CONTINUE
ENDIF
IF (A .EQ. 2) THEN
XYZ{1)=1.889
XYZ(2) =
XYZ(3)=0.
CALL T_MAT(TMAT,ZPHI, THETAZ2)
CALL T_SQR(TMAT, TMAT1)
ENDIF
IF (A .EQ. 3) THEN
XYZ{1)=1.889
XYZ(2) =
XYZ(3) =
CALL T_MAT(TMAT,ZPHI, THETAT1)
CALL T_SQR(TMAT, TMAT1)
ENDIF
XXX =0.
YYY =0.
27272 =0.
DO 20B=1,3
XXX =XXX+TMAT(1,B)*XYZ(B)
YYY =YYY + TMAT(2,B)*XYZ(B)
27272 =777 + TMAT(3,B) *XYZ(B)
CONTINUE
CXYZ{1,A+2)=XXX+CXYZ(1,A+1)
CXYZ(2,A+2)=YYY +CXYZ{2,A+1)
CXYZ(3,A+2)=2Z2Z+CXYZ(3,A+1)
CONTINUE
RETURN
END

SUBROUTINE SET _XYZ(CXYZ,HXYZ)
DIMENSION CXYZ(3,5),HXYZ(3,16)

CXYZ{1,1}=0.
CXYZ(2,1}=0

CXYZ(3, 1)=O
CXYZ(1,2}=1.8
CXYZ(2,2)=0.
CXYZ(3,2)=0.
HXYZ(1,1)=-0.35845
HXYZ(2,1)=0.662168

HXYZ(3,1)=-0.803274
HXYZ(1,6) =-0.35845
HXYZ(2,6)=0.662168
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HXYZ(3,6)=0.803274
RETURN
END

SUBROUTINE T_MAT(TMAT,ZPHI, THETA)
DIMENSION TMAT(3,3)
TMAT(1,1)=COS(THETA)

TMAT(1,2) =SIN(THETA)
TMAT(1,3)=
TMAT(2,1)=S!N(THETA) COS(ZPHI)
TMAT(2,2) =-(COS(THETA}*COS(ZPH1))
TMAT(2,3) = SIN(ZPHI)

TMAT(3,1) =SIN(THETA)*SIN(ZPHI)
TMAT(3,2) =-(COS(THETA) *SIN(ZPH1)
TMAT(3,3) =-COS(ZPHI)

RETURN

END

SUBROUTINE T_SQR(TMAT, TMAT1)
DIMENSION TMAT(3,3),TMAT1(3,3), TMAT2(3,3)
DO5C=1,3
DO 10 A=1,3
SUMO =0.
DO 15B=1,3
SUMO =SUMO + TMAT1(C,B)*TMAT(B,A)
CONTINUE
TMAT2{C,A}=SUMO
CONTINUE
CONTINUE
DO 20 A=1,3
DO 25B=1,3
TMAT(A,B) =TMAT2(A,B)
TMAT1(A,B) =TMAT2(A,B)
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE T_SQR1(TMAT, TMAT1)
DIMENSION TMAT(3,3), TMAT1(3,3),TMAT2(3,3)
DO5C=1,3
DO 10A=1,3
SUMO =0.
DO 15B=1,3
SUMO =SUMO + TMAT1(C,B}*TMAT(B,A)
CONTINUE
TMAT2(C,A}=SUMO
CONTINUE
CONTINUE
DO 20 A=1,3
DO 25B=1,3
TMAT(A,B) =TMAT2(A,B)
CONTINUE
CONTINUE
RETURN
END
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B.4. Computer Simulation of Poly(dimethylsilethene); Program
Listing.

DIMENSION TMAT(3,3), TMAT1(3,3), TMAT2(3,3)

DIMENSION XYZ(3),CXYZ(3,8),HXYZ(3,28),XPHI1(6)
DIMENSION AXYZ(3,36),XPHI(7),RPHI(6), APHI(8)

DIMENSION SS(1),SC(16),SH(40),CC(31),CH(194), HH(211)
OPEN(1,FILE = 'ENERGY1.DAT',STATUS ="'NEW’)

OPEN(2,FILE ='ROTATE.DAT',STATUS ="'NEW')

XPl=3.14159265359
DO5A=1,8.

XPHI1(A) =0.

CONTINUE
CALL SET_XYZ(CXYZ)

THETAX1 =58.*(XPI/180.)

THETAX2 =61.*(XPI/180.)

DO 10 A=0,360,10

XPHI(4) =A*(XPI/180.)

DO 15 B=0,360,10
XPHI(5) = B*(XPI/180.)

ETOTAL = 100000000000
CALL CCXYZ(CXYZ,XPHI,XYZ, TMAT, TMAT1,THETAX1)

CALL HHXYZA(CXYZ,HXYZ,XPHI,XYZ, TMAT, TMAT1)

CALL HHXYZ(CXYZ,HXYZ,XPHI, XYZ, TMAT, TMAT1, THETAX1)
CALL HHXYZ1(CXYZ,HXYZ,XPHI,XYZ, TMAT, TMAT 1, THETAX1)
CALL HHXYZ2(CXYZ,HXYZ,XPHI,XYZ, TMAT, TMAT1,THETAX1, THETAX2)
CALL HHXYZ3(CXYZ,HXYZ,XPHI,XYZ, TMAT, TMAT1, THETAX1,THETAX2)

CALL SS_DIST(SS,AXYZ)

CALL SC_DIST(SC,AXYZ)

CALL CC_DIST(CC,AXYZ)

CALL E_TOR(XPHI,ETOR)

DO 20 C=0,120,5

XPHI(1) = C*(XP1/180.)

DO 25 D=0,120,5

XPHI(2) =D*(XPI/180.)

DO 30 E=0,120,5

XPHI(3) = E*(XP1/180.)

DO 35 F=0,120,5

XPHI(4) = F*(XP1/180.)

DO 40 G=0,120,5
XPHI(5) =G *(XPI/180.)

DO 45 H=0,120,5
XPHI(6) =H*(XPI/180.)

CALL HHXYZ5({CXYZ,HXYZ,XPHI,XPHI1,XYZ, TMAT, TMAT1, THETAX1)
CALL HHXYZ4(CXYZ,HXYZ,XPHI,XPHIT,XYZ, TMAT, TMAT1,THETAX1)
CALL HHXYZ6(CXYZ,HXYZ,XPHI,XPHI1,XYZ, TMAT, TMAT1)
CALL A_XYZ(AXYZ,CXYZ,HXYZ)

CALL SS_ENERGY(SS,SSEN)

CALL SC_ENERGY(SC,SCEN)
CALL CC_ENERGY(CC,CCEN)
CALL SH_DIST(SH,AXYZ)
CALL CH_DIST(CH,AXYZ)
CALL HH_DIST(HH,AXYZ)
CALL SH_ENERGY(SH,SHEN)
CALL CH_ENERGY(CH,CHEN)
CALL HH_ENERGY (HH,HHEN)
CALL E_TORT(XPHI1,ETOR1)
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ETOTAL1 =ETOR +ETOR1 + SSEN + SCEN + SHEN + CCEN + HHEN + CHEN
IF (ETOTAL1T .LT. ETOTAL) THEN

ETOTAL=ETOTAL1

APHI(1)=A

ENDIF
45 CONTINUE
40 CONTINUE
35 CONTINUE
30 CONTINUE
25 CONTINUE
20 CONTINUE
CALL OUT_PUT(APHLETOTAL)
15 CONTINUE
10 CONTINUE
CLOSE (1)
CLOSE (2)
END

SUBROUTINE O_PUT(APHI,ETOTAL)

DIMENSION APHI{8)

XPi=3.14159265359

WRITE(1,*) APHI(1),APHI(2),ETOTAL

WRITE(2,*) APHI(3),APHI{4),APHI{5),APHI(6),APHI(7),APHI(8)
PRINT*,APHI(1),APHI(2)

RETURN

END

SUBROUTINE SS_DIST(SS,AXYZ)

DIMENSION SS(1),AXYZ(3,36)

SS(1) =(AXYZ(1,2)-AXYZ(1,8)**2 + (AXYZ(2,2)-AXYZ(2,8))**2
SS(1) =(SS(1) + (AXYZ(3,2)-AXYZ(3,8))**2)**0.5

RETURN

END

SUBROUTINE SC_DIST(SC,AXYZ)
DIMENSION SC(16),AXYZ(3,36)
DObA=67
SC(A-5) = (AXYZ(1,2)-AXYZ{1,A)**2 + (AXYZ(2,2)-AXYZ(2,A))* *2
SC(A-5) = (SC(A-5) + (AXYZ(3,2)-AXYZ(3,A)**2)**0.5
5 CONTINUE
DO10A=11,14
SC(A-8) = (AXYZ(1,2)-AXYZ({1,A))**2 + (AXYZ(2,2)-AXYZ(2,A))**2
SC(A-8) = (SC(A-8) + (AXYZ(3,2)-AXYZ(3,A))**2)**0.5
10  CONTINUE
DO 15 A=9,10
SC(A-2) = (AXYZ(1,5)-AXYZ(1,A)**2 + (AXYZ(2,5)-AXYZ(2,A))**2
SC(A-2) = (SC(A-2) + (AXYZ(3,5)-AXYZ(3,A))**2)**0.5
15  CONTINUE
DO 20 A=13,14
SC(A-4) = (AXYZ(1,5)-AXYZ(1,A))**2 + (AXYZ(2,5)-AXYZ(2,A))**2
SC(A-4) = (SC(A-4) + (AXYZ(3,5)-AXYZ(3,A))**2)**0.5
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CONTINUE
DO 25 A=3,4
SC(A + 8) = (AXYZ(1,8)-AXYZ(1,AN* *2 + (AXYZ(2,8)-AXYZ(2,A))* *2
SC(A +8) =(SC(A +8) + (AXYZ(3,8)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 30 A=9,12
SC(A +4) = (AXYZ(1,8)-AXYZ{1,A))**2 + (AXYZ(2,8)-AXYZ(2,A))**2
SCIA + 4) = (SC(A +4) + (AXYZ(3,8)-AXYZ(3,A))**2)**0.5
CONTINUE
RETURN
END

SUBROUTINE SH_DIST(SH,AXYZ)
DIMENSION SH(40),AXYZ(3,36)
DO5A=17,18
SH(A-168) = (AXYZ(1,2)-AXYZ(1,A)**2 + (AXYZ(2,2)-AXYZ(2,A))**2
SH(A-16) = (SH(A-16) + (AXYZ(3,2)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 10 A=25,36
SH(A-22) = (AXYZ(1,2)-AXYZ(1,A)**2 + (AXYZ(2,2)-AXYZ(2,A)) * *2
SH(A-22) =(SH(A-22) + (AXYZ(3,2)-AXYZ(3,A)**2)**0.5
CONTINUE
DO 15 A=19,24
SH(A-4) = (AXYZ(1,5)-AXYZ(1,A)**2 + (AXYZ(2,5)-AXYZ(2,A))**2
SH(A-4) = (SH{A-4) + (AXYZ(3,5)-AXYZ(3,A)) **2)**0.5
CONTINUE
DO 20 A=31,36
SH(A-10) = (AXYZ(1,5)-AXYZ({1,A))* *2 + (AXYZ(2,5)-AXYZ(2,A))* *2
SH(A-10) = (SH(A-10) + (AXYZ(3,5)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 25 A=15,16
SH(A + 12) = (AXYZ(1,8)-AXYZ(1,A))* *2 + (AXYZ(2,8)-AXYZ(2,A))**2
SH(A + 12) = (SH(A + 12) + (AXYZ(3,8)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 30 A=19,30
SH(A + 10) = (AXYZ(1,8)-AXYZ(1,A)* *2 + (AXYZ(2,8)-AXYZ(2,A))* *2
SH(A + 10) = (SH(A + 10) + (AXYZ(3,8)-AXYZ(3,A))**2)**0.5
CONTINUE
RETURN
END

SUBROUTINE CC_DIST(CC,AXYZ)
DIMENSION CC(31),AXYZ(3,36)
DO5A=11,14
CCA-10) ={AXYZ(1,3)-AXYZ(1,A))**2 + (AXYZ(2,3)-AXYZ(2,A))**2
CCIA-10) = {(CC(A-10) + (AXYZ(3,3)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 10 A=6,7
CCIA-1) =(AXYZ(1,3)-AXYZ(1,A)) **2 + (AXYZ(2,3)-AXYZ(2,A))**2
CC(A-1) =(CC(A-1) + (AXYZ(3,3)-AXYZ(3,A))**2)**0.5
CONTINUE
CC(7) =(AXYZ(1,4)-AXYZ(1,7))**2 + (AXYZ(2,4)-AXYZ{2,7))* *2
CC(7)=(CC(7) + (AXYZ(3,4)-AXYZ(3,7))**2)**0.5
DO 15 A=9,10
CCIA-1) = (AXYZ(1,4)-AXYZ(1,A)**2 + (AXYZ(2,4)-AXYZ(2,A))**2
CC(A-1)=(CC(A-1) + (AXYZ(3,4)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 20 A=13,14
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CC(A-3) = (AXYZ{1,4)-AXYZ(1,A))**2 + (AXYZ(2,4)-AXYZ(2,A))**2
CC(A-3) =(CC(A-3) + (AXYZ(3,4)-AXYZ(3,A))**2)**0.5
20  CONTINUE
DO 25 A=9,10
CC{A+3)=(AXYZ(1,6)-AXYZ(1,AN)*¥*2 +{AXYZ(2,6)-AXYZ(2,A))**2
CC(A+3)=(CC(A+3) +{AXYZ(3,6)-AXYZ(3,A))**2)**0.5
25 CONTINUE
DO 30 A=13,14
CCA+1)={AXYZ(1,6)-AXYZ{1,A))**2 + (AXYZ(2,6)-AXYZ(2,A)})**2
CC{A+1)=(CCIA+1}+(AXYZ(3,6)-AXYZ(3,A))**2)**0.5
30 CONTINUE
DO 35 A=9,12
CCA+ 7Y =(AXYZ(1,7)-AXYZ{1,A))**2 + (AXYZ(2,7)-AXYZ(2,A)})**2
CCA+7)=(CCIA+7) +(AXYZ(3,7)-AXYZ(3,A))**2)**0.5
35 CONTINUE
DO 40 A=11,14
CCIA +9)=(AXYZ(1,9)-AXYZ(1, A)**2+(AXYZ(2,9)-AXYZ(2,A}}**2
CCIA+9)=(CC(A+9) +(AXYZ(3,9)-AXYZ(3,A))**2)**0.5
40  CONTINUE
DO 45 A=11,14
CCIA +13) =(AXYZ(1,10)-AXYZ(1,AN**2 + (AXYZ{2,10)-AXYZ(2,A))**2
CCA+13)=(CCIA+13)+(AXYZ(3,10)-AXYZ(3,A))**2)**0.5
45  CONTINUE
DO 50 A=13,14
CCIA+15) ={AXYZ{1,11)-AXYZ{1, AN} **2 +(AXYZ(2,11)-AXYZ(2,A))**2
CCA+15)=(CCIA+15) +{AXYZ(3,11)-AXYZ(3,A)**2)**0.5
50  CONTINUE
DO 55 A=13,14
CCA+17)={AXYZ{1,12)-AXYZ{1,A)**2 + (AXYZ(2,12)-AXYZ(2,A)}**2
CCIA+17)={(CCIA+17)+(AXYZ(3,12)-AXYZ(3,A))**2}**0.5
55  CONTINUE
RETURN
END

SUBROUTINE CH_DIST(CH,AXYZ)
DIMENSION CH(194),AXYZ(3,36)
DO 5 A=17,36
CH(A-16) = (AXYZ(1,3)-AXYZ(1,A))* *2 + (AXYZ(2,3)-AXYZ(2,A)) * *2
CH(A-16) = (CH(A-16) + (AXYZ(3,3)-AXYZ(3,A)) **2)**0.5
5  CONTINUE
DO 10 A=17,36
CH(A +4) = (AXYZ(1,4)-AXYZ(1,A) * *2 + (AXYZ(2,4)-AXYZ(2,A)) * *2
CH(A +4) = (CH(A +4) + (AXYZ(3,4)-AXYZ(3,A)) **2)**0.5
10 CONTINUE
DO 15 A=15,16
CH(A +26) = (AXYZ(1,6)-AXYZ(1,A))* *2 + (AXYZ(2,6)-AXYZ(2,A)) * *2
CH(A +26) = (CH(A + 26) + (AXYZ(3,6)-AXYZ(3,A}) **2)**0.5
15 CONTINUE
DO 20 A=19,36
CHI(A +24) = (AXYZ(1,6)-AXYZ(1,A)) **2 + (AXYZ(2,6)-AXYZ(2,A)) * *2
CH(A + 24) = (CH(A + 24) + (AXYZ(3,6)-AXYZ(3,A))**2)**0.5
CH(A +24) = (CH(A + 24) + (AXYZ(3,6)-AXYZ(3,A)) **2)**0.5
20 CONTINUE
DO 25 A=15,16
CH(A +46) = (AXYZ(1,7)-AXYZ(1,A))* *2 + [AXYZ(2,7)-AXYZ(2,A)) * *2
CH(A +46) = (CH(A + 46) + (AXYZ(3,7)-AXYZ(3,A))**2)**0.5
25  CONTINUE
DO 30 A=19,36
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CHIA +44) = (AXYZ(1,7)-AXYZ(1,A)* *2 + (AXYZ(2,7)-AXYZ(2,A))* *2
CHIA +44) = (CH(A + 44) + (AXYZ(3,7)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 35 A=15,18
CHIA +66) = (AXYZ(1,9)-AXYZ(1,A)**2 + (AXYZ(2,9)-AXYZ(2,A))* *2
CH(A + 66) = (CH(A + 66) + (AXYZ(3,9)-AXYZ(3,A})**2)**0.5
CONTINUE

