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Summary

A recent method for phase equilibria, the AGAPE method, has been used to predict
activity coefficients and excess Gibbs energy for binary mixtures with good accuracy.
The theory, based on a generalized London potential (GLP), accounts for
intermolecular attractive forces. Unlike existing prediction methods, for example
UNIFAC, the AGAPE method uses only information derived from accessible
experimental data and molecular information for pure components. Presently, the
AGAPE method has some limitations, namely that the mixtures must consist of small,
non-polar compounds with no hydrogen bonding, at low to moderate pressures and at
conditions below the critical conditions of the components.

Distinction between vapour-liquid equilibria and gas-liquid solubility is rather
arbitrary and it seems reasonable to extend these ideas to solubility.

The AGAPE model uses a molecular lattice-based mixing rule. By judicious use of
computer programs a methodology was created to examine a body of experimental
gas-liquid solubility data for gases such as carbon dioxide, propane, n-butane or
sulphur hexafluoride which all have critical temperatures a little above 298 K
dissolved in benzene, cyclo-hexane and methanol.

Within this methodology the value of the GLP as an ab initio combining rule for such
solutes in very dilute solutions in a variety of liquids has been tested. Using the GLP
as a mixing rule involves the computation of rotationally averaged interactions
between the constituent atoms, and new calculations have had to be made to discover
the magnitude of the unlike pair interactions. These numbers have been seen as
significant in their own right in the context of the behaviour of infinitely-dilute
solutions. A method for extending this treatment to “permanent” gases has also been
developed.

The findings from the GLP method and from the more general AGAPE approach have
been examined in the context of other models for gas-liquid solubility, both
“classical” and contemporary, in particular those derived from equations-of-state
methods and from reference solvent methods.

KeyWords: phase equilibria, intermolecular forces, AGAPE model, generalized

London potential, activity coefficient model.
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Chapter 1 - Introduction and scope of research work
1.1 Introduction

In the chemical process industries, fluid mixtures are often separated into their
components by diffusional operations such as distillation, absorption and extraction.
Gas absorption is defined (Perry and Green, 1984) as a unit operation in which soluble
components of a gas mixture (named the solutes) are dissolved in a liquid (called the
solvent). The “stripping” process is the inverse of gas absorption, and is employed

when transfer of volatile components from a liquid mixture is desired.

The equipment used for bringing a liquid and a gas stream into contact continuously 1is
often of the packed tower type. A packed tower is a column filled with regular or
irregular solid packing material. Another type of column is the plate-type unit
containing a number of sieve plates, bubble-cap or other plates. In most installations
the liquid and gas streams flow countercurrent, e.g., past each other, to obtain the

highest rate of absorption, as this maximises the driving forces available.

An example of a process involving an absorber is shown in Figure 1.1 (from Perry and

Green, 1984).

Aston University

lllustration has been removed for copyright
restrictions

Figure 1.1. Gas absorber unit using a solvent regenerated by stripping. (a)

Absorber. (b). Stripper.
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The design of absorption (or stripping) towers can be divided into three steps.
1) Determine the quantity of either liquid (or gas) to absorb (or strip) the
required amount of fluid, for this some data on the vapour-liquid phase
equilibrium are needed.
2) Determine the required cross-sectional area and diameter of the equipment,
for this data on the liquid-handling and vapour-handling capacities are needed.
3) Determine the necessary number of equilibrium stages; both equilibrium

data and material balances are required.

Design of these separation operations then requires quantitative estimates of the
partial equilibrium properties of fluid mixtures. Whenever possible, such estimates
should be based on reliable experimental data for the particular mixture at conditions
of temperature, pressure and composition corresponding to those of interest.
Unfortunately, this is often not possible. In typical cases, no experimental data are
available for the exact conditions and only fragmentary data at different temperatures,
etc., are to hand. In such cases it is valuable to be able to predict or interpolate the

process properties using models.

Since equilibrium properties are required for the design of separation operations, it is
not surprisingly that a number of methods for prediction of phase equilibrium
properties exist. Principal among them are the UNIFAC method (Fredenslund et al.,
1975) (derived from the UNIQUAC method (Abrams and Prausnitz, 1975)), ASOG
(Derr and Deal, 1969), and the solubility parameter theory of Scatchard and
Hildebrand (Scatchard, 1931). These methods require some experimental vapour-

liquid equilibrium data as they are semi-empirical.

The UNIFAC method is the most widespread method used by engineers, reducing as
it does a vast body of data. Its underlying theory is derived from the lattice model
devised by Guggenheim (1952) and its ideas can be used for a wider theoretical study

involving real intermolecular forces.

Such a study has been made at Aston University by Homer et al. (1991) to give a
procedure called AGAPE (A General Approach to Phase Equilibria). This has been
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applied to vapour-liquid equilibria. Since the distinction between vapour-liquid
equilibria and gas-liquid solubility is rather arbitrary, it seems reasonable accordingly

to extend the ideas of AGAPE to gas solubility.

This work begins from the semi-quantitative observations in the Ph.D. thesis of
Mohammadi (1986) that a strong correlation exists between the solubility of
permanent gases in a given solvent and the molecular buffeting effects relevant to
their NMR shifts on passing from gas to liquid. Further, that some rationalisation of
the differences in solubility of a range of gases in different solvents, including water,
seemed to be possible in terms of van der Waals forces and that water might be
considered to be less anomalous in its dissolving power for non-electrolytes than

sometimes supposed.

Our approach to these ideas has been to seek to place them into the contexts of current
knowledge of non-electrolyte solution thermodynamics and in particular within the
immediate context of the AGAPE programme which uses a Generalized London
Dispersion treatment of molecular interactions in devising its phase equilibrium

equations.

1.2 Outline of Thesis

The work began with a review of the thermodynamic database for industrial gases in
the liquid state at low temperatures and pressures. It sought to understand the frame
work of vapour-liquid equilibria for low boiling compounds and by examining their
mixing behaviour and excess thermodynamic functions to prepare the detailed basis of

a suitable flexible mixing rule for all concentrations.

This thesis thus starts with an introduction to phase equilibrium and the equations for
activity coefficients and excess Gibbs free energies using various existing prediction
methods based on lattice models. It further demonstrates the use of equation-of-state
procedures for calculating the thermodynamic excess functions, setting out the mixing
rules and combining rules commonly used. For a better understanding of the

underlying molecular interactions giving rise to those equations, some attention is
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paid to the ideas of intermolecular forces and how they effect aggregation in gases and

liquids.

Since the behaviour of liquid mixtures is directly affected by the molecular interaction
between like and unlike species it is desirable to relate thermodynamic excess
functions to a realistic model of intermolecular forces. As has been demonstrated by a
number of authors (e.g. Rowlinson and Swinton, 1982) the role of repulsion forces is
primarily to determine the geometry and packing of liquids, and, since this is often
relatively constant, it is practicable to treat the vapour-liquid behaviour of pure liquids
and mixtures in terms mainly of an attractive potential. For many molecules the
important potential is the London dispersion force and our attention has been focused
on a modern form of this, suitable for multi-centred polyatomic molecules, the so-

called Generalized London Potential (GLP) theory.

Application of this intermolecular potential can, in principle, be made to any
statistical mixing rule for binary liquid mixtures. In practice, we have chosen to
follow a molecular lattice-based mixing rule devised under the AGAPE model,
already developed 1n this department for vapour-liquid equilibrium studies of organic
liquids. By judicious use of some of the existing computer programs and by making
suitable modifications, a methodology was created to examine a large body of
experimental gas-liquid solubility data for gases such as ethane, ethylene, carbon
dioxide, propane, n-butane or sulphur hexafluoride which all have critical

temperatures a little above 298 K.

Within this methodology we have been able to test the value of the generalized
London potentials as an ab initio combining rule for such solutes in very dilute
solutions in a variety of liquids. Since the methods of using the GLP as a mixing rule
involve the computation of rotationally averaged interactions between the constituent
atoms, new calculations have had to be carried out in this work, and an analysis of
best methods of computation done for this procedure to discover the magnitude of the
unlike pair interactions. These numbers have been seen as significant in their own
right in the context of the behaviour of infinite dilution solutions. A method for

extending this treatment to “permanent” gases has also been developed.
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The findings from the GLP method and from the more general AGAPE approach have
been examined against the context of other models for gas-liquid solubility, both
“classical” and contemporary, in particular those derived from equation-of-state

methods and from reference-solvent methods.
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Chapter 2 - Theoretical background

2.1 Introduction

To derive expressions which relate the concentrations of a given component in each
phase of a vapour-liquid mixture in equilibrium, the first and second laws of
thermodynamics are used. These expressions provide a basis for both theoretical and
semi-empirical prediction methods of vapour-liquid equilibrium data from a minimum

of information.

2.1.1 Criteria for equilibrium
The treatment outlined here follows closely that of Prausnitz et al. (1986), itself

reflecting many early discussions.

In a closed system that interacts reversibly with its surroundings, the combination of

the first and second law of thermodynamics gives

dU=TdS-PdV (2.1)
Defining enthalpy, H as:

H=U+PV (2.2)
and the Gibbs energy, G as:

G=H -TS (2.3)
their differentiation gives

dH=TdS+VdP (2.4)

dG=VdP-SdT

For an open system U is considered to be a function of entropy and volume and the
mole numbers of the various components present. This is expressed formally as
follows:

U=0U(@S, V,n,n, ...,n.) (2.5)
where m 1s the number of components.

Differentiation of this equation and combining with equation (2.1) yields

dU=TdS-PdV + 2y, dn, (2.6)
where |; 1s the chemical potential defined as
ou
Hi = (—j (2.7)
6ni S,V,n
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From the definition of G it follows that

dG=V dP-SdT + 2, y, dn (2.8)
and, further
NEC
on; T, P, n; on,; S.P.n;

From equation (2.6) the Gibbs-Duhem equation can be derived (e.g. Prausnitz et al,,
1986)

SAT-V dP+ 2. n,dy, =0 (2.10)
It can be shown (e.g. Prausnitz et al., 1986) that for a closed, heterogeneous system

consisting of m phases and m components the condition of equilibrium is

V8] (1)2}11 @)= .. },Ll(ﬂ)
1) (1)=p,2 @)= .. ;,Lz(n) (2.11)
Do @ @

Important for phase equilibrium is the phase rule
F=m+2-m (2.12)

where F is the number of degrees of freedom.

2.2 The problem

Introducing the chemical potential does not of itself enable the relationships between
the concentrations of two or more phases in equilibrium to be formed. The chemical
potential has to be transformed into a form dependent on temperature, pressure, and
phase concentrations. This problem has been set out as in Figure 2.1 by Prausnitz et

al. (1986).
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N b
step 2
Translation of

Projection of abstract results

step 1 physical problem into terms of step 3
into abstract phyglcal
terms significance
h 4
Problem Answer

Figure 2.1. The problem to be solved.

In Step 1 a problem originally stated in terms of concentrations in the phases has been
transformed into a statement involving the chemical potential. The specific
relationship between pressure, temperature, concentrations, and the values of the
chemical potentials makes it possible in Step 2 to achieve the goal in Step 1. The
difficult step is Step 3 which involves a translation of the mathematical solution back
into physically meaningful terms. For this purpose the terms fugacity, activity, and

activity coefficient are introduced.

2.3 Fugacity, Activity, and Activity Coefficient
2.3.1 Definition of Fugacity, Activity, and Activity Coefficient
Fugacity was defined by Lewis in 1907 (Lewis, 1907) as
n - u’= RT In(f/£) (2.13)
where f; is the fugacity of the i" component and 0 indicates thermodynamic quantities

at a so-called standard state with pressure P° and temperature T.

At equilibrium, the temperature is uniform throughout all phases of a system. It can
then be shown (e.g. Prausnitz et al., 1986) that the criteria for phase-equilibria
between phases o and B can be expressed as:

o= £ (2.14)
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Further, Lewis named the ratio f,/f the activity a, (Lewis, 1907). If £° changes, a.
also changes, and the numerical value of the activity depends therefore among other
things on the choice of the standard state. For solutions of non-electrolytes, the
chosen standard state is that of the pure component at the temperature and pressure of
the system. This always gives an activity of the pure component equal to unity.

@) = £/ =1

The activity coefficient of component i, y, at some temperature, pressure, and
composition is defined as the ratio of the activity of 1 to the mole fraction of i:

Y, =4,/ (2.15)

2.3.2 Ideal solution

An ideal solution is defined as a solution where both the vapour-phase and the liquid-
phase solutions are ideal solutions, meaning that the fugacity for each component in
each phase is proportional to the mole fraction. For a component in an ideal solution,
it can be shown that the activity coefficient is equal to unity. The activity coefficient

can thus be regarded as a correction factor for non-idealities in real solutions.

Combining the definitions of a; and the activity coefficient gives

=X 6 (2.16)

One important term is the fugacity coefficient of component i, ¢;, defined as

¢ =1/ (v;P) (2.17)
for the vapour phase (indicated by the superscript V). It can be shown (e.g. Prausnitz
et al., 1986) that for a mixture of ideal gases ¢, = 1. The compressibility factor Z is
defined as

Z=Pv/(RT) (2.18)

where v is the molar volume of the mixture.

Hence from equations (2.14), (2.16), and (2.17) we have

yx £ =0"y;P (2.19)
This equation is a key equation for the calculation of vapour-liquid equilibrium using
the activity coefficient approach (see section 2.10.3). We need an expression for f'to

be able to use this equation.
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Similar to the definition of the vapour-phase fugacity coefficient in equation (2.17), a
liquid-phase fugacity coefficient can be defined

ol =1/ (xP)
Inserting the definitions for the fugacity coefficient for both phases, one obtains

OF X =y (2.20)
Again, this equation is a key equation for the calculation of vapour-liquid equilibrium
in the equation-of-state approach (see section 2.10.2). We need to find an expression

for both the liquid and the vapour phase fugacity coefficients.

2.4 Thermodynamic relationships

The terms introduced above are of use in solving step 3 in Figure 2.1. There is a

choice of independent variables P and T or V and T, respectively.

2.4.1 Thermodynamic properties with independent variables P and T

Using the fundamental equations, of which equation (2.4) is one, the so-called
Maxwell equations can be derived. The Maxwell equations are described in, for
example, Prausnitz (Prausnitz et al., 1986) and using them the effect of the pressure

on the enthalpy and entropy is expressed as

My - T(?Xj
aP aT P,ng

s ()
oP oT

From these two equations Beattie (1949) derived

P, ng

— RT

f, !
RT In ¢; = RT In —= = j[vi -
y;P 5

i
where v; is the partial molar volume of i.

It is worth noticing that equation (2.21) is a general equation that can be applied not

only to the vapour phase but also to the solid state and the liquid phase. It is
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convenient to separate equation (2.21) into two integrals, when calculating the
fugacity for a pure solid or liquid at a given temperature T and pressure P. The first
part gives the fugacity of the saturated vapour at T and the saturation pressure P°, and
the second part accounts for the compression of the condensed phase to the pressure P.
Superscripts S and C refer to the saturation and the compressed phase, respectively,
and equation (2.21) becomes

" ‘ R
RTln‘—:jvi—EP+jv$-—TP (2.22)
p P B! P

0
As the fugacity of the saturated vapour, given by the first term on the right-hand side,

is equal to the fugacity of the saturated condensed phase, this and a rearrangement

give

P C
cqp
£ = PpSeS exp( M } (2.23)
Pi RT

where ¢ =£°/ P

Using the condensed phase as the standard phase in equation (2.19) makes it possible
to replace £’ with f© as expressed by equation (2.23). Equation (2.23) can be further
simplified. The exponential term, the Poynting correction, accounts for the liquid at a
pressure P is different from P;°. At conditions remote from the critical conditions, the
liquid is considered incompressible, and the simplified Poynting correction becomes

ML)

RT

2.4.2 Thermodynamic properties with independent variables Vand T
This is based on the same use of the fundamental equations, the Maxwell equation and
the equations derived by Beattie (1949) as in section 2.4.1. The result 1s (e.g.
Prausnitz et al., 1986)

RT In ¢, = RT In -~ =
T4 - (2.24)
j[_flj - =_dV - RTIn Z
7 on Vv

i T,V, nj
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This equation 1s more useful for mixtures then equation (2.21).

Both equations (2.21) and (2.24) are useful for the equation-of-state approach to
vapour-liquid equilibrium, as described in section 2.10.2. The key elements in this

approach are the fugacity coefficients in both the liquid and the vapour phase.

2.4.3 Corresponding states theory

The law of corresponding states (Reid et al., 1987) was first proposed by van der
Waals in 1873. The law of corresponding states expresses the generalization that
equilibrium properties which depend on intermolecular forces are related to the
critical properties in a universal way. Van der Waals showed the law to be
theoretically valid for all pure substances whose pressure, temperature and volume
properties could be expressed by a two-constant equation of state, such as the van der
Waals equation of state (equation (2.31)). Later studies have shown that the law of
corresponding states holds well for fluids containing simple molecules, and

sufficiently well for substances where molecular orientation is not important.

Even though the relation of pressure to volume at constant temperature is different for
different substances, the law of corresponding states states that the function relating
reduced pressure to reduced volume becomes the same for all substances. The
reduced properties are defined as the property divided by the critical property, e.g.,

reduced pressure, P, is expressed as P, =P / P and so on.

The law of corresponding states is illustrated in Reid et al. (1987), where the reduced
pressure is plotted as a function of the reduced volume for two substances: methane
and nitrogen. Only one of the isotherms is shown, but it agrees very well for the two

substances.

The corresponding states principle has been employed to predict equilibrium constants

for simple mixtures with reasonably accurate results (Leland et al., 1962).
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2.5 Equation for vapour-liquid equilibrium

Inserting equation (2.23) into equation (2.19) using the simplified Poynting correction

gives
C S
ve(p - PA)
; 1,P = ~X.P-S S ex 1(—_._‘__.._
(Py ’Yl 1 I(‘PI p{ RT
The factor
(ps V?(P — Pis)
Q; RT

is often near unity, when the total pressure P is sufficient low (Reid et al., 1987).
Sufficient low usually means below 500 kPa, for some applications even up to 1000
kPa. At this low pressure the vapour phase is considered ideal, and then @,"~ 0.
Setting the factor to 1.0 gives the basic equation for vapour-liquid equilibrium
applicable at low total pressures
v. x, P> =yP (2.25)

Equation (2.25) is a key equation for calculating vapour-liquid equilibrium using the
activity coefficient approach as described in section 2.10.3. The key element in the

approach is the activity coefficient.

2.5.1. Auxiliary functions
For convenience in design work a number of alternative ways to express phase

equilibrium are used.

One is the relative volatility o,
YiX;
YiXi

a‘ij =

Another is the equilibrium ratio expressed as

K=y, /%
or, in case of the equation-of-state approach as
K=o/ "
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2.5.2 Raoult’s law

[f the activity coefficients for each individual compound in the liquid phase is unity,
i.e., assuming that the liquid phase is ideal, equation (2.25) becomes
X PP=yP

This equation is known as Raoult’s law.

2.6 The Gibbs-Duhem equation
As mentioned earlier the Gibbs-Duhem equation
SAT -V dP + 2. ndy, =0 (2.10)
can be derived (e.g. Prausnitz et al., 1986) from differentiating equation (2.6). If
variations in temperature and pressure are neglected the Gibbs-Duhem equation

reduces to

in dlny, = 0

This expression places a restrain on the way in which the composition can change in a

given phase.

For the isobaric case equation (2.10) leads to the following useful thermodynamic
relationship
hE
x. dlny, = - dT
DR T

For the isothermal case the same equation gives

E
in dhny, = T gp

RT PO = Psysu:m

where superscript E in both cases stands for excess property.

2.7 Intermolecular forces

The need for development of VLE prediction models based on pure component data

rather than experimental results has lead to the development of the AGAPE model.
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The basis for the AGAPE model 1s that of London's dispersion forces (London, 1937).

A short introduction of intermolecular forces based on that of Prausnitz et al. (1986)

will be given in this section

2.7.1 Introduction to intermolecular forces

Thermodynamic properties of any pure substance are determined by intermolecular
forces which operate between the molecules of that substance.  Similarly,
thermodynamic properties of a mixture depend on intermolecular forces which
operate between the molecules of the mixture. The case of a mixture, however, is
necessarily more complicated because consideration must be given not only to
interaction between molecules belonging to the same component, but also to

interaction between dissimilar molecules.

When a molecule is in proximity of another, forces of attraction and repulsion
strongly influence its behaviour. If there were no forces of attraction, gases could not
condense to form liquids, and in the absence of repulsive forces, condensed matter

would not show resistance to compression.
2.7.2 Types of intermolecular forces
There are many different types of intermolecular forces. The most important ones

may be classified as follows:

1. Electrostatic forces between charged particles (ions) and between

permanent dipoles, quadrupoles, and higher multipoles.

2. Induction forces between a permanent dipole (or quadrupole) and an

induced dipole.

3. Forces of attraction (dispersion forces) and repulsion between non-polar

molecules.
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4. Specific (chemical) forces leading to association and complex formation,
1.e., to the formation of loose chemical bonds. The best example 1s that of

hydrogen bonds.

2.7.3 Potential-Energy Functions
Molecules have kinetic energy as a result of their velocities relative to some fixed

frame of reference. They also have potential energy as a result of their positions

relative to one another.

Consider two simple, spherically symmetric molecules separated by the distance 1.
The potential energy ® shared by these two molecules is a function of 1. The force F

between the molecules is related to the potential energy by

dd

F = - —————
dl

The negative of the potential energy, i.e., -®(1) is the work which must be done to
separate two molecules from the intermolecular distance 1 to infinite separation.
Intermolecular forces are almost always expressed in terms of potential-energy
functions. The common convention is that a force of attraction is negative and a force

of repulsion is positive.

In this simplified example it is assumed that the force acting between the two
molecules depends on their relative position by the one co-ordinate, 1. For a
spherically symmetric molecule, such as an argon atom, this assumption is valid. For
more complicated molecules, other co-ordinates, such as angles of orientation, may be

required as additional independent variables of the potential-energy function.

2.7.4 Electrostatic forces
If we regard two point electric charges of magnitudes ¢; and ¢, respectively, separated
from one another in vacuo by the distance 1, then the force between them is given by

Coulomb's relation (sometimes called the inverse-square law):
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Electrostatic forces can arise even for those particles which do not have a net electric
charge. Asymmetric molecules possess permanent dipoles resulting from an uneven
spatial distribution of electronic charges about the positively charged nuclei.
Symmetric molecules, like argon and methane, have zero dipole moment, and those
molecules having very little asymmetry generally have small dipole moments. The
common unit for dipole moment is the debye. 1 debye is equivalent to 10" (erg
172

cm’)"”?. This is not a SI unit, but is the unit used, when calculating dipole moments.

In SI units 1 debye = 3.162 107 (J/m?*)"”.

It can be shown (e.g. Prausnitz et al., 1986) that the average potential energy @;
between two dipoles 1 and j at a fixed separation | is found by averaging over all
orientations with each orientation weighted according to its Boltzmann factor. When

the Boltzmann factors are expanded in powers of 1/k;T, @, becomes

— 2 m m
. = - =+ . 2.26
D T KT (2.20)

Here m represents the dipole moment.

2.7.5 Induction forces between a permanent dipole and an induced
dipole

A non-polar molecule such as argon or methane has no permanent dipole moment but
when such a molecule is subjected to an electric field, the electrons are displaced from
their ordinary positions and a dipole is induced. It can be shown (e.g. Prausnitz et al.,
1986) that the general Debye formula for the mean potential energy due to induction
by permanent dipoles, is

( o mf + o m; )

Dy = - < (2.27)

where o is the polarizability, meaning the ease with which the molecule's electrons

can be displaced by an electric field.

_48-



2.7.6 Intermolecular forces between non-polar molecules

It was shown by London (1937) that the so-called non-polar molecules are, in fact,
non-polar only when viewed over a period of time. If an instantaneous photograph of
such a molecule was taken, it would show that at a given instant the oscillations of the
electrons about the nucleus had resulted in distortion of the electron arrangement
sufficient to cause a temporary dipole moment. The dipole moment, rapidly changing
its magnitude and direction, averages zero over a short period of time. However,
these quickly varying dipoles produce an electric field which then induces dipoles in

the surrounding molecules. The result of this induction is an attractive force.

London proposed that even for the simplest non-polar molecule the total potential
energy between two simple, spherically symmetric molecules 1 and j at large distances

can take the form

3 i O (h VOihVOj]

(2.28)
2 (R;j‘)(’ h Voi + h VOj

where v,; is the frequency for molecule 1 in its unexcited state (corresponding to its
“zero-point energy”) and o is the polarizability for molecule i. R;" is the distance
between the centres of the two polarizable spheres (molecules 1 and j). The frequency
is related to the variation of the index of refraction. It is this relationship between
index of refraction and characteristic frequency which is responsible for the name

“dispersion” for the attractive force between non-polar molecules.

For a molecule i, the product v, 7 is very nearly equal to its first 1onization potential

I.. Equation (2.28) can therefore be written

3 o aj ( L; Ij )
O = - — 2.29
! 2 RH" L+ 1 (2.29)

The important features of this potential for regular solution theory are: (1) the
potential is temperature independent, (2) it is almost exactly additive, in pairs, non-
specific, (3) it is short in range and, (4) its strength depends upon the number and

“looseness” of the electrons. In the development of the Generalized London Potential
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which is the basis for the AGAPE model (section 2.11), it is assumed that the specific
generalized London potential will not be independent of temperature.  The

dependency of temperature is an important feature in the success of the application of

the AGAPE theory to predicting vapour-liquid equilibria.

To show the relative magnitude of dipole, induction and dispersion forces in some
representative cases, London (1937) has presented calculated potential energies for a

few simple molecules. His results are given in the form

where J is calculated separately for each contribution due to dipole, induction, and
dispersion effect. In these calculations equations (2.26), (2.27) and (2.29) were used

and the results are shown in Table 2-1 (Prausnitz et al., 1986)

Aston University

Content has been removed for copyright reasons

Table 2-1. Relative magnitudes of intermolecular forces between two

identical molecules at 273.15 K.
The computed values of I indicate that the contribution of induction forces is small

and that even for strongly polar components, like ammonia, water or acetone, the

contribution of dispersion forces is far from negligible.
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Table 2-2 (Prausnitz et al., 1986) gives some calculated results for intermolecular

forces between two molecules which are not alike. In these calculations equations

(2.26), (2.27), and (2.29) were again used.

Aston University

Content has been removed for copyright reasons

Table 2-2. Relative magnitudes of intermolecular forces between two

different molecules at 273.15 K.

Again it is noticed that polar forces are not important when the dipole moment 1s less
than 1 Debye and induction forces always tend to be much smaller than dispersion

forces.

In London's original paper (London, 1937) he had included two more terms with
opposite signs in equation (2.28). One of the terms accounts for the repulsive force.
He assumed that at sufficient separation, these would cancel each other, because the

terms had opposite signs.

In general it is necessary to take into account both repulsive and attractive forces
between non-polar molecules and it is customary to assume that the total potential
energy is the sum of two separate potentials, as we find in the Lennard-Jones potential
(Lennard-Jones and Devonshire, 1937)

GG RS

O = 4¢
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where -&¢ = @ > and where o is the intermolecular distance when @ = 0. The
Lennard-Jones potential relates the potential energy of two molecules to their distance
of separation in terms of two parameters, an energy parameter ¢ which, when
multiplied by -1.0 gives the minimum energy corresponding to the equilibrium
separation, and a distance parameter ¢ that is equal to the intermolecular separation
when the potential energy is zero. Parameters j and k are the repulsion constant and
the attraction constant, respectively. In general, the characteristic Lennard-Jones

parameter 1s the energy parameter .

An illustration of equation (2.30) is shown in Figure 2.2 from Prausnitz et al. (1986).
For many treatments of liquids the Sutherland potential is effectively used. The
variation of the London potential with separation looks similar to the Sutherland

potential.

Aston University

IHlustration has been removed for copyright
restrictions

Figure 2.2. Potential functions with zero, one, or two adjustable parameters.

Figure 2.3 (from Prausnitz et al., 1986) illustrates the Mie's potential, where the

Lennard-Jones potential is a variant (for n=12).
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Figure 2.3. Three forms of Mie's potential for simple, non-polar molecules.

2.7.7 Specific (chemical) forces

In addition to the physical intermolecular forces briefly described here, there are
specific forces of attraction that lead to the formation of new molecular species.
These forces are called chemical forces. A good example of such force is the force
that exists between ammonia and hydrogen chloride. In this case a new species,

ammonium chloride, is formed. Another example 1s the hydrogen bond.

2.7.8 Summary

Both physical and chemical forces play an important role in determining properties of
solutions. In some cases chemical forces can be neglected, but in other cases
chemical forces predominate. The dissolved solution represents a state of wide
versatility where in one extreme the solvent 1s merely a diluent with respect to the

solute, while in the other extreme it is a chemical reactant.
The aim in applying thermodynamic methods to phase-equilibrium problems depends

in large measures on the degree of the understanding of intermolecular forces which

are responsible for the molecules' behaviour.
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2.8 Models

In order to carry out step 3 in Figure 2.1 (the translation of abstract results into terms
of physical significance) models for both the liquid phase and the vapour phase are

required.

We limit the discussions to systems of one liquid phase and one vapour phase: for
each a model is required which can be the same for both (the equation-of-state
approach) or different (activity-coefficient approach) and only for binary mixtures

consisting of components 1 and 2.

2.9 Models for the vapour phase
Two different types of model can be used to represent the vapour phase: the Lewis

fugacity approach and the equation-of-state approach. Models for both are described
in Prausnitz et al. (1986).

2.9.1 The Lewis fugacity model
Lewis (1907) defined the fugacity as

- p’= RT In(f/£°) (2.13)
where f; is the fugacity of the i component and 0 indicates thermodynamic quantities
at a so-called standard state with pressure P° and temperature T. A pure, ideal gas is
defined (e.g. Prausnitz et al., 1986) as a gas for which the fugacity is equal to the
pressure. For a component i in a mixture of ideal gases, the fugacity of each

component is equal to its partial pressure p; defined as y;P.

Since all systems, pure or mixed, approach ideal-gas behaviour at very low pressures,
the definition of fugacity is completed by the limit
f.
— > 1 as P - 0
y;P
For an ideal gas, equation (2.13) becomes
i - p’ = RT In(P/P%)

This equation can be used to relate the abstract, thermodynamic quantity p to a

common, intensive property of the real world.
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2.9.2 The equation-of-state model

As mentioned earlier, the vapour phase fugacity coefficients are usually calculated by
use of equations of state. An equation of state is the mathematical relation between
volume, pressure, temperature, and composition, often in the form of a cubic equation
of state. The ideal gas law, stating PV = nRT is the earliest and often used as a
starting point. However, since based on the ideal gas state it is not accurate enough to

represent all gases. The problem increases as the pressure becomes large.

2.9.2.1 Van der Waals model
Introducing additional terms into the ideal gas law is one way to overcome the
problem. One of the earliest equations is that of van der Waals (e.g. Prausnitz et al.,

1986)

Pv \Y a’
7 = _ _ 2.31
W RT v — b RTv 231

where a’ and b’ are the van der Waals constants and depend on composition. The
parameter b’ is interpreted as a measure for the size of the molecules (the hard sphere
diameter), (v-b") is the free volume and a’ reflects the strength of attraction between
two molecules which leads to negative pressures. It is important to notice that as well
as constants a’ and b’ for each component i in the mixture, there are also the mixture
constants a’ and b’. The relation stating how the mixture constants a’ and b’
depend on composition is called a “mixing rule”. The problem lies with the parameter
a’ for components i and j that are chemically non-identical and where no

experimental data are available for the mixture i-j. In this case, aj has to be
expressed as a function of a! and af. In fact, this reflects one of the key problems in

thermodynamics. How are we able to predict the intermolecular forces of a mixture,
when we have been given some information of the intermolecular forces for each of
the fluids in the mixtures. Molecular forces are described in section 2.7. It is only
due to a number of assumptions that the relation between the forces between two
molecules i and j can be derived on the basis of the individual forces between

molecule i and molecule j.

The simple geometric-mean assumption (e.g. Prausnitz et al., 1986) is
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a; = /3] aj. (2.32)

The AGAPE method (Homer et al., 1991) (described in detail in section 2.11) is a way
of describing the intermolecular forces between molecules in a mixture given the
forces for each of the two (or more) fluids. The theory is based on the London (1937)
theorem (described in section 2.7). London showed that under certain conditions the

geometric-mean concept is theoretically justified.

The attractive term in equation (2.31) is not accurately given by van der Waals a’. It
can be expressed as a power series. However, for the purpose of the calculation of
excess thermodynamics functions it is found that the standard cubic equations give a
surprising cancellation of errors between the discrepancies in repulsion and attraction

making cubic equations of state more accurate then they ought to be.

Because cubic equations of state are so much more convenient to use mathematically,

much work has been done to develop these for the treatment of mixtures.

2.9.2.2 Mixing rules and combining rules
The term “mixing rule” has been used in the previous section and defined in section

2.9.2.1. A mixing rule is a relation that states how constants for the mixture depend

!
mix

on the composition. As an example a/, and b/ (van der Waals constants for the

binary mixture, also written as aj and bj) were originally proposed by van der

Waals as
' _ 2,1 (1ot 2.7
amix - Xlal + 2X1X2 a‘az + x2a2
’ _ ' '
bmix - lel + X2b2

where a!, a}, bl and b} are van der Waals parameters for the pure components 1

and 2. These equations are the so-called one-fluid rules.

Another example of a combining rule allowing us to obtain aj; from a; and a) and

' from b; and b 1s

mix
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()" = 05 [0+ (by)'"]

172
a; a’
a;nix = b,n" ; 2} 1 - k"
xlx)(b; b; ( l-)

where k,, 1s a binary parameter, which is small compared to 1, and the exponent 1/3
for the b’-parameter is due to the fact that the b’-parameter is proportional to the

volume and hence the diameter in the third exponent.

These equations for the mixture parameters allow the use of van der Waals equation to
derive the excess enthalpy from the excess Gibbs energy for mixtures of simple
molecules. First, the molar excess Helmholtz energy, a” (which is almost exactly

equal to the excess Gibbs energy, g") is given by

a®(T, x) = a- (T, x, v,.,) — %, a (T, x, v,)

mix

- x, a"(T, x, v,) — RT(x, In x, + x, In x,)

where v, =X, v, T X, V,.

mix

McGlashan (1970) and Marsh et al. (1980a, 1980b, and 1980c) have performed

calculations using this format to find the excess enthalpy, h"

bE (agﬁ/ TU
o1 /' T/,

and also an expression for the excess molar volume, v*. This shows results in good
agreement for the following binary mixtures: nitrogen and oxygen, carbon monoxide
and methane with k,, = 0.989 and 0.958, respectively. For the mixture benzene and
carbon tetrachloride good agreement was obtained when using k;, very close to zero.
For molecules of very different size or type, much less satisfactory results have been

obtained.

2.9.2.3 Other cubic equations of state
For the moment, let us return to the equations of state. The most used equation of this
type is due to Redlich and Kwong (1949) which was developed based on the van der

Waals equation of state and is:
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Pv A a

Zw= — = -
“RT v - b  RT’(v + b) (2.33)

where a and b are characteristic constants differing from one fluid to another.
Constants a and b are functions of the critical properties, although some treatments
use them merely as empirical fitting parameters. The a factor is both temperature
dependent and dependent on the acentric factor of Pitzer, w, which reflects the
anisotropy of the molecules. The fugacity coefficients can be derived (Redlich and

Kwong, 1949) by inserting equation (2.33) into equation (2.24).

A number of improvements of the Redlich-Kwong equation have been developed, of
which a major one is the Soave modification (Soave, 1972). It has been found that
such cubic equations of state do not predict liquid density very well and different

modifications are used to match different densities for pure liquids.

The Peng-Robinson (Peng and Robinson, 1976) equation of state 1s another example
of a cubic equation of state where the pressure is calculated as

b _ _RT a(T)
v - b  v(v + b))+ blv — b)

where, also, a and b are characteristic constants differing from one fluid to another.
Constants a and b are functions of the critical properties and a is, as indicated, a
function of temperature. Also in this case, the fugacity coefficients can be derived

(Peng and Robinson, 1976).

An overview of four different cubic equations of state and their parameters is

presented in Reid et al. (1987).

2.9.2.4 The virial equation of state
For gases the simplest equation-of-state approach is the virial equation (e.g. Prausnitz
et al., 1986)

Z:B—:IJF
RT

b
V3

+ +

B
— +. ..
%

<|o

where B is the second virial coefficient, C the third virial coefficient and so forth. All
the virial coefficients, for the pure components, are functions only of the temperature.

The second virial coefficient accounts for the deviation from ideality resulting from
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interactions involving two molecules: the coefficient C deals with three molecules
interaction, and so on. The importance of the virial equation of state lies in the fact,
that there 1s a theoretical relation between the virial coefficients and the
Intermolecular potential. The virial equation is usually truncated after the second
virial coefficient for pressures up to 1 MPa. In truncated form the virial equation
(valid for pressures up to 1 MPa) becomes
_ v 1 + B (2.34)
RT \%

For binary mixtures, B,,, B,,, B,,, as well as B, must be evaluated, often from

mix

experimental data. B is considered a function of the other three second virial

coefficients as
B = y;¥;B; (2.35)

mix

Inserting the truncated virial equation into equation (2.23), an expression by Beattie

(1949) gives

2 m
Inp, = — y;Bi;, — InZ,, (2.36)
v D
where Z ., 1s given by
B
Zmix - 1 - = (237)
\%

This makes it possible to obtain the fugacity coefficients for the components in the

vapour phase.

Truncating the virial equation of state after the third term gives

B __ C .
mix = _lz_vrf = 1 + - + ";’X (238)
\' A%

and the fugacity coefficient for a component i in a mixture of m components can be

written (Prausnitz et al., 1986)

In ¢, = - yB; + o > > Y, Cyp — InZ, (239

j=1 j=1 k=1
In both equations, Z,,, is the compressibility factor of the mixture, v is the molar

volume of the mixture, and B, and C_,, are the virial coefficients of the mixture as
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given by equation (2.35) and a similar equation for C ; accounting for interaction
between three molecules. Note that the summations are over all components,

including component i. As an example, the fugacity coefficients for a binary mixture

become
2
In o, = _\; (Y}Bn + Y2B1z) +
3 2 )
‘.'Z—V? (Y1C111 + 2}’1}’2(:112 + YZCIZZ) - In Zmix
and
2
Ino, = — (Y2B22 + leIZ) +
3V (2.40)
v> (yiczzz + 2Y1Y2C|22 + yfcnz) - In Zmix

Data for the second virial coefficient are more plentiful in the literature then data for
the third virial coefficient, and therefore it is more common to truncate the virial

equation of state after the second term, leading to equation (2.34).

