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Most of the new processes involving the utilisation of coal are based on
hydroliquefaction, and in order to assess the suitability of the various coals for this
purpose and to characterise coals in general, it is desirable to have a detailed and
accurate knowledge of their chemical constitution and reactivity. Also, in the
consumption of coals as chemical feed stocks, as in hydroliquefaction, it is
advantageous to classify the coals in terms of chemical parameters as opposed to, or in
addition to, carbonisation parameters. In view of this it is important to realise the
functional groups on the coal hydrocarbon skeleton. In this research it was attempted to
characterise coals of various rank (and subsequently their macerals) via methods
involving both microwave-driven and bench top derivatisation of the hydroxyl
functionalities present in coal. These hydroxyl groups are predominantly in the form of
hindered phenolic groups, with other alcoholic groupings being less important, in the
coals studied here. Four different techniques were employed, three of which -
stannylation, silylation and methylation - were based on in situ analysis. The fourth
technique - acetylation - involved derivatisation followed by analysis of a leaving group.
The four different techniques were critically compared and it is concluded that silylation
is the most promising technique for the evaluation of the hydroxyl content of middle
rank coals and coal macerals. Derivatisation via stannylation using TBTO was impeded
due to the large steric demand of the reagent and acetylation did not successtully
derivatise the more hindered phenolic groups. Three novel methylation techniques were
investigated and two of these show great potential. The information obtained from the
techniques was correlated together to give a comprehensive insight into the coals and
coal macerals studied.
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INTRODUCTION

1.1 GENERAL INTRODUCTION

Our way of life and very existence depends on the convenient and efficient utilisation of
accessible energy. In today's prevailing climate the world's primary source of energy is
fossil fuel - petroleum, natural gas and coal. This source of energy is converted into
electricity, fuel and heat, which is employed in a range of diverse applications and
processes. Perhaps the greatest disadvantage of fossil fuel is that it is an exhaustible
commodity. Because of this drawback, one of two actions should be implemented in the
near future; the first of these is to find a viable alternative means of mass power
generation - solar power, hydropower, nuclear power and power from renewable
biomass are some options. But in most cases a major scaling-up of the process is
required if the increasing energy demands of the future are to be met. The second course
of action involves the implementation of existing methods, especially those involving
the more abundant fossil fuels - most prominently coal, on a more efficient, economical
and environmentally-acceptable level (although coal is already considered to be a

relatively clean fuel).

In the early 1970s, the Organisation of Petroleum Exporting Countries OPEC imposed
an oil embargo - this caused the price of crude oil to spiral upwards, resulting in the cost
of crude oil quadrupling almost overnight. This shock to the world economy outlined
the dangers of relying on a predominantly imported energy source. All of a sudden there
was a renewed interest in coal and coal research, which had been fairly inactive since
the early 1960s. Research into coal now took on a new impetus. The sharp drop in
crude oil prices in the mid-1980s, however, helped to check this momentum and
succeeded in turning the focus back to oil. But the alternative use of coal, instead of oil,

is expected in the future for several reasons, some of which are outlined below :

1) The large reserves of coal world-wide will ensure that coal remains a crucially

important energy source.

2) The disadvantage of relying on fossil fuel imported from politically volatile territories
of the world (as exhibited by the Gulf War 1990-1991).

3) The 'lost faith' in alternative sources of energy, such as nuclear power (as exhibited
by the Chernobyl nuclear reactor meltdown 1986) and the dependence of other forms
of energy on weather conditions (solar power and wind-generated power) and local

geography (hydropower).
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4) The expansion of new markets, particularly in the Third World.

5) Improved technology becoming available for more efficient coal combustion and

transformation of coal to synthetic fuel or desired chemicals.

More than 1 billion tons of coal are burned every year and it supplies about 30% of the
world's energy requirements (down from 60% in 1950). The value of coal may be
illustrated by its diverse applications to contemporary industry - electricity,
transportation fuels, manufacture of chemicals (plastics, medicines, fertilisers, etc),
providing chemicals for extracting metals from their ore and providing process heat i.e

heat used for boiling, melting, annealing, etc in the metal and chemical industry.

Research into coal is an important requisite to avoid shortcomings in the future and must
continue, so that the required technology is available when it is needed, to re-establish
the energy gulf which will be left when oil and gas reserves are depleted. For these
reasons it is vital to gain a comprehensive insight into the composition and physical

nature of coal.
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1.2 SHORT HISTORY OF COAL

1.2.1 General history
Essentially carbon is little more than a trace element in the earth's crust and yet it is our

greatest source of energy. The majority of this attainable carbon is in the form of fossil
fuels.

Historically, coal was used as a source of heat as early as AD300. By AD1000 it was
being used on a large scale by the Chinese and it was the Venetian traveller Marco Polo
who brought knowledge of coal to the westerd world in 1295. Sea coals and other
surfdace coals burned with a very smoky flame due to their inorganic matter and
consequently coal developed a reputation as being a dirty fuel. Large scale coal mining
began in Britain in the mid-16th century. By the 17th century there was a severe
shortage of wood, and coal soon became a primary fuel. Also, as charcoal became
scarcer a substitute was required for iron-ore smelting - this came in the form of coke
from coal. It was the large scale production of this inexpensive iron that gave impetus to
the Industrial Revolution. The world production in coal increased by 500% in the 50
years following 1865. In the 20th century the consumption of coal was the same in
1970 as it was in 1912!. There was increased production during the war years followed
by a slump in favour of oil and natural gas in the 1950s. In the 1970s coal production
increased because of the oil price shocks. The revival, however, faded in the mid-1980s

with the advent of price cuts in the oil industry.

Though the future is constantly changing and unpredictable, one thing is almost certain

- coal will continue to play an active and participating role in energy conversion for the

foreseeable future.

1.2.2 Coal Reserves

From known coal deposits, estimates of coal reserves are calculated to be in the region
of 1.5 x 10!2 tonnes world-wide. However, if the coal which is inferred to exist from
geological observations is also taken into account this figure is propelled upwards to 12
x 1012 tonnes world-wide2. The vast majority of this coal is located in the Soviet Union
(approximately 7 x 10!2 tonnes - 90% of which can be found in Siberia), followed by
the United States (approximately 3 x 1012 tonnes) and China - these are the 3 main areas

of coal deposits. Canada, West Germany, Australia and Great Britain have lesser

amounts.
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3 GENESIS OF COAL

1.3.1 Background
Coal is a fossil formed by the action of temperature, time and pressure on plant debris.
It consists mainly of the elements C and H with lesser amounts of O, S and N, and has

associated with 1t verious amounts of moisture and mineral deposits.

The origins of coal can be traced back to approximately 300 - 400 million years ago,
when warm and humid climates favoured the growth of huge tropical ferns and giant
trees in vast swamps. The dead plants fell into the boggy waters and through land
subsidence and other changes in the local water regime, the debris was inundated and
gradually covered by silts. These silts were then buried under increasingly thick
inorganic sedimens and were progressively compacted and chemically altered by heat to

rroduce coal. There are 2 stages of coal formation:

1.3.2 The biochemical stage of coalification

When 2 plant dies in an arid environment, decomposition sets in almost immediately
onveriing ine plant to carbon dioxide and water (with lesser amounts of ammonia and
suiturt unul nothing remains but the inorganic constituents of the plant. With this
~rocess atmosphenc oxveen acts as the main agent initiating decay. If, however, the
piznt Sies in water. the main agent initiating decay is anaerobic bacteria. This decaying
~racess when the plant is in the water, involves decomposition of the plant tissue by
removing oxj'gen and hydrogen via carbon dioxide and methane (marsh gas)
resoessively. and as water. In this instance much more O and H are lost in comparison

wih the amount of C lost - consequently a carbon-rich residue is built up.

Doz ~aosition is terminated when the intermediate decomposition product's (organic

JEA NN

.+ <x 1nd ~henols) concentrations have built up to such levels that they are lethal to the

S e emibe

Sactema A ovele of swamp formation and destruction by flooding or eventual drying

Ll

oo “oslows, resuliing in the deposition of a series of coal seams separated by other
~arranic sadiment. As more plant debris amasses, the material at the bottom becomes

aoesunoiv compressed and this compressed plant material and residual organic debris

PO NN

-~ with sultur and morganic entities) is called "peat". This process is called

ey

“~es=aczzon” and 1ts formation signals the end of the biochemical stage of coalification.

Deoo Ty Sonian s 20 -35% O. about 60% C (on a dry, ash-free basis - daf basis) and up

i e,

s ToIsiure.

29




In summary, the biochemical stage of coalification consists of the decomposition of the
plant material by bacteria and fungi in a waterlogged environment, to eventually give

rise to the formation of peat. This process usually takes a few thousand years.

An important point to note at this stage, is that not all the plant material decomposes at
the same rate - this gives rise to the discrete remains of different types of plant material,
which may be distinguished microscopically. These remains are called "macerals” and
the study of these macerals is known as "petrology" (the analysis of these macerals is

known as petrographic analysis). Macerals are covered in greater depth in chapter 4.

1.3.3 The geochemical stage of coalification

This stage took millions of years, during which the peat was slowly transformed, via
changes in temperature and pressure, into coal. The geochemical stage starts with the
deposition of layers of new sediment building up on the peat. As the layers accumulate,
the pressure compacts the peat and buries it deeper into the earth. Consequently the peat
is exposed to elevated temperatures and the combined effect of temperature and pressure
transforms the peat into brown coal and lignite - these materials contain recognisable
plant fragments and partially coalified material. Moisture contents for brown coals are in
the region of 60 - 70%, whereas for lignites they are 30 - 40%. Lignites also contain
approximately 70% C (daf basis) and approximately 20 - 25% O. The next materials to
form under the continual changes in temperature and pressure over thousands of years
are bituminous coals - these have significantly more carbon (up to 88%) and less
oxygen compared to lignite (their precursor). Anthracite is the highest rank of coal and
geologically the oldest. Formation involved tremendous pressures during which rocks
themselves folded and buckled. Anthracite is approximately 94% C and no traces of the
original plant material is discernible in this form of coal.

The main factors affecting the degree of coalification appear to be temperature, and to a
lesser extent, pressure and time. Generally the youngest coals appear near the surface
and the oldest are deepest from the surface. Because the temperature of rock strata
increases as you get nearer to the earth's core, the oldest coals have usually been

subjected to the highest temperatures and therefore the greatest chemical change.
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1.4 CLASSIFICATION OF COAL

1.4.1 Coalification / Rank

Coalification or rank indicates the extent of geological maturity of the coal. It is the
name given to the development of the series of substances peat, brown coal and lignite
(brown coal is less mature), sub-bituminous, bituminous (this is sub-divided on the
basis of volatile matter into low-, middle- and high volatile bituminous coal)* and
anthracite, with graphite (pure carbon) being the final maturation product of coal. It
should be noted that peat and lignite are comparatively rare in the UK.

The combination of pressure and time during the geochemical coalification stage
progressively eliminated the H and O through water, methane and carbon dioxide.
Consequently the C content increased and the H and O content decreased as coalification
proceeded. The O content dropped sharply in going from lignite to bituminous coal, but
the H content was preserved. A significant reduction in H does occur, however, on
formation of anthracite. Increased temperature or prolonged exposure to heat during the

geochemical stage resulted in increased coalification or rank.

Table 1.01 Classification of the different variety of coals by rank

Type of Coal Approx. composition. wt%

C H O
WOOD . 49 7 44
PEAT 60 6 34
LIGNITE : 70 5 25
SUBBITUMINOUS 75 5 20
BITUMINOUS 85 5 10
"ANTHRACITE 94 3 03

In going from wood to anthracite, pressure, temperature and time are increasing and
there 1s Increasing aromaticity.

*The volatile matter content is the % loss in weight when a sample of crushed coal is
heated to 900°C, under standard conditions, with allowances being made for moisture
and mineral matter content. It decreases with increasing coal rank from about 40% in
lower rank coals to about 5% in higher rank coals.
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Brown coal and lignite have very high moisture and volatile matter contents. They ignite
easily, have a low calorific value and burn with a smoky flame. Plant remains, such as
spores and pollen, may be observed in lignite deposits. Sub-bituminous coals
(sometimes called black lignite) are also easily ignited, but these burn with a cleaner
flame compared to lignites. The main attraction of sub-bituminous coals is that they
have a very low sulfur content. Bituminous coals are used the most extensively - they
tend to have low moisture and volatile matter contents and their heating value is
generally higher than sub-bituminous coal. Finally, anthracite has very low moisture,
sulfur and volatile matter content and burns with a clean, hot, smokeless flame. It is jet

black, has a high lustre and is more expensive than other forms of coal.

Generally as rank increases the reactivity, moisture and volatile matter content decrease.
The coals also become blacker and harder, more stable and burn more efficiently with a
cleaner flame (containing less smoke and soot). Low rank coal is typically 79% C,
middle rank 88% C and high rank 94% C.
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1.4.2 Proximate Analysis

The proximate analysis determines the amount of moisture, volatile matter and ash in a

sample of coal, and from these determinations a value for the amount of fixed carbon is
calculated.

The procedure for determination is as follows; firstly a sample of the coal is heated
gently to 105°C to remove the water - the % loss in weight gives the % moisture in the
coal. After removal of the moisture, the temperature is increased and the sample is
heated in an inert atmosphere (to prevent the coal burning) at 900 + 5°C for 7 minutes,
which results in a further weight loss due to a mixture of gases (including CO» and
CHa) escaping and the condensation of an oily liquid and a tar. Collectively these three
components are known as the volatile matter. The solid material left behind after the
volatile matter has been driven off is a black char with a semblance to charcoal. When
air is allowed into the apparatus this char burns to leave behind an inorganic solid called
ash (ash is composed mainly of Al, Ca, Fe, Mg, P, K, Si, Na, S and Ti - all combined
with oxygen). The amount of coal material in the char is called the fixed carbon (it is
called 'fixed' carbon because it does not volatilise) and the value for fixed carbon is

calculated by :

100 - (moisture + volatile matter + ash) %

The only fuel components of the coal are the volatile matter and the fixed carbon.
Moisture and ash are unreactive components which hinder heat generation. Ash is also
an unwanted by—broduct which must be removed from the combustor and disposed off.
The ratio of volatile matter : fixed carbon can help to predict how the coal will combust
- the volatile matter will vaporise and burn with a long smoky flame, whereas fixed

carbon will burn with a short, smokeless, hot flame.

The volatile matter, ash and fixed carbon are reported on a moisture-free basis, because
moisture can be influenced by falling rain, humidity in the air and coal standing in an
arid environment. Volatile matter and fixed carbon may also be reported on a dry,

ash-free (daf) basis by multiplying by 100/ 100 - (moisture + ash).
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1.4.3 Ultimate Analysis
The ultimate analysis gives an indication of the elemental composition of the coal with
respect to C, H, N and S. From these values the %O is calculated by difference.

The C and H are determined by burning the coal and collecting the CO7 and H>O given
off in absorbents, which have been weighed beforehand. The mass of CO; and H7O is
determined and from this the mass, and hence %C and %H in the original sample is
calculated.

A common method for S determination is to convert the S into sodium sulphate and then
to convert this further into barium sulphate, which is highly insoluble in water. The
barium sulphate can subsequently be collected, dried and its mass determined to find out
how much S was originally present. This method does not distinguish between the

different types of S.

Nitrogen is usually determined by conversion to ammonia, followed by addition to a
known amount of acid. The amount of acid remaining after neutralisation of the
ammonia is calculated and from this the amount of ammonia, and hence original N in

the coal, is calculated.

The %O content is determined by difference :

%0 =100 - (C+H+ N+ S5)%

Coal has been shown to contain nearly all the elements, except noble gases and

radioactive elements, In trace amounts.
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1.4.4 Heating / Calorific value
This is the amount of energy obtained from heating a sample of coal. A known quantity
is burned inside a reaction vessel, which is then immersed in a known quantity of water

- this results in the temperature of the surrounding water being raised. Because the

amount of heat required to raise the temperature of a given mass of water by 1°F is

known (the specific heat capacity of water), the heating value for the coal may be
calculated. The unit of measurement is usually the British thermal unit - this is the heat
required to raise the temperature of 1 Ib of water by 1°F. Values for coal vary from
between 6000 to over 14000 Btu/lb. Oil has a value of approximately 20 000 Btw/Ib and
natural gas about 22 000 Btu/lb.
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1.5 STRUCTURE OF COAL

1.5.1 General Introduction
Physically and chemically coal is a heterogeneous material consisting of two classes of

material :

(a) Organic carbonaceous macerals, which can be sub-divided into 3 maceral
groups - exinite / liptinite, vitrinite and inertinite.

(b) Inorganic crystalline minerals.

Coal has a complex, statistical, non-uniform structure made up of small condensed
aromatic units, or layers, with functional groups located mainly at the peripheral edges,
and some degree of cross-linking and hydrogen-bonding. It consists predominantly of
C and H with lesser amounts of O, N and S and other trace elements. Because the units
are pseudo-planar (not strictly planar due the presence of heteroatoms) they show some
tendency to pack in a parallel orientation to each other. The lower rank coals tend to
have small layers randomly orientated and connected by cross-links making the
structure highly porous, whereas the middle rank coals show a greater degree of
orientation and a greater tendency towards parallel stacking. In this case there are less
cross-links and fewer pores. Finally, higher rank coals tend to show a growth in
individual layers and there is a significant increase in the degree of orientation - the

pores In highef rank coal are usually elongated parallel to the stacks of layers.
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Diagrammatic interpretation of the structure of coal (Hirsch 1954)3

1.5.2 Literature review

It is generally agreed that the origins of coal lie in the decomposition of plant
material4-6. Much of the early work on determining coal structure was carried out in the
1950s and is summarised in a recent book by Van Krevelen®. The early conclusions that
Van Krevelen came to about coal were : that it was a high m.wt polymeric material with
a non-uniform structure, was strongly aromatic - with aromaticity increasing with rank,
and the average structural unit consisted of about 20 carbon atoms and 4 - 5 rings
(although larger structures were expected for anthracite). A comprehensive review by
Tingey and Morrey (1973)7, however, refuted this claim. They assumed that if coal was
completely made up of condensed benzene rings, the average number of rings for lower
rank coals is 2, increasing to 3-5 rings for higher rank coals. These results were based

on total carbon rather than fixed carbon and represent a lower value than that arrived at

by Van Krevelen.
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Attempts to determine the m.wt of coals have been made by Larsen et al® and Heredy”
by depolymerisation of the coal via cleavage of the methylene bridges, using phenol as a
solvent and BF3 as catalyst. Number average molecular weights of about 1000 were
obtained for Bruceton coal by Larsen. Larsen also obtained good results using a
reductive alkylation technique, whereby the coal was treated with an alkali metal in THF
in the presence of a small amount of naphthalene. In this reaction the coal 'polyanion’
was produced and this was alkylated by an alkyl halide - ether bridges and C-C bonds
were also cleaved. Makabe et all0 also managed to obtain promising results by
extracting coal in pyridine by reacting it with NaOH in ethanol. More recent work has
been carried out by Philip et alll on the application of matrix assisted laser desorption
jonisation (MALDI) to coals and coal-derived materials using sinapinic acid as the
matrix. By this method molecular masses of up to 270 000 units have been obtained for
Point of Ayrcoal and it has been shown that fragments in the mass range of 1000
- 5000 units appear to predominate in coals and coal-derived liquids.

