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Summary of thesis

This work presents significant development into chaotic mixing induced through periodie
boundaries and twisting flows. Three-dimensional closed and throughput domains are shown
to exhibit chaotic motion under both time periodic and time independent boundary motions, A
property is developed originating from a signature of chaos, sensitive dependence to initial
conditions, which successfully quantifies the degree of disorder within the mixing systems
presented and enables comparisons of the disorder throughout ranges of operating parameters.
This work omits physical experimental results but presents significant computational
investigation into chaotic systems using commercial computational fluid dynamics
techniques. Physical experiments with chaotic mixing systems are, by their very natuve,
difficult 1o extract information beyond the recognition that disorder does, does not or partially
occurs. The initial aim of this work is to observe whether it is possible to accurately simulate
previously published physical experimental results through using commercial CFD
techniques. This is shown to be possible for simple two-dimensional systems with time
periodic wall movements. From this, and subsequent macro and microscopic observations of
flow regimes, a simple explanation is developed for how boundary operating parameters
affect the system disorder. Consider the classic two-dimensional rectangular cavity with time
periodic velocity of the upper and lower walls, causing two opposing streamline motions. The
degree of disorder within the system is related to the magnitude of displacement of individual
particles within these opposing streamlines. The rationale is then employed in this work to
develop and investigate more complex three-dimensional mixing systems that exhibit
throughputs and time independence and are therefore more realistic and a significant advance
towards designing chaotic mixers for process industries. Domains inducing chaotic motion
through twisting flows are also briefly considered. This work concludes by offering possible
advancements to the property developed to quantify disorder and suggestions of domains and
associated boundary conditions that are expected to produce chaotic mixing.

Keywords/ phrases: Periodic boundaries, viscous fluid, cavity, continuous mixing,
quantification of chaotic mixing.
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Figure 3.8. Particle trajectory generated from a time shot every one second for 500 seconds
within a concentric cylindrical system, with r=50, r,=150, showing that in the steady state
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Figure 3.9. Particle trajectory generated from a time shot every one second for 500 seconds
within a concentric cylindrical system, with r=50, r,=150 with oscillating boundaries, where
U=n, a=n/2, T=20, which are conditions at which chaos occurs for eccentric conditions.

Figure 3.10a-c. Particle trajectory for 500 seconds in the co-rotating cylindrical system where
=50, 1,=150, e=75, U=, a=n/2, where figure 3.10a highlights the instantaneous streamline
corresponding to t=0, figure 3.10b corresponds to t=T/4=3T/4, and figure 3.10c corresponds
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Figure 3.11. Mixing efficiency property (M) against the time period (T) for a co-rotating
cylindrical system, where U=n, a=n/2, r;=50, r,=150, e=75

Figure 3.12 a-d. Particle trajectory tracings for 500 seconds, with a time snap of one second,
for a co-rotating cylindrical system, where U=n, a=n/2, r,=50, r,=150, e=75. T is increasing,
from T=0.2, T=2, T=5, T=20 respectively.

Figure 3.13. Mixing efficiency property (M) against the time period (T) for a co-rotating
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Figure 3.14. Time period at which M first peaks for a co—rotatmg‘cyhndrlcal system, where
a=n/2, r;=50, r,=150, e=75, against U, the velocity oscillation amplitude

Figure 3.15. Time period at which peaks occur against the corresponding boundary velocity
amplitude, for the co-rotating cylindrical system, where, o=n/2, r;=50, r,=150, against U, for
three differing values of e. (25, 75, 90).

Figure 4.1. The two-dimensional square cavity, where the upper and lower walls translate
with oscillating velocities in opposite directions. The time period of oscillation is 20 seconds
with an amplitude of 20mm/s and out of phase by n/2. The two particles in figure 4.1a'and b
begin at a distance of 0.001 mm apart. It can be seen that after 100 seconds that the particles
have followed very similar trajectories.

Figure 4.2. The trajectories of the same two particles as shown in figure 4.1a and b, between
100 and 200 seconds. It can now be seen that the distance between the particle is beginning
to diverge as indicated by the significantly different trajectories shown.

Figure 4.3. The complete trajectories for 1000 seconds of the same two particles as shown in
figure 4.1a and b. It can clearly be seen that the particles have led completely unrelated lives,
and their coming close together now is completely incidental. It should be noted though that
both of the trajectories cover significant amounts of available domain space.

Figure 4.4. The divergence of the distance between two particles originating 0.01 mm apart in
the two dimensional square system, where the upper and lower walls are translating steadily
in opposite directions with a velocity of 20mm/s.

Figure 4.5. Two particles originating at the same positions in the same system as figure 4.4,
except now both of the moving the walls velocities are oscillating with a time period of 1
second and an amplitude of 20mm/s.

Figure 4.6. Exactly the same system configuration and placing of particles as the system in
figure 4.5, except the time period of wall velocity oscillation in set at 3 seconds.

Figure 4.7. Exactly the same system configuration and placing of particles as the system in
figure 4.5, except the time period of wall velocity oscillation-in set at 20 seconds.

Figure 4.8. The maximum distance achieved between two particles originating 0.01mm apart
in 1000 seconds within the two-dimensional square cavity with walls oscillating with
amplitude of 20mm/s and varying time periods.

Figure 4.9. The maximum distances achieved between two particles over 1000 seconds
within the two-dimensional square cavity with walls oscillating, with amplitude of 20mm/s,
and varying time periods for S different values of Z,.

Figure 4.10. The divergence of the distance between two particles originating 1mm apart in
the two-dimensional square system, where the upper and lower walls are translating in
opposite directions with oscillating velocity of amplitude 20mm/s and a time period of |
second.

Figure 4.11. The divergence of the distance between two particles originating 1mm apart in
the two-dimensional square system, where the upper and lower walls are translating in
opposite directions with oscillating velocity of amplitude 20mm/s and a time period of 20
seconds.

Figure 4.12. The maximum distances achieved between two particles, originating 0.001mm
apart, over 1000 seconds within the two-dimensional square cavity with walls oscillating,
with amplitude of 20mm/s, and varying time periods for six different initial positions within
the domain.

Figure 4.13. Trajectory plot of one particle for 1000 seconds, within the two-dimensional
square cavity, originating at co-ordinates (5, 5) where velocity of wall oscillation is 20 mm/s
and the time period oscillation is 10 seconds.

Figure 4.14. Trajectory plot of one particle for 1000 seconds, within the two-dimensional
square cavity, originating at co-ordinates (4, 4) where velocity of wall oscillation is 20 mm/s
and the time period oscillation is 10 seconds.

Figure 4.15. Trajectory plot of one particle for 1000 seconds, within the two-dimensional
square cavity, originating at co-ordinates (5, 5) where velocity of wall oscillation is 20 mm/s
and the time period oscillation is 20 seconds

Figure 4.16. The maximum distances achieved between two particles, originating 0.001mm
apart, over 1000 seconds within the two-dimensional square cavity with walls oscillating,
with amplitude of 20mm/s, and varying time periods for five different domain mesh
densities.
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Figure 4.17a. Time snap-shots of 400 particles originating from a length of 0.2mm in the
two-dimensional square cavity, with boundary velocity oscillating with a flip-flop motion
with an amplitude of 20mm/s and a time period of 0.1 seconds.

Figure 4.17b. Time snap-shots of 400 particles originating from a length of 0.2mm in the
two-dimensional square cavity, with boundary velocity oscillating with a flip-flop motion
with an amplitude of 20mm/s and a time period of 1 second.

Figure 4.17¢c. Time snap-shots of 400 particles originating from a length of 0.2mm in the
two-dimensional square cavity, with boundary velocity oscillating with a flip-flop motion
with an amplitude of 20mm/s and a time period of 5 seconds.

Figure 4.17d. Time snap-shots of 400 particles originating from a length of 0.2mm in the
two-dimensional square cavity, with boundary velocity oscillating with a flip-flop motion
with an amplitude of 20mm/s and a time period of 10 seconds.

Figure 4.18. Property A against time for the two dimensional square cavity with boundary
velocity oscillating in a flip-flop motion with an amplitude of 20mm/s and various time
periods. 400 particles, initially generated over a length of 0.2mm, were used to create
property A.

Figure 4.19. The average distance between particles against the number of particles in the
calculation, for the two-dimensional square cavity of side length 10mm.

Figure 4.20. Property A against time for the two dimensional square cavity with boundary
velocity oscillating in a flip-flop motion with an amplitude of 20mm/s and various time
periods. 20 particles, initially generated over a length of 0.2mm, were used to generate
property A.

Figure 4.21. Property A against time for the two dimensional square cavity with boundary
velocity oscillating in a flip-flop motion with an amplitude of 20mm/s and various time
periods. 400 particles, initially generated over a length of 0.2mm, were used to generate
property A.

Figure 4.22. The maximum value of property A achieved, generated from six different
amounts of particles originating over a 0.02mm length, over 500 seconds within the two-
dimensional square cavity with walls oscillating, with amplitude of 20mn/s, and varying
time periods.

Figure 5.1. The three-dimensional closed cubic domain. The shaded numbered surfaces
indicate the two walls that translate perpendicularly to each other with a flip-flop motion.
Figure 5.2. Cross sections of the initial positions of 200 particle trajectories within a small
generation zone in the closed three-dimensional time periodic domain.

Figure 5.3, xy and yz views showing the positions of 200 originally near particle trajectories
in the closed three-dimensional time periodic domain, at various times where the wall
velocity amplitude is 2 mmy/s, and the time period is 0.5 seconds.

Figure 5.4, xy and yz views showing the positions of 200 originally near particle trajectories
in the closed three-dimensional time periodic domain, at various times where the wall
velocity amplitude is 2 mm/s, and the time period is 5 seconds.

Figure 5.5, xy and yz views showing the positions of 200 originally near particle trajectories
in the closed three-dimensional time periodic domain, at various times where the wall
velocity amplitude is 2 mm/s, and the time period is 20 seconds.

Figure 5.6. Property A against time for the three-dimensional cubic system with the
oscillation of two faces operating in a flip-flop motion with an amplitude of 1mm/s and
various time periods. 200 particles, initially generated over a length of 0.2mm, were used to
create property A.

Figure 5.7.Property A against time for the three-dimensional cubic system with the
oscillation of two faces operating in a flip-flop motion with an amplitude of 2mm/s and
various time periods. 200 particles, initially generated over a length of 0.2mm, were used to
create property A.

Figure 5.8.Property A against time for the three-dimensional cubic system with the
oscillation of two faces operating in a flip-flop motion with an amplitude of 5 mm/s and
various time periods. 200 particles, initially generated over a length of 0.2mm, were used to
create property A.
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Figure 5.9. The maximum value of property A achieved, generated from 200 particles
originating over a 0.02mm length, over 2000 seconds within the three-dimensional cubic
system with walls oscillating, with three different-amplitudes, and over a range of time
periods. Also indicated is the distance between particles from a uniform distribution.

Figure 5.10 Particle trajectory in the two-dimensional time periodic cavity system, operating
with a flip-flop movement of the upper and lower wall boundaries, showing the oscillation of
the particle back and forth as the streamline regimes alternate. Time period of oscillation is
one second for 10 time periods.

Figure 5.11. Particle trajectory in the three-dimensional cubic time periodic system, operating
with a flip-flop movement of two wall boundaries, showing the perpendicular movements of
the particle as the streamline regimes alternate. Time period of oscillation is ten seconds for
five time periods.

Figure 5.12. Average distance between particles calculated using both two- and three-
dimensions for the same three-dimensional throughput domain operating under chaotic
conditions.

Figure 5.13. Three-dimensional throughput, time periodic domain. The shaded walls translate
in the directions shown with a flip-flop motion.

Figure 5.14. The positions of 200 particles that originate from a small generation zone near
the inflow of the time periodic throughput domain at five different times. The through put of
the system is 10mm?/s, the velocity amplitude of the upper and lower walls is 10mm/s and
the time period for boundary oscillation is 1 second.

Figure 5.15. The positions of 200 particles that originate from a small generation zone near
the inflow of the time periodic throughput domain at five different times. The through put of
the system is 10mm?/s, the velocity amplitude of the upper and lower walls is 10mm/s and
the time period for boundary oscillation is 2 seconds.

Figure 5.16. The positions of 200 particles that originate from a small generation zone near
the inflow of the time periodic throughput domain at five different times. The through put of
the system is 10mm?/s, the velocity amplitude of the upper and lower walls is 10mm/s and
the time period for boundary oscillation is 10 seconds.

Figure 5.17. Property A against time generated from 200 particles originating over a 0.02mm
length, within the three-dimensional, time periodic, throughput system. The velocity of the
upper and lower walls oscillating with amplitude of Smm/s, over a range of time periods
where the throughput rate is 10mm’/s.

Figure 5.18. Property A against time generated from 200 particles originating over a 0.02mm
length, within the three-dimensional, time periodic, throughput system. The velocity of the
upper and lower walls oscillating with amplitude of 10mm/s, over a range of time periods
where the throughput rate is 10mm?®/s.

Figure 5.19. The maximum value of property A achieved, from 200 particles originating over
a 0.02mm length, within the three-dimensional, time periodic, throughput system. The
velocity of the upper and lower walls oscillating, with two different amplitudes, and over a
range of time periods where the throughput rate is 10mm’/s Also indicated is the distance
between particles from a uniform distribution.

Figure 5.20, The maximum value of property A achieved, from 200 particles originating over
a 0.02mm length, within the three-dimensional, time periodic, throughput system. The
velocity of the upper and lower walls oscillating, over a range of time periods for three
different throughput rates with a velocity amplitude of 20mm/s. Also indicated is the
distance between particles from a uniform distribution.

Figure 5.21. Representation of one cell of the three-dimensional throughput, spatially
periodic domain. The shaded walls translate in the directions shown with a steady motion.
Figure 5.22. The positions of 200 particles that originate from a small generation zone near
the inflow of the spatially periodic throughput domain at five different times. The through put
of the system is 10mm’/s, the translation velocity of the upper and lower walls is 0.2mm/s.
Figure 5.23. The positions of 200 particles that originate from a small generation zone near
the inflow of the spatially periodic throughput domain at five different times. The through put
of the system is 10mm?/s, the translation velocity of the upper and lower walls is 1 mm/s.
Figure 5.24. The positions of 200 particles that originate from a small generation zone near
the inflow of the spatially periodic throughput domain at five different times. The through put
of the system is 10mm?/s, the translation velocity of the upper and lower walls is 10 mmys.
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Figure 5.25. The maximum value of property A achieved, from 200 particles originating over
a 0.02mm length, within the three-dimensional, spatially periodic, throughput system against
the velocity of the upper and lower walls, for three different throughput rates. Also indicated
is the average distance between particles from a uniform distribution.

Figure 5.26. One cell of the three-dimensional throughput, geometrically periodic domain.
The shaded walls translate causing a steady rotaion within the fluid in the xy palne.

Figure 5.27. The positions of 200 particles that originate from a small generation zone near
the inflow of the geometrically periodic throughput domain, with an offset of 4mm, at five
different times. The through put of the system is 10mm?’/s, the translation velocity of the
upper and lower walls is 0.5 mm/s.

Figure 5.28. The positions of 200 particles that originate from a small generation zone near
the inflow of the geometrically periodic throughput domain, with an offset of 4mm, at five
different times. The through put of the system is 10mm’/s, the translation velocity of the
upper and lower walls is 3 mm/s.

Figure 5.29. The positions of 200 particles that originate from a small generation zone near
the inflow of the geometrically periodic throughput domain, with an offset of 4mm, at five
different times. The through put of the system is 10mm’/s, the translation velocity of the
upper and lower walls is 20 mm/s.

Figure 5.30. The positions of 200 particles that originate from a small generation zone near
the inflow of the geometrically periodic throughput domain, with an offset of 2mm, at five
different times. The throughput of the system is 10mm’/s, the translation velocity of the
upper and lower walls is 0.1 mm/s.

Figure 5.31. The positions of 200 particles that originate from a small generation zone near
the inflow of the geometrically periodic throughput domain, with an offset of 2mm, at five
different times. The throughput of the system is 10mm?/s, the translation velocity of the
upper and lower walls is 10 mm/s.

Figure 5.32. The positions of 200 particles that originate from a small generation zone near
the inflow of the geometrically periodic throughput domain, with an offset of 2mm, at five
different times. The throughput of the system is 10mm?/s, the translation velocity of the
upper and lower walls is 20 mm/s.

Figure 5.33. The positions of 200 particles that originate from a small generation zone near
the inflow of the geometrically periodic throughput domain, with an offset of 6mm, at five
different times. The throughput of the system is 10mm?’/s, the translation velocity of the
upper and lower walls is 0.1 mm/s.

Figure 5.34. The positions of 200 particles that originate from a small generation zone near
the inflow of the geometrically periodic throughput domain, with an offset of 6mm, at five
different times. The throughput of the system is 10mm?s, the translation velocity of the
upper and lower walls is 10 mm/s.

Figure 5.35. The positions of 200 particles that originate from a small generation zone near
the inflow of the geometrically periodic throughput domain, with an offset of 6mm, at five
different times. The throughput of the system is 10mm’/s, the translation velocity of the
upper and lower walls is 20 mm/s.

Figure 5.36. The maximum value of property A achieved, from 200 particles originating over
a 0.02mm length, within the three-dimensional, geometrically periodic, throughput system,
with an offset of 4mm against the velocity of the upper and lower walls, for four different
throughput rates. Also indicated is the average distance between particles from a uniform
distribution.

Figure 5.37. The maximum value of property A achieved, from 200 particles originating over
a 0.02mm length, within the three-dimensional, geometrically periodic, throughput system,
with throughput of Smm’*/s against the velocity of the upper and lower walls, for three
different offsets between cells. Property A is presented as a ratio to the average distance
between particles obtained by the three different uniform distributions associate with each
geometry.

Figure 6.1. The closed three-dimensional, time-independent system. The four numbered and

coloured faces indicate the moving walls and the grey cylinders represent the principle
rotations that the translating walls induce.
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Figure 6.2. The nineteen cross sectional slices spaced 1mm apart along the TF8 mixing
domain. .

Figure 6.3. The format for the presentation of the slices along the TF8 mixing domain. The
numbers on the slices here correspond to the position in millimetres of the slice along the z
axis. :
Figure 6.4. Nineteen cross sectional slices spaced every millimetre along the z-axis of the
TF8 mixer showing the points of intersection of twenty-five particles evolving for one
thousand seconds. Walls 3 and 4 are translating at Smm/s, whilst walls 1 and 2 are stationary
(Wall velocity ratio=0)

Figure 6.5. Nineteen cross sectional slices spaced every millimetre along the z-axis of the
TF8 mixer showing the points of intersection of twenty-five particles evolving for one
thousand seconds. Walls 3 and 4 are translating at Smm/s, whilst walls 1 and 2 translate at
0.5mm/s (Wall velocity ratio=0.1)

Figure 6.6. Nineteen cross sectional slices spaced every millimetre along the z-axis of the
TF8 mixer showing the points of intersection of twenty-five particles evolving for one
thousand seconds. Walls 3 and 4 are translating at Smm/s, whilst walls 1 and 2 translate at
5mm/s (Wall velocity ratio=1)

Figure 6.7. Nineteen cross sectional slices spaced every millimetre along the z-axis of the
TF8 mixer showing the points of intersection of twenty-five particles evolving for one
thousand seconds. Walls 3 and 4 are translating at Smm/s, whilst walls 1 and 2 translate at
20mm/s (Wall velocity ratio=4)

Figure 6.8. Nineteen cross sectional slices spaced every millimetre along the z-axis of the
TF8 mixer showing the points of intersection of twenty-five particles evolving for one
thousand seconds. Walls 3 and 4 are translating at Smm/s, whilst walls 1 and 2 translate at
50mm/s (Wall velocity ratio=10)

Figure 6.9. Nineteen cross sectional slices spaced every millimetre along the z-axis of the
TF8 mixer showing the points of intersection of twenty-five particles originating with a tori
evolving for one thousand seconds. Walls 3 and 4 are translating at Smm/s, whilst walls 1
and 2 translate at Smm/s (Wall velocity ratio=1)

Figure 6.10. Showing the small zone where the two-hundred particles originate in the TF8
mixer.

Figure 6.11. xy and yz views of the TF8 mixer showing the positions of two hundred
originally close particles after varying amounts of time. Walls 3 and 4 are translating at
Smm/s, whilst walls 1 and 2 are stationary (Wall velocity ratio=0)

Figure 6.12. xy and yz views of the TF8 mixer showing the positions of two hundred
originally close particles after varying amounts of time. Walls 3 and 4 are translating at
S5mm/s, whilst walls 1 and 2 are translating at 0.5mm/s (Wall velocity ratio=0.1)

Figure 6.13. xy and yz views of the TF8 mixer showing the positions of two hundred
originally close particles after varying amounts of time. Walls 3 and 4 are translating at
5mm/s, whilst walls 1 and 2 are translating at 5 mm/s (Wall velocity ratio=1)

Figure 6.14. xy and yz views of the TF8 mixer showing the positions of two hundred
originally close particles after varying amounts of time. Walls 3 and 4 are translating at
S5mm/s, whilst walls 1 and 2 are translating at 20 mm/s (Wall velocity ratio=4)

Figure 6.15. xy and yz views of the TF8 mixer showing the positions of two hundred
originally close particles after varying amounts of time. Walls 3 and 4 are translating at
Smm/s, whilst walls 1 and 2 are translating at 50 mm/s (Wall velocity ratio=10)

Figure 6.16. Property A calculated from 200 initially close particles within the TF8 over
2500 seconds, where walls 3 and 4 translate with a base velocity of 0.1 mm/s and walls 1 and
2 translate at various velocities corresponding to ratios between the two pairs of walls from 0
to 10.

Figure 6.17. Property A calculated from 200 initially close particles within the TF8 over
2000 seconds, where walls 3 and 4 translate with a base velocity of 1 mm/s and walls 1 and 2
translate at various velocities corresponding to ratios between the two pairs of walls from 0 to
10.

Figure 6.18. Property A calculated from 200 initially close particles within the TF8 over
1000 seconds, where walls 3 and 4 translate with a base velocity of 5 mm/s and walls 1 and 2
translate at various velocities corresponding to ratios between the two pairs of walls from 0 to
10.
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Figure 6.19. Property A calculated from 200 initially close particles within the TF8 over 600
seconds, where walls 3 and 4 translate with a base velocity of 10 mm/s and walls 1 and 2
translate at various velocities corresponding to ratios between the two pairs of walls from 0 to
10.

Figure 6.20. The maximum value of property A achieved in the TF8 in the times indicated in
figures 6.16 to 6.19 over a range of wall pair velocity ratios, for a number of base velocities,
compared to the average distance between two hundred uniformly distributed particles
Figure 6.21. The distance between two initially close particles within the TF8 over 20,000
seconds, where walls 3 and 4 translate with a base velocity of 0.1 mm/s and walls 1 and 2

translate at various velocities corresponding to ratios between the two pairs of walls from 0 to
10.

Figure 7.1. Showing the aspect ratio of a two dimensional cavity.

Figure 7.2. Indicates non-parallel walls of the two-dimensional cavity.

Figure 7.3. Exhibiting two rotors within the two dimensional cavity.

Figure 7.4. Indicates time periodic geometry of the two dimensional cavity.

Figure 7.5. Two-dimensional time periodic eccentric cylindrical system containing three
inner cylinders.

Figure 7.6. Simple representation of an internal mixer containing two time periodic rotors,
represented by cylinders.

Figure 7.7. The spread of 200 particles at intervals over 400 seconds originating from a small
generation zone in the two-dimensional simplified internal mixing domain, where the time
period of rotor movement oscillation is 20 seconds with amplitude of 10mnvs.

Figure 7.8. Property A against time generated from 200 particles originating from a small
generation zone in the two-dimensional simplified internal mixing domain, where the time
period of rotor movement oscillation is 20 seconds with amplitude of 10mm/s.

Figure 7.9. Two-dimensional internal mixer with rotor blades.

Figure 7.10. Three-dimensional internal mixer with twisted blades to induce axial mixing.
Figures 7.11a-e. Cells of a throughput mixer that would induce alternating streamlines, and
(for figures a-d) pictorial representation of the streamlines. Figures a-d shows obstructions to
the flow, a block, triangular block, a fin and a wall, respectively, whilst figure e shows
stirrers along the domain, that would induce twisting flow.

Figure 7.12. Twisted figure of eight mixer with blades on rotors.

Figure 7.13. Motion of a Kenics or partitioned pipe mixer mimicked in a closed domain by
the use of re-circulating flows.

Figure 7.14. Closed time dependent re-circulating flow domain that causes chaotic mixing.
Figure 7.15. Cross sectional view of the spread of 1000 particles originating from a small
generation zone in the re-circulating mixer over 1600 seconds. Each of the three re-
circulation loops is operating at the same arbitrary flow rate.

Figure 7.16. Property A against time for 200 particles originating within a small generation
zone in the centre of the re-circulating mixer.

Figure 7. 17. (As figure 2.6.) Time snap shots of a particle trajectory for 3000 seconds in the
two-dimensional smoothly oscillating cavity where U=26.9 mm/s, T=20 seconds.