The fugacity coefficient for a component i can be expressed in volume-explicit form
instead of the pressure-explicit form, as used throughout this description. In volume-
explicit form, the virial equation of state is given by

Pv

27 - 1 4+ B P+ C P+ D P+ ..
RT

where the coefficients B, C’, and D” depend on temperature but are independent of
pressure or density. Using this form of the virial equation-of-state to rewrite the
fugacity coefficient of component i in a mixture of m components, and omitting the
terms including the third virial coefficient C* and higher order terms, the fugacity

coefficient equation becomes

m P
Ino = |2 B. — B". | — 241
(Px ( FZ] y] 1 rmx) RT ( )

This equation has proved more useful than equation (2.36), as it uses pressure instead
of the molar volume for the mixture as the independent variable, and the fact that
assuming C’ = 0 is a better assumption then assuming C = 0, as it is done in equation

(2.36).

-60 -



The virial equation of state 1s restricted to moderate densities.

2.9.2.5 Using potential functions to calculate the virial coefficients

As shown in the previous section, the virial equation can be used to calculate the
fugacity of a component in the gaseous phase. As mentioned before, the virial
equation of state is usually accurate enough at low to moderate densities to use in its

truncated form (equation (2.36)).

Considering a binary mixture containing species i and j, the three types of two-
molecule interactions are i-i, j-j, and i-j. The virial coefficient B, of the pure 1 then
depends on the potential ®;, B; depends on the potential ®; for pure j, and B;; depends

on ®j, the potential energy between molecules 1 and j.

If i and j are spherical symmetrical molecules, it can be shown that the relation
between the second virial coefficient corresponding to the i-j interaction B can be

expressed as (Prausnitz et al., 1986)

]

B. = 2nLj(1 — e IRy 2g)
0

where 1 is the distance between molecular centres, k; is the Boltzmann’s constant, and
L is Avogadro’s number. The pure B; is found by substituting ®y(l) with the

potential energy of the pure 11, @;;.

For a binary mixture, the second virial coefficient B, is a quadratic function of the
mole fractions y; and y; (equation (2.35) for a binary mixture)

B ny.

it

+ yJ?B.,

i

mix + 2yiijij
Integration of the equation for B; has been carried out for many molecular models of

the potential functions.

Ideal-gas potential.
Assuming @ = 0 (the simplest case) for all values of the intermolecular distance 1,
gives virial coefficients equal to zero, and reduces the virial equation to the ideal gas

law.
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Hard-sphere potential.
This model considers molecules to be like billiard balls. Further, it assumes no forces
between the molecules when their centres are separated by a distance larger then the

hard-sphere diameter, ¢'. The potential function ®(1) thus becomes

{O forl > o’

o0 for1 € o

O =

The second virial coefficient for a pure component, B;; becomes

1

2
B, = =nLojy
3

and the mixed virial coefficient B; becomes
2 s+ o)
3 2
This model for the potential energy uses one adjustable parameter, c’, for each

component.

Other models (such as the Lennard-Jones expression for the potential energy) for the
intermolecular potential energy can be used to evaluate the integrals for both second
and third virial coefficients if desired. In practice B is found to be temperature
dependent being negative at low temperatures and positive at high temperature. The
fugacity coefficients may be written in terms of the virial coefficient as expressed in
equation (2.36) or equation (2.41). The fugacity coefficient may be close to zero for

most systems at low pressures (100-300 kPa).

Measured values of B can be correlated using the ideas of the principle of
corresponding states which allows us to normalise volume or pressure data as a
function of temperature by referring the data to the critical properties of the fluids
being examined. Thus a plot of B (which has the dimension of volume) divided by
V. against T/T. (where V. and T, are critical volume and critical temperature,
respectively) gives a widely valid relationship which permits B to be predicted given

known values of V¢ and T.
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2.9.2.6 The conflict between mixing rules and combining rules

As may be seen from the many studies of thermodynamic functions of liquid mixtures
by equations of state, there is always a need to define conditions dependent on
concentrations for binary mixtures for the key parameters, e.g., the a” and b” of van
der Waals equation of state, which then introduce the concept of separate parameters
for 1,1, 2,2, and 1,2 interactions. The writing of the additional condition defining the
1,2 interaction in terms of the 1,1 and 2,2 parameters then requires a combining rule
which assumes that the reality of the interactions is contained within it. If however,
there are second order terms neglected in the equation of state for the pure liquids,
then the combining rule may reflect this sensitivity. Thus for example studies of
excess functions or phase equilibria for a homologous series of hydrocarbons against a
reference compound, can show systematical deviation of parameters from “a norm”
which leaves it unclear whether it is a mixing rule or the combining principle which 1s

systematically varying.

The lattice model is no exception and part of the purpose of this work is to examine
how far results from the dilute mixtures studied can throw light on the validity of the
mixing rule as well as examine the usefulness of more sophisticated combining rules

for binary interactions.

2.10 Models for the Liquid Phase

As for the vapour phase, two different models may be used to represent the liquid
phase: the activity coefficient model and the equation-of-state model. Both models

are described in Prausnitz et al. (1986) as well as elsewhere (Walas, 1985).

2.10.1 The liquid state

We all have an idea of what a liquid is, but how do we define it? The most common
definition is (Rowlinson and Swinton, 1982) that a liquid 1s a substance that when it 1s
placed in a vessel will conform to the shape of the vessel, but without filling it in full.
The liquid state is between the solid state and the gaseous state. If a solid is heated, 1t
loses regularity and becomes a liquid at a certain set of conditions, and heating the

liquid even more will, at last, turn it into a gas whose molecules are individual.
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It is not surprising that two different approaches of formulating a theory of liquids to
describe their thermodynamic properties have been developed (Hildebrand et al.,
1970). One direction is to extrapolate the properties for the liquid from the gaseous
state, the other direction starts from the properties of the crystal (solid) lattice.
Neither of these has led to the desired goal of formulating a theory of pure liquids.
The extrapolation from the properties of gases involves the transition from the binary
collisions that happen in the gaseous state to the multiple interactions that take place
in the liquid state. The lattice theory assumes structures of the liquid that its

properties show may be rather artificial.

Despite their failures to describe a liquid, the two models mentioned above are the
two approaches that have been mainly used to formulate a theory of liquid mixtures.
The method of extrapolating properties from the properties of gases is usually
associated with equations of state for liquids. The approach from the solid state 1s
associated with the lattice models for liquids, among them the UNIQUAC and the
AGAPE model.

2.10.2 The equation-of-state model
The model uses an equation-of-state approach for the liquid phase as for the vapour
phase (section 2.9). It is more convenient to substitute the chosen equation of state

into equation (2.20) to calculate the fugacity coefficient for the liquid phase.

Equation-of-state models for the liquid phase have not been used very much, many
more treatments are developed using the activity coefficient approach. This is caused
by an inadequacy of the equations of state to predict accurate densities over any given

range, especially at low to moderate pressures.

2.10.3 Activity coefficient models
Activity coefficients models are widely used for liquid mixtures at low pressures and
are based on the relationship between the activity coefficient and the excess Gibbs

energy.
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Some new terms have to be introduced (e.g. Prausnitz et al., 1986). Excess functions
are defined as thermodynamic properties of solutions that are in excess of those of an
1deal solution at the same conditions. Thus the excess Gibbs energy is defined as

G* = Giactual solution at T, P, and vy~ Oideal solution atthe same T, P, and x)
Excess volume VE, excess enthalpy H, excess entropy S°, excess Helmholtz energy
A and excess internal energy U" can be similarly defined. The same relationships as
described in section 2.2 are valid for the excess properties. As an example the

equation (2.2) in terms of the excess properties becomes

HE = U® + PVE

Partial molar functions are defined, using Gibbs energy as an example by

o G
1 0 n.

1 T,P,n.
J

aal
i

The partial molar functions of entropy, enthalpy, etc., are defined similarly.

Partial molar excess functions are defined by

g = [a GE} (2.42)

a ni T,P,nj

again using Gibbs energy as an example. We define the partial molar excess functions

of entropy, enthalpy, etc., similarly.

Application of Euler’s theorem that the order of differentiation in forming second
partial derivatives is immaterial for continuous functions and their derivatives, gives

(e.g. Prausnitz et al., 1986)
G = Z n; g
and then

G* = Z n; giE

This is equally valid for the other properties, excess or otherwise.

From the definition of G* it follows that
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—E

g =

gal

= i, ideal (2.43)

Using the definition of the Gibbs energy given in section 2.1.1 which led to equation

(2‘E )
}— i ani

T,P,nj

wal

and the definition of the fugacity given as equation (2.13) in section 2.3
K- 1’ = RT In(f/f")
equation (2.43) can be written as

g = RT In £

i, ideal
Since
f=vxf (2.10)
and the ideal state is defined as the state where the activity coefficient is unity, it

follows that

E
(%i j = g° = RT Iny, (2.44)

T,P.n
Introducing a new parameter, the molar excess Gibbs energy, g, it follows that

gt = RTZ x, In y, (2.45)

The advantage of the activity coefficient models lies in the relationship between the
excess Gibbs energy either in the molar or partial form and the activity coefficient.
Many equations have been proposed to express g” as a function of composition often

based on some theory of the nature of liquids and liquid mixtures.

One simple approach is based on an assumption of the energy required to replace one
molecule of the solvent with one molecule of the solute. Two models worth
mentioning are the regular solution theory suggested by Hildebrand and Scott (1964)
and the athermal approach. Both models use equation (2.3) written for the molar
excess Gibbs energy as

gh=h"-Ts" (2.46)
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Regular solution theory
The regular solution is associated with molecules of similar size and, for molecules of
similar size, assumes s* = 0 and that no volume change occurs on mixing, i.e.

gt =h* (2.47)
The athermal approach is used, when considering molecules of very different size, and
assumes that the non-ideality is due entirely to the entropy, i.e. h* =0 and

gE:_ TSE

The van Laar model.

The simplest of the regular solutions models is the van Laar model (e.g. Prausnitz et
al., 1986). Van Laar calculated an energy change in each step in an assumed
thermodynamic cycle, in which two liquids are expanded isothermally at a low
pressure and then mixed ideally. Van Laar used the van der Waals equation of state
(section 2.9.2.1). The derived equation does not account for the pressure and/or the

temperature variations. Further, it is difficult to extend to multicomponent mixtures.

The Margules equations.

The van Laar equation has been modified by Margules to overcome some of its
application problems. He developed the two-suffix Margules equations which have
found some practical use for simple binary mixtures. The parameter Ay can be found
from the activity coefficients at infinite dilution as shown:

i, 7 - el
VTS O Ry

il

et
(2.48)

» : A,
[N e"p(ﬁ)
It is worth noticing that in the case of the symmetrical two-suffix Margules equation
the activity coefficients at infinite dilution (equation (2.48)) for both components are

equal. The three-suffix Margules equation contains two parameters, and the

expressions for the activity coefficients are different from each other (see Table 2-4).
Scatchard-Hildebrand theory.

It is possible to derive Margules equations for ternary and higher mixtures, but the

regular solution theory, also called the Scatchard-Hildebrand theory, is less tedious to
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use. The regular solution theory was developed by Scatchard (1931) and Hildebrand
(1929) on the basis of both the van Laar and Margules equations.

A regular solution is one involving no entropy change when a small amount of one of
its components is transferred to it from an ideal solution of the same composition, the
total volume remaining unchanged (Hildebrand et al., 1970). Based on the following
assumptions (1) the mutual energy of two molecules depends only upon the distance
between them and their relative orientation, and not on the nature of the molecules
around them or on the temperature, (2) the distribution of the molecules in position
and in orientation is random, (3) the change of volume upon mixing at constant
pressure is zero, Scatchard-Hildebrand introduced a parameter, the cohesive-energy
density c, given by
Au

vap

o
i}

L
v

where Au,,, is the energy change upon isothermal vaporization of the saturated liquid
to infinite volume (the ideal gas state) (Hildebrand et al., 1970). For a binary mixture,
three ¢ parameters have to calculated, one for each component (c;) and one for the
mixture (c;). The molar energy change of mixing is equal to the excess energy of
mixing and was derived to be (Hildebrand et al., 1970)

ut o= (C” + ¢, — 2CIZ)W|W2(XIV| + szz)

where the volume fractions of component 1 and 2, w, and w, are defined as

X,V X,V,
171 Wz

il

w, =

(x,v, + x,v,) (x,v, + x,v,)

Scatchard-Hildebrand assumed that the attractive forces between the molecules are

due primarily to dispersion forces (Hildebrand et al., 1970) and then c,, is related to

¢,, and c,, as suggested by London (1937)
Cp, = +Ci Cp -

Defining the solubility parameters, 8, and 6,

I
NO
|

= Pl (2.49)
A%

and using the definition of the regular solutions, the activity coefficients become
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RT Iny, = vlwi(B1 - 62)2

(2.50)
RT Iny, = vzwf(B1 - 62)2

These equations are the regular solution equations.

The regular-solution equations are related to the van Laar equations by (e.g. Prausnitz

et al., 1986)

v

A’VL = —]i.—lf(gl - 62)2 By, = 1:,2}: (61 - 62)2 (2.51)

The Gibbs excess energy and the activity coefficients as expressed by the van Laar

equations are given in Table 2-4.

Flory-Huggins theory.
One theory was developed by Flory (1941, 1942) and Huggins (1941) and is based on
the lattice theory that will be described in the next section. As mentioned previously
the athermal approach for molecules of very different size assumes that the non-
ideality is due entirely to the entropy, i.e. h* =0 and

gf=-Ts"

2.10.3.1 The lattice theory

The liquid state is in some sense intermediate between the crystalline state and the
gaseous state. One approach is to consider the liquid to be solid-like, in a
quasicrystalline state, where the molecules do not translate fully into a chaotic manner
as in the gas, but each molecule tends to stay in a small region, a more or less fixed
position in space about which it vibrates back and forth. The quasicrystalline picture
of the liquid state supposes molecules to sit in a regular array in space, called a lattice,
hence the term lattice theory. A brief description of such a theory (from Prausnitz et

al., 1986) follows.

Since the lattice theory of liquids assumes that molecules are confined to lattice
positions, calculated entropies (an expression for the disorder) are low by what is
called the “communal entropy”. While this is a serious deficiency, it tends to cancel

when lattice theory is used to calculate excess properties of liquid mixtures.
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Molecular considerations suggest that deviations from ideal behaviour in liquid
solutions are due primarily to the following effects: (1) the forces of attraction between
unlike molecules are quantitatively different from those between like molecules,
giving rise to a nonvanishing enthalpy of mixing; (i) if the unlike molecules differ
significantly in size or shape, the molecular arrangement in the mixture may be
appreciably different from that for the pure liquids, giving rise to a nonideal entropy
of mixing; and (iii) in a binary mixture, if the forces of attraction between one of three
possible pair interactions are very much stronger (or very much weaker) than those of
the other two, there are certain preferred orientations of the molecules in the mixture,

which, in extreme cases, may induce thermodynamic instability and demixing.

Consider two simple liquids 1 and 2. Molecules of types 1 and 2 are small and
spherically symmetric and the ratio of their sizes is close to unity. The arrangement of
the molecules in each pure liquid is that of a regular array as indicated in Figure 2.4
(after Prausnitz et al., 1986). All the molecules are situated on lattice points which are
equidistant from one another. Molecular motion is limited to vibrations about the
equilibrium positions and is not affected by the mixing process. Further, it 1s
supposed that for a fixed temperature, the lattice spacing for the two pure liquids and

for the mixture are the same, independent of composition. In other words vE=0.

It is also assumed that the potential energy of a large number of molecules sitting on a
lattice is given by the sum of the potential energies of all pairs of molecules which are
situated immediately next to one another. Contributions to the total potential energy

from pairs which are not nearest neighbours are neglected in this simple case.
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Figure 2.4. Physical significance of interchange energy. The energy absorbed

in the process is 2w .

Consider that each of N, molecules of type 1 and N, molecules of type 2 has z nearest
neighbours. z is called the co-ordination number and may have a value between 6 and
12 depending on the way the molecules are arranged in three-dimensional space. For
typical liquids at ordinary conditions z is close to 10. The total number of nearest
neighbours is (z/2) (N,+N,) and there are three types of nearest neighbour interactions;
1-1, 2-2, 1-2. N, is the number of nearest neighbour pairs of type ii and N,, is the

number of type 12. The numbers are restricted by the conservation equations:

z N, = 2Ny t Nai
Zz N, = 2 Nn T Np

The total potential energy of the lattice U, is then given by
U, = Niu ® T No @n + Nip Op

where @,, is the potential energy of a 1-1 pair, ®,, that of a 2-2 pair and ®,, that of a

1-2 pair. Substitution of N;; and N, from the above equation gives
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Z
U = — N &, *

2N om + YN 2.52
2 5 2 O 5 12 (2.52)

where w’, called the interchange energy, is defined by
, 1
wo= z[®, - 5 (O + D)l (2.53)

Equation (2.52) gives the potential energy of a binary mixture and also that of a pure

liquid. In equation (2.52) the last term is the energy of mixing.

The physical significance of w’ is illustrated in Figure 2.4. z pairs of type 1 and z
pairs of type 2 are separated to form 2z dissimilar 1-2 pairs. Therefore, the change n
energy which accompanies the interchange process shown in Figure 2.4 is equal to

2w’

From these equations it is possible to obtain thermodynamic properties in the manner
given by Prausnitz et al. (1986). The lattice theory is the basis for many prediction
models such as the UNIFAC and the AGAPE models. The major deficiency of the
lattice theory is the need to take into account additional properties of the components
beyond those which reflect molecular size and potential energy. The properties that
the lattice theory lacks are manifested in P-V-T behaviour, in other words in an
equation of state. A number of recently developed prediction models (the MHV2
model and the models by Sandler (Wong and Sandler, 1992)) use an activity
coefficient model based on the lattice theory combined with an equation-of-state
model in order to avoid the deficiencies of both models, and combine the best of both

models.
The interchange energy.

Kohler (1957) has calculated the interchange energy from molecular properties. He
assumed that for pure liquids, the distance between molecules can be written as a
function of the molar volume in the power of 1/3 and that the distance between
molecules in the mixture was the arithmetic mean of the distances for the pure

components. He then wrote an expression for the London dispersion forces as
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2 a, a, 2 K, X,
(DIZ = - 6 =
(111 + 122) (Kl + KZ)

(2.54)

where o 1s the polarizability and x; is calculated from the molar enthalpy of

vaporization, Ah, ., by

i,vap?

2 16 (Ahi vap RTJ
K. = L >
‘ z o L

Substituting these equations into equation (2.53), Kohler was able to calculate the
interchange energy. One advantage of his treatment is that the number of nearest
neighbours, z, cancels out and that the three potentials,®,,, ®,, and @, are calculated
separately. Table 2-3 shows some of Kohler's results (where 1) Data from Prausnitz
et al. (1986) and 2) Data from Kohler (1957)) compared to experimental values of the
excess Gibbs energies of four simple binary mixtures, each at the composition

midpoint where X, = x, = 0.5.

g&(x; = x,) (J/mol)
Mixtures T (K) Lattice theory Experimental
Ar+CH, " 90.7 67.0 71.2
N, + CH, " 90.7 247 134
CeHg + CCl, 2 298 34.2 77.9
CeHg + c-CgHip @ 298 174.2 3215
CCl, + ¢-CgH;, ? 298 55.3 70.8

Table 2-3. Experimental values of excess molar Gibbs energy for equimolar,

binary mixtures and values calculated using Kohler's method.

Kohler's method is applicable to non-polar mixtures and to mixtures where the

molecules of the two components are essentially spherical and similar in size.

The theory behind Kohler's method is very similar to the underlying theory of the
AGAPE method (see section 2.11).
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2.10.3.2 The athermal theory
Another application of lattice theory is the theory of Flory-Huggins (e.g. Prausnitz et
al., 1986) which was introduced in this section to deal with polymer solutions

showing considerable non-ideality.

2.10.3.3 Wilson’s modification

Wilson (1964) modified the equations of Flory and Huggins by introducing the local
mole fraction concept. Wilson considered that molecules in a mixture do not arrange
themselves randomly, but partially segregate due to the effect of intermolecular

forces, a subject introduced in section 2.7.

Wilson considered a binary solution of components 1 and 2. Focusing his attention on
a central molecule of type 1, the probability of finding a molecule of type 2, relative to
finding a molecule of type 1, about this central molecule, was in terms of the overall

mole fraction and two Boltzmann factors

_7"21

X, €xp
Xy RT
Xn (—?‘;1)
X, eXp| —
v FPURT

where the parameters A.",, and A" are, respectively, related to the potential energies of
a 2-1 pair and 1-1 pair of molecules. An equation analogous to the above can be
written for the probability of finding a molecule of type 1, relative to finding a

molecule of type 2, about a central molecule 2, and it is

X, exp
X, RT
— Y
X2 X, exp(—«'zj
N RT

Wilson then defined the local volume fractions as
v, X .,
g = — £,

v, X, ot ov,Xy,

v, X,
v, Xy + VX,

il

and wrote the molar excess Gibbs energy of a binary system as

E ' '
& x, In & + x, In &
RT X, X,
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From this equation an expression for the activity coefficients can be derived (Reid et
al., 1987). The activity coefficients depend on the adjustable parameters (A", - 1",,)

and (A',, - 1'5,), often obtained by fitting experimental data.

The Wilson equations cannot represent mixtures which exhibit partial miscibility.

2.10.3.4 The NRTL equations

Renon and Prausnitz (1968) considered that, in a real liquid, the distribution was
ordered to some degree due both to the differences in molecular size and shape, and to
the specific interactions. They developed the Non-Random, Two-Liquid (NRTL)
theory by introducing a shape factor, which expresses the non-randomness element.

This model is not discussed further here.

2.10.3.5 Overview of different activity coefficient models
The different activity coefficient models together with the expressions for both the
excess Gibbs energy and the activity coefficients are listed in Table 2-4 (from Reid et

al., 1987).

The UNIFAC method is the most used method for calculating activity coefficients. It
is not shown among the thermodynamic methods in Table 2-4, but is a variation of the
UNIQUAC method. The UNIFAC method is a group contribution method of the
UNIQUAC method. Results obtained from a modified UNIFAC approach are
compared in this work with those from the AGAPE method.
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2.10.3.6 The UNIQUAC equations
The UNIFAC method for calculation of phase equilibria is based on the UNIQUAC

equations for calculation of the activity coefficients of a (in this case) binary mixture.

The derivation of the UNIQUAC equations is described in Prausnitz et al. (1986).
The derivation is very analogous to the derivation of the AGAPE equations (described
in section 2.11). The resulting equations are (the symbols are explained in the list of

symbols)

E E combinatorial E residual
(gJ :(gj +(gj (2.55)
RT),, RT RT

where
E combinatorial @, ®*
( g ) = xIn = + x In =
RT X1 X2
(2.56)
1 0] 62)
+ = z|qt In— + q; In—
2 (q] X1 @,; qz X2 ®42-
and
_ (2.57)
E residual —A Uz
(ﬁ_j = - x q; ln{(i); + 0, eXp( )
RT RT
* * * _A u
- X Q5 1n{62 + 6] exp( RTzzj}
where
0] = —— 6 = o
Lx, + X, X,q, T X,q,

and similarly for ®," and 6,".

Equations (2.56) and (2.57) are the UNIQUAC equations.
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The UNIQUAC interaction parameters Au,, and Au,, represent a problem in
themselves as they have little or no physical relation to physical parameters. Recent
developments to determine them from molecular information have proved successful

for a limited number of ketones and alkanes (Jonsdottir et al., 1994).

From the UNIQUAC equations, the UNIFAC (Universal Functional Activity

Coefficient) equations are derived.

2.10.3.7 The UNIFAC method

The UNIFAC method (Fredenslund et al., 1975) is a general method for estimating
activity coefficients. It is a group-contribution method where a molecule is divided
into functional groups. Molecule-molecule interactions are considered to be properly
weighted sums of group interactions. Once quantitative information on the necessary
group-group interactions is obtained, it is then possible to calculate molecule-

molecule interactions for molecular pairs, where no experimental data are available.

The UNIFAC equation for activity coefficient for compound i is obtained
(Fredenslund, 1993) as

ln ’Yi — ln ’Y?ombinatoﬁal + ln Yiresidual (258)
where
h’l ’Yicombinatoria] — (ln 9_1_ + 1 _ _61)
. X (2.59)
1 zq; (ln 9 + 1 - —Q’—)
2 O ®;
and
U U
Xi 5 Xi q;
6 = 1 0 = (2.60)
Xx; 1) 2x; q)

where the summation is over all components

riU =2k Vki RE qu = 2V QE (2.61)
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here the summation is over all groups and
RY, = volume parameter for group k
QV, = surface area parameter for group k
v,; = number of groups of type k in molecule 1
x; = liquid mole fraction of component 1

7 = co-ordination number = 10.

1 residual

n v, = Y v (In Ty - InTY) (2.62)

where the summation is over all groups

6"‘ m
In [, = QE\:I - In(,0m Vi) - Zm (————\—“—“——j :\(2.63)

z“ 6“ Wnn
and
u
anm
Yo = XPC =)
_ (2.64)
o, = —o Xu XU o 2 Vmi X
T QX D WD INVSIEY
a’ = group interaction parameter for the interaction between groups m and n
T

Ve
2.10.3.8 Limitations of the UNIFAC method

The UNIFAC equations are limited as given below (Fredenslund, 1993)

| UNIFAC cannot distinguish between isomers due to the assumptions of

the solution-of-groups method.

2. Assuming gas-phase idealify limits UNIFAC to applications below 1000-
1500 kPa pressure.

3. The interaction parameters are assumed independent of temperature. This
limits the temperature range to temperatures approximately between 275

and 425 K.
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4. In principle it should be possible to apply the UNIFAC model to liquid-
liquid equilibrium (LLE) using the same interaction parameters. At the
moment it is only possible to predict LLE using UNIFAC and interaction
parameters specifically developed for handling LLE predictions at 298.15
K (Magnussen et al., 1981). This discrepancy indicates a fundamental

deficiency of the solution-of-groups approach.

5. When two or more strongly polar groups are situated on the same or on
adjacent atom, they do not have the properties as if they were separated by

several carbon atoms. A proximity effect occurs.

6. Not included at the moment are: non-condensable gases, electrolytes, and

polymers.

The UNIFAC interaction parameters (a”,,) represent a problem in themselves as they

have little or no physical relation to physical parameters.

2.10.3.9 Modified UNIFAC

An attempt to overcome limitation 3 has been the development of the Modified
UNIFAC equations. The Modified UNIFAC model offers only a marginal
improvement over the original UNIFAC model for VLE predictions (see Larsen et al.,
1987). The force of the modified UNIFAC model lies in its ability to predict excess
enthalpy (H®). The equations for the modified UNIFAC model are different from the
original UNIFAC equations as given below

The combinatorial term becomes

U U
In Yicombinaton'al _ (11’1 E)..L_ + 1 - E)—l——j
Xi Xi (2 65)
- l z qu Kln 9 + 1 - 9—’)
2 ®); ®;

where
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X; (riu)2/3

T Sy @”

The residual term is the same, except the group-interaction parameter is considered to
be the following function of temperature (T):
U U(o) u(h) (2.66)
aj Ty = a; * aj (T - To)

+ 2@ (T 1nIT9 + T - Ty

where T, is an arbitrary reference temperature.

2.10.3.10 The MHV2 method

The MHV?2 method is described by Dahl et al. (Dahl et al., 1991, and Dahl and
Michelsen, 1990). The MHV2 method tries to overcome the second limitation in the
UNIFAC (previous section) that the pressure should be below 1000-1500 kPa due to

the assumption of vapour phase ideality.

The MHV2 method is used in this thesis to give predictions with which to compare
the results obtained from solubility calculations using the AGAPE method. The
derivation of the MHV?2 equations is briefly described in this chapter.

The MHV?2 method is a group-contribution equation of state based on the modified
Huron-Vidal (Huron and Vidal, 1979) mixing rule. It combines the Soave-Redlich-
Kwong (SRK) equation of state with a model for the excess Gibbs energy, which in
Dahl and co-workers is the modified UNIFAC model (described in section 2.10.3.9).
The MHV2 model can be used to predict vapour-liquid equilibrium (VLE) and gas

solubilities at high and low pressures.

The Soave-Redlich-Kwong (SRK) (Soave, 1972, and Redlich and Kwong, 1949)

equation of state can be written as follows:
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RT a
P = - 2.67
v - b v(v + b) @67)

where the mixture b parameter is derived from the conventional linear mixing rule
C
b = Z zi bi
i=1

using for the corresponding pure component parameter

0.08664 R Ty
Pci

il

where P, and T, are the critical pressure and critical temperature, respectively, of

component 1.

The pure component a parameter (a;) is given by

04286 R> T f(T.)
Pci

ai —

where f(T,) is a function of the reduced temperature for the individual component

and given in Mathias and Copemann (1983).

The problem lies in finding an expression for the a parameter for the mixture.
Following the procedure as described in Dahl and Michelsen (1990), the MHV2
mixing rule is as follows:

m
Hv HV HV HV HV \2 HV N2 .
q; (Opix - Z xi oy ) toqy (o, - Z xi (o)) =
i=1

i=1

sl
— + i1r1___.
RT Z—lx bii

(2..68)

where
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(2.69)

A
a. :l]?: — mix
bRT
A
a?V — i1
bi RT

Dahl and Michelsen (1990) determined the values of ¢"", and ¢"", as q"¥,= -0.478 and
g = -0.0047.

Since all the parameters in equation (2.68) are known and since g" can be calculated
using the modified UNIFAC model as described in section 2.10.3.9, equation (2.68)
can be solved for the o, yielding the mixture parameter for the equation of state.

Then the molar volume, v can be calculated from equation (2.67), where o'V is

substituted as a_;. = o, " bRT to obtain:
P 1
P afjﬁvx(_l.*___l._j
RT v - b v v + b

Inserting equation (2.65) into equation (2.24) the fugacity coefficient can be derived

as:

| | ( RT j+( 1 af;‘ﬁvx)b
ng, = In | - i
Pi P(v — b) v - b v +ob

. {( - (amaoi:x)ﬂ

The composition derivative of na,,, " can be calculated from the mixing rule,

(2.70)

T, nj

equation (2.68). The equation of the derivative and a procedure for the calculation of

the fugacity coefficients are both described in Dahl and Michelsen (1990).

2.10.3.11 Mixing rules by Wong and Sandler
The MHV? is only one example of a mixing rule. Another example is the mixing rule
as developed by Wong and Sandler (1992), the so-called W-S mixing rule. The

authors claim it to be more theoretically correct then the previously discussed MHV2
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mixing rule, and therefore the results obtained by the W-S mixing rule are likely to be

more accurate then the results obtained using the MHV2 method.

In their paper (Wong and Sandler, 1992) they showed that by the simple expedient of
considering the Helmholtz free energy, they were able to develop a new class of
density-independent mixing rules which can be applied to give the two a and b
parameters in any cubic equation of state. They use statistical mechanics to write the
second virial coefficient B in terms of a quadratic composition dependence. They are
then able to equate the excess Helmholtz free energy at infinite pressure from an

equation of state to that from an activity coefficient model.

In the paper by Wong et al. (1992) they state that the parameters in the W-S mixing
rule model obtained from a low pressure-low temperature isotherm can be used to
make accurate predictions at conditions hundreds of degrees and hundreds of 10°Pa

above the experimental data used to obtain those parameters.

Their method is further discussed in Orbey et al. (1993) and Huang and Sandler
(1993).

Other mixing rules have been developed recently. Among them is Apostolou et al.
(1995). Neither this nor the W-S mixing rule have been used in this work, as they

were developed later then the work described in section 4.6.

2.10.3.12 The ASOG method

Another method for predicting the activity coefficients of a binary vapour-liquid
equilibrium based on groups contribution is the so-called Analytical Solution of
Groups (ASOG) method (Derr and Deal, 1969). As with the UNIFAC method, the
parameters used in the ASOG method are calculated from experimental data. The
ASOG method has not managed to obtain the reputation of the UNIFAC method, and
does not include interaction parameters for as many groups as the UNIFAC method
does, although an advanced version is in use in-house by Shell. The method will not
be used in this work. The derivation and the equations for the base method are given

in Derr and Deal (1969).
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2.10.3.13 Application of the ASOG and the UNIFAC equations

Both the ASOG and the UNIFAC methods are applied to predict the activity
coefficients of a multicomponent mixture in much the same way. Firstly, the groups
to be dealt with and their respective group numbers have to be defined. Secondly, the
group interaction parameters have to be calculated from experimental data involving
the groups of interest. Finally, the activity coefficients for new mixtures are

calculated.

2.10.3.14 Dilute solutions and activity coefficients at infinite dilution
In his book on mixtures Guggenheim (1952) develops the equations for a strictly
regular solution under the conditions of extreme dilution where there are actually no

solute-solute interactions.

The result is that for the solvent 2

p, /p=1-x

i.e. the solvent obeys Raoult's law.

For the solute 1
p, / p, = x, exp(w' / RT) (2.71)
where w' is the usual free interchange energy. The above equation for the solute can

be rearranged to
p, = x, [p} exp(w’ / RT)] (2.72)

where the term in the squared brackets is the equivalent of the Henry's constant (a
subject to be introduced in connection with the solubility of gases in liquids in
Chapter 3). Since a strictly random solution can be taken to conform to a two suffix
Margules equation

g = Ay x X
we obtain equation (2.47). At infinite dilution of each component, the equation

reduces to (equation(2.48))
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o 3 Ay
Y= e S GXP(RT)
A
® = lim = ex (——M—j
LE Xy >0 T2 p RT
or
g®° = RT x, x, Invy7

In the equation for g® it does not matter whether y”; or y*, is used, as equation (2.43)

shows that they are equal.

Although many solutions approximate to g° = Ay, X, X,, when examined in detail they

more commonly fit the van Laar equations (see Table 2-4)

g<
(1&1 B j

and the activity coefficients are given in Table 2-4. At infinite dilution the equations

for the activity coefficients reduce to
Iny? = Ay and Iny; = By
These differences are illustrated by the application of the Hildebrand-Scatchard

equations (2.51) in which
\% , v
A, = —FE:]I“ (6, — &,)* and B}, = —R—Z’I: 6, - 8,)°

thus
Iny? v,
Iny> v,

using this model.

Since both the excess Gibbs function and the limiting activity coefficients are defined
in terms of the same constants, they are defined in terms of the same two parameters
in any of the activity coefficient models and experimental data for both properties

should give rise to consistent parameters. Equations for gas solubility are often

derived in terms of ¥°,,,. as seen in Chapter 3.
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2.10.3.15 Prediction of activity coefficients at infinite dilution

The activity coefficient at infinite dilution, v,”, is mentioned in the solubility section,
especially in the chapter on Henry’s law (section 3.2.4). The activity coefficient at
infinite dilution is a valuable tool in separation process design. Infinite dilution
activity coefficient data have been used to generate binary data used for the accurate
prediction of multi-component vapour-liquid equilibrium data for completely miscible

systems (Howell et al., 1989).

Limiting activity coefficients provide valuable information of the solute-solvent
interactions in the absence of solute-solute interactions. Another important feature
regarding the infinite dilution is that the excess Gibbs energy is not dependent on the
composition. Considerations about the excess Gibbs energy can then take into
account the type and strength of interactions instead of evaluating how the separate

contributions add up.

Many of the previous described methods for predicting vapour-liquid equilibrium data
have been used to predict infinite dilution activity coefficients. The ASOG method
(section 2.10.3.12), the UNIFAC method (section 2.10.3.7) and the MOSCED method
(Thomas and Eckert, 1984) are examples of methods for predicting infinite dilution
activity coefficients. The MOSCED method is an extension of the regular solution

theory (section 2.10.3) to mixtures with highly polar and chemical interactions.

2.10.3.16 The MOSCED method

The Modified Separation of Cohesive Energy Density (MOSCED) method, described
by Thomas and Eckert (1984) takes into account all four types of interaction
mentioned in chapter 2.7. It accounts for the dispersion interaction, the
induction/polarity interaction, the chemical interactions as well as interactions arising
from size difference of the molecules in the mixture. The basic assumption of the
MOSCED method is that the forces contributing to the cohesive energy density act

independently and are additive.
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The MOSCED expression for the activity coefficient of component 2 infinitely diluted
in solvent 1 1s (Thomas and Eckert, 1984)

2.2 2
I yo = v, = A) o+ m,m;(a, — o,) N (ac, — ac,)(bc, — bc,)
RT i 0 X
+n |2 + 1 - Y2
Vi Vi
(2.73)
where

M, the dispersion parameter, is a measure of a molecule’s polarizability
o represents its polarity

m is a measure of dipole-induced dipole interaction

ac is a measure of the molecule’s acidity

be is a measure of the molecule’s basicity

o and 7 are interaction asymmetry parameters (as opposed to shape)

v, is the molar volume of component i

aa is a correction exponent (calculated from solute properties)

The last three terms in equation (2.73) account for the differences in molecular size
and comprise the size ratio term (often referred to as the combinatorial term).

Dispersion contributions are calculated using index of refraction, the size term is
calculated with a modified Flory-Huggins type expression, and the polar contribution

1s a model parameter.

The development of the original MOSCED method (Thomas and Eckert, 1984) was
limited by the scarcity of the measured data on infinite dilution activity coefficients
and by lack of any accurate measure of molecular acidity and basicity. In the original

MOSCED model, o was treated as an adjustable parameter.

Of particular interest is the dispersion parameter, . In Thomas and Eckert (1984) it is

a function of the refractive index ny,
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n - 1
f(ny) = (‘D—m)
n, + 2
)\’non—aromatic = 203f(nD) + 302 (274)

A = 195f(n,) + 2.79

aromatic

An attempt to evaluate a possible relation between the MOSCED dispersion

parameter and the London potential will be described in section 4.8.

There are two ways the MOSCED equation can be used to predict infinite dilution
activity coefficients: (1) interpolation and (2) extrapolation. Interpolation predictions
are predictions of y;” for which MOSCED parameters have been obtained for both
components but data for that particular binary system were not used in parameter
determination. Extrapolation predictions are predictions of y,” for which MOSCED

parameters have not been obtained for one or both of the components.

Howell et al. (1989) report on improved predictions of infinite dilution activity
coefficients using a developed scale of hydrogen bond acidity/basicity and
dipolarity/polarizability to determine solvatochromic parameters. The scale is based

on extensive spectroscopic measurements.

A recent prediction method, the SPACE (Solvatochromic Parameters for Activity
Coefficient Estimation) predictor (Hait et al., 1993) has been developed based on the
MOSCED method. The SPACE method uses solvatochromic parameters for
dipolarity/polarizability and for hydrogen bonding. This presents an advantage of
including explicitly “chemical” interactions. The method claims to be somewhat

more accurate then the UNIFAC method.