Retcofsky and Friedel!2 have shown that conventional broad-line 13C nmr techniques
indicate that for all coals 83% C and higher, the position of maximum intensity 1s near
the chemical shift value for liquid benzene - this appears to indicate relatively high
aromaticity. In the }3C nmr spectra of coal it is possible to resolve 4 types of C : simple
aromatic, quaternary aromatic, oxygen-bonded aromatic and simple aliphatic. Since
Retcofsky's experiments, results have been enhanced by using cross-polarisation 13C
nmr, but resonances remain fairly broad due to anisotropic chemical shift effects. Better
results for aromaticity were obtained by Bartuska et all3 who employed magic-angle

spinning to reduce the line-broadening due to 13C / H interactions.
In 1975 Hayatsu et all4 had positively identified 35 aromatic acids from coal, including

several heterocyclic compounds containing O and S. He achieved this by reacting the

coal with 0.4M sodium dichromate at 250°C to effect oxidation.
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In the late 1950s P.H.Given!? proposed a three-dimensional model structure for coal

based on the average composition :

HO

Figl.03 Proposed structural elements of coal (Given 1960)
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Later W.H.Wiser!6 presented a finer model which showed the locations of a number of
relatively weak bonds, which possibly account for the rapid breakdown of coal into

smaller, more soluble fragments during coal liquefaction.

Then in 1979 Pitt!7 presented a model on which he labelled possible dimerisation
locations.

Figl1.04
Model structure for 80% vitrain. Asterisks indicate where dimerisation
could occur (Pitt 1979)
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More recent work in structural determination has been carried out by J.H.Shinn!® who

has managed to construct a coal model using the technique of "retrograde synthesis".

This technique involves gathering all the analytical data on the parent coal and

consolidating this by information obtained from the liquefaction products i.e elemental

distribution, aromaticity and functional group chemistry.

A. aromatics B. functional groups
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Shinn's retrograde synthesis used to derive his hypothetical coal model.
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1.5.3 Mineral matter in coal

The mineral matter in coal may be acquired in several ways. The first of these is from
the plants themselves - during their lifetime they can accumulate inorganic matter, for
example silica deposits in the cell walls. Once dead in the boggy water, this new
medium provides a good transport for inorganic ions and mineral grains (these are
mineral particles eroded from rocks, which blend with the coal as discrete grains of
minerals e.g clay and quartz - these are referred to as "detrital” minerals and are usually
macroscopic 1n  size), which become incorporated into the peat and lignite via
ion-exchange processes during the biochemical phase of coalification. Even after the
coal has been compacted, water may still percolate through the cracks and seams to
deposit minerals - this is the mechanism for pyrite (FeS) deposition. Pyrite is an
example of a "disseminated" mineral crystallite - this is inherent mineral matter that is
finely divided (usually < 0.1mm) and distributed throughout the coal. Calcite, kaolinite

and pyrite are commonly disseminated in fusain (a coal maceral).
Procedures for the removal of mineral matter in coal rely on the difference in specific
gravity between the mineral matter and the bulk coal. Methods include baum jig

washing, dense medium washing and froth flotation.

Ash 1s the residue of mineral matter after complete combustion of the coal and
consequently the mineral matter is usually calculated from the ash content using the

“Parr" formula;:
MM = 1.08A - 0.55S

MM = mineral matter ;: A = ash content : S = sulfur content.
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1.6 HETEROATOMS IN COAL

1.6.1 Nitrogen in coal

In coal N is a minor constituent and tends to compose about 1% of all coals regardless
of rank. Work looking into the nature of N in coals appears to indicate that it is present
mainly in heterocyclic form - pyridine, quinoline and carbazole have all been identified
in coal-based liquids!9.

Nitrogen emissions from coal are not as significant as sulfur emissions. Nitrogen
oxides (NOy) are produced when coal, and other fossil fuel, is burnt in air. The main
components are nitric oxide NO - this constitutes approximately 95% vol. emissions,
nitrogen dioxide NO, and trace amounts of nitrous oxide N7O. These oxides arise
mainly from 2 sources : organic N in the coal and atmospheric N (which only
contributes to NOy formation at higher temperatures). At higher concentrations NO,
contributes to respiratory disorders and NO can inhibit the transport of oxygen by
haemoglobin. NOy can also affect some plant life and are a contributory factor to air

pollution and smog formation.

It is important to note, however, that coal combustion is responsible for only about 5%
of the NOy released into the atmosphere. The bulk of the emissions derive from

N-based fertﬂis‘ers and car exhausts.

1.6.2 Sulfur in coal
Sulfur may be present at up to 8 - 9% in some coals. It occurs in 3 different forms in

coal:

1. Organic sulfur this is organically bound to the coal and makes up about half of
the total S in low rank coal. It is mainly the remains of plant
tissue, which has not yet significantly coalified.

2. Pyritic sulfur this is mainly in the form FeS; and makes up the bulk of the S
in bituminous coals*

3. Sulphate sulfur this is mainly in the form of metal sulphates and contributes only

a very small percentage to the total sulfur.

*Much of this pyrite has its origins in the bacterial activity during coalification - a
by-product of the bacterial activity on S compounds is the gas H»S. This reacts with
iron-containing compounds in the water to produce iron sulphides, which are

gradually transformed to pyrite.



Heterocyclic compounds such as benzothiophene and dibenzothiophene have been
identified in coal?0 and Attar and Dupuis2! have shown that thiol (-SH) groups are
significantly higher in lignite and high-volatile bituminous coals compared to
low-volatile bituminous coals. Aliphatic sulphides (R-S-R) are present at 18 - 25% and
thiophenic sulfur is the major organic component in higher rank coals. It has been
proposed that condensation reactions, during the coalification process, are responsible

for the changes in going from -SH through R-S-R to thiophenic S.

During combustion the organic S and the pyrite is converted mainly into SO, with trace
amounts of SO3 - these are known collectively as SOx. These gases can affect the
respiratory system, corrode buildings and inhibit the growth of crops. Approximately
15% of the S is retained in the ash and a large proportion of the SOy is converted to

‘acid rain'.
There are 3 methods of reducing SO emissions :

1. Coal cleaning - large particles of pyrite may be removed by washing and smaller
particles by fine grinding

2. Removal during combustion - one method is by the addition of limestone during low
temperature processes

3. Flue gas desqlfurisation (FGD) - the SOy is removed in a large 'scrubber’

using limestone and gypsum.

The other major heteroatom component in coal is oxygen and this will be discussed in

the next section.
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1.7 OXYGEN IN COAL

1.7.1 General Introduction

In coal the primary oxygen functional groups consist of phenols (R-OH), ethers
(R-O-R), carbonyl groups - in particular ketones (R-CO-R) and carboxylic acids
(R-COOH). The oxygen content generally decreases as the rank of the coal increases
and the nature of oxygen groups present depend upon the rank of the coal. Methoxyl
functional groups only occur in low rank coals, whereas carboxylic acid groups are
found mainly in low-middle rank coals - coals with < 80% C. Phenolic and carbonyl
groups make up the main oxygen functionalities in coals up to about 90% C.
Carboxylic, phenolic and methoxyl structures are predominantly found attached to ring-
structures and as a consequence - because the degree of aromaticity increases with rank

- diminish or become less prevalent as the rank increases.

1.7.2 Literature review

The first important point to note is that, when considering the oxygen content of coal,
the amount of moisture In the sample and the oxygen present as mineral matter
- pertaining to silicates, sulphates, carbonates, oxides, etc - should be taken into
account. Coal may absorb moisture (particularly on its surface) on prolonged exposure
to the atmosphere and hence can vary greatly in moisture content. For these underlying
reasons it is imperative that the sample for analysis has the moisture removed and the
oxygen present as mineral matter is subtracted from the total oxygen content, when

determining the organic oxygen present.

Much of the early work on the characterisation of coal was carried out in the 1950s by
research headed by Dirk Van Krevelen22-23. In fact when Van Krevelen24 was asked
what he thought the single most important aspect of coal was with respect to its

applications, he had no hesitation in saying "research on the composition of coal”.
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As early as 1932 Heathcoat and Wheeler2S determined the %OH in coal as a function of
rank. They found that the %OH in low rank coals was as little as 13%. Later work by
Blom et al26 (1957) used an acetylating procedure to show that the OH content fell from
about 8% to 0.5% in going from lignite to 90% carbon coals. These results showed
good agreement with future work carried out by Hammack et al27 and Friedman et al28
using trimethylsilylation techniques. From his results Friedman concluded that the
hydroxyl groups were predominantly phenolic / acidic in character with little evidence
for alcoholic or weakly acidic hydroxyl groups. Higher results for -OH content were

obtained by Horton2? (1947) using ketene as an acetylating reagent.

Carboxyl groups in coal have been determined by H.Schafer30 (1970) via ion-exchange
using barium acetate followed by subsequent titration of the liberated acetic acid. The
exchange reaction was conducted at pH 8.2 to prevent formation of phenolic acids. It
was shown that carboxyl groups only exist in appreciable amounts in brown coals and
lignites. At 83% carbon, carboxyl groups were found to be no longer present. A similar
trend was observed for methoxyl groups, but in this instance, most of the methoxy!l
functionality has disappeared at 75% carbon and only about 0.2% remained at 80%
carbon. The carbonyl! structure, however, persists at higher percentages of carbon.
Thnatowicz3! and Blom et al32 found that carbonyl oxygen contents were in the region
of 0.2 - 0.8% for 83% carbon and higher.

Work on the ali‘_phatic oxygen constituents of coal has been carried out by Deno et al33,
who managed to degrade coal into fragments of m.wt below 400 by using a mixture of
aqueous hydrogen peroxide and trifluoroacetic acid to oxidise the coal. This technique
destroyed the aromatic rings while leaving the aliphatic structure effectively intact.
Functional group analysis showed that the main oxygen-containing groups were

carboxyl, carbonyl, methoxyl and hydroxyl functionalities.

A contemporary method available for the determination of total oxygen in coal is
neutron activation analysis - this involves a nuclear reaction, whereby the sample is
irradiated with thermal neutrons from a nuclear reactor and the resulting number and
energies of the y-rays and x-rays emitted by the radioactive isotope are measured. The

drawback of using this technique is that it is very costly, requires a nuclear reactor and

has all the hazards associated with radiation.
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Ruberto and Cronauer34 have studied the oxygen content of sub-bituminous coal and
managed to break down the individual components. The conclusion they came to was
that there appears to be a significant amount of oxygen in the form of ether ¢ or - to

the aromatic groups and in the form of furan. Ruberto and Cronauer's findings are
outlined in Table 1.02.

Table 1.02
Analyses of Oxygen functionality in coals (wt% maf basis)

Coal Burning Star Belle Ayr
(bituminous) (subbituminous)

Oxygen content as :

Hydroxylic (-OH) 2.4 5.6

Carboxylic (-COOH) 0.7 4.4

Carbonylic (=C=0) 0.4 1.0

Etheric (-O-) 2.8 0.9
Total : 6.3 11.9
Oxygen by difference :

Ash basis 5.9 16.2

Mineral matter basis - 16.0

From Ruberto and Cronauer34 (1978 p.61) maf = moisture, ash-free.

In 1979 R.Liotta at al35-37 developed a novel O-alkylation technique for the selective
alkylation of acidic hydroxyl groups in coal. This was a two-step process utilising
iodomethane under very mild reaction conditions. The products were analysed by

FT-IR and 13C nmr to identify and quantify the hydroxyl / carboxylic acid groupings

present.
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Table 1.03 gives a concise summary of the work done on oxygen functionalites

between 1963 - 19

81.

Table 1.03 Work done on Oxygen functionalities in coal 1963 - 198138

Coal Rank@ Hydroxy / Carbonyl Amount presentb Reference(s)
High-volatile Phenolic OH 0.8-63% Heredy et al
bituminous (1965)
Phenolic OH 2.3 -5.8%, Brown and
35-39% of all O Wyss (1955)
Japanese Phenols in extracts, 0.5-<5% OH Yokoyama et al
' (60 - 84% C) amount depending on (1967)
i solvent
i Coal (83% C) Phenolic OH 2.3 meq/g Brooks and
| Maher (1954)
: Australian Greta Phenolic OH 1.6 meq/g Maher and
5 (82.4% C) O' Shea (1967)
Illinois No.6 Phenolic OH 5 OH groups / Gethner (1982);
100 C atoms Liotta et al (1983)
Vitrinite (84% C) Phenolic OH 2.5 meq/g Halleux et al
(1959, 1961)
Bituminous Total acids 0.64 - 6.2% OH,  Vaughan and
: (80 - 94% C) 37-62% of all O Swithenbank
(1970)
Low rank Total acids 4 -9 meq/g Schafer (1970);
Mabher and
Schafer (1976)
i HVA.HVB, HVC Total acids 1.0 - 6.5% OH, Abdel-Baset et al
'g subbituminous, etc 34 - 62% of all O¢  (1978)
§ - Total acids 3.5-6.5% OH, Yarzab et al
b . 34 -75% of all O¢  (1979)
8 Bituminous and Total acids 2.4 -5.6% OH Ruberto et al
d subituminous : 0.7 -4.4% COOH  (1977)
3 Austraiian Total acids 5% OH, Evans and
i brown (63% C) 5% COOH Hooper (1981)
Biraminous and ~ Total carbonyl 0.4 - 1.0% Ruberto et al
: subbiruminous (1977)
Austzlian brown  Total carbonyl 3% Evans and
(635 O Hooper (1981)

@A mounts in this column are weight percentages relative to coal.

otherwise.

b Ameunts in this column are weight percentages relative to coal unless indicated

CPercantages of oxygen of this functionality relative to overall oxygen
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Recent work on the structural elucidation of -OH groups in coal includes work done by
Cannon at al39, who have identified -OH functional groups in coal tars using FT-IR
- apparently there is a strong similarity between the IR of the parent coal and the
respective tars, with the tars giving better resolved spectra compared to the coal matrix.
Dadey at al*0 have also looked at -OH groups in coal via derivatisation with
diphenylphosphinyl chloride i.e by introducing a 3!P (which is a 100% abundant
magnetic nucleus) label into the coal. The signals corresponding to phosphinate ethers

were then integrated to produce a quantitative measure of the -OH content of the sample.

Contemporary acetylation work has been carried out by Bailey et al*! who have
acetylated a rank series of coals using a variety of reagents. They concluded that the
percentage of oxygen present in the coals as -OH was much higher when determined
with ketene (a toxic gas generated from the pyrolysis of acetone) compared with
derivatisation by other 'conventional' reagents. The greater reaction is probably due to
the fact that a smaller, more reactive reagent is being employed. Acetylation will be

looked at in greater depth in chapter 4.

A very recent paper by Monsef-Mirzai et al*2 has looked at the measurement of
hydroxyl groups in coal using microwave methodology and derivatisation with
silylating reagents. Good results were obtained for 11 different coals of varying rank
using a new mixture of derivatising reagents followed by quantitative 29Si nmr analysis.

Silylation will be discussed further in chapter 5.

Hydroxyl groups in coal may be detected with a reasonable degree of certainty by
employing spectroscopic methods and the hydroxyl content may be measured by
conversion into derivatives e.g acetylation, silylation, alkylation, etc ; but because of the
heterogeneous nature of these systems, there is always the ambiguity as to whether the
reactions have progressed to completion / equilibrium - and indeed a method-dependant

scattef of results is observed in the literature.

1.7.3 Why look at the O functionality ?

Direct coal liquefaction processes involve the thermal solubilisation of the coal in
solvents, which are usually procured from the coal. The preliminary step, for a process
at about 400°C, is primarily a thermal one where bonds with energy < 55 kcal / mol are
broken. Consequently aliphatic ether bridges are the first to rupture during coal
liquefaction. An order of reactivity of the oxygen functionalities in coal (with respect to

bond energies) has been drawn up by Mitchell*3 (see fig.1.07).
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Cronauer et al*4 have stressed the detrimental effects caused by the presence of phenolic
-OH groups during liquefaction - additional reaction time and an increased hydrogen
input, allied with powerful catalysts, are required in order to overcome this costly
obstruction and ensure complete reaction of the phenol and furan groups. Consequently
the hydroxy! groups and in particular the phenolic groups, are a very important class of
compound in coal liquefaction. The characterisation of these phenolic groupings are
therefore vital for the further development and understanding of these liquefaction

processes.

Another reason for the investigation of phenolic (and carboxylic acid) groups in coal is
that they are very polar and capable of entering into hydrogen-bonding within the coal.
This can lead to the creation of a secondary structure in coal, which again hinders
liquefaction. Work in this thesis is aimed at altering these acidic hydroxyl groups
chemically via derivatisation, in order to obtain quantitative information without altering
the generic nature of the coal matrix. Data obtained will allow us to study the
environment of the phenolic groups and give a measure of the amount of hydroxyl

functionality present in the coal.
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1.8 MICROWAVE TECHNOLOGY IN CHEMICAL SYNTHESIS

1.8.1 General Introduction

The application of microwave energy to chemical synthesis has undergone intensive
investigation over the last decade or so. The technique is especially well suited to the
production of small scale specialist materials of high purity €.g enantiomeric and
diastereomeric products and other asymmetric syntheses. The main driving force for the
development of microwave technology is the need for an efficient, environmentally
clean technology which can help to reduce waste products and other pollutants. Another
reason for the rapid growth in microwave research is the ; Increasing availability and
development of hardware for use both in laboratories and, perhaps more importantly,
on an industrial scale - this is largely due to advances in the field of microelectronics in
the 1970s. A wide range of organic and inorganic reactions have been accelerated using
microwave techniques and the rapid synthesis of these compounds can be attributed
primarily to superheating effects, which occur as the result of the effective coupling of
microwaves to the polar solvent in the containment vessel. Another advantage of
microwaves is that large temperature gradients in the reaction are avoided. The position,
size and shape of the sample also affects the heating, as the microwaves tend to ‘cut’
into the sample. For coupling of microwave radiation with molecules in solution, a
dipole moment is required - on irradiation with microwaves, di-electric losses occur
(due to dipolar polarisation in the microwave field) which cause friction and result in the

build up of heat.