Figure 7. 18. (Taken from figure 6.6.) The cross sectional slice midway along the z-axis of
the TF8 mixer showing the points of intersection of twenty-five particles originating from
random positions and evolving for one thousand seconds. All walls are translating at Smm/s
Figure 7.19. Indicating the generation zones for particles to be used to calculate property A in
a cubic system with a grid of 10 by 10 by 10.

Table 7.1. Example of frequency results of the mixing obtained from 1331 local property A
values compared, as a percentage, to the uniform distribution.
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1. Chaos, mixing and chaotic mixing

1.1 Introduction

There are many processes in a variety of industries that involve the mixing of laminar fluids,
for example the blending of a polymer melt, the homogenisation of soup ingredients or the
movement of broth inside a biochemical reactor. Considerable time and expense is often
involved in the development of mixing processes particularly when using physical scale up
methods. Often it is considered, however, that as long as the mixer mixes then there is little
need for intensive investigation. This may lead to over design, inefficient power consumption
or in shear sensitive processes, degradation of product

Computational Fluid Dynamics (CFD) is becoming a more popular tool for investigating
mixing systems, as it enables the designer to predict and visualise flow patterns. This work
uses CFD to investigate the mixing of two- and three-dimensional, time dependent and time
independent, laminar fluid systems operating within highly disordered chaotic flow regimes.
This work aims to use commercial CFD to produce transferable concepts for chaotic mixing
systems and to develop a method for quantifying differences in mixing quality. It must first be
shown in simple systems that it is possible to simulate chaos using commercial CFD, then a
property of disorder must be investigated for reliability. From this theories concerning chaotic
mixing can be conceptualised and examined within more complex systems. This will lead to
suggesting possible future developments into chaotic mixing. This chapter begins this process
by offering a relevant introduction to the theory of chaos and mixing, followed by a review of
significant previous works, which is sufficient to assure an appreciation of the investigations

of chaotic mixing domains presented throughout.

1.2  What is Chaos?

Chaos has long been used to describe disorder in systems. It is said in Roman mythology [1]
that the god Janus has two faces. One looking forward towards the order created by the
forming of the earth, the other face looking back into the disordered matter, where the
elements that made up the earth were all formless and in a chaotic state.

The literary meaning of the word would then be clear. It describes a state of great disorder.
From a mathematical point of view chaos refers to the random outcomes of deterministic
equations due the high sensitivity of certain non-linear equations to initial conditions and
operating parameters. It is this behaviour that has intrigued scientists, mathematicians,
engineers and philosophers alike and reviews of the popular concepts can be found in [2 —~4.]

Let us consider the ultimate non-linear equation. If equations were obtainable for the

behaviour and relationship of every particle in the universe to all others and if it was possible
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to obtain the exact position and velocity of those/bartiréléé;;thén?i/t/would be expected to follow
that it would be possible to predict every outcome of the ﬁlture. The derivation and collation
of the enormous scheme of equations and information required would take many lifetimes to
complete. Even if one continued, undeterred, and actually completed the task, one would find
that an early and quite fundamental problem occurs. The equations themselves would be of
little use as a predictive tool. The large and complicated system of non-linear equations would
be so sensitive to minute deviations in operating parameters and initial conditions of the
modelled and actual systems that they would be unable to accurately predict the events of
even the smallest measurable time increment into the future. The mathematical model for the
Universe could be considered to be highly chaotic. If it were possible to model the equations
deterministically the output would be sufficiently stochastic to reduce its value as a predictive
tool. Such an impressive model, however, could be used to investigate the sensitivity of the
Universe to initial and operating conditions and parameters, producing behavioural trends and
highlighting various system characteristics. This is how many stochastically behaving
deterministic systems are investigated, and is indeed the focus of the mixing studies in this
work. The concern is not where an individual particle will be after some time, but how the
mass of particles behave and the relationships to the associated disorder

Meteorologist Edward Lorenz found great divergence and sensitivity to initial conditions in

simplified models that he used to attempt to predict weather patterns [5].

dx/dt = -a(x-y) (1.1a)
dy/dt = -xz+rx-y (1.1b)
dz/dt = xy-bz (1.1¢)

Lorenz simplified his atmospheric model to three coupled equations, two of which are non-
linear, containing three variables, (equations 1.la-c.) Even in the simplified form the
equations exhibit stochastic behaviour, and have since become popular and extensively
studied. They have been shown to highlight many of the signatures of chaos, and in particular
the divergence of close initial positions. Figure 1.1, shows the x variable of the Lorenz system
against time for a total evolution of 40 seconds. Constants a, b and ¢ are 10, 28 and 2.67
respectively. Two points, starting at (x, y, z) = (1, 1, 1) and (1.0001, 1, 1) are shown to evolve

as blue and red lines respectively. Initially both plots are of a similar trajectory. As time
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dy/dt = x +0.2*y

dz/dt = 0.2+xz-cZ

(1.2b)

(1.2¢)

Equations 1.2a-c contain three co-ordinate variables and one constant parameter, c. It is the
value of this parameter that changes the systems behaviour. Figure 1.2a shows the time
evolution where ¢=2.5, it can be seen in they x, y plot that the trajectory of the plot returns to

itself, in a limit cycle, after each revolution.

Figure 1.2a. Plot of x, y trajectory showing a
limit cycle from the Rossler equations,
where c=2.5

Figure 1.2b. Plot of x, y trajectory showing
period doubling from the Rossler equations,
where c=2.9

Figure 1.2c. Plot of x, y trajectory showing
period quadrupling from the Rossler
equations, where c=4.

Figure 1.2d Plot of x, y trajectory exhibiting
chaotic  behaviour from the Rossler
equations, where ¢=5.7

If the value of ¢ is gradually increased to 2.9 it is possible to see in figure 1.2b that the particle
path loops twice before closing. This can be termed as period doubling. Increase the value of
¢ to 4, and it is possible to see that there are four loops before the path to returns to itself,
figure 1.2c. Further increase of ¢ continues the period doubling sequence until the system
enters chaos. This can be observed in figure 1.2d where ¢=5.7.

This work presents cascades from ordered motion (similar to the limit cycle) in to chaotic
motion for laminar fluid mixing systems. The control parameters that are varied to cause the

transition are associated with the form of the boundaries. Chaotic transitions are observed
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through trajectory plots, properties of the mixing and by the use of various characteristics of

chaos.

1.3. Classification of chaos.

In the previous section it was noted that time dependent non-linear systems can oscillate
either periodically or chaotically. It was discussed that for systems to exhibit aperiodic motion
they must be operated within specific ranges of operating parameters. It is known [12] that for
systems to be considered as chaotic they must exhibit either one or more of the following:
aperiodic oscillatory motion, evidence of homoclinic or heteroclinic points or sensitive
dependence to initial conditions.

This section briefly describes two methods originating from the above signatures of chaotic
motion, for recognising chaos within a variety of systems. Poincaré maps and Lyapunov
exponents are discussed in sufficient detail to enable reference to them in later discussions.
For further discussions of chaotic dynamical and non-linear systems and their development

and classifications the reader should consult [13-21] or similar text.

1.3.1. Poincaré maps.

Complex trajectories can be simplified by the use of maps, such as the time-T map or
Poincaré map. Consider a three-dimensional flow trajectory t. At time t; the trajectory t has a
position P, on a cross section (of two dimensions, transverse to the flow.) As the system
evolves the next time trajectory T passes through the cross section its position can be noted as
P,. If P;=P,=P; and the time difference t3-t = tp-t;= T the system could then be said to be
periodic with a time period of time T. Figure 1.3a shows this pictorially, it can be seen that

the map of the cross section exhibits only one point.

Figure 1.3a. Pictorial representation of a Figure 1.3b. Pictorial representation of a
trajectory limit cycle crossing a cross trajectory exhibiting period doubling
sectional plane at position P, and again at where position P,=P,.,, wheren =0 > o

P, where n=0 2> .

If the trajectory T were to be within a period doubling scheme then the associated map would

show two locations, as represented in figure 1.3b, where P,=Py+,. The benefit of the simplified
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perspective for viewing such systems becomes clear when considering a chaotic system. To
view the full trajectory for a chaotic system would be confusing, and useful information
would be difficult to extract.

By observing particle trajectories using Poincaré sections it is possible to observe features and
signatures of chaotic systems, such as stable (elliptic) and unstable (hyperbolic) fixed points.
This technique of observing disorder within fluid systems is used in Chapter 6. By observing
particle trajectories using Poincaré sections, positioned at regular intervals along the flow
domain, it is possible to conclude the presence of elliptic points, however hyperbolic points
cannot be identified. The Poincaré sections in chapter 6 do, however, enable the conclusion
that as the system’s perturbation grows the invariant curves are destroyed and become
engulfed in a ‘chaotic sea.” In completely chaotic systems total destruction of invariant curves
occurs, and trajectories travel randomly throughout the system domain.

Many authors have used Poincaré sections to observe the onset of chaotic motions as the

destroyed areas grow, these will be described later in this chapter.

1.3.2. Lyapunov exponents.

As discussed previously one characteristic feature of chaos is sensitive dependence to initial
conditions. This was shown using the Lorenz equations where two initially near points within
the chaotic system diverge rapidly up to the point where they appear to have no relationship to
each other. It is possible to characterise this divergence by the use of properties such as the
Lyapunov exponent. This has been carried out for systems such as the Couette-Taylor flow
[10] and the Lorenz system {22, 23]

The Lyapunov exponent is a quantitative measure of the exponential growth of deviations of
initially close points. However, as the growth between the two initial points is expected to be
exponential in a chaotic system, problems would occur in calculating this value due to the
large number causing numerical errors and computational data overflow, and also the system
domain is bounded. To overcome these problems when the divergence becomes too great,
another nearby trajectory can be selected for the calculation by using a repeated rescaling
process. Consider two initial conditions a distance €, apart, and evolving to a separation
distance & after time t. This produces scaling factors, €;, €;, and so on. The value of the

Lyapunov exponent (1) can then be calculated over many segments (N) and is A is given by:

N
Zlm L) (1.3)
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and depicted pictorially in figure 1.4.

Figure 1.4. Pictorial representation of the calculation of the Lyapunov exponent through repeated rescaling of the

distance between the object trajectory and reference trajectory.

By observing the sign of A it is possible to identify the relationship between the object
trajectory and the initally close trajectories. If the value is negative, due to &/gg < 1, and
therefore gy > €, then the system converges and is stable. If A is positive then the system

diverges concluding the presence of chaotic evolution, and if A is zero the system neither
diverges or converges.

The Lyapunov exponent is not calculated for the systems presented in later chapters due to
being unable to readily identify nearby trajectories, for use when rescaling, in the commercial
fluid dynamics package used in this work. However comparisons are drawn between the
Lyapunov exponent and the techniques used based on the fact that initially close trajectories

diverge under chaotic conditions.

1.4. Laminar mechanisms of mixing.

There has been much work into the understanding of various mixing processes and their
associated mechanisms {24-29]. This work is concerned with the mixing of laminar fluids that
may be found in the food [30, 31] bio-chemical {32, 33] and polymer and plastics industry
[34, 35].

The blending of a laminar fluid occurs due to the stretching, striation and segregation of
elements of fluid, which does not alone, yield regions of uniform concentration gradient. This
only occurs through molecular diffusion, which becomes a notable process once the elements
of fluid are significantly striated and segregated. Hence diffusion terms are not included in
any systems presented in this work. We take mixing in this work as the significant separation
of substances, with similar properties, that begin from separate regions. Good mixing would
be where like particles have separated and are distributed randomly throughout the domain.
Poor mixing would show clumps and regions of like particles with defined boundaries.

Here three mechanisms of laminar fluid blending are noted, laminar shear, elongational or
extensional flow and distributive mixing [36]. They will however, not be discussed in great

length as they are seldom referred to later in this work.
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1.4.1. Laminar shear

This can be considered as the reduced striation thickness and increased interfacial area, due to
the deformation of fluid elements across streamlines. Consider the linear velocity profile
formed with a Newtonian fluid between two parallel plates, of which one is moving and the
other at rest. An elemental thin rectangle of fluid, initially placed perpendicular to the flow,
would distort to the form of a diagonally orientated element of greater length and reduced
width as shown pictorially in figure 1.5. If the same thin rectangular element were initially
placed with its length in line with the fluid movement it would then evolve to elongate

parallel to the walls.

Figure 1.5. Pictorial representation of a tracer element between two parallel plates. When the top plate is in

motion and the lower one stationary the velocity gradients cause a deformation of the tracer element stretching it.

Consider a steady eccentric cylindrical system with the outer wall rotating. 1f a small blob of
tracer fluid were placed within the domain the resulting trace would evolve to create a full
circle, and hence very little mixing would occur, see figure 1.6. If now we place a tracer line
perpendicular to the plane of shear, but long enough so that one end of the tracer touched the
inner cylinder, and the other, the outer cylinder. As time evolved we would note that tracer
elongates, producing a spiral, and will continue to do so, with every revolution of the outer
cylinder, until it was of infinite length and infinitely narrow, and hence appear to be

completely mixed, figure 1.7.

Figure 1.6. Pictorial representation of a blob of tracer between two eccentric cylinders where the outer cylinder is
in motion and the inner one is at rest. After time with the cylinder in motion the blob is stretched to form a

closed circular line.
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Figure 1.7 Pictorial representation of a line of tracer placed perpendicular to the shear between two eccentric
cylinders where the outer cylinder is in motion and the inner one is at rest. After time with the cylinder in motion
the line is deformed to produce a spiral. The tracer line will continue to stretch until infinitely thin and

completely mixed.

It has been noted that the consecutive shearing in two different directions can increase the

deformation of a fluid element [37].

1.4.2. FElongational flow.

This mechanism is the reduction of striation thickness due to changes in geometry and fluid
acceleration. An example of this can be found when considering the tip of a blade of an
internal mixer [38] or inside a screw extruder [39,40, 41]. The fluid apparently flowing into
the blade will be elongating. Between the tip of the blade and the wall there will be a region

of high shear. And the fluid flowing out from behind the blade will once again be elongating.

1.4.3. Distributive mixing.

This occurs with the constant splitting, rotation and recombination of fluid streams. This is a
common mechanism of mixing within static mixers such as the Kenics [42, 43] or rotating
partitioned pipe mixer [12]. With each splitting of the stream there is an associated increase in
the fluid interfacial area, and a reduction of striation thickness.

The above mechanisms of mixing involve reduction of the striation thickness, elongation of
fluid elements and increased interfacial area to produce greater segregation between fluids.
Many methods have been employed for assessing the quality of mixing of laminar fluids
including the segregation and concentration differences. However in this work others methods

are used to suggest the degree of disorder and the quality of the mixing taking place.

1.5. Mixing in chaotic flows.

Mixing of laminar fluids, such as polymer melts, takes place by a series of stretching, folding,
shearing and bending movements. A two-dimensional, where velocities are constant, will
flow in a series of streamlines. It is well known that when operating a system under time

dependent conditions, such that opposing streamline motions are formed, mixing takes place
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more readily. It is this that many authors have used to fdéveI:Op chaotic mixing systems and
also forms the basis for this work.

It is due to the presence of chaos yielding increased mixing within a fluid domain that this
area has attracted much attention. Work, both experimental and computational has been
previously carried out in the investigations of viscous fluid chaotic mixing systems. The aim
of this section is to briefly present the notable works of other authors as an introduction to
discussions in later chapters and should be considered as a comprehensive, but not definitive
review of works relating to this subject.

The works initially considered involve two-dimensional viscous fluid chaotic mixing. First
there is an introduction to the analysis of various chaotic mixing systems through a discussion
of early and influential works. This is then followed by a brief overview of some applications
of chaos within different configurations of fluid system and the various properties therein that
the onset of chaos is observed to affect. The discussion of three-dimensional viscous fluid
chaotic mixing is presented in chapter 5.

The pioneering work of Aref, ‘Stirring by Chaotic Advection,” [44] is discussed first. This
work presents a two-dimensional circular system, which stirs a fluid considered as inviscid
and incompressible, by the use of two point vortexes. It is noted that the way in which the
vortexes are operated can create a more efficient form of mixing. In essence a laminar fluid
exhibiting stochastic motion is presented, or as Aref explained: ‘We have a situation in which
an innocuous, fully deterministic velocity field, in the Eulerian view, produces an essentially
stochastic response in the Lagrangian advection characteristics of a passive tracer. It is
proposed to call this situation or regime chaotic advection.”

The increased mixing in Aref’s system is caused by the alternate operation of the point
vortexes, which became termed the ‘blinking vortex motion.’

His work presented control parameters associated with the onset of chaos. The first
considered is the time period of which one vortex is operated, before switching to the other. It
was noted in this work that if one vortex alone were to be operated a chaotic regime would
not be formed, even if it were oscillated.

This work showed by observing the evolution of particles from strategically placed origins,
that as the time period of operation was increased from a low value, the region of chaotic
motion, surrounding the stirring vortexes, increases. As T was increased the region of disorder
grows, up to the point where there are no visible signs of ordered motion.

At a sufficiently low time period (T) the motion of traced particles was shown to appear as a
steady state system, where both vortexes are in equal operation. i.e. there appears to be no
region of chaos, this was commented not necessarily to be the case, but suggests that as T->

0, the size of the chaotic region also tends to zero.
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To examine the increased mixing within a more ‘real’ apblication Aref introduced a ‘blob’ of
particles near to the vortexes. Differences were presented between the steady state, and a time
dependent system that has been shown to exhibit a large region of chaotic motion. For the
steady system the particles originating from the blob were contained with regions close to the
vortex. The particles originating within the time dependent system separated, however, to the
same size as the associated region of chaotic motion. And after a short time the blob was
homogenised across the whole region.

Aref commented that the greatest disorder being associated with larger time periods is not
what would be initially expected. ‘This result is in some ways counter-intuitive, since the
more vigorous turning on and off of the two agitators might have been suspected of being the
most efficient mechanism.’

Another parameter considered by Aref was the distance (B) between the two vortexes. By the
crude measurement of the relative area of the chaotic region it was shown that for a particular
value of B, the time period required to obtain a large chaotic region was lower than that of a
smaller value of B. Although no attempt was made to suggest why either control parameter
affects the disorder in such ways.

Aref concluded his observations by commenting on the presence of islands of stability within
the chaotic region, although their effect and origin was not discussed.

It is known that to achieve homogenisation of laminar fluids the interfacial area between
fluids must first be increased by a series of stretching, folding, shearing and bending
movements. A steady state system will flow in a series of streamlines. By operating a system
under time dependent conditions streamlines can be broken and mixing takes place more
readily, through creation of chaotic regions. The work by Aref certainly showed that chaotic
mixing of laminar fluids was possible and hence created much interest in this area.

Two significant works that are similar in appearance and hence involved some collaboration
between the authors, so as not to significantly duplicate, followed Aref’s paper. The works,
‘Chaotic advection in Stokes flow,” [45] by Aref and Balachandar, and ‘Lagrangian
turbulence and spatial complexity in a Stokes flow,” by Chaiken et al, [46] are described
below.

Aref noted that there was resistance to acknowledgement of the existence of laminar chaotic
advection. He states that incorrect notions were that turbulence was confined to high
Reynolds numbers flows or inviscid fluids, and that the presence of a high viscosity would
‘smooth things out.” By the investigation of chaotic motion in Stokes flows it was hoped that
this scepticism would be put to rest.

Both works [45,46] investigated eccentric dual cylindrical systems, considered of sufficient

length, to make two-dimensional approximations valid. Both the inner and outer cylinders
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were able to operate independently, which they do with various forms of time-dependent
motion.

Both systems used Poincaré sections, at specified ‘stroboscopic’ or ‘snapshot’ time intervals.
[t was commented in the works that if a pattern of particles produces a smooth curve, then the
motion could be considered regular. Conversely if the pattern of particles is smeared or
scattered then the motion could be considered to be chaotic.

Aref and Balachander presented and compared the differences in particle trajectories for
steady and various forms of time-dependent flow. They find that increasing the switching
time of operation of the two boundaries produced an increase in the region of chaotic motion.
They then commented on an optimum between the inefficient mixing of rapid alternation of
boundary movements, and the long periods of time required for mixing to take place where
longer alternation periods were used.

Chaiken et al also presented a gradual variance in disorder as a control parameter was
increased. Keeping the movement of the inner cylinder constant and varying the movement of
the outer (T), for systems with differing eccentricities of the cylinders, they concluded that:
for the smallest T, for each eccentricity the motion is integrable. As T is increased there is a
mixture of chaotic and regular motion. Although there would appear to be a range of the ratio
of inner and outer cylinder movement that yields maximal chaos, as at larger values of T
regular regimes predominate. They presented the above trends for both counter- and co-
current motion, but indicated that co-current movement yields the greater chaotic regions.

By observations of particles originating from lines, or specific shapes within a chaotic flow
domain it was shown, by Aref and Balachander that particles are ‘stretched considerably more
than in the steady flow case.” Whereas Chaiken et al observed and commented on the
presence of whorls and tendrils within the flow domain.

Aref concluded that ¢...the flow is completely dominated by viscous forces. The flow is
always laminar. The particle trajectories in this flow, however, can be chaotic.’

It would be possible at this point to cease the review of chaotic mixing. In essence all that is
required for an appreciation of this work are the fundamental principles that are; integrable
systems exhibit streamlines, particles originating on a streamline will remain unconditionally
within that streamline. It is by causing a particle to switch the streamlines that chaotic regions
can be produced. This can, for example, be achieved through time dependent boundaries. It
should then be noted that there exist parameters that control the degree of disorder within an
assoclated range.

Experimental work that followed and complimented Aref’s work was conducted by Chein et
al [47]. Their work concentrated on laminar mixing within cavities and described the

equipment used to generate two-dimensional cavity flows. They presented the mixing of both
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steady and periodic systems by the use of both lines and blobs of tracer. A variety of cavity
configurations and boundary conditions were investigated. They also concluded that operation
of the boundaries periodically increases the efficiency of the mixing over that of steady flows.
They also suggested that there is a frequency of the boundary oscillation at which an optimum
value for the mixing can be achieved. It was found that when operating at the optimum
frequency that the initial position of the tracer is ‘not critical’.

Leong and Ottino [48] continued the experimental work, investigating the two-dimensional
cavity system and presented investigations of the mixing achieved for discontinuous and
continuous sinusoidal boundary movement.

In this work they commented that due to the nature of chaos computational simulations cannot
accurately predict the arrangement of striations of fluid, but can predict more coarse
structures, such as islands and folds in the fluid. This is entirely understandable. Consider
now the discussion of Lorenz’s model, his values, within a chaotic system, were entered with
a discrepancy of one thousandth of a unit. The result then diverged to an unrecognisable
degree. It would not be possible to set the initial conditions of a physical experiment to such
accuracy that the positions of particles would not diverge from those within a corresponding
computer simulation. That being said the fact that chaotic systems do diverge can be used to
an advantage when comparing systems that do or do not exhibit chaos throughout ranges of
control parameters. This is discussed further in later chapters.

Leong and Ottino also commented that the flows involved are complex, and not completely
understood, but they presented a beginning to the understanding of more realistic flows that
are unable to be condensed into simple operating terms. This, as will be observed throughout
this section, remains the case. The definitive universal rules for the induction of chaos remain
un-stated.

Much work has taken place into the investigations of a variety of systems, observing chaos
through the inclusion of various properties within the flow. What follows in this section is a
brief overview of some notable works of chaotic mixing systems. The types of system
domain, applications of properties within the fluid and methods of observing the presence of
chaos are briefly discussed.

Time periodic boundaries have been applied to a variety of two-dimensional domain
configurations. Many investigations, both experimental and computational, have taken place
in simple rectangular cavities [6, 47, 48, 49, 50], others occur in dual eccentric cylindrical
systems [45, 46, 51, 52-57], whilst others maintain the original blinking vortex popularised by
Aref [58]

Chaos within laminar fluids has also been induced in a variety of other domains, such as the

enhanced mixing simulator [59], which operates laterally perturbed Couette flows. A circular
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cavity mimics the rectangular cavity, with the circles’ perimeter split into four walls, of which
two opposing walls are able to move.

The majority of investigations consider Newtonian fluids with uniform properties, however
there are exceptions, where the effects of shear thinning fluids of chaotic motion is considered
[55]. Other work observes the mixing of two similar fluids, in the presence of a third
dissimilar fluid [50] whilst others investigate the stretching and break up of droplets in chaotic
flow regimes [56] and two interpenetrating incompressible fluid phases [60].

Work has been carried out to investigate the effect of chaotic mixing on other processes
within the system. Enhanced heat transfer [61] and mass transfer {49] has been observed
when operating a system under chaotic conditions. The effects of chaotic motion on reactions
occurring within chaotic flow domain have also been investigated [52, 58, 62, 63] including
flow reversal in continuously stirred tank reactors [64] and bubble column reactors [65].
There are many methods for observing the presence of chaos in a system, as discussed in
earlier sections of this chapter. Various methods exist to quantify the disorder or blending
quality. Two such methods are described by Liu et al [66] in their work on aperiodic flows.
They note that Poincare sections and periodic points are not suitable for the analysis of
aperiodic systems, and therefore quantify the chaotic motion by measures of the stretching
field, and spread of a tracer, by the use of a box counting technique. Many authors utilise
Poincare sections to observe the degree of disorder and presence of islands of regularity [45,
46, 52, 61, 67]. Others use more topological methods, and observe the dynamics of curvature
[51] and the asymptotic directionality [S7]. To observe a property more related to the process
of mixing some authors observe the Lyapunov exponents [59, 68], or the related stretching
within the domain [55] or the derived mixing efficiency [53].