DO 40 A=22,36
CH(A +63) =(AXYZ{1,9)-AXYZ{1,A)* *2 + (AXYZ(2,9)-AXYZ(2,A))**2
CH(A + 63) =(CH(A +63) + (AXYZ(3,9)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 45 A=15,21
CHIA +85) = (AXYZ(1,10)-AXYZ(1,A)**2 + (AXYZ(2,10)-AXYZ(2,A))**2
CHI(A +85) = (CH(A + 85) + (AXYZ(3,10)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 50 A=25,36
CH(A +82) =(AXYZ{1,10)-AXYZ(1,A) * *2 + (AXYZ(2,10)-AXYZ(2,A))**2
CHI(A + 82) = (CH{A + 82) + (AXYZ(3,10)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 55 A=15,27
CH(A +104) = (AXYZ(1,11)-AXYZ(1,AN**2 + (AXYZ(2,11)-AXYZ(2,A))* *2
CH(A +104) = (CH({A + 104) + (AXYZ(3,11)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 60 A=31,36
CHIA +101) =(AXYZ(1,11)-AXYZ(1,A) **2 + (AXYZ(2,11)-AXYZ(2,A)) **2
CH(A +101) =(CHIA + 101) + (AXYZ(3,11)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 65 A=15,24
CHIA +123) =(AXYZ(1,12)-AXYZ(1,AN**2+ (AXYZ(2,12)-AXYZ(2,A))**2
CH{A +123) = (CH(A +123) + (AXYZ(3,12)-AXYZ(3,A)}**2)**0.5
CONTINUE

DO 70 A=28,36
CHI(A + 120) = (AXYZ(1,12)-AXYZ(1,AN)* *2 + (AXYZ(2,12)-AXYZ(2,A)) **2
CH(A +120) = (CH(A + 120) + (AXYZ(3,12)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 75 A=15,30
CH(A +142) = (AXYZ(1,13)-AXYZ(1,AN**2 + (AXYZ(2,13)-AXYZ(2,A))**2
CH(A +142) = (CH(A +142) + (AXYZ(3,13)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 80 A=34,36
CHI(A + 139) = (AXYZ(1,13)-AXYZ(1,A)) **2 + (AXYZ(2,13)-AXYZ(2,A))* *2
CHI(A + 139) = (CH(A + 139) + (AXYZ(3,13)-AXYZ(3,A))**2)**0.5
CONTINUE

DO 85 A=15,33
CH(A +161) =(AXYZ(1,14)-AXYZ(1,A))**2 + (AXYZ(2,14)-AXYZ(2,A})**2
CH(A+161)=(CH(A+161) + (AXYZ(3,14)-AXYZ(3,A)}**2)**0.5
CONTINUE

RETURN

END

SUBROUTINE HH_DIST(HH,AXYZ)

DIMENSION HH({211),AXYZ(3,36)

DO 5 A=17,36
HH(A-16) = (AXYZ(1,15)-AXYZ(1,A))**2 + (AXYZ(2,15)-AXYZ(2,A))**2
HH(A-16) = (HH(A-16) + (AXYZ(3,15)-AXYZ(3,A))**2)**0.5
HH(A +4) = (AXYZ(1,16)-AXYZ(1,A) **2 + (AXYZ(2,16)-AXYZ(2,A))**2
HH(A + 4) = (HH(A + 4) + (AXYZ(3,16)-AXYZ(3,A))**2)**0.5

CONTINUE
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DO 10 A=19,36
HH(A +22) = (AXYZ{1,17)-AXYZ(1,AN**2 + (AXYZ(2,17)-AXYZ(2,A))* *2
HH(A + 22) = (HH{A + 22) + (AXYZ(3,17)-AXYZ(3,A))**2)**0.5
HH(A +40) = (AXYZ(1,18)-AXYZ(1,A)**2 + (AXYZ(2,18)-AXYZ(2,A))**2
HH(A +40) = (HH(A + 40) + (AXYZ(3,18)-AXYZ(3,A))**2)**0.5

CONTINUE

DO 15 A=22,36

HH(A +55) = (AXYZ(1,19)-AXYZ{1,A))**2 + (AXYZ(2,18)-AXYZ(2,A))**2

A+55

A+8b

HH(A +55) + (AXYZ(3,19)-AXYZ(3,A))**2)**0.5
AXYZ(1,20)-AXYZ(1,A))**2 + (AXYZ{2,20)-AXYZ(2, A))**2

AXYZ{1,21)-AXYZ{1,AN¥*2 + (AXYZ(2,21)-AXYZ{2,A))**2

HH( )=

HH(A +70) ={(

HH{A +70) = (HH({A + 70) + (AXYZ(3,20)-AXYZ(3,A))**2)**0.5

HH( )={

HH(A + 85) = (HH(A + 85) + (AXYZ(3,21)-AXYZ(3,A))**2}**0.5

CONTINUE

DO 20 A=25,36
HH(A + 97) = (AXYZ(1,22)-AXYZ{1,AN**2 + (AXYZ(2,22)-AXYZ(2,A))**2
HH(A + 97) = (HH(A + 97) + (AXYZ(3,22)-AXYZ(3,A))**2)**0.5
HH(A +109) = (AXYZ(1,23)-AXYZ{1,A)**2 + (AXYZ(2,23)-AXYZ(2,A))* *2
HH(A +109) = (HH(A + 109) + (AXYZ(3,23)-AXYZ(3,A)) **2)**0.5
HHIA +121) = (AXYZ(1,24)-AXYZ(1,A)** 2 + (AXYZ(2,24)-AXYZ(2,A))**2
HH(A +121) = (HH(A + 121) + (AXYZ(3,24)-AXYZ(3,A) * *2)**0.5

CONTINUE
DO 25 A=28,36
HH(A + 130) = (AXYZ(1,25)-AXYZ(1,A))**2 + (AXYZ(2,25)-AXYZ(2,A))**2
HH(A + 130) = (HH(A + 130) + (AXYZ(3,25)-AXYZ(3,A))**2)**0.5

= )
= )
HH(A +139) =(AXYZ(1,26)-AXYZ({1,A)**2 + (AXYZ(2,26)-AXYZ(2,A))**2
HH(A + 139) = (HH(A + 139) + (AXYZ(3,26)-AXYZ(3,A))**2)**0.5

HH(A + 148) =(AXYZ(1,27)-AXYZ(1,AN**2 + (AXYZ(2,27)-AXYZ(2,A))**2
HH(A + 148) = (HH(A + 148) + (AXYZ(3,27)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 30 A=31,36
AXYZ{1,28)-AXYZ(1,A))**2 + (AXYZ(2,28)-AXYZ{2,A))**2

HH(A + 154) ={ )
HH(A + 154) = (HH(A + 154) + (AXYZ(3,28)-AXYZ(3,A))**2)**0.5

HH(A + 160) = (AXYZ(1,29)-AXYZ(1,A))**2 + (AXYZ(2,29)-AXYZ(2,A))**2
(HH(A + 160) + (AXYZ(3,29)-AXYZ(3,A))**2)**0.5

{ )

( )

HH(A +160) =
HH{A + 166) = (AXYZ(1,30)-AXYZ(1,A))**2 +(AXYZ(2,30)-AXYZ(2,A))**2
HH(A + 166) = (HH(A + 166) + (AXYZ(3,30)-AXYZ(3,A))**2)**0.5
CONTINUE
DO 35 A=34,36
HH(A +169) = (AXYZ{1,31)-AXYZ(1,A)) **2 + (AXYZ(2,31)-AXYZ(2,A))**2
HH(A +169) = (HH(A + 169) + (AXYZ(3,31)-AXYZ(3,A))**2)**0.5
HH(A +172) = (AXYZ({1,32)-AXYZ{1,A))**2 + (AXYZ(2,32)-AXYZ(2,A))**2
HH(A +172) = (HH{A + 172) + (AXYZ(3,32)-AXYZ(3,A))**2)**0.5
HH(A +175) = {AXYZ(1,33)-AXYZ{1,A))**2 + (AXYZ(2,33)-AXYZ(2,A)})**2
HH(A +175) = (HH(A + 175) + (AXYZ(3,33)-AXYZ(3,A))**2)**0.5
CONTINUE
RETURN
END

SUBROUTINE TEST(AXYZ,AA,BB)

DIMENSION AXYZ{3,36)

YY = (AXYZ(1,AA)-AXYZ(1,BB))**2 + (AXYZ(2,AA)-AXYZ(2,BB))**2
YY =(YY + (AXYZ(3,AA)-AXYZ(3,BB))**2)**0.5

727 = (AXYZ(1,CC)-AXYZ(1,DD))**2 + (AXYZ(2,CC)-AXYZ(2,DD))**2
727 =27 + (AXYZ(3,CC)-AXYZ(3,DD))**2)**0.5

PRINT*,YY

RETURN

END
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SUBROUTINE A_XYZ{AXYZ,CXYZ,HXYZ)

DIMENSION AXYZ(3,36),CXYZ(3,8),HXYZ(3,28)

DO5A=1,8
AXYZ(1,A) =CXYZ(1,A)
AXYZ(2,A)=CXYZ(2,A)
AXYZ(3,A)=CXYZ(3,A)

CONTINUE

DO10A=1,3
AXYZ(A,9) =HXYZ(A,1)
AXYZ(A,10) =HXYZ({A,2)
AXYZ(A,11) =HXYZ(A, 4)
AXYZ(A,12) =HXYZ(A,3)
AXYZ{A,13) =HXYZ(A,5)
AXYZ(A,14) =HXYZ(A,6)
AXYZ(A,15) =HXYZ(A,7)
AXYZ{A,16) =HXYZ(A,8)
AXYZ{A,17) =HXYZ(A,9)
AXYZ(A,18) =HXYZ{A,10)
AXYZ{A,19) =HXYZ(A,23)
AXYZ{A,20) =HXYZ(A,24)
AXYZ(A,21) =HXYZ(A,25)
AXYZ(A,22) =HXYZ(A,26)
AXYZ(A,23) =HXYZ(A,27)
AXYZ(A,24) =HXYZ(A,28)
AXYZ(A,25) =HXYZ{A,11)
AXYZ(A,26) =HXYZ(A,12)
AXYZ(A,27) =HXYZ(A,13)
AXYZ(A,28) =HXYZ(A,14)
AXYZ(A,29) =HXYZ(A,15)
AXYZ(A,30) =HXYZ(A,16)

AXYZ(A,31) =HXYZ(A,17)
AXYZ{A,32) =HXYZ(A,18)
AXYZ(A,33) =HXYZ(A,19)
AXYZ(A,34) =HXYZ(A,20)
AXYZ(A,35) =HXYZ(A,21)
AXYZ(A,36) =HXYZ(A,22)
CONTINUE

RETURN

END

SUBRQUTINE K_BOND(XEN,ANG1,ANG2)
XEN=0.
XEN=4%(0.017652/2.)*(ANG1-122.5)**2

XEN =XEN +(4*(0.017652/2.)*(ANG2-118.4)* *2)
RETURN

END

SUBROUTINE CH_ENERGY(CH,CHENERGY)
DIMENSION CH(194)
CHENERGY =0.
A3=5.63*(10**4)
C3=127.
AA3=6.39*(10**4)
CC3=158.8
DO 5 A=1,80
CHENERGY = CHENERGY + (AA3/(CH(A)**12))-(CC3/(CH(A) * *6))
CONTINUE
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DO 10 A=81,194
CHENERGY =CHENERGY + (A3/(CH(A)**12))-(C3/(CH(A)* *6))
CONTINUE
RETURN
END

SUBROUTINE HH_ENERGY(HH,HHENERGY)
DIMENSION HH(211)
HHENERGY =0.
A2=7.27*(10**3)
C2=471
DO5A=1,211
HHENERGY =HHENERGY + (A2/(HH(A}* *12))-(C2/(HH{A) * *6))
CONTINUE
RETURN
END

SUBROUTINE CC_ENERGY(CC,CCENERGY)

DIMENSION CC(31)

CCENERGY =0.

A1=3.85*(10**b)

C1=363.

AA1=4.48*(10**b)

CC1=447.2

AA2=5.1*(10**5)

CC2=552.9

DOLSA=1,4

CCENERGY =CCENERGY + {(AAT1/(CC(A}**12))-{CCT1/{CC(A)**6))
CONTINUE

DO 10 A=5,7

CCENERGY =CCENERGY + (AA2/(CC(A)**12))-(CC2/(CC{A)**6))
CONTINUE

DO 15 A=8,19

CCENERGY =CCENERGY +(AA1/(CC{A)**12))-(CC1/(CC(A)**6))
CONTINUE

DO 20 A=20,31

CCENERGY = CCENERGY + (A1/(CC(A)**12))-(CT1/(CC(A)**6))
CONTINUE

RETURN

END

SUBROUTINE SC_ENERGY(SC,SCENERGY)

DIMENSION SC(16)

SCENERGY =0.

A4=1.71*(10*7*6)

C4=1050.

AA4=1.96"(10*"6)

CC4=1300.

DOLA=1,2
SCENERGY =SCENERGY +(AA4/(SC(A)**12))-(CC4/(SC(A)* *6))
CONTINUE

DO 10 A=3,10
SCENERGY =SCENERGY + (A4/(SC(A)**12))-(C4/(SC(A)**6))
CONTINUE

DO 15 A=11,12
SCENERGY =SCENERGY +(AA4/(SC(A)**12))-(CC4/(SC(A)**6))
CONTINUE

DO 20 A=13,16
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SCENERGY =SCENERGY + (A4/({SC(A)* *12))-(C4/(SC(A)**6))
CONTINUE
RETURN
END

SUBROUTINE SH_ENERGY(SH,SHENERGY)
DIMENSION SH(40)
SHENERGY =0.
A5=2.62%(10%*5)
Cb=371.4
DO 5 A=1,40
SHENERGY = SHENERGY + (A5/(SH{A)* *12})-(C5/(SH({A}* *6))
CONTINUE
RETURN
END

SUBROUTINE SS_ENERGY(SS,SSENERGY)
DIMENSION SS(1)
SSENERGY =0.
A6=7.26*(10**6)
C6=3060.0
SSENERGY =SSENERGY + (A6/({SS(1)**12)-(C6/SS(1)**6))
RETURN
END

SUBROUTINE E_TOR(XPHI,ETOR)

DIMENSION XPHI{7)

ETOR=0.

DO5A=4,5
ETOR=ETOR+(0.0/2)*{(1-COS(3.*XPHI{A)-3.14259))

CONTINUE

RETURN

END

SUBROUTINE E_TOR1(XPHI1,ETOR1)
DIMENSION XPHI1(6)
ETOR1=0.
DO5A=1,6
ETOR1 =ETOR1 +(0.5/2)*(1-COS(3.* XPHI1(A)))
CONTINUE
RETURN
END

SUBROUTINE HHXYZA{CXYZ HXYZ,XPHI,XYZ, TMAT, TMAT1)
DIMENSION CXYZ(3,8),HXYZ(3,28),XPHI{7),XYZ(3)
DIMENSION TMAT(3,3), TMAT1(3,3)

XPI=3.14159265359

THETA1=70.*(XP{/180.)

XYZ{1)=1.87
XYZ{2)=0.
XYZ(3)=0.
DO5A=1,2
ZPHI = XPHI(1)

IF (A .EQ. 1) THEN
ZPHI=ZPHI +{121.319*(XP1/180.))
CALL T _MAT(TMAT,ZPHI, THETA1)
ENDIF
IF (A .EQ. 2) THEN
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ZPHI=ZPHI+(238.681*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETAT)
ENDIF
XXX =0.
YYY =0.
2727 =0.
DO 10B=1,3
XXX =XXX+TMAT(1,B)*XYZ(B)
YYY=YYY +TMAT(2,B)*XYZ(B)
2722 =777 + TMAT(3,B) *XYZ(B)
10 CONTINUE
HXYZ(1,A) = XXX +CXYZ{1,2)
HXYZ(2,A)=YYY + CXYZ(2,2)
HXYZ(3,A) =272+ CXYZ(3,2)
b5 CONTINUE
RETURN
END

SUBROUTINE HHXYZ6(CXYZ,HXYZ,XPHI, XPHIT,XYZ, TMAT, TMAT1)
DIMENSION CXYZ(3,8),HXYZ(3,28),XPHI(7),XYZ(3)

DIMENSION TMAT(3,3),TMAT1(3,3),XPHI1(6)
XPI=3.14159265359

THETA2 =70.*(XPI/180.)

THETA3 =71.*(XPI/180.)