1.8.2 What are microwaves ?

Microwaves are electromagnetic radiation situated between the infrared and radio
frequency regions of the electromagnetic spectrum. They cover the frequency range 300
MHz to 30 GHz corresponding to wavelengths between 1.0 m and 10.0 cm. The high
frequency range 1.2 - 30 GHz is used for radar, and the other frequencies are used in
telecommunications. Industrial and domestic microwaves usually operate at a frequency
of 2.45 GHz. Microwaves do not produce changes in molecular structure, but cause
molecular motion via exposing the molecules to non-ionising radiation. This radiation

causes the migration of ions and the rotation of dipoles.
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Figl.08 The position of microwaves in the electromagnetic spectrum

1.8.3 Microwave heating mechanisms

Microwave heating of solids and liquids has been shown to occur via two
mechanisms#-46, which both arise from the induction of a force on charged particles by
the electromagnetic wave. Consequently more polar materials will absorb greater

mucrowave radiation to emit more heat. The 2 mechanisms are

(1) Dielectric polarisation / dipolar rotation

Dielectric heating transpires when an oscillating electromagnetic field induces dipoles i in
a material and the associated relaxation times are t0o long to allow the polarisation to
follow the reversal of the field. The subsequent time lag between fluctuations in the field
and those of the induced dipoles is evident as energy absorption and heating. Dielectric
polarisation is affected by both frequency and temperature. The total polarisation of

material 1s composed of 2 main components :
(a) Dipolar polarisation

This is due to the permanent dipoles within the absorbing material due to the different

electronegativities of the atoms. This phenomenon is characterised by dielectric

parameters :

tand = -
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tand = loss tangent - this defines the ability of a material to convert electromagnetic
energy into heat energy. § is the angle between the charging current and the vector sum

of the charging current and the loss current#3. Loss tangents decrease with increasing
temperature (tand values for selected solvents are presented in Table 1.04).

€" = loss factor - this gives an indication of the efficiency with which the
electromagnetic energy can be converted into heat. The loss factor for non-polar liquids
/ solutions is very low and the values for polar liquids, such as alcohols, are usually

quite high.

&' = dielectric constant - this represents the capacity of the molecule to be polarised by

the electromagnetic field.
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Tablel.04
Dielectric loss tangents (tand) for some common solventsd5-46

Solvent Temperature °C Frequency (GHz) Loss taneent tan§
Water 25 0.3 0.015
25 3.0 0.15
25 10.0 0.54
05 3.0 0.28
21 2.58 0.16
50 2.58 0.10
65 2.58 0.094
98 2.58 0.090
Methanol 25 0.3 0.081
25 3.0 0.64
25 10.0 0.81
21 2.58 0.81
46 2.58 0.70
65 2.58 0.65
Ethanol 25 0.3 0.27
25 3.0 0.25
25 10 0.065
n-Propanol 25 0.3 0.42
25 3.0 0.68
25 - 10.0 0.087
n-Butanol 25 0.3 0.55
25 3.0 0.46
Ethylene glycol 25 0.3 0.16
25 3.0 1.0
25 10.0 0.79
Tetrahydrofuran 21" 2.58 0.065
40 2.58 0.060
60 2.58 0.057
65 2.58 0.055
n-Heptane 25 3.0 1.0 x 104
25 10.0 1.0 x 10-3
Tetrachloromethane 25 3.0 4.1 x 104
25 10.0 1.4 x 10-3
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(b) Interfacial polarisation

This arises from the build up of charges at interfaces between materials of different
dielectric constants.

(i1) Ionic conductance
This phenomena occurs when the charged particles are mobile, thereby inducing a
current due to the incident electromagnetic field. It is dependent on frequency and to a

lesser extent on tempera{ure‘

The absorption of microwave energy determines the penetration depth into the irradiated

medium i.e the higher the absorption, the less the penetration.

Microwave heating also has distinct advantages over conventional heating via
conductive methods. During conductive heating the containment vessel must first be
heated up before the energy is transferred to the solution. In order to heat the solution a
thermal gradient must be established via convection currents and only a small proportion
of the solution will be at the same temperature as the external vessel wall. With
microwave heating the whole of the solution is heated up instantaneously resulting in a
rapid attainment of its boiling-point and, if the sample is an enclosed environment,

superheating of the sample will occur.

1.8.4 Literatﬁre review

Microwaves have been used in chemical synthesis as far back as 1975, when
microwave heating was used to increase the rate of acid dissolution of samples in an
open beaker#7. Later this technology evolved into the heating of reagents in sealed
containers to effect superheating of the reactants. Microwave-driven reactions have been
shown to be superior to conventional methods in their ability to dramatically reduce
reaction times and in some cases give cleaner reactions - there is very little evidence to
suggest that microwaves significantly alter the pathway of a reaction, as can happen
with ultrasound. Microwave energy may be applied to solid, liquid or gaseous phases

and even heterogeneous systems.

Much of the early pioneering work was carried out in the mid-1980s by Richard N.
Gedye et al48-49 at the Laurentian University in Canada. His work concluded that
organic compounds could be synthesised up to 1240 times faster in sealed teflon vessels

in a microwave oven compared to synthesis by conventional reflux methods (see Table
1.05).
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Table 1.05
A comparison of reaction times and yields in representative reactions

using classical and microwave procedures.

Compopnd ' Procedure Reaction Average®  Knicrowave
synthesised followed time yield

kclassical

Hydrolysis of benzamide to benzoic acid in water
CeHsCOOH Classical I hour 90
CeHsCOOH Microwave 10 min 99 6

Oxidation of toluene to benzoic acid in water
CeHsCOOH Classical 25 min 40
CeHsCOOH Microwave S min 40 5

Esterification of benzoic acid with methanol
CeHsCOOCH; Classical 8 hours 74

CeHsCOOCH; Microwavea 5 min 76 96

SN2 reaction of 4-cyanophenoxide ion with benzyl chloride in methanol

NCCgH4OCH>CgHs Classical 16 hours 89
NCCgH40OCH2Ce¢Hs Microwave 4 min¢ 93 240
NCC6H4OCH2‘C6H5 Classical 12 hours 65
NCCgH4OCH,CgHs  Microwave 35 seccd 65 1240

4Very high pressures developed and the study of this reaction was halted.

bThe average yields are based on isolated yields and represent the average of at least two
experiments. The SN2 reaction was followed by titrating the chloride ion.

¢Value for one run only.
dThe reaction was done in a 50 cm3 teflon bomb.
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Gedye also proposed that the rate enhancement was predominately due to the
superheating of the solvent and further that the rate of microwave energy absorption

was dependent on the dielectric constant of the solvent :

TEMP.
[HCREASE
e

7 T T

5 o 1s 20
DIELECTRIC COUSTANT

Figl1.09 The effect of dielectric constant on the heating rate of various

organic liquids.
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Table 1.06
The temperature of 50 cm3 of several solvents after heating for 1 minute

at 560 watts in an open vessel in a microwave oven.

Solvent Temperature °C Boiling point °C
after 1min.
Water 81 100
Methanol 65 65
Ethanol 78 78
1-Propanol 98 97
1-Butanol 109 117
1-Pentanol 106 137
I-Hexanol 92 158
1-Chlorobutane 76 ' 78
1-Bromobutane 95 101
Acetic acid 110 119
Ethyl acetate 73 77
Methylene chloride 41 41
Chloroform 49 61
Acetone 56 56
N,N-Dimethylformamide 131 153
Diethyl ether 32 35
1,4-Dioxane 53 101
1-Butylamine 70 77
Tripropylamine 56 157
Hexane 25 68
Heptane . 26 98
Carbon tetrachloride 28 77

It can be seen from Table 1.06 that the more polar solvents absorb microwaves more
readily. When carrying out microwave reactions rapid heating creates very high
pressures in the reaction vessel - these increased pressures can lead to deformation of
the veésel and subsequently a possible explosion. To try to avert such a disaster Gedye
recommended that the volume of the reaction mixture should be kept down to between
10 - 15% of the volume of the container. Further work by Gedye et al50 on
elimination-substitution reactions of bromooctanes showed that microwaves did not

significantly alter the product composition of a reaction i.e the reaction pathway is not

critically altered.

Mingos and Baghurst# have also shown that the direct interaction of microwaves with

liquids results in very rapid and direct heating (see Table 1.07).
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Table 1.07 Microwave heating of common solvents

Normal Temperature | Superheated | Extent of
Solvent boiling attained in | temperature | superheat

olven point ("C)2 | lmin. ("C)b (°C) O
Water 100 81 105 5
Methanol 65 65 84 19
Ethanol 78 78
I-Propanol ' 97 97
2-Propanol 82 108 26
1-Butanol 117 109 138 21
2-Butanol 98 127 29
t-Butanol 83 112 29
1-Pentanol 136 106 157 21
2-Pentanol 119 135 16
t-Pentanol 102 115 13
1-Hexanol 158 92
1-Heptanol 176 208 32
Diethyl ether ‘ 35 32 60 25
THF(tetrahydrofuran) 67 103 36
n-Hexane 68 25
n-Heptane 98 26
Acetone 56 56 89 33
2-Butanone(MEK) 80 110 30
Cyclohexanone 155 186 31
Acetic acid 119 110
Ethyl acetate - 77 73 102 25
Acetonitrile - 82 120 38
DMF(Dimethylformamide) 153 131
Trichloromethane 61 49 89 28
Tetrachloromethane 77 28
I-Chlorobutane 78 76
|-Bromobutane- 101 95

4Pressure 1013 mbar
b50 cm3 heated at 560 W, 2.45 GHz for Imin : Initially at 'room' temperature.

The largest temperature rises occur in liquids for which the dielectric loss factors are
high, such as alcohols. As can be seen from Table 1.07 the liquids show significant
superheating effects. [t is also possible that superheating may occur locally in the body
of a liquid - this could happen if the microwave energy is rapidly absorbed into the
liquid, followed by relatively slow mixing and transport processes for its dissipation
- this could explain unusual reaction rate enhancements. Abramovitch3! proposed that

the most rapid temperature rises occur where high dipole moments are coupled with low

heat capacities.



Work has also been carried out on the heating of solids in microwaves4S (see Table

1.08). The heating is thought to take place via dielectric and conduction mechanisms.

Table 1.08 Microwave heating of solids

Material Heating time (min) Temperature attained”C
Al 6 577
C l 1283
Coy03 3 1290
CuCl 13 619
FeCls 4 41
MnCly 1.75 53
NaCl 7 83
Ni 1 384
NiO 6.25 1305
SbCl3 1.75 224
SnClp 2 476
SnCly 8 49
ZnCly 7 - 609
CaO 30 83
CeOy 30 99
CuO 0.5 701
Feo03 30 88
Fe304 \ 2 510
Lay0s N 30 107
MnO; ) 30 321
PbO, 7 182
Pb304 30 122
SnO 30 102
TiO, 30 122
V505 ) 9 701
W03 0.5 532

The values in the top part of the table refer to 25g samples at 1 kW, 2.45 GHz.
The values in the lower part of the table refer to 5-6g samples at 500 W, 2.45 GHz.

Good reviews of the applications of microwaves to organic synthesis are given by
Abramovitchd! and Mingos#3. Investigations have also been carried out on the

utilisation of microwave technology in the field of inorganic chemistry and

heterogeneous systems.
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Meek et al>2 have reported a microwave heating process for the preparation of Ni-AlyO3
powder from solutions of aluminium and nickel nitrates, whilst Bauer at al53 have
developed a continuous process for the manufacture of dielectric mixed oxide ceramics
from mixed nitrate solutions. Kozuka and McKenzie34 have managed to prepare metal
carbides by heating the oxides with graphite in a domestic microwave oven at 700W.
Baghurst et al43-35 have also carried out a great deal of work on the synthesis of
organometallic transition metal co-ordination complexes. Another field where
microwaves have been successfully employed is the intercalation of organic and
organometallic compounds into layered structures - the main problem normally
encountered in this type of reaction is that the intercalation processes are kinetically very
slow and reactions may not proceed to completion, even after several days of refluxing.
Chatakondu et al56 have succeeded in intercalating pyridines into a-VOPOy - a layered
mixed oxide - with a microwave exposure time of only 5 minutes at 80bar and 200°C.
Similarly, Ashcroft et al>7 have intercalated organotin compounds into laponite
(a synthetic smectite clay). The aryltin precursors were incorporated as tin(IV) oxide
pillars with benzene produced as a by-product. The microwave preparations were
irradiated for 5 minutes, whereas conventional mechanical shaking was carried out over
a 1 week period (see Table 1.09).

‘ Table 1.09
The wt% of precursor intercalated using mechanical shaking and

microwave methods.

Intercalated compound wt% intercalated wt% intercalated
Mechanical shaking Microwave method
(Ph3Sn),0O 10 33
Ph3SnCl 45 75
Ph,SnClp 38 44
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The possible use of microwaves in the sphere of coal research was outlined by Bailey et
al®8 (1990), who stated that microwaves are able to effect internal heating of a suitable
polar medium, in which the coal is suspended, during derivatisation. This is due to the
fact that coal is effectively transparent to microwave irradiation. Preliminary work was
carried out by Bailey et al4! (1992) on the acetylation of a rank series of coals and the
results showed that microwave-driven acetylation produced higher values in shorter
experimental time compared with conventional reflux methods. Work has also been
done by McWhinnie et al>? on the pyrolysis of coal in a microwave oven using various
metal oxide receptors and graphite - it was found that the method was very effective for
transferring the non-carbon elements - H, O, S and N into the liquid tar phase. More
recent work has involved the use of microwaves in the silylation of hydroxyl functional

groups in coal*2 - this will be discussed further in chapter 5.
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CHAPTER 2
2.1 PHYSICAL METHODS

2.1.1 FT-IR Spectroscopy

Fourier transform infrared spectroscopy was carried out using a Bio-rad FTS-40A
Spectrometer incorporating a 600 microwatt 632.8 nm CW class 1T laser. KBr discs
(4000 - 400 cm-!) were used for solid samples and NaCl discs (4000 - 625 cm-1) for
liquid samples, with a KBr beamsplitter. For analysis in the far infrared region, a mylar
beamsplitter was used with CsI discs (4000 - 145 cm ).

2.1.2 NMR Spectroscopy

The nmr spectra were obtained on a Brucker AC300 spectrometer, for which the static
field of the superconducting magnet was 7.04 T. The analyses were carried out by the
Aston University Department of Chemical Engineering and Applied Chemistry. Solid
samples were spun at the magic angle with a rotor speed of approximately 4000 Hz and

analysed using multinuclear or solid state probes.

2.1.3 Gas Chromatography

Gas chromatography analyses were carried out on an ATI unicam 610 series gas
chromatograph instrument using an initial temperature setting of 200°C, a final setting
of 300°C, a flame ionisation detector (FID) temperature of 330°C and a temperature rate
of 1°C min-!. The column was 2 metres in length and contained silicon grease on a

diatomite support. The carrier gas was nitrogen with a flow rate of 30 crm3min-!.

2.1.4 X-ray photoelectron Spectroscopy (XPS)
XPS measurements were carried out on a Fisons VG Escalab 200D spectrometer. The
source consisted of Mg K¢ radiation and analyses were carried out using a 20 or 50 eV

analyser, a dwell time of 50 or 100 ms and 2 - 8 scans.
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2.2 MICROWAVE EQUIPMENT

2.2.1 Sharp Carousel II R-84801

This is a domestic microwave with a power rating of 650 watts and an operational
frequency of 2.45 GHz. Much of the early work in this thesis was conducted on this
instrument. The Carousel IT R-84801 was not modified or adapted in any way for use in
the laboratory, but for safety reasons it was used under a fume hood.

2.2.2 Digestion vessels

The containment vessels used in conjunction with the Carousel II R-84801 microwave
consisted of teflon PFA digestion vessels - supplied by CEM* - incorporating relief
valves and venting nuts. These digestion vessels had a volume of 100 cm3 and were

transparent to microwave energy.

The digestion vessels were sealed shut using CEM capping stations and the safety relief
valve remained sealed up to an internal pressure of 830 + 70 kPa (tested by CEM at
50% microwave power (270 watts) using 30 cm3 water). Above this pressure the vessel
cap flexed and the pressure was relieved. When the pressure fell below 830 + 70 kPa

the cap resealed itself to maintain the pressure inside the vessel.

The digestion vessels are made from teflon (a fluoropolymer), have a melting-point of
approximately 300°C and are very resistant to chemical attack - teflon PFA has no
known solvent at temperatures up to 150°C. Teflon PFA is a soft plastic which is easily

scratched and can become discoloured when exposed to strong acids.
With prolonged use of the vessels, they may undergo physical defects :

(a) Absorption

Compbunds may become absorbed in the fluoropolymer matrix. There is very low
absorption of ionic inorganic materials, but hydrocarbon solvents may be absorbed at
their boiling-point, giving rise to about a 1% weight increase of the teflon PFA vessel.
Higher absorptions can occur when halogenated solvents are used. Absorption is

affected by physical parameters such as temperature.
(b) Environmental Stress Cracking (ESC)

This results in failure of the vessel due to exposure to a chemical environment under

conditions of mechanical and/or thermal stress.
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(c) Creep

This is permanent deformation due to an applied force. Increased pressures result in
greater creep and higher temperatures lead to a greater increase in the rate of creep. On
release of the pressure the vessel will partially return to its original shape. If the vessels
are cooled quickly, for example immersed in cold water, deformation will be less than if

they are allowed to cool slowly.

The CEM digestion vessels have a lifetime of between 50-100 digestions.

*CEM is a registered trademark.
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2.2.3 MES-1000 microwave system

For the latter part of the investigation an MES (microwave extraction system) -1000 was

acquired. The main features of this system are; a fluoropolymer-coated cavity fitted with
a cavity exhaust fan (exhaust air flow = 157 ft3min-! or 4.5m3min-1), a direct drive
alternating turntable, a tin-oxide semiconductor gas sensor designed for detecting
organic solvents, exhaust-tubing to vent fumes, a digital programmable computer (30
multistep programs consisting of up to 5 stages each) and 3 inlet/outlet ports to
accommodate control lines. The MES-1000 delivers approximately 950 + 50 watts of
microwave energy at a frequency of 2450MHZ at full power. The % power may be
programmed in at 1% increments to control the rate of heating and a microcomputer

controls and monitors operations.