Chaotic mixing has also been noted to exist in the mixing processes of granules and powders

[69, 70, 71] however this is beyond the remit of this work.

1.6. Summary

This chapter has presented background to chaotic dynamics, laminar fluid mechanisms of
mixing and chaotic mixing theory sufficient to enable the reader to appreciate the research
findings presented in later chapters.

Initially chaotic dynamical examples were shown to indicate features of chaotic systems
relevant to this work. Those notably being sensitivity to initial conditions, and chaotic motion
being present within specific operating and control parameters. The divergence of two
initially close points observed by Lorenz, could be considered to be similar to two initially
close particles in a fluid system modelled by a different series of equations. If the system

operates with chaotic motion then, as time evolves, the trajectories of the two initially close
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particles will diverge. The particles will separate to positions where they bare no resemblance
to their original neighbours. If particles separate to this degree then good mixing has occurred
Methods of classifying both dynamical and fluid chaos were briefly discussed, primarily the
observations from Poincare sections and the calculations of Lyapunov exponents.

The introduction of three laminar mechanisms of mixing led into a review of literature that
concerns chaos in mixing systems. The emphasis being placed on two-dimensional, laminar
fluid, primarily time dependent domains, investigated both computationally and
experimentally. It is noted that much work has taken place into observing the effects of chaos
on features within the fluid.

The aspects of chaos and chaotic mixing in this chapter are not intended to be a complete
survey of all things chaotic, but an introduction to the principles and previous works that are

relevant and compliment the investigation presented in this work.

Page 31



2. Observation and recognition of chaos using commercial CFD.

2.1 Introduction

This chapter, by the use of a commercial Computational Fluid Dynamics (CFD) package,
attempts to simulate two-dimensional chaotic systems.

Commercial computational fluid dynamics is fast becoming a popular tool for engineers to
investigate a variety of systems involving fluid movements, [72, 73, 74]. This is due to CFD
enabling the user to model complex geometries and fluids and visualise the results in a variety
of different ways.

This chapter establishes that commercial CFD can simulate chaotic flow within simple
domains, later chapters then shows that it is possible to apply these techniques to the
investigation a variety of more complex chaotic systems. By using this technique
advancement is be made towards developing concepts and rules of thumb for use in the

design of industrial process fluid mixers.

2.1.1 Introduction to the system

The system to be initially investigated is a simple rectangular cavity. It is similar in geometry
and properties of the fluid to the experiments presented by Leong and Ottino [48] and [12].
The rectangular domain has an aspect ratio of A = (H/W) = (6.2/10.3) = 0.6. (Where H and W
are height and width respectively, measured in cm.) The fluid simulated is glycerine, with a
constant density of 0.00125 g/mm’ and a viscosity of 0.75 poise. The fluid is assumed to be
fully Newtonian, with no slip occurring at the walls of the domain. Effects of temperature,
gravity and inertia are neglected.

The experimental investigation [48] shows that it is possible to induce chaos by the out of
phase smooth oscillation of the upper and lower walls of the domain. This forces the system
to evolve through a series of alternating streamlines, which induces the disorder. The top and

bottom walls will be oscillated out of phase in the form of equations 2.1 and 2.2:

Uop = Usep Sin” ( 7t/ Tyop + 1) (2.1)

Upor = Upoy Sin” (70 t/ Thor ) (22)

Here uy, and upe are the velocities of the top and bottom walls respectively. Uy = Upy = U

are the amplitudes of oscillation, t = incident time, T\,,=Th,=T are the time periods for top
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and bottom walls respectively, which are identical here. The phase difference between the two
walls is a=m/2.

The time dependent system moves through the instantaneous streamlines of the- fluid as
shown, in figure 2.1a-c. (Figures generation is explained in detail later in this chapter.) The
system, at the start of a period (t=0), flows as figure 2.1a, where the top wall is moving and
the bottom stationary (Uwp =Utep and upe=0). Then moves through figure 2.1b, where both
wall velocities are equivalent (Uop=upor={Utop/2}={Unor/2}) at t={Twp/4}={Too/4}, to figure
2.1c at t={Ty/2}={Tvo/2}. At this point the top wall is stationary, with the bottom wall at
maximum velocity (upp=0, Upo=Upor). As time evolves to t=%T the system flows once again
as figure 2.1b, then returns to figure 2.1a for the beginning of the next period, t=T. The
notable difference between the flows shown in the figures, is the oscillation of the ‘centre

point> of rotation up and down in the domain.

Figure 2.1a. Flow patterns showing the two-dimensional cavity with top wall moving and bottom stationary (U

=Uop and uy,=0) at time t=0
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Figure 2.1b. Flow patterns showing the two-dimensional cavity with top and bottom walls moving at the same

velocities (Uypp=Upo={ Uiop/2}={Upo/2}) at time t={Twop/4}={ Toa/4}

Figure 2.1c. Flow patterns showing the two-dimensional cavity with top wall stationary and the bottom wall

moving (Uip=0, Upe=Upoy) at time t=74T.
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2.2 Chaos into Commercial Computational Fluid Dynamics.

Commercial Computational Fluid Dynamics has become widely available with particular
codes originating from a variety of original purposes, with a number of companies now
offering this software [75-83].

The structure of all CFD software is similar requiring the user to generate a mesh, specify
boundary and initial conditions, use some numerical technique to solve or approximate a
solution and then view the results using some sort of graphical module. However different
software packages provide different methods, modules and schemes of equations that enable
problem definition, solving, viewing and post-processing for a particular area of fluid
dynamics.

The commercial CFD package chosen for the simulations in this work is Polyflow [75] as it is
primarily for use with laminar fluid flows, (i.e. polymers, and hence the prefix). The package
contains many specialised simulations modules such as visco-elastic flows, blow moulding
and fibre spinning, however, in this work the ‘Mixing Module’ is the capability of interest.
Polyflow’s post-processing mixing module, ‘Polystat,” allows the investigation of time
dependent boundaries. Polystat also enables the user to approximate the movement of a
boundary as its motion changes throughout time. Systems can then be investigated by the
statistical analysis of various properties of mixing against evolution time. For this work the

basic structure of components of Polyflow can be considered as shown in figure 2.2.

| GAMBIT |

geometry and mesh creator

| POLYDATA |

set boundary conditions, operating and solving parameters

| POLYFLOW |

the equation solver

| POLYDATA ]»{:1 [*_j'}l FLUENT POST |

set mixing task parameters flow visualisation package

[ POLYFLOW |

run the solver for the mizing tazk

| POLYSTAT |

visualise the mixing results
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Figure 2.2. Pictorial representation of the links and orders of use of the Polyflow software relevant to the

simulations in this work.

2.2.1 Mesh and optimisation

The Gambit software allows the user to generate complex geometries, using similar methods
to CAD packages. It is then possible to superimpose a mesh onto the drawn structure, and
hence generate a grid of nodes, with a specified density and grading. The different boundaries
that are required in the simulations are highlighted as separate entities and labelled with an
alphanumeric term. The type of boundary (e.g. wall, input or output) is not specified at this
point. The mesh can then be exported and converted in Polydata into a Polyflow readable
mesh.

The discussion here of Gambit is intentionally brief, as the meshed domains in this work are
not significantly complex. Therefore it does not warrant a comprehensive discussion of the
mesh generator.

Various mesh densities for the two-dimensional system were investigated and found to yield
similar conclusions, therefore a detailed optimisation is not included at this stage. One node
every millimetre, along the sides of approximately 60 and 100mm, was found to be of

sufficient density for these initial tests.

2.2.2 Polydata and Finite Element tasks

For steady state, time independent, systems Polyflow solves the partial differential equations
of fluid dynamics by the use of a finite element method. For time dependent systems, like the
one being investigated here with oscillating boundaries, the solver must first solve individual
steady state flow fields then analyse them consecutively in the post-processing mixing
module. Therefore in order to create the sinusoidal oscillation of the boundaries, the
movements are approximated into a number of steady state systems that are solved first by
Polyflow and then arranged in a mixing task to calculate particle trajectories.

The velocities of the top and bottom walls during one time period of oscillation are shown in
figure 2.3a. from equations 2.1 and 2.2.) The curves are approximated into forty steady state

instantaneous cases for entry into the solver, as shown in figure 2.3b.

Page 35






Analytical solutions to the non-linear equations governing fluid motion are limited, and
therefore Polyflow uses numerical methods based on the finite element method to seek

approximate solutions to flow problems [72, 75, 88]

2.2.3 Polydata and mixing tasks

Polyflow is not a Lagrangian code so in order to generate trajectories of particles the post-
processor mixing module has to be used. The result output files from each of the forty
instantaneous velocity fields shown in figure 2.3b are entered into a Polydata mixing task to
create an approximated oscillation.

When mixing tasks are solved the Polyflow mixing module generates a number of particles as
labels of points in the fluid (i.e. they have no affect on the fluid motion) and tracks their
trajectories as time evolves. The output data consists of the time and corresponding spatial co-
ordinates of the particle. And, if desired, specific mixing related properties of the fluid can
also be calculated and recorded against the corresponding time. For example the software can
calculate properties such as the rate of stretching and the segregation scale. Once solved, the
output data can be analysed by use of a spreadsheet or by the statistical software processor,
Polystat.

To create a mixing task Polydata must again be entered, and “mixing task™ must be selected.
In this case “time dependent” problem must be chosen. This then allows the consecutive
velocity field result files to be entered. The names of the result files, the order in which they
are to operate and the time for which they are to be used are all entered. It is by the alteration
of the time of operation of each velocity field, that the system boundaries can oscillate at
different time periods. For example if the system containing forty instantaneous velocity
fields were to operate at a time period of oscillation of ten seconds then the time of use for
each segment would be 10/40 = 0.25 seconds.

It is in Polydata that the number, origin of trajectories, and time of evolution of the particles
to be tracked are entered. Particles can be generated at random throughout the domain, or
within regions specified by the user, for example at the inflow of an open system, or in a
‘box’ specified within the fluid. By using a box of specified orientation and size it is possible
to accurately generate particles at the exact same origin giving consistency when considering
the affect of a range of a particular parameter on a property of the mixing.

Once the mixing task data file has been created Polyflow can be run again to calculate the
particle trajectories. Each particle trajectory is calculated in turn through the time integration
of equation 2.5 which is an Euler explicit scheme, sufficient if we are only interested in the
successive positions of material points. In chapter three the mixing efficiency is considered

and which requires a much more CPU intensive numerical technique.
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x=v (2.5)
The trajectory is calculated in the parent element, then integrated with the Runge-Kutta

method. Polyflow’s mixing module uses the algorithm, illustrated by figure 2.4.

U Initialisation.

U choose an initial position X in element E

U find the local co-ordinates £ of X in E

® Integrate 5 = f(v(£)) until cross boundary of element E

U adapt time step to find position x on boundary of E

U search neighbourhood element E*

U find local co-ordinates £* in element E* of the current position x
U return to ® until lifetime of particle exceeded

Figure 2.4. The algorithm used by Polyflow mixing module to track particle trajectories.

2.2.4 Polystat

The result files, containing co-ordinate data and properties of mixing at associated times from
the mixing task can be viewed by using Polystat. This statistical software provides both a
pictorial view of the trajectories and a statistical analysis of any mixing properties calculated.
The user is given the ability to perform simple mathematical or statistical operations on the
calculated properties, to generate further property ratios or integration over time, for example.
It is also possible to create slices on any property to represent the data. For example the ‘rate
of stretching’ could be statistically analysed through a series of time or co-ordinate slices.
Trajectories can be viewed pictorially by reading the mesh and mixing result files. Polystat
allows the user to view any property throughout the corresponding trajectory. Differences in
property values are indicated through user defined colour variations.

Statistical data, once all required operations have been performed, can be written to file as a
series of graphical plot co-ordinates. These can be viewed either by Polyflows’ own plotting
software, Polyplot, or by transferral into a spreadsheet software package for analysis.

Details of the various mixing properties calculable by Polyflow will be given where used later

in this work.

2.3  Chaos in a two-dimensional cavity system
Before any detailed investigations can be performed on chaotic systems using Polyflow, it

must be established that the tool produces results that compliment published experimental
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data through exhibiting chaotic behaviour. Before progressing to more complex systems it

should first be established that the commercial CFD can simulate chaos in a simple system.

2.3.1 Comparison between computational investigation and published experimental
research.

Let us first look at a steady state system. The conditions are set as faithful to the experimental
system [48] as possible. When both top and bottom moving boundaries are set at an equal
speed in a clockwise direction it can be seen from the resulting velocity vector plot, see figure

2.1b, that streamlines, similar to those photographed and presented in [48], exist.

o

il
Figure 2.1b. Flow patterns showing the two-dimensional cavity with top and bottom walls moving at the same
velocities (Uop=Upo™{ Uiop/2}={Ubor/2}) at time t={T,,/4}={Tvo/4}

It is suggested that if a blob of a tracer is placed into a streamline, the resulting trace will
remain trapped in that streamline indefinitely. The computational simulation result, figure 2.5,
shows a particle being generated at (x, y) = (22, 31) mm from the bottom left corner and its
trajectory observed for 1000 seconds. It can be seen that the trajectory follows a streamline
without deviation, thus reproducing simple time independent flows [48]. Poor mixing would

be present in this system.

Figure 2.5. Simulation of a blob of tracer placed in the flow domain. The flow is steady and streamline, the tracer

particles highlight the streamline that they were originally placed within.

Page 39



When the experimental system is operated under time periodic sinusoidal boundary
oscillations the mixing is improved. This is concluded from observations of a blob of tracer,
that does not follow any one streamline appearing to spread randomly over the domain. Bends
and folds, which are signatures of chaotic mixing, are clearly visible.

To compare the computational analysis with the published experimental data a test using the
same periodic conditions as [48] is used (although here forty instantaneous segments
approximate the sinusoidal motion). U = 26.9 cm/s, T=20 seconds, o = n/2 and the exact

dimensions of the flow domain A = (H/W) = (6.2/10.3) = 0.6.
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Figure 2.6. 1 second time snap shots of a particle trajectory for 3000 seconds in the two-dimensional cavity

where U=26.9 mm/s, T=20 seconds. The trajectory follows a random path covering the majority of the domain.

It is found that tracer particles in the oscillating computational system obviously do not follow
any singular streamline. Figure 2.6 shows one particle trajectory for 3000 seconds, where
T=20 seconds. It shows the particle moving throughout the whole flow domain, thus
concluding that some disorder is apparent.

The particle trajectories, however, do not look exactly as the pictures in [48], where it is
suggested that chaotic motion is occurring. This can be attributed to the experiments using a
blob of tracer in the flow domain and the pictures above observing the trajectory of only one
particle. The experimental tracer blob would be stretched into a line that will subsequently be
displaced by non-tracer particles, producing bending and folding in the tracer area. Thus the
experimental tracer blob shows how well the system mixes, but is not an indication of the
evolution of an individual particle, as in this computational test. Therefore a comparison
between the computational and experimental results at this stage is unable to continue past the
conclusion that both results show increased mixing when time periodic and a possible chaotic
region. This is sufficient agreement at this stage to continue investigations.

As the computational results enable the isolation of an individual trajectory it is suggested that

it may be possible to investigate chaotic motion by observing the movements of single
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particles. Although one would expect that particles may behave differently depending on
where in the domain they originate.

It has previously been suggested that experimental methods are limited due to the nature of
chaotic motion magnifying any experimental error, hindering consistent repetition. The
method of analysis with experimental data is limited to classifications of the flow. The issues
of divergence in results due to minute errors or discrepancies, which is a signature of chaos,
are not restricted to experimental investigations alone. The nature of chaos can also have an
effect on the accuracy and reliability of computational investigations. Small differences
introduced due to the way computers store data, and the various approximations when solving
equations, can, under chaotic conditions, propagate into large discrepancies in results. It is
expected therefore that the evolution path of a particle will be dependent on initial conditions
whereas the overall state of disorder, will not be significantly affected by such minute
differences. The trajectories may diverge with minute discrepancies, but whether the system
enters into chaos, or not, will remain unchanged.

By the use of computational observations of trajectories, it is possible to observe a remarkable
difference in fluid behaviour between order and chaos as a time period of oscillation is
introduced. This enables the conclusion that there must be a point or range at which the
system transforms from an ordered state to a chaotic one. And hence the possibilities of

observing a cascade from order to chaos as operating parameters are varied.

2.3.2 Observing the onset of chaos as operating parameters are varied.

From the agreement of the observations above with those in [48] and the computational
simulations it is suggested that analysis using commercial computational fluid dynamics for
the two-dimensional flow system is viable. Therefore it is acceptable that this method should
be further used to investigate the sensitivity of the system with respect to the variation of
operating parameters, which will be termed control parameters when discussing their effect
on the disorder of a system.

The two-dimensional system is investigated further, for the variation of control parameters,
initially by two methods:

1. Observing the frequency and accuracy with which an individual particle returns to a
reference point and thus showing an increase in the trajectory period, for fluid behaviour at
small time periods of oscillation.

2. Observing the particle trajectory around the flow domain using pictorial methods, which is
useful for investigating larger time periods up to, and past the point, where chaotic motion

begins.
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Cascade towards chaos, particle returning to a reference pdéition.

In order to observe the effect of varying operating parameters on the flow behaviour the
trajectory of a particle starting from an arbitrary reference point at co-ordinates (x, y) = (-
29.5,0), where the origin is the centre, is observed.

In the case of the steady state system the particle returns close to the reference point after one
circuit of the flow domain (as shown pictorially in figure 2.5). This system can be termed to
possess a trajectory period of one.

The plots in figures 2.7 and 2.8 were achieved by generating a single particle at the reference
position and recording its position at regular time intervals. The two times at which the x co-
ordinate is negative and the y co-ordinate changes from negative to positive are recorded and
their positions plotted. This produces a plot of pairs of points, indicating how close to the
reference point the particle has passed.

It is shown here that observing the cascade by period increasing depends on the tolerance of
the accuracy required of the particles returning to a reference point. For example with a large
tolerance of accuracy a particle may be considered to return to the reference point every other
revolution of the flow domain, and hence be pronounced as having a period of two. But the
same system, subjected to a more microscopic investigation could be found to return to the
reference point only once every four revolutions of the flow domain, say, and hence have a
period of four.

It is shown below that it is possible to observe cascades from order towards chaotic motion,
however one must indicate to what tolerance.

If the accuracy were at the first decimal, then when T=0.01, figure 2.7, could be said to also
have a trajectory period of one, as, within the accuracy, after each revolution the particle
returns to the reference point. However if the tolerance were to be the third decimal, then the
system would have a period of eight, where the particle returns close to the reference point

after eight revolutions of the flow domain.

Page 42



-29.492 +
29.493 -+ &
§—29.494 T
E
S -29.495 +

v @
X 29.496 +

=0

> 29.497 + &

ing

-29.498 -

L g

-29.499 +

Position cross

-29.500 } + + t i

29,501 ( 50 100 150 200 250

1

-29.502 -

t

Time (seconds)

Figure 2.7. Pairs of points where a particle trajectory passing near (o a reference point in the two-dimensional

cavity operating equivalent to carlier tests, with a time period of 0.01 seconds.
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Figure 2.8. Pairs of points where a particle trajectory passing near (o a reference point in the two-dimensional

cavity operating equivalent (o earlier tests, with a time period of 0.2 seconds.

When operating the system with a time period of oscillation of T=0.2, it is clearly visible,
from figure 2.8 that the particle is oscillating around the reference point. The particle
repeatedly returns, within the second decimal accuracy, to the reference point after
approximately every 600 seconds. This is a notably longer period of time that for the previous
system where the wall oscillation frequency was smaller. A period trajectory pattern can be
found with time periods above and below T=0.2, however it is not possible to suggest how
close to chaos the system is located.

To obtain the cascade, in microscopic accuracy, from steady state into chaos would require an

unfeasible amount of time and would be of little practical value.

Page 43



From the above investigations it can be suggested that a particle originating from a reference
point within the flow domain, when operating with steady state boundary conditions, will
return to the reference point in one trajectory period. Whereas a particle generated within the
oscillating system takes an increased number of trajectory periods to return to the reference
point. As the disturbance to the system increases, by lengthening the time period of
oscillation, the time for a particle to return to a reference point will also increase. It is from
the presence of a period increasing effect that the cascade into chaos could be observed.
Although to obtain the whole cascade would be of little use and time consuming. From the
figures shown the conclusion that can be drawn is that, the higher the time period of
oscillation the more a particle oscillates around a reference point. The oscillation around this

point would be expected to increase up to the point where chaos occurs.

Cascade into chaos, pictorial representation.

It was shown above that individual particle trajectories oscillate as the control parameter, time
period of wall oscillation is increased. To obtain a more visual representation of this cascade
for a greater range of time periods pictorial methods can be employed. Here we present
particle trajectories for various time periods of the moving walls.

When the system is operating at a time period of T=1 second, as figure 2.9 it can been that the
particle appears to return to itself after each revolution of the flow domain. Although from the
previous section it is known that the particle is oscillating, albeit on a small scale. And hence
for all time periods below T=1 the pictorial representation will appear as figure 2.9.

As the time period of oscillation is increased it is possible to observe that the particle
oscillations gain amplitude. In figure 2.10, where T=5 seconds, the particle can be seen to be
oscillating, but maintaining a general oval shape throughout the 3000 seconds of its life.
Increase the wall oscillation time period further to T=10 seconds, figure 2.11, and it is
possible to see that the particle oscillation has increased to a level where the trajectory is
displaced from the general path, and no longer appears to be ordered. The particle now passes
nearer to the walls and all over the centre of the flow domain. This indicates that chaotic
motion is beginning as the particle is moving, apparently, without order around the domain.
The particle is however, still bound by an outer limit, that suggest chaos is not fully present at

these conditions.
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Figure 2.9. Two dimensional time periodic Figure 2.10. Two dimensional time periodic
cavity system operating with U=26.9 mm/s cavity system operating with U=26.9 mm/s
and T=1 second and T=5 seconds

Figure 2.11. Two dimensional time periodic Figure 2.12. Two dimensional time periodic
cavity system operating with U=26.9 mm/s cavity system operating with U=26.9 mm/s
and T=10 seconds and T=20 seconds

Yo S 2
A

Figure 2.13. Two dimensional time periodic
cavity system operating with U=26.9 mm/s
and T=40 seconds

It is difficult to suggest from pictures of this kind exactly where the transition from order to
chaos begins. However at a time period of T=20 seconds, figure 2.12, it is possible to see that
the particle travels throughout the domain, with seemingly random movement, and is no
longer bound by an outer limit. This is also apparent for a time period of T=40 seconds, figure
2.13. This system, however, also shows that the trajectory appears to gain some degree of
order restoration, which can be observed by what appear to be regular patterns in the
trajectory path.

Both methods described above are not without their limitations. However they both show
qualitatively that a cascade from order to chaos exists for this particular system and can be

observed as the control parameter, time period of oscillation, is increased from a low value.
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however, to attempt to find the full trajectory cascade as the benefit does not outweigh the
required hardware or time expense.

By the use of pictorial trajectory plots it is also possible to observe the cascade from order
into chaos. At a low time period of wall oscillation the trajectory appears as a streamline
system. The movement of the boundaries is unable to affect the particle significantly, as the
instantaneous velocity field changes are too rapid. Hence the particle does not have sufficient
time to be displaced from its initial streamline.

As the time period of oscillation is increased particles receive greater displacement from their
initial streamlines, and begin large oscillations. Further increase of the time period causes

greater oscillations up to the point where chaos overwhelms.
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3. Investigation of two-dimensional oscillating boundary flow domains.

3.1 Introduction

In the previous chapter it was shown that it is possible to observe the presence of chaos from
observations of individual particles, from a microscopic and macroscopic viewpoint. It was
also shown that a cascade from order into chaos existed, and was affected by changing the
motion of boundary oscillation.

It was shown previously that chaos can only be induced when systems are operated within a
certain range of operating and boundary conditions. The change in the degree of disorder in
chaotic systems, as operating conditions vary, has been noted by many authors, and was as
discussed in chapter one. There is, however, seldom an attempt to offer an explanation for the
apparent variations in the mixing quality over a range of conditions. This chapter using the
rectangular cavity and an eccentric cylindrical system attempts to demonstrate the theory
presented in the previous chapter explaining why a laminar oscillating system is sensitive to
changes in boundary conditions and exhibits chaotic motion only over a certain range of
conditions.

To enable a comparison, and further investigation, between systems with differing operating
parameters a property of the system must be observed to give some degree of quantification.
The property of mixing efficiency [12, 75] is chosen here for that purpose in this chapter. The
mixing efficiency has successfully been applied to mixing systems [6, 41, 43, 45], and can be
used to provide some quantification of the quality of the mixing within the fluid domain.