XYZ{(1}=1.1
XYZ{2)=0.
XYZ{3) =0.
DO5A=1,2

fF (A .EQ. 1) THEN
ZPHI1 = XPHI1(5)-0.63*(XP1/180.)
ZPHI = XPHI{1) +(121.319*(XP1/180.})
CALL T_MAT(TMAT,ZPHI, THETA2)

DO 10B=1,3
DO15C=1,3
TMAT1(B,C) =TMAT(B,C)
15 CONTINUE
10 CONTINUE
ENDIF

IF (A .EQ. 2) THEN
ZPHI1 = XPHI1(6) +0.63*{XP1/180.)
ZPHI=XPHI(1) +(238.681*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA2)
DO 20B=1,3
DO 25C=1,3
TMAT1(B,C) =TMAT(B,C)
25 CONTINUE
20 CONTINUE
ENDIF
DO 30D=1,3
IF (D .EQ. 1) THEN
ZPHI =ZPHIN
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQR1(TMAT, TMAT1)
ENDIF
IF (D .EQ. 2) THEN
ZPHI=(120.*(XPI1/180.)) + ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA3)
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CALL T_SQR1(TMAT, TMATT1)
ENDIF
IF (D .EQ. 3) THEN
ZPHI={240.*(XP1/180.)) + ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQRVU(TMAT, TMATT1)
ENDIF
XXX =0.
YYY =0.
2772 =0.
DO 35 B=1,3
XXX =XXX+TMAT(1,B)*XYZ(B)
YYY =YYY +TMAT(2,B) *XYZ(B)
2727 =777 + TMAT(3,B}*XYZ(B)
35 CONTINUE
IF (A .EQ. 1) THEN
HXYZ{1,D+22) = XXX +HXYZ(1,1)
HXYZ{2,D+22)=YYY +HXYZ(2,1)
HXYZ(3,D+22)=2Z2Z+HXYZ(3,1)
ENDIF
IF (A .EQ. 2) THEN
HXYZ({1,D+25) = XXX +HXYZ(1,2)
HXYZ(2,D+25)=YYY +HXYZ(2,2)
HXYZ(3,D+25) =222 +HXYZ(3,2)
ENDIF
30 CONTINUE
5 CONTINUE
RETURN
END

SUBROUTINE HHXYZ5{CXYZ HXYZ,XPHI, XPHI1,XYZ TMAT, TMAT1,THETAX1)
DIMENSION CXYZ(3,8),HXYZ(3,28), XPHI(7),XYZ(3)

DIMENSION TMAT(3,3), TMAT1(3,3),XPHI1(6)

XP1=3.14159265359

THETA2=70.%(XPI/180.)

THETA3=71.*(XPI1/180.)

XYZ(1})=1.1
XYZ(2)=0.
XYZ(3)=0.
DO5A=1,2

IF (A .EQ. 1) THEN
ZPHI1 =XPHI1{1)-0.63*(XP1/180.)
ZPHI = XPHI(1)
CALL T_MAT(TMAT,ZPHI, THETA2)
DO 10B=1,3
DO 15C=1.3
TMAT1{B,C) = TMAT(B,C)
15 CONTINUE
10 CONTINUE
ZPHI = XPHI{2)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPHI = XPHI(3)
CALL T_MAT(TMAT,ZPHI, THETAXT)
CALL T_SQR(TMAT, TMAT1)
ZPHI = XPHI{4)
CALL T_MAT(TMAT,ZPHI, THETA2)
CALL T_SQR{(TMAT, TMAT1)
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ZPHI = XPHI{5)
CALL T_MAT(TMAT,ZPHI, THETAXT1)
CALL T_SQR(TMAT, TMAT1)
ZPH! = XPHI(6)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMATT1)
ZPHI =XPHI{7) +(121.319*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA2)
CALL T_SQR(TMAT, TMAT1)
ENDIF
IF (A .EQ. 2} THEN
ZPHI1 =XPHI1{2}) +0.63*{XPi/180.)
ZPHI = XPHI{(1)
CALL T_MAT(TMAT,ZPHI, THETA2)
DO 20B=1,3
DO 25C=1,3
TMAT1(B,C) =TMAT(B,C)
25 CONTINUE
20 CONTINUE
ZPHI = XPHI(2)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMATT1)
ZPHI = XPHI(3)
CALL T_MAT{TMAT,ZPHI, THETAX1)
CALL T_SQR{(TMAT, TMAT1)
ZPHI = XPHI(4)
CALL T_MAT(TMAT,ZPHI, THETA2)
CALL T_SQR{TMAT, TMAT1)
ZPHI = XPHI(5)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPH! =XPHI{6)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPHI = XPHH7) +(238.681 *(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETAZ2)
CALL T_SQR(TMAT, TMAT1)
ENDIF
DO30D=1,3
IF (D .EQ. 1) THEN
ZPHI =ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQR1(TMAT, TMAT1)
ENDIF

IF (D .EQ. 2) THEN
ZPH!=(120.*(XPI/180.}} + ZPHI1
CALL T MAT(TMAT,ZPHI, THETA3)
CALL T_SQR1{TMAT, TMATT1)

ENDIF

). 3) THEN

240.*(XP1/180.)) + ZPHI1

T MAT(TMAT,ZPHI, THETA3)
T_SQRT(TMAT, TMAT1)
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XXX =XXX+TMAT{1,B)*XYZ(B)
YYY =YYY +TMAT(2,B)*XYZ(B)
222 =777 + TMAT(3,B) *XYZ(B)
CONTINUE
IF (A .EQ. 1) THEN
HXYZ(1,D+16) = XXX +HXYZ(1,5)
HXYZ{2,D+16)=YYY +HXYZ(2,5)
HXYZ(3,D+16) =2Z2Z +HXYZ(3,5)
ENDIF
IF (A .EQ. 2) THEN
HXYZ{1,D + 13} =XXX+HXYZ(1,6)
HXYZ(2,D+19)=YYY +HXYZ(2,6)
HXYZ(3,D+ 19} =2Z2Z+HXYZ(3,6)
ENDIF
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE HHXYZ4(CXYZ HXYZ,XPHI, XPHI1, XYZ TMAT, TMAT1, THETAX1)
DIMENSION CXYZ(3,8),HXYZ(3,28),XPHI{7),XYZ(3)

DIMENSION TMAT(3,3),TMAT1(3,3),XPHI1(6)

XPI=3.14159265359

THETA2 =70.*(XP1/180.)

THETA3=71.*(XP1/180.)

XYZ{1)=1.1
XYZ{2)=0.
XYZ({3) =0.
DO5A=1,2

[F (A .EQ. 1) THEN
ZPHI1 = XPHI1(3)-0.63*(XP1/180.)
ZPHI = XPHI{(1)
CALL T_MAT(TMAT,ZPHI, THETA2)
DO 10B=1,3
DO 15C=1,3
TMAT1(B,C) =TMAT(B,C)
CONTINUE
CONTINUE
ZPHI = XPHI(2)
CALL T _MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT,TMATT1)
ZPHI = XPHI(3)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPHI = XPHHI4) +(121.319*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA2)
CALL T_SQR(TMAT, TMAT1)
ENDIF
IF (A .EQ. 2) THEN
ZPHIT =XPHI1{4) + 0.63*(XP1/180.)
ZPHI = XPHI(1)
CALL T_MAT(TMAT,ZPH!, THETA2)
DO 20B=1,3
DO 25C=1.3
TMAT1(B,C) =TMAT(B,C)
CONTINUE
CONTINUE
ZPHI = XPHI(2)
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CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT,TMATT)
ZPHI = XPHI(3)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT,TMAT1)
ZPHI = XPHI(4) + (238.681*(XPI/180.))
CALL T MAT(TMAT,ZPHI, THETA2)
CALL T_SQR(TMAT,TMAT1)
ENDIF
DO30D=1,3
IF (D .EQ. 1) THEN
ZPHI =ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQR1(TMAT,TMAT1)
ENDIF
IF (D .EQ. 2) THEN
ZPHI =(120.*(XPI/180.)) + ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQR1(TMAT,TMAT1)
ENDIF
IF (D .EQ. 3) THEN
ZPHI =(240.*(XPI/180.)) + ZPHI1
CALL T_MAT(TMAT,ZPHI, THETA3)
CALL T_SQR1(TMAT,TMAT1)
ENDIF
XXX =0.
YYY =0.
277 =0.
DO 35B=1,3
XXX = XXX + TMAT(1,B) *XYZ(B)
YYY =YYY + TMAT(2,B)*XYZ(B)
277 =777 + TMAT(3,B)*XYZ(B)
35 CONTINUE
IF (A .EQ. 1) THEN
HXYZ(1,D+ 10) = XXX + HXYZ(1,3)
HXYZ(2,D+10) =YYY + HXYZ(2,3)
HXYZ(3,D + 10) =ZZZ + HXYZ(3,3)
ENDIF
IF (A .EQ. 2) THEN
HXYZ(1,D +13) = XXX + HXYZ(1,4)
HXYZ(2,D+13) =YYY + HXYZ(2,4)
HXYZ(3,D + 13) =Z2ZZ + HXYZ(3,4)
ENDIF
30  CONTINUE
5 CONTINUE
RETURN
END

SUBROUTINE
HHXYZ3{CXYZ,HXYZ,XPHI, XYZ,TMAT, TMAT1, THETAX1, THETAX2)

DIMENSION CXYZ(3,8),HXYZ(3,28),XPHI(7),XYZ(3)
DIMENSION TMAT(3,3),TMAT1(3,3)
XP1=3.14159265359

THETA2=70.*(XP1/180.)

XYZ{1)=1.09
XYZ(2) =0.
XYZ(3)=0.
ZPHI = XPHI(1)
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CALL T_MAT(TMAT,ZPHI, THETA2)
DO5B=1,3
DO 10C=1,3
TMAT1(B,C) =TMAT(B,C)
10 CONTINUE
5 CONTINUE
ZPHI = XPHI{2)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPHI = XPHH3)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPHI = XPHI(4)
CALL T_MAT(TMAT,ZPHI, THETA2)
CALL T_SQR(TMAT, TMAT1)
DO 15 A=5,6
ZPHI = XPHHA)
{F (A .EQ. 5) THEN
ZPHI =ZPHI + XPI
CALL T_MAT(TMAT,ZPHI, THETAX2)
CALL T_SQR1(TMAT, TMAT1)

ENDIF
IF (A .EQ. 6) THEN
YPHI = XPHI(5)

CALL T_MAT(TMAT,YPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPHI =2ZPHI + XPI
CALL T_MAT(TMAT,ZPHI, THETAX2)
CALL T_SQR1{(TMAT, TMAT1)

ENDIF

XXX =0.

YYY =0.

27272 =0.

DO 20B=1,3
XXX =XXX+TMAT(1,B)*XYZ(B)
YYY =YYY + TMAT(2,B)*XYZ(B)
2272 =277 + TMAT(3,B)*XYZ(B)

20 CONTINUE
HXYZ(1,A+4)=XXX+CXYZ(1,A+1)
HXYZ(2,A+4)=YYY +CXYZ(2,A+1)
HXYZ{3,A+4)=222+CXYZ(3,A+1)

15  CONTINUE

RETURN
END

SUBROUTINE
HHXYZ2(CXYZ,HXYZ,XPHI,XYZ, TMAT, TMAT1, THETAX1, THETAX2)

DIMENSION CXYZ(3,8),HXYZ({3,28),XPHI{7}),XYZ(3)

DIMENSION TMAT(3,3),TMAT1(3,3)

XP1=3.14159265359

THETA2 =70.*(XP1/180.)

XYZ{1)=1.09

XYZ(2)=0.

XYZ(3)=0.

ZPHI = XPHI(1)

CALL T_MAT(TMAT,ZPHI, THETA2)

DO5B=1,3

DO10C=1,3
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TMAT1(B,C) =TMAT(B,C)
CONTINUE
CONTINUE
DO 15 A=2,3
ZPHI = XPHI(A)
IF (A .EQ. 2) THEN
ZPHI =ZPHI + XP|
CALL T MAT(TMAT,ZPH!I, THETAX2)
CALL T_SQRU(TMAT, TMAT1)
ENDIF
IF (A .EQ. 3) THEN
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPHI=ZPHI + XP!
CALL T MAT(TMAT,ZPHI,THETAX2)
CALL T_SQR1(TMAT, TMATT1)
ENDIF
XXX =0.
YYY =0.
2272 =0.
DO 20B=1,3
XXX =XXX+TMAT(1,B)*XYZ(B)
YYY =YYY + TMAT(2,B) *XYZ(B)
222 =777 + TMAT(3,B) *XYZ(B)
CONTINUE
HXYZ(1,A+5)=XXX+CXYZ{1,A+1)
HXYZ(2,A+5}=YYY+CXYZ(2,A+1)
HXYZ(3,A+5)=22Z+CXYZ{3,A+1)
CONTINUE
RETURN
END

SUBROUTINE HHXYZ1(CXYZ,HXYZ,XPHI,XYZ, TMAT, TMAT1, THETAX1)
DIMENSION CXYZ(3,8),HXYZ(3,28),XPHI(7),XYZ(3)
DIMENSION TMAT(3,3), TMAT1(3,3)
XPI=3.14159265359
THETA2 =70.*(XP1/180.)
ZPHI = XPHI(1)
CALL T_MAT(TMAT,ZPHI, THETA2)
DO5B=1,3
DO 10C=1,3
TMAT1(B,C) =TMAT(B,C)
CONTINUE

CONTINUE
ZPHI = XPHI(2)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPHI = XPHI(3)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPH! = XPHI{4)
CALL T_MAT(TMAT,ZPHI, THETA2)
CALL T_SQOR(TMAT, TMATT1)
DO 15 A=5,6

ZPHI = XPHI(A)

CALL T_MAT(TMAT,ZPHI, THETAX1)

CALL T_SQR(TMAT, TMAT1)
CONTINUE
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XYZ{(1)=1.8
XYZ{2)=0.
XYZ(3)=0.
DO 20 A=1,2

IF (A .EQ. 1) THEN
ZPHI = XPHI{7) +(121.319*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA2)
CALL T_SQRV(TMAT, TMAT1)

ENDIF

F (A .EQ. 2) THEN
ZPHI = XPHI{7) +{238.681 *(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETAZ2)
CALL T_SQRU(TMAT, TMAT1)

ENDIF

XXX =0.

YYY =0.

27272 =0.

DO 25B=1,3
XXX = XXX+ TMAT(1,B) *XYZ(B)
YYY=YYY +TMAT(2,B) *XYZ(B)
2272 =777 +TMAT(3,B)*XYZ(B)

25 CONTINUE

HXYZ(1,A +4)=XXX+CXYZ(1,8)

HXYZ(2,A+4)=YYY +CXYZ(2,8)

HXYZ(3,A +4) =277 + CXYZ(3,8)

20 CONTINUE
RETURN
END

SUBROUTINE HHXYZ(CXYZ HXYZ,XPHI, XYZ, TMAT, TMAT1, THETAX1)
DIMENSION CXYZ(3,8),HXYZ(3,28),XPHI{7),XYZ(3)
DIMENSION TMAT(3,3),TMAT1(3,3)
XPl1=3.14159265359
THETA2=70.*(XP1/180.)
ZPHI = XPHI(1)
CALL T_MAT(TMAT,ZPHI, THETA2)
DO5B=1,3
DO 10C=1,3
TMAT1(B,C) =TMAT(B,C)
10 CONTINUE
CONTINUE
ZPH! =XPHI(2)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
ZPHI =XPHI{(3)
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)
XYZ(1)=1.87
XYZ{2)=0.
XYZ(3)=0.
DO 15 A=1,2
[F (A .EQ. 1) THEN
ZPHI = XPHI{4)
ZPHI =ZPH!+(121.319*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETAZ2)
CALL T_SQR1(TMAT, TMAT1)
ENDIF
F (A .EQ. 2) THEN

220



20

15

15
10

ZPHI = XPHI{4)
ZPHI=ZPHI +(238.681*(XP1/180.))
CALL T_MAT(TMAT,ZPHI, THETA2)
CALL T_SQRT{TMAT, TMAT1)
ENDIF
XXX =0.
YYY =0.
2772 =0.
DO 208B=1,3
XXX =XXX+TMAT(1,B)*XYZ(B)
YYY =YYY + TMAT(2,B) *XYZ(B)
77272 =77Z+TMAT(3,B)*XYZ(B)
CONTINUE
HXYZ(1,A +2)=XXX+CXYZ(1,5)
HXYZ(2,A+2)=YYY +CXYZ(2,5)
HXYZ(3,A +2) =227+ CXYZ(3,5)
CONTINUE
RETURN
END

SUBROUTINE CCXYZ(CXYZ,XPHI,XYZ, TMAT, TMAT1, THETAXT1)
DIMENSION CXYZ(3,8),XPHI(7),XYZ(3)
DIMENSION TMAT(3,3),TMAT1(3,3)
XP1=3.14159265359
THETA2=70.*{XP1/180.)
DO5A=1,6
ZPHI = XPHI(A)
IF (A .EQ. 1) THEN
XYZ{1)=1.85
XYZ2{2}=0.
XYZ{3) =0.
CALL T_MAT(TMAT,ZPHI, THETAZ2)
DO 10B=1,3
DO 15C=1,3
TMAT1(B,C) =TMAT(B,C)
CONTINUE
CONTINUE
ENDIF
IF (A .EQ. 2) THEN
XYZ{1)=1.34
XYZ({2)=0.
XYZ(3)=0.
CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)

ENDIF

IF (A .EQ. 3) THEN
XYZ{1)=1.85
XYZ(2)=0.
XYZ(3)=0.

CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)

ENDIF

IF (A .EQ. 4) THEN
XYZ(1)=1.85
XYZ{2)=0.
XYZ(3)=0.

CALL T_MAT(TMAT,ZPHI, THETAZ2)
CALL T_SQR(TMAT, TMAT1)
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ENDIF
IF (A .EQ. 5) THEN

XYZ{1)=1.34
XYz{2)=0.
XYZ(3)=0.

CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)

ENDIF

IF (A .EQ. 6) THEN
XYZ(1)=1.85
XYZ{2)=0.
XYZ{3)=0.

CALL T_MAT(TMAT,ZPHI, THETAX1)
CALL T_SQR(TMAT, TMAT1)

ENDIF

XXX =0.

YYY =0.

2727 =0.

DO 20B=1,3
XXX = XXX +TMAT(1,B)*XYZ(B)
YYY =YYY + TMAT(2,B) *XYZ(B)
222 =777+ TMAT(3,B)*XYZ(B)

20 CONTINUE
CXYZ(1,A+2)=XXX+CXYZ{1,A+1)
CXYZ(2,A+2)=YYY+CXYZ(2,A+1)
CXYZ(3,A+2)=2Z2Z+CXYZ(3,A+1)

5 CONTINUE

RETURN
END

SUBROUTINE SET_XYZ(CXYZ)
DIMENSION CXYZ(3,8)
CXYZ(1,1}=0.

CXYZ(2,1)=0.

CXYZ(3,1)
CXYZ(1,2)
CXYZ{2,2)=
CXYZ(3,2)=
RETURN
END

89

0.
1.
0.
0.

SUBROUTINE T_MAT(TMAT,ZPHI, THETA)
DIMENSION TMAT(3,3)

TMAT(1,1) =COS(THETA)

TMAT(1,2) =SIN(THETA)

TMAT(1,3) =0.

TMAT(2,1) =SIN(THETA}*COS(ZPHI)

)
TMAT(2,2) =-{COS(THETA)*COS(ZPHI)
TMAT(2,3) = SIN(ZPHI)
TMAT(3,1) =SIN(THETA}*SIN(ZPHI)
TMAT(3,2) =-(COS{THETA) *SIN(ZPHI))
TMAT(3,3) =-COS(ZPHI)
RETURN

END

SUBROUTINE T_SQR(TMAT, TMAT1)
DIMENSION TMAT(3,3), TMAT1(3,3), TMAT2(3,3)
DO5C=1,3
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25
20

15

25
20

END

DO 10 A=1,3
SUMO =0.
DO 15 B=1,3
SUMO = SUMO + TMAT1(C,B)*TMAT(B,A)
CONTINUE
TMAT2(C,A)=SUMO
CONTINUE
CONTINUE
DO 20A=13
DO 25B=1,3
TMAT(A,B) =TMAT2(A,B)
TMAT1(A,B) =TMAT2(A,B)
CONTINUE
CONTINUE
RETURN
END

SUBROUTINE T_SQR1(TMAT,TMAT1)
DIMENSION TMAT(3,3), TMAT1(3,3),TMAT2(3,3)
DO5C=1,3
DO10A=1,3
SUMO =0.
DO 15B=1,3
SUMO =SUMO + TMAT1(C,B)*TMAT(B,A)
CONTINUE
TMAT2(C,A) =SUMO
CONTINUE
CONTINUE
DO 20 A=1,3
DO 25 B=1,3
TMAT(A,B) =TMAT2(A,B)
CONTINUE
CONTINUE
RETURN
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APPENDIX C

COMPUTER PROGRAMS

C.1.Introduction

The computer programs employed in the analysis of experimental and
theoretical data are presented in this appendix. Each program is accompanied
by an outline of its function together with a list of the parameters required as
input by the program. All the programs were written in QBasic and were run

on an IBM AT personal computer.

C.2.Davidson-Cole Analysis

This program calculates theoretical values of dielectric permittivity and

dielectric loss, at a series of spot frequencies in the range 100—105, for

particular values of B, g, g and the frequency corresponding to maximum

loss, f The program requires as input the following data:

max’
1. Values of the Davidson-Cole empirical distribution factor, .
The limiting low frequency permittivity, €,.

The limiting high frequency permittivity, g;.

oW N

The frequency corresponding to maximum loss, f ...

Using the first input value of B, the value of f .., and the equation (8-32),

the program is able to calculate a value of 14. This permits the program to

calculate a value of ¢ (from Tan$ =wt,) at each spot frequency. Equations
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(8-30) and (8-31) are then used to calculate the values of €' and &". The

results of the calculations are then displayed on the screen with the option of

producing a hard copy.

Computer Program Listing

DIM

Theoretical Evaluation of Dielectric Loss
Equations Using Various Models

Written by Dr. M.S.Beevers,

Department of Chemical Engineering and Applied Chemistry,
Aston University, Birmingham, B4 7ET.

Converted to QBasic by David J. Elsby

freqs(25),Iogfreqs(25),eloss(25),eperm(25),ordinate(25),abscissa(25)

DECLARE SUB intro (ans,modelname$)
DECLARE SUB initialise (regs(),logfregs(),nfreq,tau,elow,ehigh)
DECLARE SUB display1 (modelname$,fregs(),eloss(),eperm(),logfregs(),

nfreqg,fmax,emax,beta)

DECLARE SUB debye (freqs(),eloss(),eperm(),nfreq,tau,elow,ehigh)
DECLARE SUB normalise (fregs(),eloss(),nfreq,fmax,emax)

DECLARE SUB cole (freqs(),eloss(),eperm(),nfreq,tau,elow,ehigh,beta)
DECLARE SUB davidson (freqs(),eloss(),eperm(),nfreq,tau,elow,ehigh,

"***NMain Program Routine

beta)

* % ¥

CALL intro (ans,modelname$)
CALL initialise (fregs(),logfregs(),nfreq,tau,elow,ehigh)
IF (ans = 1) THEN

CALL debye (fregs(),eloss(),eperm(),nfreq,tau,elow,ehigh)

CALL normalise (fregs(),eloss(),nfreq,fmax,emax)

CALL display1 (modelname$,fregs(),eloss(),eperm(),logfreqs(),
nfreq,fmax,emax,beta)

END IF
IF (ans = 2) THEN

CLS

LINE (150, 140) - (490, 180), 1, BF

LINE (150, 140)-(490, 180), 15, B

LOCATE 12, 22

INPUT "Enter a value of Beta 7 ", beta

CALL cole (freqgs(),eloss(),eperm(),nfreq,tau,elow,ehigh,beta)
CALL normalise (fregs(),eloss(),nfreq,fmax,emax)
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CALL display1 (modelname$,fregs(),eloss(),eperm(),logfregs(),
nfreq,fmax,emax,beta)
END IF
IF (ans = 3) THEN
CLS
LINE (150, 140)-{(490, 180), 1, BF
LINE (150, 140)-(490, 180), 15, B
LOCATE 12, 22
INPUT "Enter a value of Gamma ? ", beta
CALL davidson (fregs(),eloss(),eperm(),nfreq,tau,elow,ehigh,

beta)
CALL normalise (fregs(),eloss(),nfreq,fmax,emax)
CALL display1 (modelname$,freqs(),eloss(),eperm(),logfreqgs(),
nfreq,fmax,emax,beta)
END IF
END
"* ¥ xCole-Cole-Analysis* * *
SUB cole (freqs(),eloss(),eperm(),nfreq,tau,elow,ehigh,beta)
CLS
pi = 3.14159

sbeta = SIN(beta * pi/ 2)
cbeta = COS(beta * pi/ 2)
FORi = 1 TO nfreq

wrad = 2 * pi * fregsli)
eloss(i) = (elow - ehigh) * (wrad * tau) "~ beta * sbeta
elossli) = eloss(i) / (1 + 2 * ((wrad * tau) ~ beta) * cbeta +
(wrad * tau) ~ (2 * beta))
eperm(i) = (elow - ehigh) * (1 + (wrad * tau) ~ beta * cbeta)
eperm(i) = eperm(i) / (1 + 2 * ({wrad * tau) ~ beta) * cbeta +
(wrad * tau) ~ (2 * beta))
eperm(i) = eperm(i) + ehigh

NEXT i

END SUB

"***Dayvidson-Cole-Analysis* * *
SUB  davidson (fregs(),eloss(),eperm(),nfreq,tau,elow,ehigh,beta)

CLS
pi = 3.14159
FOR i = 1 TO nfreq

wrad = 2 * pi * freqs(i)

phi = ATN(wrad * tau)

cphi = COS(phi)

sphigamma = SIN(phi * beta)

cphigamma = COS(phi * beta)

eloss(i) = (elow - ehigh) * (cphi ~ beta) * sphigamma
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eperm(i) = ((elow - ehigh) * (cphi ~ beta) * cphigamma) "+ ehigh
NEXT i
END SUB

"***Debye-Analysis* * ¥
SUB debye (freqs(),eloss(),eperm(),nfreq,tau,elow,ehigh)

CLS
pi = 3.14159
FORi = 1 TO nfreq
wrad = 2 * pi * fregsfi)
eloss(i] = ((elow - ehigh) * wrad * tau) / (1 + wrad * wrad * tau *
tau)
eperm(i) = ehigh + (elow - ehigh) / (1 + wrad * wrad * tau * tau)
NEXT i

END SUB

"*¥**Display-Results* **
SUB display (modelname$,fregs(),eloss(),eperm(),logfregs(},nfreq,fmax,
emax,beta)

CLS

LINE (2, 2)-(636, 346), 1, BF

LINE (2, 2)-(636, 346), 15, B

IF (modelname$ = "-Debye Model-") THEN
LOCATE 2, 17
PRINT "Dielectric Relaxation : "; modelname$

END IF

IF (modelname$ = "-Cole-Cole Model-") THEN
LOCATE 2, 6
PRINT "Dielectric Relaxation :
LOCATE 2, 55
PRINT "Beta ="; beta
ELSE PRINT ""

END IF

IF (modelname$ = "-Davidson-Cole Model-") THEN
LOCATE 2, 6
PRINT "Dielectric Relaxation : "; modelname$
LOCATE 2, 55
PRINT "Gamma ="; beta
ELSE PRINT ""

END IF

LOCATE 4, 6

PRINT "Frequencey (Hz)"

LOCATE 4, 27

PRINT "Log f (Hz)"

LOCATE 4, 47

PRINT "Loss"

; modelname$
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LOCATE 4, 62
PRINT "Permittivity"
FORi = 1 TO nfreq
LOCATES + i, 9
PRINT fregsii)
LOCATE b + i, 27
PRINT logfreqgsfi)
LOCATE 5 + i, 43
PRINT eloss(i}
LOCATE S + i, 63
PRINT epermii)
NEXT i
LOCATE 21, 6
PRINT "Emax =", emax
LOCATE 21, 30
PRINT "Fmax (Hz) =", fmax,
LOCATE 23, 6
INPUT "Do you require a print out of the results...(Y/N) 2 ", prn$
IF (prn$ = "y" OR prn$ = "Y") THEN
LOCATE 23, 6
PRINT "Press 'PrtSc' on keyboard (right of the F12 function
button)”
SLEEP 15
END IF
LOCATE 23, 6
PRINT "
LOCATE 23, 6
PRINT "Press any key to continue....”
DO
key$ = INKEYS$
LOOP WHILE LEN(key$) = O
RUN

END SUB

"+ ¥ *|nitialise-Parameters* * *

SUB

initialise  (freqs(),logfreqs(),nfreq,tau,elow,ehigh)
CLS

LINE (10, 10)-(630, 220), 1, BF

LINE (10, 10)-(630, 220), 15, B

pi = 3.14159

LOCATE 3, 4

INPUT "Enter centre frequencey (Hz) ? ", cenfreq
wrad = 2 * pi * cenfreq

tau = 1 / wrad

LOCATE 6, 4

INPUT "Enter zero frequencey dielectric permittivity ? ", elow
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LOCATE 9, 4

INPUT "Enter optical or high frequencey dielectric permittivity ? ",
ehigh

WHILE test% = O

LOCATE 12, 4

INPUT "Number of frequencies (multiples of 3, plus 1, max. 13) ?
nfreq$

nfreq = VAL(nfreq$)

IF ((nfreq - 1) / 3) - INT((nfreq - 1) / 3) = O THEN

test% = 1

END IF

IF ((nfreq - 1) / 3) - INT((nfreq - 1) / 3) <> O THEN
BEEP

END IF

IF ((nfreq - 1) / 3) - INT{(nfreq - 1) / 3) > 13 THEN
BEEP

END IF

WEND

FORi = 1TO ({nfreq-1)/3)
freqs(1 + 3 *(i-1)) =1 *10 7
freqs(2 + 3 *(i-1)) =2 *10 "
freqs(3 + 3 *(i-1)) =5 *10 " i

NEXT i

fregs(nfreq) = 10 ~ (({nfreq- 1)/ 3) + 1)
FORi = 1 TO nfreq
logfreqs(i) = .4342936 * LOG(fregsl(i))
NEXT i
END SUB

'¥ % *¥|ntroduction-Screen* * ¥
SUB intro (ans,modelname$)
CLS
SCREEN 9
COLOR, 9
LINE (50, 50)-(590, 300), 1, BF
LINE (50, 50)-{590, 300}, 15, B
LOCATE 18, 14
PRINT "Which model do you require...{1-4)
LOCATE 8, 14
PRINT "1 : Debye model (single relaxation time)"
LOCATE 10, 14
PRINT "2 : Cole-Cole model {(symmetrical distribution)
LOCATE 12, 14
PRINT "3 : Davidson-Cole model {asymmetrical distribution)”
LOCATE 14, 14
PRINT "4 : Exit program”

i

H
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LOCATE 18, 48

INPUT ans$

ans = VAL(ans$)

WHILE (ans < 1) OR (ans > 4)
LOCATE 20, 14
PRINT "**** Choice invalid | ****"
BEEP
SLEEP 1.5
LOCATE 20, 14
PRINT "*** Please try again | ***"
LOCATE 18, 48

INPUT ans$

ans = VAL(ans$)
WEND
IF (ans = 1) THEN

modelname$ = "-Debye Model-"
END IF
IF (ans = 2) THEN

modelname$ = "-Cole-Cole Model-"
END IF
IF (ans = 3) THEN

modelname$ = "-Davidson-Cole Model-"
END IF
IF (ans = 4) THEN

CLS

LINE (150, 140)-(490, 180), 1, BF

LINE (150, 140)-(490, 180), 15, B

LOCATE 12, 22

PRINT "Are you sure you want to quit...(Y/N) ?"

BEEP

DO
key$ = INKEYS$

LOOP WHILE LEN(key$) = O

IF (key$ <> "Y" AND key$ <> "y") THEN
CLS
RUN

END IF

CLS

END

END IF
END SUB

*** *Normalise-Dielectric-Loss* * *

SUB normalise (fregs(),eloss(),nfreq,fmax,emax)
CLS
maxloss = 0O
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FORi = 1 TO nfreq
IF (eloss(i) > maxloss) THEN
maxloss = eloss(i)
fmax = freqsli)

END IF
NEXT i
emax = INT(1000 * maxloss) / 1000
FOR i = 1 TO nfreq
eloss(i) = eloss(i) / maxloss
NEXT i

END SUB

C.3. Calculation of the Characteristic Ratio and the Dipole Moment Ratio of

Poly(dimethylsilmethylene)

This program was used to calculate the characteristic ratio and dipole
moment ratio of poly(dimethylsiimethylene). The calculations were carried out
according to Eq. (4-13) and Eq. (4-16) respectively. The calculations may be

performed on chains of different lengths and at different temperatures.

Computer Program Listings

' Calculation of the Characteristic Ratio
' and the Dipole Moment Ratio for
' poly(dimethylsilmethylene).

' Written by D. J. Elsby
' Department of Chemical Enginnering and Applied
Chemistry, Aston University, Birmingham, B4 7ET.