2.10.3.17 Binary VLE data from infinite dilution activity coefficients
As mentioned in the previous chapter, it is possible to predict binary VLE data from

infinite dilution activity coefficients.
Table 2-5 shows the expressions for the activity coefficients at infinite dilution for

different excess Gibbs energy models and thereby the dependency of the binary

parameters in the models and the infinite dilution activity coefficients.
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Type of In v,
equation In 7,
Margules Ay
Ay
van Laar Ay,
B,VI
Wilson I-In A, - Ay,
I-In A, - Ay,
NRTL Ty + Typ €XP (- 0LyT),)
Ty + Ty €XP (- 0y Ty))
UNIQUAC )
ln(zlj + q{_z_ ln(ﬂ) - Inzt, + 1 - Tzl} + 1, - —3— 1,
rl 2 qlrp_ 1)
11’1(};1—} + qlt:—z— 11'1(1:1__[_@.) — In 1:2‘ + 1 _ ’cl?-:l + 1! _ IL 12
r 2 q._,l'l I'2
Notes
Wilson A, — A % A, — A
A = L N At S| = 22 exp(— =2 22
2 v, exp( RT ) Ay v p( —RT )
NRTL o, = Bz — b2 oo Ba ~ Bu
RT RT
UNIQUAC 0. — u 0, - u,
T, = exp(- — RT 2y 1, = exp(— & RT =)
z
I, = ‘2" (p, — q) — (; = D

Table 2-5. Activity coefficients at infinite dilution for different g” models.

Please note, that not all symbols in Table 2-5 are consistent with the symbols used in

the sections, where the models are described.
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2.10.3.18 Limitations to activity coefficient models
After discussing the activity coefficient models, it is reasonable to ask the question,
are they able to predict all excess thermodynamic functions with as good an accuracy

as they predict the phase equilibrium ?

In the years before and since the UNIFAC model, many authors have attempted to

explore the underlying lattice treatment making it more physically realistic.

In a paper (Bruin and Prausnitz, 1971) it was shown that when the excess Gibbs
energy was expressed in terms of volume fractions, a very wide range of g° values
could be correlated in terms of a simple interaction parameter which correlated with

molecular structure.

In 1964 and 1970 Flory (Flory et al., 1964 and Flory, 1970) drew attention to the need
for lattice models to take account of the normalization of parameters using the
principle of corresponding states, i.e., comparisons to be made at “equivalent”

temperatures and densities with reference to the critical temperatures and volumes.

Brandani and Prausnitz (1981) attempted to take account of Flory's ideas in seeking to
allow for the free volume and compressibility effects in real liquid mixtures using a
two disposable parameter model in which the parameters are not correlated. One
parameter is an energy parameter, the other a structure parameter. Although this
model correlates the excess Gibbs energies well, it was not applied to other

thermodynamics properties.

Goates et al. (1980) have provided much data with which to test a variety of models
by seeking to fit g*, the excess enthalpy h", the limiting activity coefficients y* and
liquid-liquid data. Such models show the need for the original parameters to become

temperature dependent with a number of such parameters.
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In 1990 there remained a hope that by more precise definition of the lattice parameters
a similar analysis of thermodynamic data might be possible. It was in that hope that

the AGAPE model was launched.

The question proposed above, has to be answered in the negative. The prediction
models based on a lattice model have some difficulty in predicting excess

thermodynamic functions with a similar accuracy as they predict phase equilibria.

2.11 The AGAPE model

The AGAPE model is also an activity coefficient model, but it will be described in a

separate subchapter as it is the model used throughout this research work.

The UNIFAC model is currently the most important model for the prediction of
vapour-liquid equilibrium data. ~As explained previously, the binary UNIFAC
interaction parameters lack a clear physical meaning. The UNIFAC method has
stimulated the development of a prediction model based on molecular parameters.
The AGAPE model represents such an attempt to find a model with improvements in
realism in comparison to UNIFAC. It makes use of a theoretically sound interaction
potential to create its equations. Recent developments to determine UNIQUAC
interaction parameters from molecular information have proved successful for ketones
and alkanes (Jonsdéttir et al., 1994), and could lead the way to meaningful physical
UNIFAC interaction parameters.

2.11.1 The generalized London potential
The total potential energy between two simple, spherically symmetric molecules 1 and
j at large distances can take the form

2 oay (h v V”j (2.75)
2 (RS)() Bovei + v .

®lj = -
according to London. This is valid even for the simplest non-polar molecule. vy; is

the frequency for molecule i in its unexcited state and a; is the polarizability for

molecule 1. KjA is the separation between molecules 1 and j.
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In the general form of London's dispersion theorem used in the AGAPE model it is
presumed that equation (2.75) continues to hold at separations down to the
intermolecular equilibrium separation between the molecules in the liquid state. This

separation is hereafter written as R*.

For a molecule i, the product v,;7 is very nearly equal to its first ionization potential
I;. Equation (2.75) can therefore be written

o= 24 ( Mi) (2.76)
oM L+ '

Homer and Mohammadi (1987a) have derived a generalized form of London's
dispersion theorem (GLP) for polyatomic molecules, and used only the attractive
forces as indicated by equations (2.75) and (2.76) to calculate the latent heat of
vaporization for pure compounds (Homer and Mohammadi, 1987b) and solvent-
induced NMR chemical shifts (Homer and Mohammadi, 1988) for binary mixtures.
Their results indicate that London was right in his hypothesis assuming that the two

terms with opposite signs virtually cancel each other.

Any theory used to describe the physical properties of liquid mixtures has to solve
two problems, an entropy-based problem and an energy-interaction based problem.
The first 1s how to describe quantitatively the structures of liquids in terms of the
arrangement in space of the molecules of a liquid mixture. The second is how to

quantify the net attractive energy between like and unlike molecules.

Combining the theory of London's dispersion forces with a modification of Wilson's
local composition concept (Wilson, 1964) and Guggenheim's quasi-chemical theory

(Guggenheim, 1952) has lead to the approach, AGAPE, to describe phase equilibria.

2.11.2 Mean-square moment

Homer and Mohammadi (1987a) have tested the hypotheses that certain molecular
properties can be predicted from the sum of the corresponding values of the inert-gas
atom counterparts of the bonded constituent atoms. They showed that for bonded
atoms the mean-square moment <m”>, which is equal to the product av,%, can be

predicted with precision. Such efforts can be added up for the constituent atoms in a
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molecule, 1if the electronic properties of molecules are considered to be functions of
the electronic properties of the inert-gas atoms, whose structures have been achieved.
In other words, from an electronic standpoint, each atom of a molecule may be

replaced by its inert-gas counterpart.

It still leaves the problem of averaging distances for the atoms, some of which are
nearer and some farther then the equilibrium separation, R* apart. The averaging
distances are in general given by r; which stems from considering molecular
electronic, vibrational, rotational and translational motions in order to characterize the

equivalent of (R*)® in equation (2.76).

Homer and Mohammadi (1987b) showed that averaging of the inverse sixth power of
r; {r;°} gives (R)*. They expressed it as
{;1J6} = (RA)~6FA

where F* is assigned to account for the molecular rotations. Their best Monte Carlo-

derived expression for F* is given by

(2.77)
di + d;
FYY!' = 1 + 0727 (——’)
(F*) TG
di + d; ’ di + d; ’
-17.509 | ———| + 24550 |———
2RA 2R
for 0 < (d+d,)/2R" < 0.43.

Figure 2.5 (from Homer and Mohammadi, 1987b) shows the relationship between the
averaging distance, 1;;, the equilibrium separation, R*, and the equilibrium separations
of the atoms from the centres of mass, d; and d;. Figure 2.5(a) is at time t, and Figure
2.5(b) at time t,, where t, and t, refer to instances of time on the rotational time scale

during which the intermolecular separation, R" is fixed.
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Figure 2.5. Two mutual orientations of two interacting molecules in the

liquid phase.

For each component (i) there is only one equilibrium distance R, while there for a
multi-atom molecule are several equilibrium distances from the centre of mass, d; and

r;, distances between atoms in two rotating molecules.

For all the W, atoms acting on any single atom i in the other molecule the mean-

square value of the dispersion field (only the rotational dependence) < E* > is

given by Homer and Mohammadi (1987b) as
< E > (pai) = 2R Y w; < m’ > F* (2.78)
J

where <> represents electronic time averaging and <m”>> = 3awv, % /2, the bonded atom

mean square moment.

If we assume additivity of the dispersion forces (equation (2.75)) and say that we have

z nearest neighbours, equation (2.78) becomes (Homer and Mohammadi, 1987b)

< B > (pai) = 2zR")* > W, < m’ >, F
j

From this equation it may be shown (Homer and Mohammadi, 1987b) that the total
London dispersion potential from all W; of the type 1 in the central molecule (®;) is

given by
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O, = O(pair) = -025 (R*)™
XD (o < m > to; < ms)FY W W,
j

(2.79)
which defines the net attractive potential for liquids, with the long-range repulsion
contribution included. The summation should be taken over all atoms i and j in the
component. At equilibrium separations in the condensed phase the short-range
repulsive forces are neglected. The pair potential is called the unlike pair potential for

1 # j and the like pair potential for1=j.

For practical use the equilibrium separation R* can be derived using a probabilistic

approach from the molecular volume V" (Homer and Mohammadi, 1987b) as

R = 2(0.17 V™ )'”? (2.80)

Equation (2.80) is valid for a single component. Mohammadi (1986) tried to apply a
number of different equations for the values of R*. In fact, he did an extensive
investigation. He found that equation (2.80) was the most accurate, when the
calculated separations were compared with experimental results. Using conversion
factors and Avogadro's number to calculate the relationship between the molecular
volume and the molar volume, equation (2.80) becomes

v (cm*/mol) = 0.4429 (R*)’

where R” is in A.

Another alternative is to calculate R* from the heat of vaporization. The total
potential as given in equation (2.79) was tested in Homer and Mohammadi (1987b) by
using it to calculate the latent heat of vaporization for several pure compounds. Their
results were relatively accurate compared with experimental data. There is no reason
why the opposite cannot be applied: from a known value of the heat of vaporization,
the equilibrium separation R* can be derived. It is worth noticing that Homer and
Mohammadi (1987b) used non-consistent parameters in their calculations. They used
the R* distance from solid-state studies, and compared the calculated heat of

vaporization results with experimental values at the boiling point.
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Assuming that the major part of the cohesion energy is due to immediate interactions
between nearest neighbours, of which each molecule in a liquid has z giving the
number of nearest neighbour pairs to z L /2, the molar potential energy for the pure
component can be written as

U = -LzU

molar

/ 2 + RT

like pair
This molar potential approximates the latent heat of vaporization H,,. The heat of
vaporization for the single compound can be written as

AH, = —6024 Lz @ / 2 + RT (2.81)

vap like pair
where the constant 60.24 takes into account different conversion factors. The constant
allows for AH,,, calculated in kJ/mol, R* in A, o; in A’, and <m®> in 107 erg cm’,
respectively. Using this equation for a given value of the heat of vaporization
depending on the temperature, it is possible to determine a value for R” that satisfies

the equation.

The heat of vaporization values are calculated from the so-called Watson’s correlation
(Reid et al., 1987). This method will be described in Appendix 13 where the heat of
vaporization as calculated by the POT method (equation (2.81)) will be critically
reviewed. A more accurate option would have been to calculate the heat of

vaporization from the slope of the saturated vapour pressure curve.

The molar volume is calculated by the Yen-Woods method (Yen and Woods, 1966)
which has proved to give relatively accurate density results for organic liquids. The
method of Rackett (Reid et al., 1987) has shown to give. more accurate density results.

The method by Yen and Woods (1966) will be critically reviewed in Appendix 14.

Despite the more accurate methods available, the use of Watson's correlation for the
heat of vaporization calculations and the Yen-Woods method for the calculation of the
molar volume was continued so as to provide consistency between the vapour-liquid
equilibria prediction results (Kakhu and Homer, 1996a) and the results obtained in

this study.
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2.11.3 Combining rules

Representing the potential energy for the unlike molecules as done by London (1937)
is only one way of calculating the unlike potential. It is relatively easy to find
expressions for the like molecules. The way of combining two different like

potentials to form an expression for the unlike potential is called a combining rule.

One of the most common combining rules for energies is the geometric mean, also

called the Berthelot combining rule (Hudson and McCoubrey, 1960)

Oy = —/O,;D; (2.82)

The London combining rule can be described in general engineering combining terms

as

O, = —[O,0,(1 - k)

where k;; is a characteristic binary constant and represents the deviation from the
geometric mean. Another way of approximately representing the London combining
rule is by a harmonic mean rule (Hicks and Young, 1975)
® 20,0,
’ O, + D
Hudson and McCoubrey (1960) give a more accurate but approximate combining rule

based on elimination of the polarizabilaties from the London dispersion forces which

includes a relative size term.
It is important to notice that the @ thus is a function of ®; and ;.

Combining rules for molecular separations are usually assessed by the so-called

Lorentz combining rule that states

' 1/3
Gl = SF + CS‘j or Vl/3 . Vi J

Y 2 ) 2
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2.11.4 Excess Gibbs energy and activity coefficients
The derivation of the VLE equations for a binary mixture with components 1 and 2
from the AGAPE theory (Homer et al., 1991) follows here. The equations for a

multicomponent mixture are given in Appendix 1.
The excess Helmholtz energy (a") at constant temperature and volume at low to

moderate pressures is nearly equal to the excess Gibbs free energy at constant pressure

and temperature thus (after Hildebrand and Scott, 1964)

a" g
(R T)T’V (R Tl\» (2.85)

P
The number of nearest neighbours z is also called the co-ordination number, and it is

constant in most organic liquids. Introducing t¥, as the number of whole molecular
contacts that a central molecule 1 makes with molecules of type 2 in its co-ordination
shell and t%, as the corresponding number that the same central molecule 1 makes
with molecules of type 1 in its co-ordination shell, the pure compound co-ordination
number z is given by

Y+ u (symmetric convention)

VP

A similar definition applies of course to a molecule type 2 centred cell. Using
symbols m"¥, and m", for the numbers of whole contacts, the pure compound co-
ordination number becomes
VA

1 1

(symmetric convention)
V’)I‘ﬂ

W
Zz = m, +

Following the procedure suggested by Wilson (1964), the local composition in a cell

with a molecule of type 1 at its centre can be expressed as

2<_21_ _ X2 exp[— (CDZI - (DH)}
Xll X1 kB T
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where X, and X, are the fractions of the total number of molecules around the central

1 that are of type 2 or 1, and @,, and @,, are the relevant molecular pair of interaction

energies (as defined by equation (2.79)).

Wilson's principle assumes that energetics of bulk liquids may be adequately
characterised through a shell model in which each molecule is surrounded by a
spherical co-ordination shell of other molecules. This principle is illustrated in Figure
2.6 (from Kakhu and Homer, 1996a). Figure 2.6(a) shows the co-ordination shell
structure for a pure liquid 1 when the molecules of type 2 are introduced, a local
composition is achieved (Figure 2.6(b)) that is not necessarily the same as that of the

bulk mixture.

PURE STATE MIXTURE
‘ 1
(a) (b)

Figure 2.6. Representation of the change in the composition of the solvation
shell of molecule 1 when one molecule of 2 is assumed to replace two

molecules of 1.

X,, and X, are related to t”, and t", through their definitions by

£V
X0 = - W
tr + f

w

Xn = i
11 tw + tw
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Substitution and replacement gives

W Z

1 + Vz: X2 exp[- (D - q)n):‘
V1 X1 kB T

as an expression for t*,. Similar arguments give

W Z

1 + V' x exp{— (D, - (Dzz):l
V' x, kg T

where ©,, = ©,,.

If we have a mixture containing Avogadro's number of molecules, L, London (1937)
stated that the sum of the interaction energies of all the radial molecular pairs in the

solvation shells is equal to the potential energy (U). This gives the following equation

w

1 1
U = 5 X1 L(trl o, t t ®,) * 5 X2 L(m;v OFF m]w ®,)

(2.84)

The factor of % is introduced so that pair interactions are not counted twice.

The change 1n total molar energy due to mixing (AU) 1s given by

1 1
AU = U - (5‘ X1 LZ CD” + "2_ X2 LZ (1)22) (2.85)

As the molar excess energy (U") is equal to AU, and inserting equation (2.85) in

equation (2.84) gives

Uk = %L[xl AU 1 - 2) + % AUn (M) - 2)] (286)
where
AU, = O - qu’v:f‘m (2.87)
and
AUsn = On - 927\—/— (2.88)
1
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At constant volume and composition (Prausnitz et al., 1986)

E
a

T

1
= _[U d(—f) + constant of integration (2.89)

Guggenheim (1952) showed that for a binary mixture of the smaller molecule (1),
occupying one lattice site and the larger molecule (2), occupying r lattice sites,

equation (2.89) can be expressed as

E m m
a W w
RT athermal Xi X2

1 xi P xs
+ -z + Inj —————
2 G x2 4) [xl + g x» }

lz X ln(f—)
> q X, q

where w", and w", are the volume fractions of components 1 and 2 respectively, r

(2.90)

represents the difference in sizes of the molecular volumes between molecule 1 and 2,

and q represents the relative contact surface areas of the two molecules.

Inserting equation (2.90) in equation (2.83) gives the following expression for the

excess Gibbs free energy

E m m

g W, W,
= In + In| —
(RTj . [ x:j e ( X2)

1 xi T rx
+ —z(xy t x»q) Inf——"
2 I ? x1 v qx

(LZ) ( x1 A Unj T
+ 1
2R by 1 + a’
A
1+ (a*)" exp (~ sz
+( LZ) (Xz A Uzzj In T
2R b3 1+ (%)’

(2.91)
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where

m X1 V]m
W1 - m m
X1 V] + X2 V2
m X2 va
W, - m - m
Xl Vl + X2 Vz
aA _ X Vzm
X V]m
br = L(®y — @) (2.92)
R
br = L(®, - @)
2
R
and r = A
vlm

The r parameter can also be defined as the ratio of the van der Waals volumes (or
some other characteristic volume) of the molecule (the monomer) chosen to define the
characteristic unit size of the lattice. The parameter q arises from the Guggenheim
terms (mentioned earlier), and is defined as

q=Aw,/ Ay

where A, is the van der Waals surface area of molecule 1.

2.11.5 Equations for the activity coefficients
The activity coefficient can be found by differentiating equation (2.91) as required in
equation (2.44). By doing this the activity coefficient for compound 1 can be

expressed as
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That for compound 2 is then
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Equations (2.93) and (2.94) can be used, together with equation (2.25), if the vapour
pressures of the pure liquids are known, to predict vapour-phase compositions and/or

total vapour pressures for given liquid phase compositions (x,).

Compared to the similar equations in Table 2-4, the AGAPE equations look similar to
the UNIQUAC equations, especially in complexity. There is, though, one very
important difference, the AGAPE equations use only molecular and volume

parameters for the pure compounds, whereas UNIQUAC includes binary parameters.

2.11.6 Equilibrium separation distances
The equilibrium separation (R* ) is a very important parameter in the AGAPE model.
For each component there is one separation. For a binary mixture consisting of
components 1 and 2, the equilibrium separation is calculated using the Lorentz
combining rule (Mohammadi, 1986)

R = (R} + R}) /2 (2.95)
In some cases, Mohammadi (1986) used R” . as the maximum of the two separations.

In the following the R . will be calculated from the above equation.

Equation (2.79) defined the net attractive potential for a component. It is worth
noticing that for a binary mixture, consisting of components 1 and 2, there are three
net attractive potentials, one for each of the pure components, named the like potential
calculated from equation (2.79) using the equilibrium separation unique to each
component and with the notation ®,, or @,,, respectively. The net potential for the
mixture is also calculated using equation (2.79), but with the above expression for the
separation for the mixture. This potential is named the unlike potential and ®@,, is the

symbol for that. The unlike potentials ®,, and @,, are equal to each other.

2.11.7 Limitations

At the present time AGAPE enables us to predict VLE and excess Gibbs free energy
for binary or multicomponent mixtures. But because of the limitations in the
generalized London potential, the AGAPE equations are limited to the following
compounds:

- small compounds (less than C6)
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- non-polar compounds
- no hydrogen bonds

Because of the assumption used to derive equation (2.25) from equation (2.19),
- low pressure

is also a limitation.

A final limitation occurs because neither the molecular volume nor the heat of
vaporization has a value above the critical temperature or the critical pressure, and
then it is not possible to determine a value for the equilibrium separation at conditions
above the critical conditions

- conditions have to be below the critical conditions of each pure

component.

2.11.8 Compounds included in the AGAPE database
Table 2-6 shows a list of the compounds presently included in the AGAPE data base.

AGAPE component chemical name
library formula

number

1 c-CgHy, cyclo hexane

2 CCl, carbon tetrachloride
3 C(CH,), neo-pentane

4 CeHs benzene

5 N, nitrogen

6 Ar argon

7 CH, methane

8 O, oxygen

9 Kr krypton

10 CS, carbon disulphide
11 c-CsHyo cyclo pentane

12 SiCl, silicon tetrachloride
13 CHCl, chloroform

14 CH,Cl, dichloromethane

Table 2-6. The compounds presently included in the AGAPE data base

(continued.over).
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AGAPE component chemical name

library formula
number
15 C,Hg ethane
16 C;Hg propane
17 Co carbon monoxide
18 C,H, ethylene

19 Xe xenon
20 CH,l methyl iodide
21 CF, carbon tetrafluoride
22 N-CgHy4 n-hexane
23 1,1-C,H,Cl, 1,1-dichloroethane
24 1,2-C,H,Cl, 1,2-dichloroethane
25 C,HCl; trichloroethylene
26 CH,OH methanol
27 C,H;0OH ethanol
28 CHF, fluoroform
29 CO, carbon dioxide
30 n-C,H,, n-butane
31 H, hydrogen (normal)
32 C,Cl, tetrachloroethylene
33 C,Fq perfluoroethane
34 C,HO acetone
35 C,H,0 acetaldehyde
36 C;HO propionaldehyde
37 C;HO 1-propanol
38 C,HO methyl ethyl ketone (2-butanone)
39 H,O water
40 Br, bromine
41 I iodine
42 Cl, chlorine
43 BrF; bromine trifluoride (...no critical data)
44 D, deuterium (normal)
45 Ne neon
46 SFg sulphur hexafluoride

Table 2-6. The compounds presently included in the AGAPE data base

(continued over).
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AGAPE component chemical name

library formula

number

47 H,S hydrogen sulfide
48 SO, sulphur dioxide
49 NH, ammonia

50 C,H, acetylene

51 Ra radon

Table 2-6. The compounds presently included in the AGAPE data base.

The list is continuously being expanded with new compounds. The components
chosen in this study have been chosen from the list of included components available
at that specific time. The list shows several components that are either polar or
contain hydrogen bondings. Despite the limitations of the AGAPE theory, these
compounds have been included. By including them in the calculations and see how
inaccurate the results are compared with experimental data, it may be possible to
define additional terms which would bring them within the scope of the AGAPE

approach.

2.11.9 Advantages of the AGAPE method

The AGAPE model can predict vapour-liquid equilibrium data from only pure
component data, meaning it provides a truly ab initio procedure, and it is based on a
whole molecule approach as opposed the UNIFAC method that is based on a group
contribution approach. Because of the incorporating of the generalized London
potential theorem, the AGAPE model is able to differentiate between geometric
isomers, like the cis and trans configurations of the same molecule. Further, the

AGAPE model can handle small molecules and inert atoms like Ar and O,.
Recently research has shown that the AGAPE model can be used to predict liquid-

liquid equilibrium as well as vapour-liquid equilibrium and enthalpy data from the

same set of parameters (Kakhu and Homer, 1996b).
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2.11.10 Computer programs

A suite of computer programs has been developed based on the above mentioned
equations. In the following the notation P11, P22 will be equivalent to @,, and ®,,
(equation (2.79) where i=j). P12 will be used as a notation for the unlike pair
potentials for a binary mixture, ®@,, (equation (2.79)). P12-GLP indicates that the
value is calculated using the London combining rule (equation (2.79)). P12-GM
indicates that the value was derived by applying the geometric mean combining rule
(equation (2.82)). This notation has been used to differentiate between the various
values that have been calculated by running the different computer programs. R, the
equilibrium distance (often in the form of R1 or R2) is similar to the parameter R" in
the previous section (equation (2.80)). R1 and R2 are, of course, the equilibrium

distances for component 1 and component 2, respectively.

MENU OF AGAPE PROGRAMS

** With the exception of VLE, all the programs accept non-library compounds **

GLP calculates the pair potentials (P11, P22, P12) and the heats of
vaporisation of the pure compounds for a binary mixture using

the GLP equation. R is calculated from the molar volumes.

MOHV calculates the molar volumes and heats of vaporisation for pure
compounds at any given temperature using suitable

correlations.

GAMV calculates gammav = (dp/dt)v = internal pressure coefficient for

pure compounds using the Redlich-Kwong equation of state.
PP calculates pair potentials (P11, P22, P12) for a binary mixture.

P11 and P22 are calculated from either the heats of

vaporization or the molar volumes or user-specified values of R
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LOCAL

VLE

of the pure compounds while P12 is calculated either by the

GLP or the geometric mean.

uses AGAPE to calculate the number of whole molecular
contacts and local compositions for a binary mixture. P12 1s
calculated either from the GLP or using the fitted parameters

obtained from FIT (see section 2.11.13).

predicts VLE data using AGAPE and GLP. r1s calculated from

the molar volumes or the van der Waals volumes.

2.11.11 Input parameters needed for the pure compounds

A number of input parameters for the pure compounds are needed. Among them are

the heat of vaporization, molar volume, critical properties, boiling point, and

information on equilibrium distances.

2.11.12 Options

The parameters needed for calculating the activity coefficients by the AGAPE model

are:
R1
R2
P12

the equilibrium separation for component 1

the equilibrium separation for component 2

the unlike pair potential for the mixture

the difference in sizes of volumes between molecule 1 and 2

number of nearest neighbours

All these parameters are either calculated from several options or can be given

different values.

R1, R2

- calculated from the molar volume at the relevant
temperature

- calculated from the heat of vaporization at the relevant
temperature

- independent of temperature, meaning any convenient values

can be used
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The chosen option for the calculation of the R1 and R2 values changes the P11 and
P22 wvalues, of course. So the P11 and P22 values can be calculated from the
following options
P11, P22 - calculated from the molar volume at the relevant
temperature
- calculated from the heat of vaporization at the relevant
temperature
- independent of temperature, meaning any convenient values

can be used

These options give different values for the unlike pair potential, P12.
P12 - calculated from the molar volume at the relevant
temperature
- calculated from the heat of vaporization at the relevant
temperature
- independent of temperature, meaning any convenient values

(independent of P11 and P22) can be used

The P12 can be derived either from the London theory, or a geometric mean unlike
pair potential, P12-GM can be used. The geometric mean value for the unlike pair

potential is calculated from the Berthelot theory,

P12 - GM = —+/PI11 * P22

This gives two different options for the unlike pair potential
P12 - calculated from the London theory
- calculated from the Berthelot theory

and of course, the options as mentioned for P12 can still be used.

The number of nearest neighbours, z 1s usually set to the value of 11, but other values
of 7 or 4 can be found in the literature (Moelwyn-Hughes, 1961).
z -setto 11.0
- setto 7.0
- setto 4.0

-112 -



The r value can be calculated from the molar volumes (at the relevant temperature) for
the compounds, or from the van der Waals volumes of the compounds.
r - calculated from the molar volumes for the compounds at
the relevant temperature
- calculated from the van der Waals volumes for the
compounds at a fixed temperature
- independent of the compounds, meaning any convenient

value can be used

Testing all these different options to the full extent possible has not been carried out.
Some parameters have been fixed in certain calculations in an attempt to minimise the

influence from these parameters.

2.11.13 The AGAPE-FIT method

This section (2.11) describes the AGAPE method for prediction of vapour-liquid
equilibrium data and some of the excellent results obtained by the method. As it can
be seen from the tables of presently included compounds, the numbers of compounds
for which the AGAPE method can be used is limited. Not surprisingly, this problem
has been attacked and resulted in the development of an extension of the AGAPE
method named the AGAPE-FIT method (McCoubrey et al., 1993 and Kakhu and
Homer, 1996a). The AGAPE-FIT method has been applied to binary mixtures with
good results (Kakhu and Homer, 1996a).

The AGAPE equations involve two parameters, a structural parameter, r, (the
difference in size of the molecular volumes between two molecules) and an energy
term parameter (the unlike London potential, @,,). Both parameters have the
advantage of having a clear physical meaning, and they can be obtained independently
of each other. Furthermore, the two parameters are uncorrelated (Kakhu and Homer,

1996a).

The interaction parameters in the UNIFAC and also in the UNIQUAC models are

derived from a large body of experimental data and have no clear physical meaning.
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Recent research attempting to derive a physical meaning for the UNIQUAC
parameters (Jonsdottir et al., 1994) has been quite successful for ketones and alkanes
mixtures. Looking at the derived UNIQUAC parameters in Jonsdéttir et al. (1994)
compared with the current UNIQUAC parameters, there seems to be quite a difference
between them. Some parameters even change sign. This could indicate that the actual
values of the UNIQUAC interaction parameters are not important, in fact, any
convenient values of the parameters could be used. If this is the case for the
UNIQUAC model, this could well be true for the UNIFAC model, which is derived
based on the UNIQUAC model.

The AGAPE-FIT method uses one experimental data point of an excess

thermodynamic property (usually at the equimolar concentration value).

In case of one known value of excess Gibbs energy, the r is then fixed as the ratio of
the van der Waals volumes (or the temperature-dependent molar volumes) and the
excess Gibbs energy equation (2.91) is then matched to this experimental point to

yield a fitted value of @,, by employing a straight forward secant algorithm.

If one single value of the excess enthalpy is known, besides one single value of the
excess Gibbs energy (both values at the same molar composition), it is necessary to
carry out a simultaneous g” - h” fit (equations 2.91 and 2.86) to obtain r and ®,,. This
procedure is more complicated then the g° fit procedure and involves a Newton-

Raphson technique.

The AGAPE-FIT method has the advantage of being applicable to many more
compounds without the limitations introduced by use of the generalized I.ondon
potential. It can as well be used without the temperature limitation below the critical

temperature of the pure compounds.

McCoubrey et al. (1993) have tried to use the values of the unlike London potential
obtained when predicting VLE data using the AGAPE-FIT method, to obtain
information of the pure compound like potential and, indirectly, of the intermolecular

forces. This proved a difficult task.
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2.11.14 Computer programs for the AGAPE-FIT method

A series of computer programs have been developed based on the above mentioned
method. Again, the notation of P11, P22 and P12 will be used as a notation for the
different potentials. P12-GLP indicates that the value is calculated using the London
combining rule (equation (2.79)). P12-GM indicates that the value was derived by

applying the geometric mean combining rule (equation (2.82)).

MENU OF AGAPE-FIT PROGRAMS

P12 uses AGAPE, with a constant value of r (from molar volume or
van der Waals volume), to determine P12 that fits the
experimental G, and then predicts U* (and HF) with the derived
P12.

Similar procedure from experimental H® to predicted G*.

FIT uses AGAPE to determine values of r and P12 that
simultaneously fit one single experimental data point for G*

and H" for a given value of z

VLEF predicts VLE and Enthalpy data using AGAPE and fitted
parameters obtained from program FIT or P12. Parameters

needed are z, r and the P12-ratio.
2.11.15 Prediction results

Prediction results employing both the AGAPE method and the AGAPE-FIT method
are shown below and more in Appendix 2. All data are from Kakhu et al. (1995).
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Figure 2.7. Nitrogen (1) and carbon monoxide (2) at 83.82 K. Vapour mole
fractions predicted by the AGAPE method (line and a) and experimental
values (m).
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Figure 2.8. Nitrogen (1) and carbon monoxide (2) at 83.82 K. Total pressure
predicted by the AGAPE method (line and a)and experimental values (m.
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Figure 2.9. Argon (1) and oxygen (2) at 84 K. Vapour mole fractions

predicted by the AGAPE-FIT method (line and a) and experimental values (m).
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Figure 2.10. Argon (1) and oxygen (2) at 84 K. Total pressure predicted by

the AGAPE-FIT method (line and a)and experimental values (m).
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Chapter 3 - Solubility
3.1 Solubility of gases in liquids

In general, the phrase “solubility of gases in liquids” refers to the liquid phase
concentration of components which could not exist as pure liquids at the system
temperature, T, and the pressure, P, either because T is higher then their critical
temperatures, T, or P 1s much lower then their saturated vapour pressures, P°
(O’Connell, 1980). In other words, at least one of the components is supercritical.
The liquid mole fraction of such substances is usually low, but for solvents with very
high critical temperatures and at pressures 50-100 MPa, the liquid mole fraction of the

solute can be as large as 0.3.

Vapour-liquid equilibrium and solubility of gases in liquids are connected. As noted
in Chapter 2, the distinction between vapour-liquid equilibria and the solubility of
gases in liquids is arbitrary. It is generally accepted that equilibrium up to 300 K
between a typical gas as argon and a liquid such as water 1s gas-liquid solubility,
whereas that between hexane and cyclo-hexane at 350 K is an example of vapour-
liquid equilibrium. The equilibrium between methane and propane above the critical
temperature of methane and below the critical temperature of propane can be classed
as vapour-liquid equilibrium or gas-liquid solubility depending on the particular range
of pressure considered. In general, the solubility of a gaseous component in a liquid
phase is small, below 0.10 mole fraction, but no firm rule exists. The vast majority of
gas-liquid solubilities is measured at room temperature. Common examples of gas-
liquid solubilities from nature are the solution of oxygen in blood and that of oxygen

1n water.

Despite the arbitrary distinction, the objective in predicting gas-liquid solubilities is
different to the objective in predicting vapour-liquid equilibrium. Due to the small
solubility of a gas in a liquid, the gas phase is very close to ideal, and the gas phase
composition is therefore much less important then in vapour-liquid equilibrium
prediction, where the objective in by far the majority of calculations is to predict the

vapour-phase compositions.
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We have a gas, component 1 dissolving in a liquid, component 2 at constant
temperature. We assume that the fugacity of the gas is 101.325 kPa and that the
temperature is well below the critical temperature of the solvent. The dissolution
process is followed by a change in enthalpy and entropy, and, what distinguishes the
dissolution of a gas in a liquid from the dissolution of a liquid in a liquid, a large

decrease in volume of the solute.

3.1.1 ldeal solubility
The solubility of a gas dissolved in a liquid is determined by the equations of phase
equilibrium as discussed in chapter 2. If a gaseous phase and a liquid phase are in

equilibrium, then for any component i the fugacities in both phases must be the same:
ff = ff (3.1)

The simplest way to reduce equation (3.1) to a useful form is to rewrite it in a matter
suggested by Raoult's law. Raoult's law is discussed in section 2.5.1. Neglecting all
gas-phase nonidealities as well as the effect of pressure on the condensed phase, and
also any nonidealities due to the solvent-solute interaction, the equation of

equilibrium can be simplified to:
pp = v, P = x P (3.2)

p; is the partial pressure of component i in the gas phase, and P;° is the saturation
(vapour) pressure of pure liquid 1 at the temperature of the solution. The solubility x.
as given by equation (3.2) for the gaseous component is called the ideal solubility of

the gas.

A difficulty arises when we have to find a value for P,° whenever the solution
temperature is above the critical temperature of pure 1. This is often the case, and it
has been customary to extrapolate the saturation pressure of pure liquid 1 beyond its

critical temperature to the solution temperature.

If the ideal solubility is calculated using equation (3.2) and the extrapolation of the

vapour pressure, a correct order-of-magnitude result is obtained. The partial pressure
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of the gas must not be large, and the solution temperature must not be markedly above

the critical temperatures of both the liquid and, more importantly, the gaseous solute.

Table 3-1 (Prausnitz et al., 1986) compares some ideal and observed solubilities. The
table shows that the ideal solubility is significantly different from the observed

solubilities, but is of the right order of magnitude.

ideal | n-C,F,, | n-C,H,, ccl, CS, | (CH,),CO
H, 8 14.01 6.88 3.19 1.49 2.31
N, 10 38.7 6.29 222 592
CH, 35 82.6 28.4 13.12 223
Co, 160 208.8 121 107 3238

Table 3-1. Solubilities of gases in several liquid solvents at 298.15 K and
101.325 kPa partial pressure (mole fractions x 10000).

The 1ideal solubility suffers from being independent of the solvent. The ideal
solubility is defined to be the same for one solute dissolved in various solvents. This
is far from true, as indicated in Table 3-1. The ideal solubility also decreases with
rising temperatures at constant partial pressures due to the extrapolation. This is

usually correct, but not always.

Despite these two defects, the ideal solubility never the less provides a rough estimate

of gas solubility and gives remarkably good relative values for different solutes.

3.1.2 Real Solutions

No known liquid solutions are ideal (e.g. Mohammadi, 1986) though
hydrocarbon/hydrocarbon or alcohols/alcohols come close. In fact, ideal solutions,
particularly for liquids, do not exist (Gerrard, 1980), but as the components of a
solution approach one another in molecular size, shape, chemical type (electron
configuration), and mass, the behaviour of all components in the solution approaches

equation (3.2) as a limit.
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Deviations from the ideal solution are observed in many solutions in which the
components showed marked differences in size, shape, and especially chemical
nature. The deviations from ideal solution are quantified by the activity coefficient

Ysone EXpressed by:

Psolme

- — where
¥ solute Po = 1. if — ideal
Xsolute solute Ysolme > 1 Xsolute Xsolute

ideal

Tsowe < 1> if Xsolwe -~ Xsolute

ideal

ysolute > 17 If Xsolute < Xsolute

Figures 3.1 and 3.2 show solubility of propane and n-butane in n-alkanes at 298.15 K
and at 101.325 kPa partial pressure of the gas (from Hayduk, 1986 (IUPAC Solubility
Data Series, vol. 24), the numbers refer to references in the actual volume). These
figures illustrate that the solubility varies very little with the solvent (for these n-

alkanes).
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Figure 3.1. Solubility of propane in n-alkane solvents at 298.15 K and
101.325 kPa partial pressure of the gas.
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Figure 3.2. Solubility of n-butane in n-alkane solvents at 298.15 K and
101.325 kPa partial pressure of the gas.

Figure 3.3 (from Prausnitz et al., 1986) shows the solubility of Freon-21 in a number of
liquid solvents at 305.35 K. The ideal solubility of Freon-21 is calculated using
equation (3.2). The figure illustrates that for hydrogen bonding solutes, already
associated solvents are poor dissolvers while hydrogen bonding acceptors are much
better then the ideal value. Solvent/solute interaction thus is very important in such

cases.

In figure 3.3 the solvents are: 1. Ethylene glycol, 2. Trimethylene, 3. Decalin, 4.
aniline, 5. Benzofluoride, 6. Nitrobenzene, 7. Tetralin, 8. Bis-p methylthioethyl
sulphide, 9. Dimethylaniline, 10. Dioxan, 11. Diethyl oxalate, 12. Diethyl acetate,
13.  Tetrahydrofurfuryl laurate, 14. Tetraethyl oxamide, 15. Dimethyl ether of
tetracthylene glycol.
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Figure 3.3. Solubility of Freon-21 in liquid solvents at 305.35 K.

The AGAPE model can only handle a very few of these solvents (and neither the solute

Freon-21).

3.1.3 Dilute solutions

Guggenheim (1952) has defined dilute solutions as a solution where the solvent is
present in large excess compared to the solute. The characteristic of a dilute solution
is that the mutual interactions of solute molecules should be negligible. His condition
for a binary solution to be dilute is that the product of the liquid mole fraction of the
solute times the number of nearest neighbours should be less then 10, in other words,

the solubility, x, .. <O0.1.