Two two-dimensional systems are presented in this chapter. First the rectangular cavity
system, from chapter 2, and second an eccentric cylindrical system. Both of these systems
contain two moving boundaries, oscillating in the approximated sinusoidal motion described

in the previous chapter (see equations 2.1 and 2.2.)

3.2 The property mixing efficiency.

It has been shown that a cascade from order to aperiodic motion (with increasing time period
of oscillation of moving boundaries) can be observed by the use of commercial computational
fluid dynamics. In this chapter this work is extended. The same cascade will be observed by
the use of the instantaneous mixing efficiency calculated from an optimum number of particle
trajectories. The trajectories are generated at representative positions in the flow domain with

the property calculated at uniform slices of time.

Instantaneous mixing efficiency e; is given by:
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e, =22 (3.1)

where A is the length stretch (and A is the time derivative) given by:

A X, M, 1) = |dx] (3.2)
|dX|

where dX is the infinitesimal material length with orientation M, and time, t=0, and dx is
material length at orientation m where t>0.

D is the rate of dissipation, given by:
D = (tr D% (3.3)

where D is the deformation tensor.

Letting e;,, denote the mean of the mixing efficiency we take:
t
M = [ 2, dt (3.4)
0

As the parameter, rate of stretching, and therefore, mixing efficiency, is often negative, in
order to maintain an absolute orientation of material length and therefore account for large
negative values of mixing efficiency exm” is taken as the integrand in equation 3.4.

This enables the results in the form of a single integral for each variation in operating
parameters, which can be quantitatively analysed with respect to other tests with different

values for the same control parameters.

3.2.1 Optimisation and agreement of mixing efficiency property.

There are many variables and assumptions involved in the production of a test result (mean
value of mixing efficiency) such as the node density of the mesh, time step, duration of
evolution, and the number of particles employed to gain mean values of the mixing efficiency.
Therefore the system has been subjected to optimisation and tested for consistency and
agreement of conclusions.

The instantaneous mixing efficiency is calculated at specific time ‘slices’ for each of the
particles as they evolve in the simulation. The variables associated with this are, the lifetime
of the particles, how often to calculate e;, and the number of trajectories used to calculate the

mean value. The parameters for the generation of the property were considered to be
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The above optimisation of the variables used to generate the mixing efficiency property
highlighted a characteristic peak. It should be noted that the value of the mixing efficiency
property should not be taken as a qualitative measure of disorder. The interest of this work, at
this stage, is the movement of various systems through the cascade. The peak is suggested to
represent a significant point within a cascade. The work in this chapter is concerned with the
movement of the peak. Therefore for the purposes of this work the optimisation results
obtained above show that values of 300 seconds for particle evolution, 400 particles generated

and one slice per second of sufficient accuracy for use in investigations.

33 Investigation of the two-dimensional rectangular cavity system.

The two-dimensional rectangular cavity flow domain is an ideal beginning point for any
investigation of the effects of chaos on a particular property. Concepts derived from this
simple system can then be developed towards utilisation within more complex systems.

The geometry, operating conditions and physical properties used in this system are identical
to the initial system presented in the previous chapter. The form of wall oscillation and the
entry of the boundary conditions and physical properties into Polyflow are also unchanged.
Using the instantaneous mixing efficiency to investigate the effect on disorder of varying the
time period of oscillation yields significant information that could prove useful to the design
of a chaotic mixer. The cavity system is operated with, U=26.9 mm/s, a=n/2 over a range of
increasing time periods from a low value. Figure 3.4 shows the mixing efficiency against time
period of boundary oscillation. It can be seen that as the time period increases, the value of

mixing efficiency rises to a peak suggesting maximum disorder, figure 3.4.

0 10 20 30 40 50 60 70 80
Time period of oscillation (T)

Figure 3.4. The instantaneous mixing efficiency for the two-dimensional rectangular cavity system at different
values of time period of boundary oscillation, where the amplitude is 26.9 mm/s and phase difference between

the upper and lower boundaries is n/2.
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It can also be seen that after the peak the mixing efficiency falls rapidly as the time period
increases further. Which may contradict instinct, as one would expect that once in chaos the
system would remain in chaos, and hence the mixing would not significantly change.

Bryden and Brenner [52] also present a peak, corresponding to maximum disorder for their
eccentric cylindrical system. They are unable to conclude a reason for the reduction due to
uncertainty exhibited from observing Poincaré sections.

From the discussion in the previous chapter it may be possible to attempt an explanation for
the changes in the degree of disorder throughout the time period range. The transition point at
which order becomes chaos could be suggested to occur at the peak of maximum disorder in
figure 3.4. One would expect, however, there to be an associated range of disorder around the
peak that corresponds to the chaotic transition. The reduction in the degree of disorder past
the peak, as T is increased further, may be due to particles remaining in one streamline for a
considerable time before being displaced. This could have the effect of reducing the stochastic
effect of the oscillations. The system may be considered to be behaving as many consecutive
steady state conditions and not as an oscillating one.

In order to be able to design effective chaotic mixers, there must first be more relationships
and theories developed for correlating chaos with operating conditions. It is by the detailed
analysis of elementary geometries and systems that fluid behaviour within chaotic cascades

and chaotic flow regimes can be more fully understood.

3.3.1 Effect of system properties on the cascade into chaos.

It has been shown above that it is possible to observe the cascade into chaos by the use of
mixing efficiencies. The plot in figure 3.4 exhibits a characteristic peak within the transition
into chaos. It is from observing this characteristic peak in similar plots, for differing
conditions, that conclusions can be drawn as to the effect of varying system properties on

chaos.

Amplitude of oscillation of the moving boundaries.

A cascade into chaos for this system can be caused by increasing the time period of
oscillation, thus allowing particles more time to be displaced from their initial streamline. The
effect of increasing the velocity amplitude on the chaotic cascade can be explained in a
similar way to increasing the time period.

When the velocity amplitude is increased particles can move more distance in less time, and
therefore do not require such a long time period to displace them from their initial
streamlines. Thus the effect of increasing the velocity amplitude of the moving boundaries is

to reduce the time period required to cause the transition into chaos. The point at which the
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Figure 3.6. The relationship between the time period at which the characteristic peaks of the plots in figure 3.5

occur to the corresponding velocity amplitude of the boundaries.

As the curve in figure 3.6 is constructed from the mixing efficiency peaks then operating the
system at a point on the curve would result in the optimum mixing efficiency. If the system is
operated with boundary conditions above the curve then it will exhibit chaos although may
contain some re-ordered behaviour. Boundary conditions under the curve will give oscillating
or streamline motion. A plot of this nature would be useful for suggesting operating
conditions for industrial equipment. It does not, however, suggest how stable the mixing
efficiency value is likely to be at any point on the curve.

It can be seen, from figure 3.5 that as the velocity amplitude increases the base width of the
peaks are reduced. This suggests that the band of high mixing efficiency, and therefore
disorder, surrounding the transition is greater at lower velocity amplitudes. This has
significance where a high mixing efficiency is required in a real processing system. The
mixing efficiency would deviate less significantly from the optimum, if disturbed, when
operating at low velocity amplitude. At high velocity amplitudes the peaks are sharp and a
small deviation in the value of the time period would displace the system into low mixing

efficiency regimes.

3.4 Investigation of the two-dimensional eccentric cylindrical system

3.4.1 System arrangement
The two dimensional eccentric circular system represents two cylinders, one, of radius rj,
inside another of radius r,, with the centre of the inside cylinder being a distance e from the

that of the outside one as shown in figure 3.7. The cylinders co-rotate with the fluid between
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them assumed to be incompressible and have constant viscosity.

N

Figure 3.7. Pictorial representation of the two-dimensional eccentric cylindrical system, showing the radius of

the inner and outer cylinders r; and r, respectively, and the value of eccentricity e between the two cylinders.

As with the rectangular cavity system the boundary velocity oscillation is made up of forty

instantaneous flow simulations, in the from of equations 3.5 and 3.6.

Uout = Uout sz (mt / Tow + o) ( 3.5)

U = Uy sin® (nt/ Tiy) (3.6)

where u,, and u;, are the velocities of the outer and inner cylinders respectively, Ugy=U;, = U
are the amplitudes of oscillation, T, = Tj, are the time periods for outer and inner cylinders

respectively, and o is the phase difference between the two cylinders, with a=mn/2.

3.4.2 Investigation of the two-dimensional eccentric cylindrical system.

In this section the observations and conclusions from the rectangular cavity are investigated
and replicated for the eccentric cylindrical system.

It was shown previously that there are a range of conditions, that a system must be operated
within, in order to induce stochastic motion. One such condition, investigated here, is the
eccentricity of the two cylinders. In order to achieve chaos the particles in a laminar flow
system must continue to be displaced from the instantaneous streamlines in which they reside.
If the two cylinders are concentric, and co-rotating, then the resulting particle path for one
cylinder rotating will be the same as for the other or both rotating. Although the distance
travelled by the particle may alter. This i1s due to the instantaneous velocity vectors
throughout the oscillation changing only in magnitude and not in direction. The effect being
that the particles speed oscillates along the trajectory without it being able to leave its initial

streamline, resulting in a similar trajectory plot as the steady state system, as can be seen in
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When observing both, the two dimensional rectangular cavity and eccentric cylindrical
system, it can be seen that as the time period increases, through a cascade, the characteristic
plot is formed. The plot appears to show the transition from order to chaos as indicated by a
peak of the maximum value of the mixing efficiency property followed by what appears to be
order restoring.

Both systems were found to be sensitive to the velocity amplitude of oscillation, with the
transition point of the cascade moving to a lower time period as the velocity was increased.
This leads to another characteristic curve that correlates the peak of maximum mixing
efficiency property with varying velocity amplitude.

If curves similar to those in figures 3.6 and 3.14, were to be generated for industrial chaotic
process equipment then the optimum blending within the system could be suggested through a
simple correlation of operating parameter. This may be of importance if a fluid to be mixed is
to have limited shear, for example, and therefore an enforced restriction on velocity, the
corresponding time period for the boundaries to achieve optimum blending could be easily
suggested.

In the eccentric cylindrical system it is found that if the extent of the difference in the extreme
instantaneous flow patterns of oscillation is increased, by increasing the eccentricity of the
cylinders, the time period required to induce chaos decreases. This is due to the increase in the
severity of the variance in flow patterns during one time period, enhancing the displacement
of particles from their initial streamline.

The results presented in this chapter are by no means definitive and at this stage should be
taken as an indication of the flow behaviour within a chaotic cascade. It should be recognised
that the use of the mixing efficiency property value for comparison between different chaotic
systems is limited. This is due to the many approximations surrounding its generation limiting
the use of the magnitude of mixing efficiency attained.

However the trends achieved from the mixing efficiency property have been shown to be
transferable from one two-dimensional system to another. It is considered, though, that the
property may not be universal for any other result than showing a qualitative characteristic
peak within a cascade.

From particle trajectories generated after the peak it is possible to observe that disorder still
remains. Instinctively one would suggest that systems cannot continue a cascade out of
disorder, and it is suggested that the low value of mixing efficiency is due to the system acting
as many consecutive steady state systems and not an oscillating one. A property that indicates
the level of disorder past the transition into chaos should be sought.

The generation of a singular number for comparison with other systems in a range of

operating parameters involves a large number of cumbersome assumptions and variables.
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Access to how these assumptions are treated is not always available in commercial CFD. Also
the property mixing efficiency is instantaneous. For mixing purposes it would be desirable to
observe a property that would provide more information about the evolution of the mixing in
a system. This would enable suggestions to be made surrounding residence times, and
geometries of mixers.

In order extend our studies to be able to compare completely differing geometries and systems
for their degree of disorder, a fully quantifiable property of the flow, which can be visualised
throughout various cascades, must be developed and employed. Further chapters in this work
consider the possibilities of a more universal property.

The generation of the mixing efficiency property relies on the commercial CFD post-
processing and statistical tools. Certain information about exactly how the programmes
interpret data, use models and make assumptions that is known only to the code creators. As a
result, in the following chapters, the author presents properties of the mixing derived directly

from the co-ordinates of the trajectories that are produced through specially designed codes.
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Chapter 4. Using the separation of initially close particles to observe and

quantify chaotic mixing .

4.1 Introduction.

The previous chapter showed that it was possible to observe a cascade towards chaos and the
effect of various properties by the use of a parameter specific to the system. The trends
presented were shown to be obtainable for two different two-dimensional domains. It is
suggested here that a more universal property that lends itself more readily to comparisons for
any range of operating or system parameters should be sought.

Earlier in this work the divergence of two initially close points in chaotic systems was
discussed. The initial discovery of chaotic behaviour in non-linear systems by Edward Lorenz
[5] was due to the observation of a divergence of solutions from two very similar positions.
Sensitive dependence to initial conditions is noted to be one of the signatures of chaos [12].

It is with the divergence of initially close particles within a mixing domain that this chapter is
concerned. The feasibility and consistency of using the divergence of initially close points
with CFD techniques, as a measure of chaos, is investigated.

Recall that the two plots in figure 1.1 begin with a difference in initial conditions of 0.01%.
Their initial positions diverge significantly so that they have completely no knowledge of
each other whatsoever. We now consider that those two initial positions are two initially close
particles in a fluid system. If, when operated under chaotic conditions, they diverge to a
similar degree of disassociation then it follows that good mixing occurs. It is from this
feature, of significant divergence, that a property of divergence can be developed.

There are assumptions and variable parameters that are required to be set for generating
particle trajectories. The effect of these, on the observation and classification of the existence
of chaos is considered, but the exact replication of trajectory co-ordinates is not necessary.
The emphasis away from the calculation of established dynamical tools, is partly due to
limitations surrounding the software, but more significantly, the increased information
available from considering the particle separation, and therefore the evolution of mixing.
Unlike instantaneous properties, averaged over the range of the domain, observing the
temporal evolution of distance of divergence of the particles as time evolves makes it is
possible to suggest times for which satisfactory mixing takes place. Complete mixing can be
suggested to be when the movements of particles, that where originally neighbours, bear
absolutely no resemblance to each other.

This chapter investigates the divergence of the distance between samples of particles by

calculating the distance between them at increments of time. The earlier sections are
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concerned with the divergence of only two particles. The latter sections observe a more
representative range of a number of particles originating from within a small area of
generation.

This chapter develops a property relating to the divergence of the distance between originally
close particles. The effect of the parameters and assumptions required to generate the property
are investigated and optimised for consistency of conclusions. The property developed is then

applied to more complex systems in the following chapters.

4.2 System configuration

The system used for these investigations is a two-dimensional cavity, with aspect ratio of
unity, and sides of length 10mm. The top and bottom walls translate, in opposite directions,
with an oscillation in a flip-flop motion. The two vertical walls are stationary. The moving
walls have velocity amplitudes of 20 mmy/s. The time period of oscillation is used as the
parameter that initially controls the onset of chaos. The fluid and system properties are
identical to those in the previous two chapters.

Two particles are generated at specified points close to each other within the flow domain,
and their trajectory co-ordinates recorded at specific increments of time as the system evolves.
Treatment of the data achieved yields values for the divergence of the distance between the

two particles.

4.3 Observation of divergence of two initially close particles.

Edward Lorenz [5] first noticed the effects of chaos in computational analysis in his non-
linear meteorological equations. He found that when repeating a test, with similar, but not
identical initial conditions, dramatic differences in the results occurred. At first both results
were similar, however, after a short evolution of time they began to diverge until they bore
absolutely no resemblance to each other. This led to the conclusion of chaos present in non-
linear equations and that a small difference in initial conditions can make a large difference in
the solutions.

Divergence of initial conditions is a signature of chaos. Instead of observing two initially
close points in a non-linear atmospheric system, here will observe two initially close particles
in a non-linear mixing system.

The cavity system when operated with a time period of T=20 seconds and a velocity
amplitude of 20mm/s, exhibits chaotic motion. It is possible to observe large divergences
between two initially close particles. Figures 4.1a and 4.1b show two particles generated at

points in the flow domain 0.001mm apart. When their trajectories are followed for the first
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100 seconds it is possible to see that the two trajectories are Similar, with the two particles
remaining close.

Soon after, as shown in figures 4.2a and 4.2b the particle trajectories begin to diverge
significantly. After 200 seconds it is possible to see that the two particles have began to
follow different paths and are in different positions within the flow domain.

After particle lives of 1000 seconds it is possible to see in figures 4.3a and 4.3b that the two
particles have indeed followed very different trajectory paths.

If two particles starting only 0.001 mm apart can evolve through significantly different
trajectory paths, and separate to such an extent, then it must be concluded that this system is

operating under chaotic conditions, and hence exhibits good mixing.

g b
Time 0-100
seconds
a8 —2.00,2.00
b —2.00,201

Figure 4.1. The two-dimensional square cavity, where the upper and lower walls translate with oscillating
velocities in opposite directions. The time period of oscillation is 20 seconds with an amplitude of 20mm/s and
out of phase by 1/2. The two particles in figure 4.1a and b begin at a distance of 0.001mm apart. It can be seen

that after 100 seconds that the particles have followed very similar trajectories.

a b
Time 100-200
seconds
\ 8 —2.00,2.00
b —2.00,2.01

Figure 4.2. The trajectories of the same two particles as shown in figure 4.1a and b, between 100 and 200
seconds. It can now be seen that the distance between the particle is beginning to diverge as indicated by the

significantly different trajectories shown.
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Time 0-1000

seconds
a —2.00,200
b —2.00,2.01

Figure 4.3. The complete trajectories for 1000 seconds of the same two particles as shown in figure 4.1a and b. It
can clearly be seen that the particles have led completely unrelated lives, and their coming close together now is
completely incidental. 1t should be noted though that both of the trajectories cover significant amounts of

available domain space.

4.4 The investigation of the divergence of two particles generated at initially close

positions in a fluid domain.

4.4.1 Generation of the trajectories and calculation of the distance between particles.
The trajectories of the particles are calculated by Polyflow as a mixing task, as described in
chapter 2. This section will highlight and discuss the relevant parameters required by
Polyflow for the calculation.

Parameters for the generation and evolution of the particles can be specified in the Polydata
mixing task session. Particles can be generated at any specific point within the flow domain,
they then evolve until the predetermined lifetime has been exceeded. The trajectory is stored
by recording the particle position at regular intervals of time.

Two particles can then be generated initially close to each other, and their lives followed,
recorded and investigated for the divergence of distance between them, thus enabling
comparisons with systems operating under different boundary conditions.

Once two initially close particle trajectories have been generated, the distance between them

can be calculated for each time interval by the use of the equation:

Z = (%)’ + (yiry2)))”

where Z is the distance between the two particles, x; and y, and x, and y, are the two-
dimensional co-ordinates of the particles 1 and 2 respectively.
The value Z can then be plotted against time to enable an observation the distance between

the two particles as time evolves. The plots of divergence between the particles can then be
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used for comparison within a range of systems with inéremenfaHy different boundary
conditions.

In the following section the divergence of the distance between two particles is used to
investigate the cascade from order into chaos as the time period of oscillation is increased.

The robustness of the property of divergence is then investigated and discussed.

4.4.2 Investigation of the cascade into chaos through a range of time periods of
oscillation.

[t is through observing the divergence of the distance between two particles that the variation
of the degree of disorder throughout a chaotic cascade can be observed.

The rectangular cavity system, when oscillating with a low time period, as discussed in
chapter two would appear, on a macroscopic scale, to act as a steady state system. This can be
observed here. Figure 4.4 shows the distance between two particles originating 0.01 mm apart
for a steady state system and in figure 4.5 for a time period of 1 second.

[t is observed in both figures that the distance between the two particles oscillates. This
corresponds to the particles moving apart as they flow around the ‘corners’ of their respective
streamlines and being separated as they move around in an oval ‘racetrack’ fashion. The
particles do appear to separate, although not to a considerable degree, as highlighted by the
overall gradient of the plot. This small divergence can be accounted to laminar shear, and the

velocity gradient reducing towards the centre of the domain.
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Figure 4.4. The divergence of the distance between two particles originating 0.0lmm apart in the two
dimensional square system, where the upper and lower walls are translating steadily in opposite directions with a

velocity of 20mm/s.
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Figure 4.5. Two particles originating at the same positions in the same system as figure 4.4, except now both of

the moving the walls velocities are oscillating with a time period of 1 second and an amplitude of 20mm/s.
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Figure 4.6. Exactly the same system configuration and placing of particles as the system in figure 4.5, except the

time period of wall velocity oscillation in set at 3 seconds.
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Figure 4.7. Exactly the same system configuration and placing of particles as the system in figure 4.5, except the

time period of wall velocity oscillation in set at 20 seconds.

If we now increase the time period of oscillation, and hence move nearer to a chaotic regime

it is possible to observe, in figure 4.6, where T=3, that the distance between the particles is
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beginning to deviate from the steady state. This is due to both particles beginning to
independently oscillate as they travel around the flow domain. The distance between the two
particles after 1000 seconds is greater than for the lower time periods, but remains
insignificant with respect to the magnitude of the flow domain.

Rapid growth of the distance between the two particles can be observed when the system 1s
operating with a time period of T=20 seconds. Figure 4.7 shows that as time evolves the
distance between the two particles becomes significantly large to suggest that the trajectories
no longer bare any resemblance to their initial respective positions. The divergence of the
distance between the particles to a point where the behaviour of the trajectories are no longer
related can be concluded due to the rapid aperiodic alternations in the plot after the initial
growth stage. The particles are now moving independently, the alternations correspond to the
two particles happening to move closer or further apart as they continue their apparently
unrelated evolutions.

As the plots of distance between particles against time rapidly alternate in chaotic regions
there may be confusion when attempting to draw comparisons between systems with differing
operating parameters. It is suggested that observing the maximum distance obtained between
the two particles would provide an indication to the degree of disorder within a system. Figure
4.8 shows the maximum separation of two particles, originating within 0.01mm of each other,
for a range of time periods of wall oscillation. The plot achieved is of a similar nature to those
presented in chapter 3, for the mixing efficiency property. Here, however, the property lends
itself, more naturally, to becoming a parameter to be used for comparisons. It can be seen in
the figure that those systems that diverge do so to a similar degree. Once again there is an
obvious transition between the ordered, and chaotic systems. However indications here show
that once a system’s time period cascade is such that it is sufficient to enter chaos it remains

chaotic thereafter.
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Figure 4.8. The maximum distance achieved between two particles originating 0.01mm apart in 1000 seconds
within the two-dimensional square cavity with walls oscillating with amplitude of 20mm/s and varying time

periods.

4.4.3 Investigation of assumptions and variables.

If the divergence of the distance between two particles were to be used for the quantification
of mixing systems it would be essential to investigate how robust, with respect to the
assumptions and parameters relating to its generation, the quantity is. Here the effects of the
initial distance between the two particles, the position of particles within the domain and
mesh density are investigated for a range of values. Each parameter is investigated in turn,

whilst all others remain constant. Parameters not investigated are as described earlier.

Initial distance between the two particles (Zy)

Until now this work has investigated two particles originating from two near positions within
the domain at (X, ,Y;) = (2,2) and (X, ,Y2) = (2, 2.001), where the origin is the lower left
corner, resulting in Z=0.001 mm at time t=0. This section investigates the effect that varying

Zo has on the characteristic maximum value of separation presented in the previous section.
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Figure 4.10. The divergence of the distance between two particles originating Imm apart in the two-dimensional
square system, where the upper and lower walls are translating in opposite directions with oscillating velocity of

amplitude 20mm/s and a time period of 1 second.
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Figure 4.11. The divergence of the distance between two particles originating Imm apart in the two-dimensional
square system, where the upper and lower walls are translating in opposite directions with oscillating velocity of

amplitude 20mm/s and a time period of 20 seconds.

Figure 4.9 suggests that where Zy = 1 mm, and T =1 second, the distance between the two
particles diverges significantly which, by using the plot alone, could be mistaken as
divergence due to chaotic motion. This is shown not to be true in figure 4.10. The distance
between the particles does significantly increase, but the form of the relationship between the
two particles does not appear to be chaotic. Whereas for Zy = 1 mm, T =20 seconds, shown
figure 4.11, the relationship between the particles here is clearly aperiodic.

Two particles within systems exhibiting chaos will diverge to a large separation irrespective
of their initial distance apart. The initial distance between particles within systems that do not
exhibit chaotic motion must be very small if the divergence of the distance between particles
is to be used to compare the form of the systems behaviour and disorder.

Careful selection of the initial distance is therefore required if one wishes to contrast systems

of low disorder with chaotic ones.
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Figure 4.13. Trajectory plot of one particle for 1000 seconds, within the two-dimensional square cavity,

originating in the centre at co-ordinates (5, 5) where velocity of wall oscillation is 20 mm/s and the time period
oscillation is 10 seconds.

Figure 4.14. Trajectory plot of one particle for 1000 seconds, within the two-dimensional square cavity,
originating at co-ordinates (4, 4) where velocity of wall oscillation is 20 mm/s and the time period oscillation is
10 seconds.

Figure 4.15. Trajectory plot of one particle for 1000 seconds, within the two-dimensional square cavity,
originating at co-ordinates (5, 5) where velocity of wall oscillation is 20 mm/s and the time period oscillation is

20 seconds.

Figure 4.13 shows the trajectory for the particle originating at co-ordinates (x, y) =(5, 5), for
the system where T= 10 seconds. The particle trajectory is clearly trapped within an ordered
region of the flow. The system however is highly disordered, as can be seen in figure 4.14,
where a particle is generated at co-ordinates (4, 4).