'

DIM gmat1#(15,15),gmat#(15,15),temp1#(15,15)

DIM gmata#(15,15),gmatb#(15,1 5),umata#(3,3),umatb#(3,3)
DIM tmatal#(3,3),tmata2#(3,3),tmata3#(3,3)

DIM matb1#(3,3),tmatb2#(3,3),tmatbh3#(3,3)

DIM temp2#(15,15),temp3#(1 5,15),temp4#(15,15),utemp1#(3,3)
DIM temp#(3,3),umat#(3,3),zmat#(3,3),emat#(3,3)

DIM bmat#(9,9),jstar1#(3),jnorm1#(3),jtemp1#(3)

DIM jstar2#(1 5),jnorm2#(15),jtemp2#(15),jtemp3#(15)

DIM xyz#(3),amat#(3,9)
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DECLARE
DECLARE

DECLARE
DECLARE
DECLARE
DECLARE

DECLARE

CALL intro
gascon
tmatb1#

tmatb1#
tmatb1#
tmatb1#
tmatb1#
tmatb1#
tmatb1#
tmatb1#
tmatb2#
tmatbh2#
tmatb2#
tmatb2#
tmatb2#
tmatb2#

tmatb2#
tmatb2#
tmatb3#
tmatb3#

tmatb3#
tmatb3#
tmatb3#

T T i e

(polyname$,ans)
(gmaﬂ#(),tmaﬂ#(),tmat2#(),tmatS#(),emat#(),
emat#(),xyz#(),polyname$,ans)
(umat#(),umata#(),umatb#())
(gmat#(),gmata#(),gmatb#())
(umat#(),umata#(},zpart#,scale,bond)
(gmat#(),gmat1#(),gmata#(),vector#,scale,
bond)

(xyz#(),vector#,zpart#,bond,znum,temp,

polyname$,ans2)

SUB intro
SUB setgmat

SUB sqgr1
SUB sqr2
SUB UMATSQR
SUB GMATSQR

SUB RESULTS

|
OO0 O —~~0 00—

—_

(polyname$, ans)

0.3811
= 0.9245
= 0

= 0.9245
= -0.3811
= 0

= 0

= 0

= -1

= 0.3811
= 0.9245
= 0
-0.3907
= 0.16105
= 0.9063
= 0.8379
= -0.34537
= 0.4226
= 0.3811
= 0.9245
0]
-0.3907
0.16105
= -0.9063

Il
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-0.83792
0.34537
0.4226
0.54756
0.83676
0]

= 0.83676

I

fi

i

Il

Il

tmatb3#(3,1)
tmatb3#(3,2)
tmatb3#(3,3)
tmatal#(1,1)
tmatal#(1,2)
tmatal#(1,3)
tmatal#(2,1)
tmatal#(2,2)
tmatal#(2,3)
tmatal1#(3,1)
tmatal#(3,2)
tmatal1#(3,3)
tmata2#(1,1)
tmata2#(1,2)
tmata2#(1,3)
tmata2#(2,1)
tmata2#(2,2)
tmata2#(2,3)
tmata2#(3,1)
tmata2#(3,2)
tmata2#(3,3)
tmata3#(1,1)
tmata3#(1,2)
tmata3#(1,3)
tmata3#(2,1)
tmata3#(2,2)
tmata3#(2,3)
tmata3#(3,1)
tmata3#(3,2)
tmata3#(3,3)
IF (ans = 1) T
xyza#(1) =
xyza#(2) =
xyza#(3) =
xyzb#(1) =
xyzb#(2) =
xyzb#(3) =
END IF
IF (ans = 2) THEN
xyza#(1) =
xyza#(2) =
xyza#(3) =
xyzb#(1) =
xyzb#(2) =
xyzb#(3) =
END IF

m
o 2

-0.54756
0

0

0

-1
0.54756
0.83676
0
-0.3536
0.23141
0.9063
0.7584
-0.4963
0.4226
0.54756
0.83676
0
-0.3536
0.2314
-0.9063
-0.7584
0.49626
0.4226
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CLS
SCREEN 9
COLOR, 9

LINE (50, 50)-(590, 150), 1, BF
LINE (50, 50)-(590, 150), 15, B

LOCATE 6, 10

INPUT "Enter the Temperature for the Calculations (K)"; temp
alpha = 0.97 * EXP(-164 / (gascon * temp))

beta = 0.91 * EXP(-287 / (gascon * temp))

gamma = .85 * EXP(-369 / (gascon * temp))

umata#(1,1)
umata#(1,2)
umata#(1,3)
umata#(2,1)
umata#(2,2)
umata#(2,3)
umata#(3,1)
umata#(3,2)
umata#(3,3)
umata#(1,1)
umatb#(1,2)
umatb#(1,3)
umatb#(2,1)
umatb#(2,2)
umatb#(2,3)
umatb#(3,1)
umatb#(3,2)
umatb#(3,3)

LOCATE 9, 10

Il

1

alpha
alpha
alpha
beta
gamma
alpha
gamma
beta

1

INPUT "Enter the Number of Matrix Squares Required”; bond
CALL setgmat (gmaﬂ#(),tmatb1#(),tmath#(),tmatb3#(),emat#(),emat#(),

CALL setgmat

CALL setgmat

CALL sqgr1
CALL sqgr2

xyzb#(), polyname$, ans)

(gmata#(),tmatal #(),tmata2#(), tmata3#(),umata#(),emat#(),
xyza#(),polyname$,ans)

(gmatb#(),tmatb1 #(), tmatb2#(),tmatb3#(),umatb#(),emat#(),
xyzb#(),polyname$,ans)

(umat#(),umata#(),umatb#(}))

(gmat#(),gmata#(),gmatb#())

CALL UMATSQR (umat#(),umata#(),zpart#,scale,bond)
CALL GMATSQR (gmat#(),gmat1#(),gmata#(),vector#, scale,bond)
CALL RESULTS

(xyza#(),vector#,zpart#,bond,znum,temp,polyname$,
ans2)

SUBGMATSQR (temp2#(),gmat1#(),gmata#(),vector#,scale,bond)
DIM jstar2#(15),jnorm2#(15),jtemp2#(15),}temp3#(15)
DIM temp3#(15, 15), sumO AS DOUBLE
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CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220}, 15, B
LOCATE 12, 22
PRINT "Processing Subroutine GMATSQR"
LOCATE 14, 22
PRINT "Please wait.........oovvviiinnnnn
FORz = 1 TO bond
FORc = 1TO 15
FORa = 1TO 15
sumO = 0
FORB = 1TO 15
sumO = sumO + (temp2#(c, B) * temp2#(B, a))
NEXT B
temp3#(c, a) = sumO
NEXT a
NEXT ¢
FORa = 1TO 15
FORB = 1TO 15
temp2#(a, B) = temp3#(a, B)
NEXT B
NEXT a
NEXT z
FORc = 1TO 15
FORa = 1TO 15
sumO = 0O
FORB = 1TO 15
sumO = sumO + (gmati#(c, B) * temp2#(B, a))
NEXT B
temp3#(c, a) = sum0
NEXT a
NEXT ¢
FORc = 1TO 15
FORa = 1TO 15
sum0 = 0
FORB = 1TO 15
sumO = sumO + (temp3#(c, B) * gmata#(B, a))
NEXT B
temp2#(c, a) = sumO
NEXT a
NEXT ¢
vector# = temp2#(1, 13) + temp2#(1, 14) + temp2#(1, 15)
END SUB
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SUBintro (polyname$,ans)
CLS
SCREEN 9
COLOR, 9
LINE (50, 50)-(590, 300), 1, BF
LINE (50, 50)-(590, 300}, 15, B
LOCATE 18, 14
PRINT "Please Select Which Option You Require (1-3)
LOCATE 8, 14
PRINT "1 : Calculate Characteristic Ratio”
LOCATE 11, 14
PRINT "2 : Calculate Dipole Moment Ratio"
LOCATE 14, 14
PRINT "3 : Exit Program”
LOCATE 18, 58
INPUT ans$
ans = VAL(ans$)
WHILE (ans < 1) OR (ans > 3)
LOCATE 20, 14
PRINT "**** Choice invalid | ****"
BEEP
SLEEP 1.5
LOCATE 20, 14
PRINT "*** Please try again | ***"
LOCATE 18, 58

"

INPUT ans$

ans = VAL(ans?$)
WEND
IF (ans = 1) THEN

polyname$ = "-Poly(dimethylsiloxane)-"
END IF
IF (ans = 2) THEN

polyname$ = "_Poly(dimethylsilmethylene)-"
END IF
IF (ans = 3) THEN

CLS

LINE (150, 140)-(490, 180), 1, BF

LINE (150, 140)-(490, 180), 15, B

LOCATE 12, 22

PRINT "Are you sure you want to quit...(Y/N) 7"

BEEP

DO
key$ = INKEYS$

LOOP WHILE LEN(key$) = O

IF (key$ <> "Y" AND key$ <> "y") THEN
CLS

236




RUN

END IF
CLS
END
END IF
END SUB

SUB RESULTS (xyz#(),vector#,zpart#,bond,znum,temp,polyname$,an52)
CLS
SCREEN 9
COLOR , 9
LINE (50, 50)-(590, 300), 1, BF
LINE (50, 50)-(590, 300), 15, B
LOCATE 7, 14
znum = 2 * (1 + (2 " bond))
ratio = (2 * (1 / zpart#) * vector#) / (znum * (xyz#(1) = 2))
PRINT "Results for"
LOCATE 7, 30
PRINT polyname$
IF (ans2 = 1) THEN
LOCATE 10, 14
PRINT "Characteristic Ratio is"
END IF
IF (ans2 = 2) THEN
LOCATE 10, 14
PRINT "Dipole Moment Ratio is”
END IF
LOCATE 10, 40
PRINT ratio
LOCATE 13, 14
PRINT "Number of Bonds in the Chain is"
LOCATE 13, 47
PRINT znum
LOCATE 16, 14
PRINT "Temperature Used in the Calculations is"
LOCATE 16, 55
PRINT temp
LOCATE 16, 60
PRINT "K"
LOCATE 19, 14
PRINT "Press any key to Continue............
DO
key$ = INKEYS$
LOOP WHILE LEN(key$) = O
RUN
END SUB
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SUBsetgmat (temp1#(),tmat1#(),tmat2#(),tmatS#(),temp#(),emat#(),xyz#(),
polyname$, ans)
DIM suml1 AS DOUBLE, sum2 AS DOUBLE, sum3 AS DOUBLE, sum4 AS
DOUBLE, sum5 AS DOUBLE, sumé AS DOUBLE, sum7 AS DOUBLE
DIM sum8 AS DOUBLE, sum9 AS DOUBLE, sum10 AS DOUBLE, sum11 AS
DOUBLE, sum12 AS DOUBLE
DIV amat#(3,9),bmat#(9,9),zmatsqr AS DOUBLE
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine SETMAT"
LOCATE 14, 22
PRINT "Please wait.......coooiiinnis
zmatsqgr = (xyz#(1) = 2 + xyz#(2) = 2 + xyz#(3) " 2)
FORa =1T0O 3
FORB = 1TO 3
amat#(a, B) = temp#(a, 1) * xyz#(B)
amat#(a, B + 3) = temp#(a, 2) * xyz#(B)

(
(
amat#(a, B + 6) = temp#(a, 3) * xyz#(B)
bmat#(a, B) = temp#(1, 1) ¥ emat#(a, B)
bmat#(a, B + 3) = temp#(1, 2) * emat#(a, B)
bmat#(a, B + 6) = temp#(1, 3) * emat#(a, B)
bmat#(a + 3, B) = temp#(2, 1) * emat#(a, B)
bmat#(a + 3, B + 3) = temp#(2, 2) * emat#(a, B)
bmat#(a + 3, B + 6) = temp#(2, 3) * emat#(a, B)
bmat#(a + 6, B) = temp#(3, 1) * emat#(a, B)
bmat#(a + 6, B + 3) = temp#(3, 2) * emat#(a, B)
bmat#(a + 6, B + 6) = temp#(3, 3) * emat#(a, B)
temp1#(a, B) = temp#(a, B)
templ#(a + 12, B + 12) = temp#(a, B)
templ#(a + 3, B + 12) = temp#(1, B) * xyz#(a)
templ#(a + 6, B + 12) = temp#(2, B) * xyz#(a)
templ#(a + 9, B + 12) = temp#(3, B) * xyz#(a)
templ#(a, B + 12) = (zmatsqr / 2) * temp#(a, B)
NEXT B
NEXT a
FORc = 1TO 3
FORa = 1T0 3

sum1l = 0
sum2 = 0
sum3 = 0
sum4 = 0O
sumb = 0
sumg = 0O
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sum7 = 0

sum8 = 0

sum9 = 0

sum10 = 0

sum11l = 0

sum12 =0

FORB = 1TO 3
sum1 = sum1 + amat#(c, B) * tmat1#(B, a)
sum?2 = sum2 + amat#(c, B + 3) * tmat2#(B, a)
sum3 = sum3 + amat#(c, B + 6) * tmat3#(B, a)
sum4 = sum4 + bmat#(c, B) * tmat1#(B, a)
sumb = sumb + bmat#(c, B + 3) * tmat2#(B, a)
sum6 = sum6 + bmat#(c, B + 6) * tmat3#(B, a)
sum7 = sum7 + bmat#(c + 3, B) * tmat1#(B, a)
sum8 = sum8 + bmat#(c + 3, B + 3) * tmat2#(B, a)
sum9 = sum9 + bmat#(c + 3, B + 6) * tmat3#(B, a)
sum10 = sum10 + bmat#(c + 6, B} * tmat1#(B, a)
suml1l = suml11 + bmat#(c + 6, B + 3) * tmat2#(B, a)
sum12 = sum12 + bmat#({c + 6, B + 6) * tmat3#(B, a)

NEXT B

templ1#(c, a + 3} = suml

temp1#(c, a + 6) = sum2

temp1#(c, a + 9) = sum3

templ#(c + 3,a + 3) = sumé

templ#(c + 3,a + 6) = sumb

templ#(c + 3, a + 9) = sumb

templ#lc + 6, a + 3) = sum7

templ#(c + 6, a + 6) = sum8

templ#(c + 6,a + 9) = sum9

templ#(c + 9, a + 3) = suml10

templ#(c + 9, a + 6) = sum11

templ#(c + 9, a + 9) = sum12

NEXT a
NEXT ¢

END SUB

SUBsqr1 (umat#(),umata#(),umatb#())

CLS

LINE (150, 140)-(490, 220), 1, BF

LINE (150, 140)-(490, 220), 15, B

LOCATE 12, 22

PRINT "Processing Subroutine SETSQR1"

LOCATE 14, 22

PRINT "Please wait

FORc = 1TO3
FORa = 1T0 3

...........................
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sumO = 0
FORB = 1TO 3
sumO = sumO + umata#(c, B) * umatb#(B, a)
NEXT B
umat#(c, a) = sumO
NEXT a
NEXT ¢
END SUB

SUBsqr2 (gmat#(),gmata#(),gmatb#())
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine SETSQR2"
LOCATE 14, 22
PRINT "Please Wail...cooevviiieriinannieeens
FORc = 1TO 15
FORa = 1T0O 15
sumO = 0
FORB = 1TO 15
sum0 = sum0 + gmata#(c, B} * gmatb#(B, a)
NEXT B
gmat#(c, a) = sumO
NEXT a
NEXT ¢
END SUB

SUBUMATSQR (zmat#(), umata#(), zpart#, scale, bond)
DIM utemp1#(3,3)
DIM jtemp1#(3),jstar1#(3),jnorm1#(3)
DIM zlam AS DOUBLE, sumO AS DOUBLE, zmax AS DOUBLE
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine UMATSQR"
LOCATE 14, 22
PRINT "Please wail...coooooiiiiiiiiinnnneees
FORz = 1 TO bond
FORc = 1TO 3
FORa = 1T0 3
sumQO = 0O
FORB = 1TO 3
sumO = sumO + (zmat#(c, B) * zmat#(B, a))
NEXT B
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utemp1#(c, a) = sumO
NEXT a
NEXT c
FORa = 1T0O 3
FORB = 1TO 3
smat#la, B) = utempl1#(a, B)
NEXT B
NEXT a
NEXT z
FORc = 1T03
FORa = 1T03
sumO = 0
FORB = 1703
sumO = sumO + (zmat#(c, B) * umata#(B, a))
NEXT B
utemp1#(c, a) = sumQ
NEXT a
NEXT ¢
FORa = 1TO 3
FORB = 1T03
smat#(a, B) = utemp1#(a, B)

NEXT B
NEXT a
zpart# = zmat#(1, 1) + zmat#(1, 2) + zmat#(1, 3)
END SUB

C.4. Calculation of the Characteristic Ratio of Poly(dimethylsilethane)

This program was used 1O calculate the characteristic ratio of
poly(dimethylsilethane). The calculations were carried out according to Eq.

(6-5). The calculations may be performed on chains with different lengths.

Computer Program Listing

' Calculation of the Characteristic Ratio
' of poty(dimethylsilethane).

' Written by D. J. Elsby
' Department of Chemical Engineering and Applied
' Chemistry, Aston University, Birmingham, B4 7ET.