3.2 Methods for expressing solubility

There are different methods of expressing measured solubilities.
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3.2.1. Mole fraction solubility

A small database for the low-boiling industrial gases dissolved in a number of
ordinary solvents has been set up (Appendix 3). The data are presented as mole
fraction solubilities, where the mole fraction solubility of a gas x_,,. dissolved in a
solvent is given by

n

— solute
solute (3 . 3)
n + n

X

solute solvent

where n is the number of moles.

3.2.2 Ostwald coefficient

Other measurements of solubilities use the Ostwald coefficient to express the results
obtained. The Ostwald coefficient is usually defined as the ratio of the volume of gas
absorbed to the volume of the absorbing liquid, both volumes being measured at the
same temperature. Conversion of the measured Ostwald coefficients to mole fractions

assumes ideal gas behaviour, and is often not accurate enough (Fogg and Gerrard,

1991).

3.2.3 Bunsen coefficient

A previous popular coefficient to measure was the Bunsen coefficient that is, the
volume of gas, reduced to 273.15 K and 101.325 kPa which is absorbed by a unit
volume of solvent at a stated temperature under partial pressure of gas of 101.325 kPa.
Again, conversion to mole fractions usually assumes ideal gas behaviour (Fogg and

Gerrard, 1991).

3.2.4 Henry’s law and Henry’s law constant
Henry’s law constant is the proportionality constant between the concentration of gas
in the liquid phase and the partial pressure of the dissolved gas (as above)

p, = x,H (3.4)
where subscript g stands for the gas phase (solute) and H is the Henry’s law constant.
The relationship is usually valid for mole fractions (x,) below 0.01 (Fogg and Gerrard,
1991). Values of Henry’s law constant found in literature are often given without

stating the exact method of evaluation.
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Comparing equation (3.4) with the fugacity-equation (3.1) shows that Henry’s law
assumes that the gas phase is ideal by replacing the fugacity of the vapour phase with
the partial pressure of the vapour. Similarly the fugacity of the liquid phase is
assumed to be proportional to the mole fraction (in the liquid phase). The
proportionality constant H,,. e €@n be restated using the concept of an activity

coefficient and a fugacity at some standard state as »

— 0
Hsolute, solvent Ysolute fsolute (3 . 5)

From the discussion of the fugacity in chapter 2, it follows that fue 1S @ constant

independent of the solute mole fraction in the liquid phase, x From the above

solute*
equation it then follows that the activity coefficient v, must also be independent of
Xsouee 1he constancy of the activity coefficient of the solute at the low concentrations

considered is the essential assumption of Henry’s law.

For Henry’s law to be valid, the mole fraction of the solute must be small. What is
meant by “small” depends on the mixture, but for most mixtures, Henry’s law gives
good values compared with experimental data when the solute mole fraction in the
liquid phase is below 0.01 (Fogg and Gerrard, 1991). The theoretical explanation for
this can be illustrated by expressing a normalised activity coefficient as a power series
1 (1-Xgg10e)

RT ln YSolule = IAS(I-XSOIUN:)2 + BS(I_X )3 + (36)

solute

This normalized activity coefficient can be seen to approach unity, when the mole

fraction of the solute goes to unity.

If we retain only the first term and neglect the higher terms, the coefficient A® can be
regarded as a measure of non-ideality. A positive value of A® indicates a “dislike”
between the solute and the solvent. A negative value of A® indicates a liking of the
solute and the solvent to form a complex, and its absolute value can be used as a
measure for this tendency. A value of A® equal to zero gives an ideal solution, for

< 1. If the

solute —

which Henry’s law holds for the entire range of composition 0 < x
absolute value of A¥RT is small compared to unity, then Henry’s law holds, even for
éppreciable values of x;,... If the absolute value of A*RT is large, then even a small
Xsoue CAN produce a change in the activity coefficient with composition, meaning that

Henry’s law 1s unlikely to hold.
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As mentioned, Henry’s law assumes gas-phase ideality. This assumption is not
necessary, and introducing the gas-phase fugacity coefficient (equation (2.19)) in
equation (3.1) gives

fi = (pi Yi P = Hi, solvent Xi (37)

O’Connell (1980) has shown how to overcome the problem of the standard liquid

fugacity of component i by replacing it with Henry’s constant, Hix(T), in a reference

solvent, R
.| f
Hi(T) = lim|—
Xg > 1 Xi
and using the activity coefficient in the unsymmetric convention, y;
lim vy, = 1
Xgp =1

Correlation and prediction of Henry’s constant in a reference solvent.

According to O’Connell (1980) the theories for correlating and predicting Henry’s
constant in a reference solvent can be divided into three categories.
(1) the theories which correlate the temperature dependency by using a known
value of Hy, at a single temperature
(2) the theories which fit one or more parameters of a theory

(3) the theories which only predict H,, from other quantities.

Fugacity of the liquid.

The extrapolation of the saturated vapour pressures illustrates the difficulty that arises
from the fundamental solubility equation (3.5)

HTZ,I _ sz yT2(in "
This equation includes the fugacity of the solute at the solution temperature, which is
(often the case) higher then the critical temperature of the solute. This represents a
problem in itself and the customary solution has been to extrapolate the saturation
vapour pressure of the solute to above the critical temperatures as shown in Figures

Al12.1 and A12.2. This method has no sound theoretical basis, but is dedicated by
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convenience. From the extrapolated saturated vapour pressure it is then possible to

calculate the fugacity of the hypothetical liquid at the solution temperature.

3.2.5 ldeal dilute solution

An 1deal solution was defined in section 2.3.2. An ideal dilute solution i1s defined as a

solution where

lilTl solute —

' 0 solute, solvent
Xsomte ™ X

solute

using the boundary condition of the infinitely dilute solution. For the solvent which is

present in excess the similar boundary condition is

llm solvent

500 x pure liquid solvent

X
solut
e solvent

The use of an ideal dilute solution has been found useful (Prausnitz et al., 1986)
whenever the liquid mixture cannot exist over the entire composition range. If the
temperature is higher then the critical temperature of the solute, then the liquid phase
cannot exist as the solute liquid mole fraction goes to unity. This means that
introducing a hypothetical liquid state for the solute has been necessary for using the

relationships based on Raoult’s law.

3.2.6 The activity coefficient described in the symmetric and
unsymmetric way

The activity is conveniently defined in such a way that for an ideal solution, the
activity coefficient is unity. One way of describing ideality leads to Raoult’s law (see
section 2.5.2), another leads to Henry’s law. The activity coefficient can be defined

using the two different ways of ideality (Prausnitz et al., 1986).

If the activity coefficients are defined with reference to an ideal solution in the sense
of Raoult’s law, then the normalisation for each component 1 is

Yy, — 1 a x; —> 1
This normalisation holds for both the solute and the solvent and is referred to as the

symmetric convention for normalisation.
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On the other hand, if the activity coefficients are described with reference to an ideal
dilute solution, then the normalisation of the activity coefficients is

- 1 as x - 1

Y solvent

ysolute - 1 as X

solvent

- 0

solute

so here the activity coefficients are not normalized in the same way. This is the

unsymmetric convention for normalisation.

Usually, the activity coefficient of a component which approaches unity as its mole

fraction goes to zero is denoted with an asterix, so that the unsymmetric convention

becomes
YSolvellt - 1 as xso]vent B 1
*
Ysolute - 1 as Xsolute - O

For extension of the symmetric and the unsymmetric conventions to multicomponent

mixtures see Prausnitz et al. (1986).

3.2.7 Pressure dependency of solubilities
As can be seen from the previous section, Henry’s constant is not a function of the
composition, but it depends on the temperature, and to a lesser degree, on the

pressure.

From section 2.4.1 it follows that the fugacity coefficient's variation with pressure can

be expressed as
(a In f}} v
op ) . RT
where :/T is the partial molar volume of component i in the liquid phase. Using the

thermodynamic definition of Henry’s constant equation (3.5) gives

(a ln Hi,solvcmj _ '\_/:D
oP . RT

where « indicates the value should be taken at infinite dilution. Integration gives
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P
j vi dP

= In H®) + E

ln i, solvent
RT

Ji
X;

. : ,
where H; .., is Henry’s constant taken at some arbitrary reference pressure P,

S
solvent *

usually set to the vapour saturation pressure of the solvent, P

v can be assumed independent of pressure for temperatures well below the critical

temperature of the solvent, turning the above equation into the Krichevsky-

Kasamovsky equation

f : VoL (P = P
solute _ (Potvent) solute solvent
In X = In Hso]ulec,(so]venl + RT (38)

solute

Another important equation for the dependency of solubility with pressure is the so-
called Krichevsky-Illinskaya equation. It is derived from the variation of the activity
coefficient of the solute (component 2) with the mole fraction assuming that the
activity coefficient of the solvent (component 1) is given by a two-suffix Margules

equation (see section 2.10.3)

lnYI = ﬁxi

thus Ay (the Margules parameter) is an empirical constant accounting for the
intermolecular forces in the solution and weakly dependent on temperature. From the
Gibbs-Duhem equation (see section 2.6) the activity coefficient of the solute in the

unsymmetric convention, v, can be found as
A
Iny, = M -1
Ys Ry K )
At pressure P,® the fugacity coefficient of the solute is then
f, = Y;Hg,)f)xz

From this the Krichevsky-Illinskaya equation can be derived instead of the
Krichevsky-Kasamovsky equation

L
R L N RN WP X Gl 19

3.9
X, RT RT G-9)

This equation contains three parameters. Where pertinent experimental data are

absent, the three parameters can be calculated from a reliable equation of state that is
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valid for the dilute mixture for the entire density range from zero to the inverse of v,°.
For more details, see Bender et al. (1984) or Prausnitz et al. (1986). Bender et al.
(1984) describes a procedure for evaluation of Henry’s constant from gas solubility
measurements using the Krichevsky-Illinskaya equation combined with either the
Peng-Robinson equation of state or the Redlich-Kwong equation of state. The
procedure involves numerical or graphical interpolation and extrapolation to obtain a

first guess of Henry’s constant and iteration of the fugacities.

3.2.8 Temperature dependency of solubilities

Commonly, it is believed that when the temperature rises, the solubility falls
(Prausnitz et al., 1986). This is not true, as experimental data are able to show. The
rare gases are good examples of the types of gas solubility dependence that can be
observed (Battino and Clever, 1966). All the noble gases have a negativé temperature
coefficient of solubility in water around room temperature and at atmospheric
pressure. The temperature coefficient goes through a zero and becomes positive at
high temperatures and pressures. Figure 3.4 which shows Henry's constant as a
function of temperature for nine binary mixtures illustrates this (from Prausnitz et al,,
1986). As can be seen from the figure, the effect of temperature differs qualitatively

from one mixture to an other.

For gases dissolved in non-polar solvents Hildebrand and Scott (1962) have found the
temperature dependency of gas solubilities as follows. For a sparingly soluble gas
(component 2) that obeys Henry’s law (the activity coefficient of the solute is

independent of the mole fraction) the entropy of solution is

s — B (alnxzj
R olnT/,
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Figure 3.4. Base 10 logarithmic of Henry's constants (10° Pa) for typical

gases range over five orders of magnitude.

Writing the entropy change as two parts gives

-L - - ~L
s - 8y = (sy - sY) + (s2 - sb)

where s," is the entropy of the hypothetical pure liquid at the temperature of solution.
The first term of the above equation is then the entropy of condensation of the pure
gas. This term is, in general, negative due to the fact that the entropy of a liquid is
lower than the entropy of a saturated gas at the same temperature, bearing in mind that
entropy is an expression for the disorder of the system. The second term is the partial
molar entropy of solution of the condensed solute. Assuming ideal entropy of mixing

for the two liquids, the term can be rewritten as

=L

ss — sy = -R In x,
The solubility X, is less then 1, and the second term is then positive. With the first
term negative and the second term positive, the temperature dependency of the

solubilities depends on the actual solubility. For gases that are sparingly soluble (very
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small x,) a positive temperature coefficient would be expected, whereas a negative
temperature coefficient would be expected for gases which are readily soluble
(relatively large x,). This semiquantitative argument agrees well with experimental

observations (Hildebrand and Scott, 1962).

The enthalpy change of solution can be written as (Hildebrand and Scott, 1962),
assuming again that the activity coefficient of the solute is independent of the mole

fraction

hy - h¢ _[8lnxzj
R o/ 1),

This can divided into two terms
h: — hS = (' - h%) + (hs - hb)

where h," is the enthalpy of the hypothetical pure liquid at the temperature of the
solution. The first term is the enthalpy of condensation of pure solute. This term is
usually negative as the enthalpy of a liquid is lower then the enthalpy of a gas at the
same temperature. The second term is the partial enthalpy of mixing for the liquid
solute and depends on the solute-solvent interaction. For mixtures where the regular
solution theory holds, the larger the difference between the cohesive energy density of
the solute and that of the solvent, the larger the enthalpy of mixing. Therefore, if the
difference 1s very large, the enthalpy change of solution becomes positive, and the
solubility increases with rising temperature. If the difference in cohesive energy
densities is very small, the enthalpy change of solution becomes negative, and the

solubility falls with rising temperature.

A study of solubilities of gases in liquids has shown that the best fit for Henry’s
constant as a function of temperature can be expressed as (the study is referred to in

Prausnitz et al., 1986)

G G

s T T
n HEP = of( - <) - B°0 - <7+ In 101325 (3.10)

®, and T¢, are constants specific to the solute. B is a universal constant for simple

gases.
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Hayduk and Laudie (1973) and Hayduk and Buckley (1971) have investigated the
temperature coefficient (at fixed partial pressures) of gas solubilities for regular
solutions and for gases in polar solvents. They found a linear correlation between the
solubility and the logarithm of the temperature for a number of gases dissolved in
various solvents. From one known value of the solubility (at any temperature) of the
gas in the particular solvent, the solvent solubility parameter and the critical
temperature of the solvent, they were able to predict the solubility for this particular

binary mixture at other temperatures.

The correlation line is a straight line for non-polar solvents such as propane, carbon
tetrachloride, benzene and cyclo-hexane, where all the lines for a series of solutes
dissolved in one single solvent, appear to approach a constant value as the solution
temperature was increased towards the critical temperature of the solvent. The
constant value corresponds to the solubility of that gas for which the entropy of
solution or temperature coefficient in that particular solvent is zero. Figure 3.5

tlustrates this tendency (from Fleury and Hayduk, 1975).

The polar solvents like water and chlorobenzene behave differently. Their correlation
line is far from a straight line. Hayduk and Laudie (1973) developed a method for
estimating the effect of hydrogen-bonding on gas solubilities, the so-called HB-factor
based on the ideal gas solubilities and the solubilities in water. Using the estimated
HB-factors, they were able to predict solubilities in solvents containing a carbony!

group or dihydroxy groups and other associated solvents.
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Figure 3.5. Solubilities of gases at 101.325 kPa partial pressure and at

varying temperature in benzene.

3.3 Predictions of solubility of gases in liquids
As with prediction of other phase equilibria, the prediction of gas-solubilities with the
help of equations of state can be divided into two different procedures
(A) This procedure employs fugacity coefficients for both the liquid and the
gas phase.
(B) This procedure employs a fugacity coefficient for the gas phase only,

whereas liquid phase non-idealities are described by activity coefficients.
The special problem of gas-liquid equilibria with determination of the standard

fugacity arises because the conventional standard state, pure liquid at system

temperature and pressure, does not exist for supercritical components.
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Only a limited number of methods to predict the solubility of gases in liquids exist at
the moment. Among them are group contribution methods using UNIFAC (Sander et
al., 1983) and equations of state (Skjold-Jergensen, 1984) and Hildebrand's regular
solution method (Hildebrand et al., 1970, Hildebrand and Scott, 1964).

In the Department of Chemical Engineering & Applied Chemistry there are computer
programs available to calculate the solubility of gases in liquids. Sitthiosoth (1987)
wrote a number of computer programs (in FORTRAN) for calculating the solubility
of gases in liquids at both high and low pressure. There is one program for low
pressures, developed using the equations by Sander et al. (1983). The program
calculating solubility of gases in liquids at high pressures, is written on the basis of

the GC-EOS equations in Skjold-Jergensen (1984).

At the moment, a number of methods to predict the solubility exist. Table 3-2 shows

an overview of the methods, their basic theory and their authors.
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Solubility of gases in liquids is an equilibrium between the gas and the liquid (GLE).
Fundamentally the equations for VLE and GLE are identical, but with two major
differences. One is that the solubility of gases in liquids is very small, thus the
solubility calculations are in general carried out at approximately infinite dilution, i.e.,
the state where one solute molecule's nearest neighbours are all solvent molecules

(Guggenheim, 1952).

The other is that in vapour-liquid calculations, for given values of liquid composition
X;, temperature T and pressure P, we calculate the values of vapour composition y;, but
in solubility calculations, for given values of temperature T and pressure P the value

of the liquid composition, x;, is calculated.

In other words, the vapour composition is less important in solubility calculations due
to the usually low concentration of the solute in the liquid phase, which, in the binary
case, gives a vapour phase composition of Ysowvent = 0.0 and y, .. ~ 1.0 (ideal vapour

phase).

3.3.1 Reference solvent method

The reference solvent method is used in this thesis as a standard method with which to
compare the results obtained from solubility calculations using the AGAPE method.
The method was developed by Sander et al. (1983) and the name “reference solvent”
method has been allocated in this work. The reference solvent method is one of the
methods in Table 3-2 for predicting solubility of gases in liquids. The derivation of

the reference solvent equations is briefly described in this section.

Using the definition of the general phase equilibrium equations (equations (2.19) and

(2.20)) the following expression for Henry's constant can be obtained:

L

fL = fiG - (P,' Xi P = Hi, solvent 'Y: X = Yi Xi f? (311)

1 H

where H; ., 1S Henry's constant for solute i dissolved in the solvent and v, and vy, are
the activity coefficients in the symmetric and the unsymmetric convention,

respectively.
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Using a method developed by Mathias and O'Connell (1981) Sander et al. (1983)
reformulated the problem of finding a value for the reference fugacity £° in equation
(3.11), necessary as this value for the gaseous component represents a property of a
hypothetical pure liquid, whenever the temperature 1s greater then the critical

temperature of the gas.

As suggested by Prausnitz et al. (1986) it is common to extrapolate subcritical liquid

fugacities obtained from experimental data into the hypothetical region.

The extrapolation method is most uncertain in cases where the difference between T
and the critical temperature of the gaseous component is great. In following the
method developed by Mathias and O'Connell (1981) the problem of estimating the
reference fugacity f’ is changed into one of estimating Henry's constant for a

reference solvent.

For this purpose, f,” for a solute (2) dissolved in a solvent s can be expressed as:

H2, S
oo}
YZ, S

f5 = (3.12)

by rewriting equation (3.11). In equation (3.12) s could as well be a reference solvent
R. Introduction of the reference solvent R in equation (3.12) and then in equation

(3.11) gives:

sz = M (3.13)

0
YZ, R

For given values of £,° and T, the solubility x, can be found from equation (3.13) by

iteration.

In the reference solvent method, the activity coefficient v, and Y.~ are calculated from
UNIFAC. Sander et al. (1983) describes a method for the necessary estimation of the
UNIFAC interaction parameters between gas molecules and solvent groups.

The reference Henry's constant is assumed to be a function of temperature as follows:
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BR
11‘1 Hz‘ R = AR + T + CR 11‘1 T (3.14)
where the coefficients A%, BX, and C* are estimated from experimental solubility data
for component 2 in the reference solvent by means of the equation

G
Hyp = 2 (3.15)

X2, R

where it is assumed that vy, /v,,;” = 1.

In choosing a reference solvent for a given gas it is crucial to find a solvent for which
reliable experimental solubility data for the gas are available. The data should
preferably cover as broad a temperature range as possible, and the solubility should be

small, because of the assumption thaty, . /y,,” = 1.

3.3.2 The regular-solution theory applied to solubility predictions

3.3.2.1 The Hildebrand-Scatchard theory applied to solubilities

The use of the regular-solution theory (developed by Hildebrand and Scatchard) and
to predict the solubility of gases in liquids for non-polar mixtures has been discussed
by Prausnitz et al. (1986) and by Hildebrand et al. (1970). The theory is an example

of procedure B.

As mentioned earlier, the dissolution of a gas in a liquid is accompanied by a large
decrease in volume. The regular-solution concept is based on no volume change and
to apply this theory to the prediction of solubilities, it has been necessary to consider
the dissolution process as a two-step process (Hildebrand et al., 1970). The process is
to “condense” the gas to its partial molar volume in the liquid solvent (“liquid 2”)
followed by the step of dissolution of pure “liquid 2” in solvent 1 (assuming that the

gas is component 2 and the liquid is component 1).

The Hildebrand equations for the activity coefficients in a binary mixture are (see

section 2.10.3 )
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RT Iny, = v, wi(3, - §,)°

2

(3.16)
RT Iny, = v, wi(5, - 3,)

This equation is the regular-solution equation and has, because of its approximate
nature, not been used as successfully as in theoretical predictions of gas solubilities in
liquids as in forming the basis of some semi-empirical correlations, as those of

Prausnitz and Shair (1961) and Yen and McKetta (1962).

Yen and McKetta (1962) derived the following equation for systems consisting of a

non-polar and a polar, non-associated liquid
RT Iny, = v, wi(8, + 8," - 223,87 + m'?) (3.17)

where C is a constant depending on the intermolecular distance and the potential
function. m is a characteristic constant for polar, non-associated liquid and relates to
the intermolecular distance and the angular dependence of the dipole-dipole

mnteraction.

Prausnitz and Shair (1961) used the above mentioned assumption of the two-step
process and dertved a method for predicting the gas-solubilities. Their final equation,
assuming the fugacity of component 2 in the gaseous phase is unity, is
v, (8, — 8,)°w’

RT

- Inx, = Infy

(3.18)

where f," is the fugacity of pure “liquid 2” at temperature T and 101.325 kPa pressure.
A figure of f," as a function of ratio of the solution temperature to the solute’s critical
temperature can be found in, e.g. , Hildebrand et al. (1970). This equation can be used
to calculate the solubility. The calculations are of the trial-and-error type, as w,
depends on x, (see section 2.10.3). The equation for the fugacity of “liquid 2” at total
pressure P 1s (Hildebrand et al., 1970)

(3.19)

vE(P - 1.013))
RT

f,(P) = f,(graph) exp(
provided that P is in bar (10’ Pa).

The solubility at total pressure P is then given as
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sz(P) 4 v,(6, - 62)2Wlz

-~ Inx, = In
) ?,y,P RT

(3.20)

where y, is the mole fraction and ¢, 1s the fugacity coefficient of component 2 in the

gas phase. ¢, can be calculated from an equation of state for the gas mixture.

The solubility parameters §, and 9, can be calculated from either calorimetric heats of
vaporization, from the vapour pressures, estimated from the Hildebrand rule or
estimated from solubility data. Hildebrand and Scott (1962) show examples of the
various ways of calculating the solubility parameters. The values for the solubility
parameters are often estimated at 298.15 K, and therefore only for substances which

have a critical temperature above 298.15 K.

The correlation technique of Prausnitz and Shair (1961) has been extended to predict
solubilities of mixed solvents (Hildebrand et al, 1970). The solubility of a gas in a

mixture of two or more solvents is given by

LE) v, - 8
¢,y,P RT

—Inx, = In (3.21)

where

S = > ws (= 12...) (3.22)

i
1s the average solubility parameter for the entire solution and the summation includes

all the components, also the solute.

Prausnitz et al. (1986) show how two correlation curves can be used for the
prediction. One of the curves is a plot of experimental solubilities at 298 15 K and
101.325 kPa partial gas pressure of 12 solutes as a function of the solubility parameter
of the solvent (shown in Figure 4.1). The other shows a plot of experimental
solubilities at the same conditions as a function of the Lennard-Jones energy
parameters (described in section 2.7 and shown in Figure 4.2). From the two curves it
1s possible to predict the solubility at 298.15 K and 101.325 kPa partial pressure of a
specific gas in a specific liquid, provided that they both are in the plots of Prausnitz et

al. (1986) and that both the solute and solvent are non-polar.
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3.3.2.2 The regular solution theory as used by Guggenheim

Guggenheim (1952) has developed expressions for the calculation of Henry's law
based on the regular solution theory. The expressions involve the interchange energy
(discussed in section 2.10.3.1). For dilute regular solutions, Guggenheim shows that
the partial vapour pressures can be obtained as

P
p,

= = e
pg 2 p kBT

where 1 is the solvent and 2 is the solute. Rearranging the expression for the solute,

1 - x,)

one obtains

W,
p, = X, p, exp(k—lz?] = x, H,, (3.23)

where Henry's constant, in this case, is

WI
sz1 = pg exp(kBT) (3.24)

In the case of a gas pressure of 1 bar (10° Pa), the following equation can be derived
-Inx, = Inp) + w' / (k,T) (3.25)
Equation (3.23) is entirely analogous to the standard equation
H, = y7 £
where the standard state fugacity of the solute is simply replaced by a hypothetical
vapour pressure and where the activity coefficient at infinite dilution is seen to be a
single function of the interchange energy analogous to the usual activity coefficient

but independent of composition.

Prausnitz et al. (1986) has made use of the corresponding states principle to establish
reference values of f’, for gases at different temperatures. Guggenheim (1952)
developed the following linear correlation between the pressure and the temperature
(using the principle of corresponding states) for a pure component and with pressure
units in bar (10° Pa))

53 T,

Inp = 53 + InP. - T

(3.26)
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If this equation is used above the critical point, it calculates an alternative value of a

“pseudo” fugacity as opposed to the method described in Prausnitz et al. (1986).

3.3.2.3 The regular solution theory as used by King

King and co-workers (King et al., 1977b) have, from an extensive data analysis of
solubility data of primarily carbon dioxide, but also hydrogen sulfide and to a lesser
extent propane, dissolved in n-alkanes (C;H,, to C,H,,) used a modification of the
regular solution theory to develop a prediction method for solubilities of the
mentioned mixtures. The prediction results for carbon dioxide show excellent
accuracy when compared with experimental data. The modification involves adding a
Flory-Huggins entropy term because the molecular size ratio is far removed from
unity in some of the systems examined. An interaction parameter that allows for
deviations from the geometric mean mixing rule for the attractive potential between
molecules 1 and 2, is introduced. The interaction parameter is assumed to have a
constant value for all the investigated alkanes, and thus is only dependent on the
solute. The actual value of the interaction parameter has been obtained by back-

calculating from the experimental value.

3.3.3 The scaled-particle model

One of the methods for prediction solubility of gases in liquids is the scaled-particle
model as used by Pierotti (1976). The model is based on a statistical-mechanical
theory of dense fluids, developed by Reiss et al. (1960) and Helfand et al. (1960).
This theory yields an approximate expression for the reversible work required to
introduce a spherical particle of species into a dense fluid containing spherical

particles of species 1.

A brief introduction of the theory (Prausnitz et al., 1986) follows here.

Consider a very dilute solution of non-polar solute 2 in non-polar solvent 1 at low
pressure and at a temperature below the critical temperature of the solvent. In other

words, at these conditions Henry’s law applies. It is assumed that the dissolution

process can be broken down into two steps. In the first step, a cavity is formed in the
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solvent (1) to allow introduction of a solute molecule. In the second step, the solute

molecule (its cavity filled by molecule 2) interacts with the surrounding solvent.

Henry’s constant can then be expressed as a sum of two terms, one for the cavity

forming (subscript ¢) and one term for the interaction (subscript I)

aen - P
In -2 v _ & . & (3.27)
RT RT RT
where v; is the molar volume of the solvent, and é stands for the partial molar Gibbs

energy for the solute.

If the pressure is low, the scaled-particle model gives for g:

8 _ oY Q") — ) _lﬁY‘_B (r“s - lj - In1 - Y)
RT 1 - VY 1-v 2
(3.28)
where
2(aHS)2
HSl3 (3.29)
v = n (a,”)" L
ov,

and a™, and a", are the hard-sphere diameters for the solvent and for the solute,

respectively.

To obtain an expression for the partial molar Gibbs energy for the interaction (for the
solute), 1t 1s necessary to assume that all changes in entropy which result from the
dissolution of a gas in a solvent are given by the cavity-formation calculation.
Further, assuming a Lennard-Jones 6,12 potential as an expression for the potential
energy function for the description of the intermolecular forces between solute and
solvent as done by Wilhelm and Battino (1971), the partial molar Gibbs energy for the
interaction becomes

3 ‘
g—I _ _(32971 R)(Lclzs,zj (3.30)
v, kg

where o, and ¢, are parameters in the Lennard-Jones potential, ks 1s Boltzmann’s

constant, and R is the universal gas constant.
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The scaled-particle model is a variation of the perturbation theory which has been
applied to gas solubilities. The perturbation theory combines statistical mechanics
with some physical model. The essence of the perturbation theory is, firstly, to focus
the attention on the properties of some idealized dense fluid, and then, secondly, relate
the properties of the real dense fluid to those of the idealized fluid. This procedure
has been necessary due to the inadequate knowledge of fluid structure and
intermolecular forces. When the perturbation theory is applied to mixtures of real
fluids, it involves non-analytic calculations. Numerical integrations are required for
every temperature, density and composition. It is also necessary to establish a useful
reference system, and the intermolecular forces must be characterized by a credible
potential function. However, due to increasingly efficient computers, perturbation
theory has provided a powerful tool for molecular thermodynamics (Gubbins, 1989

and Gubbins and Street, 1981)

3.3.4 The GC-EOS model

The group-contribution equation-of-state (GC-EOS) was derived (Skjold-Jergensen,
1984, 1988) from a van der Waals equation of state (see section 2.10.3) with mixing
rules based on an NRTL-like expression (see section 2.10.3.4) for the total excess
Helmbholtz function. The aim was to develop a model with no limitation of low

pressure or low concentration. The theory is an example of procedure A.

The model represents an example of a method based on statistical thermodynamics, a
different approach to thermodynamics then the classical approach described in chapter
2. As the GC-EOS model is a group-contribution method, it relies on experimental

data for the calculation of group interaction parameters.

It is beyond the scope of this work to set out the derivation of the equations of the

GC-EOS model.
3.3.5 The MHV2 model

The MHV2 model (Dahl and Michelsen, 1990) was briefly described in section

2.10.3.10. The model has been used to predict solubilities with excellent results (Dahl
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etal, 1991). The model predicts fugacity coefficients for al] components in both the
liquid and the gas phase. The model has been used as an alternative method to predict
solubilities of gases in liquids in this work (see section 4.6) at low pressure. The
results obtained are not as good as the results obtained by Dahl et al. (1991). The
MHV2 model seems to predict solubilities with best accuracy at moderate to high

pressures.

3.3.6 The UNIFAC-FV model

The UNIFAC-FV model is a variation of the UNIFAC model including a term for the
free volume and has been applied with success to calculate a Henry’s constant for
hydrocarbon gases and vapours in high-boiling hydrocarbon solvents. A brief

description follows (Stelmachowski and Ledakowich, 1993).

We write Henry’s constant as a product of the fugacity of a hypothetical liquid at the
system temperature and pressure of 101.325 kPa and the symmetric infinite dilution
activity coefficient for a gaseous solute in a given solvent, in other words as

Hy=v" £ (3.31)
The £ is similar to that mentioned in the description of the regular-solution method
applied to gas-solubilities. Chappelow and Prausnitz (1974) have extrapolated it as a

function of reduced temperature, T, ;= T/T, and the critical pressure P

L

i

In — = function(T, ;)
C,i

For certain hydrocarbons the extrapolation gives the alternative equation
In f* = function(T)
The symmetric infinite dilution activity coefficient is considered a sum of two terms

+ Iny[Y (3.32)

ln yoo — ln y pNIFAC
where In """ is the activity coefficient found when using the modified UNIFAC

equations (see section 2.10.3.9) and In v accounts for the free volume.

Stelmachowski and Ledakowich (1993) have for mixtures of alkanes developed
equations for the parameters in their expression for In v, The parameters

(coefficients and exponents) were estimated in such a way to render Henry’s constants
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which were close to empirical values. Despite the intuitive derivation of the
parameters, Stelmachowski and Ledakowich (1993) obtained good results when

predicting Henry’s constant for alkanes employing the method mentioned above.

3.3.7 Gas solubilities from an equation of state

As mentioned earlier it is difficult to distinguish between solubility and vapour-liquid
equilibrium. It is therefore not surprising that the equations of state (described in
section 2.9.2) can be used to predict solubility as well as vapour-liquid equilibrium
(Prausnitz et al., 1986). The essential requirement is that the equation of state must be
valid for the solute-solvent mixture from zero density to the density of the liquid.
Using an equation of state gives fugacity coefficients, and using the equation for

Henry’s constant
HYY = ¢p”P (333)

where @, ”is the fugacity of the solute in the liquid solvent at infinite dilution. Good

results have been obtained applying an equation of state to predict solubilities

(Prausnitz et al., 1986).

3.3.8 The UNIWAALS equation of state

As the name indicates, the UNIWAALS equation-of-state developed by Gupte et al.
(1986) and further extended by Gani et al. (1989) combines the van der Waals
equation of state with the modified UNIFAC group method (Larsen et al., 1987) to
predict the solubility of gases in liquids.

The UNIWAALS equation of state (Gupte et al., 1986) requires a “liquid-like” root of
the pure components at the pressure and temperature of the system and of the mixture
at the temperature, pressure and composition of the phase (vapour or liquid) in
question. As the system temperature approaches the critical temperature of a
component or the mixture, the existence of “liquid-like” roots becomes uncertain.
The modification by Gani et al. (1989) is applicable to mixtures containing non-
condensable gases and to conditions of pressure and temperature approaching the

mixture critical point.

The modified UNIWAALS equation-of-state (Gani et al., 1989) is
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d (3.34)

\%

where d is defined as da/dv and both a and d are functions of (T, P, v and x;). The
energy size parameter a is expressed by Mathias and Copeman (1983) (see the
description of the MHV?2 method in section 2.10.3.10). The covolume parameter b is

the same parameter as described in section 2.10.3.10.

It 1s then possible to derive an expression for the fugacity coefficient. Details of the

derivation and the equation of the fugacity coefficient are in Gani et al. (1989).

The procedure for prediction of phase equilibria is described by Gani et al.(1989).
One of the steps involves the estimation of the excess Gibbs energy, which in this
case is calculated using the modified (Larsen et al., 1987) UNIFAC method. The
results obtained by using the modified UNIWAALS equation of state to predict
solubilities of gases in liquids fit very well with experimental data, especially at

elevated pressures.

3.4 Database for solubilities of gases in liquids

A small database of gas solubilities was constructed mainly to evaluate potential
predicted solubilities against experimental solubilities. It also formed a convenient
way of presenting gas solubilities in chemical families, i.e., homologous series, in

order to make quantitative observations on the solubility values.

3.4.1 The data

A series from TUPAC Solubility Data Series has been shown to be very useful as a
source of solubility data. The volumes used in this work are: [UPAC Solubility Data
Series (Clever, 1979 (vol. 1), Clever, 1980 (vol. 4), Young, 1981 (vol. 5/6), Battino,
1981 (vol. 7), Hayduk, 1982 (vol. 9), Battino, 1982 (vol. 10), Hayduk, 1986 (vol. 24),
and Clever and Young, 1987 (vol. 27/28)). Another source with abundant solubility
data 1s Fogg and Gerrard (1991).

The collected solubility data are given as Table A3-1 (Appendix 3).

-149 -



The collected solubility data have been presented in graphs in Figures 3.6 and 3.7 and

in Figures in Appendix 3.
8 -
solubility x 10000
BN,
[ ECO
0o,
OAr

CHsOH C,HsOH CsH;0H

Figure 3.6. Solubilties of various solutes dissolved in various solvents.
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Figure 3.7. Solubilties of various solutes dissolved in various solvents.
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3.4.2 Conclusion of the collected solubility data
The solubilities of light gases such as neon, hydrogen and nitrogen are very small in
nearly all the solvents. The solubilities of the much heavier hydrocarbons n-propane

and n-butane in various solvents are the largest of all the collected solubility data.

Water represents a special case. Nearly all solutes dissolved in water have very small
solubilities, in fact the solubilities in water are the lowest values of the collected data.
Surprisingly, the solubilities of n-propane and n-butane in water are of the same
magnitude as methane, whereas the solubility of methane in other solvents is much

less then the solubilities of n-propane and n-butane.

Except for water, as a general rule, the solubility in a certain solvent increases when
the molecular weight of the solute increases. This is true for the homologous series

alcohols and single chained hydrocarbons.

The solubilities of argon, oxygen and carbon monoxide in the same solvent al] have

very similar values.

3.4.3 Variation of solubilities with temperature

This investigation has mainly used solubility data at 298.15 K as they were plentiful.
In gas-solubility studies, the solubility is unique at a single temperature. The
solubility varies with temperature and some examples of the relationship between

solubility and temperature are shown here.

Figures 3.8 to 3.9 show the variation of the solubility of ethane dissolved in various

liquid solvents with temperature (figures are from Fogg and Gerrard, 1991 ).
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Figure 3.8.

Mole fractions of solubilities of ethane as a function of

temperature at a partial pressure of 101.325 kPa in hydrocarbons.
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Figure 3.9. Mole fractions of solubilities of ethane as a function of

temperature at a partial pressure of 101.325 kPa in solvents containing oxygen.
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Chapter 4 - Results and Analysis

Throughout Chapter 4 the notation P will be equivalent to the pair potentials, @, used
in the previous equations. P11, P22 will be used as equivalent to ®,, and @,,
(equation (2.79) for pairs i-1 and j-j, respectively). P12 will be used as a notation for
the unlike pair potentials for a binary mixture, @,,. P12-GLP indicates that the value
is calculated using the London combining rule (equation (2.79)). P12-GM indicates
that the value was derived by applying the geometric-mean combining rule (equation
(2.82)). The equilibrium separation (often in the form of R1 or R2) is similar to the
parameter R* in the section 2.11 (equation (2.80)). RI1 and R2 are, of course, the
equilibrium separations for component 1 and component 2, respectively. For a binary
mixture consisting of components 1 and 2, the equilibrium separation is (Mohammadi,
1986)

RA

(R} + Ry) / 2 (2.95)

This notation has been used to indicate that the various values have been calculated by
running the computer programs. The notation is also due to a limitation in the
spreadsheet computer program used, that can only handle the ordinary alphabetic

letters A-Z.

4.1 Relationship between solubility and intermolecular

behaviour of the solute-solvent (interaction)

A linear relationship between the base 10 logarithm of the experimental solubility at
298.15 K and 101.325 kPa and a solubility characteristic has been shown by
Hildebrand and Scott (1962) and referred to in Prausnitz et al. (1986). A similar
relationship was found by Mohammadi (1986) and it was decided to continue this
work, using the generalized unlike London pair potential as the solubility
characteristic to see how far this relationship could be used to accommodate studies of

the solubility of gases in liquids.

As briefly discussed in Chapter 3 the solubility of solutes in dilute solutions depends
on properties of both the solute and the solvent. Hildebrand and Scott (1962) showed
that the logarithm of the solubility (at 298.15 K and 101.325 kPa partial gas pressure)

for non-polar non-reactive gas solutions versus the solubility parameter of the solvent,
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Ogonwen (discussed in section 3.3.2) shows a fair regularity. The figure (from

Hildebrand and Scott,1962) is shown as Figure 4.1. The solubility parameters, &

solvent

are derived at 298.15 K (from the square root of the cohesive energy densities).