It was discussed in chapter one that there are regions of order in many chaotic systems, and
that as the perturbations responsible for the disorder are increased more of the regular islands
are destroyed and swamped by growing disordered regions. Figure 4.15 shows a particle
trajectory originating at the same positions as the particles in figure 4.13, with a time period
of oscillation of 20mm/s. The flow is all over the domain, and the presence of regular regions
has been reduced. It could be suggested that the systems will eventuality exhibit divergence
within the cascade, irrespective of the generation position of the particles, as the regular
regions are destroyed. This can be seen in figure 4.12 where at T=20 all positions exhibit
divergence

[t can be suggested that he divergence of two particles is dependent on their initial position
within the domain, but does not necessarily relate to the overall disorder of a system. Two
particles separating can give an indication of the disorder within a system, but should not be
used to generate conclusions alone. Careful selection of the position within a domain for the
generation of particles is clearly important. Once a system cascade has entered ‘full chaos’

(1.e. no ordered regions) the origin of the trajectories is irrelevant.
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too would be random, and therefore subject to discrepancies, that do not alter the conclusion
that chaotic motion exists. Also the systems that do not diverge significantly, where T=1
second, show remarkable consistency in the maximum separation. The minute difference in
co-ordinate data is not magnified significantly within the more ordered systems.

Overall the mesh density could be suggested to be of little consequence, although it would be

intuitively thought that the more dense the mesh the more robust the solution.

4.5 Investigation of divergence of the distance between two particles —conclusion.

The above investigation and discussion of two particles shows that it is possible to investigate
various characteristics of the flow through observing the separation of two particles.
Observing the maximum separation of two particles over a set time can create characteristic
plots that indicate the disorder of a system, throughout a cascade from order to chaos. These
plots have been shown to produce visible contrasts between ordered and disordered regimes,
especially when the initial distance between the two particles is small.

Particle pairs generated inside regular regions within disordered systems may not separate
significantly, and hence yield a false indication of the systems disorder. However for all
generation positions investigated, at some time period throughout the cascade, the particles
pairs diverged.

The mesh density of the domain was found not to significantly affect the conclusions, from
the plots obtained, throughout the cascade. It is noted however, that the separation of the
particles, within disordered systems, is, due to the nature of chaos, likely to contain a random
element. Although this is not expected to affect the conclusions or form of the cascade plots it
does reduce the capability of making a comparison based on the magnitude of maximum
separation.

It is suggested that the divergence of particles is a suitable method for investigating domains
entering a cascade into chaos. Further development of this method attempts to reduce the

effect of the particles random behaviour through observing a more representative sample.

4.6 Observing samples of particles originating from specified zones within the flow

domain.

4.6.1 Introduce more sample particles.
By expanding the investigation of the divergence of two particles to a larger sample of
particles, it is possible to achieve a more representative view of how a small ‘block’ or “tracer

blob’ of particles will evolve under differing operating conditions throughout a cascade into

Page 78




chaos. Particles are generated in a small zone within the flow domain and their positions
recorded at set time intervals. Initially this section is concerned with four hundred particles,
generated over a length of 0.2 mm, within the two-dimensional ‘flip-flop’ domain, described
above.

Figures 4.17 a-d show the cascade from order into chaos by the spread of the particles
originating from the small length, as time evolves. At a low time period, figure 4.17a, it can
be seen that the blob stretches a little, but does not significantly deform. As the time period is
increased, figure 4.17b, the particles begin to separate, and the line of particles, which can be
termed a lamella, begins to bend. Within chaotic motion, figure 4.17c, it is possible to observe
characteristic bending and folding of the line of particles, which has long been noted as a
feature of chaos, by the presence of horseshoes in the flow [12].

In disordered systems the length of the particle lines increase more significantly as time
evolves, than those in ordered systems. In this section the measurement of this length is

developed into a quantifiable property the disorder.

time = 0, 40, 80, 150, 250, 350, 450, 500 seconds

" 1 ' 3

N RN

Figure 4.17a. Time snap-shots of 400 particles originating from a length of 0.2mm in the two-dimensional
square cavity, with boundary velocity oscillating with a flip-flop motion with an amplitude of 20mm/s and a time

period of 0.1 seconds.
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time = 0, 20, 40, 60, 80, 100, 140, 180, 220, 260, 350 seconds
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Figure 4.17b. Time snap-shots of 400 particles originating from a length of 0.2mm in the two-dimensional
square cavity, with boundary velocity oscillating with a flip-flop motion with an amplitude of 20mm/s and a time

period of 1 second.
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time = 0, 20, 40, 60, 80,100, 120, 140, 160, 180, 200 seconds
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Figure 4.17c. Time snap-shots of 400 particles originating from a length of 0.2mm in the two-dimensional

square cavity, with boundary velocity oscillating with a flip-flop motion with an amplitude of 20mm/s and a time

period of 5 seconds.
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time = 0, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200 seconds
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Figure 4.17d. Time snap-shots of 400 particles originating from a length of 0.2mm in the two-dimensional
square cavity, with boundary velocity oscillating with a flip-flop motion with an amplitude of 20mm/s and a time

period of 10 seconds.

4.6.2 Calculation of the Lamella Length.

To calculate the length of a lamella within the system we observe the divergence the distance
between the sample of particles generated along a small line within the flow domain. By
following this set of particles and recalculating the lamella length as time evolves it is hoped
that quantitative information about the disorder within the system can be obtained.

The lamella length is the sum of the distances between each pair of originally neighbouring
particles along the generation length. Many particles are randomly created on the original
generation length (at time =0) and are sorted into order of position on the generation line.
Each particle is assigned its two nearest adjacent particles as neighbour particles, except the
two at the extremities of the generation length, that are only assigned one neighbour particle
each. The distance between each particle and its neighbour particles is calculated, and

summed to provide the length of the line of particles, represented by the equation:
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small and of consistent length throughout ranges of control paramefers. The position of the
generation length will be situated in the middle of the upper half of the flow. The frequency of
calculation of the property will be 1 second, so as to yield an informative plot. The number of

particles used to calculate property A will be in the order of hundreds.

4.7 Discussion and conclusion.

This chapter has presented a method for quantifying the divergence of distance between
particles, based on the fact that chaotic systems have sensitive dependence to initial
conditions. Points that are initially close will diverge within a chaotic system. This
phenomena was first investigated here though observations of two particles.

Cascades from order to chaos, similar to those presented in chapters two and three, where
disorder in systems is induced through boundaries with oscillating velocities, were
investigated using the separation of particles. Cascades from order into chaos have previously
been shown to occur as the time period of oscillation is increased. The changes in the systems
disorder can be observed by measuring the distance between two initially close particles as
time evolves. The maximum distance obtained between two particles in a system, with
particular operating parameters, can be compared with the same value from other systems
within that parameter range to produce easy to view trends of a systems disorder throughout a
cascade, although limited in the main to a conclusion of chaotic or not.

The reliability and robustness of using the divergence of the distance between two particles
for quantitative analysis was investigated. It was found that the particles were required to
originate sufficiently close if a contrast between order and disorder was to be achieved. The
position of the two particles within the domain was found not to affect to conclusion of chaos
in highly chaotic systems. However some of the particles were generated in areas of regular
motion, and did not separate whilst other pairs of particles originating in different areas of the
domain did. The density of the domain mesh used in the calculations did not affect being able
to draw the conclusion of chaotic or not chaotic.

As the investigation of the separation of two particles appeared to yield meaningful and
consistent results it was decided to investigate a more representative sample of particles
originating from within a small generation area. Initially four hundred particles were
considered.

Through plotting the positions of each of the 400 particles, at regular time snaps, it is possible
to observe the disorder and form of motion within the systems. If the same is done for a range
of time periods of boundary oscillation then it is possible to observe how the movements of
particles differ throughout the cascade into chaos. At low time periods the particles remain

close together. In a system where time period is increased the small ‘blob’ of particles begins
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to stretch as time evolves. The stretched line of particles was termed a lamella. The lamella is
then subjected to bending, folding and further stretching. The lamella will elongate and bend
until it is so thin that it covers the majority of the domain, and can no longer be viewed as a
lamella, but as many particles moving randomly.

Property A is defined as the average distance between initially neighbouring particles along
the lamella. As time evolves and the lamella stretches the value of property A increases. The
value reaches a levelling off point where the particles have completely separated, and no
longer have a relationship with their original neighbours.

As with the investigations using two particles property A can be used to suggest whether as
system is within chaotic conditions, or not. It can also be compared to the theoretical
homogenised separation of particles, which is the average distance between each particle,
with respect to every other particle, when the particles are uniformly distributed throughout
the domain. This comparison enables a judgement on whether a system with chaotic motion is
effective at mixing, or does it exhibit significant areas of order.

The number of particles used to generate property A was investigated and it was found that
the conclusion of chaotic or not was not altered. However it would be desirable to use as
many particles as computational hardware allows, to achieve a representative sample and to
smooth the plots of property A against time

In the present chapter the disorder in a chaotic system has been classified by the divergence of
many particles that originate from a small section of the flow domain. Whereas in chapter
three the observations throughout the cascade were conducted by a property derived from the
instantaneous mixing efficiency. Both properties allow us to suggest that at low time periods
of boundary oscillation the disorder in the system is low and that as time period is increased
chaos occurs. The mixing efficiency property, however, would indicate that order restoring
exists after chaos initially occurs, whereas the property of divergence would suggest
continued high levels of disorder. Plots of particles evolving in the region of the discrepancy
would suggest order restoring does not occur, and as the divergence of initial points is a
feature of chaos, one would be inclined to rely on property A more.

The differences can be accounted for if we consider that the instantaneous mixing efficiency
is derived from the rate of stretching. Systems with high degrees of disorder and rapid
bending would produce high rates of stretching. This is what is observed as a system enters
chaos at the lowest time period possible (possibly corresponding to the peak.) As the time
period increases the systems remain in one streamline for increased periods of time. For the
majority of the time they exist as steady state systems, and steady state streamline flows

exhibit low stretching, therefore the instantaneous time-averaged values are also low.
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Property A measures the evolution of the particles, and their "béhéV'iour with respect to their
initial orientation.

As the concern of mixing is separation and homogenisation of particles the divergence of
particles, as measured by property A will be used further to quantify the mixing in the
investigations of more complex systems in further chapters. Property A has been shown to
produce reliable and robust conclusions concerning the disorder of systems, but care must be
taken in selecting the initial conditions and positions of particles and the parameters for it

generation.
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Chapter 5. Chaotic mixing in a four different three-dimensional domains

5.1 Introduction.

The previous chapter discussed the generation of property A as a measure of the disorder
within a system through quantifying the divergence of the distance between a sample of
initially close trajectories. This chapter considers the implications of amending property A for
investigating three-dimensional systems and then uses this property to examine four different
chaotic systems.

The first system presented is a closed cubic domain exhibiting two walls with boundary
movements that are time periodic and perpendicular to each other. The three other systems
have a throughput of fluid with wall movements perpendicular to the flow, where the
cascades into chaotic motion rely on the periodicity of boundary movements, wall
configuration or geometry. For each of these four systems it is possible to observe a cascade

from order towards chaotic motion as control and other parameters are varied.

5.2 Three-dimensional chaotic mixing

Investigations of chaotic systems in this work have so far been limited to two-dimensional
domains. There is less accepted work concerned with three-dimensional chaos, and only a few
of these are concerned with time periodic domains. One such work is Anderson et al [89] their
work discussed the extension of methods for locating and classifying periodic points within
three-dimensional cavity flows. Kusch and Ottino also presented three-dimensional time
dependent boundary systems [90]. Their experimental results, with supporting computational
analysis, showed an eccentric helical annular mixer, where both the inner and outer walls are
time dependent. They presented similar analysis for the partitioned pipe mixer. Khakar et al
[91] also considered the partitioned pipe mixer, work that motivated investigations into the
comparisons of Poincare maps and residence time distributions in a similar system by Mezic
et al [92]. Investigations by the use of commercial CFD into the Kenics mixer have been
carried out by Avalosse, [43] and with an accompanying discussion on chaotic flow by Hobbs
and Muzzio [93]. There is interest in other mixing devices that also contain no moving parts.
Jones et al [94] present chaotic motion within laminar flow in a twisted pipe. By the use of
Poincare maps, stretching of material lines and disassociation of tracer blobs they show how
differing degree of disorder can be induced by alterations in the geometry of the twisted pipe
alone. The increased stirring does not require additional energy, and is noted to be
fundamentally different to the transition from laminar to turbulent regimes, as it is a

kinematical effect. This work was later extended [95] with the inclusion of diffusive tracers.
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Dombre et al [96] presented a three-dimensional system dpéra;t/iné chaotically within specific
parameters of the ABC (Arnold, Beltrami, Childress) flows. They opened their paper with the
comment ‘Three-dimensional steady flows with simple Eulerian representation can have a
chaotic Lagrangian structure. By this we mean that infinitesimally close fluid particles
following the streamlines may separate exponentially in time, while remaining in a bounded
domain, and that individual streamlines may appear to fill entire regions of space.” They
showed how this occurs due to the presence of ‘principle’ vortices, and observe regions
chaotic motion and islands of stability by the use of a number of Poincare sections, spread
equidistantly throughout the domain, recording intersections with streamlines. Another work
showing regular and chaotic regions is that of Fountain et al [97]. They presented
experimental and supporting computational results for a cylindrical rotating mixer containing
an angled impeller that creates a secondary flow. Whilst Cartwright et al presented biaxial
unsteady spherical Couette flow in an incompressible fluid [98].

Ottino et al [99] provided a review of chaotic mixing processes and discuss issues
surrounding both two- and three-dimensional flows. They included a brief discussion of duct
flows [100] with the addition of spatial periodicity, examples being the partitioned pipe and
Kenics mixers. They also discussed the improvement of cavity throughput flows by the use of
a fixed corrugated baffle that alters the geometry available for flow. This was then likened to
the construction of a single screw extruder device. They concluded by encouraging engineers
to ‘adapt and modify what is already available or to develop new concepts and ideas.” And
indeed other authors have also found the potential for chaotic mixing in existing process
equipment. Kim and Kwon [40, 41] used chaos in traditional polymer industry equipment to
develop the ‘chaos screw.’

Investigations containing the third dimension are becoming increasingly feasible with the
advent of more powerful computational hardware and more sophisticated software. Many of
the concepts developed in simple two-dimensional geometries are transferable to simple
three-dimensional geometries. Research into chaotic mixing appears to be fast becoming more
practical, with real applications for industry being considered.

Previous authors work, discussed above, show that chaos can be induced into three-
dimensional time periodic, or steady systems. The steady systems can involve no moving
parts (twisted pipe and Kenics mixer,) steady boundaries (ABC flows) or spatial boundaries

within duct flows (partitioned pipe mixer, chaos screw.)

5.3 Introduction to the three-dimensional investigation.
Cascades into chaos occur due to varying control parameters associated with alternating

streamlines. Until this point the control parameter has been time dependent. The alternating

Page 92




streamline motion is caused due to either a smooth oscillation fo//r:.ﬂip-ﬂopf of the movement of
two boundaries. In this chapter both time dependent and independent motion is considered.
The first of the four systems presented is a closed domain, whilst the other three include a
throughput of material, with boundary motion perpendicular to the flow.

The closed system is a time dependent cubic system with two opposing walls that translate
perpendicularly in an oscillating ‘flip-flop> manner. The flow generated is then three-
dimensional. The time period of the walls is considered as the main control parameter,
although the velocity amplitude is also considered. The first of the three throughput domains
exhibits time periodic top and bottom boundaries and can be considered to be as many two-
dimensional cavities, as described in earlier chapters, placed back to back. The throughput is
perpendicular to the boundary movement. The moving boundaries in the following two
throughput systems are time independent. One initiates the onset of chaos by the use of spatial
periodicity, and the other, by what will be termed here for differentiation between systems, as
geometric periodicity. As fluid moves through the domains it is subjected to differing cross-
sectional streamline motions. The spatial and geometric periodic systems could be considered
as many two dimensional systems within periodic cells where half of each cell is rotated by

180° or offset respectively.

5.4 Three-dimensional chaotic systems, issues.

The generation of the particle trajectory plot data within three-dimensional systems is much
the same as for the two-dimensional systems described in carlier chapters. The code for the
calculation of property A require amending to include the z co-ordinates (annotated in
appendix B.)

The inclusion of the third dimension severely increases the number of nodes required in a
domain mesh, and therefore hardware limits the maximum number available, thus resulting in
a low mesh node density. As a result particle trajectories that come too near to a wall
boundary often stagnate. This, if undetected, could have the affect of producing misleading
results for the property of divergence of the distance between the particles. Property A is
generated by the calculation of the overall average distance between consecutive pairs of
object particles. If some particles stagnate at walls their co-ordinates will remain constant for
the duration of the time evolution, this could produce a false and large value for divergence.
Conversely if many particles stagnate before they have had sufficient time to diverge, then a
small value of divergence would be observed. Therefore if stagnated particles are present in
the calculation of property A the result achieved could be anywhere between the two
extremes. Therefore it is imperative that the effect of stagnating particles be removed from

calculations. In this work two methods are used to achieve this.
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The first is available both within Polyflow and the code for the generation of the property of
divergence. Parameters can be set to detect when a particle has stagnated. If this occurs and is
recognised within the trajectory calculation in Polyflow then after the stored trajectory data a
zero is recorded. When the code for calculating property A reads the zero the trajectory is
automatically removed. There also exists within the code a tolerance on successive co-
ordinate data. If the co-ordinate of one particle is sufficiently close to that of one ten time
steps previous then the trajectory is rejected (this is explained further in appendix B.) This
does however mean that if a specific number of particles are required throughout a series of
investigations then the regeneration of particles to replace those that have stagnated will incur
more computational time. It would however be suggested that if a high percentage of particles
stagnate then the value of property A achieved is not a representative sample of all particles.
In chaotic systems particles are encouraged to travel around the whole domain, and this
includes regions near the walls. It is likely then that many particles will stagnate, thus leaving
only the particles that did not travel near to the walls for use in the property of divergence
calculation. The property will therefore be representative only of particles that did not travel
near to a wall. It would then be recommended that this method of investigation be used only
where small numbers of stagnating particles are concerned.

The second method for removing stagnating particles, from calculations is to grade the mesh
to create smaller volumes near to the wall boundaries. It is found that altering the mesh grade
does not affect the conclusions that can be drawn through observing property A throughout a
cascade.

As it is inevitable that stagnation of particles will occur it is important to not the view the
property of divergence alone. The validity of the resulting divergence value can be suggested
after observing the plots of the particles positions as they move throughout the domains. By
observing a sample of individual trajectories one can suggest the reliability of conclusions and
account for any spurious results.

The systems in this section will not be subjected to optimisation for consistency of the
property of divergence, as in the previous chapter. It is suggested that the optimisation
conducted for two-dimensions showed that the property is not significantly sensitive to

parameters surrounding its generation.

5.5 Three-dimensional closed domain with time periodic boundaries.
The three-dimensional closed domain could be considered as a cube with a pair of opposite
walls translating perpendicularly with a flip-flop periodic motion. Each edge is of side length

10mm, the moving walls are indicated by shading in figure 5.1. Wall 1 translates in the
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positive X direction, whilst wall 2 translates in the positive Z direction. The wall movements

in turn cause rotations in the flow that induce a three dimensional flow of the particles.

berme—— X

Figure 5.1. The three-dimensional closed cubic domain. The shaded numbered surfaces indicate the two walls

that translate perpendicularly to each other with a flip-flop motion.

The control parameter here is considered to be the time period of operation of the moving
walls. The effect of the wall velocity amplitude is also considered.

Two methods of analysis are used to observe the system to indicate the disorder throughout
cascades into chaotic motion. The first, presented here for only one velocity amplitude,
observes the spread of particles from a small generation zone as time evolves. Whilst the

second method quantifies the spread of initially close particles by the use of property A.

5.5.1 Separation of particles in the time periodic closed mixing domain, pictorial.

It was discussed in the previous chapter that one signature of chaos is the presence of
sensitivity dependence to initial conditions. In this section the evolution of 200 initially close
trajectories is observed. Figure 5.2 shows the initial the particles which are generated at
random within a zone of length of 0.2mm. The position of each particle is subsequently
recorded at intervals of time and shown, in figures 5.3-5.5, for the system with a wall velocity

of 2mmy/s at values of time period of wall oscillation of 0.5, 5 and 20 seconds respectively.

=0
seconds

Yy X e+ 2 et

Figure 5.2. Cross sections of the initial positions of 200 particle trajectories within a small generation zone in the

closed three-dimensional time periodic domain.
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It can be seen that the system, for all time periods, given sufficient time exhibits significant
separation of the two hundred initially close particles. Although it should be noted that for the

small time periods the separation occurs after a considerable amount of time.
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Figure 5.3, xy and yz views showing the positions of 200 originally near particle trajectories in the closed three-
dimensional time periodic domain, at various times where the wall velocity amplitude is 2 mm/s, and the time

period is 0.5 seconds.
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Figure 5.4, xy and yz views showing the positions of 200 originally near particle trajectories in the closed three-

dimensional time periodic domain, at various times where the wall velocity amplitude is 2 mm/s, and the time

period is 5 seconds.
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Figure 5.5, xy and yz views showing the positions of 200 originally near particle trajectories in the closed three-

dimensional time periodic domain, at various times where the wall velocity amplitude is 2 mm/s, and the time

period is 20 seconds.
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dimensional property A, as time evolves, appears to level off corr'esp,o_nding to the particles
significantly separating from each other, which is was also observed in chapter 4. This
however is not the case with the three-dimensional divergence plot of the same system. The
average distance between the particles continues to increase, up to the point where the
calculation ceases as the first particle exits. This is due to the laminar shear promoting a
longitudinal spread of the particles as they travel through the domain. The inclusion of the
third dimension when calculating the average distance between particles in continuous open
domains makes it difficult to suggest when the particles have distributed themselves
randomly. It is therefore difficult to compare the mixing to others in the series as it may be
possible to achieve a large average distance between particles within a long domain

predominantly due to laminar shear where the actual cross-sectional mixing 1S poor.

5.6.1 Chaos induced within a three-dimensional time periodic throughput flow.

The fluid modelled in all of the throughput systems has a constant density and viscosity. The
throughput domain cross section has an aspect ratio of 1 and an area of 100mm”. The system
could be considered as many two-dimensional oscillating cavity systems placed back-to-back
with the throughput perpendicular to the boundary motion. The shaded boundaries in figure
5.13 oscillate with a flip-flop scheme between the top wall moving and the bottom wall
stationary, and vice-versa. The fluid as it travels through the domain is therefore subjected to

time periodic alternating streamline motion.

Figure 5.13. Three-dimensional throughput, time periodic domain. The shaded walls translate in the directions

shown with a flip-flop motion.

The throughput used initially in these tests is low to ensure that particles within disordered
systems are supplied sufficient time to diverge and hence mix to a significant degree.

The control parameter for the induction of chaos considered here is the time period of the
oscillating boundaries, in a similar way to previous chapters. It would again be expected that
the affect of increased amplitude of the wall oscillation would be to reduce the value of time

period required to induce chaos.
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Figures 5.14 — 5.16 show the instantaneous positions 0f’200ﬁ Sarriple particles, that originated
from a small zone of generation, of length 0.2mm, near the inflow, at intervals of time, for
differing time periods of oscillation throughout a cascade. The throughput is set at 10mm’/s
and the velocity amplitude of the walls is 10mm/s. It is possible to observe that as the time
period of oscillation increases the degree of disorder also increases. If no movement of the
boundaries were applied then all particles would travel through the domain in a straight-line
flow. When the time periodic disturbance is applied the particles begin to oscillate, and hence
separate, as they travel throughout the domain, as can be seen in figure 5.14, where the time
period is 1 second. Increase the time period and the oscillation grows and the disorder
increases, as in figure 5.15, where T=2 seconds. Continue to increase the time period and
chaos occurs. Figure 5.16 shows the system where the time period is 10 seconds. The particles
diverge rapidly, to what appears to be a random distribution over the cross section. Bending
and folding of the lamella can be observed and as the disorder increases the longitudinal

spread also increases.
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Figure 5.14. The positions of 200 particles that originate from a small generation zone near the intflow of the time
periodic throughput domain at five different times. The through put of the system is 10mm?/s, the velocity

amplitude of the upper and lower walls is 10mm/s and the time period for boundary oscillation is I second.
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Figure 5.15. The positions of 200 particles that originate from a small generation zone near the inflow of the time
periodic throughput domain at five different times. The through put of the system is 10mm?>/s, the velocity

amplitude of the upper and lower walls is 10mm/s and the time period for boundary oscillation is 2 seconds.
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Figure 5.16. The positions of 200 particles that originate from a small generation zone near the inflow of the time
periodic throughput domain at five different times. The through put of the system is 10mm?/s, the velocity

amplitude of the upper and lower walls is 10mm/s and the time period for boundary oscillation is 10 seconds.
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through each spatial streamline cell quickly, thus deviating frozm straight line through flow
only minutely. Reduce the throughput rate, and at a specific value particles will displace
significantly and chaos will occur. The wall velocity would be expected to have similar effect
on the disorder of a time independent system of this nature as it does on a time period one.