DIM  gmat1#(15,1 5),gmat#(15,1 5),temp1#(15,15)
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R

DIM  gmata#
gmate#
DIM  umata#

DIM  tmatal#
DIM  tmatb1#
DIM  tmatc1#

(15,15),gmatb#(15,15),gmatc#(15,15),gmatd#(15,15),

(15,15)

(3 ),umatb#(3,3),umatc#(3,3),umatd#(3,3),umate#(3,3)
3,3),tmata2#(3,3),tmata3#(3,3)
3,3),tmatb2#(3,3),tmatb3#(3,3)
3,3),tmatc2#(3,3),tmatc3#(3,3)
3,3),tmatd2#(3,3),tmatd3#(3, 3)
3,3),tmate2#(3,3),tmate3#(3,3)

DIM  tmate1#

(
(
(
DIM  tmatd1#{
(
1

DIM  temp2#( 5,15),temp3#(15,15),temp4#(15,15),utemp1#(3,3)
DIM temp#(3,3), umat#(3,3),zmat#(3,3),emat#(3,3),bmat#(9,9),
amat#(3,9)

DIM  xyz#(3),

DECLARE SUB
DECLARE SUB

DECLARE SUB
DECLARE SUB
DECLARE SUB
DECLARE SUB

DECLARE SUB
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intro
setgmat

sqr
sqr2
umatsqr
gmatsqr

results

Xyza#(3), xyzb#(3), xyzc#(3), xyzd#(3), xyze#(3)

(polynames$,ans)

(gmatT#(), tmat1#(),tmat2#(),tmat3#(),
emat#(),emat#(),xyz#(),ans)
(umat#(),umata#(),umatb#(),umatc#())
(gmat#(),gmata#(),gmatb#(),gmatc#())
(umat#(),umata#(),umatb#(),zpart#,bond)
(gmat#(),gmat1#(),gmata#(),gmatb#(),
vector#,bond)
(xyza#(),xyzb#(),xyzc#(),vector#,zpart#,
bond,ans)

CALL intro(polyname$, ans)
IF {ans = 1) THEN

xyza#(1) 1.53
xyza#(2) = 0
xyza#{3) = O
END IF
IF (ans = 2) THEN
xyza#(1) = 0
xyza#(2) = 0O
xyza#(3) = 0O
END IF
tmatal#(1,1) 0.3746
tmatal#(1,2) = 0.9272
tmatal#(1,3) = O
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tmatal#(2,1) 0.9272
tmatal#(2,2) = -0.3746
tmatal#(2,3) = O
tmatal#(3,1) = O
tmatal#(3,2) = O
tmatal#(3,3) = -1
tmata2#(1,1) 0.3746
tmata2#(1,2) = 0.9272
tmata2#(1,3) = O
tmata2#(2,1) = -0.4636
tmata2#(2,2) = 0.1873
tmata2#(2,3) = 0.866
tmata2#(3,1) = 0.803
tmata2#(3,2) = -0.3244
tmata2#(3,3) = 0.5
tmata3#(1,1) 0.3746
tmata3#(1,2) = 0.9272
tmata3#(1,3) = O
tmata3#(2,1) = -0.4636
tmata3#(2,2) = 0.1873
tmata3#(2,3) = -0.866
tmata3#(3,1) = -0.803
tmata3#(3,2) = 0.3244
tmata3#(3,3) = 0.5
umata#(1,1) = 1
umata#(1,2) = O
umata#(1,3) = O
umata#(2,1) 1
umata#(2,2) = O
umata#(2,3) 0
umata#(3,1) 1
umata#(3,2) = O
umata#(3,3) = O
I[F (ans = 1) THEN

xyzb#(1) =1.89

xyzb#(2) =0

xyzb#(3) =0
END IF
IF (ans = 2) THEN

xyzb#(1) =0

xyzb#(2) =

xyzb#(3) =
END IF
tmatb1#(1,1) = 0.342
tmatb1#(1,2) = 0.9397
tmatb1#(1,3) = O
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tmatb1#(2,1)
tmatb1#(2,2)
tmatb1#(2,3)
tmatb1#(3,1)
tmatb1#(3,2)
tmatb 1#(3,3)
tmatb2#(1,1)
tmatb2#(1,2)
tmatb2#(1,3)
tmatb2#(2,1)
tmatbh2#(2,2)
tmatb2#(2,3)
tmatb2#(3,1)
tmatb2#(3,2)
tmatb2#(3,3)
tmatb3#(1,1)
tmatb3#(1,2)
tmatb3#(1,3)
tmatb3#(2,1)
tmatb3#(2,2)
tmatb3#(2,3)
tmatb3#(3,1)
tmatbh3#(3,2)
tmatb3#(3,3)
umatb#(1,1)
umatb#(1,2)
umatb#(1,3)
umatb#(2,1)
umatb#(2,2)
umatb#(2,3)
umatb#(3,1)
umatb#(3,2)
umatb#(3,3)
IF {ans = 1)} T
xyzc#(1) =
xyzc#(2) =
xyzc#(3) =
END IF
IF (ans = 2) T
xyzc#(1)
xyzc#(2) =
xyzc#(3) =
END IF
tmatc1#(1,1)
tmatc1#(1,2)
tmatc1#(1,3)

Il

0397
0.342

-1
0.342
0.9397

-0.4698
0.171
0.866
0.8138
-0.2962
0.5
0.342
0.9397

-0.4698
0.171
-0.866
-0.8138
0.2962
0.5

oNoNoNONOROREIEIFe

0.3746
0.9272
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tmatc1#(2,1) = 0.9272
tmatc1#(2,3) = O
tmatc1#(3,1) = O
tmatc1#(3,2) = O
tmatc1#(3,3) = -1
tmatc2#(1,1) = 0.3746
tmatc2#(1,2) = 0.9272
tmatc2#(1,3) = O
tmatc2#(2,1) = -0.4636
tmatc2#(2,2) = 0.1873
tmatc2#(2,3) = 0.866
tmatc2#(3,1) = 0.803
tmatc2#(3,2) = -0.3244
tmatc2#(3,3) = 0.5
tmatc3#(1,1) = 0.3746
tmatc3#(1,2) = 0.9272
tmatc3#(1,3) = O
tmatc3#(2,1) = -0.4636
tmatc3#(2,2) = 0.1873
tmatc3#(2,3) = -0.866
tmatc3#(3,1) = -0.803
tmatc3#(3,2) = 0.3244
tmatc3#(3,3) = 0.5
umatc#(1,1) = 1
umatc#(1,2) = 1
umatc#(1,3) = 1
umatc#(2,1) = 1
umatc#(2,2) = 1
umatc#(2,3) = 0.5
umatc#(3,1) = 1
umatc#(3,2) = 0.5
umatc#(3,3) 1

CLS

LINE (120, 140)-(530, 180}, 1, BF

LINE (120, 140)-(530, 180), 15, B

LOCATE 12, 18

INPUT "Enter the Number of Matrix Squares Required"; bond

CALL setgmat (gmaﬂ#(),tmatc1#(),tmatc2#(),tmatc3#(),emat#(),
emat#(),xyza#(),ans)

CALL setgmat (gmata#(),tmatal#(), tmata2#(), tmata3#(),umata#(),
emat#(),xyza#(),ans)

CALL setgmat (gmatb#(),tmatb1#(),tmatb2#(),tmatb3#(),umatb#(),
emat#(),xyzb#(),ans)

CALL setgmat (gmatc#(),tmatc1#(),tmath#(),tmatcS#(),umatc#(),
emat#(),xyzc#(),ans)

CALL sqgr (umat#(),umata#(),umatb#(),umatc#())
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CALL sqr2 (gmat#(),gmata#(),gmatb#(),gmatc#())
CALL umatsqr (umat#(),umata#(),umatb#(),zpart#,bond)
CALL gmatsqr (gmat#(),gmaﬂ#(),gmata#(),gmatb#(),vector#,bond)
CALL results (xyza#(),xyzb#(),xyzc#(),vector#,zpart#,bond,ans)
SUB gmatsqr (temp2#(),gmat1#(),gmata#(),gmatb#(),vector#,bond)
DIM jstar2#(15),jnorm2#(15),jtemp2#(15),jtemp3#(15)
DIM  temp3#(15, 15), sumO AS DOUBLE
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine GMATSQR"
LOCATE 14, 22
PRINT "Please wait....cooovveiiiiiinienn..
FOR z = 1 TO bond
FORc = 1TO 15
FORa = 1TO 15
sumQO = 0
FORB = 1TO 15
sumO = sumO + (temp2#(c, B) * temp2#(B, a))
NEXT B
temp3#(c, a) = sumO
NEXT a
NEXT ¢
FORa = 1TO 15
FORB = 1TO 15
temp2#(a, B) = temp3#(a, B)
NEXT B
NEXT a
NEXT z
FORc = 1TO
FORa =1T
sum0 = 0
FORB = 1TO 15
sum0 = sumO + (gmat1#(c, B) * temp2#(B, a))
NEXT B
temp3#(c, a) = sumO
NEXT a

15
0 15

FORB = 1TO 15

sumO = sumO + (temp3#(c, B) * gmata#(B, a))
NEXT B
temp2#(c, a) = sumO
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NEXT c
FORc = 1TO 15
FORa = 1TO 15
sumQO = 0

FORB = 1TO 15
sumO = sumO + (temp2#(c, B) * gmatb#(B, a))
NEXT B
temp3#(c, a) = sumO
NEXT a
NEXT ¢
vector# = temp3#(1, 13) + temp3#(1, 14) + temp3#(1
END SUB

SUB intro (polyname$,ans)
CLS
SCREEN 9
COLOR, 9
LINE (50, 50)-(5690, 300), 1, BF
LINE (50, 50)-(590, 300}, 15, B
LOCATE 19, 14
PRINT "Please Select Which Option You Require (1-3)
LOCATE 7, 14
PRINT "Poly(dimethylsilethane)"
LOCATE 10, 14
PRINT "1 : Calculation of Characteristic Ratio”
LOCATE 13, 14
PRINT "2 : Calculation of Dipole Moment Ratio”
LOCATE 16, 14
PRINT "3 : Exit program”
LOCATE 19, 58
INPUT ans$
ans = VAL({ans$)
WHILE (ans < 1) OR (ans > 3)
LOCATE 21, 14
PRINT "**** Choice invalid | ****"
BEEP
SLEEP 1.5
LOCATE 21, 14
PRINT "*** Please try again | ***"
LOCATE 19, 58

INPUT ans$
ans = VAL(ans$)
WEND
IF (ans = 3) THEN
CLS
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LINE (150, 140)-(490, 180), 1, BF
LINE (150, 140)-(490, 180), 15, B
LOCATE 12, 22
PRINT "Are you sure you want to quit...{Y/N) 2"
BEEP
DO
key$ = INKEYS$
LOOP WHILE LEN{key$) = O
IF (key$ <> "Y" AND key$ <> "y") THEN
CLS
RUN
END IF
CLS
END
END IF
END SUB

SUB results (xyza#(),xyzb#(),xyzc#(),vector#,zpart#,bond,ans)
CLS
SCREEN 9
COLOR , 9
LINE (50, 50)-(590, 300), 1, BF
LINE (50, 50)-(590, 300}, 15, B
znum1 = 3 * (2 " bond + 1)
znum = (2 " bond + 1) * (xyza#(1) =~ 2 + xyzb#(1) ~ 2 + xyzc#(1) ~ 2)
ratio = (2 * (1 / zpart#) * vector#) / znum
LOCATE 7, 14
PRINT "Poly(dimethylsilethane)”
IF (ans = 1) THEN
LOCATE 10, 14
PRINT "Characteristic Ratio is"
END IF
IF (ans = 2) THEN
LOCATE 10, 14
PRINT "Dipole Moment Ratio is"
END IF
LOCATE 10, 40
PRINT ratio
LOCATE 13, 14
PRINT "Number of Bonds in the Chain is"
LOCATE 13, 47
PRINT znum1
LOCATE 19, 14
PRINT "Press any key to Continue............
DO
key$ = INKEYS$
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LOOP WHILE LEN(key$) = O
RUN
END SUB

SUB setgmat (temp1#(),tmat1#(),tmat2#(),tmat3#(),temp#(),
emat#(},xyz#(},ans)
DIM sum1 AS DOUBLE, sum2 AS DOUBLE, sum3 AS DOUBLE, sum4 AS
DOUBLE, sum5 AS DOUBLE, sum6 AS DOUBLE, sum7 AS DOUBLE
DIM sum8 AS DOUBLE, sum9 AS DOUBLE, sum10 AS DOUBLE, sum11 AS
DOUBLE, sum12 AS DOUBLE
DIM amat#(3,), bmat#(9,9), zmatsqr AS DOUBLE
CLS
LINE (150, 140)-(490, 220), 1
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine SETMAT"
LOCATE 14, 22
PRINT "Please wait....coooovviviiiiiiinannn.
zmatsqr = (xyz#(1) ~ 2 + xyz#(2) = 2 + xyz#(3) " 2)
FORa =1T03
FORB =1T0 3

amat#(a, B) = temp#(a, 1) * xyz#(B)
amat#{a, B + 3) = temp#(a, 2) * xyz#(B)
amat#(a, B + 6) = temp#(a, 3) * xyz#(B)
bmat#(a, B) = temp#(1, 1) * emat#(a, B)
bmat#(a, B + 3) = temp#(1, 2) * emat#{a, B)
bmat#(a, B + 6) = temp#(1, 3) * emat#(a, B)
bmat#(a + 3, B) = temp#(2, 1) * emat#(a, B)
bmat#(a + 3, B + 3) = temp#(2, 2) * emat#(a, B)
bmat#(a + 3, B + 6) = temp#(2, 3) * emat#(a, B)
bmat#(a + 6, B) = temp#(3, 1) * emat#(a, B)
bmat#{a + 6, B + 3) = temp#(3, 2) * emat#(a, B)
bmat#{a + 6, B + 6) = temp#(3, 3) * emat#(a, B)
temp1#(a, B) = temp#(a, B)
templ#(a + 12, B + 12} = temp#(a, B)
templ#(a + 3, B + 12) = temp#(1, B) * xyz#(a)
templ#la + 6, B + 12) = temp#(2, B) * xyz#(a)
templ#(a + 9, B + 12) = temp#(3, B) * xyz#(a)
temp1#(a, B + 12) = (zmatsqr / 2) * temp#(a, B)
NEXT B
NEXT a
FORc = 1TO 3
FORa = 1T0O3

sum1 = 0
sum2 = 0
sum3 =0
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suml2 =
FORB =1T03

sum1 = sum1 + amat#{c, B) * tmat1#(B, a)
sum2 = sum2 + amat#(c, B + 3) * tmat2#(B,
sum3 = sum3 + amat#(c, B + 6) * tmat3#(B,
sum4 = sum4 + bmat#(c, B) * tmat1#(B, a)
sum5 = sumb + bmat#(c, B + 3) * tmat2#(B,
sum6 = sum6 + bmat#(c, B + 6) * tmat3#(B,

sum7 = sum7 + bmat#(c + 3, B) * tmat1#(B, a)

sum8 = sum8 + bmat#(c + 3, B + 3) * tmat2#(B, a)
sum9 = sum9 + bmat#(c + 3, B + 6) * tmat3#(B, a)

) * tmat1#(B, a)

3) * tmat2#(B, a)
6) * tmat3#(B, a)

sum10 = sum10 + bmat#(c + 6,
suml11l = suml11 + bmat#(c + 6,
sum12 = suml12 + bmat#(c + 6,

NEXT B
templ1#(c, a + 3) = sum]
templ1#(c, a + 6) = sum2
templ1#(c, a + 9) = sum3
templ1#(c + 3,a + 3) = sum4
templ#(c + 3, a + 6) = sumb
templ#(c + 3, a + 9) = sumb
temp1#(c + 6, a + 3) = sum7/
templ1#(c + 6, a + 6) = sum8
templ#(c + 6, a + 9) = sum9
templ1#(c + 9,a + 3) = sum10
templ#(c + 9, a + 6) = sum11
templ#(c + 9, a + 9) = suml12
NEXT a
NEXT ¢
END SUB

SUB sgrl1 (umat#(),umata#(),umatb#(),umatc#(})

DIM utemp1#(3,3),utemp2#(3,3)

CLS

LINE (150, 140)-(490, 220), 1, BF

LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22

PRINT "Processing Subroutine SETSQR1"
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LOCATE 14, 22
PRINT "Please wait....ocoovvviiiiiiieieaannn
FORc = 1TO 3
FORa =1T0O 3
sumO = 0
FORB =1T0O 3
sumO = sumO + umata#(c, B) * umatb#(B, a)
NEXT B
utempl1#(c, a) = sumO
NEXT a
NEXT ¢
FORc =1T0O 3
FORa =1T0O 3
sumO = 0
FORB = 1TO 3
sumO = sumO + utempl1#(c, B) * umatc#(B, a)
NEXT B
umat#(c, a) = sumO
NEXT a
NEXT ¢
END SUB

SUB sqr2 (gmat#(),gmata#(),gmatb#(),gmatc#())
DIM gtemp1#(15,15),gtemp2#(15,15)
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine SETSQR2"
LOCATE 14, 22
PRINT "Please wait.....c.oooiviiiiiiiiinns
FORc = 1TO 15
FORa = 1TO 15
sumO = O
FORB = 1TO 15
sumO = sumO + gmata#(c, B) * gmatb#(B, a)
NEXT B
gtemp1#(c, a) = sumO
NEXT a
NEXT ¢
FORc = 1TO 15
FORa = 1T0O 15
sumO = 0
FORB = 1TO 15
sumO = sumO + gtempl1#(c, B) * gmatc#(B, a)
NEXT B
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gmat#(c, a) = sumO
NEXT a
NEXT ¢
END SUB

SUB umatsqgr (zmat#(),umata#(),umatb#(),zpart#,bond)
DIM utemp1#(3,3),utemp2#(3,3)
DIM jtemp1#(3),jstar1#(3),jnorm1#(3)
DIM zlam AS DOUBLE, sumO AS DOUBLE, zmax AS DOUBLE
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine UMATSQR"
LOCATE 14, 22
PRINT "Please wait.........ocoovvviieinnn...
FORz = 1 TO bond
FORc = 1TO 3
FORa =1TO 3
sumO = 0
FORB = 1TO 3
sumO = sumO + {zmat#(c, B) * zmat#(B, a))
NEXT B
utemp1#(c, a) = sumO
NEXT a
NEXT ¢
FORa = 1TO 3
FORB = 1T0 3
zmat#(a, B) = utemp1#(a, B)
NEXT B
NEXT a
NEXT z
FORc = 1TO 3
FORa = 1TO 3
sumQO = 0
FORB =1T0O 3
sumO = sumO + (zmat#(c, B) * umata#(B, a))
NEXT B
utempl1#{c, a) = sumO
NEXT a
NEXT ¢
FORc = 1TO 3
FORa = 1TO 3
sumO = 0
FORB = 1TO 3
sumO = sumO + (utemp1#(c, B) * umatb#(B, a))
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NEXT B
utemp2#(c, a) = sumO
NEXT a
NEXT ¢
FORa = 1T03
FORB = 1T0 3
zmat#({a, B) = utemp2#(a, B)

NEXT B
NEXT a
zpart# = zmat#(1, 1) + zmat#(1, 2) + zmat#{1, 3)
END SUB

C.5. Calculation of the Characteristic Ratio and the Dipole Moment of

Poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane)

This program was used to calculate the characteristic ratio and the dipole
moment ratio of poly(2,2,5,5-tetramethyl-1-o0xa-2,2,5,5-disilapentane). The
calculations were carried out according to Eq. (6-12) and Eqg. (6-13)
respectively. The calculations may be performed on chains of different

lengths.