Keyboard

Display

Push Button
Door Handle

\

[

Printer and
Computer Ports

Door Seal Turntable
Drive Stub

Fig2.03 MES-1000 microwave extraction system
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The MES-1000 is also equipped with a pressure monitoring device and a fibreoptic
temperature probe. Heating stops when a set temperature or pressure is attained

- effectively the pressure monitor acts as a baristat and the temperature monitor as a
thermostat.

The reaction vessel used in conjunction with the MES-1000 is manufactured from teflon
and encased in an Ultem* polyetherimide outer body and cap. The cap has three outlets
- the first of these is located at the top of the cap and is for the thermowell which holds
the fibreoptic probe. The other two outlets for the pressure sensing line and the rupture
membrane are both located at the side of the cap. At temperatures below 250°C the
vessel is resistant to attack from most chemicals. The vessel, encased in the
polyetherimide sleeve - which is also transparent to microwaves - can be used at
temperatures up to 200°C and pressures up to 200 psig or 1279 kPa (although a lower
pressure limit is recommended, because the pressure can fluctuate very rapidly by
+5 - 10 psig resulting in rupture of the pressure membrane, which is not designed to

handle pressures over 200 psig).
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The pressure is controlled by an onboard pressure control system. Tubing is attached to
the sample vessel and routed outside the microwave cavity through one of the
inlet / outlet ports. The pressure is sensed by a transducer and displayed graphically and
digitally on the LCD display' screen. A feedback signal to the system's magnetron

regulates microwave power output to maintain the selected pressure.

The temperature control system consists of a fibreoptic probe (which 1s microwave
immune) inserted into a Pyrex thermowell located in the control vessel. This is fed to a
temperature control board mounted on the system CPU board outside the microwave
cavity. Again, a feedback signal to the system's magnetron regulates microwave power
output to maintain the selected temperature. The temperature sensor is a phosphor

located at the tip of the probe.

The notable advantage of using this microwave control system over a domestic
microwave is that the user has precise control of operating conditions i.e temperature
and pressure, thereby introducing a whole new set of reaction parameters. The safety
considerations are also greatly enhanced by the presence of a solvent detection system,
the pressure rupture membrane, a cavity exhaust fan, the polyetherimide sleeve, three
door safety interlocks and an interlock monitoring system to prevent microwave

emissions when the door is open, and the fine control over reaction conditions.

*Ultemn is a registered trademark of the General Electric Company.
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2.2.4 Microwave procedure

(a) Sharp Carousel IT R-84801

The reactants were weighed into the teflon digestion vessel and the lid was screwed on
and tightened using the capping stations. The containment vessel was then placed in the
microwave cavity. The power level was set at a medium-high level and the reactants
were subjected to one minute bursts of microwave irradiation followed by subsequent
cooling in a beaker of cold water - care should be taken to ensure that the level of the
water 1n the beaker does not go near the 'lip' of the digestion vessel, as this can lead to
water entering the digestion vessel and contarninating the reaction products. This
procedure was repeated until the reaction had proceeded to completion. After completion
of the reaction the digestion vessel was allowed to cool, before the cap was opened
using the capping stations. The reason for this procedure is to ensure that the gas
pressure inside the container has reduced to a safe level. If the cap were to be opened
without cooling i.e straight after a reaction, there would be a large venting of high

pressure heated gas, which could burn, blind or scald the operator!

It should be noted here that the microwave reaction times indicated in the results and
derivatisation chapters refer to the time spent only in the microwave i.e not the total time

of microwave heating plus the digestion vessel cooling time.

(b) CEM-1000 Microwave System

The reactants were weighed into the open teflon vessel and the vesse] was placed in its
polyetherimide sleeve. Next the cap was screwed on hand-tight and the apparatus was
placed inside the microwave cavity. The pressure sensing line, pressure rupture line and
fibreoptic probe were then attached to the containment vessel. A ‘test' rotation of the
turntable was initiated to ensure that the lines did not cross over or entangle themselves,
before the parameters were programmed into the computer and the reaction started. With
this procedure there was no need for cooling of the reagents after subsequent bursts of
microwave irradiation, because of the in-built safety features of the CEM-1000.
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2.3 MODEL COMPOUNDS

The model compounds used in this study consisted of di- and tri-substituted phenols

with varying degrees of steric hindrance. They were supplied by the Aldrich Chemical

Company. The model compounds were :

1) 2,6-dimethylphenol (99+% purity)
2) 2,6-dusopropylphenol (97% purity)
3) 2,6-di-tert-butylphenol  (99+% purity)
4) 2,6-diphenylphenol (97% purity)
5) 2-phenylphenol (99+% purity)
6) 2,4,6-tri-tert-butylphenol (96% purity)

Subsequently phenolic resins were also used as model compounds, because these were

thought to give a closer approximation to the structure of the coal compared to the

phenolic compounds above. The phenolic resins were synthesised under the

supervision of Dr Colin Snape at the University of Strathclyde, Scotland. Three

phenolic resins were supplied :

OH

-

1) 1:1 Phenol-formaldehyde resin
2) 1:12,6-di-tert-butylphenol : phenol co-resite
3) 3:1 Phenol: 2,6-di-tert-butylphenol co-resite

H*orOH™

) OH OH
HCHO @CHon CyHOH @'CH.?‘@OH

o-Hydroxymethylphenol

lHCHO. CeHsOH
%
CH,

OH

MCH;@CH; OH

CH;

CH:

; HO CH,~~
o

Fig2.08 Synthesis of phenol-formaldehyde resin
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Fig2.09 Di- and tri-substituted model compounds
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2.4 DRYING OF COALS

The coals and coal macerals were dried by heating at 110°C under a dry Ny atmosphere,
for at least 24 hrs, in a Gallenkamp dryer. After drying of the coals and coal macerals
there was a significant reduction in the -OH stretching band at 3200 - 3600 cm-! in the
FT-IR spectrum indicating adsorbed moisture had been removed from the samples. One
of the problems associated with the drying of coals and coal macerals is that it is very
difficult to remove tenaciously held moisture, such as water-of-constitution associated
with silicates, from within the coal matrix - consequently, there is a possibility that
small amounts of residual moisture will still remain even after prolonged periods of
drying.
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2.5 SEPARATION OF COAL MACERALS

It is possible to separate coal macerals because different bulk macerals have different
relative densities i.e separation can be effected by using gravitational methods. The
coals were ground down using a dry grinding technique at the Coal Research
Establishment (CRE). This involved first breaking up the large chunks of coal in a
"Jaw-crusher" followed by fine grinding in a gyro-mill until the desired particle size was
obtained;.the coal was then passed through a 32 pm sieve. It was important to grind

down the coal as finely as possible for two reasons :

(a) to liberate as much mineral matter as possible (as this would have an effect on
the overall density of the macerals)

(b) to effectively disassociate the individual macerals and reduce the relative
amounts of bi- and tri-macerals

The instrument used for the separations was the Jouan CR4-22 centrifuge equipped
with an internal thermostat. Each cycle was operated at 4000 rpm for 1 hr at a

temperature of 16°C. The rotor radius on the centrifuge was 185 mm.

40g of the ground coal was weighed into a beaker and 800 cm?3 of the appropriate
density solutiorLl'was added to give 20% w/v dispersion (the solution densities were
made up using combinations of two of the following solvents : cyclohexane d=0.779
1,2-dichloroethane d=1.256 and carbon tetrachloride d= 1.594). The mixture was
stirréd and the be»aker was then placed in an ultrasound bath for 5 mins to ensure that

most of the coal particles were discrete.

- The solution was then equally divided up and weighed (to 2 dp) into 4 stainless steel
centrifu,ge tubes and placed in the centrifuge. After checking that there was no imbalance
due to the tubes, the programmed cycle was switched on. On completion of the cycle
the liquid layer was decanted from the centrifuge tubes and filtered using a Hartley
funnel under vacuum (No.l Whatman filter paper was used). The filtered coal was then

placed in an oven at approximately 80°C at -1bar to dry overnight.
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The next density solution was then prepared and used to wash out the precipitated coal
from the centrifuge tubes into a beaker. The volume was made up to 800 cm3 and the
beaker was again placed in an ultrasound bath for 5 mins. The procedure was then
repeated as outlined above and so on for subsequent density separations. This cycle was

repeated 3 - 4 times for each coal to build up appreciable amounts of each maceral.

The density fractions were specific gravity : < 1.25 (exinite / liptinite), 1.25 - 1.35
(vitrinite), 1.35 - 1.45 (inertinite), 1.45 - 1.55 (fusinite and mineral matter) and > 1.55
(heavier mineral matter). The like-maceral fractions from each run were collected

together and analysed using reflectance measurements (see Chapter 4).
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2.6 STANNYLATION PROCEDURE

2.6.1 Stannylation with tributyltin chloride

(a) microwave method

2.26g 2,6-dimethylphenol was added to 5 cm? tributyltin chloride and 5 cm?3 acetonitrile
(the microwave receptor) in a teflon digestion vessel. The digestion vessel was then
heated using microwave radiation. The acetonitrile was rotary evaporated off and the

sample analysed by FT-IR.

(b) reflux method
- 2.26g of 2,6-dimethylphenol was added to 5 cm? tributyltin chloride and 5 c¢m3
acetonitrile in a 50 cm3 round-bottomed flask. The solution was then refluxed for 4

days on a stirrer-hotplate, followed by rotary evaporation of the acetonitrile and analysis
by FT-IR.

2.44g of 2,6-dimethylphenol was added to 3.3 cm? tributyltin chioride and 20 cm3
toluene in a 50 cm3 round-bottomed flask. The solution was refluxed for 4 days on a

stirrer-hotplate, followed by rotary evaporation of the toluene and analysis by FT-IR.

2.6.2 Stannylation with bis-tributyltin oxide (TBTO)

(a) microwave method - model compounds

20 mmol of the sterically-hindered phenolic compound was put into a teflon digestion
vessel, along with_ll?. mmol (an excess) of the stannylating reagent bis-tributyltin oxide
(TBTO). The microwave receptor - either 10 cm3 acetonitrile or 5 cm? acetonitrile + 5
cm?3 toluene - was then added and the digestion vessel was sealed shut using the
capping stations. The sample was then subjected to bursts of microwave radiation with
intermittent cooling. The acetonitrile; (and toluene) and water (if produced) were then

diStiMed off using a Heidolph VV2000 rotary evaporator and the product was cooled

and analysed.
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(b) microwave method - coal samples

1.0g of coal along with 5 cm3 TBTO (stannylating reagent) and the microwave receptor
- either 10 cm3 acetonitrile or 5 cm3 acetonitrile + 5 cm3 toluene - were placed in the
digestion vessel. The vessel was then sealed and subjected to bursts of microwave
radiation with intermittent cooling to prevent the pressure building up to dangerously
high levels. On completion of the reaction, the sample was cooled and the coal was
filtered using a No.4 sintered-glass crucible under suction filtration and washed with
toluene or acetonitrile. Finally the coal was dried (in a glass boat) by placing it in a

Gallenkamp dryer at approximately 110°C over dry nitrogen and leaving it overnight.

(c) reflux method - model compounds

20 mmol of the sterically-hindered phenolic compound was weighed into a 50 cm?
round-bottomed flask, along with 12 mmol (an excess) of TBTO (the stannylating
reagent). Next 20 cm3 of toluene solvent was added and the round-bottomed flask was
fitted with a Dean-Stark trap and a condenser. The mixture was then refluxed using a
stirrer-hotplate for the appropriate time (usually 2 hrs). The product was then cooled

and analysed.

(d) reflux method - coal samples

1.0g of coal was weighed into a 50 cm3 round-bottomed flask along with 5 cm?3 of
TBTO and 20 cm3 of toluene. The round-bottomed flask was fitted with a Dean-Stark
trap and a condenser and the mixture was then refluxed using a stirrer-hotplate for the
appropriate time (usually 24 hrs). The coal was then filtered using a sintered-glass
crucible No.4 under suction filtration and washed with toluene. Finally the coal was
dried (in a glass boat) by placing it in a Gallenkamp dryer at approximately 110°C over

dry nitrogen and leaving it overnight.
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Fig2.12 Filtration of derivatised coal
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2.7 ACETYLATION PROCEDURE

2.7.1 Acetylation of coal - classical method

0.5g of the coal was acetylated using a mixture of 3.3 cm3 acetic anhydride (CH3CO)20
and 6.7 cm? pyridine CsHsN. The reagents were put into a round-bottomed flask fitted
with a condenser and refluxed using a stirrer-hotplate for the appropriate time. The
contents were then poured onto distilled water, stirred and the acetylated coal filtered
off. The precipitate was then washed thoroughly until the effluent was free of acid. as
indicated by litmus paper, and dried at 100°C under a dry Na blanket overnight. The
measurement of the acetyl groups in the acetylated coal, and hence the amount of
hydroxyl groups in the original sample, was determined by alkaline hydrolysis followed
by acidification, distillation and titration of the liberated acetic acid. The distillation was

carried out stepwise until the titre reached a blank value.

The dried acetylated coal (0.10g) was hydrolysed by refluxing with 10 cm3 of 0.3M
barium hydroxide solution (barium hydroxide is quite insoluble in water and should be
made up using lukewarm water just before required) for the appropriate time (usually 24
hrs). After cooling, the reaction mixture was filtered, acidified with a few drops of
phosphoric acid (H3PO4) and distilled. After 20 cm?3 of distillate had been collected it
was titrated against 0.1015N NaOH using phenolpthalein indicator - the solution went
from colourless in the presence of acid to pink when the solution was neutral. The
procedure was theil repeated several times by adding 20 cm?3 aliquots of distilled water
and continuing the distillation until a constant titre, equal to the blank titre, was
obtained. The titrations were carried out using an Interflon 5.0 cm? micro burette. The
respective titres were then added together to give the total titre, from which the acetyl
content of the coal was calculated.

2.7.2 Acetylation of coal - microwave method

0.5¢ of the coal was acetylated using a mixture of 3.3 cm3 acetic anhydride (CH3CO),0
and 6.7 cm? pyridine CsHsN. The reagents were put into a teflon digestion vessel with
the cap sealed, placed in the microwave cavity and subjected to microwave radiation for
the appropriate reaction time. The contents were then poured onto distilled water, stirred
and the acetylated coal filtered off. The precipitate was then washed thoroughly until the
effluent was free of acid, as indicated by litmus paper, and dried at 100°C under a dry
N, blanket overnight. The measurement of the acetyl groups in the acetylated coal, and
hence the amount of hydroxyl groups in the original sample, was determined by alkaline
hydrolysis followed by acidification, distillation and titration of the liberated acetic acid.

The distillation was carried out stepwise until the titre reached a blank value.
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The dried acetylated coal (0.10g) was hydrolysed either in the microwave oven by
adding 10 cm3 0.3M barium hydroxide to the coal in the containment vessel and
subjecting the heterogeneous mixture to microwave radiation or by reflux (see 2.7.1).
After cooling, the reaction mixture was filtered, acidified with a few drops of
phosphoric acid (H3POg4) and distilled. After 20 cm? of distillate had been collected it
was titrated against 0.1015N NaOH using phenolpthalein indicator - the solution went
from colourless in the presence of acid to pink when the solution was neutral. The
procedure was then repeated several times by adding 20 cm?3 aliquots of distilled water
and continuing the distillation until a constant titre, equal to the blank titre, was
obtained. The titrations were carried out using an Interflon 5.0 cm?3 micro burette. The
respective titres were then added together to give the total titre, from which the acetyl

content of the coal was calculated.
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2.8 SILYLATION PROCEDURE

The sample to be silylated (1.0g resin / 0.5g coal) was first dried overnight in the
Gallenkamp dryer at 110°C over dry N». The sample was then weighed into a teflon
digestion vessel along with 2 c¢m3 N-(trimethylsilyl) imidazole (TMSI) and 8 cm3
acetonitrile (CH3CN) and heated in the microwave. Microwave heating times varied
depending on the sample. After reaction the sample was filtered using a No.4
sintered-glass crucible, washed thoroughly using dry acetonitrile and dried overnight at

110°C over dry N7 in the Gallenkamp dryer.

89




2.9 METHYLATION PROCEDURE

2.9.1 Method 1 - methyl iodide

The sample (3.26 mmol phenolic compound) and 6.52 mmol of silver tetrafluoroborate
(AgBF4) were dissolved, with stirring, in 11.0 cm?3 of dichloroethane under an inert
atmosphere of argon. The methyl iodide (6.52 mmol) was then introduced via a syringe
and the mixture was left to stir overnight. On completion of the reaction the mixture was
filtered and washed with an excess of acetonitrile. The filtrate was then rotary
evaporated to remove the solvent and the residue (if a solid) was dried overnight at
110°C over dry N».

2.9.2 Method 2 - methyl formate

The dried sample (10 mmol phenolic compound) was added to 50 mmol methyl formate
(HCOOCH3), 0.30 mmol cetyltrimethylammonium bromide catalyst and 7 cm?3
acetonitrile solvent. For the microwave method the reagents were put into a sealed teflon
digestion vessel, placed in a microwave and irradiated with microwaves (usually for 30
mins). The bench top method involved refluxing the reagents (usually for 24 hrs).-On
completion of reaction the sample was rotary evaporated or filtered and washed with

acetonitrile, depending on whether a solution or solid in solution were obtained.

2.9.3 Method 3 - phase transfer

10 mmol of the p.henolic compound, 20 mmol of 0.2M sodium hydroxide solution and
20 mmol of methyl 10dide were placed in a separating funnel to give two immiscible
layers. 1.0 cm?3 of 15-crown-5 ether was then added and the mixture was agitated and
left to stand for two days. After two days the mixture was separated and silver nitrate
(AgNO3) was added to the aqueous solution to see how much silver iodide (Agl)
precipitated. The layer containing;the methylated phenol compound was rotary

evaporated to isolate the product.
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STANNYLATION

3.1 INTRODUCTION

The hydroxyl group, and in particular the phenolic group (which constitutes the bulk of
the hydroxyl functionality in middle rank coals) is one of the more abundant
oxygen-containing functional groups in coal. Consequently it has a significant influence
on the behaviour and properties of coal during processes such as hydroliquefaction - the
nature, degree of hydrogen bonding (polarity) and the amount of hydroxyl functionality
present are all factors which have a bearing on the quality of products obtained, and a
knowledge of these characteristics can give a useful indication as to which solvent(s) are

suitable for the solubilisation processes.