The above conjecture is proved by the use of a spatially periodic domain with exact
geometrical size and simulation fluid properties to that in the previous section. The domain
could be considered as being made up of ten adjacent cells of 10mm length, each containing
two opposing pairs of alternate moving and stationary walls as shown in figure 5.21. The
control parameters for the induction of chaos considered here are the throughput and the
translation velocity of the wall boundaries. The continuous moving boundaries in this system
translate perpendicular to the throughput flow so to ensure that particles become incident to
varying streamline regimes as they progress through the domain. These are shown as the

shaded walls in figure 5.21, which are set moving continuously in the directions indicated.

Figure 5.21. Representation of one cell of the three-dimensional throughput, spatially periodic domain. The

shaded walls translate in the directions shown with a steady motion.

Figures 5.22 — 5.24 show the separation of two hundred particles as time evolves for systems
with an inflow of 10 mm®/s and constant wall velocities of 0.2, 1 and 10 mm/s respectively.
Expectedly, we see very little particle disorder where a low wall velocity is used. Particles
travel without separation through the domain. Increase the wall velocity and the particles
begin to oscillate as they flow through the domain, and exhibit some separation. Continue to
increase the control parameter, wall velocity, and arrive within a region of increased disorder.
As with previous systems the spatially periodic domain exhibits a cascade into chaos in a

similar way, which too can be quantified by the use of the cross sectional property A.

Page 112




time= 100 seconds

time= 200 seconds

time= 300 seconds

time= 400 seconds

time= 500 seconds

Figure 5.22. The positions of 200 particles that originate from a small generation zone near the inflow of the
spatially periodic throughput domain at five different times. The through put of the system is 10mm?*/s, the

translation velocity of the upper and lower walls is 0.2mm/s.
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Figure 5.23. The positions of 200 particles that originate from a small generation zone near the inflow of the
spatially periodic throughput domain at five different times. The through put of the system is 10mm’/s, the

translation velocity of the upper and lower walls is | mm/s.
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Figure 5.24. The positions of 200 particles that originate from a small generation zone near the inflow of the
spatially periodic throughput domain at five different times. The through put of the system is 10mm®/s, the

translation velocity of the upper and lower walls is 10 mm/s.
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geometrical displacement of the second half of the cell that breaks the streamlines and induces
increased mixing. The influence on the fluid is not, as in the spatial domain, to alter the form
of the streamlines. Here the oscillation is of the centre points of the rotation caused by the
upper and lower walls translating perpendicularly to the throughput flow as shown shaded in
figure 5.26. Initially the control parameter is considered to be the velocity of the wall
translation, although the effect of throughput variations and degree of offset within a cell are

also considered to have an effect.

Figure 5.26. One cell of the three-dimensional throughput, geometrically periodic domain. The shaded walls

translate causing a steady rotaion within the fluid in the xy palne.

Figures 5.27 —5.29 show the plots of two hundred particles as time evolves for a domain with
an offset of geometric cells of 4mm, throughput of 10mm*/s and wall velocities of 0.5, 3 and
20 mmV/s respectively. It can be seen that increasing the wall velocity causes an increase in the
disorder in the system and hence the separation of the particles, up to the point where chaos
occurs. Once again the separation of these particles can be quantified by the divergence

property A.
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Figure 5.27. The positions of 200 particles that originate from a small generation zone near the inflow of the
geometrically periodic throughput domain, with an offset of 4mm, at five different times. The through put of the

system is 10mm?/s, the translation velocity of the upper and lower walls is 0.5 mm/s.
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Figure 5.28. The positions of 200 particles that originate from a small generation zone near the inflow of the
geometrically periodic throughput domain, with an offset of 4mm, at five different times. The through put of the

system is 10mm?/s, the translation velocity of the upper and lower walls is 3 mm/s.
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Figure 5.29. The positions of 200 particles that originate from a small generation zone near the inflow of the

geometrically periodic throughput domain, with an offset of 4mm, at five different times. The through put of the
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system is 10mm?’/s, the translation velocity of the upper and lower walls is 20 mm/s.

Figures 5.30 — 5.35 show the separation of two hundred particles in the geometrically periodic
domain, for three different wall velocities, for two further offsets of 2 and 6 mm. Once again
it can be seen that as the control parameter increases the disorder within both systems also
increases. However the domain with the smallest offset of 2mm does not achieve significant
separation, even with a large wall velocity, particles are not randomly distributing throughout
the domain, instead they appear to be flowing through the middle of the domain, and not
entering the offset blocks. However the small region that the particles do occupy does appear
to be chaotic, indicated by the random spread of particles within the disordered area and the
longitudinal separation, associated previously with chaos. Where the offset of the cells is 6
mm, the particles do flow within the offset blocks, and the resulting separation of particles is

high. The longitudinal separation is large with some particles being held in the offset blocks,

resulting in particles taking longer to move through the mixer.
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Figure 5.30. The positions of 200 particles that originate from a small generation zone near the inflow of the
geometrically periodic throughput domain, with an offset of 2mm, at five different times. The throughput of the

system is 10mm/s, the translation velocity of the upper and lower walls is 0.1 mm/s.
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Figure 5.31. The positions of 200 particles that originate from a small generation zone near the inflow of the
geometrically periodic throughput domain, with an offset of 2mm, at five different times. The throughput of the

system is 10mm?/s, the translation velocity of the upper and lower walls is 10 mm/s.
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Figure 5.32. The positions of 200 particles that originate from a small generation zone near the inflow of the
geometrically periodic throughput domain, with an offset of 2mm, at five different times. The throughput of the

system is 10mm?/s, the translation velocity of the upper and lower walls is 20 mm/s.
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Figure 5.33. The positions of 200 particles that originate from a small generation zone near the inflow of the
geometrically periodic throughput domain, with an offset of 6mm, at five different times. The throughput of the

system is 10mm?/s, the translation velocity of the upper and lower walls is 0.1 mm/s.
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Figure 5.34. The positions of 200 particles that originate from a small generation zone near the inflow of the
geometrically periodic throughput domain, with an offset of 6mm, at five different times. The throughput of the

system is 10mm’/s, the translation velocity of the upper and lower walls is 10 mm/s.
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Figure 5.35. The positions of 200 particles that originate from a small generation zone near the inflow of the

geometrically periodic

throughput domain, with an offset of 6mm, at five different times. The throughput of the

system is 10mm’/s, the translation velocity of the upper and lower walls is 20 mm/s.
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previous systems it can be seen that the effect of mcreasmgthe throughput rate is to increase
the velocity of the walls required to provide sufficient particle displacement to induce chaotic
motion. One would note here, however, that the cross sectional separation achieved is not as
near to that of the uniform distribution of particles as the pervious time periodic throughput
system. This may suggest that there are regions of stagnation and bypassing of certain parts of
the domain, probably the extremities of the offset cells.

Figure 5.37 shows the effect of the magnitude of the geometric offset of cells on the
maximum value of property A throughout ranges of wall velocity. As each of the systems has
a different cross sectional area, the uniform distribution of the same number of particles will
produce different values. Therefore the maximum value for property A is expressed as a ratio
to the respective uniform distribution average distance between particles. Thus a well-mixed
system would attain a ratio of near unity and a poorly mixed system will attain a value
towards zero. Figure 5.37 shows that the domain with the offset of 6mm indicates the greatest
cross-sectional distance between particles. It is suggested that the larger the offset, within the
range examined, the greater the area of disorder on the cross-section with respect to the

uniform distribution of particles.

5.7 Conclusions.

This chapter has presented four different three-dimensional flow domains. Initially a closed
cubic domain with perpendicular oscillating wall movements was examined and the
transferability of property A from two- to three-dimensional systems was investigated. It was
found that due to the increased number of nodes required to generate a three-dimensional
mesh, and the limitations of computational hardware, that the elements were much larger
which often resulted in particles stagnating near to the boundaries. To reduce the effect of this
the meshes were graded to have a higher node density near to the walls and stagnating
particles were detected and removed from calculations.

When using property A to quantify the particle separation it was found for the two-
dimensional systems that there were distinct increases in the separation between ordered and
disordered systems. This is not the case for the three-dimensional system, where even at low
time periods the particles exhibit significant separation given sufficient time. This is
suggested to be due to the perpendicular alternating streamline regimes of the three-
dimensional system. Particles are not returned as an oscillation in three-dimensions as they
are in two, instead they move further apart. The larger the time period or velocity amplitude
the further they can move away from their original streamlines. However, at a low time period

the particles often stay bounded with disordered regions, leaving ordered areas where no

Page 128



particles pass through. Increasing the control paraﬁle,ter w1llm0ve the system towards chaos,
where the particles move randomly throughout the whole of the domain.

The time periodic domain was found to be effected only by parameters surrounding the
oscillation, and not by the position of the particles as they travel through the domain, nor their
throughput rate.

The wall velocity and the throughput effect both the spatial and geometric domains which are
made up from repeating cells containing differing flow regimes alternating along the mixer. In
these systems the wall velocity is constant and the particles come into contact with a
streamline regime as they flow through the cells. The faster the wall velocity the further in
any set time particles can be displaced. The slower the throughput the longer a particular
particle will remain within any one streamline regime, and hence move further within it.
Systems become more chaotic as the wall velocity is increased, and systems with lower
throughput rates require a lower time period or wall velocity to become chaotic. This supports
unequivocally that it is the displacement within alternating streamlines that is responsible for
the onset of chaos.

This chapter has also shown that the property A can be used for investigating three-
dimensional chaotic flow domains. Although where the alternating wall movements are
perpendicular care should be taken to validate any conclusions from comparing the maximum
property A over a range of control parameters by observing the particle trajectories or spread
of particles pictorially. The use of property A for analysing the cross sectional view of spread
of particles for throughput chaotic domains was successful. Conclusions over a range of
control parameters can be drawn from the maximum value of property A. It is suggested that
property A could confidently be used to quantitatively evaluate the spread of particles within
a variety of systems with a more complex flow structure and geometry.

Recognising and supporting that it is the displacement of fluids within alternating streamlines
that is responsible for the onset of chaos has significance for the design of industrial chaotic
mixing equipment. A designer of such a mixer would need to work towards alternating the
streamlines in whatever way best suits the fluid, process and budget, whilst making sure that
stagnation points or bypassing does not occur. It has been shown here that the streamlines can
be varied by the use of moving walls with oscillating boundaries, many small walls moving

steadily, by creating alternating streamlines or repetitive geometries.
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The principle rotations within this system encourage”ﬁeiqut:i/cles to flow in a twisted figure of
eight regime. Therefore for the continuation of this work, the above system will be referred to
as the twisted figure of eight mixer (TF8).

The control parameter initially considered to induce chaotic motions in the TF8 is the velocity
of the pairs of moving walls, and the effect of the velocity of one pair of walls with respect to
the other. The velocities of the pairs of walls are presented as ratios, although it should not be
considered at this stage that the ratio is the control parameter. This is discussed in more detail

later in this work.

6.3 Investigation of the TF8

This chapter presents a range of time-independent cases with wall pair velocity ratios from
0.1 to 10. The velocity of one pair of walls is held constant whilst the affect of varying the
velocity of the other pair, on the fluid flow regime, is considered. This is conducted for four
different magnitudes of the constant velocity pair of walls.

Three methods of analysis are used to observe the effect of the differing wall pair velocities
on the system and to indicate the disorder throughout the transition into chaotic motion. The
first observation method, used for one constant velocity range, follows the evolution of
randomly generated particles by the use of slices along the domain. The second observes the
spread of particles from a small generation zone as time evolves. The third quantifies the

spread of a sample of initially close particles by calculating property A.

6.3.1 Slices along the TF8

The use of slices involves the continued observation of where particle trajectories intersect an
number of two-dimensional cross sections. By using this technique it is possible to observe
more clearly islands of stagnation and areas of chaos.

Nineteen parallel cross sectional slices, perpendicular to the z axis, one mm apart, along the

20mm length are used to observe the trajectories, as in figure 6.2.
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Initially five sets of system parameters are presented wh'ere:ﬁorné pair of walls (walls 3 and 4)

are moving with a constant translation of Smm/s. and the other pair of walls (walls 1 and 2)
translate at five different velocities over the range 0 mm/s to SOmmy/s (ratios of wall velocities

of 0 to 10).
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Figure 6.4. Nineteen cross sectional slices spaced every millimetre along the z-axis of the TF8 mixer showing
the points of intersection of twenty-five particles evolving for one thousand seconds. Walls 3 and 4 are

translating at Smm/s, whilst walls 1 and 2 are stationary (Wall velocity ratio=0)
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Figure 6.5. Nineteen cross sectional slices spaced every millimetre along the z-axis of the TF8 mixer showing
the points of intersection of twenty-five particles evolving for one thousand seconds. Walls 3 and 4 are

translating at Smm/s, whilst walls 1 and 2 translate at 0.5mm/s (Wall velocity ratio=0.1)
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Figure 6.6. Nineteen cross sectional slices spaced every millimetre along the z-axis of the TF8 mixer showing
the points of intersection of twenty-five particles evolving for one thousand seconds. Walls 3 and 4 are

translating at Smm/s, whilst walls 1 and 2 translate at Smm/s (Wall velocity ratio=1)
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Figure 6.7. Nineteen cross sectional slices spaced every millimetre along the z-axis of the TF8 mixer showing
the points of intersection of twenty-five particles evolving for one thousand seconds. Walls 3 and 4 are

translating at Smm/s, whilst walls 1 and 2 translate at 20mm/s (Wall velocity ratio=4)
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Figure 6.8. Nineteen cross

the points of intersection of twenty-five particles evo

sectional slices spaced every millimetre along the z-axis of the TF8 mixer showing

lving for one thousand seconds. Walls 3 and 4 are

translating at Smm/s, whilst walls 1 and 2 translate at 50mm/s (Wall velocity ratio=10)
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Figure 6.9. Nineteen cross

the points of intersection of twenty-five particles originating with a tori evo

Walls 3 and 4 are translating

sectional slices spaced every millimetre along the z-axis of the TF8 mixer showing

lving for one thousand seconds.

at Smm/s, whilst walls 1 and 2 translate at 5mm/s (Wall velocity ratio=1)
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Figures 6.4 to 6.8 show the nineteen cross sectional 'slices/“vof the TE8, with the constant
moving pair of walls with a velocity of Smmnv/s. Ratios of the constant to the variable pair of
moving walls are 0, 0.1, 1, 4 and 10 respectively. Figure 6.4 shows the TF8 where only one
pair of walls is in motion (walls 3 and 4.) It can be seen that there are few points where
particles have crossed the slices. This would suggest that the motion of the particles is
periodic, and cross each slice at the same point.

When the system is operated with the second pair of walls in motion, with a translation
velocity 0.5mm/s, it can be seen that the second principle rotation is affecting the systems
order. Figure 6.5 shows that particles no longer exhibit periodic motion, and regions of
disorder are evident within the flow domain. It is also possible, however, to observe ordered
regions indicated by the empty spaces on the slices. Figure 6.6 shows the slices along the TF8
where all moving walls have equal velocity magnitudes. It is possible to observe symmetry
within the system. The slice positioned where z=10, in the middle of the domain has
symmetry across its diagonal. At low z slices there is an obvious empty region running left to
right across the slice. As one observes slices from the origin along the positive z direction, it
can be seen that the empty region twists, until it runs top to bottom of the slice at high z
values. These empty regions correspond to the principle rotations created by the wall
translations, and the rotation symmetry is due to all wall velocities being equal. It can be seen
that there are significant areas of disordered flow, broken up by the twisted empty regions. It
is also possible to observe secondary rotations caused by the principle rotations. These can be
seen as empty islands surrounded by what appears to be invariant curves. Particles that
originate and move within disordered regions cannot enter the ordered regions from tori and
likewise particles within tori cannot exit. This is clearly shown in figure 6.9 where the regular
region clearly is impenetrable, as the twenty-five particles that originate within the tori do not
exit. Particles may be travelling around the TF8 with some periodicity giving rise to elliptic
points, which is suggested by the concentric orbits of the invariant curves

When the velocity of the moving walls 1 and 2 is increased to four times of that of walls 3 and
4, it can be seen in figure 6.7 that the presence of the tori is no longer evident and the regions
of disorder appear to now be primarily in the half of the domain associated with the faster pair
of walls. When the system is operated with walls 3 and 4 ten times faster than walls 1 and 2
(ratio of 10) it can be seen that great disorder occurs. Here again the disordered region is
mostly between the faster pair of walls, except disorder has engulfed the majority of that half
and is extending into the slower moving half of the domain also.

Figures 6.4 to 6.8 show that the TF8 with one pair of walls moving produces periodic particle
trajectories. If the second pair of walls is also set in motion then disorder regions appear

within the ordered flow. As the velocity of one pair of walls is increased the disordered
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regions within the system also increase up to the pointWhé,re,i:the majority of the TF8 doinain
is disordered.

It is considered that it is the velocity of the walls and the ratio of the velocities of the wall
pairs, not the ratio of velocities alone, that is responsible for the transition into increased
disorder. This is suggested due to if the control parameter were wall ratio alone then the TF8,
when operating with a wall pair ratio of 0.1 would, with rotational symmetry, be equivalent to
the ratio of 10. It can be seen however (figure 6.4 and 6.8) that the particle trajectories are

significantly different and therefore it is the velocity and the ratio that affects the disorder.

6.3.2 Discussion of the separation of particles in the TF8, pictorially.

In this section the spread of 200 initially close particles is observed. Figure 6.10 shows the
initial position of the small zone within which the particles originate. The particle positions
are selected at random within the zone, and allowed to evolve for 1000 seconds. The position
of each particle is recorded at intervals of time and shown, in figures 6.11-6.15, for the same

range of wall velocities as section 6.3.1.

t=0
seconds

Figure 6.10. Showing the small zone where the two-hundred particles originate in the TF8 mixer.

As expected the separation of particles, where only one pair of walls is in operation, is small.
After 1000 seconds in figure 6.11 it can be seen that the line of particles has stretched. Which
can be attributed to laminar shear. The separation of particles in the system with a wall pair
velocity ratio of 0.1, figure 6.12, is also low, however, there does appear to be the presence of
some bending and folding beginning to take place at approximately 1000 seconds. The
following three velocity ratios of 1, 4 and 10, in figures 6.13 - 6.15 respectively, show that
bending and folding of the particle set does take place. Particles completely separate and
disassociate from their original neighbours. Reaching this point is much more rapid for a wall

pair ratio of 10.
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As with the previous section the disorder in the syst/em'appie,ars/ to be significantly increased
as the ratio of the velocities of the wall pairs is increased. Once again though it is suggested

that the ratio and the velocity is responsible for the onset of chaotic motions.
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Figure 6.11. xy and yz views of the TF8 mixer showing the positions of two hundred originally close particles
after varying amounts of time. Walls 3 and 4 are translating at Smm/s, whilst walls I and 2 are stationary (Wall

velocity ratio=0)
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Figure 6.12. xy and yz views of the TF8 mixer showing the positions of two hundred originally close particles
after varying amounts of time. Walls 3 and 4 are translating at Smm/s, whilst walls 1 and 2 are translating at

0.5mm/s (Wall velocity ratio=0.1)
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Figure 6.15. xy and yz views of the TF8 mixer showing the positions of two hundred originally close particles

after varying amounts of time. Walls 3 and 4 are translating at 5mm/s, whilst walls 1 and 2 are translating at 50

mm/s {Wall velocity ratio=10)
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10mm/s and a ratio of 0.1. These two systems are di’fécﬂy ?’cbmparable through rotational
symmetry and the only difference is that the particles observed originate within opposite
halves of the TF8 domain. The particles originating within the faster half of the domain
exhibit significant separation. This is noticeably different to the poor separation indicated in
the same system where the particles originate within the slower half of the domain. The
systems would be comparable if the particles used to calculate property A in the two systems
were both from the same of either the fast or slow side.

This chapter has investigated the presence of chaotic trajectories within a time independent
system. Investigating the system by the use of cross sectional slices highlighted that as the
velocity ratio between the two pairs of walls increased from ratio=0 disordered regions
appeared. These grew until they covered the majority of the domain, and in particular the half
containing the faster pair of moving walls. Ordered regions were found within the system and
the presence of a tori was evident when the wall pair velocity was equal.

The TF8 was also investigated over a range of operating parameters by observing the spread
of a sample of particles originating from a small zone within the flow domain. This
highlighted the presence of bending and folding of the sample line of particles became more
evident and rapid as the ratio of the velocity of the wall pairs was increased.

The same spread of particles was quantified by the use of property A. It has been shown that
it would be possible to observe a cascade from order into chaos by the use of property A,
when supported by pictorial methods.

The control parameter considered here is the ratio of the wall pair velocities. It was found that
once within a chaotic regime the effect of increasing the control parameter further was to
reduce the time taken for initially close particles to separate. The effect of increasing the base
velocity was to reduce the time taken by particles to separate significantly.

Due to variances in the disorder at different positions throughout the system the cascade can
only represent the region of the domain within which it was generated. However it is
suggested that similar trends would be found irrespective of the position of the particle

generation zone.
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7. Discussion, further investigation and d'eVéloﬁinent of property A.

7.1 Introduction.

The previous chapters have shown a variety of systems and through these presented variations
in fluid movements as control parameters and boundary movements have varied.

The notable work presented is the variety of simple domains that highlight differing forms of
chaotic motion. Focus has been on the understanding of the particle motion to develop and
prove concepts that may aid design of future chaotic mixing domains. To make visible the
effect of control parameters on the particle movements various techniques have been
implemented. The most successful of these was the observation of the particle spread, both
pictorially and quantitatively by the use of property A which is the average distance between
particles and their initial neighbours originating from a small line.

The flow domains in this work are relatively simple and some of them are unoriginal or
perhaps classic, in the case of the two-dimensional cavity, this is to aid the development of
concepts of chaotic motion. Towards the latter parts of the work the domains became more
complex, throughput domains for example. The affect of various control parameters in these
systems was possible to conceptualise and pre-empt due to the particle movements observed
within the simple two-dimensional domains.

This chapter presents a discussion of the observations, properties investigated and conclusions
formulated within the previous chapters. It then goes on to suggest possible further
investigation and developments of mixing domain configurations using the concepts
developed concepts. Finally there is a discussion of possible developments to property A
towards producing a more robust property that is capable of yielding significant amounts of

information regarding the mixing quality throughout time in variety of mixing domains.

7.2 Discussion of the parameters and concepts developed throughout this work.

The aim of this work was to advance the investigation of chaotic mixing domains using
commercial computational fluid dynamical tools. Commercial CFD was chosen over specific
code generation due to the possibilities of easily generating complex mixing geometries and
the speed at which changes could be made to examine ranges of parameters. Commercial
CFD is becoming more widely used by engineers to develop a variety of process engineering
units. Another aim of this work was to observe chaotic advection through widely available
CFD software, and thus potentially promoting of chaotic mixing domains to more engineering

designers.
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This work has successfully presented cascades from ofaere,d?t/dc’haotic motions in a Var‘iety of
systems as operating parameters are varied. A number of methods for viewing disorder were
adapted or established and chronologically presented with respect to their development.

The latter techniques for observing system disorder relied on the sensitive dependence of
initial conditions which can be observed through the separation of initially close particles
through time. This feature was observed so that it provided information that was more
significant to the needs of the industrial mixing equipment design engineer, rather than the
mathematician. For example, properties that suggest the quality of mixing throughout time,
thus indicating residence times were favoured over properties or flow features that refer to
instantaneous disorder.

The first system investigated in this work was the two-dimensional time periodic cavity with
an approximated smooth boundary oscillation, similar to that presented experimentally by
Leong and Ottino [48]. It was found, through observing macroscopic pictorial representations
of particle trajectories, that as the time period of boundary oscillation was increased the
system became more disordered, until what appeared to be chaotic motion. Increased disorder
was also observed through a more microscopic observation of a trajectory passing near to a
reference point within the domain. It was found that as the control parameter, the time period
of boundary oscillation, was increased the particle began to oscillate around the reference
point, which indicated the presence of a period doubling cascade. This work showed that
chaotic motion in laminar fluids can be replicated by the use of commercial CFD. The
computational tests compliment the published experimental results and it is possible to
observe the change in fluid motion from order towards and into chaos.

Through observing the particle trajectories in detail throughout the early stages of the cascade
it was possible to suggest why the systems disorder changes in the way that it does. 1t is well
known that systems with alternating streamlines can exhibit chaotic motion. However no
author has previously attempted to suggest why operating parameters affect the fluid motion
in the way that they do. Consider a system with two alternating streamline motions that have
reflective symmetry (as in the two-dimensional cavity system). The distance that a particle
can travel in either streamline depends on the duration of its residence in that streamline. At a
low time period (high frequency) a particle can only displace a small distance from one
instantaneous streamline, before being returned by the other. Hence the particle oscillates,
which may, on a macroscopic scale, appear as similar to a steady state system.