Computer Program Listing

' Calculation of Characteristic Ratio
' and Dipole Moment Ratio for
poly(2,2,5,5-tetramethyl-1-oxa-2,5-disilapentane).

Written by D. J. Elsby
Department of Chemical Engineering and Applied
' Chemistry, Aston University, Birmingham, B4 7ET.

DIM  gmat1#(15,15),gmat#(15,5),temp1#(15,5)

DIM  gmata#(15,15),gmatb#(15,15),gmatc#(15,15),gmatd#(15,15),
gmate#(15,15)

DIM  umata#(3,3),umatb#(3,3),umatc#(3,3),umatd#(3,3),umate#(3,3)

DIM  tmatal#(3,3),tmata2#(3,3),tmata3#(3,3)

DIM  tmatb1#(3,3),tmatb2#(3,3),tmatb3#(3,3)

DIM  tmatc1#(3,3),tmatc2#(3,3),tmatc3#(3,3)

DIM  tmatd1#(3,3),tmatd2#(3,3),tmatd3#(3,3)

DIM  tmatel1#(3,3),tmate2#(3,3),tmate3#(3,3)
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DIM  temp2#(15,15),temp3#(15,15),temp4#(15,15),utemp’1 #(3,3)
DIM  temp#(3,3),umat#(3,3),zmat#(3,3),emat#(3,3),bmat#(9,9),amat#(3,9)
DIM  xyz#(3),xyza#(3),xyzb#(3),xyzc#(3),xyzd#(3),xyze#(3)

DECLARE SUB intro
DECLARE SUB setgmat

DECLARE SUB sqr1
DECLARE SUB sqr2
DECLARE SUB umatsaqgr

DECLARE SUB gmatsqr

DECLARE SUB results

emat#(1,1) =1
emat#(1,2) =0
emat#(1,3) =0
emat#(2,1) =0
emat#(2,2) =1
emat#(2,3) 0
emat#(3,1) =0
emat#(3,2) =0
emat#(3,3) =1

(polyname$,ans)

(gmat1#(),tmat1#(),tmat2#(), tmat3#(), emat#(),
emat#(),xyz#(),ans)
(umat#(),umata#(),umatb#(),umatc#(},umatd#(),
umate#())
(gmat#(),gmata#(),gmatb#(),gmatc#(),
gmatd#(),gmate#(}))
(umat#(),umata#(),umatb#(),umatc#(),
umatd#(),zpart#,bond)
(gmat#(),gmat1#(),gmata#(),gmatb#(),
gmatc#(),gmatd#(),vector#,bond)

(xyza#(),xyzb#(),xyzc#(),xyzd#(), xyze#(),
vector#,zpart#,bond,ans)

CALL intro(polynames$, ans)

IF (ans = 1) THEN
xyza#{1) = 1.64
xyza#(2) = 0O
xyza#(3) = 0O

END IF

IF (ans = 2) THEN

xyza#(1) =-0.6

xyza#(2) =0
xyza#(3) =0

END IF

tmatal#(1,1

tmatal#(1,2

) = 0.342

)
tmatal#(1,3)

)

)

0.9397

|
(@]

tmatal#(2,1 0.9397
tmatal#(2,2) = -0.342
tmatal#(2,3) = 0

I
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tmatal#(3,1) 0
tmatal#(3,2) = O
tmatal#(3,3) = -1
tmata2#(1,1) = 0.342
tmata2#(1,2) = 0.9397
tmata2#(1,3) = O
tmata2#(2,1) = -0.4698
tmata2#(2,2) = 0.171
tmata2#(2,3) = 0.866
tmata2#(3,1) = 0.8138
tmata2#(3,2) = -0.2962
tmata2#(3,3) = 0.5
tmatal3#(1,1) = 0.342
tmatald3#(1,2) = 0.9397
tmata3#(1,3) = O
tmata3#(2,1) = -0.4698
tmatal3#(2,2) = 0.171
tmata3#(2,3) = -0.866
tmata3#(3,1) = -0.8138
tmatal3#(3,2) = 0.2962
tmatal3#(3,3) = 0.5
umata#(1,1}) = 1
umata#({1,2) = 1
umata#(1,3) = 1
umata#(2,1) = 1
umata#(2,2) = 1
umata#(2,3) = 1
umata#(3,1) = 1
umata#(3,2) 1
umata#(3,3) = 1
IF {ans = 1) THEN

xyzb#(1) =1.89

xyzb#(2) 0

xyzb#(3) = 0
END IF
IF (ans = 2) THEN

xyzb#(1) = O

xyzb#{2) = O

xyzb#(3) = O
END IF
tmatb1#(1,1) 0.3746
tmatb1#(1,2) 0.9272
tmatb1#(1,3) = O
tmatb1#(2,1) = 0.9272
tmatb1#(2,2) = -0.3746
tmatb1#(2,3) 0
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tmatb1#(3,1) 0
tmatb1#(3,2) = O
tmatb1#(3,3) = -1
tmatb2#(1,1) = 0.3746
tmatb2#(1,2) = 0.9272
tmatb2#(1,3) = O
tmatb2#(2,1) = -0.4636
tmatb2#(2,2) = 0.1873
tmatb2#(2,3) = 0.866
tmatb2#(3,1) = 0.803
tmatb2#(3,2) = -0.3244
tmatb2#(3,3) = 0.5
tmatb3#(1,1) = 0.3746
tmatb3#(1,2) = 0.9272
tmatb3#(1,3) = O
tmatb3#(2,1) = -0.4636
tmatb3#(2,2) = 0.1873
tmatb3#(2,3) = -0.866
tmatb3#(3,1) = -0.803
tmatb3#(3,2) = 0.3244
tmatb3#(3,3) = 0.5
umatb#(1,1) = 1
umatb#(1,2) = 1
umatb#(1,3) = 1
umatb#(2,1) = 1
umatb#(2,2) = 1
umatb#(2,3) = O
umatb#(3,1) = 1
umatb#(3,2) = O
umatb#(3,3) = 1
IF (ans = 1) THEN

xyzc#(1) = 1.53

xyzc#(2) =0

xyzc#(3) =0
END IF
IF (ans = 2) THEN

xyzc#(1) 0

xyzc#(2) = 0O

xyzc#(3) = O
END IF
tmatc1#(1,1) = 0.3746
tmatc1#(1,2) = 0.9272
tmatc1#(1,3) = O
tmatc1#(2,1) = 0.9272
tmatc1#(2,2) = -0.3746
tmatc1#(2,3) 0
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tmatc1#(3,1) 0
tmatc1#(3,2) = O
tmatc1#(3,3) = -1
tmatc2#(1,1) = 0.3746
tmatc2#(1,2) = 0.9272
tmatc2#(1,3) = O
tmatc2#(2,1) = -0.4636
tmatc2#(2,2) = 0.1873
tmatc2#(2,3) = 0.866
tmatc2#(3,1) = 0.803
tmatc2#(3,2) = -0.3244
tmatc2#(3,3) = 0.5
tmatc3#(1,1) = 0.3746
tmatc3#(1,2) = 0.9272
tmatc3#(1,3) = O
tmatc3#(2,1) = -0.4636
tmatc3#(2,2) = 0.1873
tmatc3#(2,3) = -0.866
tmatc3#(3,1) = -0.803
tmatc3#(3,2) = 0.3244
tmatc3#(3,3) = 0.5
umatc#(1,1) 1
umatc#{1,2) = O
umatc#(1,3) = O
umatc#(2,1) = 1
umatc#(2,2) = 0
umatc#(2,3) = O
umatc#(3,1) = 1
umatc#(3,2) 0
umatc#(3,3) = O
IF {ans = 1) THEN

xyzd#(1) =1.89

xyzd#(2) =0

xyzd#(3) =0
END [F
IF (ans = 2) THEN

xyzd#(1) =0

xyzd#(2) 0

xyzd#(3) = 0
END [F
tmatd1#(1,1) = 0.342
tmatd1#(1,2) = 0.9397
tmatd1#(1,3) = O
tmatd1#(2,1) = 0.9397
tmatd1#(2,2) = -0.342
tmatd1#(2,3) 0
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tmatd1#(3,1) 0
tmatd1#(3,2) = O
tmatd1#(3,3) = -1
tmatd2#(1,1) = 0.342
tmatd2#(1,2) = 0.9397
tmatd2#(1,3) = O
matd2#(2,1) = -0.4698
tmatd2#(2,2) = 0.171
tmatd2#(2,3) = 0.866
tmatd2#(3,1) = 0.8138
tmatd2#(3,2) = -0.2962
tmatd2#(3,3) = 0.5
tmatd3#(1,1) = 0.342
tmatd3#(1,2) = 0.9397
tmatd3#(1,3) = O
tmatd3#(2,1) = -0.4698
tmatd3#(2,2) = 0.171
tmatd3#(2,3) = -0.866
tmatd3#(3,1) = -0.8138
tmatd3#(3,2) = 0.2962
tmatd3#(3,3) = 0.5
umatd#(1,1) = 1
umatd#(1,2) = 1
umatd#(1,3) = 1
umatd#(2,1) = O
umatd#(2,2) = 0
umatd#(2,3) 0
umatd#(3,1) = 0
umatd#(3,2) 0
umatd#(3,3) = O
[F (ans = 1) THEN

xyze#(1) =1.64

xyze#(2) =0

xyze#(3) =0
END IF
IF (ans = 2) THEN

xyze#(1) = 0.6

xyze#(2) =0

xyze#(3) =
END IF
tmate1#(1,1) = 0.7986
tmatel1#(1,2) = 0.6018
tmate1#(1,3) = O
tmatel1#(2,1) = 0.6018
tmate1#(2,2) = -0.7986
tmate1#(2,3) 0

258




tmate1#
tmate1#
tmate1#
tmate2#
tmate2#

tmate2#
tmate3#
tmate3#
tmate3#
tmate3#
tmate3#
tmate3#
tmate3#
tmate3#
tmate3#
umate #{
umate#(
umate #{
umate#{
umate#|{

{

{

(

(

—
joV]
—
o

PRI S SR . A .o AR o A AL A A

umate#
umate#
umate#
umate#
CLS

LINE (120, 140)-(5630, 180},

Il

-1
0.7986
0.6018

-0.3009
0.3993
0.866
0.5212
-0.6916
0.5
0.7986
0.6018

-0.3009
0.3993
-0.866
-0.5212
0.6936

- O
(&)

1, BF

LINE (120, 140)-(530, 180), 15, B
LOCATE 12, 18

INPUT "Enter the Number of Matrix Squares Required”;
CALL setgmat

CALL

CALL

CALL

CALL

CALL

setgmat
setgmat
setgmat
setgmat

setgmat

bond
(gmat1#(),tmatel #(),tmate2#(),tmate3#(), emat#(),
emat#(),xyze#(),ans)

(gmata#(),tmatal #(),tmata2#(),tmata3#(),umata#(),
emat#(),xyza#(),ans)
(gmatb#(),tmatb1#(),tmatb2#()tmatb3#(),umatb#(),
emat#(),xyzb#(),ans)

(gmatc#(),tmatc #(),tmatc2#(),tmatc3#(),umatc#(),
emat#(),xyzc#(),ans)

(gmatd#(),tmatd1#(), tmatd2#(),tmatd 3#(), umatd#(),
emat#(),xyzd#(),ans)

(gmate#(),tmate 1#(),tmate2#(),tmate3#(),umate#(),
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emat#(),xyze#(),ans)

),
CALL sar1 (umat#(),umata#(),umatb#(),umatc#(),umatd#(),umate#())
CALL sqr2 (gmat#(),gmata#(),gmatb#(),gmatc#(),gmatd#(),gmate#())
CALL umatsqr (Umat#(),umata#(),umatb#(),umatc#(),umatd#(),zpart#,
bond)

CALL gmatsqr (gmat#(),gmaﬂ#(),gmata#(),gmatb#(),gmatc#(),
gmatd#(),vector#,bond)

CALL results (xyza#(),xyzb#(),xyzc#(),xyzd#(),xyze#(),vector#,zpart#,
bond,ans)

SUB gmatsqgr (temp2#(),gmat1#(),gmata#(),gmatb#(),gmatc#(),
gmatd#(),vector#,bond)
DIM jstar2#(15),jnorm2#(15),jtemp2#(15),jtemp3#(15)
DIM  temp3#(15, 5), sumO AS DOUBLE
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine GMATSQR"
LOCATE 14, 22
PRINT "Please wait........coovviiiiinnis
FOR z = 1 TO bond
FORc = 1 TO 15
FORa = 1TO 15
sumO = 0
FORB = 1TO 15
sumO = sumO + (temp2#(c, B) * temp2#(B, a))
NEXT B
temp3#(c, a) = sumO
NEXT a
NEXT ¢
FORa = 1T0O 15
FORB = 1TO 15
temp2#(a, B) = temp3#(a, B)
NEXT B
NEXT a
NEXT z
FORc = 1TO
FORa = 1T
sumO = 0
FORB = 1TO 15
sumO = sumO + (gmati#(c, B) * temp2#(B, a))
NEXT B
temp3#(c, a) = sumO
NEXT a
NEXT ¢

15
015
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FORc = 1TO 156
FORa = 1 T0O 15
sumQ = 0

FORB = 1TO 15
sum0 = sumO + (temp3#(c, B) * gmata#(B, a))
NEXT B
temp2#(c, a) = sumO
NEXT a

FORB = 1TO 15
sumO = sumO + (temp2#(c, B) * gmatb#(B, a))
NEXT B
temp3#(c, a) = sumO
NEXT a
NEXT ¢

FORB = 1TO 15
sumO = sum0 + (temp3#(c, B) * gmatc#(B, a))
NEXT B
temp2#(c, a) = sumO
NEXT a

FORB = 1T0 15
sum0 = sumO0 + (temp2#(c, B) * gmatd#(B, a))
NEXT B
temp3#(c, a) = sumO
NEXT a
NEXT ¢
vector# = temp3#(1, 13) + temp3#(1, 14) + temp3#(1, 15)
END SUB

SUB intro (polyname$,ans)
CLS
SCREEN 9
COLOR, 9
LINE (50, 50)-(590, 300), 1, BF
LINE (50, 50)-(590, 300), 15, B
LOCATE 19, 14
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PRINT "Please Select Which Option You Require (1-3) "
LOCATE 7, 14
PRINT "Poly(2,2,5,5-tetramethyl—1-oxa-2,7-disilapentane)"
LOCATE 10, 14
PRINT "1 : Calculation of Characteristic Ratio"
LOCATE 13, 14
PRINT "2 : Calculation of Dipole Moment Ratio”
LOCATE 16, 14
PRINT "3 : Exit program”
LOCATE 19, 58
INPUT ans$
ans = VAL({ans$)
WHILE (ans < 1) OR {ans > 3)

LOCATE 21, 14

PRINT "**** Choice invalid | ****"

BEEP

SLEEP 1.5

LOCATE 21, 14

PRINT "*** Please try again | ***"

LOCATE 19, 58

INPUT ans$
ans = VAL{ans$)
WEND
IF (ans = 3) THEN
CLS

LINE {150, 140)-(490, 180), 1, BF
LINE (150, 140)-(490, 180), 15, B
LOCATE 12, 22
PRINT "Are you sure you want to quit...{(Y/N) ?"
BEEP
DO
key$ = INKEY$
LOOP WHILE LEN(key$) = O
IF (key$ <> "Y" AND key$ <> "y") THEN
CLS
RUN
END IF
CLS
END
END IF
END SUB

SUB results (xyza#(),xyzb#(),xyzc#(),xyzd#(),xyze#(),Vector#,zpart#,
bond,ans)
CLS
SCREEN 9
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COLOR, 9