Much work has been done in the past on attempting to gain a comprehensive insight into
the distribution and nature of these hydroxyl groups in coals (section 1.7.2). Most of
these methods involve multi-step derivatisation of the hydroxyl functionality with the

appropriate reagents.

One group of reagents which have been utilised in the determination of hydroxyl
functionalities in coal are those derived from Group 14 elements. Silylation work?28:42
has been carried out with some success, resulting in the quantitative derivatisation of
some of the more hindered phenolic groups in coal. The derivatising reagent favoure- in

these cases is the {rimethylsilyl- reagent.

Work has also been carried out using organotin reagents. John Larsen et al60 (1982)
developed a method for incorporating 119Sn into coal for the purpose of structural
elucidation. The procedure involves refluxing the sample with bis(tributyltin) oxide
(n-BuzSn)70 in toluene solvent followed by subsequent analysis via Mossbauer
spectroscopy. The work concluded: that, for Illinois No.6 and Rawhide (Wyodak)
- both low rank coals with appreciable amounts of oxygen - nearly all the reacted tin had
a trigona{l bipyramidal structure. For this type of structure to exist it was proposed that a
heteroatom was in close proximity to both the derivatised hydroxyl group and the tin,
and that this heteroatom co-ordinated directly with the tin. From these conclusions it can
be inferred that the hydroxyl groups (for the coals studied) were paired with

heteroatoms and the nature of this pairing in the solid coal was in the form of hydrogen

bonding.
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Further work was carried out by Esfandir Raffi et al®! on the characterisation of phenols
from coal liquefaction products by using '19Sn nuclear magnetic resonance
spectroscopy. Raffi and his co-workers succeeded in stannylating 33 phenols (as well
as some alcohols, thiols and thiophenols) by using the bis(tributyltin) oxide (TBTO)

reagent in toluene solvent.
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Table 3.01
119Sn chemical shifts for TBTO derivatives for several phenols and

selected thiols and alcohols6!

Compound 8(119Sn)2 ppm

2-chlorophenol
a-naphthol
2-phenylphenol
B-naphthol
4-chlorophenol
4-phenylphenol
2,6-dimethylphenol
phenol
2-methylphenol
4-tert-butylphenol
4-methylphenol
2-ethylphenol
3-ethylphenol
2,5-dimethylphenol
4-methoxyphenol
4-ethylphenol

OO OOODOO O — = r— = I

DA N0 00000 b (N 00
CMUNPOEOOONO R WWVLEN

-

2,3-dimethylphenol 105.9
2,4,6-trimethylphenol 105.6
3-methylphenol 105.
3,5-dimethylphenol 104.8
2-isopropylphenol 104.8
4-isopropylphenol : 104.8
3,4-dimethylphenol 104.7
2,3,5-trimethylphenol 104.5
5-isopropyl-2-methylphenol 104.3
2,4-dimethylphenol 103.6
2-isopropyl-5-methylphenol 103.2
2.,4-dimethyl-6-isopropylphenol 102.9
2-indanol ) 102.7
resorcinol ‘ 102.2
2-tert-butylphenol - 101.0
hydroquinone ‘ 99.6
benzyl alcohol 99.0
2-tert-butyl-4-methylphenol 98.5
cyclohexanol 92.5
1-butanol 89.8
2-octanol 81.8
thiophenol 79.5
4-methylthiophenol 77.6
2-hydroxyquinoline ' 75.7
benzylthiol 73.0
1-butanethiol 72.1
8-hydroxyquinoline . 70.1
1-methylcyclohexanol 63.2

aA]] chemical shifts of neat liquids are reported as relative to tetramethyltin
§119Sn(TBTO) = 83.0 ppm
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The work in this chapter involves further research into the derivatisation of hydroxyl
groups in coals and coal macerals via stannylation. Experiments were first carried out
on substituted phenols, which acted as model compounds for the hydroxyl groups in

coal, and then progressed to the coals and coal macerals.

The first stage of this work involved the testing and selection of suitable microwave
solvents with which to carry out the microwave reactions. Five different solvents
/ mixtures of solvents were tested on a reaction known to work using acetonitrile and

from these, two suitable solvents were selected for the microwave work.

The distribution of the microwave radiation within the microwave cavity was also
mapped, thus ensuring that the reaction vessel could be positioned, such that in

successive experiments it was exposed to the same microwave flux.

The next step involved work with the model compounds (di- and tri-substituted

phenols). These were reacted with two different tin reagents :

(a) Tributyltin chloride BuzSnCl
(b) Bis(tributyltin) oxide (n-Bu3Sn),0 (TBTO)

Tributyltin chloride and bis(tributyltin) oxide were supplied by Aldrich and both

reagents were of 96% purity.

The objective was to incorporate the tin into the model compounds and use this as a
magnetic label to determine the chemical shifts of the respective model compounds (with
. respect to a tetramethyltin standard). The isotope !!19Sn has a natural abundance of
8.45% :compared to a 29Si abundance of only 4.71%. The phenol compounds were
reacted under both conventional (reflux) and microwave conditions to compare the rate

and efficiency under different operating conditions.
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The final step was to stannylate the four coals - Gedling and Ollerton (low-middle rank
coals) and Creswell and Cortonwood (silkstone) (middle rank coals) - and the Creswell
and Cortonwood macerals. The aim was to form C-O-Sn linkages with the coal -OH
groups, so that investigations into the environment of the metal, and hence the hydroxyl
functionality, could be carried out using spectroscopic techniques. As with the model
compounds, reactions were compared using both bench top (reflux) and microwave

techniques.

The TBTO reagent has a much larger steric requirement than the trimethylsilyl-
derivatising reagent because of the difference in size between Sn and Si (both Group 14
elements). It is this feature of tin which may enable us to map out the steric environment
of the coals, as well as affording valuable data on the -OH content. This may be done
by derivatising the various hydroxyl functionalities in the coal / coal maceral using a tin
reagent and then comparing the amount of derivatisation achieved via stannylation with
that effected by using an alternative derivatising technique, such as silylation. Because
we would expect less derivatisation for a larger reagent, we would be able to determine
the proportion of more sterically-hindered groups in the sample by collating the two

methods.
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3.2 EXPERIMENTAL

3.2.1 Testing of microwave-receptor solvents

The five solvents / mixtures of solvents tested were :

—

. Acetonitrile

o

. Acetonttrile : Toluene
. Acetonitrile : Nitromethane

. Nitromethane : Toluene

wn S W

. Nitromethane

All the reactions were carried out in the Sharp Carousel II R-84801 with the microwave
oven on a medium-high setting. The reaction involved the stannylation of 1.0g Creswell
coal (particle size <500>212 pm) with 5 cm3 TBTO and 10 cm? of the solvent / solvent
mixture (in the case when there was a mixture of solvents. 5 c¢m3 of each solvent was
used giving a consistent total solvent volume of 10 cm3). The reagents were placed in a
100 cm3 CEM teflon digestion vessel and the cap was tightened using capping stations.
The digestion vessel was then placed in the centre of the microwave turntable and
microwave heating was initiated. The total microwave heating time was 5 minutes
(with the sample subjected to 1 minute bursts of microwave radiation followed by 1
minute cooling by immersing the digestion vessel in a 500 cm? open beaker containing
250 cm?3 HyO. This cycle was repeated until the sample had been subjected to 5 minutes

of microwave heating).

The coal was then filtered and dried and analysed subjectively using FT-IR. The coal
products from the most promising;solvent / mixture-of solvents were also analysed
. using solid-state 119Sn MASNMR.

The distribution of microwaves within the microwave cavity of the Sharp Carousel I
R-84801 was tested by heating 100 cm3 distilled H2O in a 250 cm? open beaker, placed
at different positions on the turntable, for 1 minute. The initial temperature of the water
was room temperature (18 °C). After 1 minute in the microwave oven, the temperature

of the water was quickly measured and then plotted relative to the beaker's position on

the turntable.
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3.2.2 Model compounds

For FT-IR plots of the model compounds (di- and tri-substituted phenols) please refer
to Appendix L.

The procedure for the stannylation of model compounds using the tributyltin chloride
reagent is outlined in section 2.6.1. The microwave reaction was carried out in the
Sharp Carousel II R-84801 on a medium-high setting using the 100 cm3 digestion

vessels.

The procedure for the stannylation of model compounds using the bis(tributyltin) oxide
reagent is outlined in sec_tions 2.6.2(a) and 2.6.2(c). The microwave reaction was
carried out in the Sharp Carousel II R-84801 on a medium-high setting using the 100

cm3 digestion vessels.

The products were analysed using GC, FT-IR and !!9Sn MASNMR.

3.2.3 Coals and coal macerals
The coals used in this study were supplied by the CRE Sample Bank*.

The procedures for the stannylation of the coals using the TBTO stannylating reagent
are outlined in séctions 2.6.2(b) and 2.6.2(d). The microwave reaction was carried out
in the Sharp Carousel II R-84801 on a medium-high setting using the 100 cm3

digestion vessels.

The coal macerals were separated using facilities at CRE, Stoke Orchard, as described

in section 2.5, and the stannylation of these macerals is outlined in section 2.6.2(b).

The coals and coal macerals were analysed using FT-IR, 119Sn MASNMR and XPS.
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Fig 3.01

Reflux apparatus for the stannylation of coals and model

compounds.

* The CRE Coal Bank was established in 1982 to supply universities and other research
organisations with small quantities of representative and well characterised UK coals.
B§7 doing this it hopes to achieve comparability of results through the use of common
samples and to co-ordinate research in the UK. The CRE Coal Bank currently
comprises 22 coals ranging from high volatile bituminous coals to anthracite.
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3.3 RESULTS AND DISCUSSION

3.3.1 Selection of microwave-receptor solvents

Before experimentation could proceed it was important to select suitable microwave
solvents for both the coal and model compound reactions. Three different solvents were
investigated - acetonitrile, toluene and nitromethane. Toluene was used in conjunction
with both acetonitrile and nitromethane because of its low microwave receptivity. An

acetonitrile / nitromethane mixture was also tested.

Table 3.02 Data on microwave-receptor solvents

microwave — m.wt b.pt °C density formula hazards
solvent (g cm-3) ‘
Acetonitrile  41.0 82 0.79 CH3CN flammable
lachrymator
Toluene 92.14 111 0.87 CeHsCHs  flammable
toxic
Nitromethane 61.03 101 1.20 CH3NO> toxic

The reactions were carried out as outlined in section 3.2.1 with each reaction mixture
heated for 5 minutes in the microwave oven on a medium-high setting. The reaction
used to test the solvents was the stannylation of 1.0g Creswell coal of particle size
.<500>212 um with 5 cm3 TBTO reagent and 10 cm3 solvent. The reactions were

carried out using the solvents / mixture of solvents shown in Table 3.03:
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Table 3.03 Selection of microwave solvents

REACTION No. SOLVENT VOLUME cm3
1 acetonitrile 10.0
2 acetonitrile : toluene 50:50
3 acetonitrile : nitromethane 50:5.0
4 nitromethane : toluene 50:50
5 nitromethane 10.0

After reaction was complete the coal was filtered, dried and analysed by FT-IR. The IR
spectra obtained are shown in fig 3.02 and fig 3.03. The main region of interest is
where the hydrogen-bonded OH can be found - approximately 3600 - 3200 cm-!. The
reaction taking place is the stannylation of the hydroxy! groups in the coal by the TBTO

reagent :

2R-OH + (BusSn),0 — 2R-O-SnBu3 + H,0

As can be seen from the IR spectra, reactions utilising nitromethane solvent and the
nitromethane : toluene mixture of solvents did not appear to show any significant
reacntion, whereas the acetonitrile, acetonitrile : nitromethane and acetonitrile : toluene
solvent reactions indicate that some reaction has taken place by the 'flattening’ of the IR
peak and / or reduction in -OH stretéhing frequencies in the 3600 - 3200 cm-! region of
- the IR spectrum. The acetonitrile solvent appears to show the best extent of reaction,
with a reduction in intensity of the 3600 - 3200 cm-! band and the spectrum becoming
more well-defined in the 'fingerprint' region (2000 - 500 cm-!) - this is probably due to
the reduction in hydrogen-bonding effected by stannylation. A peak at approximately
730 cm! also corresponds to a Sn-O asymmetric stretch, as found in the reagent. The
acetonitrile : nitromethane reaction product was analysed by 119Sn MASNMR with 'H
decoupling (fig 3.04), but no 119Sn peaks were observed. This may be due to the fact
that 119Sn has long relaxation times in Creswell coal or another factor to consider is
that, when this analysis was carried out, a broad band !!9Sn amplifier was not yet
available for the Bruker AC 300, as it was for subsequent 119Sn spectra - this may be
the reason why the instrument had difficulty detecting the !19Sn signal.
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A major drawback of using nitromethane (either by itself or as a mixture) is that the
solvent tended to superheat very rapidly (within 10 - 20 seconds) compared to
acetonitrile. This led to high temperatures and very high pressures building up in the
digestion vessel. Subsequently the relief valve vented allowing the pressurised
gas / solvent to escape, leaving behind less solvent for the ensuing reaction. One reason
for this rapid superheating may lie with the structure of nitromethane. The nitromethane
molecule is fairly acidic (pKa = 10.2) due to the fact that the conjugate base is

resonance-stabilised :

+ /0 2 + /0 +/O‘
CH3N —> H+ + [.:CH:)-N H ~:CH2N H CH2=N ]
N N AN AN

O . O O o)

O

These resonance structures and the formation of the methylnitronate ion may result in
the solvent being more receptive to microwave irradiation. Because of this rapid
superheating of nitromethane it is necessary (o cool the digestion vessel for prolonged
time periods (2 -3 minutes) after relatively short periods of microwave radiation

(10 -20 seconds) - this can be very time consuming, especially when long microwave

_heating times are required. Another negative factor relating to the use of nitromethane as

a microwave solvent is that greater deformations occur in the digestion vessels due to

the increased pressures.
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After careful consideration it was decided that acetonitrile was the optimum solvent for
our purposes. It has a dipole moment of 3.92 D and a dielectric constant of 36.2
(at 25°C)02. Rate acceleration is achieved via an Arrhenius effect due to the superheating
of the solvent and the acetonitrile extracts the minimum amount of labile components
from the coal under experimental conditions - previous work involving GC / MS
analysis has also shown that, of the limited amount of material extracted,
oxygen-containing materials constitute a negligible quantity of the extract when
acetonitrile is employed as a solvent. When the appropriate reagents were not suitably
soluble in acetonitrile, acetonitrile and toluene were used, with toluene acting as a
mutual medium for both the reagent and the microwave receptor. It is permitted to use
mixed solvents in microwave reactions as long as one is a microwave receptor and they

do not interfere with the reaction pathway or each other.
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3.3.2 Investigation into the distribution of microwave radiation in the
microwave cavity

The microwave oven in which the testing was carried out was the Sharp Carousel I
R-84801. The procedure is as outlined in section 3.2.1. Table 3.04 shows the variation
in temperature relative to the beaker's starting position (the position of the beaker before
microwave heating was initiated) on the turntable. Distance zero indicates the centre of
the turntable, with negative numbers indicating beaker starting positions to left of the
centre and positive numbers indicating beaker starting positions to the right of the
centre, along the horizontal diameter of the turntable. The diameter of the turntable was

0.36 metres and testing was carried out in triplicate :

Table 3.04

Temperature of water relative to its position on the microwave turntable

Distance from the centre of the turntable Temperature from 3 consecutive runs

(m) C

+0.06 56. 56, 54

+0.12 v 54, 57, 54

+0.18 56, 58, 55

0.00 70, 69, 69

-0.06 54, 57, 56

-0.12 ; 56, 53, 54

-0.18 55, 56, 56
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Variation in ithe temperature of 100 cm3 water relative to its starting

position on the microwave turntable

The tests show that there is indeed a variation in microwave flux, which is dependant
upon the position of the reaction vessel within the microwave cavity. It is the centre of
the microwave cavity which appears to be the position of greatest microwave flux. If the
beaker is placed at the centre of the turntable during one run and then at the edge of the
”turntable on a consecutive run then, assuming the starting conditions are the same,
differences in temperature of up to 17°C can result between the two runs. Further
testing revealed that if the reaction vessel was placed on a circumference from its
position on the diameter and microwave heating initiated, the temperature of the water
varied between + 6°C under the same reaction conditions. These results conclude that it
is important to position the reaction vessel in the same position (i.e the centre of the
turntable - the position of greatest microwave flux) for each successive experiment to
ensure comparability of results. It should also be noted that over a period of time the
magnetron tends to degenerate and operate less efficiently - this is especially true for

domestic microwave ovens.
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3.3.3 Stannylation of model compounds
The FT-IR spectra for the reagents can be found in Appendix II. Data for the model

compounds used in these experiments is shown in Table 3.05 :
Two different stannylating reagents were tested.

(a) Tributyltin chloride
Tributyltin chloride (m.wt 325.49) is a colourless corrosive liquid of density 1.20

gem 3, It has a b.pt of 172 °C and is toxic by inhalation, ingestion and contact.

~Initially stannylation of 2,6-dimethylphenol (the least hindered phenolic compound) was
attempted via both microwave and reflux methods - the procedures are outlined in
sections 2.6.1(a) and 2.6.1(b) respectively. The proposed reaction is the stannylation of

the hydroxyl functionality in the model compounds :

R-OH + n-Bu3SnCl — R-O-SnBus + HCI

Using the microv}ave method the reagents were heated for 15, 30, 45 and 60 minutes in
separate reactions. Fig 3.06 shows the IR spectra obtained after a reaction time of 15
mins in the microwave oven. There are 2 spectra in the plot - the spectrum at the top is
that of the unreacted 2,6-dimethylphenol compound and beneath it is the reaction
product. The hydrf)Xyl functionality is still intact in the reaction product, as indicated by
the band at 3600 - 3200 cm-!. The product also shows an intense peak at approximately
2950 cm-! which corresponds to C-H stretching of the butyl groups in the reagent and
another })eak at approximately 600 cm! corresponding to C-Sn asymmetric stretching.
The peak corresponding to O-H stretching is also still visible at approximately 1300
cm-!. Similar spectra were also obtained for the 30, 45 and 60 min reactions (figs
3.07 - 3.08). It is evident from the FT-IR spectra that the microwave-driven

stannylation of 2,6-dimethylphenol using the n-tributyltin chloride reagent was

unsuccessful.
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Next reflux of the reagents was carried out for 4 days, but again the FT-IR spectrum
(fig 3.09) indicates that stannylation was unsuccessful. Reflux was also attempted using
toluene solvent, instead of acetonitrile. Again the reagents were refluxed for 4 days and
the toluene was then rotary-evaporated off. A yellow solution was obtained from
which, on cooling, white crystals precipitated. These were filtered and analysed by
FT-IR. Spectroscopic analysis (fig 3.10) showed that these crystals were unreacted
2,6-dimethylphenol.