As the time period of oscillation is increased a particle will remain in one streamline for an
extended period of time. This will allow it to displace more distance along that streamline,
before being returned and hence the particles oscillation will increase, and may now be

macroscopically visible. There becomes a point where the particle remains in one streamline
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for sufficient time such that it displaces significantly so ifha% 6ne- extreme instantaneous flow
pattern will not cancel out the other to form an oscillation of the particle. The particle begins
to behave stochastically. It is this rationale that forms the basis for the explanation of the
effect of varying control parameters and is used to suggest more complex design concepts.
The disorder in the two-dimensional cavity system was then observed by the use of a property
derived from the instantaneous mixing efficiency. Comparing the time-averaged property of
the instantaneous mixing efficiency against time period of boundary oscillation produced a
plot containing a peak. It was suggested that the peak corresponded to a point within the
cascade associated with the onset of chaos. It was found, through observing the position of the
peak in the cascade, that increasing the velocity amplitude of the moving walls affected the
cascade by reducing the time period at which chaos occurs. The rationale discussed above this
can be extended to explain this by; it is the amount displacement of a particle within a
individual streamline that controls the onset of chaos. A particle with a higher velocity will
travel further in the same time, thus it will reach the point where its displacement is not
returned as an oscillation by the opposing streamline at a lower time period. This was also
found to be true for the two-dimensional time periodic eccentric cylindrical system. It was
also found the degree eccentricity between the inner and outer cylinders affected the disorder.
When the cylinders were concentric the effect of oscillating the boundaries was to alternate
the speed of particles and not the streamlines, hence no disorder occurred. When an
eccentricity is imposed alternating streamlines exist and disorder can occur. It was found that
as the eccentricity was increased the overall time period required to induce chaos was
reduced. The particles begin to oscillate more violently as streamlines become more different,
thus travelling further away from their original orbit in the same period of time.

Through using the instantaneous mixing efficiency it was possible to produce characteristic
plots that exhibit peaks which indicate the onset of chaos. However the property does not
represent the degree of disorder within a system throughout time, and is therefore of limited
use to the design engineer. Also the fall in the property after the peak suggests order restoring.
which cannot be, and is not, the case. Systems operating with time periods larger than that at
the peak continue to exhibit sensitive dependence to initial conditions and are therefore within
chaos. 1t was suggested that this drop in the value is due to, at large time periods, the system
is operating for a significant time as each streamline, and consequently the instantaneous
mixing efficiency is low.

For the continuation of the analysis of chaotic mixing domains a quantifiable property of the
mixing was developed that provides information about the degree of disorder and the quality
of mixing over time, thus being able to provide designers with significantly more information

than an instantaneous property.
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The property makes use of the signature of chaos, sensitive dépendence to initial conditions.
In the simplified weather system presented by Lorenz [5] he noted that two points within a
system, that were initially close, evolved to a point where their trajectories bore absolutely no
resemblance to each other. It was noted that if the points were two initially close particles of
fluid in a mixing system, under chaotic conditions, they would separate to the point where
their trajectories are unrelated, and hence the system would be well mixed. The property,
termed property A, was generated form a small line of particles within the flow domain. Each
particle was assigned their two nearest neighbours along the line. The distance between each
particle and its neighbours was calculated at regular time steps. Property A is the average
distance between two particles along the line, which was shown against time with its
maximum value being compared over a range of operating parameters.

Property A was shown to yield consistent results throughout ranges of its generation
parameters, and to produce conclusions that were consistent with previous two-dimensional
analysis. Therefore it was suggested that property A be extended for use in three dimensions.
Using property A, and corroborating pictorial observations of particle trajectories, a variety of
three-dimensional systems were investigated, these include time periodic, time independent,
throughput and closed domains.

The inclusion of the third dimension enabled systems to operate with perpendicular motions.
The first three-dimensional system to be investigated was a closed cubic domain operating
with perpendicular flip-flop oscillating boundaries. Property A showed that throughout ranges
of time period the cascade from order into chaos was not as visible as it was for the two-
dimensional cavity system, and that the effect of increasing the velocity of the wall
boundaries only appeared to hasten the separation of particles, and not shift the cascade. This
was noted to be due to the alternating boundary motions not opposing each other as they were
in two dimensions due to operating perpendicularly. Particles within the system will
eventually separate, irrespective of the time period of velocity amplitude.

Three different three-dimensional throughput systems were investigated using property A.
Due to the laminar shear, and particles moving slowly near the walls property A was
calculated over the cross section perpendicular to the throughput flow to avoid misleading
large values of separation. The first system, known as the time periodic domain was a long
rectangular domain, with the movement of top and bottom walls oscillating in a flip-flop
motion perpendicular to the flow. The following two systems were time-independent and
made up from many repeating cells. The first of these, a spatially periodic domain, has two
moving walls in each cell configured such that particles become incident to different,

opposing streamline motions as they flow through each cell. The second, a geometrically
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periodic domain, contains two exact similar streanﬂiriéﬂméﬁdns- within each cell, however
they are offset perpendicular to the throughput flow, so that their centres of rotation oscillate.
The disorder within the fluid in the time periodic system was found to be effected only by
parameters surrounding the oscillation, the time period and velocity amplitude, and not by the
longitudinal position of the particles as they travel through the domain, nor their throughput
rate.

The velocity of the wall translation and the throughput rate both effect the disorder of the
fluid in both the spatially and geometrically periodic domains. In these systems the wall
velocity is constant and the particles come into contact with differing streamline regimes as
they flow through the cells. The faster the wall velocity the further in any set time particles
can be displaced. The slower the throughput the longer particles will remain within any one
streamline regime, and hence move further within it, before flowing into another. Systems
become more chaotic as the wall velocity is increased, and systems with lower throughput
rates require a lower time period to become chaotic. This supports unequivocally that it is the
displacement of particles within alternating streamlines that is responsible for the onset of
chaos.

The final three-dimensional system to be investigated was the twisted figure of eight mixer
(TF8). This domain consists of two adjacent cubes each with two translating walls that cause
a rotation within the flow. The cubes are set so that two principle rotations cause a twisted
figure of eight motion that is steady within Eularian representation, but exhibits Langrangian
turbulence.

The system was investigated by the use of three different methods. The first involved
generating cross sectional slices along the domain and observing where a number of particles
crossed these. It was found that as the ratio of the velocities within the two cubes was
increased the disorder increased. The range of ratios investigated saw the destruction of
ordered regions, tori and invariant curves. The second method observed the spread of a small
sample of particles. Under chaotic conditions bending, stretching and folding in the fluid
occurred. The final method was to quantify the spread of particles using property A. This
showed that as the velocity ratio between the two cubes increased from zero chaos occurred.
Once within disorder the effect of increasing the velocity ratio further was to increase the time
to significantly separate the particles. It was found, however, that these results are dependent
on the generation position of the particles used to calculate property A, although it was
expected that a similar result be obtained from other locations within the domain.

This work has presented an explanation for why and how periodic boundary conditions effect
disorder and produce chaotic motion within a laminar fluid system. Information achieved

through extending this theory enables one to suggest further domains that are expected to
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produce chaotic mixing. The theory is therefore a ’gobdfisté;ting point for an engineer
designing chaotic mixing equipment. Some ‘starting points’ are discussed in section 7.3.

Chaotic mixing has been quantified by a property that yields, not only information about the
overall disorder, but also indicates the time required to achieve that mixing. The property is
universal and could be applied to any system, and has also been used in this work to
investigate a steady state chaotic system. Unfortunately the property is limited due to its
generation from a small area. If that area happens to be situated in an ordered region (such as
an invariant tori) then the value returned may be spurious. In this work all conclusions from
property A have been corroborated using observations of particle trajectories. Section 7.4
discusses developments of property A so that it could be used with increased confidence to
yield significant amounts of design information to be considered when designing industrial

chaotic mixing equipment.

7.3 Further investigation of flow domains.

The earlier chapters of this work presented two-dimensional simulations of chaotic flow
domains. This enabled the development of simple concepts of particle movements and the
development of qualitative and quantitative properties. These systems are ideal for the
investigation of properties of the fluid, such as reaction or if one was interested in the effects
of visco-elasticity on chaotic motion, for example. The variety of different physical properties
and effects within a chaotic domain are almost endless, and could provide a wealth of
research for the future.

This work, and especially this section, is more concerned with geometry and boundary
operating parameters, and their effect on the fluid motion.

In two dimensions the design of a chaotic mixing domain requires alternating streamline
motion which can be caused by the oscillation of the motion of the top and bottom walls of
the cavity, and the inner and outer walls of the eccentric cylindrical system. Unfortunately in
two-dimensional chaos one is limited to cross sectional approximations and closed domains,
due to the unavailability of perpendicular movements. There are, however, a number of
configurations that could be considered as modifications to the two systems mentioned above.
These include, for a cavity system, the effect of geometric aspect ratio, non-parallel walls,
rotating blades or shifting geometry within the domain, as shown in figures 7.1 — 7.4
respectively. Other authors have too recommended system configurations based on their

investigations [12, 90].
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Figure 7.1. Showing the aspect ratio of a two dimensional cavity. Figure 7.2. Indicates non-parallel walls of the
two-dimensional cavity. Figure 7.3. Exhibiting two rotors within the two dimensional cavity. Figure 7.4.

Indicates time periodic geometry of the two dimensional cavity.

The eccentric cylindrical system could be modified to contain more inner cylinders that
operate time periodically (figure 7.5), or an internal mixer containing two rotors whose

oscillation oscillates time periodically as shown in figure 7.6.

Figure 7.6. Simple representation of an internal mixer containing two time periodic rotors, represented by

cylinders.
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Figure 7.7 shows the spread of two hundred particles, as time evolves, in the simplified two-
dimensional model of an internal mixer, where the rotors are cylindrical and operating with a
velocity amplitude of 10 mm/s and a time period of 20 seconds. It can be seen that as time
evolves the particles spread throughout the domain, until they appear to be well mixed. This

can be quantified by the use of property A.
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Figure 7.7. The spread of 200 particles at intervals over 400 seconds originating from a small generation zone in
the two-dimensional simplified internal mixing domain, where the time period of rotor movement oscillation is

20 seconds with amplitude of 10mm/s.

Figure 7.8 shows property A against time for the system in figure 7.7. The plot is
characteristic of one that has, previously in this work, been associated with chaotic motion.
The figure shows a slow initial separation, followed by an exponential separation, followed
by the levelling off phase associated with the particles no longer baring any resemblance to

their original neighbours.
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Figure 7.8. Property A against time generated from 200 particles originating from a small generation zone in the
two-dimensional simplified internal mixing domain, where the time period of rotor movement oscillation is 20

seconds with amplitude of 10mm/s.

Much work has been carried out into the mixing in internal mixers [38, 102-104] although
there are no notable works including time dependent boundaries. For a more realistic
simulation of an internal mixer the rotors should appear more like blades, figure 7.9. This
would involve time periodic geometry, and therefore require different modelling techniques.
Developments in commercial CFD such as the Mesh Supposition Technique, available in
Polyflow, [105] make possible this kind of model. One of the features of a real internal mixer

is the curve of the rotors that induce axial motion of the fluid, figure 7.10.

e

J S

Figure 7.9. Two-dimensional internal mixer Figure 7.10. Three-dimensional internal mixer with

with rotor blades. twisted blades to induce axial mixing.

Variations and extensions in investigations of the closed cubic three-dimensional time periodic
domain could be similar to those suggested for the two-dimensional cavity. This could include
the periodic movement of all six faces of the cube, varying the aspect ratios, inclusion of blades,
rotors or intrusions in the domain or time dependent geometry.

Chapter five presented three throughput domains that exhibit chaotic motion. Introducing the
third dimension allowed the models to contain perpendicular boundary movements to the fluid
flow. Each of the three systems induce chaos through the alternation of cross sectional

streamlines. Particles in the time dependent system are subjected to alternating streamlines due
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to oscillations between top and bottom wall movements. Whilst in the spatially and
geometrically periodic systems the particles come into contact with differing streamlines as they

flow through the system.
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Figures 7.11a-e. Cells of a throughput mixer that would induce alternating streamlines, and (for figures a-d)
pictorial representation of the streamlines. Figures a-d shows obstructions to the flow, a block, triangular block, a

fin and a wall, respectively, whilst figure e shows stirrers along the domain, that would induce twisting flow.

The use of various inserts in a throughput duct can produce the effect of alternating
streamlines. Figures 7.11a-d each represent one cell of a throughput domain that would cause
a pair of alternating streamlines, and would therefore be expected to exhibit chaotic motion.
Figure 7.11a shows a block placed across the width of the domain, with the top wall
translating, thus producing the two streamline forms in the domain cross sections shown. It is
expected however that there may be stagnation in the dips and possible bypassing of particles
in the upper sections. It may then be desirable to change the shape of the block into a triangle
(figure 7.11b.) although bypassing may still occur. It could be suggested that there would be
an optimum distance between, and the geometry of the blocks.

If the block width were reduced so that it resembled a fin protruding from the base of the
domain, with the top wall in motion, as figure 7.11c¢, then the particles would be subjected to
the streamline motion shown. This would reduce the bypassing and stagnation of particles in
the lower half of the domain. [f the fin were elongated so as to stretch to the top of the
domain, and the two vertical walls were to move, figure 7.11d, then the particles would be
subjected to splitting streamlines. The angle of the blade, both to the vertical and the
throughput flow of the fluid could be investigated for their effect on chaotic motion and
subsequent mixing quality. The inclusion of stirrers along the throughput domain would
subject particles to a twisting motion as they pass through the mixer (figure 7.11¢.)

It is evident that there are a vast variety of different configurations within the throughput
system that produce an alternation in streamline motion which is restricted only by the
imagination. Other authors have also considered such domains. Ottino [99] suggests that
streamlines may be altered through a wavy fin running the length of the base of a throughput

duct, where the upper wall translates perpendicular to the flow.
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fluid exits the domain in two halves, which both twist and re-enter, again in two halves, but at
ninety degrees to the exit. The continued splitting -and - rotating of the fluid  produces

significant mixing. Operating the walls periodically to the flow may increase the efficiency of

the mixing.

N

Figure 7.14. Closed time dependent re-circulating flow domain that causes chaotic mixing.

The re-circulating domain in figure 7.14 produces chaotic motion by removing fluid from the
centre of three faces of the cubic mixer and pumping it back into the system through three
corresponding faces at ninety degrees to the exits. Figure 7.15 shows the spread of one
thousand particles as time evolves. It can be seen that the particles spread randomly

throughout the domain, although there are areas where mixing is poor.
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Figure 7.15. Cross sectional view of the spread of 1000 particles originating from a small generation zone in the
re-circulating mixer over 1600 seconds. Each of the three re-circulation loops is operating at the same arbitrary

flow rate.

The separation of the particles can be quantified by the use of property A. Figure 7.16 shows
the property A against time for two hundred particles originating from a small line in the
centre of the domain. The plot shows characteristic features similar to those exhibited by
other chaotic systems. Initially there is low divergence, followed by a growth stage, although
not as rapid as seen previously, and the beginnings of levelling off of the plot corresponding

to the particles baring no resemblance to their original neighbours.
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Figure 7.16. Property A against time for 200 particles originating within a small generation zone in the centre of

the re-circulating mixer.

The value of property A in the disassociated region should be taken as an indication of the
disorder only, as the distance between particle pair is a linear measurement. The value of
property A would include the gap in the domain if one particle were in a re-circulation pipe
and its original neighbour was in the centre of the domain. For systems with complex
geometries being able to suggest a value for property A for a comparison uniform distribution
of particles becomes difficult. A satisfactory method for suggesting such a value would need
to be developed if a comparison is to be drawn between systems of vastly differing
geometries.

Through using the concepts developed in the previous chapters it has been shown to be
possible to suggest domains that will produce chaotic mixing. This has applications in many
process industries, particularly those working with laminar fluids, such as the polymer, food,
bio-chemical and pharmaceutical industries. Chaos is an effective method of achieving good

mixing that can be induced in high or low shear systems. The full extent of geometries and
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systems that could be mixed more efficiently using chaos has not been realised by a long way.
If systems could be mixed more efficiently then there would be less need for high power
consumption. Through using commercial CFD techniques to simulate innovative chaotic

flows a great number of mixing processes could be radically improved.
7.4 Further development of property A.

Property A was developed to quantify the sensitive dependence to initial conditions of chaotic
mixing systems in the form of particle separation. It is produced by a specific post processing
code that uses the co-ordinate data of a number of originally neighbouring particles to
calculate the average distance between them.

To ensure that significant separation of particles is observed property A is calculated from
trajectories originating from a small zone of generation. However this may result in
representation of only a small region of the flow domain. This was not considered to be
significant when observing two-dimensional systems as the main point of interest is the onset
of “full’ chaotic motions, and when this occurred the particles travel throughout all of the
domain. Thus making the position generation zone inconsequential. This can be seen in figure
7.17. where a single particle trajectory is shown over 3000 seconds in the two-dimensional
smoothly oscillating cavity system, presented in chapter two. It can be seen that the particle
trajectory covers the whole of the domain with no obvious islands of ordered flow where the
particle does not travel, thus the trajectory would be similar irrespective of its generation

position.
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Figure 7.17. (As figure 2.6.) Time snap shots of a particle trajectory for 3000 seconds in the two-dimensional

smoothly oscillating cavity where U=26.9 mm/s, T=20 seconds.

The position of the generation zone of the particles within the domain is of more significance
when considering three-dimensional systems. This became evident in chapter six when

investigating the TF8 mixing domain. It was recognised that there were highly chaotic regions
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and islands of ordered motion present. Figure 7:18,S/hof\"&s’fth/e}ipbsitions that particles cross a

slice at the centre of the TF8 mixing domain.

Figure 7. 18. (Taken from figure 6.6.) The cross sectional slice midway along the z-axis of the TF8 mixer
showing the points of intersection of twenty-five particles originating from random positions and evolving for

one thousand seconds. All walls are translating at Smm/s.

It can clearly be seen that there are islands of order surrounded by invariant curves in seas of
disorder. Consequently if the particles used to calculate property A were to originate from
within the ordered island, then its value would be significantly lower than if the particles
originated from with the disordered region. Due to this it was recommended in the previous
chapter that the property A not be used as the sole tool for investigating the disorder within a
system and all conclusions were corroborated with observations of trajectories.

It is thought that it would be useful if property A could be used more independently and
account for the local deviations in mixing quality. However to achieve this property A should
be extended to quantify and compare the quality of mixing at various points within a mixing
system.

A mixing domain will require the superimposing of a three-dimensional grid. At each
intersection of grid lines a generation zone, of specified size, containing a set number of
particles will be produced, as shown, for example, in figure 7.19 for the cubic domain with a

grid of 10 by 10 by 10.
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Figure 7.19. Indicating the generation zones for particles to be used to calculate property A in a cubic system

with a grid of 10 by 10 by 10.

As time evolves property A can be calculated for each set of trajectories which will produce
many local property A values. All of the local property A values can be averaged to give an
indication of the overall mixing quality, or they can be treated using a variety of statistical
techniques. Each local property A value could be individually compared to the value obtained
from a uniform distribution of particles to suggest the quality of mixing from each point. If
this were mapped regions of poor mixing and islands of ordered fluid motion could be
highlighted. Through observing the frequency that the separation of sets of trajectories is
within set ranges, corresponding to the quality of mixing, further information could be

obtained about the mixing system.

Maximum value obtained from local property A values as a percentage of the value obtained from the
uniform value.

0- 10- 20- 30- 40- 50- 60- 70- 80- 90- over
10% 20% 30% 40% 50% 60% 70% 80% 90% 100% | 100%

Number  of  local

property A within | 39 117 123 135 150 127 116 131 141 145 7
range

Table 7.1. Example of frequency results of the mixing obtained from 1331 local property A values compared, as

a percentage, to the uniform distribution.

The example results in table 7.1 show that the mixing within this system is varied. Some of
the local property A values suggest that particles are within ordered flow regimes, whilst
other sets of particles exhibit significant divergence. Through observing the generation

locations within in the domain that correspond to low disorder, designers would be able to
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suggest where to make alterations to the mixing Systém;’gedﬁlétry or operating conditions. For
example if this analysis showed that a domain exhibited stagnation in a particular corner, the
designer may wish to fill in that area and test the system again. The aim of an analysis of this
nature would to be to optimise operating parameters and domain geometry to produce an
efficient and well-mixed system. In terms of results as in table 7.1 well mixed would be when
the majority of the local property A values are within the 80 to 100% of the average distance
between particles obtained from the uniform distribution.

One could use the technique to investigate smaller areas of the domain. Say, for example if a
stagnating section of the system was to have baffles inserted. A designer could ‘zoom in” on
this area by calculating the local property A over a much finer grid in a smaller area. Particles
would still travel throughout the whole domain, but small flow circulation behind walls may
be detected. The magnified analysis could continue until the effect of the stagnation begin
observed had negligible effect on the overall process.

Through similar methods of analysing the local property A data residence times can also be
optimised. By observing the local property A values by the time taken to reach a specified
percentage of mixing one could optimise a throughput system to mix all of the fluid within a
similar time, or for a closed domain the longest time required to mix throughout all points
could be suggested. Once again the geometry and operating parameters can be manipulated to
produce the desired mixing time.

The amount of information that can be yielded from the property A, when analysed in this
way is potentially great and would be of significant use to the designers of industrial
equipment. In order to carry out this analysis, using the commercial software, either new
codes would need to be created, or the commercial codes would need to be manipulated. It
would also involve the addition of a few ‘do’ loops to the code presented in appendix B for
the post processing of the trajectory co-ordinate data.

To carry out this technique to investigate and optimise a mixing system would require a
significant amount of computational time. There are many variables that would effect the time
required. These include the mesh density, the number of points to generate local property A
and the number of particles, the frequency at which their trajectory co-ordinates are recorded
and their lifetime. These variables would have to be optimised to suggest what values would
give meaningful results, however it would appear from previous optimisations that the more
reliable quantitative results are obtained when the more computationally expensive range of
variables are used. At present a separate data file has to be produced for each of the different
zones of particle generation to produce each local property A. For the example suggested in
figure 7.19 and table 7.1 this would mean 1331 separate tests. Each test, depending on the

values selected for the variables, could take up to 10 hours to run on a machine that has a spec
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fp [106] of 20, which amounts to about one and a héff&eér’sﬁf computational time. Personnel
time could be significantly reduced by producing a code to create, run and analyse each of the
1331 data and results files automatically. Suggestions of how to reduce the computational
time include manipulating the commercial source code or creating efficient specific codes that
are streamlined for this purpose. Unfortunately the commercial source codes are unavailable
to the author, and the creation of specific codes is not with the remit of this work. If one were
to continue to use the commercial CFD software then the number of generation sites required
to run could be reduced through targeting areas of specific interest.

Computers are fast becoming more powerful with processors in excess of one gigahertz being
currently widely available. Although this method at present appears to be computationally
expensive, it is suggested that fairly soon the computational power required will be available
to make this method of detailed analysis, using commercial CFD techniques, a viable and
effective alternative to physically modelling mixers. The wealth of information that is
obtainable through this method of quantifying the separation of particles, using property A,
will assist designers of industrial equipment in making efficient and cost effective mixing

devices.
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Nomenclature

dX, dx

E*

Cx

g

X, X

X['h Yn

€1, €2,

é*

rate of dissipation
deformation tensor
infinitesimal material length

initial element

subsequent element

eccentricity

instantaneous mixing efficiency

gravity

orientation of dX

Parameter derived from ey

orientation of dx

pressure force per unit volume

radius

time period

time

amplitude of oscillation

velocity moving boundaries

position in element

two-dimensional co-ordinates of particles
distance between two particles

phase difference

scaling factors

local co-ordinates of X in E

local co-ordinates of x in E*

Lyapunov exponent

length stretch

density

viscous forces

vector differential operator or divergence
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A.2.. Variables and labels.