<>—C12
L /’o—’ﬂ
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o
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Figure 4.1. Gas solubility at 298.15 K and 101.325 kPa partial pressure

versus the solubility parameter of the solvent &

solvent*

The solvents in Figure 4.1 are: C,F,, (6=5.8), (C,F,);N (6=5.9), C,F,,CF, (6=6.0), i-
C,H,5 (6=6.9), n-C;H,, (6=7.4), (C,H,),0 (6=7.4), C,H,,CH, (8=7.8), c-C/F,, (6=8.2),
CCl, (6=8.6), C;H;CH, (6=8.9), C,H, (6=9.2), and CS, (6=10.0)
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Further, Hildebrand and Scott (1962) showed that solutes in different solvents exhibit
a regularity of behaviour which seems to be related to the Lennard-Jones
intermolecular pair potential €/k; for the solute, derived from gas phase studies. The
graph is shown as Figure 4.2. The graph also appears in Prausnitz et al. (1986). The
intermolecular interaction parameter e/k, represents the negative minimum negative
energy (g) over Boltzmann's constant (k). This interaction parameter (force constant)
is unique for one component, and the interaction parameters for the solutes are thus

independent of the solvent. Another important feature of the interaction parameter 1s

its independence of temperature.

300

Figure 4.2. Solubilites of gases in liquids at 298.15 K and at a partial pressure
of 101.325 kPa as a function of solute characteristic e/k, (Lennard-Jones 6-12

potential).
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The position of the lines of the log Xy, versus e/ky depends, however, on the solvents
and this positioning appears to relate to the Hildebrand solubility parameter for a

limited group of non polar solvents as indicated by Figure 4.1.

Hildebrand and Scott (1962) conclude four characteristic features from Figures 4.1
and 4.2. Firstly, the experimental points fall upon two regular grids (with exceptions).
The spacing of the lines in the region of low solubility is strictly in order. In Figure
4.1 in the order of the solubility parameters of the solvents and in Figure 4.2 in the
order of the force constants of the solutes. It is therefore possible to predict the
solubility of the missing cases (as discussed in section 3.3.2). Secondly, Figures 4.1
and 4.2 indicate cases of specific interactions such as the data points for carbon
dioxide dissolved in benzene, toluene and carbon tetrachloride are above the line
(Figure 4.1) indicating larger values of solubilities then predicted from results
obtained in other solvents. The high solubility in aromatic hydrocarbons can probably
be attributed to a Lewis acid-base interaction between acidic CO, and the basic
aromatic. The specific chemical interaction between CO, and CCl, may be related to
the quadrupole moment of CO,. Thirdly, in Figure 4.2 the solubilities of the quantum
gases (He, Ne and H,) appear a little higher then expected. These anomalies are not
fully understood but may be related to quantum effects. For the fourth, a gas whose
force constant places it at the crossing of the lines of two solvents (Figure 4.2) is

midway between these solvents in its molecular forces.

The regularity of the “grids” is in accord with the concept of regular solutions.
Hildebrand and Scott (1962) conclude further that the entropy (except in a few
specific cases) is the sum of two factors: dilution and expansion and that these factors

are determined by the interrelations of intermolecular forces.

The relationship between the entropy and the solubility is shown in Figure 4.3 (from
Prausnitz et al., 1986) where the entropy of solution (in the form of the partial molal
entropy of the solute minus the partial molal entropy of the solute in the gaseous state)

is plotted against solubility (in the form of -R In x,,).
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Figure 4.3. Entropy of solution of gases in liquids as a function of gas

solubility (mole fraction) x, at 298.15 K and 101.325 kPa partial pressure.

The following features are noted. Firstly, a regular system of relationships exists
between entropy and solubility. Secondly, it is possible to predict the temperature
coefficient from a single value of solubility due to the fact that the dividing line
between positive and negative temperature coefficients of solubility is at the 0.0 value
of the entropy of solution. Thirdly, the entropy of solution becomes more negative in
passing from less soluble to the more soluble gases. For the fourth, the entropy of
solution increases much more rapidly than -R In x_,,,..
Figure 4.2 is quite heavily weighted by large fluorocarbon solvents of higher molar
volume. Because the use of the solubility parameters is rather limiting, excluding as it
does water and alcohols, we sought a single parameter which might Incorporate the
behaviour of both solute and solvent in a simple model. This single parameter should
depend on both the solute and the solvent, and the unlike pair potential (either London

or the geometric mean) would be suitable.
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As pointed out previously, the application of models to thermodynamic data requires
both a properly-defined mixing rule and a properly-defined combining rule for the
unlike interactions. It is therefore pointed out that by a more precise description of the
combining rule as in the Generalized London Pair potential, we might have a
sufficient encapsulation of the behaviour of both the solute and the solvent and so

need a no more complex mixing rule.

The aim of this investigation is to see if the unlike pair potential (preferably the
London potential but the geometric mean would also do) shows a similar regularity to
that of the Lennard-Jones parameter in Figure 4.2. If this investigation leads to a
“grid-like” plot where each unique solute-solvent mixture is represented by one point
with the solutes and the solvents along separate lines, the solubility for other mixtures
then that investigated could be predicted using the plots from the calculated value

(known) of the unlike London potential.

Development of a new prediction method for predicting solubilities of gases in liquids

using the unlike London pair potential was the aim of this Investigation.

4.1.1 Mohammadi's (1986) work on solubility of gases in liquids

Mohammadi (1986) was able to show a linear relationship between the logarithm of
the experimental solubility at 298.15 K and 101.325 kPa and a buffeting field. As an
expression for the buffeting field, he used a modification of the ori ginal London pair

potential for the mixture.

4.1.1.1 Buffeting field and gas solubilities

From the argument for real solutions (described in section 3.1.2) a pattern emerges for
a quantitative discussion of solubility, namely, the assumption that if the solute and
the solvent have similar intermolecular pair potentials in their pure states, then the
solute will exert forces on the molecules of the solvent similar to those it exerts on the
solute resulting in their mutual solubilities. Departures from similar forces lead to
decreasing solubilities. This is the fundamental idea underlying the Hildebrand
(Hildebrand and Scott, 1964) theory which leads to the concept of the solubility

parameter.
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There are other functions of the intermolecular pair potentials that may be used as a

measure of the solubility of the solute in the solvent. For example, one is the gain in

pair potential energy, APE, on making one dissimilar pair “uv” from two isolated pairs

“ulU” and “vv”” (Mohammadi, 1986)
1
APE = PE(uv) - > [PE(uu) + PE(vv)] 4.1)

where u and v indicate the solute and the solvent, respectively. This is related to the

definition of the interchange energy, w’, equation (2.59).

However, Gerrard (1980) contends that the tendency of a gas u to condense,
characterised by PE(uu), is the driving factor to consider with respect to any liquid. A
second factor may relate to the intermolecular structure of the solvent, PE(vv), as well

as arising from the inevitable interaction between the solute and the solvent, PE(uv).

Mohammadi (1986) used a modified pair potential as an expression of PE(uv) in his
work:

PEv) o« - LT, Wi W, < m’ > < m’ > FYRM (@2)
where the symbols are the same as used in section 2.11. As before, <> represents
electronic time averaging and <m*> = 3av,//2 is the bonded atom mean square
moment. F* is assigned to account for the molecular rotations. Their best Monte

Carlo-derived expression for F* is given in section 2.11. W, is the number of

structurally equivalent atoms j in the molecule and R” is the equilibrium separation.

There are two things to note about equation (4.2). Firstly, the pair potential which
Mohammadi (1986) used is different from the unlike London pair potential as
described in section 2.11. The unlike London pair potential for mixtures is expressed
as:
O, = O(pair) = -025 (R*)™
22w < m > ta < oms)FY ww,
i j

(4.3)
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In equation (4.2) the mean-square moments are multiplied as compared to the addition
in equation (4.3). The other thing to note is that he used an equilibrium separation
that is considered to be independent of temperature. The R* in equation (4.2) is
calculated from R*-values for the pure component at their freezing points. In the
cases where an experimental value for equilibrium separation for the pure component
at its freezing point was not available, Mohammadi did however use any convenient
temperature. This means that in some cases the R" was calculated using values for the
equilibrium separation for the pure compounds from non-consistent temperatures for

the two fluids.

Here Mohammadi's original work has been used as a basis, and then investigated
further. Initially, the original unlike London pair potential (equation (4.3)) was used
in connection with Mohammadi's concept of a temperature independent equilibrium
separation, but a temperature dependent equilibrium separation was also used in the
calculations described in the following section. This work is described in sections 4.3

and 4.5.

4.1.1.2 PE(uv) versus the logarithm of the solubility
Mohammadt (1986) calculated the PE(uv) as in equation (4.2) for a series of solutes
dissolved in each of three solvents. He used the experimental value for the molar
volume at the melting (freezing) point to calculate the equilibrium separation from the
equation

R* = 2(0.17 v )"’ (4.4)
where the R* for the mixture is given as

R% (R} + R}) / 2 (4.5)

mix

A list of the solutes and the solvents is given in Table 4-1.
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SOLUTES freezing molar equilibrium

temperature volume at separation

(K) freezing R” (A)
A point
(cm*/mol)

helium - 247 3.77
hydrogen 14.0 14.0 3.16
nitrogen 63.3 34.67 4.28
carbon monoxide 68.1 34.73 4.28
argon 83.8 2412 3.76
oxygen 54.4 22.43 3.70
methane 90.7 30.94 417
carbon dioxide 216.6 28.20 3.99
sulphur dioxide 197.7 - -
SOLVENTS freezing molar equilibrium

temperature volume a{ separation,

(K) freezing RA (A)
point
(cm>*mol)

water 273.15 19.82 2.82
benzene 278.7 77.28 6.18
carbon tetrachloride 250.0 87.90 5.90

Table 4-1. A list of the solutes and solvents as used by Mohammadi (1986).

The values of the molar volume and the equilibrium separations in Table 4-1 are from
Mohammadi (1986) ( a - indicates no value given by Mohammadi), the freezing
points are from Reid et al. (1987). The modified unlike London pair potential
(equation (4.2)) was then plotted versus the base 10 logarithm of the experimental
solubility at 298.15 K and 101.325 kPa. Tables A4-1 to A4-3 and Figures A4.1 to
A4.3 (all in Appendix 4) show the original results as obtained by Mohammadi (1986).
From the graphs and the tables it can be concluded that the “universal” potential
energy function expressed as PE(uv) for unlike pair interactions appears to fit the

solubilities especially well for the solvents benzene and carbon tetrachloride. The fit
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for the solvent water is slightly worse since, although the PE(uv) values are large, the

solubilities are very small.

No attempt has been made to recalculate Mohammadi’s results. Firstly, he used a
modification of the London pair potential and secondly, he did not use R*-values at a
consistent temperature for the binary mixtures he investigated. In Mohammadi's
thesis (1986) there are a number of tables containing R*-values, some are
experimental values for the pure compound in the solid phase, other values are
experimental values for the pure compounds at any convenient temperature and other
values are obtained from an experimental molar volume, again at any convenient

temperature.

The majority of the solutes in Table 4-1 (except carbon dioxide and sulphur dioxide)
are low-botling fluids with a critical temperature below 298.15 K, the temperature

where all the experimental solubility data are measured.

4.2 Relationship between unlike pair potential and

solubility-method VNUN

Mohammadi (1986) had obtained a linear relationship between the logarithm of the
solubility and a modified unlike London pair potential for mixtures for different solutes
dissolved in three solvents. Applying the generalized unlike London pair potential
instead of the modified pair potential as developed by Mohammadi would show how
far a relationship between the solubility and the unlike London pair potential could be

used to accommodate studies of the solubility of gases in liquids.

4.2.1 Calculations of relationship - method VNUN

There are two ways of investigating the relationship. One way is for a series of
solutes dissolved in one single solvent, as done by Mohammadi (1986) and Prausnitz
et al. (1986). The results obtained by Prausnitz and workers show a similar linear
relationship between a solubility characteristic and the solubility, so this was to be
expected for one single solute dissolved in a series of solvents. The other way of
investigating the relationship is to evaluate a single solute dissolved in a series of

solvents and this way is also described.
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The method described in this Section is named VNUN. This indicates that parameters
for both the solvent (V) and the solute (U) are calculated as if they were independent
of temperature (N). Later in this Chapter 4, other methods where the unlike London

pair potential is calculated as a function of temperature will be described.

When employing the AGAPE method to predict vapour-liquid equilibria it involves the
presumption that the like molecular potential @y, is defined by the relation (equation
(2.81))

AH = — (6024 Lz d, / 2) + RT

vap
Thus the value of @y, varies with the energy of vaporization and is therefore a
temperature-dependent quantity. This definition of the like pair potential means that in
the activity coefficients calculated by equations (2.93) and (2.94) the @, is introduced

at the operating temperature. This has the extensible merit of recognising that activity

coefficients and excess functions are indeed temperature dependent.

When seeking to apply the AGAPE mixing rule to gas-liquid equilibria we should
expect to construct a temperature-dependent parameter @, for both the solute and the
solvent. In the case of the solutes at operating temperatures above their critical
temperatures this can not be done with reference to the heat of vaporization or the liquid
molar volume since at these temperatures, no liquid phase truly exists for the pure
solute. ~This 1s the reason for carrying out this investigation with temperature
independent parameters, using individually “standard” temperatures instead of the
operating temperature. The temperatures were not consistent, as the freezing point
differs from one component to another but could be considered to be “corresponding”

points.

Temperature-independent interaction parameters are used in the UNIFAC method and
this limits the application of the method to between 275 and 425 K (see section
2.10.3.8). Some attempt to make the interaction parameters dependent on temperature
has been made (Skjold-Jergensen et al., 1980). Thus in relation to the UNIFAC method
it makes sense to investigate how far a “standard” like pair potential can be used to

accommodate solubility calculations.
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Calculations of the unlike London pair potential, using the computer program PP
mentioned in section 2.11.10, were carried out. The equilibrium separation for each
pure compound at the freezing points was used to calculate the unlike London pair
potential as given in equation (4.3). The option of screen inputting the values of
equilibrium separations was used in this case. The equilibrium separations for the pure
compounds at their freezing points were taken from Mohammadi (1986). Values are
given in Table 4-4 together with the values of the like pair potential obtained from the
computer program PP.

4.2.2 Results of relationship - method VNUN

4.2.2.1 A series of solutes dissolved in a single solvent

Method VNUN. The like London pair potentials for the pure compounds were derived
from the equilibrium separation at freezing point temperatures or temperatures close to
freezing point. The unlike London pair potential 1s then calculated at a pseudo-standard

temperature and is therefore independent of temperature.

Mixtures of the following solvents and solutes have been tested.

SOLVENTS name Freezing Boiling Critical
temp. (K) temp. (K) temp. (K)
CeHg Benzene 278.7 353.2 562.2
c-CgHys cyclo-hexane 279.6 353.8 553.5
CCl, carbon tetrachloride 250.0 349.9 556.4
CS, carbon disulfide 161.3 319.0 552.0
H,0O water 273.2 373.2 647.3
CHCl, chloroform 209.6 334.3 536.4
CH,0OH methanol 175.7 537.7 512.6
C,H;0H ethanol 159.1 351.9 513.9
C,H,0OH 1-propanol 146.9 370.3 563.8

Table 4-2. The selected solutes and solvents to be used in this investigation

(continued over).
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SOLUTES

CH,
Ar
Ne

C,H,
CoHs
n-C;Hg
n-C,Hyo

name

methane
argon

neon
hydrogen
nitrogen
oxygen
carbon oxide

carbon dioxide

ethylene
ethane
n-propane

n-butane

Freezing
temp. (K)
90.7

83.8

24.5

14.0

63.3

54.4

68.1
216.6

104.0
89.9
85.5
134.8

Boiling
temp. (K)
90.7
119.9
271

20.3

77.4

90.2

81.7
(194.7) at
pressure =
500 kPa
169.3
184.6
231.1
272.7

Critical
temp. (K)
111.6
209.4
44 .4

33.0
126.2
154.6
132.9
304.1

282.4
305.4
369.8
425.2

Table 4-2. The selected solutes and solvents to be used in this investigation.

Nine of the solutes have critical temperatures below the experimental temperature of

298.15 K. Neither the molar volume nor the heat of vaporization has a value above the

critical temperature, and it was therefore necessary to develop a method to overcome

this problem. This method will be described in Section 4.4.

The PP computer program was used to calculate the results (see description in section

2.11.10). The relevant parameters were as follows:

INPUT
R1

- the equilibrium separation for component 1

independent of temperature, values from Table 4-4

- the equilibrium separation for component 2

independent of temperature, values from Table 4-4

The chosen option for the calculation of the R1 and R2 values means, that the P11 and

P22 values in this case were calculated from the following option
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OUTPUT
P11, P22 - calculated at the freezing points

The unlike pair potential, P12 was calculated using the two options of combining the

two like pair potentials

OUTPUT
P12-GLP - calculated at the freezing points of the individual compounds
from the London theory
P12-GM - calculated at the freezing points of the individual compounds

from the Berthelot theory (the geometric mean)

The number of nearest neighbours, z and the r value (the difference in sizes of
volumes between molecule 1 and 2) are not used as parameters in the equations, when

the equilibrium separations are screen inputs.

Methanol, ethanol, and 1-propanol

Calculations have been carried out for mixtures including the solvents ethanol, 1-
propanol, and methanol. These solvents are both polar and contain hydrogen
bondings. Including them in the calculations is a test of how far the GLP model can
accommodate such compounds despite the limitations of the developed AGAPE

theory.

n-Propane, n-butane, and carbon dioxide

The three mentioned solutes all have their critical temperatures above 298.15 K.
Including them in the calculations is a test of whether the linear plot is unique for
solubility calculations or also valid for VLE calculations and therefore providing a

bridge to the use of the developed AGAPE equations.

Water
Water represents a special case. It is highly polar and contains hydrogen bonds.

Including it in the calculations is a test of how far the GLP model can accommodate
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for this specific compound despite the limitations of the developed AGAPE theory.
Water has, so far, not been tested in vapour-liquid equilibrium calculations, as no
predictions have been carried out for mixtures including water. Using water in these

calculations is also a test, whether water can be used in VLE predictions.

Equilibrium separations (R-values)

The equilibrium separations at freezing point for the majority of the compounds in
Table 4-4 are from Mohammadi (1986) or from Homer and Mohammadi (1987b). A
number of compounds are not included in Mohammadi’s extensive work. These
compounds are: the three alcohols, n-propane, and n-butane. For these five
solutes/solvents the equilibrium separation at the freezing point have been calculated
using the Yen-Woods method (1966) for calculating liquid densities. Extrapolating
this method to calculate molar volumes (from densities) in the solid state, is not the
intended way of using this method. A thorough analysis of this method and the
extrapolation to the solid state is given in Appendix 14. The equilibrium separations
at the freezing points as calculated by the extrapolation of the Yen-Woods method for
most compounds are well within the values found in the literature. The equilibrium
separations for the mentioned five compounds have therefore been calculated using
the Yen-Woods method at freezing points. The molar volume option was chosen as it
was the way the equilibrium distances originally had been calculated by Mohammadi

(1986).

Values of the pair potentials

The values of the like pair potential in Table 4-4 have been calculated by running the
computer program PP. They are not from Mohammadi's work, as no values of the
like pair potential are given in his work. The values of the unlike pair potential
(Tables A5-1 to A5-2) could not been compared with the values from Mohammadi
(1986, and repeated in Appendix 4), as the values in Appendix 4 are obtained by
employing equation (4.3).

Choosing among the options

Another point to notice is which options to chose. Here the options are the unlike pair

of London pair potentials or the geometric mean pair potential. All options are
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calculated, though every option for all combinations of solute/solvent from Table 4-2
has not been covered. The unlike pair potential calculated by the London method has
been tested in most detail. The other option of the geometric mean pair potential has

only been tested in a number of cases. The chosen combination of options is shown in

Table 4-3.

Combination | equilibrium separation unlike pair Calculations
(mainly at freezing potential
points)
1 from experimental data London thoroughly

(mainly at the freezing
points. For 5 compounds
from molar volumes at

their freezing points)

2 from experimental data geometric mean a small number of
(mainly at the freezing cases

points. For 5 compounds
from molar volumes at

their freezing points)

Table 4-3. A table of the different options and their combination.
Table 4-4 shows the relevant equilibrium separations (column 2, mainly from

Mohammadi (1986)) that are used to calculate the like London pair potential (equation

(4.3)), which is shown in column three.
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molar volume

compound R* (A) ®;*10™ (J)
solutes

methane 417 -0.029110
argon 3.76 -0.018024
neon 3.16 -0.004063
hydrogen 3.78 -0.003681
nitrogen 4.28 -0.009564
oxygen 3.70 -0.010828
carbon dioxide 3.99 -0.046398
carbon monoxide 4.28 0.010828
ethylene 4.82 -0.03777
ethane 4.91 -0.043996
n-propane 5.246835 -0.094536
n-butane 5.65164 -0.1466552

compound RA (A) ®,*10" (J)

solvents

benzene 6.18 -0.071373
cyclo-hexane 6.20 -0.114516
carbon 5.90 -0.093893
tetrachloride
carbon disulfide 5.14 -0.109444
water 2.82 -0.141916
chloroform 5.67 -0.075520
methanol 4.275855 -0.071482
ethanol 4.783208 -0.253580
1-propanol 5.231429 -0.355660

Table 4-4. The equilibrium separations used in method VNUN and the

calculated like pair potentials for the different solutes and solvents.

The results of the computer calculations carried out are shown in tables in Appendix S.

There are two ways to analyse the calculated results. The calculated values of the unlike
London pair potential for the mixtures can be plotted versus the base 10 logarithm of the
experimental solubilities (x,,,) at 298.15 K and 101.325 kPa for a series of solutes

dissolved in a single solvent, or the other way is to consider a single solute dissolved in

- 169 -




a series of solvents. The experimental solubilities were obtained from either the TUPAC
Solubility Data Series (Clever, 1979 (vol. 1), Clever, 1980 (vol. 4), Young, 1981 (vol.
5/6), Battino, 1981 (vol. 7), Hayduk, 1982 (vol. 9), Battino, 1982 (vol. 10), Hayduk,
1986 (vol. 24), and Clever and Young, 1987 (vol. 27/28)) or Fogg and Gerrard (1991).
The method of presenting the data was chosen such that the graphs could be compared

with Figure 4.2 from Prausnitz et al. (1986).

Typical examples of both the types are shown below. Figure 4.4 for carbon disulfide
and Figure 4.5 for methanol show the plots for a series of solutes dissolved in a single
solvent. Figure 4.6 shows the plot for two solvents, carbon tetrachloride and benzene.
Figure 4.7 for argon and methane represents a typical example of the plot for a single

solute dissolved in a series of solvents.

The following Table 4-5 shows the results of the plots. The first column shows the
name of the solvent, the second column the origin of the equilibrium separation for the
solvent (the value is shown in Table 4-4), then follows the name of the solute and the
origin of the equilibrium separation for the solute. The fourth column displays which
combining rule is used to calculate the unlike pair potential, either the London
combining rule or the geometric mean. The last column shows the figure number (A
refers to Appendix) and the resulting linear correlation coefficient of the plot. The
closer the linear regression correlation coefficient is to unity, the better the data points

lie close to a straight line.
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solvents equilibrium | solutes equilibrium | unlike pair Figure no.
separation separation potential and linear
(freezing (freezing regression
point) point) coefficient
Benzene Mohammadi | Table 4-2 | Mohammadi London Figure A5.1
(1986) (1986) 0.8772
cyclo-hexane | Mohammadi | Table 4-2 Mohammadi London Figure A5.3
(1986) (1986) 0.9772
carbon Mohammadi | Table 4-2 Mohammadi London Figure A5.2
tetrachloride (1986) (1986) 0.9751
carbon Mohammadi | Table 4-2 | Mohammadi London Figure 4.4
disulfide (1986) (1986) 0.9637
water Mohammadi | Table 4-2 | Mohammadi London Figure A5.7
(1986) (1986) 0.1159
chloroform Mohammadi | Table 4-2 | Mohammadi London Figure A5.4
(1986) (1986) 0.9915
methanol from molar Table 4-2 Mohammadi London Figure 4.5
volume (1986) 0.8553
ethanol from molar Table 4-2 Mohammadi London Figure A5.5
volume (1986) 0.8822
1-propanol from molar Table 4-2 | Mohammadi London Figure A5.6
volume (1986) 0.9027
Table 4-2 Mohammadi methane Mohammadi London Figure A5.12
(1986) (1986) < 0.000001
Table 4-2 Mohammadi argon Mohammadi London Figure A5.11
(1986) (1986) 0.0837
Table 4-2 Mohammadi | hydrogen Mohammadi London Figure A5.15
(1986) (1986) 0.0513
Table 4-2 Mohammadi nitrogen Mohammadi London Figure A5.16
(1986) (1986) 0.0064
Table 4-2 Mohammadi oxygen Mohammadi London Figure A5.17
(1986) (1986) 0.0541
Table 4-5. List of results, method VNUN including figure numbers

(continued over).
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solvents equilibrium | solutes equilibrium | unlike pair Figure no.
separation separation potential and linear
(freezing (freezing regression
point) point) coefficient
Table 4-2 Mohammadi carbon Mohammadi London Figure A5.18
(1986) monoxide (1986) 0.0100
Table 4-2 Mohammadi ethane Mohammadi London Figure A5.19
(1986) (1986) 0.0087
Table 4-2 Mohammadi | n-propane | Mohammadi London Figure A5.13
(1986) (1986) 0.0116
Table 4-2 Mohammadi carbon Mohammadi London Figure A5.14
(1986) dioxide (1986) 0.0127
methanol from molar Table 4-2 | Mohammadi | geometric Figure 4.5
volume (1986) mean 0.8391
ethanol from molar Table 4-2 Mohammadi | geometric Figure A5.5
volume (1986) mean 0.9031
1-propanol from molar Table 4-2 | Mohammadi | geometric Figure A5.6
volume (1986) mean 0.9308
carbon Mohammadi | Table 4-2 | Mohammadi | geometric Figure A5.2
tetrachloride (1986) (1986) mean 0.9567
benzene Mohammadi | Table 4-2 | Mohammadi | geometric Figure A5.1
(1986) (1986) mean 0.9286

Table 4-5. List of results, method VNUN including figure numbers.
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ng Xsolute

R? = 0.9637

0.00 -0.02 -0.04 -0.06 -0.08 -0.10
P12-GLP*E19 (J)

Figure 4.4. Solubilities of gases in carbon disulfide at 298.15 K, 101.325

kPa as a function of the generalized unlike London pair potential (P12-GLP)

calculated by method VNUN.

-1.0

1.5 R* = 0.8553
2.0 + oy R® = 0.8391

2.5 T

0.00 -0.02 -0.04 -0.06 -0.08 0.10 0.12
P12*E19 (J)

Figure 4.5. Solubilities of gases in methanol at 298.15 K, 101.325 kPa as a
function of the generalized unlike London pair potential (P12-GLP, m points
and — line) and the geometric mean unlike pair potential (P12-GM, a points

and -- line) calculated by method VNUN.
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Figure 4.6. Solubilities of gases In benzene (a and —) and carbon
tetrachloride (m and --) at 298.15 K, 101.325 kPa as a function of the
generalized unlike London pair potential (P12-GLP) calculated by method
VNUN.
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Figure 4.7. Solubilities of oxygen (a and —) and argon (m and --) in solvents
at 298.15 K, 101.325 kPa as a function of the generalized unlike London pair
potential (P12-GLP) calculated by method VNUN,

Figure 4.6 is a combination of Figures A5.1 and A5.2 without the regression lines and
Figure 4.7 is a combination of Figures A5.11 and A5.17, where all the solvents are

named on the figures.

4.2.3 Discussion of relationship - method VNUN

4.2.3.1 A series of solutes dissolved in a single solvent

Sadly, the aim of developing a new gas-solubility prediction method was unsuccessful
in the VNUN case. From the results of the linear regression coefficients in Table 4-5 it
can be seen that the plots of a series of solutes dissolved in a single solvent show the
same regularity as Figure 4.2. The plots of a single solute dissolved in a series of
solvents show far from the same pattern of regularity. This indicates that it was not

possible to produce the wanted “grid” pattern using the VNUN method.
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Comparison to Figure 4.2

Figure 4.6 demonstrates the regularity of solutes dissolved in a single solvent very well.
The solutes follows the same sequence with hydrogen first (lowest solubility of the
examined solutes), nitrogen, carbon monoxide, argon, oxygen, methane, carbon dioxide,

ethane, propane, and finally n-butane (with the highest solubility).

This 1s the same sequence as shown in Figure 4.2 and is not only due to the solubility,
but the sequence of solutes is also influenced by the value of the (in Figure 4.6) unlike

London pair potential.

The sequence of the solvents in Figure 4.6, where the carbon tetrachloride trendline lies
below the trendline for benzene, is the opposite of the sequence in Figure 4.2. This is a
very peculiar result and to investigate this, the carbon disulfide trendline has been added
to the figure in Figure AS5.10. The carbon disulfide lies as the lowest of the three lines,
which is in agreement with Figure 4.2. The reason for the opposite tendency in Figure
4.2 compared to Figure 4.6 is that in Figure 4.2, the benzene and carbon tetrachloride
lines are not trendlines for the best linear regression between all the data points, but the
best regression lines where the data points for hydrogen have been excluded. The same
goes for the propane and n-butane data points in Figure 4.6, two solutes which are not

included in Figure 4.2.

In Figure 4.6 the two trendlines cross each other around -3 on the y-axis and then the
difference between them increases with increasing value of the pair potentials. In Figure
4.2 the lines for benzene and carbon tetrachloride do not cross, but they become further

and further apart, when the force constant increases.

Water and the alcohols

The solvent water was expected to give bad results as the compound is both polar and
contains hydrogen bonding. As expected, the linear relationship was far the worst
among the above mentioned solvents. The linear regression coefficient was around 0.1.
As no other phase equilibrium predictions including water had been carried out at that
time, these calculations were a test case for water. Compared to the alcohols: methanol,

ethanol, and 1-propanol that are also polar and contain hydrogen bondings, water shows
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the worst linear relationship (taking the linear regression coefficient as an expression for
how good the linear relationship is). The alcohols show surprisingly good linear
relationship, surprisingly when their polarity and hydrogen bondings are taken into
account. In fact, the alcohols show the same accuracy in their linear relationship as

benzene.

Apart from water, the solvents included in this VNUN linear relationship investigation

all show arelatively good agreement with a straight line.

Comparison to Mohammadi's results (1986)

One of the most distinctive result is the much better linear regression coefficients (i.e.
the data points lie much closer along a straight line) obtained by Mohammadi (1986,
repeated in Appendix 4) using the modified unlike potential (equation (4.2)). The
linear regression coefficients are 0.9795, 0.9911 and 0.8837 for the solvents benzene,
carbon tetrachloride and water, respectively compared to 0.8772, 0.9751 and 0.1159
as obtained in this investigation. The solvents included in his investigation and the
solutes included in the VNUN investigation are the same, except for the heavier
hydrocarbons n-propane and n-butane. The explanation for the much better linear
regression coefficients lies in the modified potential Mohammadi used, and also in the
equilibrium separation for the mixture, where he either used the arithmetic mean value
or the biggest value of the two individual equilibrium separations. Throughout this

investigation the arithmetic mean value has been used.

Water

In Appendix 5 are two plots for water, one without the data points for n-propane and n-
butane (Figure AS5.8) and the other similar but also excluded is the data point for
ethylene (Figure A5.9). The linear regression coefficient for the first plot is 0.642, while
that for the second plot 1s 0.7418. These plots compare better to the plot (Figure A4-3)
by Mohammadi as they include the same solutes and consequently they show greater
similarity to Figure A4-3. This shows that the solubilities for propane and n-butane in
water are much lower then expected, a fact that can be seen by examining the tables and

graphs in Appendix 3. The solubilities for propane and n-butane in water are in fact of
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the same order of magnitude as the solubility of methane. In most other solvents, the

solubilities of propane and n-butane are much higher then the solubility of methane.

By omitting these three solutes, the results of Mohammadi and this investigation
(VNUN) are more comparable and they are of the same order of magnitude but with a

slightly higher linear regression coefficient obtained by Mohammadi.

Mohammadi could have obtained a higher linear regression coefficient because he

used a modified potential (equation (4.2)).

4.2.3.2 One single solute dissolved in a series of solvents
As indicated by the linear regression coefficients in Table 4-5, the relationship
between the unlike London pair potential and the logarithm of the solubility for one

single solute dissolved in a series of solvents is far from a linear relationship.

Comparison to Figure 4.2

It was not the result hoped for. Figure 4.2 from Prausnitz et al. (1986), shows a
relationship between the logarithm of the experimental solubility and the solute
characteristic €/k;. The unlike London pair potential is dependent on both the solvent
and the solute. If an investigation more alike to the one referred to in Prausnitz et al.
(1986) had been carried out, the like pair potential for the solute should have been the
variable instead of the unlike pair potential. This would have given a similar result as
the one in Figure 4.2. This particular investigation was chosen differently with the
aim of contributing to the knowledge of intermolecular forces and their dependence

on both the solute and the solvent.

Despite this, Figure 4.7 demonstrates the lack of regularity of solvents very well. The
solvents follow the same sequence with benzene first. It has the highest value of the
unlike pair potential of the examined solvents. Then follows methanol and in both cases
1-butanol has the lowest value of the unlike pair potential. The data points for the
solvents cyclo-hexane and carbon tetrachloride are in reversed sequence on the two

solute curves, and this 1s also the case for the solvents carbon disulfide, ethanol and
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water where the sequence is different for the two solutes. The sequence is probably best

seen in Figures A5.11 and A5.17.

Despite this irregularity, the pattern with the sequence of benzene, carbon

tetrachloride and carbon disulfide is recognised from Figure 4.6.

Overall, the results seem to indicate that energetic or enthalpic terms may not be

dominant in this case.

4.2.4 Conclusion of relationship - method VNUN

The aim with this investigation was to determine whether the linear relationship found
between the solubilities of gases in liquids and the force constants of solutes (Figure
4.2) could be established, when replacing the force constant with a parameter related
to the intermolecular forces, in this case the unlike potential. The force constant is
independent on temperature, so in the first instance a temperature independent unlike
potential was employed. As opposed to the force constant of the solute, the unlike
potential depends on both the solute and the solvent and could probably provide more

information about the intermolecular forces then the force constant for the solutes.

The result of the calculations carried out is that there is, indeed a linear relationship
for a series of solutes dissolved in a single solvent. This applies even for polar
solvents such as alcohols. The only exception is water, where there is no relationship
to be found. This result does not surprise, as the solubility of various gases in water 1is
generally very small and not consistent with the variation for a homologous series as

seen for other solvents (discussed in Chapter 3).

The analysis of a single solute dissolved in a series of solvent showed that in this case,

there was no linear relationship to be established.

The results obtained inspired new calculations, where the unlike pair potential was

dependent on temperature.
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4.3 Relationship between unlike pair potential and
solubility- method VDUN

The method described in this section is named VDUN. This indicates that parameters
for the solvent (V) are dependent on temperature (D) and those for the solute (U) are

independent of temperature (N).

The majority of the solutes in Table 4-2 have critical temperatures well above the
experimental temperature which in this case is 298.15 K. The problem of contriving
“liquid” parameters for the hypothetical liquid above the critical temperature has been

met by other authors, notably Prausnitz in his work on regular solution theory (Prausnitz

and Shair, 1961).

Similar calculations as described under method VNUN were then carried out, but here

the equilibrium separations for the solvents at 298.15 K were used.

To let the solvent be temperature dependent in solubility studies also reflects the fact,
that for the vast majority of mixtures the solubilities are small. In most cases, the
solvent 1s the dominant compound with the highest concentration in a binary solute-
solvent mixture, and letting the solvent be temperature dependent and the solute

independent of temperature makes sense.

4.3.1 Calculations of relationship - method VDUN

Calculations of the unlike London pair potential, using the computer program PP
mentioned in section 2.11.10, were carried out. The equilibrium separation for each
pure solute at their freezing points and the equilibrium separation for the solvents at
298.15 K were used to calculate the unlike London pair potential as given in equation
(4.3). The option of screen inputting the values of equilibrium separations was used in
this case. The equilibrium separations for the pure solutes at their freezing points were
taken from Mohammadi (1986). The equilibrium separations for the pure solvents at
298.15 K were first calculated from the computer program PP. In this case (pure
solvents at 298.15 K) the single component option, the molar volume option and the

operating temperature were input to the program.
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It should be noted, that in this case, the unlike London pair potential was intended to be

calculated at different temperatures for the solute and the solvent.

The relevant parameters in the computer programs were as follows:

INPUT
R1 - the equilibrium separation for the solute
independent of temperature, values from Table 4-4
R2 - the equilibrium separation for solvent

calculated by program PP at 298.15 K from the molar volume

option

The chosen option for the calculation of the R1 and R2 values means, that the P11 and
P22 values in this case were calculated from the following option
OUTPUT

P11 - calculated at the freezing point for the solute

P22 - calculated at 298.15 K from the molar volume option

The unlike pair potential, P12 was calculated using the two options of combining the

two like pair potentials

OUTPUT
P12-GLP - calculated at the inconsistent temperatures of the individual
compounds from the London theory
P12-GM - calculated at the inconsistent temperatures of the individual

compounds from the Berthelot theory (the geometric mean)
When the equilibrium separations are screen input, the parameters z (the number of

nearest neighbours) and the r value (the difference in sizes of volumes between

molecule 1 and 2) are not used in the equations.
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Choosing among the options

A point to notice is which options to chose. The like pair potentials (in this case only
the like pair potentials for the solvents) can be calculated from either the heat of
vaporization or the molar volume. The other option is the unlike pair of London pair
potentials or the geometric mean. All options are calculated, though calculations of
every option for all combinations of solute/solvent from Table 4-2 have not been
carried out. The option: equilibrium separation from the molar volume (at 298.15 K
and only for the solvents) and the unlike pair potential calculated by the London
method has been tested in most detail. The other options have only been tested in a

number of cases. The chosen combination of options is shown in Table 4-6.
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Combina-

tion

equilibrium separation

unlike pair

potential

Calculations

solvents
(at 298.15 K)

solutes

(at freezing points)

from molar

volume

from experimental
data (mainly at the
freezing points.
For 5 compounds
from molar
volumes at their

freezing points)

London

a small
number of

cases

from molar

volume

from experimental
data (mainly at the
freezing points.
For 5 compounds
from molar
volumes at their

freezing points)

geometric
mean

a small
number of

cases

from heat of

vaporization

from experimental
data (mainly at the
freezing points.
For 5 compounds
from molar
volumes at their

freezing points)

London

Nno cases

from heat of

vaporization

from experimental
data (mainly at the
freezing points.
For 5 compounds
from molar
volumes at their

freezing points)

geometric

mean

Nno cases

Table 4-6. A table of the different options and their combination.