The unwillingness of the n-tributyltin chloride reagent to react seems to suggest that this
reagent is very sensitive to reaction conditions. The Sn-Cl bond is covalent but
polarised and the extent of polarisation can be greatly influenced by the nature of the

medium and the other reagents present - both radical and polar reactions have been

known to occur. Dissociation is possible as a limiting case :

R3Snd+- CI— & R3Sn+ + Cl-

The n-tributyltin chloride reagent also reacts with water resulting in rapid and reversible

hydrolysis :

2Bu3SnCl + H;0 < Bu3SnOSnBuz + 2HCI
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The product of this reaction is bis-tributyltin oxide (TBTO) - a stannoxane. If this
reaction is occurring then rhis product should react with the phenolic compound (see
later - section 3.3.4) to give a stannylated product. This, however, is not the case and
other reactions must be involved - one such reaction may be a backside attack on the
hydroxyl group of the substituted-phenolic compound by the acidic tin to form a
trigonal bipyramidal complex. This reaction would effectively 'kill' off the reagent
rendering further reaction impossible :

Cl -

Cl , B
AN /\ ’ Bu < )
S
/ \ /r Bu + H*
u

In conclusion n-tributyltin chloride is not an effective stannylating reagent for hydroxyl

functionalities due to the fact that side reactions occur preferentially and harsh reaction

conditions, such as an inert atmosphere, are required.
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(b) Bis-tributyltin oxide (TBTO)
The model compounds were reacted with TBTO using both microwave (section
2.6.2(a)) and reflux (section 2.6.2(b)) techniques.

Initially all the model compounds were reacted by refluxing with TBTO in 20 cm?3

toluene solvent for 2 hours. The products were analysed by FT-IR.

FT-IR data for the stannylation of 2,6-dimethylphenol (fig 3.11) show that
derivatisation was successful - this is shown by the disappearance of the -OH bands
(O-H stretch at 3600 - 3200 cm! and O-H bending at 1335 cm-!). The same is also true
for the 2,6-diisopropylphenol, 2,6-diphenylphenol and the 2-phenylphenol compounds
(figs 3.12 - 3.14). The 2,6-di-tert-butylphenol and 2,4,6-tri-tert-butylphenol
compounds showed little inclination to react. The distillate collected in the Dean-Stark
trap was analysed by FT-IR and found to be toluene (with small droplets of water at the

bottom when stannylation occurred).

It was decided to extend the reflux time and react the 2,6-di-tert-butylphenol compound
for 24 hours - but, again no stannylation was observed (fig 3.15). The reaction time
was then extended to 3 days, but still no stannylation was observed (fig 3.16). It was
decided to try an alternative method of reaction - ultrasound. The reagents (using the
2,6-di-tert-butylphenol compound) were left in a closed glass vessel in an ultrasound
bath for 24 hours;_l‘»The toluene was then distilled off and the product was analysed by
FT-IR (fig 3.17). No stannylation was observed.

The next stage involved carrying out the analogous reactions in the microwave oven

using acetonitrile solvent instead of toluene - toluene is not a good microwave-receptor

solvent.

Stannylafion was observed for 2,6-dimethylphenol (fig 3.18), 2,6-diisopropylphenol
(fig 3.19), 2-phenylphenol (fig 3.20) and 2,6-diphenylphenol (fig 3.21) after only 1
min of microwave heating. The 2,6-di-tert-butylphenol and 2,4,6-tri-tert-butylphenol

showed no inclination to react either after 1 min or 60 mins heating in the microwave

oven.
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Table 3.06 Stannylation of model compounds using reflux methods

Model compound Reflux time -Evidence of stannylation from FT-IR
2,6-dimethylphenol 2 hrs yes
2,6-diisopropylphenol 2 hrs yes
2-phenylphenol 2 hrs yes
2,6-diphenylphenol 2 hrs yes
2,4,6-tri-tert-butylphenol 2 hrs no
2,6-di-tert-butylphenol 2 hrs no

24 hrs no

72 hrs no

(ultrasound) 24 hrs no
Table 3.07

Stannylation of model compounds using microwave methods

Model compound Microwave heating time Evidence of stannylation

(min) from FT-IR
2,6-dimethylphenol 1.0 yes
2,6-diisopropylphenol 1.0 yes
2-phenylphenol 1.0 yes
2,6-diphenylphenol 1.0 yes
2.4 6-tri-tert-butylphenol 1.0 no

60.0 no
2,6-di-tert-butylphenol 1.0 no

60.0 no
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The stannylated 2,6-dimethylphenol, 2,6-diisopropylphenol and 2,6-diphenylphenol
were analysed by gas chromatography.

(a) 2,6-dimethylphenol

Using the reflux method 3 major peaks were observed on the GC plot. The first of these
is at RT (residence time in minutes) 0.751 - a blank gas chromatograph experiment
using just the model compound dissolved in toluene showed that this peak 1s due to the
toluene solvent. The other 2 peaks are in close proximity at RT 3.303 and 3.517
(fig 3.22). It is highly probable that the product has a slightly higher boiling-point than
the unreacted phenol due to the bonding of a high m.wt entity - the tributyltin derivative.
Consequently we would expect the peak at RT 3.517 to be our product. This
indicates a conversion of [(50.02341 / 75.81604) 100% ] = 66% for the
2,6-dimethylphenol compound. The other minor peaks in the GC plot are probably due
to impurities in the TBTO, such as tributyltin hydroxide. The microwave method
showed a 100% conversion with the product peak at RT 3.873 (fig 3.23).

(b) 2,6-diisopropylphenol

For the reflux method the main product appears at RT 4.105 indicating 100%
conversion. The solvent peak is at RT 0.785 and the other minor peaks are due to
impurities in the 2,6-diisopropylphenol compound (fig 3.24). With the microwave
method the product is at RT 4.567 and the acetonitrile peak is at RT 0.633. In this

instance there is again 100% conversion (fig 3.25).

(c) 2,6-diphenylphenol
Using the reflux method GC analysis reveals only 2 peaks - the first of these is a
combination of ether (used to clean the syringe before extraction and injection of the
sample in the gas chromatograph) and toluene (the reflux solvent). The second peak 1s
“the product. GC analysis indicates 100% conversion after 2 hrs reflux (fig 3.26). The
microwave method reveals 2 major peaks. The first of these is the acetonitrile solvent
peak and the other major peak (third peak on GC plot) is the product. Again the GC plot
‘ndicates 100% conversion (fig 3.27). The small peak at RT 1.467 is probably due to

impurities in the TBTO.
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STHRT

—) §.778

e 5,090

(
Teluene + Zé-d&nc%‘a%em(
RT AREA TYPE WIDTH AREA %
0.770 4940259 PB 0.073  89.87926
3.090 556291 PB 0.270  10.12073
Total area = 5496550
Mul Factor = 1.0000E + 00

EMD OF S1GHmML

3TRRT
L Q 0s === 9.7 351
1.582
T YIS
Sbanmz)to.ked 2,b-dimeth lt)laem
‘ AREA TYPE WIDTH AREA %
0.605 144504 PV 0.036 1.43614
0.751 1836427 VB 0.062 18.25117
1.582 174212 PP 0.256  1.73139
3.303 2595248 PV 0.355 25.79263
3.517 5033341 VB 0.717  50.02341
8.201 278243 BV 0.973 2.76529
Total area = 1.0062E + 0.7
Mul Factor = 1.0000E + 00
STCOP

Fig3.22

GC plot of the stannylated 2,6-dimethylphenol compound

(reflux method)
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STRART

T = s Acebonibrile + 2,6-dumethylphencd

r/ RT AREA TYPE WIDTH AREA %

0.622 102657 PV 0.033  1.57925
0.705 2768789 VB 0.079  42.59446
3.633 3628902 PB 0.442  55.82629
Total area = 6500346

stop Mul Factor = 1.0000E + 00

STHRT

Stannylakec 2,6-dunebhylphene

5 273 RT - AREA TYPE WIDTH AREA %
0.668 325257 PV 0.041 3.53628
0.804 8149 VB 0.093  0.08860
1.765 70444 A% 0.336  0.76589
3.066 38891 vV 0.478 0.42283
3.873 8754973 VB 5232 95.18642
Total area = 9.1977E + 0.6
Mul Factor = 1.0000E + 00

Fig3 .23

GC plot of the stannylated 2,6-dimethylphenol compound
(microwave method)
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== 0.7%5

Toluenz + 2.6 nﬁiscpmpjlp}wenc\

RT AREA TYPE WIDTH AREA %
9.3 0.654 137747 PV 0.038 0.95910
0.795 4241750 VB 0.089  29.53419
1.571 4763 BV (0.182  0.03310
2.970 5689 VP 0.548  0.03961
4.182 7655011 PB 0.426  53.29987
9.736 2317205 PP 2220 16.13409
Total area = 1 4362E + 0.7
Mul Factor = 1.0000E + 00
ENO OF SIGH=L
SITHKL
esbacked il J1.73%
4,108
St:anmz)(.akep\ 2,6 —J,(L’scf-)mf)d ‘.p%emi
RT AREA TYPE WIDTH AREA %
5. 295 0.640 657340 PV 0.037 6.31653
0.785 2070931 VB 0.075  19.90006
1.620 63245 BY 0.305  0.60774
2.785 65532 \AY) 0.712 0.62971
4.105 72776590 \“AY, 1.108 69.93299
8.298 271924 \YAY 2.584 2.61298
Total area = 7678391
Mul Factor = 1.0000E + 00
STOP .
Fig3.24

GC plot of the stannylated 2,6-diisopropylphenol compound
(reflux method)
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START

4,567

RT AREA TYPE WIDTH AREA %

T 9.954¢8 0.633 985147 PB 0.041 13.71008
1.669 54162 BP 0.281 0.75376
2.872 21760 pp 0.490  0.30283
4.567 6006064 PB 1.158  83.58515
9.546 118432 pp 2.004 1.64819
Total area = 7185565
Mul Factor = 1.0000E + 00

STOPR

Fig3.25

GC plot of the stannylated 2,6-diisopropylphenol compound
(microwave method)
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O'OOOO'OF 2500
|
2.000! |
Shuwﬁlo.heo\ 2,6- diplwqg)iphef\f)\
RT AREA TYPE WIDTH AREA %
0.500 286.706 BB 0.619 95.062
2.533 14.892 BT 0.596 4.938
. 2500
O.OOOD 00

N

2.000

Toweue

RT AREA TYPE WIDTH AREA %
0.483 455.952 BB 4.140  100.000

Fig3.26

GC plot of the stannylated 2,6-diphenylphenol compound

(reflux method)
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0
00009 . 25.0C

S

2.000

Acekonikrile

RT AREA TYPE WIDTH AREA %

0.417 446.455 BT 3.983  100.000

0.000:% ] 25.00

2.000

Stennylabedl 2,6 -duphenylphencl
RT

YAREA TYPE WIDTH AREA %
0.533 108.146 BB 0.634  86.634
1.467 1.576 BB 0.593  1.263
2.533  15.108 BB 0.587 12.103
Fig3.27

GC plot of the stannylated 2,6-diphenylphenol compound
(microwave method)
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Table 3.08 GC analyses of

stannylated model compounds

Stannylated Main peaks Assignments % Conversion
compound (residence time
RT)
2,6-dimethylphenol
reflux method 0.751 toluene 66
3.303 unreacted model cmpd*
3.517 stannylated model cmpd
microwave method 0.668 acetonitrile 100
3.873 stannylated model cmpd
2,6-diisopropylphenol
reflux method 0.785 toluene 100
4.105 stannylated model cmpd
microwave method 0.633 acetonitrile 100
4.567 stannylated model cmpd
2,6-diphenylphenol
reflux method 0.500 toluene 100
_ 2.533 stannylated model cmpd
microwave method 0.533 acetonitrile 100
2.533 stannylated model cmpd

*cmpd=compound
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The GC data corroborates the FT-IR spectra for the stannylated model compounds and
shows that in all cases, with the exception of the reflux method using the
2,6-dimethylphenol compound, all the model compound was converted to the
stannylated derivative. In the case of 2,6-dimethylphenol, the microwave method shows
a distinct advantage over classical reflux methods in its ability to drive reactions quickly
and efficiently to completion. This is one of the major advantages of using microwave
methodology.

The stannylated samples were also analysed by nmr spectroscopy. Two
isotopes - '17Sn and 119Sn - were investigated in order to determine which would give
~ aclearer nmr spectrum. The standard used was tetramethyltin. The TBTO reagent gave
a signal at approximately 93 ppm, with the 119Sn isotope producing a better signal (figs
3.28 - 3.29). The stannylated 2,6-dimethylphenol (reflux method) gave a clear signal at
approximately 116 ppm - again a better resolution was obtained using the !19Sn isotope
(figs 3.30 - 3.31). The microwave method for the 2.6-dimethylphenol compound
yielded a single sharp !!9Sn peak at approximately 115 ppm (fig 3.32). The stannylated
2,6-diisopropylphenol compound gave peaks at approximately 113 ppm (reflux
method) and 112 ppm (microwave method) - fig 3.33 and fig 3.34 respectively. The
stannylated 2,6-diphenylphenol produced a very well-defined peak at approximately
127 ppm for both the reflux and the microwave methods (figs 3.35 and 3.36
respectively) and the stannylated 2~phenylpheﬁol produced signals at approximately 121
ppm (reflux method - figs 3.37 - 3.38) and 120 ppm (microwave method - fig 3.39). It
appears that for a given amount of instrument time the signal / noise ratio is superior for

the 119Sn nucleus compared to the 117Sn nucleus.
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117Sn nmr of the stannylated 2,6-dimethylphenol compound
(reflux method)
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117Sn nmr of the stannylated 2-phenylphenol compound

(reflux method)
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119Sn nmr of the stannylated 2-phenylphenol compound
(microwave method)
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Table 3.09 Chemical shifts for stannylated model compounds

Stannylated S (ppm) S (ppm) Comments
compound (reflux method) | (microwave method)
2,6-dimethylphenol 115.8 (117Sn) 114.5 (119Sn) 119Sn gave a better
115.6 (119Sn) signal than 117Sn
2,6-diisopropylphenol | 113.0 (119Sn) 111.8 (119Sn)
2,6-diphenylphenol 126.7 (119Sn) 126.5 (119Sn)
2-phenylphenol 120.6 (117Sn) 119.7 (119Sn) 119Sn gave a better
120.5 (119Sn) signal than !17Sn

TBTO produced chemical shifts at 93.1 ppm (!17Sn) and 93.0 ppm (!19Sn)

1195 was shown to be more sensitive than !17Sn (both have a spin 1/2). The reason
for this is because of the slightly greater abundance of !19Sn (8.58%) compared to
117Sn (7.61%) and the greater receptivity (on a scale where the receptivity of 13C is
taken as 1.0) of 119Sn (25.2) compared to !17Sn (19.54). Both 119Sn and I17Sph have
similar gyromagnetic ratios and typical values of T are between 2.0 - 0.02 seconds

(which is rapid for a spin 1/ 2 nucleus).

" As can be seen from Table 3.09 there are slight changes in chemical shift (1.2 ppm)
for the same reaction. These chemical shift changes can be attributed to various factors

including solvent effects, magnetic fluctuations and temperature variations when the

sample was analysed.
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The model compound work has shown that TBTO is a more suitable reagent for our
purposes than Tributyltin chloride, which preferentially undergoes side-reactions. This
points to an important conclusion concerning the methodology - microwave heating will
not necessarily accelerate only a reaction of particular analytical interest, but the rates of
side reactions may also be accelerated. Consequently it is desirable to select reagents
with no or minimum side reactions, such as TBTO. Another drawback of utilising the
triorganotin chloride reagent in thé microwave oven is that there is a loss of reagent due

to volatility, as well as accelerated loss of reagent due to side reactions.

Because the Sn nucleus (atomic radius 1.40 A) is larger than the Si nucleus (atomic
radius 1.17 A) we would expect an order of accessibility with the more sterically
demanding substituted-phenols finding it more difficult to react with the stannylating
reagent - the TBTO. The work in this chapter has shown this to be true. The more
hindered phenols such as 2,6-di-tert-butylphenol, are less likely to react because the
steric demand of the ortho-substituents is too great. The 2,6-dimethylphenol, 2,6-
diisopropylphenol, 2,6-diphenylphenol and 2-phenylphenol compounds all reacted after
only 1 minute in the microwave oven (the mono- and di-substituted phenylphenols
reacted well because, although their substituents are fairly bulky, they lie in a planar
plane and are able to 'skewer' away from the hydroxyl functional group allowing the
reagent room to attack), whereas 2,6-di-tert-butylphenol and 2.4,6-tri-tert-butylphenol

showed no inclination to react at all.

The results also show the ability of microwave radiation to drive reactions to
equilibrium much more rapidly and efficiently than conventional (reflux) methods. Rate
acceleration up to 120 times faster was achieved for the stannylation of the model

- compounds when using microwave methodology.
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The '19Sn nmr data for the stannylated model compounds shows that distinct peaks are
obtained for different substituted-phenolic compounds. This could afford valuable data
on the nature of phenolic groups in coals - stannylation of the phenolic group could
introduce a magnetic label into the coal, which could be analysed by 119Sn MASNMR
to ascertain which hydroxyl groupings are present. However, due to steric differences,
not all the phenolic groups will be stannylated - this would allow us to map out the
extent of the more hindered phenolic groups in coal i.e the more sterically demanding
n-Bu3Sn- derivative will show a lower apparent -OH content for a given coal than that
determined by using, say Me3Si- derivatives, thus enabling the proportion of more
hindered -OH groups to be established. Subsequently it would be possible to map out
the density of -OH sites of differing degrees of steric hindrance by treatment of the same

coal with a range of reagents of differing steric demand.