The variables used throughout the code are described below.
Arrays

result - stores the result data (property A) for each time increment

rpart - stores the trajectory positions, with time for each particle trajectory. Particles
are stored along the i, time is in the j, for example 5 particles of 1000 seconds each
would produce an array of i = (3*5), j = 1000

rsort - stores the same co-ordinate data as rpart, but after being sorted to order the
initial positions to their immediate neighbours on the one dimensional line

Variables

ti - filename inputted by user without the index

fo - filename to open, after the code has generated the index

ftime - value of time read from trajectory in data file

fxco, fyco - value of x and y co-ordinates respectively, read from data file
icl, ic2, ic3, ic4 - used in generating the index number for the input file
ifc - label of the open input file, increments with the index

ifw - variable in do 44

ilamp, ilamt - used to move around rsort array

ilampp - variable in do 43

ilo, iso, irrr, isort, ilinei - used to move around rsort array

ind - number of positions of one trajectory in the data file

indam - used to read trajectories throughout code

index - variable in do 30

inum - number of files with same prefix to read

ipart - used to move around rpart array

ipnum - total number of particles in one file

ipoint - variable in do 20

ird - reads either 0 or 1, 0 value will remove trajectory as a stagnation point
irr - variable in do 39

itpnum - total number of particles

itt - variable in do 38

ra, rb, rc, re - remove unwanted values from the input data files

rdist] - straight line distance between two particles

rdtll - total distance between all particles

res - =fi, used to generate the output filename

res] - the output filename

rsmin - minimum value, used in the generation of rsort

rxl, ryl - x and y distance between two particles respectively

Numerical labels

10 - end
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15 - format text input
20, 30, 33, 37, 38, 39, 42, 43, 44 - do continues
85 - output file index

87 - format output file

A.3. The code with annotation

Setting up arrays and variables

real rpart(7000,7000)
real result(1l,7000)
real rsort(7000,7000)
character *11 fo
character *6 fi
character *6 res
character *10 resl

icl=0
ic2=0
1ic3=0
ic4=0
ipart=1
print *,'Enter the name of the file to be read (7)'
read (5,15) fi
res=fi
itpnum=0

15 format (a)
print *,'How many files to read?’
read (5,%*) inum

Increments the index of the filename (fi) to give fo, this routine enable up to 9999 files with
the same filename and incremental indexes. (for example where fi = ‘mixing’ fo =
‘mixing.0001’, ‘mixing.0002’, etc)

do 33 ifec=11, (inum+10), 1
icl=icl+1
if (icl.eq.10) then
icl=0
ic2=ic2+1
end if
if (ic2.eq.10) then
ic2=0
ic3=1c3+1
end if
if (ic3.eq.10) then
ic3=0
icd=ic4+]
end if
fo=fi//'.'//char{ic4+48)//char (ic3+48)//char (ic2+48)//char{icl+48)
print *, fo

Open each file in turn, read into rpart array all trajectories.

open (unit=ifc, err=10, file=fo, status='old')
rewind ifc

read (ifc,*) ra
read (ifc,*) re, ipnum
read (ifc,*) rb

read (ifc,*) rc
itpnum=itpnum+ipnum
do 30 index=1, ipnum, 1
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read (ifc,*) ind

do 20 ipoint=1, ind, 1

read (ifc,*) ftime, fxco, fyco

rpart (ipart, ipoint)=ftime

rpart (ipart+l, ipoint)=fxco

rpart (ipart+2, ipoint)=fyco
20 continue

Check to ensure the end of the trajectory has been reached, if not then an error has occurred
and the program is stopped

read(ifc,*) ird

if {(ird.gt.1l) then
print *,'error ird gt 1'
print *, index

stop

end if

if (rpart(ipart,ind).eq.rpart{ipart,ind-1))then
indam=ind-1

else

indam=ind

end if

Detection of POLYFLOW recognised stagnation points, if found then alerts the user, few are
expected in two-dimensional systems.

if (ird.eqg.0) then

print *, 'STAGNATION POINT'

end if

ipart=ipart+3
30 continue

close (ifc)

print *, 'Total number of particles=',itpnum
33 continue

All particle trajectories have been entered into rpart array.

ilamp=1
ilo=1

Sorting the particle initial positions into order with respect to the y co-ordinates. Beginning
with the first particle in rpart, the initial y position is compared to that of all others. If it is the
smallest then all of its trajectory is stored first in rsort. To remove it from later calculations
the initial y co-ordinate is replaced by 1000000. If it is not the smallest then the next particle
is observed with respect to all others. The loop continues until all trajectories have been
ordered.

do 39 irr=1, itpnum, 1
iso=3
rsmin=100000
do 37 isort=1l, itpnum, 1
if (rpart(iso,l).lt.rsmin)then
rsmin=rpart{(iso, 1)
ilinei=iso
end 1if
iso=1s0+3

37 continue
do 38, itt=1, indam, 1
rsort(ilo,itt)=rpart(ilinei-1,1itt)
rsort (ilo+l,itt)=rpart(ilinei,itt)
rpart(ilinei, itt)=1000000

38 continue
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1lo=ilo+2
39 continue

Calculation of the property of divergence. The calculation is carried out by observing the first
two particles, at the first time step, in the array rsort (they are here immediate neighbours)
and the distance between them calculated. The code then moves to the second and third
particle, and repeats the distance calculation. Once the distance between all pairs of particles
along the line have been calculated the summed value is stored in the results array. The code
them moves to the next time increment to repeat the process. This continues until the end of
the particle lifetimes.

do 42, ilamt=1, indam, 1
do 43, ilampp=1, (itpnum-1}, 1
rxl=((rsort({ilamp),ilamt))-{(rsort((ilamp+2),ilamt)))**(2)
ryl={((rsort ((ilamp+1),ilamt))- (rsort{(ilamp+3),ilamt)))**(2)
rdistl={rxl+ryl)**(0.5)
ilamp=ilamp+?2
rdtl=rdtl+rdistl
43 continue
result(l,ilamt)=rdtl
rdtl=0
ilamp=1
42 continue

Writing the results file. Results array (vesult) is written in one column representing the total
property of divergence as time increments.

resl=res//'.dal’
open (unit=85, err=10, file=resl ,status='new')
87 format (eld.7)

write (85,*) ! !

write (85,*) 'File name ', resl
write (85,*) ! !

write (85,*) ' Lamellar-length’
write (85,%*) ' '

do 44, ifw=1, indam, 1

write (85,*) result(l,ifw)

44 continue
close (8Y5)
print *, 'File ', resl ,' created'

10 end
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Appendix B - Code for calculating property A. 34
B.1. Overview and background to code

This code presented here is used to calculate the three dimensional property A. The
code is similar to that for two-dimensions as it uses the exact same technique. The
codes differ in the reading of the particle trajectory data. Due to the presence of
stagnation points extra routines have to be included to manage this. The code reads
data from POLYFLOW mixing task results in to an array. The values in the array are
processed, and the results are written to file. The input data is in the form presented
in appendix A, except it contains an extra line of co-ordinates corresponding to the z
axis.

As appendix A the output data is property A recorded at time steps corresponding to
those in the input files. Here there is an additional line of figures indicating the
number of particles remaining within the system. This is particularly important
when considering the throughput domains.

B.2. Variables and labels
The variables used throughout the code are described below.
Arrays

ileft - stores the numbers of particles remaining in the domain, written in the output
tile

iptime - stores an index number and lifetime of all particles. Used to calculate how
many particles are remaining in the system at each time step

result - stores the result data (property A) for each time increment

rpart - stores the trajectory positions, with time for each particle trajectory. Particles
are stored along the i, time is in the j, for example 5 particles of 1000 seconds each
would produce an array of i = (3*5), j = 1000

rsort - stores the same data as rpart, but after being sorted to order the initial
positions to their immediate neighbours on the one dimensional line

Variables

fi - filename inputted by user without the index

fo - filename to open, after the code has generated the index

ftime - value of time read from trajectory in data file

fxco, fyco, fzco - value of x, y and z co-ordinates respectively, read from data file

iaaa - input from user. If value equals one the calculation will continue

ialarm - number of particles required for a test to run, input by the user each time the
code is run

ic1, ic2, ic3, ic4 - used in generating the index number for the input file

iclear - to read past and ignore a line of data in the file ifc
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iexit - number of particles exiting an open domain in any one time step
ifc - label of the open input file, increments with the index

ilamp, ilamt - used to move around rsort and result arrays

ilampp - variable in do 43

ilo, iso, irrr, isort, ilinei - used to move around rsort array

ind - number of positions of one trajectory in the data file

indam - used to read trajectories throughout code

index - variable in do 30

index2 - used to move around iptime array

indmax - particles mat exit or stagnate at different times, this variable sets reading of
the array to the maximum value obtained

inum - number of files with same prefix to read

ipart and ipoint- used to move around rpart array

ipnum - total number of particles in one file

ipoint - variable in do 20

ird - reads either 0 or 1, 0 value will remove trajectory as a stagnation point
irr - variable in do 49

isss - variable in do 39

istag - number of stagnating particles identified by the code and removed from the
tests

itpnum - total number of particles

itt - variable in do 38

ittt — variable in do 41

ivvv - variable in do 23

iw - variable in do 89

ra, rb, rc, re - remove unwanted values from the input data files

rdist] - straight line distance between two particles

rdtll - total distance between all particles

res - fi, used to generate the output filename

rsmin - minimum value, used in the generation of rsort

rxl, ryl, rzl - x, y and z distance between two particles respectively

Numerical labels

10 - end

15 - format text input

29 - goto receipt missing out moving along rpart array to overwrite stagnating
particle trajectories

87 - format output file

85 - output file index

20, 23, 27, 30, 37, 38, 39, 41, 42, 43, 49, 89 - do continues

B.3. The code with annotation

Setting up arrays and variables

real rpart(1650,3010)
real result (3010)
real rsort (1650,3010)
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integer iptime (2,3010)
integer ileft (3010)

character *6 fi

character *10 res

character *11 fo

istag=0

itpnum=0

index2=0

format (a)

print *,'Enter the name of the file to be read (7)'
read (5,15) fi

print *,'How many files to read?’
read (5,*) inum

print *,'How many particles?'
read (5,*) ialarm

ipart=1

Increments the index of the filename (fi) to give fo, this routine enables up to 9999 files with
the same filename and incremental indexes.

do 27 ifc=11, (inum+10), 1

icl=icl+1
if (icl.eqg.10) then
icl=0
ic2=ic2+1
end if
if (ic2.eq.10) then
ic2=0
ic3=ic3+1
end if
if (ic3.eq.10) then
ic3=0
icd=icd+1
end if

Open each file in turn, read into rpart array all trajectories.

fo=fi//'.'//char (ic4+48)//char (ic3+48)//char (ic2+48)//char(icl

+48)

print*, ifc,' ', fo
open (unit=ifc, err=10, file=fo, status='old"')
rewind ifc

read (ifc,*) ra
read (ifc,*) re, ipnum
read (ifc,*) rb

read (ifc,*) rc
itpnum=1itpnum+ipnum
do 30 index=1, ipnum, 1
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read (ifc,*) ind

do 20 ipoint=1, (ind-1), 1
read (ifc,*) ftime, fxco, fyco, fzco
rpart (1, ipoint)=ftime
rpart (ipart+l, ipoint)=fxco
rpart (ipart+2, ipoint)=fyco
rpart (ipart+3, ipoint)=fzco

Check to ensure the end of the trajectory has been reached, if not then an error has occurred
and the program is stopped. Should never occur under normal circumstances and is therefore
an indicator of a major failure.

20 continue
read(ifc,*) iclear

read(ifc,*) ird

if (ird.gt.l) then
print *,'error ird gt 1'
print *, index
stop

end if

Detection of POLYFLOW recognised stagnation points, if found then alerts the user.

if (ird.eqg.0) then
istag=istag+l
print *,'STAGNATION POINT @ ', index+ (itpnum-
ipnum)
goto 29
end 1if

Goto 29 misses out moving along rpart array (ipart=ipart+3). The following particle
trajectory therefore overwrites the stagnating trajectory.

Do loop to run through the particle trajectory and examine each time step with respect to the
fifth previous time step. If all three co-ordinates are within a tolerance of 0.01mm then the
particle is deemed to have stagnated and is removed from the calculations. A time tolerance is
%LsoHmtmdynnﬁdwtmuSMQMMqu@]MMsaDmkamrmmmaL

do 23 ivvv=6, (ind-1),1

if ((abs(((rpart{ipart+l,ivvv))-(rpart(ipart+l,ivvv-5))))
)

1£.0.01) .and. (abs(({(rpart (ipart+2,ivvv))~-(rpart (ipart+2,
ivvv=-5)))).1t.0.01.and. (abs({(rpart (ipart+3,ivvv) )~
(rpart (ipart+3,ivvv=-5)))).1t.0.01)).and.ivvv.1t.1000)then
istag=istag+l
print *, 'Stagnation point!! Total particles removed.', istag
goto 29
end if
23 continue

index2=index2+1
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Occasionally POLYFLOW repeats the last time step co—ordinétes, especially where the
particles exit the domain. The following if command recognises and corrects this.

if (rpart (ipart,ind) .eq.rpart (ipart,ind-1))then
indam=ind-1
else
indam=ind

end if

indam=indam-1

if (indam.gt.indmax) then
indmax=indam
print *, indmax

end if

Stores in an array an index number relating to a particle and its corresponding trajectory
lifetime.

iptime (1, index2)=index2
iptime (2, index2)=indam

ipart=ipart+3
29 continue

Do 30 until all particles in file are read.

30 continue
close (ifc)

Do 27 until all particles in all files have been read

277 continue
itpnum=itpnum-istag

If the number of particles stored in the rpart array is less than the number of particles that the
user has specified as their minimum requirement, the program alerts the user. They are given
the option of continuing with the particles that are stored or exiting to start again with more
files. If more particles are stored than are required then the program uses only the specified
number.

if (itpnum.lt.ialarm) then
print *,'You have below your desired limit of particles’
print *,'Either load more data files, or enter 1 to continue'’
read(5,*) laaa
if (iaaa.ne.l)then
stop
end if
end 1if
if (itpnum.gt.ialarm) then
itpnum =ialarm
end if
print *,itpnum,’' particles'
print *,' !
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print *,'running, please wait.....

Do loop to run through the iptime array. The loop calculates the numbers of particles exiting
and these remaining at each time step. This data will be included in the output file and is
particularly important when investigating the throughput domains.

do 39 isss=1, indmax,1l
lexit=0
do 41 ittt=1, itpnum
if (iptime (2, ittt).1lt.isss) then
lexit=iexit+l

end 1if
41 continue
ileft (isss)=(itpnum-iexit)
39 continue

The continuation of this code calculates property A. Firstly the randomly generated particles
must be ordered and assigned their nearest neighbours. Secondly property A must be
calculated, and finally the output file must be created and written.

ilamp=1
ilo=1

The do loop reads through all of the z co-ordinates to find the lowest one. Once it finds this it
reads the x, y and z co-ordinates from rpart array into rsort array. The rpart z co-ordinate is
then over written with a large value so that the second lowest particle z co-ordinate can be
found. This continues until all particles have been ordered with respect to their originating z
co-ordinate, and are now stored in the array next to their nearest neighbours.

do 49 irr=1, itpnum, 1
iso=3

rsmin is a generic large value to use as a starting point to rearrange particles into an ordered
line.

rsmin=100000

do 37 isort=1, itpnum, 1
if (rpart(iso,l).lt.rsmin)then
rsmin=rpart(iso, 1)
ilinei=iso
end 1if
iso=iso+3
37 continue

do 38, itt=1, indmax, 1

rsort (ilo, itt)=rpart(ilinei-1,1tt)
rsort (ilo+1,itt)=rpart(ilinei, itt)
rsort (ilo+2,itt)=rpart(ilinei+l,itt)
rpart (ilinei, itt)=1000000
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38 continue
ilo=ilo+3

49 continue
ipr=1
Calculating property A. The code calculates the linear distance between particles and their
neighbours, then averages this for all of the pairs within the system.

do 42, ilamt=1, indmax, 1

do 43, ilampp=1, (itpnum-1), 1

rxl={(rsort ((ilamp),ilamt) )~ (rsort({ilamp+3),ilamt)))**(2)

ryl=((rsort((ilamp+1),ilamt))-{rsort({(ilamp+4),ilamt)))**(2)

rzl=((rsort((ilamp+2),ilamt))-(rsort((ilamp+5),ilamt)))**(2)
*{

rdistl=(rxl+ryl+rzl)*
ilamp=ilamp+3
rdtl=rdtl+rdistl

0.5)

43 continue
result (ilamt)=rdtl
rdtl1=0
ilamp=1

42 continue

Creating and writing the output file (*.dal). The file is prefixed with the same name
as the input file (for example if fi = 'mixing’ then res = ‘mixing.dal’. The value of
property A is outputted for each time step.

102 res=fi//"'.dal’

open (unit=85, err=10, file=res ,status='new')
87 format (eld.7)

write (85,*) 'Lamellar length'

write (85,*) 'File ', res

write(85 *)' !

write ( ' Lam_length '

*)
write(85 x)yro

do 8% 1iw=1l, indmax,1l
write (85,87) result(iw)

89 continue
close (85)
print *, 'File ', res ,' created’

10 end
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itpnum - total number of particles
iwr - variable in do 87

ix - to print co-ordinate data
res - the output filename

Numerical labels

10 - end.

50, 73, 87 - do continues.
101 - format output file.
102 - format output file.

C.3. The code with annotation

Setting up variables

iplott=0
ima=1
ipfile=66

Create the output results file.

res=fi//"'.plt"
print *, res

open (unit=ipfile, err=10,

Write the headers of the output results file.

write
write

ipfile, *
ipfile, *

write {ipfile,*) ' '

file=res, status='new')

'‘Particles ', itpnum
'System = ', file

{ )
( )

write (ipfile,*) 'Maximum time = ', indmax
( )

Loop through all time intervals until a designated time for taking the co-ordinate positions.

do 50 ic=1, indmax,1

if (iplott.eqg.20.0r.iplott.eq.0) then

iplott=0
imap=2

For the designated time intervals take co-ordinates from array rpart and sort them into co-
ordinates corresponding to time intervals in array rplt.

do 73, im=1, itpnum, 1
rplt (ima,im)=rpart{imap,

rplt (ima+1, im)=rpart (imap+l,
rplt (ima+2,im)=rpart (imap+2,

imap=imap+3
73 continue

Write time interval into itime array

itime (itim)={(ic-1)
itime (itim+1l)=(ic-1)
itime (itim+2)=(ic-1)
itim=itim+3
ima=ima+3

end 1f




50

iplott=iplott+l
continue
print *, itim

White the time intervals and co-ordinate data into the result file.

101
102

87

10

write (ipfile,102) (itime (iti), iti=1,itim-1)
do 87, iwr=1l, itpnum, 1

format {1000 (£9.5,1x))

format (1000 (15, 5x))

write (ipfile,101) (xplt (ix,iwr), ix=1l,ima-1)
continue

close (ipfile)

print*, 'file made’

end
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Appendix D - Code for calculating the positions of the particle trajectories intersecting
the slices in TF8 mixer.

D.1. Overview and background

The input data and method for transferring data from file to array is identical to that
presented in appendix B, and similar to appendix A. Therefore the corresponding
section of this code has been omitted.

This code uses the co-ordinate data of particle trajectories created in a POLYFLOW
mixing task to calculate where the individual particle trajectories cross a number of
slices placed at increments along the flow domain. The output data is then the cross
sectional co-ordinates on the corresponding slices along the flow domain in the z
direction.

D.2. Variables and labels
Arrays

rslice - array for storing co-ordinate data on each slice
rpart - stores the trajectory positions, with time for each particle trajectory.

Variables

fi - output filename prefix

iarri, iarrj - used to move around rslice array

jarrjm - records the maximum number of co-ordinates and is used to ensure that the
output file is long enough for all of the data

inslic - total number of slices, calculated from rzmax, rzmin and rdslic
iparti - variable in do 97

ipfile - associated with the label for the output file

irunp, irunt - used to move around rpart array

islice - variable in do 99

itimax - maximum lifetime of all particles

itpnum - total number of particles

iwrite - variable in do 90

ix - variable used in writing output to file

rdslic - user inputted distance between slices

res - output filename

rspos - position of the object slice

rxratl, ryrat] - (x1 - x2) and (y1 -y2) respectively

rxrat2, ryrat2 - (z1 - 22)

rxrat, ryrat - (rxratl/rxrat2) and (ryratl/ryrat2) respectively
rxmul, rymul - (Zslice - 71)

rxintc, ryintc - (rxrat * rxmul) and (ryrat * rymul)

rzmax - user inputted maximum z value for slices

rzmin - user inputted minimum z value for slices
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Numerical labels

10 - end

89 - format output file

92, 94 - goto receipt

90, 97, 98, 99 - do continues

D.3. The code with annotation

Open output file

ipfile=66

res=fi//"'.sli"

print *, res

open (unit=ipfile, err=10, file=res, status='new')
write (ipfile,*) 'Particles ', itpnum

write (ipfile,*) 'System ', fi
write (ipfile,*) 'Maximum time ',itimax
write (ipfile,*) ' '

User required to enter parameters for the generation of the slices along the domain. The
inputted information will be used to calculate the number and positions of the slices.

print *, 'Enter Z min’

read (5,*) rzmin

print *, 'Enter Z max'

read (5,*) rzmax

print *, 'Enter the distance between slices in Z direction'
read (5,*) rdslic

print *, ' '

print *, 'Origin assumed to be at zero'
print *, ' !
inslic=((rzmax-rzmin)/rdslic)-1

print *, 'Total number of slices = ',inslic
iarrj=2

iarri=1

The code generates each slice in turn. It then searches through every particle trajectory to find
a time step at which a particle has crossed the object slice. If that occurs the positions either
side of the slice are linearly extrapolated to find the point that corresponds to the trajectory
crossing the slice, this is stored in an array. After every particle trajectory has been searched
the next slice is generated and the process repeated.

do 99 islice=1, inslic, 1

print *,'slice ',islice
rspos=rspos+rdslic
irunp=1
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do 97 iparti=1, itpnum,l
irunp=irunp+3

do 98 irunt=1, itimax, 1

if ((rpart(irunp,irunt).le.rspos).and.

. (rpart (irunp, irunt+l) .ge.rspos)) then

goto 94

end if

if ((rpart(irunp,irunt).ge.rspos).and.
(rpart (irunp,irunt+l) .le.rspos)) then

goto 94

end if

goto 82

84 continue

The linear interpolation is carried out on both the x and y co-ordinate independently with
respect to the position of the object slice on the z axis. The following example shows how the
code works.

t=tct
(6 29 = (6, 12)

(s, 29 = (7, 6) N
patticle
i=t X
(%4, 290 = (O, UE '

Zslice

raratl = (x1 - x2) = (0 - 6)
rxrat2 = (z1 - z2) = (0-12)
rxrat = (rxratl/rxrat2) = ((x1 - x2)/(z1 - z2)) = (-6 /-12) = 0.5
rxmul = (ze—z1) =(6-0)=6
rxintc = x1 + (rxvat * remul) = ((x1 - x2)/(z1 = 22))* (zs = 21))
=0+05*6=3
Where the slice is at 6 from x1 in the example above the position that the trajectory (linearly)

crosses the slice is at an x co-ordinate of 3. The exact same calculation is carried out for the y
co-ordinate to find the cross sectional co-ordinates the trajectory crosses the object slice.

rxratl=(rpart((irunp—2),(irunt)))—(rpart((irunp—2),(irunt+1)))
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rxratZ:(rpart((irunp),(irunt)))—ffpart((irunp),(irunt+1)))
rxrat= rxratl/rxrat2

rxmul=rspos- (rpart((irunp), (irunt)))

rxintc=(rpart((irunp-2), (irunt))) + (rxrat*rxmul)

ryrat1=(rpart((irunp—l),(irunt}))—(rpart((irunp—l),(irunt+1)))
ryrat2=(rpart((irunp), (irunt)))-{(rpart((irunp), (irunt+1)),)
ryrat= ryratl/ryrat2

rymul=rspos-{rpart{{irunp), {irunt)))
ryintc=(rpart((irunp-1), {(irunt))) + (ryrat*rymul)
iarrj=iarrj+l

rslice (iarri, 1) = islice

rslice (iarri+l, 1) = islice

rslice (iarri, iarrj) =rxintc

rslice (iarri+l, iarrj) =ryintc

92 continue

98 continue

97 continue
iarri=iarri+2

if (iarrj.gt.iarrjm) then
larrjm=iarrj
end 1f

iarrj=1
99 continue

Create the output file from rslice array

89 format (1000 (£7.4,1x))

do 90 iwrite=1, iarrjm, 1

write (ipfile, 89) (rslice (ix, iwrite), ix=1, (inslic*2))
90 continue

close (ipfile)
print*, 'file made’
10 end

The following table shows a section of a sample file of output data. 100 particles with a life
span of 200 seconds were used in the example. The x and y co-ordinates crossing five different
slices in the z direction are shown here. This data could be inserted into a graphing package to
view the results, typically in this work Microsoft Excel was used for this purpose.
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Particles

System mix005
Maximur time

9
3.0924
1.9676
2.8300
1.3468
28898
1.0764
28814
0.9951
3452
21247
3.0381
1.7982
238258
3.0823

1
4.6903
0.0340
5.0105
0.0328
5.0939
0.027%
51118
0.0265
45796
0.0394
47947
0.0494
52317
4.7095

200

2
55438
1.8654
5.5000
1.3443
5.4906
1.0743
5.48867
0.9930
5.5620
21223
55284
1.7947
5.4769
55406

2 3
6.3464 46531
0.0304 1.8635
6.4178 46857
0.0290 1.3427
6.4359 46863
0.0233 1.073
6.4398 46862
0.0234 09:9
63213 48278
0.0341 21202
6.3700 46696
0.0440 1.7921
6.4653 46826
6.3508 4.6566
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3
8.7543
0.0294
8.7202
0.0281
g7122
0.0227
8.7105
0.0229
8.7676
0.0330
8.7425
0.0426
8.6996
8.7521

4
32777
1.9623
3.3099
13418
33192
1.0726
33212
09914
3.2674
21187
3.2879
1.7904
3.3348
32795

o
7.3950
0.0291
74325
0.0279
7.4406
0.0225
7.4422
0.0227
7.3772
0.0326
7.4093
0.0422
7.4520
7.3977

-
44346
19615
4.4445
1.3414
4.4480
1.0723
4.4488
09912
44327
24177
44372
1.7893
44543
44350

5
6.5926
0.0291
6.6396
0.0278
6.6503
0.0225
6.6525
0.0227
6.5738
0.0326
6.6091
0.0421
6.6669
6.5957