Combinations number 3 and 4 are considered inconsistent and therefore no

calculations involving these combinations have been carried out.
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molar volume

compound R” (A) ®,*10" (J)
solutes
methane 417 -0.029110
argon 3.76 -0.018024
neon 3.16 -0.004063
hydrogen 3.78 -0.003681
nitrogen 428 -0.009564
oxygen 3.70 -0.010828
carbon dioxide 3.99 -0.046398
carbon 4.28 0.010828
monoxide
ethylene 4.82 -0.03777
ethane 4.91 -0.043996
n-propane 5.246835 -0.094536
n-butane 5.65164 -0.1466552
molar volume
compound RA (A) ®,*10" (J)
solvents
benzene 5.90631 -0.123816
cyclo-hexane 6.284148 -0.098488
carbon 6.04657 -0.075741
tetrachloride
carbon 5.245798 -0.092490
disulfide
water 3.427886 | -0.030407
chloroform 5.900903 -0.053716
methanol 4.471602 -0.047341
ethanol 5.024571 -0.132554
1-propanol 5.497517 -0.204653

Table 4-7. The equilibrium separations used in method VDUN and the

calculated like pair potentials for the different solutes and solvents.
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Table 4-7 shows the relevant equilibrium separations that are used to calculate the like
London pair potential (equation (4.3)), which is shown in column three and five
depending on whether the equilibrium separation is derived from the molar volume

option (column two) or the heat of vaporization option (column four).

The results of the computer calculations carried out are shown in Appendix 6. The
calculated values of the unlike London pair potential for the mixtures were plotted
versus the base 10 logarithm of the solubilities (x,,,.) at 298.15 K and 101.325 kPa.
Again the experimental solubilities were obtained from either [TUPAC Solubility Data
Series (Clever, 1979 (vol. 1), Clever, 1980 (vol. 4), Young, 1981 (vol. 5/6), Battino,
1981 (vol. 7), Hayduk, 1982 (vol. 9), Battino, 1982 (vol. 10), Hayduk, 1986 (vol. 24),
and Clever and Young, 1987 (vol. 27/28)) or Fogg and Gerrard (1991). The plots are
shown in Appendix 6.

The following Table 4-8 shows the results of the plots. The first column shows the
name of the solvent, the second column the origin of the equilibrium separation for the
solvent (the value 1s shown in Table 4-7), then follows the name of the solute and the
origin of the equilibrium separation for the solute. The fourth column displays which
combining rule is used to calculate the unlike pair potential, either the London
combining rule or the geometric mean. The last column shows the figure number (A
refers to Appendix) and the resulting linear correlation coefficient of the plot. The
closer the linear regression correlation coefficient is to unity, the better the data points

lie close to a straight line.
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solvents equilibrium solutes equilibrium | unlike pair | Figure no.

separation separation potential and linear

(298.15 K) (freezing regression

point) coefficient

benzene from molar Table 4-2 | Mohammadi London Figure A6.1
volume (1986) 0.9370

carbon from molar Table 4-2 | Mohammadi London Figure A6.2
tetrachloride volume (1986) 0.9763

water from molar Table 4-2 | Mohammadi L.ondon Figure A6.3
volume (1986) 0.1315

methanol from molar Table 4-2 | Mohammadi London Figure A6.4
volume (1986) 0.8617

ethanol from molar Table 4-2 | Mohammadi London Figure A6.5
volume (1986) 0.8933

ethanol from molar Table 4-2 | Mohammadi geometric Figure A6.5
volume (1986) mean 0.9031

methanol from molar Table 4-2 | Mohammadi geometric Figure A6 .4
volume (1986) mean 0.8391

benzene from molar Table 4-2 | Mohammadi geometric Figure A6.1
volume (1986) mean 0.8365

carbon from molar Table 4-2 | Mohammadi geometric Figure A6.2
tetrachloride volume (1986) mean 0.9567

Table 4-2 from molar methane Mohammadi London Figure A6.6
volume (1986) 0.3448

Table 4-8. List of results, method VDUN including figure numbers.

4.3.2 Results of relationship - method VDUN

4.3.2.1 A series of solutes dissolved in a single solvent

Compared to the results obtained from the VNUN method, the VDUN method shows
very small improvements, when using the linear regression coefficient as the values to

be improved, e.g., the linear regression coefficient for the solvent water goes from

0.11 (method VNUN) to 0.13 (method VDUN).

This is probably due to the very small change in the equilibrium separations (for the

solvents) used in method VNUN and method VDUN. Despite the fact that the like
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pair potential is very sensitive to the value of the equilibrium separation (see
Appendices 7 and 8), these results seem to indicate that the unlike pair potential is less

sensitive to a changed value of one of the like potentials.

The sequences of the solutes and the solvents have remained unchanged from the

VNUN case.

4.3.2.2 One single solute dissolved in a series of solvents

The slight improvements resulting in larger values of the linear regression
coefficients, when comparing method VDUN with method VNUN do not seem to
Justify carrying out this analysis to its full extent in this VDUN case. Considering the
very small values of the linear regression coefficients that were obtained when using
method VNUN analysing a single solute dissolved in a series of solvents, one case

was examined, choosing methane as the solute.

The result was an extremely large improvement in the linear regression coefficient
from less then 0.00001 to 0.3448. This was taken as an indication that the use of a
temperature dependent pair potential which, right from the start, had been applied to

calculate the vapour-liquid equilibria predictions was right.

The use of a temperature dependent like pair potential for the solvents gave an
enormous Increase in the linear regression coefficient, and it inspired to further
calculations, where both the solute and the solvent were dependent on temperature.
There is, however, a problem with the solutes, whose critical temperatures are below

298.15 K. They are regarded as hypothetical liquids at 298.15 K.

A number of different authors had overcome the problem of the hypothetical liquids
in different ways, and they work was used as inspiration to the approach developed in

this study. The approach is described in section 4.4.
4.3.3 Conclusion of relationship - method VDUN

The results of employing a temperature dependent pair potential for the solvents and use

a like pair potential obtained at the compounds freezing points for the solutes gave a
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slight improvement in the linear regression coefficients when compared to the results of
method VNUN for the analysis of a series of solutes dissolved in one single solvent.
When analysing one single solute dissolved in a series of solvents, the results was an

astonishing improvement of the linear regression coefficient.

The result confirmed the belief of using a temperature dependent unlike pair potential,

which had been employed in the vapour-liquid predictions.

This particular result also initiated a search for a way of calculating the like pair
potential, primarily at 298.15 K for solutes, whose critical temperatures are below

298.15 K.

4.4 The like pair potential for low-boiling pure gases above

their critical temperatures

4.4.1 Introduction to the problem

The derivation of the AGAPE equations in section 2.11 shows that the unlike London
pair potential for the mixture is derived from the like London pair potentials for the
pure components. These like London pair potentials are, on the other hand, a function
of a number of variables, among them is the equilibrium separation for the pure
components. The equilibrium separation for the pure components is calculated as a
function of temperature from either the molar volume or the heat of vaporization. The
problem lies in the fact, that neither the molar volume nor the heat of vaporization has
a value when the temperature exceeds the critical temperature of the components.
This is the reason for the limitation of the operating temperature to be below the

critical temperature of each of the components.

The limitation is not crucial for predictions of vapour-liquid equilibrium, but for
calculations concerning the solubility of gases in liquids this is a serious limitation.
Vapour-liquid equilibrium data are usually measured below the critical temperature of
the lowest-boiling component, whereas gas-solubility measurements are made at

temperatures above the critical temperature of the lowest boiling component. As
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explained in Chapter 3 this difference is sometimes used to distinguish between

measurements of vapour-liquid equilibrium and of solubility of gases in liquids.

The results of the previous methods VNUN and VDUN also made it clear that it was
necessary to develop a method that would make it possible to carry out various gas-
solubility calculations at temperatures above the critical temperature of the

components.

4.4.2 Calculations of the pair potential of pure gases as a function of
temperature
A number of different approaches towards calculating the solubility of gases in liquids

at temperatures above the critical temperature of the gas has been carried out.

Methane was chosen as a test case because its critical temperature is 190.4 K, and an
extension to 298.15 K, a temperature where several experimental data could be found

seemed to be a reasonable extension.

The heat of vaporization, the equilibrium separation from the heat of vaporization and
the like London pair potential calculated from the heat of vaporization were calculated
as a function of temperature for methane in the temperature interval 0 K to the critical
temperature 190.4 K using one of the AGAPE computer programs. The heat of
vaporization is calculated using Watson’s correlation (Reid et. al, 1987). The heat of
vaporization (AH,,, ) at the boiling point (T,) is included in the AGAPE database.

The program calculates the latent heat of vaporization (AH,,;,) at another temperature

vap,2

(T,) using Watson's correlation.

0.38
1 - T,
AI_Ivap,Z = AHVap,I(l _ T J (46)

rl

where

4.7)
T = Ty / Tc

TrZ = T2 / TC

The latent heat of vaporization is given by
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1
A Hyp = - const 5 LzU(pair) + TR (4.8)

where const is a constant to convert to the right units. The const is 60.24, if AH,,, is

calculated in kJ/mole, and the units of R*, a; and <m®> are, respectively, A, A and 107

% erg cm’.

Equation (4.8) is derived under the assumption that the major part of the cohesion
energy is due to immediate interactions between nearest neighbours. To repeat, the

pair potentials is given by

®; = ®(pair) = -025R")" |
Z Z (i < m > * o5 < m >F"w Wi
L

(4.9)

From known heat of vaporization at a given temperature (calculated from Watson’s
correlation) the equilibrium separation R* can be found by combining equation (4.8)

and (4.9), and solving them for the equilibrium separation, R*.

Similarly, the molar volume, the equilibrium separation from the molar volume and
the like London pair potential calculated from the molar volume were calculated as a
function of temperature for methane in the temperature interval 0 K to the critical

temperature 190.4 K using the same AGAPE computer program.

The equilibrium separation 1s found from the molecular volume
R* = 2(0.17 V™ )"’ (4.10)

The molecular volume 1s related to the molar volume by L, Avogadro's number. The
molar volume can be calculated as a function of temperature by a method from Yen

and Woods (1966)

v = R Zc Tc / (Pc p) (4.11)
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where R is the gas constant. The saturated density p®is calculated from the reduced

saturated density p,° given by

ppo= — = 1+ A0-T1)"
Pc (4.12)

+B(1 - T, )" + Cc1l - T1,)"

where A, B, and C are functions of the critical compressibility factor Z. and given in

Yen and Woods (1966).

It is worth mentioning that using the calculations in this way was not how they
originally were intended to be used. When the GLP theory originally was derived
(Homer and Mohammadi, 1987a) the basis for prediction of heats of vaporization was
to evaluate the equilibrium separation R* from the molar volume close to the freezing
points (corresponding temperatures) and to use that value of R* to find a value for the
like potential and hence the interaction for all the atoms predicting the heat of

vaporization at a temperature close to the boiling point (corresponding temperatures).

It was never envisaged that the heat of vaporization could be correlated with the molar
volumes over a substantial temperature range. The relation between these two

quantities 1s a complex one. The quotient AH,, / v is related to the van der Waals

vap

factor a’ which is known to be temperature dependent.

Only in the event that the heat of vaporization data is not being available, has it been
found necessary to calculate R* from the molar volume option for predicting vapour-

liquid equilibrium.

In Appendix 13 the values of the heat of vaporization as calculated by the POT
method (explained in Appendix 13) will be compared with other methods for
prediction of the heat of vaporization. In Appendix 14 the molar volume values as
calculated by the Yen-Woods method will be compared with experimental values of
the molar volumes, mainly for the compounds in their solid state which is beyond the

temperature limit of the Yen-Woods method.
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The like pair potential calculations for methane are carried out using the following

options in the computer programs:

Heat of vaporization:

INPUT temperature and the component
OPTION heat of vaporization
OUTPUT heat of vaporization

equilibrium separation from heat of vaporization

London pair potential from heat of vaporization

Molar volume:

INPUT temperature and the component
OPTION molar volume
OUTPUT molar volume

equilibrium separation from molar volume

London pair potential from molar volume

Table A7.1 (Appendix 7) shows the results obtained. Figure A7.1 shows the molar
volume as a function of temperature and the best fit for the graph, which is a sixth-
order polynomial expression. Figures A7.2 and A7.3 show the like London pair
potential for methane as a function of temperature calculated from the molar volume
and the heat of vaporization option, respectively. Also plotted on the figures are the
best curve-fit expressions, which are fifth-order polynomial expressions for both
curves. Figures A7.4 and A7.5 show the equilibrium separation as a function of
temperature calculated from the molar volume and the heat of vaporization option,
respectively. Also plotted on the figures are the best curve-fit expressions, which are

fifth-order polynomial expressions for both curves.

Figure A7.6 shows the calculated heat of vaporization as a function of temperature

and the experimental data for the heat of vaporization from Table A7-2.
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4.4.3 Discussion of various methods

The first idea of extension was an extrapolation of the like London pair potential
curves (from the heat of vaporization or the molar volume) up to the operating
temperature, 1.e. up to 298.15 K. The London pair potential curves were both fitted
with a fifth-order polynomial expression which proved to be the best fit from using all
the available options for curve fitting and comparing the curve fitting coefficient. It is
obvious from Figures A7.9 and A7.10 that show the plots of the London pair potential
for methane as a function of temperature extrapolated to 350 K that the London pair
potential calculated in both cases is positive at a temperature at 298.15 K. In fact, the
like London pair potential changes sign from negative to positive at the critical

temperature of methane.

The like and the unlike London pair potentials are bound to be negative due to the
common convention of expressing attractive forces as negative, and the dispersion

forces account only for the attractive forces.

The next approach was to extrapolate the curves for the equilibrium separation from
either the molar volume or the heat of vaporization beyond the critical temperature.
Figures A7.11 and A7.12 show the fitted curves extrapolated to 350 K for the
equilibrium separation calculated from the molar volume and the heat of vaporization,
respectively. Values for the equilibrium separation for methane at 298.15 K were
calculated from the expressions for the fitted curves. The values were approximately

55 and 135 from molar volume and heat of vaporization, respectively.

A new variation of the previously used AGAPE computer program was written. An
extra option was included of inputting the equilibrium separation for the pure
component (as an input) instead of using the default value calculated by the program.

This program was then used to derive values of the London pair potential as follows.

INPUT equilibrium separation and the component
OPTION screen input
OUTPUT heat of vaporization at that equilibrium separation

London pair potential (at screen input equilibrium separation)
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This computer program can be used for both a single component or a binary mixture.
Using this version of the computer programs, the above values of R* for methane of
55 and 135, respectively, were inputs to the program. In both cases, the program

calculated a positive like pair potential.

It was not possible to obtain a value for the like pair potential of methane by
extrapolating either the like pair potential as a function of temperature or the
equilibrium separation as a function of temperature, because the like pair potential in

both cases became positive, and another approach had to be developed.

One way is to force the pair potential for the pure gas to remain negative for all values
of temperature. This could be done by curve fitting on selected values in a

temperature range well above the triple point and well below the critical point.

4.4.4 The selected method

This idea of a selected temperature interval was investigated further. Various
temperature intervals were suggested, but were rejected because of non-continuous
properties, such as density. By focusing on a temperature interval where the density
would be continuous, the temperature interval between the triple (freezing) point and

the boiling point was chosen.

The triple point is characterised as the only point, at a fixed temperature and pressure,
the triple point, where the three phases of a pure substance, solid, liquid and gas, can
remain in mutual equilibrium. For a number of substances, the triple point

temperature is equal to its freezing temperature (Rowlinson and Swinton, 1982).
Again, methane was used as the test case. The next question was: which parameter of
either the equilibrium separation or the like London pair potential should be chosen

for the extrapolation from the selected temperature interval to 298.15 K.

The like pair potential is a function of the equilibrium separation, which itself is a

function of temperature. Both the equilibrium separation and the like pair potential
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were plotted as a function of temperature in the interval: the triple point to the boiling
point. The graphs for the equilibrium separation for methane in the chosen
temperature interval from a temperature a little below the triple point (90.7 K) to a
temperature a little above the boiling point (111.6 K) from both the molar volume and
the heat of vaporization option is shown as Figure 4.8. The similar graph for the like

pair potential is Figure A7.13.

The lines are fitted with linear regression expressions, and all four line regression
coefficients are larger then 0.95. This indicates that all four lines are very close to

being straight lines.
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Figure 4.8. The equilibrium separations as a function of temperature in the

interval: the triple point to the boiling point and the best fitting curves.

The four lines have all been extrapolated to 320 K. The results are shown as Figures
4.9 and A7.14, respectively. The graphs show that the extrapolated lines of the two
lines for the like pair potential both give positive values of the extrapolated like pair
potentials at 298.15 K. Extrapolation gives positive like pair potentials at app. 240 K
and 270 K.
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Figure 4.9. The equilibrium separations as a function of temperature and the

best fitting curves extrapolated to 350 K.

The extrapolated values of the equilibrium distances at 298.15 K calculated from the
fitted linear regression expression were both input parameters to two separate runs of
a computer program to calculate the like or unlike pair potential. In both cases, the

obtained like pair potential for methane were negative.

It was then decided to use the equilibrium distance rather then the like pair potential
as the parameter to extrapolate to find a value for the like pair potentials (and unlike

pair potential for mixtures) at higher temperature then the critical temperature for low-

boiling gases.
The method was named the extrapolation method.

The values for the equilibrium separation at 298.15 K using the extrapolation method

and the values for the like pair potentials are shown in Table 4-9.
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Methane heat of vaporization molar volume

R, A ®,;¥10', J R, A ®,*10", J

4.99829 -0.008062 5.173 -0.006385

Table 4-9. Equilibrium separations and the like pair potentials for methane at

298.15 K calculated by the extrapolation method.

Comparison between the like pair potentials for methane as calculated by the two

options: the molar volume and the heat of vaporization is shown as Figure A7.8.

One important to note about the extrapolation method, is the fact that the equilibrium
separation is not unique at a certain temperature, but the same value of the equilibrium

separation can be found at two different temperatures.

A reasonable question to ask at this point is: Why not use the calculations the opposite
way round ? That is: from known solubility use the AGAPE equations (section 2.11.5)
to calculate the like pair potential for methane that fits the known solubility at 298.15
K in a given solvent and then using this fitted pair potential in future calculations
involving methane. This option was considered. In the AGAPE equations to
calculate the vapour composition from known temperature and liquid composition,
three pair potentials are involved, one like pair potential for each of the components
and one unlike pair potential for the mixture. The unlike pair potential is a function of
both like pair potentials. The problem was found to be the (in the case of solubility
calculations) unknown vapour composition. Despite the known (in most cases) partial
pressure of the solute and assuming that the partial pressure of the solvent was equal
to its saturated vapour pressure, derivation of equations to calculate the like pair

potential for the solute was not successful.

A fitting method is described in section 4.7. In this method, an approach to fit the like
pair potential, again using methane as test case, to the given solubility is investigated
using numerical analysis for the like pair potential rather then exact mathematical

analysis.
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4.4.5 Conclusion of the extrapolation method in the test case

A method to eliminate the limitation of temperatures below the critical temperature
has been developed using methane as the test case. The method is called the
extrapolation method and by extrapolating the equilibrium distance in the temperature
interval: the triple point to the boiling point, a value for the equilibrium distance at
298.15 K has been found. This value was used as input to calculate a value of the like

pair potential.

One satisfactory outcome of applying the extrapolation method to the test case:
methane has been, that the like pair potential was negative as the pair potentials are

supposed to be by the common convention of negative values of attractive forces.

4.4.6 Application of the extrapolation method to other pure gases
Because of the successful application of the extrapolation method to methane, the
method was applied to other gases. The gases which all have boiling temperatures
lower then 298.15 K are shown in Table 4-10. The triple point temperatures and the
boiling points are from Reid et al. (1987).

SOLUTES name Triple point (K) Boiling point (K)
CH, methane 90.7 111.6
Ar argon 83.8 87.3
Ne neon 24.5 271
H, hydrogen 14.0 20.3
N, nitrogen 63.3 774
0, oxygen 54.4 90.2
CcO carbon monoxide 68.1 81.7
C,H, ethylene 104.0 169.3

Table 4-10. A list of solutes with boiling points below 298.15 K.
4.4.7 Results of application of the extrapolation method

The extrapolation method was thus applied to the gases in Table 4-10. Tables in

Appendix 8 show the results of the equilibrium separation and the corresponding like
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pair potential below the gases critical temperatures. Figures A8.1 to A8.7 (Appendix
8) show the graphs for the equilibrium separation as a function of temperature in the

chosen temperature interval (the triple point to the boiling point).

Table 4-11 shows the intermolecular distance results of applying the extrapolation

method.
heat of vaporization molar volume

compound RA (A) P;*10" (J) RA (A) @;*10" (J)
methane 4.99829 -0.008062 5173 -0.006385
argon 4.784437 -0.004246 5.03754 -0.003117
neon 6.936966 -0.000036 6.101046 -0.000078
hydrogen 10.97063 -0.000006 7.81744 -0.000044
nitrogen 5.32727 -0.002478 5.76097 -0.001535
oxygen 4.423303 -0.005466 4.883527 -0.002930
carbon 5.222174 -0.003126 5.62584 -0.001974
monoxide
ethylene 5.029482 -0.024069 5.187144 -0.018977

Table 4-11. Equilibrium separations and the like pair potentials for low-

boiling gases at 298.15 K calculated by the extrapolation method.

It is worth noticing that even for neon and hydrogen which both have very low critical

temperature, the like pair potentials are negative.

Table 4-11 also shows that there is a difference in the values obtained by the two
different options. When employing the AGAPE equations to predict VLE data, the
heat of vaporization method has been preferred. Appendix 13 describes calculations
of the heat of vaporization for eight selected compounds by three different methods.
Appendix 14 describes the result of employing the Yen-Woods method for calculating

the molar volume beyond the designed temperature range.

The conclusion of the calculations in Appendices 13 and 14 will be made here, as this

is relevant to show how well results of calculating the heat of vaporization and the
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molar volume fit with experimental data. If possible, the values in Table 4-11

calculated by the most accurate of the options will be chosen.

4.4.8 Conclusion of the heat of vaporization and the molar volumes

calculations

4.4.8.1 Conclusion of the heat of vaporization calculations

The results (shown in Appendix 13) obtained by the three alternative methods for
calculation of the heat of vaporization differ from each other. The results obtained by
the method of Daubert and Danner (1984) and Watson's correlation show very little
difference from the experimental values. It must be concluded from the figures, that
the latent heat of vaporization calculated by the POT method differs significantly from
the experimental values of the heat of vaporization and the calculated values obtained

by the other two methods.

The difference is even greater than 100% in the worst case. This difference occurs,
because the R* is determined from a prediction method (molar volumes), and the R* is
used in the power of -6. This means the accuracy may be good for the molar volumes,
which in fact it is (Yen and Woods, 1966), but the errors increase for the like pair

potential, and therefore also for the heat of vaporization.

Homer and Mohammadi (1987b) obtained much better results in their calculations of
the heat of vaporization. In the first place, this is because they used experimental
molar volumes (at the freezing points) to calculate the latent heat of vaporization. In
the second place, they calculated the heat of vaporization at a single temperature (the
melting point). Thirdly, they omitted polar compounds and compounds containing
hydrogen bondings from their selected compounds. They calculated the heat of
vaporization for the compounds: carbon tetrachloride, nitrogen and oxygen, and
obtained much better results then obtained here. Essentially, this is because they only
calculated AH,, at a single temperature, in fact at the temperature, where they had
experimental values for R*. Mohammadi (1986) also calculated the heat of
vaporization for benzene at a single temperature, also with good accuracy compared to
experimental data. But, for benzene he did not use the equilibrium separation

calculated from the molar volume (equation (2.80)). He used a geometric mean
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separation, which gave a much better result for H,,. Also, Homer and Mohammadi
(1987b) presented their results differently. They plotted the calculated heat of
vaporization against the experimental value, in which case a deviation is less
significant. The conclusion is that the GLP theory does not calculate the latent heat of
vaporization with as great accuracy as the other methods, especially not for the polar

compounds and for the compounds containing hydrogen bonding.

As a result of the heat of vaporization calculations, it was decided not to include acetic
acid in the AGAPE database, mainly because of its strong tendency to form a dimer.
The polar and hydrogen bonding containing compounds methanol, ethanol, and
acetone were included in the AGAPE database. In the long term, the inclusion of
these three compounds together with water, 1-propanol, and 2-propanol is thought to
determine a way of including such compounds i.e. by adding a term to take polarity

and/or hydrogen bonding effect into account in the GLP theory.

4.4.8.2 Conclusion of the molar volume calculations

Figure Al4.1 indicates that the equation for calculating liquid densities by Yen and
Woods (1966) can be used to calculate molar volume for pure compounds in their
solid state with good accuracy. Figure A14.2 indicates that the Yen-Wood method to
calculate the equilibrium separation for the pure compounds in their solid state can be

applied with good accuracy.

4.4.8.3 Which method predicts the most accurate results ?

The above conclusions show that each of the options (Watson's correlation for the
heat of vaporization and Yen-Woods method for the molar volume) has its limitations,
but that they both predict results that are reasonable accurate compared to
experimental data. It seems not possible to choose one of the options as better to
calculate the equilibrium separation then the other from the above conclusions, and

the two options complement each other.

4.4.9 Conclusion of extrapolation method
A method for calculating the like pair potential for, primary, low-boiling gases above
their critical temperature by extrapolating the equilibrium separation from the

temperature interval, where the density is continuous has been developed. It has not
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been possible to compare the results with data from the literature, as such data to the

best of knowledge are unavailable.

4.5 Relationship between unlike pair potential and
solubility- method VDUD

The method described in this section is named VDUD. This indicates that both the

solvent (V) and the solute (U) are dependent on temperature (D).

Similar calculations as described under method VNUN were then carried out, but here
the equilibrium separations for both the solvents and the solutes at 298.15 K were

used.

4.5.1 Calculations of relationship - method VDUD

Calculations of the unlike London pair potential, using the computer program PP
mentioned in section 2.11.10, were carried out. The equilibrium separations for each
pure solute and for each pure solvent at 298.15 K were used to calculate the unlike
London pair potential as given in equation (4.3). The option of screen inputting the
values of equilibrium separations was used in this case. The equilibrium separations for
the pure solutes at 298.15 K were calculated applying the extrapolation method
described in section 4.4. The equilibrium separations for the pure solvents at 298.15 K
were calculated from the computer program PP. In this case (pure solvents at 298.15 K)
the single component option, the molar volume option and the relevant temperature

were input to the program.

Using the extrapolation method to calculate equilibrium separation for the solutes,
whose critical temperatures are below the experimental temperature (298.15 K) is a way
of testing the extrapolation method. A linear relationship has been found using methods
VNUN and VDUN between the log.arithrn of the experimental solubility and the unlike
London pair potential for a series of solutes dissolved in one solvent. If this linear
relationship 1s not found using method VDUD then it could be an indication of failure of

the extrapolation method.
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It should be noted, that in this case, the unlike London pair potential was intended to be

calculated at similar temperatures for the solute and the solvent.

The relevant parameters in the computer programs were as follows:

INPUT
R1 the equilibrium separation for the solute
calculated at 298.15 K by applying the extrapolation method
R2 the equilibrium separation for solvent

calculated at 298.15 K

The chosen option for the calculation of the R1 and R2 values means, that the P11 and
P22 values in this case were calculated from the following option
OUTPUT

P11 - calculated at 298.15 K

P22 - calculated at 298.15 K

The unlike pair potential, P12, was calculated using the two options of combining the

two like pair potentials

OUTPUT
P12-GLP - calculated at 298.15 K and using the London theory
P12-GM - calculated at 298.15 K using the Berthelot theory (the

geometric mean)

Again, the two parameters: the nearest number of neighbours and the difference between
the size in the molecules of component 1 and 2 are not used in this special case where

the screen option for the equilibrium separation is chosen.

Choosing among the options
Again, the question is which options to chose. The like pair potential (in this case the
like pair potential for either the pure solvents or for the pure solutes) can be calculated

from either the heat of vaporization or the molar volume. The other option is
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choosing the unlike pair of London pair potentials or the geometric mean. All options
are calculated, though every option for all combinations of solute/solvent from Table
4-2 has not been covered. The option: equilibrium separation from the molar volume
(at 298.15 K) and the unlike pair potential calculated by the London method has been
tested in most detail. The other options have only been tested in a number of cases.

The chosen combination of option is shown in Table 4-12.

Combi equilibrium separation unlike pair | Calculations
nation (all values at 298.15 K) potential
solutes solvents
1 from molar volume | from molar volume London thoroughly
2 from heat of from heat of geometric | a small number
vaporization vaporization mean of cases
3 from molar volume | from molar volume London a small number
of cases
4 from heat of from heat of geometric | a small number
vaporization vaporization mean of cases

Table 4-12. A table of the different options and their combination.

The four different combinations have been chosen, so there is consistency in the

options.
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molar volume heat of vaporization
compound RA (A) ®,*10" (J) RA (A) ®,*10" (J)
solutes
methane 5173 -0.006385 4.998290 -0.008062
argon 5.0375 -0.003117 4.784437 -0.004246
neon 6.101046 -0.000078 6.936966 -0.000036
hydrogen 7.61744 -0.000044 10.97063 -0.000006
nitrogen 5.76097 -0.001535 5.32727 -0.002478
oxygen 4.88357 -0.002930 4.423303 -0.005466
carbon dioxide | 5.182803 -0.007489 4.989505 -0.009652
carbon 5.62484 -0.001976 5222174 -0.003126
monoxide
ethylene 5.187144 -0.018977 5.029482 -0.024069
ethane 6.0558 -0.008562 6.138064 -0.007760
n-propane 5.926528 -0.029806 5.789507 -0.036630
n-butane 6.112082 -0.058990 6.146469 -0.055632
compound RA (A) ®,*10" (J) R* (A) ®,;*10" (J)
solvents
benzene 5.90631 -0.123816 6.036324 -0.0941
cyclo-hexane 6.284148 -0.098488 6.325035 -0.091765
carbon 6.04657 -0.075741 5.920835 -0.091008
tetrachloride
carbon 5.245798 -0.092490 5.375406 -0.075917
disulfide
water 3.427886 -0.030407 2.85615 -0.127049
chloroform 5.900903 -0.053716 5.571801 -0.088039
methanol 4.471602 -0.047341 4.103010 -0.107612
ethanol 5.024571 -0.132554 5.052042 -0.122746
1-propanol 5.497517 -0.204653 5.710862 -0.136980

Table 4-13. The equilibrium separations used and the calculated like pair

potentials for the different solutes and solvents.

Table 4-13 shows the relevant equilibrium separations that are used to calculate the

like London pair potential (equation (4.3)), which is shown in column three and five
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depending on whether the equilibrium separation is derived from the molar volume

option (column two) or the heat of vaporization option (column four).

The results of the computer calculations carried out are shown in tables in Appendix 9.
The two ways to analyse to calculated results have been employed. The calculated
values of the unlike London pair potential for the mixtures can be plotted versus the
base 10 logarithm of the experimental solubilities (x,,.) at 298.15 K and 101.325 kPa
for a series of solutes dissolved in a single solvent, or the other way is to consider a
single solute dissolved in a series of solvents. The experimental solubilities were
obtained from either the IUPAC Solubility Data Series (Clever, 1979 (vol. 1), Clever,
1980 (vol. 4), Young, 1981 (vol. 5/6), Battino, 1981 (vol. 7), Hayduk, 1982 (vol. 9),
Battino, 1982 (vol. 10), Hayduk, 1986 (vol. 24), and Clever and Young, 1987 (vol.
27/28)) or Fogg and Gerrard (1991).

Typical examples of both the types are shown below. Figure 4.10 for carbon disulfide
(molar volume option) and Figure 4.11 for methanol (molar volume option) show the
plots for a series of solutes dissolved in a single solvent. Figure 4.12 shows the plot for
two solvents, carbon tetrachloride and benzene. Figure 4.13 for argon and methane
represents a typical example of the plot for a single solute dissolved in a series of

solvents.

The following Table 4-14 shows the results of the plots. The first column shows the
name of the solvent, the second column the origin of the equilibrium separation for the
solvent (the value is shown in Table 4-13), then follows the name of the solute and the
origin of the equilibrium separation for the solute, the fourth column displays which
combining rule is used to calculate the unlike pair potential, either the London
combining rule or the geometric mean. The last column shows the figure number (A
refers to appendix) and the resulting linear correlation coefficient of the plot. The closer
the linear regression correlation coefficient is to unity, the better the points lie close to a

straight line.
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Solvents equilibrium solutes | equilibrium | unlike pair | Figure no.

separation separation potential and linear

(298.15 K) (298.15 K) regression

coefficient

benzene from molar Table 4-2 | from molar London Figure A9.1
volume volume 0.8772

cyclo- from molar | Table 4-2 | from molar London Figure A9.3
hexane volume volume 0.9233

carbon from molar Table 4-2 | from molar London Figure A9.2
tetrachloride volume volume 0.9319

carbon from molar Table 4-2 | from molar London Figure 4.10
disulfide volume volume 0.9105

water from molar | Table 4-2 | from molar London Figure A9.5
volume volume 0.0491

chloroform frommolar | Table4-2 | from molar London Figure A9.4
volume volume 0.9038

methanol from molar Table 4-2 | from molar London Figure 4.11
volume volume 0.8735

ethanol from molar | Table4-2 | from molar London Figure A9.6
volume volume 0.8690

1-propanol from molar | Table 4-2 | from molar London Figure A9.7
volume volume 0.8138

methanol from molar Table 4-2 | from molar geometric Figure 4.11
volume volume mean 0.8818

ethanol from molar | Table 4-2 | from molar geometric Figure A9.6
volume volume mean 0.9075

1-propanol from molar | Table 4-2 | from molar geometric Figure A9.7
volume volume mean 0.7894

benzene from molar | Table4-2 | from molar geometric Figure A9.1
volume volume mean 0.8861

carbon from molar | Table 4-2 | from molar geometric Figure A9.2
tetrachloride volume volume mean 0.9261

Table 4-14. List of results, method VDUD including figure numbers

(continued over).
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Solvents equilibrium solutes | equilibrium | unlike pair Figure no.
separation separation potential and linear
(298.15 K) (298.15 K) regression
coefficient
benzene from heat of | Table 4-2 | from heat of London Figure A9.10
vaporization vaporization 0.8454
carbon from heat of | Table 4-2 | from heat of London Figure A9.11
tetrachloride | vaporization vaporization 0.8909
ethanol from heat of | Table 4-2 | from heat of London Figure A9.12
vaporization vaporization 0.8943
benzene from heat of | Table 4-2 | from heat of geometric Figure A9.10
vaporization vaporization mean 0.8414
carbon from heat of | Table 4-2 | from heat of geometric Figure A9.11
tetrachloride | vaporization vaporization mean 0.9
ethanol from heat of | Table 4-2 | from heat of geometric Figure A9.12
vaporization vaporization mean 0.8742
Table 4-2 from molar | n-propane | from molar London Figure A9.15
volume volume 0.7812
Table 4-2 from molar hydrogen | from molar London Figure A9.17
volume volume 0.4602
Table 4-2 from molar argon from molar London Figure A9.14
volume volume 0.5002
Table 4-2 from molar methane from molar London Figure A9.13
volume volume 0.6268
Table 4-2 from molar carbon from molar London Figure A9.16
volume dioxide volume 0.0669
Table 4-2 from molar nitrogen from molar London Figure A9.18
volume volume 0.5187
Table 4-2 from molar oxygen from molar London Figure A9.19
volume volume 0.5382
Table 4-2 from molar carbon from molar London Figure A9.20
volume monoxide volume 0.6302
Table 4-14. List of results, method VDUD including figure numbers

(continued over).
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Solvents equilibrium solutes | equilibrium | unlike pair Figure no.
separation separation potential and linear
(298.15 K) (298.15 K) regression
coefficient
Table 4-2 from molar ethane from molar London Figure A9.21
volume volume 0.8094
Table 4-2 from molar n-butane from molar London Figure A9.22
volume volume 0.6689
methanol from molar Table 4-2 | from molar interchange Figure A9.9
volume volume energy 0.8934
(London)
ethanol from molar Table 4-2 | from molar interchange Figure A9.8
volume volume energy 0.9186
(London)
Table 4-2 from molar methane from molar | interchange Figure 4.14
volume volume energy 0.1998
(London)
Table 4-2 from molar | n-propane | from molar interchange Figure 4.16
volume volume energy 0.0843
(London)
Table 4-2 from molar | n-propane | from molar | interchange Figure 4.16
volume volume energy 0.31116
(geometric
mean)
Table 4-2 from heat of | n-propane | from heat of | interchange Figure 4.15
vaporization vaporization energy 0.7928
(London)
Table 4-2 from heat of | n-propane | from molar | interchange Figure 4.15
vaporization volume energy 0.5413
(geometric
mean)
Table 4-14. List of results, method VDUD including figure numbers

(continued over).
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Solvents equilibrium solutes | equilibrium | unlike pair Figure no.
separation separation potential and linear
(298.15 K) (298.15 K) regression
coefficient
Table 4-2 from heat of carbon from heat of | interchange Figure 4.17
vaporization dioxide vaporization energy 0.1402
(London)
Table 4-2 from heat of carbon from heat of | interchange Figure 4.17
vaporization dioxide vaporization energy 0.1147
(geometric
mean)

Table 4-14. List of results, method VDUD including figure numbers.
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Figure 4.10. Solubilities of gases in carbon disulfide at 298.15 K, 101.325
kPa as a function of the generalized unlike London pair potential (P12-GLP)
calculated by method VDUD.
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Figure 4.11. Solubilities of gases in methanol at 298.15 K, 101.325 kPa as a
function of the generalized unlike London pair potential (P12-GLP, ®m points
and — line) and the geometric mean unlike pair potential (P12-GM, a points

and -- line) calculated by method VDUD.
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Figure 4.12. Solubilities of gases in benzene (a points and — line) and carbon

tetrachloride (mpoints and -- line) at 298.15 K, 101.325 kPa as a function of

-211 -




the generalized unlike London pair potential (P12-GLP) calculated by method
VDUD.

This Figure is a combination of Figures A9.1 and A9.2.
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Figure 4.13. Solubilities of methane (a) and argon (&) in solvents at 298.15
K, 101.325 kPa as a function of the generalized unlike London pair potential
(P12-GLP) calculated by method VDUD.

This Figure is a combination of Figures A9.13 and A9.14.

4.5.2 Correlation between temperature and pair potential

There is no need to investigate the correlation between temperature and the pair
potential for method VNUN, as all the pair potentials are calculated from one single
temperature. As the method VDUN does not change very much of the overall results
compared with method VNUN, it was not found informative enough to investigate a

relationship between the temperature and the pair potential for this method.
The method VDUD described in this section gives quite different results from the

previous mentioned methods, and it was found worthwhile to investigate how the

unlike pair potential varies with temperature. For this investigation it was decided to

-212 -




use selected gases, with critical temperatures below 350 K and boiling point above

275 K. Three gases were selected:

carbon dioxide
n-propane and

n-butane.