3.3.4 Stannylation of coals

The coals used in the stannylation experiments were Creswell, Cortonwood (Silkstone),
Gedling and Ollerton. Three particle sizes were investigated for Creswell coal. These
were <500>212 um, <212>90 pm and <90 pm. All other coals were of particle size |
<212 pm. Table 3.10 shows the analytical data for the coals. The attempted reaction

may be summarised as :

2SN
BusSn  SnBuy + 2 OH ——> 2QOSnBu3 + H,0

TBTO Phenolic compound Stannylated phenolic Water
compound

The TBTO reagent also reacts with thiol, carboxylic acid and aliphatic hydroxyl
groups - if present in the coal. The coals used in this study do not contain appreciable
amounts of carboxylic acid groupings and the total S content is only about 1.0% : thus
the main reaction occurring will be that of the TBTO with hydroxyl, and in particular

phenolic functional groups.
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The reaction is essentially a condensation reaction and occurs fairly rapidly and
exothermically. A polar mechanism appears to be operating whereby the lone pair of
electrons on the oxygen of the organotin reagent acts as a nucleophile towards the
phenolic hydrogen, which is rendered positive and detached as a proton. The
electrophilic tin centre then attacks the electron-rich phenolic oxygen to give the
stannylated product and water as a by-product. The reactions were carried out as
outlined in sections 2.6.2(a) and 2.6.2(d). With the microwave experiments acetonitrile
was used as the solvent. It is possible to characterise the products by 119Sn MASNMR
because the !19Sn chemical shift depends upon the nature of the substituted-phenol

compound which is being stannylated - as shown by the model compound work.

The first coal to be stannylated was Creswell. which is a middle rank coal (86.2% C,
5.6% O). Three different particle sizes were tested (<500>212 pum, <212>90 pm and
<90 um). The <500>212 pum size coal was reacted with TBTO, using acetonitrile
solvent, in the microwave oven for 5, 10 and 30 mins in separate reactions. An
analogous bench top reaction was also carried out using TBTO and toluene solvent - the
reagents were refluxed for 24 hrs. The <212>90 pm particle size coal was also reacted
for 5, 10 and 30 mins in the microwave oven and for 24 hours on the bench top
(refluxing in toluene). The <90 um particle size coal was subjected to 5, 45, 75 and 120
mins of microwave heating in separate reactions and reacted for 24 hrs on the bench top

refluxing in toluene.

Fig 3.40 shows the FT-IR spectrum of the Creswell coal. The -OH band is clearly
visible at 3410 cm-1. Other absorption bands commonly found in the IR spectra of coals

are’shown in Table 3.11 :
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Table 3.11 Absorption bands in the IR spectra of coal

Band position

Assignment

cm!
3300 -OH (stretching), -NH (stretching)
3030 Aromatic C-H (stretching)
2940 Aliphatic C-H (stretching)
2925 -CHj (stretching), -CH3 (stretching)
2860 Aliphatic C-H (stretching)
1700 C=0 (stretching)
1600 Aromatic C=C (stretching), C=0, -OH
1500 Aromatic C=C (stretching)
1450 Aromatic C=C (stretching), -CH3 (asymmetric deformation)
-CH»> (scissor deformation)
1380 -CH3 (symmetric deformation), cyclic -CH»
1300-1000 Phenolic and alcoholic C-H (stretching)
Car-O-Cy; (stretching), Cy-O-Cyj (stretching)
Car-O-Cy (stretching)
900-700 "Aromatic" bands

The prominent band which occurs at about 1600 cm-! in the IR spectra of coals has

been variously assigned to :

(a)
(b)
(c)
(d)

i

Polynuclear aromatic structures connected by predominantly aliphatic - CH> -

Hydrogen-bonded or -OH chelated carbonyl groups

Electron-transfer between aromatic carbon sheets

Non-crystalline pseudographitic, but not necessarily aromatic, C-C

configurations

Other important IR spectral bands are given in Table 3.12 :
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Table 3.12 IR absorptions of organotin compounds

Bond IR bands (cm1) Assignments
Sn-C (in Sn-Bu) ~ 585-605 asymmetric stretch
500-515 symmetric stretch
Sn-O (in (R3Sn),0) 737-790vs asymmetric stretch
395-415m symmetric stretch
Sn-O (in Sn-0O-C) 960-1100 stretch
Sn-OH 885-910s deformation

vs = very strong m = medium § = strong

Fig 3.41 shows the IR spectrum of the product from the microwave reaction of the
<500>212 pm particle size Creswell coal after 5, 10 and 30 mins in the microwave
oven. The IR speétrum shows that there is a definite reduction of the -OH band at about
3400 c¢m-! indicating stannylation has taken place. There is also a small band at
approximately 1100 cm! indicative of Sn-O-C bond formation. As the microwave
heating time increases there is only a very slight reduction in the intensity of the -OH
" stretching band - indicating that the majority of the reaction has already taken place after
only 5 mins heating in the microwave oven. The results from the 24 hrs reflux
’experiment for the <500>212 pm size coal (fig 3.42) also indicate that some
stannylation has taken place, but in this case the degree of stannylation appears to be

less than that obtained after 5 mins in the microwave oven.

The stannylation of the <212>90 pum particle size Creswell coal was also shown to
occur after only 5 mins in the microwave oven (fig 3.43). There was no significant
improvement in stannylation for this particle size after 10 mins or 30 mins further
heating in the microwave oven. Again, the reflux method showed that reaction had

occurred after 24 hrs (fig 3.44), but not to the same extent as after 5 mins microwave

heating.
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The final particle size (<90 pum) showed hardly any reaction after 5 mins in the
microwave oven (fig 3.45), and only a slight reaction after 45, 75 and 120 mins of
microwave heating (fig 3.46). The extent of reaction after 24 hrs refluxing in toluene
was similar to that obtained after only 5 mins reaction time in the microwave oven

(fig 3.47) for the <90 wm particle size.

Table 3.13 Stannylation of the different particle sizes of Creswell coal

Creswell particle . Evidence of stannylation from
size (ULm) FT-IR
<500>212 Microwave method :

The reaction works after 5 mins and there is a slightly improved
reaction after 10 mins, whereafter the reaction does not
significantly improve with successive time increments.

Reflux method :

Some stannylation has taken place after 24 hrs, but there appears

to be less stannylation compared to the microwave method.

<212>90 Microwave method :

The reaction works after 5 mins. No significant improvement n
| reaction after a further 10 mins or 30 mins microwave heating.
Reflux method :

Some stannylation after 24 hrs, but not as much as after 5 mins in

the microwave oven.

<90 Microwave method :

Hardly any reaction after 5 mins, but there was a limited reaction
after 45, 75 and 120 mins. This reaction was not as complete as
the <500>212 wm and <212>90 pm particle size reactions.

Reflux method :

Hardly any reaction after 24 hrs reflux.
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119Sn MASNMR shows that the stannylated <500>212 ptm Creswell coal (reacted for
30 mins in the microwave oven) gives a fairly broad signal with a major peak at 110
ppm (fig 3.48) - this corresponds to the stannylation of 2,6-dimethylphenol-type
structures (see section 3.3.3). The stannylated <212>90 wm particle size (reacted for 5
mins in the microwave oven) shows a much clearer resonance (fig 3.49) peak at 106
ppm. According to data collected by E.Raffi et al®l, this signal corresponds to the
stannylation of phenolic compounds such as 2,3-dimethylphenol, 2,4,6-
trimethylphenol, 3-methylphenol, 2,5-dimethylphenol and mono-substituted 2-, 3- and
4-ethylphenol i.e phenolic compounds with small steric demand - this correlates well
with the work done on model compounds in section 3.3.3. A similar 119Sn MASNMR
spectrum is obtained for the <212>90 pm particle size stannylated Creswell coal using
the reflux method (fig 3.50). The <90 pum particle size Creswell (reacted for 120 mins
in the microwave oven) produced no signal in the !19Sn range (fig 3.51), but this is not
too surprising considering the reaction, as indicated by FT-IR, did not appear to

proceed very far.

From the results it appears that the <212>90 pum particle size reacted best, very closely
followed by the <500>212 pm particle size and finally the <90 pm particle size. It is not
fully understood why the <90 pm particle size shows such little inclination to react, but
one explanation may be that because of the larger surface area of the <90 um particle
size coal, 1t undef’rgoes greater atmospheric oxidation - this results in a large increase in
ether linkages in the coal, which could effectively trap the large stannylating reagent and
hinder its progress in trying to reach the hydroxyl functionalities. Also, because the
different particle sizes of the coal are from the same ‘cut' of one Creswell sample
(the same samplé of Creswell coal has been passed successively through 500 pum,
212 um and 90 um wire-mesh sieves), it is possible that particles such as bi- and
trimacerites (containing groups such as phenolic functional groups) could be 'lost'
during earlier separations, thereby leaving the smaller particle size with an overall
deficiency in functionality. Another factor to consider is that when grinding to very low
particle sizes, more mineral matter (such as pyrite) and ash-forming particles (such as
clay and sand) may be released into the ground coal. These entities may have a
'damping’ effect on the reaction - the presence of a greater proportion of mineral matter

results in less coal being available for reaction.
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The Cortonwood coal (£212 pum) was reacted for S mins and 60 mins with TBTO and
acetonitrile solvent in the microwave oven. Fig 3.52 shows the FT-IR spectra of the
Cortonwood coal - the -OH stretching band at 3400 cm-! is very prominent. Fig 3.53
shows the Cortonwood coal after S mins and 60 mins reaction in the microwave oven.
The spectra shows that there is very little reaction after 5 mins, but there is a noticeable
reduction in the -OH band intensity after 60 mins indicating some reaction has taken

place.

The Gedling coal (€212 um) was reacted for 5, 30 and 60 mins in the microwave oven
using TBTO and acetonitrile solvent. Fig 3.54 shows the FT-IR of the Gedling coal
- again the -OH stretching absorptions are very noticeable. Fig 3.55 shows the IR
spectra of the coal after 5, 30 and 60 mins reaction in the microwave oven. The spectra
shows that there is hardly any reaction after 5 mins or 30 mins, but a significant reaction
after 60 mins (similar to the Cortonwood coal). Fig 3.56 shows the comparison
between the raw Cortonwood coal and the reacted (60 mins in microwave oven)

Cortonwood coal.

The Ollerton coal was reacted for 5, 60 and 120 mins in the microwave oven using
TBTO and acetonitrile solvent. There was no change after 5 mins, but some reaction
after 60 mins which did not improve significantly even after 120 mins of microwave
heating (figs 3.57 - 3.58).
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Table 3.14 Stannylation of Cortonwood, Gedling

and Ollerton coals in the microwave oven

Coal - particle size Evidence of stannylation from FT-IR
<212 um
CORTONWOOD Hardly any reaction after 5 mins. Some reaction after 60
mins.
GEDLING ~ Hardly any reaction after 5 mins / 30 mins. Some reaction

after 60 mins.

OLLERTON Hardly any reaction after 5 mins. Some reaction after 60

mins. No further reaction after 120 mins.

Of the four coals tested, Creswell appears to be the most reactive. In comparison to
Creswell, Cortonwood (which is of a similar rank) showed little reactivity for the same
particle size. One explanation for this unreactivity could be that Cortonwood contains
slightly less oxygen than Creswell (5.6% w/w O for Creswell compared to 4.8% w/w
O for Cortonwood). Because both coals are of a similar rank we would expect more
hydroxyl functional groups to be present in the Creswell coal and hence a more rapid
reaction, because the reagent only needs to diffuse short distances before reaction
occurs resulting in a greater reduction in the -OH band in the IR spectra with respect to
reaction time. But if this statement were true we would expect to find rapid reactions
occurring with the Gedling and Ollerton coals (10.3% w/w O and 8.3% w/w O
respectively), which we do not! One reason for the inactivity of the Gedling and
Ollerton coals may be due to the fact that they contain relatively large amounts of
inertinite (20% vol and 16% vol respectively) in their maceral make-up. Inertinite, as the
name suggests, is a fairly unreactive material and could hinder the reaction pathway
between the TBTO reagent and the hydroxyl functionalities. If this is the case then a

more in-depth analysis of the macerals which constitute the coal is required - see section

3.3.5 and chapter 4.
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Another more probable explanation is that the unreactive coals contain a higher degree
of more hindered phenolic groups and the large TBTO reagent finds it difficult to attack
the hydroxyl functionality, because of the large steric demand. A significant amount of
the oxygen present in the unreactive coals may also exist in functionality other than the

hydroxyl group - this aspect is investigated in chapter 4.

3.3.5 Stannylation of Creswell macerals

Attempts were made to stannylate the Creswell and Cortonwood macerals, as only these
coals had produced satisfactory maceral separations (see section 4.3.1). All three of the
Creswell macerals were stannylated for 60 mins in the Sharp Carousel II microwave
oven. Figs 3.59a - 3.59¢ show the FT-IR spectra of the unreacted Creswell exinite,
vitrinite and inertinite macerals respectively. The exinite maceral group shows
appreciable -OH content (as shown by the peak centred at 3334 cm-!) and a greater
degree of aliphatic character (aliphatic C-H stretching at 2919 cm-!) than the vitrinite and
inertinite macerals. The Creswell vitrinite maceral again shows appreciable -OH content
(-OH stretching peak centred at 3333 cm!) and significant aliphatic character (aliphatic
C-H stretching at 2917 cm-1). The Creswell inertinite maceral, however, appears to
have relatively less -OH and less aliphatic character compared to the other two maceral
groups. There are also three peaks at 753 cm-!, 812 cm-! and 865 cm!, which are more
discernible in the Creswell inertinite IR plot - these are due to substituted benzene
groups and indicate a greater aromatic character. Fig 3.60 shows a multispectral IR

display showing all three Creswell macerals on the same plot for comparison.

Fig 3.61 shows the IR spectrum for the stannylated Creswell exinite maceral. Although
peaks due to stannylation are evident at 586 cm™! (asymmetric Sn-C stretching),
1376 cm-! (symmetric -CH3 deformations) and 1460 cm-! (C-H deformations), there is
still a significant peak due to -OH stretching centred at 3430 cm!. There is also a peak
at 1074 cm-! which is probably due to Sn-O-C asymmetric stretching. Fig 3.62 shows
the IR spéctmm for the stannylated Creswell vitrinite maceral group. Again, peaks due
to stannylation can be observed at 1075 cm™! (Sn-O-C), 586 cm! (Sn-C), 1377 cm!
(-CHj3 deformations) and 1462 cm-! (C-H),.but the -OH stretching vibration at 3415
cm-! is still a dominant peak on the plot. Fig 3.63 shows the FT-IR plot for the
stannylated Creswell inertinite maceral. In this instance, the peaks due to stannylation
are much weaker compared to the other two stannylated macerals, which appears to -

suggest an inferior reaction. Fig 3.64 shows an IR comparison of the three stannylated

Creswell macerals.

181




[e120BW dJIUIXd W ZES [[9mSaI]) 3yl Jo I

B6S €314
"8=534
FLINIX3 2E-T13MS3HD 20 107d
autraseg
) mLmQEDCm>mI
005G . 000°% 00GT 0002 0052 "~ 000E
L 1 1 | n h
g 3 2
L 3 =
g |3 8
WA :
m_ ﬂ %“. m_
»| 2 -
m_ B ]
Duin 3 .
o i
g_, = |

——r—————%£"/5 ‘g-28¥

—<E°/[6 ‘B'YEY

cE-X3HD

00GE 000¢

— ]

0°veee

8
&
w
3
B
_

|

—06

—96

—B86

L o unE-RR OC oo

ek

182



[e10ewW AJIULIIIA Wl ZES [[2MS3ID) 3Y) JO YI

q6S €310
"8=534
JLINIHLIIA 2E-T713MS3HD 40 107d
auTraseg cE-1AHD
SJdaqunuUaABM
00g 0007 00G7 0002 0o0Ge 000€ 00SE 000Y
1 | L _ _ [ 1 1
—v8
a8
g
i I
8 2 2 88
aﬂ | »
W__ 8 —06
8 w
u_ ! 2B
* ! |
m |

L'CeeE

L O CWwE "4 0C o

aR

183



[ereoew jrupaul wil 7S [[PMsaI) 43 Jo Al

965°€381d
"8=5=H
JLINILHINI 26-113MS3H0 40 L0d
autrasegd 2E~-NIHD
8JaqUNUIABK
008 - 0007 0087 0002 00Ce 000E 00&E 000y
l | 1 B [ { [
® 2 % —08
n P
P |5 28
B 5 )2 WH K
4k 3 =
e | 98

88'28 9'VLE

—81°68
——=82°68

—c oM Bt ©C OO

aR

184



sjedaoew Wl 7S [[9MSaI) Y} JO uostiedwod Y]

09°¢€314
" 8=83H
SIYHIOYW 2E-T113MS3HI 3HL 40 NOSIHYJWOD
2611140 2E-1AHD 2E-X3HD
SJ3qUNUBAEBH
008 0007 00G¥ 0002 00 000E 00GE 000%
| _

| 1 1 1 { [
_,, : —093

1

SHUEE

3R L oo ERSP 0O 0O

185



guneay M sunw (9 JI9jye JUIXKd Wl 7S [[9mS3I]) paje[Auue)s ayy Jo I

19°€31
"B8=534
SNIW09 MW - 3LINIXF 2E-TI1IMS3HI OQ3LVIANNYLS
dUT[os8eY 08-r61027THI
SJaqUNU3ARY
00¢G 0007 00GT 000¢ 00Ge 000E 00GE 000y
| 7 { | | . L [
m ﬁxmm
&
| : g
» ﬁ # 0
5B s 2 3
£ 4 g o4 2 @ —98
> mm_ ~ m
A : d o —88
z S
£ m - H 06

kR

186

Lo CWmEtPP O0COQ

aR



duneay Mw suiw (9 133y NULIA Wi 7¢S [[PMSaI) pajB[Auue)s ay) Jo Y]

79°€319
"8=53¢
SNIWOS MW - 3LINIHIIA 26-T13MS3HD OILYIANNYLS
autTaseg
SJBQUNUSARY
00¢ 0007 0057 0002 0052 000€
S R S S JE N B
& s B
g - 5 *
Mg . i
S n 3 ; &
> T SR 2 o B
| .N IS .ncm I
I “a | i il
P g 2 TE .
= 203 ﬂ 8 Mwm
A N A x )
LToe ¢ s
Lo g i
§| b=l 8 I~
[ M_ > “ !
al 8 !
8] B |
Tg) 7
i

——

—--80°¥8 B'¥IPE

09-PBT0OFTIHD

Lo CuEtE P mc oo

R

187



autIaseg

008
1

dunesy mw sunwu 09 J19)je runul Wil 7S [[amsal) pajejduue)s Yl Jo I
€9°¢ad1

"8=534
SNIHOS MW - 3LINILHANI 2E-7713MS3HI OILYIANNYLS
08-¥6T0LTHD

. . SJaqunUaAey
- 0007 00G? 000¢ 00G&e - 000€ 00GE 000y
I R S | , Lo [ — |

!
_
m

Tm

|

829 ‘I BAOF——==~
9L°68 ‘L°ve8e

'0'ves2

T ———18°'68 ‘E°"BLO}

——¥0’'88

——18°68 ‘0°2£0¥

——82°28 26582

~-—£8'¥8 ‘B GOMCER VS ‘B EIVE

——-—-——JE'88 7°0.8

—=<8°/8 ‘¥'q38

|
Eg«

% HFoLoocneEPppoc oo

188



09-¢BY0vTHI

008
[

Speradew Wil zes [[pmsaa]) pajejfuur)s ayj jo uostredwod yy

0007
[

b9 g3y
"8=53Y
SIVHAOYH SE-TT3MSIH] 3LYIANNYLS 2HL 40 NOSIHYIWOD
09-767027H7 09-p630LTHD
EJOQUNUBAEH
0002 00s2 000€ 00GE 000¥

00&%
|

[

S N S

U]

ALIPA

—0L

08

06

T
o
(o]
~1

aR FLOOCnNEARPS OoCL

189



In order to confirm that none of the absorptions, obtained during IR analysis of the
stannylated coal macerals, were due to the TBTO reagent adsorbed onto the coal, a test
experiment was carried out. This involved soxhlet-extraction of the stannylated
Creswell vitrinite with toluene for 24 hrs. Because TBTO is very soluble in toluene, we
would expect all the adsorbed TBTO, if present, to be removed by dissolution over this
time period, thereby ensuring complete removal of any excess TBTO reagent. The
soxhlet-extracted stannylated Creswell vitrinite and the solution obtained after extraction
were then analysed by FT-IR to determine whether any extraction had taken place. Fig
3.65 shows IR spectra displaying the stannylated Creswell vitrinite both before and
after soxhlet-extraction with toluene. The two spectra are effectively the same with no
significant differences between them. Fig 3.66 shows the IR spectra of toluene and the
solution obtained after 24 hrs soxhlet-extraction. The plot shows that no TBTO reagent,
or any other chemicals, have been extracted. This demonstrates that the peaks due to
stannylation, obtained during IR analysis of the stannylated coal macerals, are not due

to excess TBTO reagent adsorbed onto the coal macerals during reaction.