LINE (50, 50)-(590, 300), 1, BF
LINE (50, 50)-(590, 300), 15, B
znum1 = 5 * (2 " bond + 1)

znum = (2 "~ bond + 1) * (xyza#(1) =~ 2 + xyzb#(1) =~ 2 + xyzc#(1) = 2
+ xyzd#(1) ~ 2 + xyze#(1) = 2)

ratio = (2 * (1 / zpart#) * vector#) / znum

LOCATE 7, 14

PRINT ”Poly(2,2,5,5—tetramethyi—1-oxa-2,5—disilapentane)"
IF (ans = 1) THEN
LOCATE 10, 14
PRINT "Characteristic Ratio is"
END {F
IF (ans = 2) THEN
LOCATE 10, 14
PRINT "Dipole Moment Ratio is"
END IF
LOCATE 10, 40
PRINT ratio
LOCATE 13, 14
PRINT "Number of Bonds in the Chain is"
LOCATE 13, 47
PRINT znum1
LOCATE 19, 14
PRINT "Press any key to Continue............
DO
key$ = INKEYS$
LOOP WHILE LEN(key$) = O
RUN
END SUB

SUB setgmat (temp1#(),tmaﬂ#(),tmat2#(),tmatS#(),temp#(),emat#(),
xyz#(),ans)

DIM suml1 AS DOUBLE, sum2 AS DOUBLE, sum3 AS DOUBLE, sum4 AS
DOUBLE, sum5 AS DOUBLE, sum6 AS DOUBLE, sum7 AS DOUBLE

DIM sum8 AS DOUBLE, sum39 AS DOUBLE, sum10 AS DOUBLE, sum11 AS
DOQUBLE, sum12 AS DOUBLE

DIM amat#(3,9), bmat#(9,9), zmatsqr AS DOUBLE

CLS

LINE (150, 140)-(490, 220), 1, BF

LINE (150, 140)-(490, 220), 15, B

LOCATE 12, 22

PRINT "Processing Subroutine SETMAT"

LOCATE 14, 22

PRINT "Please wait.....covevivivannnnnn "

zmatsqr = (xyz#(1) = 2 + xyz#(2) ~ 2 + xyz#(3) ~ 2)
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FORa = 1TO3
FORB = 1TO 3

amat#(a, B) = temp#(a, 1) * xyz#(B)
amat#(a, B + 3) = temp#(a, 2) * xyz#(B)
amat#(a, B + 6) = temp#(a, 3) * xyz#(B)
bmat#(a, B) = temp#(1, 1) * emat#(a, B)
bmat#(a, B + 3) = temp#(1, 2) * emat#(a, B)
bmat#(a, B + 6) = temp#(1, 3) * emat#(a, B)
bmat#(a + 3, B) = temp#(2, 1) ¥ emat#(a, B)
bmat#(a + 3, B + 3) = temp#(2, 2) * emat#(a, B)
bmat#(a + 3, B + 6) = temp#(2, 3) * emat#(a, B)
bmat#(a + 6, B) = temp#(3, 1) ¥ emat#(a, B)
bmat#(a + 6, B + 3) = temp#(3, 2) * emat#(a, B)
bmat#(a + 6, B + 6) = temp#(3, 3) * emat#(a, B)
temp1#(a, B) = temp#(a, B)
templ1#(a + 12, B + 12) = temp#(a, B)
templ#(a + 3, B + 12) = temp#(1, B) * xyz#(a)
templ#(a + 6, B + 12) = temp#(2, B) * xyz#(a)
templ#(a + 9, B + 12) = temp#(3, B) * xyz#(a)
templ1#(a, B + 12) = (zmatsqr / 2} * temp#(a, B)
NEXT B
NEXT a
FORc = 1T0 3
FORa = 1T0 3

sum1 =0
sum2 = 0
sum3 = 0
sum4 = 0
sumb = 0
sumb = 0
sum?7 = 0
sum8 = 0
sum9 = 0
suml10 = 0
sum11 = 0
suml12 =0

FORB = 1TO3

sum1 = sum1 + amat#(c, B) * tmat1#(B, a)

sum?2 = sum2 + amat#(c, B + 3) * tmat2#(B, a)
sum3 = sum3 + amat#(c, B + 6) * tmat3#(B, a)
sum4 = sum4 + bmat#(c, B) * tmat1#(B, a)

sum5 = sumb5 + bmat#(c, B + 3) * tmat2#(B, a)
sumb = sum6 + bmat#(c, B + 6) * tmat3#(B, a)
sum7 = sum7 + bmat#(c + 3 B) * tmat1#(B, a)
sum8 = sum8 + bmat#(c + 3, B + 3) * tmat2#(B, a
sum9 = sum9 + bmat#(c + 3, B + 6) * tmat3#(B, a
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sum10 = sum10 + bmat#({c + 6, B) * tmat1#(B, a)
suml11 = suml11 + bmat#(c + 6, B + 3) * tmat2#(B, a)
sum12 = sum12 + bmat#(c + 6, B + 6) * tmat3#(B, a)
NEXT B
temp1#(c, a + 3) = sum
templ1#(c, a + 6) = sum2
templ1#(c, a + 9) = sum3
templ#(c + 3, a + 3) = sumé
templ1#(c + 3, a + 6) = sumb
templ#(c + 3,a + 9) = sumb
templ#(c + 6, a + 3) = sum7/
templ1#(c + 6, a + 6) = sum8
templ#(c + 6,a + 9) = sum9
templ1#(c + 9,a + 3) = sum10
templ#(c + 9,a + 6) = sumT11
templ1#(c + 9,a + 9) = sum12
NEXT a
NEXT ¢
END SUB

SUB sqri (umat#(),umata#(),umatb#(),umatc#(),umatd#(),umate#())
DIM utemp1#(3,3),utemp2#(3,3)
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine SETSQR1"
LOCATE 14, 22
PRINT "Please wait.....cccooooviiiiiiiiiinn. "
FORc =1T0O3
FORa = 1T0 3
sumO = 0
FORB = 1TO 3
sum0 = sumO + umata#(c, B) * umatb#(B, a)
NEXT B
utempl1#(c, a) = sumO
NEXT a
NEXT ¢
FORc = 1T0O 3
FORa = 1T03
sumO = 0
FORB = 1TO 3
sumO = sumO + utemp1#(c, B) * umatc#(B, a)
NEXT B
utemp2#(c, a) = sumO
NEXT a

265




NEXT ¢

FORc = 1TO 3
FORa = 1T0O 3
sumO = 0

FORB = 1T0O 3
sumO = sumO + utemp2#(c, B) * umatd#(B, a)
NEXT B
utemp1#(c, a) = sumO
NEXT a
NEXT ¢
FORc = 1TO 3
FORa =1T0O 3
sumO = 0
FORB = 1TO 3
sum0 = sumO + utempl1#(c, B) * umate#(B, a)
NEXT B
umat#(c, a) = sumO
NEXT a
NEXT ¢
END SUB

SUB sqr2 (gmat#(),gmata#(),gmatb#(),gmatc#(),gmatd#(),gmate#())
DIM gtemp1#(15,15),gtemp2#(15,15)
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine SETSQR2"
LOCATE 14, 22
PRINT "Please wait.........ccooiiiiiininanns
FORc = 1TO 15
FORa = 1TO 15
sumO = O
FORB = 1TO 15
sum0 = sumO + gmata#(c, B) * gmatb#(B, a)
NEXT B
gtemp1#(c, a) = sumO
NEXT a
NEXT ¢
FORc = 1TO 15
FORa = 1T0O 15
sumO = 0O
FORB = 1TO 15
sum0 = sumO + gtemp1#(c, B) * gmatc#(B, a)
NEXT B
gtemp2#(c, a) = sumO
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NEXT a

NEXT ¢
FORc = 1TO 15
FORa = 1TO 15
sumO =0

FORB = 1TO 15
sum0 = sumO0 + gtemp2#(c, B) * gmatd#(B, a)
NEXT B
gtemp1#(c, a) = sumO
NEXT a
NEXT ¢
FORc = 1TO 15
FORa = 1TO 15
sumO = 0
FORB = 1TO 15
sumO = sumO + gtempl#(c, B) * gmate#(B, a)
NEXT B
gmat#(c, a) = sumO
NEXT a
NEXT ¢
END SUB

SUB umatsqr (zmat#(),umata#(),umatb#(),umatc#(),umatd#(),zpart#,bond)
DIM utemp1#(3,3),utemp2#(3,3)
DIM jtemp1#(3),jstar1#(3),jnorm1#(3)
DIM zlam AS DOUBLE, sum0O AS DOUBLE, zmax AS DOUBLE
CLS
LINE (150, 140)-(490, 220), 1, BF
LINE (150, 140)-(490, 220), 15, B
LOCATE 12, 22
PRINT "Processing Subroutine UMATSQR"
LOCATE 14, 22
PRINT "Please wait........ccoovviviiiinne...
FORz = 1 TO bond
FORc = 1T0 3
FORa = 1TO 3
sumO = 0
FORB =1TO 3
sumO = sumO + (zmat#(c, B) * zmat#(B, a))
NEXT B
utemp1#(c, a) = sumO
NEXT a
NEXT ¢
FORa = 1T0 3
FORB =1T0 3
zmat#(a, B) = utemp1#(a, B)
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NEXT a
NEXT z
FORc = 1TO 3
FORa = 1T0O3
sumO = 0

FORB = 1TO 3
sum0 = sumO + (zmat#(c, B) * umata#(B, a))
NEXT B
utemp1#(c, a) = sumO
NEXT a
NEXT ¢
FORc =1TO3
FORa =1TO 3
sumO = 0
FORB = 1TO 3
sumO = sumO + (utemp1#(c, B) ¥ umatb#(B, a))
NEXT B
utemp2#(c, a) = sumO
NEXT a
NEXT ¢
FORc = 1TO 3
FORa =1T0O 3
sum0 =0
FORB = 1TO 3
sumO = sumO + (utemp2#(c, B) * umatc#(B, a))
NEXT B
utempl1#(c, a) = sumO
NEXT a
NEXT c
FORc = 1T0O 3
FORa = 1T03
sumO = 0
FORB =1TO 3
sumO = sumO + (utempl1#(c, B) * umatd#(B, a))
NEXT B
utemp2#(c, a) = sumO
NEXT a
NEXT ¢
FORa = 1T0O3
FORB = 1TO 3
zmat#(a, B) = utemp2#(a, B)
NEXT B
NEXT a
zpart# = zmat#(1, 1) + zmat#(1, 2) + zmat#(1, 3)

END SUB
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APPENDIX D

DIELECTRIC RELAXATION OF THE POLYMER SYSTEM

PPG2025 + 1 MOLE %HgCl,

D.1.Introduction

To establish the performance and reliability of the dielectric cell described
in Chapter 9, the dielectric relaxation of the polymer system PPG2025 + 1
mole %HgCl,, which had previously been studied by Hakiempoor47, was
investigated. A description of the apparatus and the experimental technigues

involved in the investigation can be found in section 9.3 and section 9.4 of

Chapter 9. Presented in this appendix are the dielectric loss results for that

system.

D.2. Dielectric Loss Results

The variation of £" with respect to log f/(Hz), at various temperatures, is
shown as a series of normalised plots for the polymer system PPG2025 + 1

mole %HgCl,, in Figure (D-1).

The presence of a broad o-type relaxation process for this system is
readily discernible. A secondary relaxation process occurring at a lower

frequency, shown only in some of the curves, is also present. This secondary

51

relaxation process has been observed in previous investigations of

PPG2025 polymer systems.
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Figure (D-1).

Log f (H2z)
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243 K
238.3 K
2383 K
228.6 K
2248 K
218.7 K

Frequency dependence of €"/e" 5, for the polymer system

PPG2025 + 1 mole %HgCl,.
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D.3.Conclusion

The dielectric relaxation results for PPG2025 + 1 mole %HgCl, obtained
from the application of the dielectric cell were compared with those published
by Hakiempoor‘”‘ Since both sets of results were in agreement as to the
shape of the loss curves and also the temperature at which the dielectric loss

occurred, it was concluded that the dielectric cell was suitable for use in this

project.
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APPENDIX E

SPECIFICATIONS OF THE DIELECTRIC CELL

E. 1. Factors Effecting the Design of the Dielectric Cell

The dielectric cell used in this project was designed for use with a small
quantity of polymer sample. When dealing with small sample volumes, it is
important to design a cell that will produce a significant difference between
the capacitance readings taken when the cell is empty, to readings taken
when the cell contains a sample. This is necessary to take reliable dielectric
readings. Taking this factor in to account, the dimensions of the dielectric cell
were designed to produce a difference in capacitance of around 15uF for a

polymer sample whose relative dielectric constant is around 2.5.

A further consideration when investigating the dielectric properties of
polymers at low temperatures is sample contraction. If the sample contracts
to the extent that it no longer occupies an area of the cell that is subjected to
the electric field, then a significant error will be inherent in the results
obtained. To counteract this effect, the cell was designed with an earthed
guard ring, within which the sample was not subjected to an electric field.
The sample in this region of the dielectric cell acted as a reservoir to

compensate for any sample contraction.
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E.2. Dimensions of the Cell

Electrical Connection Holes
O01am

03am

Etched Area

T

7om

03am

3am

Figure (E-1). Schematic illustration of one plate of the dielectric cell.

The dielectric cell consisted of two plates with the dimensions specified
in Figure (E-1). The distance of seperation between the plates was 0.1 cm.

The total sample volume of the cell was 1.6 cm?.
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APPENDIX F

EXPERIMENTAL DIELECTRIC DATA

The experimental dielectric data used to generate the dielectric loss
curves in Figures (10-1) and (10-2) for Dow polymer samples 10423-1 and

10423-9 are tabulated in Tables (F-1) and (F-2) respectively.
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Table (F-1).

Sample 10423-1 (M, =28000).

Temperature (K) 198 198 193 193 188 188

Frequency {Hz) Cp (pF) | Tand Cp (pF) | Tand Cp (pF) | Tand
100 12.57 1.9E-02 [12.02 1.6E-02 [12.36 1.7E-02
200 11.82 1.5E-02 |11.56 1.3E-02 |11.67 1.3E-02
500 10.99 1.3E-02 [10.85 1.2E-02 |10.9 1.0E-02
1000 10.52 1.1E-02 [10.41 9.8E-03 |10.4 7.8E-03
2000 10.17 9.5E-03 [10.12 8.0E-03 |9.99 1.1E-02
4000 9.95 7.5E-03 |9.82 1.9E-02 |9.65 3.6E-02
7000 9.82 1.8E-02 [9.66 2.8E-02 |9.44 4.1E-02
10000 9.73 2.5E-02 |9.51 3.7E-02 9.3 4.3E-02
20000 9.56 3.5E-02 ]9.38 4.1E-02 (9.13 4.4E-02
70000 9.25 4.0E-02 |9.02 3.9E-02 [8.81 3.9E-02
100000 9.18 4.1E-02 |8.93 3.7E-02 |8.77 3.6E-02
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Table (F-1). Continued......

Temperature (K) 183 183 179 179

Frequency (Hz) Cp (pF) | Tan & Cp (pF) | Tan d
100 12.03 |1.7E-02{11.9 1.6E-02
200 11.49 |1.3E-02{11.47 |1.5E-02
500 10.8 9.2E-03[10.88 |1.9E-02
1000 10.25 |1.2E-02{10.35 |6.6E-02
2000 9.77 4.9E-02(9.82 8.9E-02
4000 9.35 6.2E-02|9.35 9.0E-02
7000 9.11 6.2E-02|9.09 8.7E-02
10000 8.9 6.0E-0218.9 8.0E-02
20000 8.73 5.5E-02(8.65 6.8E-02
70000 8.41 4.4E-02|8.33 5.0E-02
100000 8.37 3.9E-0218.23 4.7E-02
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Table (F-2).

Sample 10423-9 (M, =46000).

Temperature (K) | 205 205 197 197 193 193

Frequency (Hz) Cp (pF) | Tan & Cp (pF) | Tan o Cp (pF) | Tan d
| 100 11.36  |3.5E-02 |11.4 2.9E-02 |11.44 |2.5E-02
200 10.66 |3.1E-02 |10.69 |2.6E-02 |10.74 |2.3E-02
500 9.99 2.7E-02 {10.05 |2.4E-02 |10.1 2.0E-02
700 9.8 2.5E-02 |9.84 1.9E-02 |9.92 1.6E-02
1000 9.64 2.3E-02 |9.67 1.5E-02 |9.73 1.3E-02
2000 9.29 1.9E-02 [9.35 1.2E-02 |9.42 7.3E-03
5000 8.97 1.5E-02 [9.03 8.3E-03 |9.06 2.9E-02
7000 8.89 1.2E-02 |8.93 2.4E-02 |8.97 3.4E-02
10000 8.78 7.3E-02 |8.82 3.3E-02 |8.85 3.8E-02
20000 8.64 2.8E-02 [8.67 3.8E-02 [8.69 3.8E-02
50000 8.42 3.7E-02 |8.44 3.5E-02 |8.47 3.2E-02
100000 8.36 3.7E-02 {8.37 3.1E-02 {8.41 2.5E-02

277




Table (F-2).

Continued

Temperature (K)

Frequency (Hz)

100

200

500

700

1000

2000

5000

7000

10000

20000

50000

100000