A number of solvents from Table 4-2 was selected as well. The pair potentials were
calculated using the PP program with the following parameters:
INPUT temperature
the components
number of nearest neighbours, z =11
OPTION heat of vaporization
OuTPUT London pair potential from heat of vaporization

equilibrium separations from the heat of vaporization

The results of the calculations are shown in Appendix 10 and discussed in section 4.6.

4.5.3 Results of relationship - method VDUD

4.5.3.1 A series of solutes dissolved in a single solvent

Again the linear regression coefficients show a slight improvement resulting in larger
values when comparing the results of the VDUD calculations with the outcome of the

VDUN calculations, apart from the solvent water.

Figure 4.12 shows the solvents in same sequence as Figure 4.2 and the opposite of
Figure 4.6. As the experimental solubilities are the same, this change is due to a
significant change in the values of the unlike pair potentials. The sequence and the
larger values of the linear regression coefficient indicate that the method VDUD
produces the best relationship of the three methods. Thus there is reason to believe

that the unlike pair potential must be dependent on temperature.
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Water

The linear regression coefficient for water decreases considerably from 0.13 (method
VDUN) to 0.05. If, as done in method VNUN the solutes n-propane and n-butane are
excluded from the plot, the linear regression coefficient improves to a value of 0.3825
(see Figure A9.5). This value is further improved to 0.4112 when the solute ethylene
is excluded from the plot (Figure A9.5). This value is considerably improved from
0.05 to 0.4112, but not nearly as much as the corresponding VNUN values (from
0.1159 to 0.7418). In fact, the results for water seem to indicate that the VDUN
method gives the best linear relationship between the unlike pair potential and the
logarithm of the solubility for water, when including all the selected solutes. When
the solutes n-butane, propane, and ethylene are excluded from the plot, the VNUN

method gives the best linear correlation.

4.5.3.2 One single solute dissolved in a series solvents

As opposed to the analysis (VDUD) of a series of solutes dissolved in one single
solvent, the analysis of one single solute dissolved in a series of solvents (VDUD)
shows remarkable improvements in the values of the linear regression coefficients. In
fact, the linear regression coefficients increase so much in values that the results were

rechecked twice, as such an improvement was hard to believe.

Figure 4.13 shows a very different sequence of the solvents compared to Figure 4.7.
The solvent water is now the first solvent (the highest value of the unlike pair
potentials), then follows methanol for both solutes (in this case argon and methane).
The rest of the solvents appear in different sequence for the two solutes. Carbon
disulfide has the lowest value of the unlike pair potential when looking at the solute
argon, whereas, in the case of methane, the solvent with the lowest pair potential

value is 1-propanol, the same solvent as in the VNUN case.
Compared to the sequence in Figure 4.2, the sequence in Figure 4.13 follows the same

sequence for the three solvents: carbon disulfide, benzene, and carbon tetrachloride

with the lowest values of the unlike pair potentials for the solvent carbon disulfide.
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4.5.4 Interchange energy

The interchange energy, w” was defined in the description of the lattice theory as
, 1
w'o= z[Dpn - 5 (@) + D2)] (2.53)

and is therefore related to the London pair potential. Employing the regular solution
theory as developed by Guggenheim (1952), Henry's constant is a function of the

interchange energy (section 3.3.2.2).

For a number of mixtures, the interchange energy has been calculated. One of the

figures is shown below (for methane).

R?=0.1998

col oGt o,

-2.5 + u
CH3;OH . = - .
3T B C3H7OH
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

w' *E19 (J)

Figure 4.14. Solubilities of gases in methane at 298.15 K, 101.325 kPa as a
function of the interchange energy (w") calculated by method VDUD using the
GLP.

When looking at the order of magnitude for the unlike pair potentials, the order is very
small. The values of the unlike pair potential do not vary very much for the mixtures.
By using the interchange energy instead of, it was hoped to obtain a larger order of
magnitude. The aim was also to find out, whether the interchange energy could

produce a regularity as shown in Figure 4.2 because of its relation to the pair
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potential. The objective was to use calculate Henry's constant from the interchange

energy, in case of a regularity similar to Figure 4.2.

As can be seen from Figure 4.14, the order of magnitude has increased. Four
interchange energy graphs have been produced: methanol and ethanol as examples of
a series of solutes dissolved in a single solvent and propane and methane as examples

of a single solute dissolved in a series of solvents.

The results for ethanol and methanol show an increased value of the linear regression
coefficients. The value for ethanol goes from 0.9075 to 0.9186. The opposite is the
case for methane and propane. The regression coefficient for methane falls from
0.6268 to 0.1998, whereas propane falls from 0.7812 down to 0.0843. These results
are peculiar, especially seen in the light of the fact that the like pair potential for
propane, whose critical temperature is above 298.15 K is calculated by the molar
volume. The like pair potential for methane at 298.15 K is calculated by employing

the extrapolation method.

The extrapolation method can be regarded as dubious, mainly because the equilibrium
separation 1s not unique at a certain temperature, but the same value of the equilibrium
separation can be found at two different temperatures. The above results seem to

confirm the correctness in the extrapolation method.

Propane

The interchange energy result for propane initiated a more detailed investigation,
where the interchange energy for propane was calculated using both options: the heat
of vaporization and the molar volume for the equilibrium separation and both the
geometric mean unlike pair potential as well as the generalized unlike London pair

potential.
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Figure 4.15 Solubilities of gases in propane at 298.15 K, 101.325 kPa as a
function of the interchange energy (zw'/ kyT) calculated by method VDUD
using the GLP (m for the points and — for the best fitted line though the
points) and the GM (a for the points and -- for the best fitted line though the

points) options. Both potentials are calculated using the H,,, option.
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Figure 4.16. Solubilities of gases in propane at 298.15 K, 101.325 kPa as a
function of the interchange energy (zw'/ kyT) calculated by method VDUD
using the GLP (m for the points and — for the best fitted line though the
points) and the GM (a for the points and -- for the best fitted line though the

points) options. Both potentials are calculated using the molar volume option.

These results were so intriguing that a similar investigation was carried out for carbon

dioxide. Figure 4.17 shows the result.
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Figure 4.17. Solubilities of gases in carbon dioxide at 298.15 K, 101.325 kPa
as a function of the interchange energy (zw'/ k,T) calculated by method
VDUD using the GLP (m for the points and — for the best fitted line though
the points) and the GM (a for the points and -- for the best fitted line though
the points) options. Both potentials are calculated using the heat of

vaporization option.

The result for carbon dioxide (where it is not necessary to employ the extrapolation
method) shows that the interchange energy calculated from the heat of vaporization
option, does not give a particularly good linear regression coefficient. It was only in
the case of propane, where the heat of vaporization gave an extraordinary high value

of the linear regression coefficient.

Overall, the results of the interchange energy calculation indicate that the interchange
energy can not be used as a replacement for the force constant in Figure 4.2 to

produce a plot from where it is possible to predict the solubility of gases in liquids.

4.5.5 Conclusion of relationship - method VDUD
Again, a slight improvement in the linear regression coefficients for a series of solutes
dissolved in one single solvent was found when employing method VDUD compared

to method VDUN.
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For one single solute dissolved in a series of solvents, the VDUD method resulted in
remarkable improvements of the linear regression coefficients. Still, the regularity of
Figure 4.2 was not found. Use of the interchange energy instead of the unlike pair
potential did not improve the overall result, but resulted in much decreased linear
regression coefficients for the analysis of one single solute dissolved in a series of

solvents.

The conclusion of the VDUD calculations is that there definitely is a dependency of
the pair potential (whether it is the like or the unlike pair potential) on temperature,
and that this dependency has to be taken into account, when calculating the pair

potentials.
The results also indicated the correctness of the extrapolation method.

4.5.6 Final discussions of relationship

4.5.6.1 Generally

The aim of the quite detailed work done on the relationship calculations (described in
sections 4.2., 4.3, and 4.5) was to be able to produce plots similar to Figures 4.1 to 4.3
(Hildebrand and Scott, 1962). From such plots it would hopefully be possible to
determine the solubility of various gases in various liquids. This was not the outcome of
the work done. Using the unlike pair of pair potential did give (in many cases) a
relatively straight line, but the regularity of the grids in Figures 4.1. 4.2 and 4.3 were
impossible to obtain. In the case of Figure 4.2, the force constant (expressed by the
Lennard-Jones constants) is constant for a single solute. This is also the case in Figure
4.1 where the solubility parameter for the solvent is used in the plot. This is not the case

for the unlike pair potential, as this depends on both the solute and the solvent.

The only way a constant value (independent of the solvents) could have been obtained
would have been by using the like pair potential for solutes along the x-axis, instead of
the unlike pair potential. This has not been investigated, as the information obtained

from such an investigation would contribute very little to this project.
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It seems that the majority of time and effort spent on this particular investigation of the
relatively simple relationship between the logarithm and the unlike pair potential has

given a somewhat disappointing outcome.

4.5.6.2 Temperature dependence

What has been the result of this detailed investigation is information on the temperature
dependence of the pair potentials, whether they are like or unlike pair potentials.
Mohammadi's (1986) early work on the pair potentials was independent of temperature.
The AGAPE equations only take into account the temperature dependence by letting the
pair potentials be a function of temperature. The conclusion of the relationship
investigation is that there is a temperature dependence of the pair potentials and that the
dependence can not be neglected, even in the case, where one of the compounds in a
binary mixture is present in excessive amounts. This is opposed to the feature of the
regular solution theory where the London dispersion forces are taken into account

assuming the London pair potential is independent of temperature (Hildebrand and

Scott, 1962).

The reason why the VNUN calculations were carried out was mainly to investigate this
assumption of the regular solution theory and also because Mohammadi (1986) had
been able to obtain a very accurate linear relationship by using a “standard” equilibrium

separation at a “‘standard” temperature.

In the AGAPE equations, the equilibrium separations are dependent of temperature.
The calculations carried out in sections 4.2, 4.3 and 4.5 more then verify that using

temperature dependent values of the equilibrium separations is the correct thing to do.

Then there is the question of how to determine an accurate value for the equilibrium
separation. As the results in section 4.4 (and Appendices 13 and 14) show there 1s quite
a difference in the equilibrium separation values calculated from either the heat of
vaporization or the molar volume. Despite these quite large differences, they seem to be
less important when applied to potential calculations as can be concluded from the
results of the (few) heat of vaporization calculations in sections 4.2, 4.3 and 4.5. The

linear regression coefficient is significantly different from the linear regression
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coefficient in the molar volume cases. The above question cannot be answered with one
of the methods, but both methods exist and provide a way of calculating this very

important parameter (in the AGAPE theory).

4.5.6.3 Reflections on the VNUN, VDUN, and VDUD methods

For the solvents: benzene and carbon tetrachloride the results of the unlike pair
potentials calculated by the methods: VNUN, VDUN, and VDUD have been plotted

in one figure for each solvent. Figures 4.18 and 4.19 show the results.
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Figure 4.18. Results of calculation by the VNUN (the points marked m),
VDUN (the points marked e), and VDUD (the points marked a) methods for

benzene.
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Figure 4.19. Results of calculation by the VNUN (the points marked a),
VDUN (the points marked e), and VDUD (the points marked m methods for

carbon tetrachloride.

The figures show that for benzene, the results of method VDUN seem to lie
approximately halfway between the results of the VNUN and VDUD methods. This
is not the case for carbon tetrachloride, where the results of the VDUN method lie
much closer to the results of the VNUN method. This has to do with the VNUN value
of the equilibrium separation for benzene. This was taken to be 6.18 A (Mohammadi,
1986) which is not the value at the freezing point, but the value that Mohammadi
found to give the best representation of the ring structure in his calculations. Some
mixtures show a much larger difference of the unlike pair potential for the methods

VNUN and VDUD compared to other mixtures.

The same conclusions can be made for a single solute dissolved in a series of solvents.
For the solute methane the results of the unlike pair potentials calculated by the

methods: VNUN, VDUN, and VDUD have been plotted in one figure, Figure 4.20.
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Figure 4.20. Results of calculation by the VNUN (the points marked a),
VDUN (the points marked m), and VDUD (the points marked @) methods for

methane.

4.5.7 Final conclusions of relationship

4.5.7.1 Generally

The majority of this work seems to have concentrated on this relatively simple
relationship between the logarithm of the solubility and the unlike pair potential for the
mixture despite the fact that a range of other factors might contribute to the solution

process.

There seems to be a need for gaining information of the intermolecular forces. Despite
the obvious importance of solubility in biology, medicine, chemistry and chemical
engineering the fundamental understanding of gas-liquid equilibria is still in the

rudimentary state (Prausnitz et al., 1986).
This investigation has revealed the very important dependence of the logarithm of the

solubility not only of the solvent, but also of the solute despite the very low liquid-phase

concentration of the solute (solubility) in the majority of the investigated mixtures.
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It can be argued that the force constant (e/kg) is related to the ideal solubilities and that
Figure 4.2 shows a re-statement of the extrapolated Raoult's law which lead to ideal
solubility. The vapour pressures P* close to the critical temperatures are given as a
function of the critical temperatures, In(P*) = f(T/T.) according to Guggenheim (1952).
If this “equates” to fugacities above the critical point then the ideal solubilities are a

function of the critical temperature and hence of the force constant.

The regular solution theory does not provide a better description of the differences in the
solubilities with temperature or with the solvent then Raoult's law. The regular solution
theory offers no clear molecular interpretation of the change from negative temperature
dependence of solubility of the larger less volatile solutes to the positive dependence of
light gases (see Prausnitz et al., 1986), even though the change is explained in

thermodynamic terms.

One example of thermodynamic compensation can be found in the study of binary
liquid-liquid mixtures, where the excess free energies are much closer to simple regular
solution behaviour then the constituent enthalpy and entropy factors, making simple

analysis of excess free energies possible.

In dilute solutions appropriate to the study of gas-liquid solubilities the solution process
is dictated by the differential or the partial molar properties of the solute, since the solute
is relatively unaffected by the solution process. Bell (1937) and Butler (1937) showed
that for non-polar dilute solutions the solute enthalpy and entropy changes are related in
a linear way. Butler (1946) has further suggested that there is a single relationship
connecting the heats and entropies of vaporization from solutions and pure unassociated

liquids at 298.15 K.

This indicates that it might be believed that gas solubilities do depend mainly upon the
temperature dependent molecular potential energy terms which determine the
differential enthalpy of solution. These terms involve the formation of a cavity in the
solvent as well as equilibrium attraction. The cavity-forming enthalpy must involve a
parameter of the solvent which could be related to its own potential energy coupled with

that of solute molecules.
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In the achievement of a precise definition of the unlike intermolecular pair potential ®,,
to offer a basis for establishing a simple correlation, perhaps an important step is setting

up a perturbation or computer simulation analysis of solubility.

At present a number of more elaborate models have significant predictive short-coming
arising from the inadequacies of their mixing rules or the limitations of their “interaction
potentials” which lead to the need to ascribe large “combining rule” correlations for the
geometric mean or Berthelot combining rule approximation in their explanation of
solubility sequences in homologous series or in describing the influence of temperature
on solubility (Sadus and Young, 1991). By employing a well structured combining rule,
based on London’s dispersion general principles, it might be possible to approach the
problem from the other end. In fact, the detailed calculations carried out for molecules
of quite different shapes such as nitrogen or argon and benzene or carbon tetrachloride
showed that the unlike potential calculated from the GLP method (P,,-GLP) was
significantly different from the unlike potential from the Berthelot equation (P;,-GM).
However, it is possible that there may be an element of mathematical artifact in these
calculations because the summed atom-atom potentials created from inert gas atomic
structures may over represent the solid angle effects in a bonded structure, whereas the
bonded atoms do not “see” the whole 360° (Walsh et al., 1991). This artifact can give
smaller values for the unlike London pair potential then expected though it virtually
disappears when larger molecules such as ethane or n-propane are involved in the

calculations.

One significant finding of this study is that by adopting temperature dependent
parameters for both the solute and the solvent (employing extrapolation techniques
where necessary) a much better statistical correlation between the logarithm of the
solubility and the unlike potential was obtained. This result is consistent with the basis
of temperature dependent energy (potential) parameters which the AGAPE model has
been developed in its main use in vapour-liquid equilibrium studies of binary liquid

mixtures.
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The collection of solubility data in Appendix 3 shows the large deviation between the
high solubility of gases in hydrocarbons and their low solubility in water. Solubility of
gases in perfluorinated hydrocarbons (see Figure 4.2) are of even higher values then in
hydrocarbons. This large deviation would not be very sensitively reflected by the unlike
pair potential values which change by a factor of not more then 2. Despite a good
correlation of solubility for solutes and a broad correlation for solvents with the unlike
pair potential, the quantitative links are not good enough for prediction. The
relationship does however point the way to a progressive development (see final

conclusions).

The treatment of introducing a “liquid-like” potential for gases like nitrogen, argon and
hydrogen has been used before in the attempts of developing the methods of regular
solution theory to provide more understanding of the solubility relations. Guggenheim's

treatment (1952, see also section 3.3.2.2) is an example of that.

4.6 Use of activity coefficient (lattice) models to develop

better mixing rules

One of the first approaches in the investigation of the AGAPE method and its
application to solubility calculations was to employ the AGAPE equations without
any change to predict solubility of gases in liquids. This section describes this

approach.

4.6.1 Use of the AGAPE equations to predict solubility

In adapting the AGAPE method to predict the solubility of gases in liquids the
AGAPE equations were used (equations (2.93) and (2.94)) without modifications to
predict the solubility of gases in liquids. The aim of this approach was to see how far

the existing AGAPE model could accommodate the solubility predictions.

4.6.2 Selection of mixtures

As explained in section 2.11, one of the limitations of the AGAPE model is that the
temperature has to be below the critical temperature of each component, as neither the
heat of vaporization nor the molar volume has a value above the critical temperature.

The vast majority of experimental solubility data available in the literature is
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measured at 298.15 K. This meant that low-boiling gases like methane, argon and
nitrogen could not be included in this calculation. The solutes to be used in this
calculation were then selected from the following criteria. They should be present in
the existing AGAPE database, they should have a boiling point at about 270 K and a
critical temperature about 350 K. The existing AGAPE theory could then be applied

directly to these gases.

Table 4-15 shows the gases that were selected.

GAS T boiling (K) T critical (K)
C3Hg, propane 231.1 369.8
n-C,H;,, n-butane 2727 4252
C(CH,),, neopentane 282.6 433.8
CO,, carbon dioxide 1947 * 304.5

Table 4-15. The gases that were selected for this specific investigation.

The boiling point of carbon dioxide is at 520 kPa as indicated by the star.

It was not possible to find experimental data for binary mixtures containing neo-

pentane, so this solute was actually not included in the calculations.

4.6.3 The selected mixtures

The next step was to choose some solvents. They were chosen from the availability of
experimental solubility data at various temperatures. No experimental data for the
vapour phase were available. The actual chosen solvents are all included in the

present AGAPE database.

The solvents were: ~ benzene
cyclo-hexane
n-hexane
methanol
ethanol

carbon tetrachloride
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carbon disulphide.

4.6.4 AGAPE calculations

The computer program VLE (described in section 2.11.10) was chosen for the
predictions of the solubility. This program is able to perform either isothermal or
isobaric calculations. Both options were used in this work. The other parameters

were as follows

ISOTHERMAL CASE. The input parameters were
INPUT temperature
the components
the liquid mole fractions
number of nearest neighbours, z =11
r as the molar volume ratio
OPTION heat of vaporization
1sothermal calculations
London potentials from heat of vaporization
OUTPUT the vapour mole fractions
the total pressure
the activity coefficients

the natural logarithm of the activity coefficients

ISOBARIC CASE. The input parameters were
INPUT the total pressure
the components
the liquid mole fractions
number of nearest neighbours, z =11
r as the molar volume ratio
OPTION heat of vaporization
1sobaric calculations
London potentials from heat of vaporization
OUTPUT the vapour mole fractions

the temperature
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the activity coefficients

the natural logarithm of the activity coefficients

4.6.5 The results of the AGAPE calculations

The results of the employed calculations are shown in Tables A10-1 (isobaric case)
and A10-2 (isothermal case) (both tables in Appendix 10) where the equilibrium
separation and the pair potentials are included besides the predicted temperature
(isobaric case) at the predicted total pressure (isothermal case). Tables A11-2 and
A11-3 (Appendix 11) show the predicted temperature (isobaric case) or the total
pressure (isothermal case) together with the other predicted data, e.g. activity

coefficients and vapour mole fractions for both the solvent and the solute.

The experimental data were:
the components
the liquid phase mole fractions (solubility of the solute)
the temperature

the partial pressure of the solute

This illustrates the difference between vapour-liquid equilibrium and solubility of
gases in liquids, which is a gas-liquid equilibrium. The vapour phase mole fractions
and the activity coefficients are not important in measurements of solubility of gases
in liquids. It also illustrates the difficulty in employing vapour-liquid phase
predictions to predict solubilities of gases in liquids. The results of the predictions are
difficult to compare with experimental data, as one is only able to compare ONE of
the outputs with the experimental data. This is either the pressure (isothermal case) or
the temperature (isobaric case). Even this causes problems in the isothermal case,
because the predicted data is the total pressure, whereas the experimental data is the
partial pressure of the solute. This is due to the way the measurements are carried out,
where the solute is usually at atmospheric pressure, and very easily kept at this

pressure throughout the measurements.

Comparing only one single value for one datapoint for each individual mixture out of

7 predicted results was not satisfying. To obtain more data to compare the AGAPE
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predicted results with, it was decided to employ other (mainly in-house) prediction

methods to the same mixtures.

The missing experimental vapour phase data and the activity coefficients could be
calculated under the assumption of infinite dilution interpreted as the activity
coefficient of the solvent was equal to unity (assuming ideal behaviour, in other words

obeying Raoult's law). This will be described later in this section.

4.6.6 Discussion of the AGAPE solubility predictions

4.6.6.1 Temperature dependence
The unlike London pair potential and the temperature were both plotted as a function

of the logarithm of the solubility.

The graphs (Figures 4.21, A10.1 to A10.7) show that there is a linear relationship
between the logarithm of the solubility and the temperature. The unlike pair of
potentials do not show a similar linear relationship. If the unlike pair of potential was

calculated by the method VNUN, it would have been a line parallel to the x-axis.
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Figure 4.21. Temperature and unlike London pair potentials as a function of

the natural logarithm of the solubility for n-propane (1) and cyclo-hexane (2).
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The linear relationship between temperature and the logarithm of the solubility has
been shown by Hayduk and co-workers (Hayduk and Laudie (1973), Hayduk and
Buckley (1971), and Fleury and Hayduk (1975)) who found a linear correlation
between the solubility and the logarithm of the temperature for a number of gases
dissolved in various solvents. The linear relationship is a consequence of applying the
regular solution theory since the slope of the logarithm mole fraction solubility versus
logarithm absolute temperature is directly related to the entropy of solution

(Hildebrand et al, 1970).

The following mixtures:
n-propane - cyclo-hexane
n-propane - benzene
n-propane - carbon disulphide
n-propane - carbon tetrachloride
carbon dioxide - n-hexane
carbon dioxide - carbon disulphide

can then be considered regular solutions.

Two mixtures do not show a linear relationship between temperature and logarithm of
the solubility. Figure A10.1 for n-propane (1) and n-hexane (2) and Figure A10.5 for
n-butane (1) and n-hexane (2) show irregular lines for these two mixtures. The fact
that both mixtures contain n-hexane could indicate that mixtures including this

particular solvent does not behave as regular solutions.

The unlike pair potential does not appear to be a linear function of the logarithm of the
solubility for any of the selected mixtures. This eliminates the possibility of applying
a similar method as Hayduk and co-workers to predict the solubility from a known

value of the unlike pair potential.
4.6.6.2 Solubility predictions

The results of the isobaric and isothermal AGAPE predictions are show in Tables

AT1-1 and A11-2 together with the percentage error between the experimental value
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and the predicted value of either temperature or pressure. The predictions agree
reasonably with the experimental values with some exemptions. Predictions for
mixtures including the solute carbon dioxide show larger deviations from the
experimental values then the two other solutes. Predictions of mixtures including the

alcohols, methanol and ethanol, also seem to give poorer results then the other

solvents.
Mixture liquid mole measured pressure calculated
fraction, x, (10°Pa). All pressure (10°Pa)
measurements at
298.2 K GLP method
n-C;Hg+CS, 0.0446 1.013 1.7043
n-C;Hg+c-C4H, 0.0924 1.013 1.2586
n-C4H,+CCl, 0.0813 1.013 1.1443
n-C,H;+CCl4, 0.339 1.013 1.0673
n-C,H;;+C,H;OH 0.0815 1.013 0.8247
CO,+c-C,H,, 0.00759 1.013 1.5005
CO,+CS, 0.00328 1.013 1.555

Table 4-16. Experimental data and predicted results calculated by employing
the AGAPE method.

Table 4-16 shows a representative selection of the predicted results.

The result for alcohols is not surprising as the basic London theory is applicable to
non-polar compounds without hydrogen bonding. The alcohols are polar and do
contain hydrogen bonding, so the result confirms that the London theory should not

be applied to such compounds.

The predicted results for mixtures containing CO, also seem to be relatively

inaccurate compared to experimental data. This is most likely due to the temperature,
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which in close to the critical temperature of CO,. The fact that CO, forms a

quadrupole no doubt also influences the inaccurate prediction results for CO,.

4.6.7 Conclusion of the AGAPE solubility predictions

In order to examine the full AGAPE-GLP model as a means of calculating detailed
solubilities at different temperatures, the straight-forward way was described above.
This was employed for volatile solutes below their critical temperatures such as
butane, propane, and carbon dioxide. For solutions of low boiling hydrocarbons and
for carbon dioxide in various solvents, the results obtained with the programme VLE
in hydrocarbon mixtures using the GLP potential values show quite good agreement is
obtained, but for carbon dioxide agreement is poor. Thus predictions based on GLP

do not seem to be practicable for a range of gases other then non-polar ones.

The logarithm of the solubility shows a linear relationship with the temperature as
expected from investigations referred to in the literature. The unlike pair potential
does not show an equivalent relationship and that eliminates the possibility of

predicting the solubility from the unlike pair potential.

4.6.8 Supplementary calculations on fitting the unlike potential.

However, a systematic method might be possible using a piori size ratios and fitted
interaction potentials. The use of the AGAPE program VLEF gives values for the
unlike potential (®,,) which are parametric, but having no ab initio value, might still

be reconciled in some physical model post hoc.

The procedure for the calculation is as follows (McCoubrey, 1996): The theoretical
value of excess molar volume is used to give a fit parameter ®,"" which can be
expressed as a multiple of its geometric mean value ®,-GM = -(®,, d,,)". Also
given are values of y.;” derived with reference to the saturation vapour pressure of the

solute. z was kept constant at a value of 11.0 throughout the calculations.
The fitting was not carried out employing the AGAPE-FIT model (described in

section 2.11.13), because no values of the excess enthalpy or excess Gibbs free energy

was available. The fitting procedure was carried out manually using a trial-and-error
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method. The criteria for stopping the procedure was that the total pressure was
approximately 101.325 kPa, only taken into account the partial pressure of the gas and

ignoring the (small) vapour saturation pressure of the solvent.

Inspection of Table 4-17 shows that a lattice model of this type can give a reasonable
representation of solutions of propane in CS, or C,H, and even a physically proper
picture of the known weak interactions of SF ¢ With hydrocarbons. Tt is interesting that
that the use of a geometric mean combining rule however appears to give a more
reasonable representations of the solutions of inert gases in hydrocarbons than the

GLP procedure.

By contrast the solution of CO, in CS, or n-CH,, in CH,0H may represent
discrepancies in the combining rule but could equally well be due to inadequacies in

the mixing rule for these “polar” molecules,

The reason why the geometric mean pair potential was chosen in this investigation
and not the London pair potential is that the ratio of @,""/®,,-GLP for most mixtures
was too far out. The calculations in sections 4.2, 4.3, and 4.5 show that indeed, the
difference between the unlike pair potential calculated by the London method and the

geometric mean unlike pair potential can be very different from each other.

In the evaluation of the manually employed fitted AGAPE model for the system CO, -
CS, it became apparent that the values of @, being thrown up for the CO, - CS,
interaction were unreliable. The values were too near to the fast moving part of the
heat of vaporization curve, close to the critical temperature (of CO,). In order to avojd
this artificiality a modification of the computer programme was introduced, where

mput values of ®,, and ®,, can be made manually to the programme.
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Mixture Xsolute T (K) r = (Vsoute ratio ratio Y™
solute - ['Viowent) | @47/, @,/
solvent GM (at T) ®,,-GLP
C;Hg - CeHg 0.0813 283.15 1.0 0.95 1.96
C3Hg - CeHg 0.0581 298.2 1.0 0.96 1.90
CsHg - CgHs 0.037 323.15 1.0 1.0 -
C;Hg - CS, 0.146 258.15 0.694 0.94 0.94 3.05
C;Hg - CS, 0.0842 273.15 0.694 0.94 3.06
C;Hs - CS, 0.0446 298.15 0.694 0.97 2.58
C;Hg - CS, 0.0345 308.15 0.694 0.98 0.99 2.24
C;Hg - n- 0.116 298.2 1.42 1.01 0.91
CeHy4
CiHg - 0.0115 298.2 0.43 0.87 10.0
CH,OH
CiHg - 0.0228 298.2 0.61 0.87 53
C,HsOH
n-C,H,, -n- 0.386 298.2 1.30 0.99 1.06
CsHi4
n-C,Hy - 0.0398 298.2 0.43 0.84 12
CH;OH
n-C,H,, - 0.0192 308.2 0.43 0.83 15
CH,OH |
n-C,Hyq - 0.008075 323.2 0.43 0.82 23
CH,OH
CO,-CS, 0.003785 281.65 1.0416 0.83 6.6
CO,-CS, 0.003538 289.7 1.0416 0.92 4.35
CO,-CS, 0.00328 298.15 1.0416 1.05 34
CO,-n- 0.0126 293.2 213 0.93 13
CeHiy
SFg - CeHs 0.002638 298 0.83 0.82 0.86 12.1
SFg - c-CgHy, | 0.005419 298 1.0 0.87 0.9 54
Xe - CH,;0OH 0.00325 270 0.58 1.0 1.68 7.2
Rn - n-CgH,, 0.0737 298 2.0 1.0 1.6 0.81
Rn - CeHs 0.392 298 25 0.95 15 1.64

Table 4-17. Results of fitting the unlike pair potential to experimental data
(McCoubrey, 1996)
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By examining the relative sizes of the critical temperatures and other comparable
references to intermolecular constants, a normalised value of ®,, based on AGAPE for
CS, - CS, was set at -0.08 10" J/mol and a value of ®,, for CO, - CO, was chosen to
be -0.04 10" J/mol. Using these values and assuming them to be independent of
temperature (a reasonable assumption when the relatively small temperature interval

is considered), the following fits were obtained (McCoubrey, 1996).

Mixture Xsotute T (K) r=(Veoute ratio

solute - I Voient) O, /D5

solvent GM(at T)
CO,-CS, 0.003785 281.65 1.0416 0.88
CO,-Cs, 0.003538 289.7 1.0416 0.90
CO,-Cs, 0.00328 298.15 1.0416 0.91

Table 4-18. Results of fitting the unlike pair potential for CO, - CS, to

experimental data.

This suggests that the mixing rule is quite capable of dealing with this mixture and
that the values of ®,,""/®,,-GM are indeed a realistic representation of the low values
of unlike pair interaction relative to the Berthelot geometric combining rule probably

due to the effect of the large quadrupole moment in CO,.

Overall the AGAPE model does not appear to explain qualitatively the temperature
dependency of solubility, a fact which probably means that its representation of
energy changes is inadequate even though it takes into account the Flory-Huggins

entropy as required by King et al. (1977a and 1977b).

4.6.9 Scaled particle model

A more comprehensive treatment is provided by the scaled particle treatment by
Pierotti (1976). Calculations of the component partial molar free energies for cavity
formation (usually taken to be the entropy effect) for propane dissolved in four
solvents show the following results. All calculations are done manually using the

equations in section 3.3.3 and carried out at 298.15 K (McCoubrey, 1996).
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Mixture solubility g° (usually taken
solute-solvent at 298.15 K to be TS®) (J/mol)
and 101.325
kPa partial
pressure
propane- 0.116 -20770
n-hexane
propane- 0.0581 -25560
benzene
propane-carbon 0.0446 -27240
disulphide
propane- 0.010 -29830
methanol

Table 4-19. The end-results of employing the scaled-particle method.

This table indicates that indeed enthalpy effects play a significant part. Experimental
data for propane also show that for water in particular entropy effects can become

dominant in deciding solubility as the following (manually calculated) small table

shows (McCoubrey, 1996).

Mixture, solute - AH (J/mol) T AS (J/mol)
solvent
propane - benzene -16560 -23610
propane - water -22000 -48000

Table 4-20. Calculated enthalpy and entropy for mixtures of propane

dissolved in benzene and water, respectively.
This relatively simple analysis begins to point to the need in a successful model for
the inclusion of effects which reflect non-rigid underlying structures which is

tantamount to the inclusion of both “repulsive” and attractive effects.

This will be further discussed in the final discussions after a number of predictions of

solubilities has been carried out using other prediction methods.
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4.6.10 Other prediction methods

A number of methods to predict the solubility exist at the moment and some of them
were described in section 3.3. From Sittiosoth’s research work (Sittiosoth, 1987) two
computer programs using the reference solvent method (section 3.3.1) and the GC-
EOS method (section 3.3.5), respectively, were available. Computer programs using
the MHV?2 method (section 3.3.4) had been obtained from Denmark. To compare the
prediction results obtained by using the AGAPE model, the same predictions were
performed using the other models mentioned. It was presumed that by employing the
reference solvent method developed by Sander et al. (1983) it could be used to

investigate more of the basic London theory.

The computer programs were tested using the test examples in the original references.
The reference solvent program and the MHV2 program both reproduced the same
results as given in the references (Sander et al., 1983 and Dahl et al., 1991,
respectively). When testing the GC-EOS program it was found to be impossible to
reproduce the data given in Skjold-Jergensen (1984), that describes the GC-EOS
method. A lot of effort and time were spent investigating the problem, before the
final conclusion was that the phase rule was not fulfilled. The program uses too many
known input parameters. The number of chosen mixtures in Table Al11-1, whose
solubility could be predicted by the GC-EOS method was very limited, so the method
was not employed in this investigation. An extension of compounds included in the

GC-EOS database has recently been published (Wolff et al., 1992).

Table Al1-1 shows the chosen mixtures, and which methods can be employed to

predict solubilities. All the mentioned methods are available as executable programs.

Each method has its imitations. The reference method does not include interaction
parameters for propane and n-butane, but was still included in this investigation
because 1t was hoped this specific method could contribute valuable information to the
further investigations of the AGAPE calculations. The MHV2 method uses some
coefficients to fit the vapour pressure as a function of temperature, and these

coefficients are not commercially available for all compounds, so MHV2-predictions
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of the solubility of gases in the solvents carbon tetrachloride, carbon disulphide and

cyclo-hexane are not possible to calculate.

The difference between predictions of vapour-liquid equilibrium and solubility (gas-
liquid equilibrium) was outlined in section 4.6.4. The MHV2-method predicts (as the
AGAPE method) the vapour-phase composition and the tota] pressure. Only the

reference solvent method predicts the liquid phase mole fractions.

4.6.11 Results of the solubility predictions

4.6.11.1 Calculations

The fact that the computer programs calculate the vapour-phase composition means
that the calculations were used backwards. In case of the MHV2 and the AGAPE
method the known parameters are the temperature and the liquid phase mole fractions,
then the vapour phase mole fractions and the pressure are calculated (1sothermal
calculations). In the AGAPE program another option is an isobaric calculation, which
was used as well. In a solubility prediction, the known parameters are usually

temperature and pressure, and then the liquid mole fractions are calculated.

A modification was made to the MHV? programs obtained, so the modified version

calculates and prints the activity coefficients as well.

A spreadsheet with the calculated preéssure, vapour mole fractions and activity
coefficients was set up, so all the results obtained are in one spreadsheet making it
possible to extract the wanted data and present them graphically. Tables Al1-1 to

All1-4 (in Appendix 11) show the results of the calculations performed.
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4.6.11.2 Results

Mixture liquid measured | calculated | calculated calculated
mole pressure pressure pressure pressure
fraction, (10°Pa). (10°Pa) (10°Pa) (10°Pa)
X, All reference
measure- GLP MHV2 solvent
ments at method method method
298.2K
n-C,;Hg+CgH; 0.0581 1.013 1.0991 1.3618 -
n-C,Hg+n- 0.116 1.013 1.8712 1.2757 -
CeHs
n-C,H,,+ 0.386 1.013 1.0754 1.0801 -
n-CeHy,
n-C,H .+ 0.0398 1.013 0.7246 1.6009 -
CH,OH
CO,+n-C¢H,, 0.0119 1.013 2.0575 1.1855 1.0846
CO,+CH; 0.00912 1.013 2.7258 1.3415 1.0252
Table 4-21. Experimental data and predicted results from three different
methods.

Table 4-21 shows a representative selection of the predicted results.

Figure 4.22 shows the experimental pressure as a function of temperature for the
mixture n-propane - benzene. The third variable is the solubility that also varies for
each individual T, P data point. The calculated pressures from both the AGAPE

method and the MHV2 method are also plotted.
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Figure 4.22. The experimental temperature (left y-axis) and experimental
pressure and pressures predicted by the AGAPE and MHV2 methods (right y-

axis) as a function of the solubility for n-propane (1) and benzene (2).

Figures A11.1 to A11.3 show exactly the same but for the mixture n-propane (1) and
n-hexane (2), the mixture n-propane (1) and cyclo-hexane (2), and the mixture carbon

dioxide (1) and n-hexane (2), respectively.

As it can be seen from the Figures 4.22, Al11.1, A11.2, and A11.3 both methods

predict a pressure that is very inaccurate compared with the experimental pressure.

Tables A11-2 and Al1-4 show that there is a great difference in both the calculated
vapour mole fractions and the calculated activity coefficients obtained from the two

methods.

4.6.11.3 Experimental results to compare with and assumptions

The first assumption that has been done when comparing the experimental data and
the predicted results is assuming that the partial pressure of the solute is equal to the
total pressure of the mixture. This assumption is not true, as the partial pressure of the
solvent then is assumed to be zero. The total pressure P is equal to the sum of the two

components partial pressures
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P =Dgue T Psotvent
Inserting the vapour mole fractions instead of, the total pressure is equal to

P = Yo P T Yoorven P
Usually, solubility is defined as liquid mole fractions of the solute below 0.1 even
though no fixed limit exists (see introduction in Chapter 3). A characteristic of
solubility as opposed to vapour-liquid equilibrium is then that the vapour phase mole
faction of the solute is assumed to be unity and therefore the total pressure is assumed

to be equal to the partial pressure of the solute.

The results in Tables A11-2 to A11-5 show that this is not always the case. However,
the need to gain more information from the experimental data made it necessary to
make the above (and the following) assumptions. These assumptions are generally
accepted as being the solubility assumptions necessary to carry out any work on

solubility.