Table 3.15 IR analysis of the stannylated Creswell macerals

Stannylated Sn-O-C Sn-C -CH3 C-H
Creswell Maceral (cm-1) (cm™1) (cmb) (cm1)
Exinite 1074 586 1376 1460
Vitrinite ' 1075 586 1377 1462
[nertinite 1079 — 1377 1455
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The Creswell macerals and stannylated Creswell macerals were also analysed by
solid-state CP MASNMR. Figs 3.67a - 3.67¢ show the 13C CP MASNMR spectra of
the unreacted Creswell exinite, vitrinite and inertinite respectively. Each spectrum has
two main broad peaks - the broad peak between 0 - 60 ppm denotes mainly aliphatic
carbon, whilst the broad peak between 100 - 160 ppm is predominantly due to aromatic
carbon moieties. The !13C CP MASNMR spectrum for the Creswell exinite maceral
shows that a significant proportion of the structure consists of aliphatic moieties
compared to the other two maceral groups. The Creswell vitrinite maceral also shows
significant aliphatic structure, though this is not as extensive as the exinite maceral, and
the Creswell inertinite maceral shows relatively little aliphatic character - its structure is
dominated mainly by aromatic carbon moieties. The stannylated Creswell coal macerals
were analysed by solid-state 1'9Sn CP MASNMR. The nmr spectra are reported relative
to a tetraphenyltin solid standard - the tetraphenyltin signal appears at 120.42 ppm
downfield from tetramethyltin. It was decided to use tetraphenyltin as the standard,
because tetramethyltin was considered too toxic and volatile for practical use. The
chemical shifts obtained, however, may be reported relative to tetramethyltin by
subtracting 120.42 ppm from the resonance chemical shift value reported relative to
tetraphenyltin. Fig 3.68 shows the !19Sn CP MASNMR spectrum of the TBTO
reagent. The resonance appears at 203.2 ppm relative to the tetraphenyltin standard
(82.8 ppm relative to tetramethyltin - the value reported in the literature®! is 83.0 ppm).
Fig 3.69a shows the 119Sn CP MASNMR spectrum of the stannylated Creswell exinite
maceral. The spectrum shows prominent peaks at 230.4 ppm and 269.9 ppm
(110.0 ppm and 149.5 ppm relative to tetramethyltin). The peak at 230.4 ppm denotes
stannylation of less sterically-hindered phenols, such as 2,6-dimethylphenol and 2,6-
diisopropylphenol, whilst the peak at 269.9 ppm Is probably due to stannylation of
groups such as substituted naphthol groups. There is also a prominent resonance at
-19.3 ppm (-139.7 ppm relative to tetramethyltin) - this resonance could be due to a
Bu3SnOH type structure. Fig 3.69b shows the 119Sn CP MASNMR spectrum of the
stannylated Creswell vitrinite maceral - even after an overnight run on the nmr
spectrometer and 6320 scans, only one resonance is discernible at -19 4 ppm
(postulated to be due to Bu3SnOH formation). Fig 3.69¢c shows the !19Sy CP
MASNMR spectrum of the stannylated Creswell inertinite maceral. The main product
peaks appears at 222.0 ppm and 226.9 ppm (101.6 ppm and 106.48 ppm respectively
relative to tetramethyltin) indicating stannylation of mono-, di- and tri-substituted
methylphenols. mono- and di-substituted isopropylphenols and mono-substituted
butylphenols. Again, there is a prominent peak at approximately -19.0 ppm.
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The stannylated Creswell macerals were also analysed by X-ray photoelectron
spectroscopy (XPS). The extra-nuclear electrons of atoms and molecules exist in
orbitals of well-defined energies. Electron spectroscopy enables the different binding
energies, or ionisation potentials (IPs), of electrons in different orbitals to be measured.
Because these orbital IPs are characteristic features of the parent atom or molecule,
electron spectroscopy affords a possible means of compound identification. Essentially,
the energy spectrum of the electrons ejected from a sample under bombardment with
monoenergetic X-rays is measured. The energies of the ejected electrons differ
according to their orbitals of origin and may be cross-referenced to a data base in order
to identify the elements present and / or provide information about the structure of the
sample. Fig 3.70a and 3.70b show the XPS spectra for the stannylated Creswell exinite
maceral. Spin-orbit coupling of states produced two bands with binding energies of
approximately 495eV and 486 eV - these values correspond to Sn in an Sn-O
environment. The approximate ratio of C : O : Sn recorded is 3.7 : 0.8 : 1.0. If we
assume that the Sn and O present interact on a 1 : 1 mole ratio, then it appears that the
bulk of the oxygen has been stannylated. This, however, is not the case, as XPS is a
surface technique (detecting down to approximately 50 A) and does not take into
account the bulk structure of the sample. It may well be true that nearly all the oxygen
near the surface has been stannylated, but this does not imply that the reagent has
successfully diffused through the structure to react with the rest of the oxygen in the
bulk of the sample. Fig 3.71 shows the XPS spectrum for the stannylated Creswell
vitrinite maceral. Again, a binding energy of approximately 486 eV is detected
indicating a Sn-O structure. The approximate C: O : Snratio is 5.2 : 0.8 : 1.0. The ratio
of Sn : O is the same as in the stannylated Creswell exinite maceral, but in this case
there appears to be a greater carbon content indicating, assuming that there is only a
small contribution from the butyl groups of the TBTO reagent, a greater degree of
aromaticity for the Creswell vitrinite. Fig 3.72 shows the XPS spectrum of the
stannylated Creswell inertinite maceral group. An electron binding energy of
approxifnately 486 eV 1s detected denoting a Sn-O structure. The C: O : Snratio is
14.1 : 2.1 : 1.0. The higher carbon content seems to indicate a greater degree of
aromaticity in the Creswell inertinite compared to the other two maceral groups and the
low ratio of Sn : O denotes that not much, in fact less than half, of the oxygen near the

surface of the sample has been derivatised. Table 3.16 summarises the XPS results.
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In summary, IR analysis of the unreacted Creswell macerals shows that the exinite and
vitrinite macerals both have an appreciable -OH content with the exinite maceral group
showing a greater aliphatic character. The Creswell inertinite maceral group, however,
shows a lower relative concentration of -OH, less aliphatic character and a greater
degree of aromaticity. There is some ambiguity, however, as to how much of this -OH
1s actually due to the phenolic groups present in the macerals and how much is due to
tenaciously held moisture (which reacts to form BuzSnOH with the stannylating
reagent). The IR analysis of the stannylated Creswell macerals shows that significant
stannylation has occurred with the exinite and vitrinite maceral groups, even though the
-OH peak is still evident on the IR plots, and that relatively less stannylation has
occurred with the Creswell inertinite maceral group. Solid-state 13C CP MASNMR
analysis of the unreacted Creswell macerals shows a similar trend to that observed with
the IR results i.e the aromatic character appears to increase in going from exinite to
vitrinite to inertinite. The 119Sn CP MASNMR results are somewhat ambiguous. Low
intensity resonance peaks were observed for the stannylated exinite and inertinite
maceral groups, but no product resonance peak was observed for the stannylated
vitrinite maceral. A resonance at approximately -19 ppm was observed on all three nimr
spectra. This peak is postulated to be due to Bu3SnOH, which is formed by the reaction
of the stannylating reagent with inherent moisture present in the macerals. The presence
of this resonance may imply that the major reaction occurring in the macerals, is that of
TBTO with moisture, as opposed to TBTO with phenblic functional groups. The XPS
results show that some stannylation appears to have taken place. The Sn : O ratio
suggests that a similar degree of stannylation has taken place with the exinite and
vitrinite maceral groups, with relatively less stannylation occurring with the Creswell
inertinite maceral - these results are consolidated by the IR analyses. The XPS results

also show that there appears to be an increase in aromaticity in going from exinite to

wvitrinite to inertinite - a trend also seen with the 13C CP MASNMR analyses.

3.3.6 Stannylation of the Cortonwood macerals

As with the Creswell macerals, the Cortonwood macerals were each reacted for 60 mins
in the Sharp Carousel II microwave oven. Figs 3.73a -3.73c show the FT-IR spectra of
the unreacted Cortonwood exinite, vitrinite and inertinite macerals respectively.
Subjectively, the exinite and vitrinite macerals appear to show similar -OH contents and
a similar degree of aliphatic character, whereas the Cortonwood inertinite shows
markedly less -OH content and less aliphatic character compared to the other two
maceral groups. Fig 3.74 shows a multispectral IR display showing all three

Cortonwood macerals on the same plot for comparison.
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Fig 3.75 shows the IR spectrum for the stannylated Cortonwood exinite. Peaks
indicating that some stannylation has occurred can be observed at 1069 cm!
(Sn-O-C stretching), 585 cm! (Sn-C asymmetric stretching), 1376 cm-! (symmetric
-CH3 deformations) and 1456 cm-! (C-H deformations). A significant peak due to -OH
stretching does, however, still exist centred at 3430 c¢m-!. Fig 3.76 shows the IR
spectrum of the stannylated Cortonwood vitrinite maceral. Again, peaks denoting that
some stannylation has taken place can be seen at 1072 cm-! (Sn-O-C), 598 cm-! and
507 c¢cm ! (asymmetric and symmetric Sn-C respectively), 1377 cm-! (-CHj
deformations) and 1457 cm-! (C-H), but the -OH stretching absorption centred at 3427
cm-! is still a dominant peak on the plot. Fig 3.77 shows the IR spectrum for the
stannylated Cortonwood inertinite maceral. As with the other two maceral groups,
peaks pertaining to stannylation may be observed at 1070 cm! (Sn-O-C stretching),
584 cm! and 596 cm! (asymmetric and symmetric Sn-C stretching respectively), 1368
cm-! (symmetric -CH3 deformations) and 1461 cm-! (C-H deformations), but the -OH
peak centred at 3444 cm-! still persists.

Table 3.17 IR analysis of the stannylated Cortonwood macerals

Stannylated Sn-O-C Sn-C -CH3 C-H
Cortonwood (cm™) (cm1) (cm™1) (cm1)
Maceral -
Exinite 1069 585 1376 1456
Vitrinite 1072 598 1377 1457
Inertnite 1070 584 1368 1461
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The coal macerals were also analysed by solid-state 13C CP MASNMR. Figs
3.78a - 3.78c show the 13C CP MASNMR spectra of the unreacted Cortonwood
exinite, vitrinite and inertinite macerals respectively. Each spectrum exhibits two
main peaks - the broad peak between 0 - 70 ppm denotes mainly aliphatic carbon, whilst
the broad peak between 100 - 160 ppm is due mainly to aromatic carbon moieties. The
13C CP MASNMR spectrum for the Cortonwood exinite maceral shows that a
significant proportion of the structure consists of aliphatic carbon moieties compared to
the other two maceral groups. The Cortonwood vitrinite maceral also shows significant
aliphatic carbon structure, though not as extensive as the exinite maceral. By contrast,
the Cortonwood inertinite maceral shows much less aliphatic character and its structure
is dominated mainly by aromatic carbon moieties. The stannylated Cortonwood
macerals were analysed by 19Sn CP MASNMR. All chemical shifts are reported
relative to a tetraphenyltin standard. Fig 3.79a shows the 119Sn CP MASNMR
spectrum of the stannylated Cortonwood exinite maceral. Only one main
resonance is evident at -19.4 ppm (-139.8 ppm relative to tetramethyltin). This peak
also appears on each of the stannylated Creswe]l maceral 119Sn CP MASNMR spectra.
The folded spinning sidebands indicate that the chemical shift anisotropy is very large.
Fig 3.79b shows the 119Sn CP MASNMR spectrum for the stannylated Cortonwood -
vitrinite maceral. Again, there is only one major absorption at -20.6 ppm (-141.1 ppm
relative to tetramethyltin). The spinning sidebands are again very much in evidence. Fig
3.79¢ shows the 119Sn CP MASNMR spectrum for the stannylated Cortonwood
inertinite maceral. In this case there is a main resonance at 226.0 ppm (105.6 ppm
relative to tetramethyltin) and the peak which appears at approximately -19 ppm in all
the other stannylated maceral's 119Sn CP MASNMR spectra is noticeable by its
absence. The peak at 226 ppm appears to denote stannylation of less sterically-hindered

mono-, di- and tri-substituted methylphenols and mono-substituted ethylphenols.

In summary, IR analysis of the unreacted Cortonwood macerals showed a similar trend
to that observed with the Creswell macerals i.e the exinite and vitrinite macerals both
show appreciable -OH content with the exinite maceral showing more aliphatic
character, whereas the Cortonwood inertinite maceral shows a lower relative
concentration of -OH, less aliphatic character and a greater degree of aromaticity. The
IR analyses of the stannylated Cortonwood macerals appear to show that stannylation
has occurred in all cases. An interesting difference emerges here between the Creswell

and Cortonwood 1nertinite macerals.
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The stannylated Creswell inertinite's IR spectrum produced stannylation peaks with a
lower intensity compared to those obtained for the stannylated Cortonwood inertinite
maceral - this suggests a greater degree of stannylation in the Cortonwood inertinite,
which would seem to imply that the hydroxy! functionality in the Cortonwood inertinite
is less sterically-hindered compared to the Creswell inertinite maceral. The 119Sn CP
MASNMR spectra of the stannylated Cortonwood macerals produced some surprising
results. The Cortonwood exinite and vitrinite do not appear to have reacted very well at
all. They both produced a !19Sn resonance at approximately -19 ppm. It has been
postulated that this peak is due to the formation of Bu3SnOH - a decomposition product
of the TBTO reagent. This would also explain the apparent increase in the -OH band of
the IR spectra of the stannylated Cortonwood exinite and vitrinite macerals. The
stannylated Cortonwood inertinite, however, produced a very good 1198 spectrum
with a single main resonance appearing in a region where we would expect the Sn to be
in a less sterically-crowded environment. Consequently, it appears that the Cortonwood
exinite and vitrinite macerals contain more sterically-hindered hydroxyl functional
groups, which are difficult to derivatise with the TBTO stannylating reagent being
employed, whereas the Cortonwood inertinite maceral appears to contain much more
accessible hydroxy! functional groups and less inherent moisture compared to the other
two macerals. By contrast, 119Sn CP MASNMR analysis of the stannylated Creswell
macerals showed that stannylation had occurred for the Creswell exinite and inertinite
maceral groups, but no stannylation was observed for the Creswell vitrinite maceral.
This suggestsfthat the more sterically-hindered hydroxy! functional groups in Creswell
coal exist mainly in the Creswell vitrinite maceral. This work has highlighted the fact
that there is tenaciously held moisture associated with all coals and coal macerals and
care must be taken when analysing the -OH region of the IR spectrum
(3600 - 3200 cm-!) - there will always be a band due to the moisture present.
Consequently, it is more prudent to look at the derivatisation absorption bands in order .
to determine whether a reaction has actually occurred. Also, because this inherent
moisture contains -OH groups, which we are attempting to derivatise, we must expect
some reaction between the derivatising reagent and the moisture in the coal / coal
maceral. In conclusion. the TBTO reagent does indeed appear to effect stannylation of
the coals and coal macerals, but due to its large size, it is a very sterically-demanding
reagent and only the more accessible -OH groups in the coal / coal maceral are

derivatised.

223



Addendum

Whilst in the process of writing up this thesis, two new stannylating reagents have
come to light in the literature. These have been used by Ye and Verkade$8 to
successfully stannylate a set of 29 phenols, thiophenols, carboxylic acids and alcohols.
The two reagents are N-trimethylstannylaniline Me3SnNHPh and N,N-bis(tri-n-
butylstannyl)aniline (n-Bu3Sn),NPh, with the latter appearing to be the more effective
of the two. The 119Sn nmr of the stannylated model compounds have been measured in
pyridine solution at 240K and chemical shifts precise to + 0.1 ppm have been obtained
after only a 20 min acquisition time and 200 scans. Ye and Verkade have also managed
to derivatise a pyridine extract from a sample of Illinois No.6 coal with (n-BuzSn);NPh

and tentatively identify four of the phenol groups observed.
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