The calculations described above all give the mole fractions of the vapour phase (y-
values) as the results of the calculations. These values were not among the
experimental data given in the various references. In order to compare the predicted
results with experimental data, the activity coefficient of the solvent was assumed to
be unity. With this assumption it was then possible to calculate the vapour mole
fractions and the activity coefficient for the solute from the experimental values of

temperature, pressure, and liquid mole fractions.

Using one of the key equations for vapour-liquid equilibrium, equation (2.25)

y;P = X, Py, (4.13)
for the solvent (component 1), it becomes

y,P = x,P’y, (4.14)
Assuming that the activity coefficient is equal to 1.0, equation (4.14) becomes

y,P = xP’ (4.15)
The total pressure P (assumed to be equal to the partial pressure of the solute) and the
mole fraction x, are known from the experimental data. The saturation vapour

pressure P,° of the solvent can be calculated, as in the AGAPE computer programs, by

an extended Antoine-equation (Reid et al., 1987)
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where the coefficients A, B, C, and D are given in Reid et al. (1987) for the

components in the AGAPE database. Equation (4.16) is valid for a single component.

The mole fraction y, can then be calculated. The mole fraction of the solute
(component 2) in the gas phase is then calculated as

y,=1.0 -y, (4.17)
The activity coefficient of the solute 1s calculated from

y,P
X, P;

Y, (4.18)

Again, the mole fractions and the total pressure are known, and the saturation pressure

is calculated from equation (4.16).

The prediction of solubilities was carried out by employing the AGAPE method, the
MHV2 method, and the reference solvent method. These calculations by the AGAPE

method can be used as VDUD calculations.

4.6.12 Discussion of the solubility predictions

The results of the AGAPE predictions were showing a reasonable good agreement
with the experimental results except for mixtures containing alcohols and carbon
dioxide, which compounds are polar and contain hydrogen bonding and therefore are

outside the range of the basic London theory.
The MHV?2 is reported to give highly accurate prediction results (Dahl et al., 1991), a

result which is not obtained in this investigation. The overall results of the MHV?2

predictions are in the same order magnitude of accuracy as the AGAPE predictions.
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Especially the mixtures of propane(l) and benzene(2) and n-butane(l) and

methanol(2) show large deviations from the experimental data.

The MHV2 method combines the UNIFAC group-contribution activity coefficient
method with an equation of state. The dominant features stem from the equation of
state, a prediction method that research has shown to be more accurate at high
pressures (Reid et al., 1987) then at low pressures. In this investigation a compromise
has to be made, because neither the reference solvent method nor the AGAPE method
is designed to predict phase equilibrium at high pressures as neither method takes

vapour phase non-ideality into account.

The experimental pressures are all equal to or below 101.325 kPa. The MHV?2
method is not developed to give accurate prediction results at these low pressures as it

accounts for vapour phase non-ideality.

The best prediction results appear to be predicted by the reference solvent method.
The results for the few mixtures which were included in the database for the reference
solvent method show very good agreement with the experimental data. The sparcity
of the prediction results make it difficult to conclude that the reference solvent method
is the best. For the examined mixtures, the reference solvent method gives the most
accurate prediction results, but it must be remembered that the predictions by the
reference solvent method are very sparse compared to the AGAPE and the MHV?2

methods.

4.6.13 Conclusion of solubility predictions

The prediction results of three different prediction methods of a number of selected
mixtures were examined and compared with experimental data. The results show
more about the limitations of each method then an overall picture of the best

prediction method.
The AGAPE method should not be applied to polar compounds and/or compounds

containing hydrogen bonding. = When applied to mixtures containing these

compounds, the prediction results are, of course, inaccurate compared to the
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experimental results. For mixtures not containing the above mentioned compounds,

the prediction results are in reasonable agreement with the experimental data.

In this work, the MHV2 method is employed to low pressures, where the method is
not intended to be employed, so the prediction results are slightly better compared to
the AGAPE prediction results, but still only within reasonable accuracy compared to

the experimental data.

From this limited investigation, the best prediction method seems to be the reference
solvent method, but this could be due to the very limited number of the selected

mixtures that this method is able to handle.

The overall conclusion is that from this limited examination where the MHV?2 and the
AGAPE methods have been employed beyond their limitations, the reference solvent
method predicts phase equilibrium data with a good accuracy compared to

experimental data.

4.7 Solubility Parameter

4.7.1 Relationship between the solubility parameter and a GLP
parameter

The aim of this investigation was to find out whether it was possible to find a
relationship between the solubility parameter (&) as defined by Hildebrand (see
section 2.10.3) and a GLP parameter.

This investigation is carried out for mixtures at 298.15 K and at a partial pressure of

solute 0f 101.325 kPa.

The solubility parameter for the solutes and the solvents in Table 4-22 were found in
two sources. Most of the solubility parameters (marked 2) were found in Prausnitz et
al. (1986). The solubility parameters (marked 3) for the solutes: ethane, propane, and
butane and the solvents: water, methanol, ethanol, and 1-propanol are from the DIPPR
database (Daubert and Danner, 1994). The Handbook of Physics and Chemistry
(1975-1976) warns against the use of the solubility parameter for water and the three
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alcohols as these compounds are polar and contain hydrogen-bonds, exactly the
compounds for which the theory of regular solutions is not valid. Neither Prausnitz et
al. (1986) nor Hildebrand and Scott (1962) contain any solubility parameter for these
four compounds. Both Daubert and Danner and The Handbook state, that they are
calculated using the definition of the solubility parameter given in equation (2.49).
The solubility parameter for chloroform (marked 4) was found in Hildebrand and

Scott (1962).

It must be remembered that the solubility parameters are calculated from experimental
data (Prausnitz and Shair, 1961) and that reliable solubility data for the very light gas:
neon are scarce, so no solubility parameter for this solute has been calculated. The

solubility parameter for hydrogen is from Prausnitz and Shair (1961) (marked 1).

The following Table 4-22 shows the solubility parameters and the equilibrium
separations and the like pair potential calculated at 298.15 K from the two options: the
heat of vaporization and the molar volume. The four last columns are identical to

Table 4-13.
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molar volume heat of vaporization
compound solubility R* (A) ®,*10" (J) RA (A) ®,*10" (J)
solutes parameter,
§ (Jlem®)*®
neon 1) 6.101046 -0.000078 6.936966 -0.000036
hydrogen 6.65" 7.61744 -0.000044 10.97063 -0.000006
methane 11.6% 5.173 -0.006385 4.998290 -0.008062
argon 10.9? 5.0375 -0.003117 4784437 -0.004246
nitrogen 5.30% 5.76097 -0.001535 5.32727 -0.002478
oxygen 8.18% 4.88357 -0.002930 4.423303 -0.005466
carbon 12.3% 5.182803 -0.007489 4.989505 -0.009652
dioxide
carbon 6.40? 5.62484 -0.001976 5.222174 -0.003126
monoxide
ethylene 13.5% 5.187144 -0.018977 5.029482 -0.024069
ethane 13.5? 6.0558 -0.008562 6.138064 -0.007760
n-propane 13.1% 5.926528 -0.029806 5.789507 -0.036630
n-butane 13.7° 6.112082 -0.058990 6.146469 -0.055632
compound solubility R* (A) 10" (J) R* (A) ®,*10" (J)
solvents parameter,
§ (Jlem?)**
benzene 18.8% 5.90631 -0.123816 6.036324 -0.0941
cyclo-hexane 16.8% 6.284148 -0.098488 6.325035 -0.091765
carbon 17.6% 6.04657 -0.075741 5.920835 -0.091008
tetrachloride
carbon 20.5% 5.245798 -0.092490 5.375406 -0.075917
disulfide
chioroform 18.8% 5.900903 -0.053716 5.571801 -0.088039
perfluoro-n- 12.3%
heptane
water 47.813% 3.427886 -0.030407 2.85615 -0.127049
methanol 29.523% 4 471602 -0.047341 4.103010 -0.107612
ethanol 26.421% 5.024571 -0.132554 5.052042 -0.122746
1-propanol 24 .557% 5.497517 -0.204653 5.710862 -0.136980

Table 4-22. The solubility parameters and the solutes and the solvents for this
enquiry.
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A number of plots were produced. The equilibrium separations and the like pair
potentials were plotted, each as a function of the solubility pararﬁeter for the solutes
and the solvents, respectively. The solvents excluded water and the three alcohols.
Plots were made for the values from each of the options: the heat of vaporization and

the molar volume.

The plot of the equilibrium separation as a function of the solubility parameter for the
five solvents using the molar volume option showed to lie very close to a straight line.

Figure 4.23 shows the plot.

7+ C-C5H12 70
ccla CeHe g2 = (9337
6+ '\-\,\. T -0.02
CHCly

5 L +-0.04
= CHCls CS: =
Eaq +-0.06 2
o , CCl R? = 0.0003 S
:3 - -+ -0.08 o
O | e N a

2 4 c-CeHiz a + -0.1

-~ cS,
.l . +-0.12
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15 16 17 18 19 20 21

solubility parameter at 298.15 (K) (J/cm®)*®

Figure 4.23. The equilibrium separations and the like pair potentials each as a
function of the solubility parameter for the solvents excluding water and the

three alcohols.

In Figure 4.23 the points mrepresent the R* value (left y-axis) and the continuous line
(—) is the best linear fitted line between the points. The points a represent the PP-
values (right y-axis) and the dashed line (- -) is the best linear fitted line between the

points.
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4.7.2 New solubility parameters for water and the three alcohols

This curve was then used to provide calculation of new values of the solubility
parameters from the values of the equilibrium  separation for water and the three
alcohols. The values are shown in Table 4-23. The same procedure was applied to

perfluoro-n-heptane.  This solvent was included as a representative for the
fluorocarbons which present a problem of their own in solubility predictions because
the solubility of all solutes dissolved in fluorocarbons are very high, whereas the

solubility in water for all solutes is very low.

solvents literature extrapolated
solubility solubility
parameter, 5 | parameter, §
(J/lem?)0s ) (Jlem?)°s 2
methanol 29.523 23.44379855
ethanol 26.421 21.49825579
1-propanol 24.557 19.83426258
water 47.813 27.1159648
perfluoro-n- 12.3% 7.528676078
heptane

Table 4-23. The solubility parameters from: 1) the DIPPR database (Daubert
and Danner, 1994) and 2) extrapolated from the curvefit in F 1gure 4.22 and 3)
from Prausnitz et al. (1986).

It should be noticed that the equilibrium distance calculated from the molar volume in
itself is an expression of the molar volume, and that the above curvefit could as well

have been carried out using the molar volume instead of the equilibrium separation.

These extrapolated values of the solubility parameters were then used in the equation
of the solubility derived from the regular solutions theory which is equation (3.18)
repeated below

6 “‘8722
-Inx, = Inf- + v, (4, RTN)W]

(3.18)

provided that the fugacity of solute (component 2) is unity which is assumed in our

casc as all the calculations are carried out at a partial pressure of the solute at 101.325
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kPa. The volume fraction of the solvent, w,, is a function of the mole fractions and
this makes solving of equation (3.18) a trial-and-error process. In the calculations
carried out here, it is assumed that w, = 1.0 due to the very low mole fraction of the

solute. The same assumption is made in Prausnitz and Shair (1961).

Equation (3.18) involves the fugacity of the hypothetical liquid (f-)). This is plotted in
Prausnitz and Shair (1961) as a function of the reduced temperature (for the solute).
No expression for the curvefit is given, nor is one presented in Yen and McKetta
(1962) whose curve for the fugacity of the hypothetical liquid differs slightly from the
curve in Prausnitz and Shair (1961). Values taken from the curve in Prausnitz and
Shair (1961) have been plotted and a similar curve has been produced. Various
curvefitting options have been employed, and the best (in the very limited interval of a
reduced temperature from 0.6 to 3) showed to be a fifth order polynomial expression.

The graph is shown as Figure Al11.4.

The expression for the curvefit is then used to calculate the fugacity of the
hypothetical liquid at the actual reduced temperature. A Table of the data used in the
application of equation (3.18) is given as Table A11-6 (Appendix 11).

The results of the prediction of the solubilities of gases in liquids using the regular
solution theory (equation (3.18)) are shown in the following Table 4-24. The
solubility predictions in column 3 are calculated by using the extrapolated solubility
parameters for the solutes from Table 4-23, and Table 4-22 for the solvents. The
solubility predictions in column 5 are calculated using the literature solubility
parameters from Table 4-22 for both the solutes and the solvents. Columns 4 and 6
show the percentage error between the predicted solubility and the experimental
solubilities (column 2 from Table A3-1 and (marked 1) from Hildebrand and Scott,
1962).
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Mixture X,-obs X,-calculated error % X,-calculated error %
solute- (experimen- | (extrapolated (literature
solvent tal) solubility solubility
parameter) parameter)
0,-CH,0H 0.000415 0.000154597 | 62.74772625 | 7.48409E-06 | 98 1 9660492
0,-C,H,OH 0.0005825 | 0.000329461 | 43.4401286 3.97871E-05 | 93.16959315
0,-C,H,0H 0.000503 0.000579911 | 15.29037918 | 9.57325E-05 80.96770371
0,-H,0 0.0000229 2.7994E-05 | 22.24459222 | 1.92202E-12 99.99999161
0,-n-C,F ¢ 0.00553" 0.003659903 | 33.81729836 | 0.003543637 35.91977379
C,H,- CH,OH 0.0047 0.001686118 | 64.12514622 | 2.45185E-05 99.47832956
C,H,-H,0 0.00008582 | 0.000165915 | 93.32895083 4.71593E-16 100
CH,- CH,0OH 0.000871 0.000285124 | 67.26479731 | 5.88857E-06 99.32393031
CH,- C,H;OH 0.00128 0.000706183 | 44.82942353 | 519772E-05 95.93928055
CH,- C;H,0H 0.00156 0.001348567 | 13.5533753 | 0.000157744 89.8881759
CH,-H,0 0.00002548 | 3.30746E-05 | 29.8059403 3.54886E-15 | 99.99999999
CH,-n-C;Fy | 0.008262" - | 0.004044688 51.04468792 | 0.005710438 | 30.88309802
CO- CH,OH 0.000327 8.99E-05 72.50765681 | 3.54945E-06 | 98.91454031
CO- C,H.OH 0.000449 0.00020569 | 54.18926637 | 2.08667E-05 95.35263169
CO-C3H,0H | 0.0005193 | 0.000385589 25.74836396 | 5.35198E-05 | 89.69385801
CO-H,0 0.0000172 1.43456E-05 | 16.5953685 | 5.82426E-13 99.99999661
CO- n-C,;F,¢ 0.00388" 0.004132631 | 6.511105409 | 0.002651281 31.66801934
CO,- CH,0OH 0.00639 0.001377787 | 78.43838462 | 2.75911E-05 99.5682151
CO,- C,H;:OH 0.00689 0.003380373 | 50.93798794 | 0.000250245 96.36799616
CO,- C;H,0H 0.00772 0.006356014 | 17.66821571 | 0.000763169 90.11438761
CO,-H,0 0.0006116 0.0001586 | 74.06803325 | 8.73211E-15 100
CO,- n-C,F 4 0.02088" 0.013741764 | 34.18695546 | 0.023028061 10.2876492
Ar- CH;OH 0.000447 9.13335E-05 | 79.56744805 | 1.05517E-06 99.76394457
Ar- C,H.OH 0.0006257 0.00026363 | 57.86631155 | 1.27729E-05 97.95861472
Ar- C;H,0H 0.000777 0.000566664 | 27.07022639 | 4.59623E-05 94.08464047

Table 4-24. Predicted and observed solubilities for some mixtures using the

extrapolated values of the solubility parameter and the literature values of the

solubility parameters (continued over).
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Mixture x,-obs x,-calculated error % x,-calculated error %
solute- (experimen- | (extrapolated (literature
solvent tal) solubility solubility
parameter) parameter)
Ar-H,0 0.00008582 | 7.59923E-06 | 91.14515523 | 4.3383E-17 100
Ar- n-C;F ¢ 0.0054" 0.002839719 | 47.41261642 | 0.003543637 | 34.37710168
C;Hs- CH;0OH 0.0115 0.001967331 | 82.89277605 | 4.04593E-06 | 99.96481804
C,Hg- C,Hs;OH 0.0228 0.00786983 | 65.48319986 | 0.000135058 | 99.40764034
C,Hg-H,0 0.00002732 | 6.55873E-05 100 1.45759E-21 100

Table 4-24. Predicted and observed solubilities for some mixtures using the
extrapolated values of the solubility parameter and the literature values of the

solubility parameters.

4.7.3 Discussion of the prediction results

The prediction of the solubilities of several mixtures with water, the three alcohols,
and perfluoro-n-heptane as solvents using the solubility parameter found by
extrapolating the molar volume curve show a more accurately predicted solubility

then when using the literature solubility parameters for the five solvents.

The use of the extrapolated solubility parameter predicts solubilities much closer to
the experimental solubility. The relationship between the solubility parameter and the
molar volume (or the equilibrium separation which is an expression of the molar
volume) is essentially the same as only taking the van der Waals forces into account.
Using a value of the solubility parameter extrapolated from the molar volume of five
non-polar solvents corresponds to pretending that water and the three alcohols only
take van der Waals forces into account. This means that if the heat of vaporization is
written as a product of an energy accounting for the dispersion interaction multiplied
by an energy accounting for all the other interactions, then only the dispersion
interaction term is taken into account when using extrapolated solubility parameters
for water and the three alcohols. This is a way of assuming that water and three
alcohols behave like the regular solutes, where only interaction with the dispersion

part of the interaction forces counts.
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The predicted results using the literature values of the solubility parameters are not
surprising as the regular solution theory is developed for regular solutions, that is,
non-polar compounds. The regular solution theory should not be applied to polar
compounds or hydrogen bonding compounds and that is why, applying the regular
solution theory (using the solubility parameter as calculated by the definition) gives

very inaccurate prediction results.

Despite this, when actually employing the regular solution theory with alternative
solubility parameters for polar compounds and compounds containing hydrogen

bonding, the predicted solubilities show a surprisingly good accuracy.

In most of the mixtures examined, the predicted solubility (calculated using the
extrapolated solubility parameters) of the solutes dissolved in water and 1-propanol
are the most accurate. The percentage error is 10 to 30 % and in all cases much more
accurate then the results when using the solubility parameters from Daubert and

Danner (1994).

The solvents methanol and ethanol show a much higher diversity of accuracy. The

solubility for some mixtures are more accurate then for others.

The solvent perfluoro-n-heptane shows the same tendency. For the majority of the
mixtures, the predicted solubilities using the literature solubility parameter are more
accurate then the predictions where the extrapolated solubility parameter is employed.
Perfluoro-n-heptane is non-polar and contain no hydrogen bonding, so in fact, the
regular solution theory is applicable to this solvent and with the solubility parameter
as found in the literature. Perfluoro-n-heptane was included in this investigation to
examine whether an alternative solubility parameter could be employed to
accommodate for the large solubilities of the fluorocarbons. From this investigation it
can be concluded that using the extrapolated value of the solubility parameter gives

prediction results with slightly larger errors.
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It should be noticed that employing the regular solution theory to predict solubilities
of gases in liquids in itself contains several parameters which are all determined with
large uncertainties. As the solubility values are small, another value of one of the
parameters can give an enormously different solubility. The regular solution theory
should be used to give the order of magnitude of the solubility rather then be expected

to predict the solubility within 5-10 % accuracy.

4.7.4 Discussion of the prediction results in a broader perspective

A classic problem in the solubility of gases and vapours in non-aqueous solvents
relates to the differences in behaviour of hydrocarbons and perfluorocarbons in this
field. Mixtures of hydrocarbons and fluorocarbons liquids exhibit large positive
deviations from Raoult's law which are attributed to unusually small unlike pair
interactions between the “peripheral” fluorocarbons and the more “central”
hydrocarbons in which the carbon atoms rather then the hydrogen atoms dominate the
intermolecular forces. Liquid mixtures of carbon tetrachloride with inert gases also

show small unlike interactions.

Fluorocarbons by virtue of their large molar volumes and energies of vaporization
which are little different from those of hydrocarbons have solubility parameters which
are quite small. It is thus not very surprising that their ability to dissolve 1mert gases
or nitrogen or oxygen is greater then that of hydrocarbons using the classic

Hildebrand arguments (Hildebrand and Scott, 1962).

What is more surprising is that, although the solubility of CF, or SF, in hydrocarbons
is substantially less then predicted from their vapour pressure (fugacity), the solubility
of methane or ethane in perfluorocarbons does not seem to show such negative

effects, but is more closely in line with the higher solubilities of argon, oxygen etc.

When we examine the GLP potentials of interaction between freely rotating CH, and
CF, we find, surprisingly, that they are very close to the geometric mean value of the
pair potential (see Table 4-25 where all the values are calculated at 110.0 K using the
heat of vaporization option in the computer program PP) indicating that the weak

forces are perhaps not due to van der Waals effect but to an affect such as a
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quadrupole interaction which may be strong in the fluorocarbon-fluorocarbon case but
less favoured in the unsymmetrical interaction CF,/CH,.

however, is that interaction of hydrogen in hydrocarbons could be smaller then

specified in the generalized London potential.

Another interaction,

Mixture ®,,*10'° (J) ®,,*10"° (J) @,,-GLP*10"® ®,,-GM*10'®
W )
CH, - CF, -0.022119 -0.038564 -0.028908 -0.029206
Ar-CF, -0.013893 -0.038564 -0.01745 -0.023146
Xe - CF, -0.042333 -0.038564 -0.030714 -0.040405

Table 4-25. Pair of potential values for CF . mixtures at 110.0 K.

When we calculate the GLP cross term interactions for freely rotating CF, and Ar or
Xe, we find that indeed, ®,,-GLP is smaller then the geometric mean potential by 20-
30 % (Table 4-25). This suggests that the solubility of such gases in perfluorocarbons

would be smaller rather then larger using the ideas of interchange energies.

If however, the dilute solute gas 1s freely rotating in solution but the solvents
molecules are not, then a different picture might emerge in which the unlike pair
interactions were a quite different average of the atom-atom interaction with an inert
gas interacting with effectively more fluorine atoms and less carbon atoms to give @,,

larger then the geometric mean, thus making the interchange energy much smaller.

If such an effect was responsible then we miught detect a change in the shape of the
excess Gibbs energy versus the solubility curve at low values of the solubility, say for

CF /Xe.

When the hydrocarbon solvents dissolve fluorocarbons it appears that no change
occurs 1n the unlike pair interaction on passing from, say equimolar to very dilute
solution suggesting that no change occurs in the relative rotation of species. The
fluorocarbon has thus either lost its favourable self complexation (quadrupole) at all

dilutions, or, the naturally low (e.g. CH,-CF,) potential is simply maintained in a
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freely rotating fluorocarbon which takes little account of the hydrogen atom

interaction whether they are rotating or not.

This points to an area for future development which is to expand the generalized

London potential to include variable rates of relative rotation of the unlike molecules.

4.7.5 Conclusion of solubility predictions using regular solutions theory

The work which evaluates the so-called interchange energy in a lattice model of
activity is normally constructed on the mathematical assumption that the entropy of
mixing is close to that of a random or an ideal mixture. Additions to this are usually
made, e.g., in UNIFAC, by reference to the positional entropy factors outlined by
Flory (1941) and Huggins (1941), sometimes called combinatorial terms. Simple
calculations show, however, that these Flory-Huggins terms are small for solutes
dissolved in solvents which are no more then twice their size (molar volume). Yet in
real mixtures entropies of mixing are seldom small and this means that lattice models
in their mathematics subsume non-random entropy effects associated with their key

energy parameters.

Guggenheim (1952) recognised this even for model lattices of hydrocarbons and drew
attention to the fact that w’ (the interchange energy) as applied in practice is not a
parameter of U® (total excess energy) but a parameter of A" (excess Helmholtz

energy) which can be taken to be nearly equal to G" in most cases.

When we come to the theory of dilute solutions as interpreted by lattice type models,

where
Hsolute, solvent = ywsolutc fsolute0
when y°,,,,. can be described by combining equations (3.23), (3.24), and (3.25)

1n szolute = ln (posoiute / fﬂsolute) + W’ /RT
then w' is a parameter which although it is ostensibly defined by reference to the
configurational energy of pure compounds and of unlike pair interactions (®,, - 0.5

(®,, + ®,,) ) is reflecting not total energy but free energy changes in the mixture.
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Several factors then become important in the definition of ®,, because the way in
which unlike forces are compounded from like forces relates to the configuration of
free energy in the mixture. Constructing ®,, from simple averaged @,; and ®,, by use
of (®,,,,)"* appears to be moderately satisfactory for molecules of similar size and
construction, but is progressively less so when AU = 1/2 Lz ®;; contains a large term
of non-dispersion energy (multipoles or hydrogen bonding). For these hydroxyl
molecules, @; effective for solutes can either be assumed to be smaller or to be more

accurately represented by a distribution of force close to that of the GLP form.

This line of argument can be applied again to use of solubility parameters in the

Hildebrand theory.

Again the equations can best be construed to predict not the total energy, but the
whole configurational free energy of mixing (i.e. minus Flory-Huggins effects) so that
the effects of configurational entropy changes are encapsulated with those differences

which lead to enthalpy changes on mixing.

Once more this appears to suggest that non-dispersion forces play little part in the
determination of unlike terms for, if the solubility parameter for water or the alcohols
is constructed by reference to an extrapolated plot of the solubility parameter versus
molar volumes then using the standard molar volumes for methanol, ethanol, 1-
propanol, and water, the solubility parameters become the values as shown in the third
column of Table 4-23 which can be compared to the conventional values (second
column in Table 4-23). Use of these modified values of the solubility parameters
which are lower then the conventional values, give good semi-quantitative predictions
of solubility of solutes in water or alcohols which are more commonly explained by

ascribing their low solubility to anomalous entropy effects.

4.8 Fitting of the like London pair potential.

4.8.1 Introduction to fitting of the like London pair potential

The investigation in applying the AGAPE method to predict the solubility (described
in section 4.6) concluded that in principle, the AGAPE method could be used to

predict the vapour phase composition of solute-solvent mixtures. One disadvantage is
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that the vapour phase composition is not the main priority in solubility calculations.
The other disadvantage is that the original AGAPE method cannot cope with

temperatures above the critical temperatures of each of the pure compounds.

The recently developed variant of the AGAPE method, the AGAPE-FIT method uses
one single experimental data point (of one excess property) to determine a value for
an unlike pair potential (®,,) for the binary mixtures and the difference in the volumes
(r). The two fitted parameters are then used to predict the vapour composition of the
mixture at various liquid compositions. The unlike pair potential is not calculated by
the London method (described in chapter 2.11), and despite a detailed investigation
(McCoubrey et al., 1993) it has not been possible to derive a relationship between the
fitted unlike pair potential and the unlike London pair potential, calculated in the
usual way. Nor has a relationship between the geometric mean unlike pair potential

and the fitted pair potential been established.

This section describes a similar approach in the solubility investigations. Values for
the unlike pair potential and the like pair potential for the solute (the experimental
temperature was above the critical temperature of the solute) were calculated to fit the

given solubility.

The aim was mainly to derive a value of the like pair potential for the solute above its
critical temperature that fitted the experimental data. This value could then be used to
predict solubilities (from known values of the two like potentials) of this specific
solute dissolved in various solvents (provided that the critical temperatures of the

solvents were above the experimental temperature).

The AGAPE-fit method was not employed in this investigation because the results of
the fitting procedure (®,,-fit and r-fit) are temperature dependent and therefore only
employable to calculate x-y values at this specific temperature. In gas-solubility
studies, the solubility is unique at a single temperature, the solubility varies with the
temperature and there is no need to be able to predict concentration profiles at this

single temperature.
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4.8.2 Calculations of the fitted like pair potential

4.8.2.1 Procedure

The actual method employed was a trial-and-error analytical method to find the values
of both the unlike London pair potential for the mixture and the like pair potential for

the solute that fit the given experimental solubility.

The extrapolation of the like pair potential for compounds whose critical temperatures
are below 298.15 K was described in section 4.4. The calculated information for the
equilibrium separation as a function of temperature in the interval from the triple point
to the boiling point was extrapolated beyond the critical temperature. The curve
appears to fit well with an expression for a straight line. The interval was chosen

because the density is continuous in this temperature interval.

The value for the equilibrium separation obtained this way was used as an input in an
AGAPE computer program. The program uses the equilibrium separations for both
methane and benzene to calculate the unlike London pair potential for the mixture at
the chosen temperature. The temperature 298.15 K was chosen, as experimental data
for the solubility of methane in benzene at this temperature were available. Again,
methane was chosen as the test case together with benzene because of the plentiful

experimental solubility data for this binary mixture.

Another computer program uses the calculated unlike London pair potential for the
mixture to calculate the solubility of methane in benzene. This computer program is a
recently developed variant of the VLE computer program (see description in section
2.11.10). From the input to the program, it calculates the composition of the vapour

phase.

The new version of the computer program uses the following input (calculates for binary
mixtures only)
INPUT the components
the experimental temperature
the unlike London pair potential for the binary mixture

both the like London pair potentials for the pure components
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the partial pressure of the solute

the experimental mole fractions in the liquid phase
OPTION heat of vaporization
OUTPUT the activity coefficients

the vapour phase composition

The program is based on the assumption that the partial pressure of the solvent is
equal to its saturation pressure. This assumption basically means that for the solvent

X =1.0 (4.19)

solvent Y solvent

As the characteristic feature of solubilities in most cases is that the liquid mole

fraction of the solvent is very close to one, the above assumption seems acceptable.

In order to gather more information about the vapour phase mole fractions and
because the original program only calculated the vapour pressure up to the critical
temperature, the vapour pressure of methane has been extended above its critical
point. To do this, a new function for methane's vapour pressure as a function of
temperature has been developed. The function is valid down to a reduced temperature
of 0.5. A plot of the vapour pressure of methane as a function of temperature is
shown in Figure Al2.1. and the corresponding table in Table A12-1. The vapour
pressure below the critical temperature was calculated using equation (4.16) (from

Reid et al., 1987). Equation (4.16) is valid for a single component.

The best linear fit gives the equation

s T,
ln(i—) = -5.3983 (—Tc—j + 53831 (4.20)

C

where P® is in 10°Pa and T is in K.
Using this equation, the saturated vapour pressure of methane at 298.15 K is obtained
to be 318.742 10° Pa. Using equation (4.20) to calculate the vapour pressure, it is

possible to estimate a value for the activity coefficient for the solute.

The chosen test mixture (methane-benzene) was chosen because it fulfilled the criteria

experimental temperature > critical temperature of the solute
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experimental temperature < boiling temperature of the solvent
experimental temperature > boiling temperature of the solute, and

experimental pressure < 500 kPa.

This choice has one disadvantage. Methane and benzene are far from being of similar
size. A mixture of methane-ethane, where the components are of similar size has been
suggested. This has not been chosen, as the mixture does not fulfil the above

mentioned criteria.

The employed procedure was as follows:

Initially, the unlike pair potentials for methane at 298.15 K (the experimental
temperature) was calculated from the extrapolated curve as described in section 4.4.
The like pair potential for benzene at the same temperature was calculated by running
the program PP using the heat of vaporization option (see section 2.11.10). The
unlike London pair potential and the unlike geometric mean pair potential were
calculated running the same computer program PP with the equilibrium separations as

input values.

Then from given values of:
Xeoues the solubility
T, the temperature
P e the partial pressure of the solute

O the London pair potential for the pure solvent

lig,lig>

D, s> the London pair potential for the pure solute
(initially, this was the value obtained from the extrapolated

curve and it became the parameter that was changed)
Dy, ..s-GM, the geometric mean pair potential for the mixture
interaction was derived from the values of the two like pair

potentials.

Dy, .:GLP, the London pair potential for the mixture
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interaction was derived from the value of the geometric mean

pair potential minus a difference.

The calculation gave values of:

YSolute
YSolvent
Ysolute

Yso]venL

The sum of the values of the vapour composition has to be unity (mass-balance
criterion for any equilibrium). When this criterion was fulfilled, the calculations were
stopped, and a fitted value for the like pair potential for the solute and the unlike pair

potential for the mixture were the end results of the trial-and-error calculations.

Initially, the value of the like pair potential for the solute was the extrapolated value.
The results reveal that the first initial values gave vapour composition results whose

sum was not unity.

The second step in the manual iteration procedure was to change the value for the like
pair potential for the solute to another value of the trial-and-error kind. From this (not
quite arbitrarily) chosen value, the matching value of the equilibrium separation,
employing the extrapolation method where necessary, was found. Again, the unlike
pair potential was derived running the program PP. The like pair potential for the
solvent did not change value during the whole procedure; nor were the other
changeable parameters in the AGAPE equations changed. In all calculations, the
number of nearest neighbours (z) was set to 11.0 and the difference in size (r) was in
all calculations set to the option of van der Waals volumes. This particular option was
chosen because the liquid molar volume for the solute has no value, as the solute is

above its critical temperature and therefore in a hypothetical state.
From the given values of the input parameters (as in the initial run), the vapour mole

fractions were calculated. Step two was repeated until the vapour phase fulfilled the

mass-balance criterion. As most of the experimental data include only the solubility,
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the temperature and the partial pressure of the gas, but not the mole fractions of the

gas phase, the y-value calculated for the solvent had to be taken as it stood.

4.8.2.2 Assumptions

The underlying assumption of doing this is that the AGAPE predicted value of the
vapour phase composition of the solvent is as it stands. Even though the predictions
for VLE were very accurate compared with experimental data for the majority of
mixtures (see section 2.11.15 and Appendix 2), a few mixtures show more or less
diversity from the experimental data. Taking the GLP calculated y,,,.,, as it stands is

probably correct for many mixtures, but incorrect for a few mixtures.

The other assumption that was made during the calculations is in fact not necessary at
all, that 1s, the assumption of a temperature independent, constant difference between
the unlike geometric mean pair potential and the unlike London pair potential. From
the values of the two like pair potentials for the solvent and the solute, respectively the
unlike geometric mean pair potential is calculated using equation (2.89). Both the
unlike pair potentials (the geometric mean and the London) have been calculated
using the computer program PP in a certain temperature interval with temperatures
below the critical temperature of the solute. A nearly constant difference between the
two unlike pair potentials had been found for all mixtures involved in these
calculations. The difference was assumed to be the same at the actual (experimental)
temperature. It was then possible to derive a value for a pseudo unlike London pair
potential at the experimental temperature, as the unlike geometric mean pair potential

was known.

This assumption is in fact, unnecessary to make. The fitted unlike pair potential is not
necessarily related to the London pair potential, but is the value of some potential that
fits the experimental data. The assumption was done because it was estimated that a
potential calculated as described above, would be if not exactly, then close to the

value of the “real” London potential.

The critical temperature of propane was in these calculations above the experimental

temperatures. Mixtures of propane were chosen after some of the calculations
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involving methane had failed to succeed. The calculations for the two mixtures
including propane as the solute were successful. The results of these calculations are
then a fitted like pair potential for propane and indirectly a fitted unlike pair potential
for the mixture as opposed to the AGAPE-FIT method, where a fitted unlike pair
potential is the result. Fitting the like pair potential for propane could show how far
this value is from the (default) value calculated using the AGAPE standard methods

(either the heat of vaporization or the molar volume).

Despite these assumptions, the procedure described above was employed.

When taken the y-value for the solvent as it stands, the calculations concentrated on
finding the value for the like London pair potential for the pure solute, that fitted the
solubility, or rather that gave a y-value for the solute, that made the sum of the y-

values 1.0.

4.8.3 Results of the fitted like pair potential calculations
Initially, the procedure was employed the mixture methane-benzene. Table A12-3

shows the results of the trial-and-error calculations.

To obtain more information about the fitted values, similar calculations were

performed for the mixtures:

1. methane - benzene (Table A12-3)
2. methane - cyclo-hexane (Table A12-4)
3. methane - carbon tetrachloride  (Table A12-8)
4. methane - n-hexane (Table A12-5)
5. methane - n-butane (Table A12-6)
6. methane - propane (Table A12-12)
7. methane - carbon disulphide (Table A12-7)
8. ethane - cyclo-hexane (Table A12-11)
9. propane - benzene (Table A12-10)
10. propane - cyclo-hexane. (Table A12-9)
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These mixtures were chosen on the basis of the availability of experimental data and
also to perform the calculations using components, whose sizes are similar. Including
propane as the solute is a test of how well the AGAPE pair potentials fit the actual
vapour composition, as the critical temperature of propane in this case is higher then

the experimental temperature.

In all the calculations performed for the mixtures mentioned above, the equation for
the gas's vapour pressure as a function of temperature was applied as described
previously. This enabled the program to calculate the vapour pressure of the pure gas
at temperatures above the critical temperature. Figure A12.1 shows the graph for
methane and equation A12.1 is the equation that was used at temperatures beyond the
critical temperature for methane. A similar graph for ethane as for methane has been
drawn and is shown in Figure A12.2 together with the equation A12.2 for ethane. The
critical temperature of propane is above 298.15 K, so there was no need to extend the

vapour pressure graph for propane.

Tables A12-3 to A12-11 (Appendix 12) show the results of the trial-and-error

calculations.

The results obtained from the calculations showed a high degree of inconsistency.

4.8.4 Discussion of the fitted like pair potential calculations
Tables A12-3 to A12-11 show that, firstly, it was possible to carry out the calculations
for five of the above mixtures. The calculations were successful for the mixtures:

1. methane - benzene

2. methane - cyclo-hexane

3. methane - carbon tetrachloride

9. propane - benzene

10. propane - cyclo-hexane.
The like pair potential for the pure compound is defined in such a way that it is only a

function of intermolecular parameters, such as the equilibrium separation. The

separation 1s a function of temperature. For the same temperature, one would have
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expected an equal value for the like pair potential for the pure component. For the
two solutes dissolved in different solvents the results of the trial-and-error calculations
were a different pure solute pair potential for each of the five mixtures. The three pair
potentials for methane in three different solvents were very far apart as Table 4-26

shows. The same result was obtained for propane.

mixture the fitted like pair
potential for the solute

(E19J)

methane - benzene -0.006
methane - cyclo-hexane -0.01

methane - carbon tetrachloride -0.053

propane - benzene -0.020

propane - cyclo-hexane -0.025

Table 4-26. The fitted like pair potential for the solute.

The results for methane is plotted in Figure 4.24 on the graph for the equilibrium

separation as a function of temperature.
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Figure 4.24. Equilibrium distance for methane as a function of temperature

with three inserted values for the fitted R.
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Secondly, it was not possible to obtain a London pair potential for the solutes for

these mixtures:

methane - n-hexane
methane - n-butane
methane - propane

methane - carbon disulphide

e A A

ethane - cyclo-hexane

There are possible explanations for this. Either, one of the other intermolecular
parameters has to be changed (e.g. the ratio between the molecular sizes) for these

special mixtures, or the assumption of taking y_,,.... s it stands is wrong.

Another explanation could be the lack of repulsive forces in the AGAPE model. The
repulsive forces are thought to cancel out at temperatures below the critical
temperature of the gas. At temperatures above the critical temperature for the gas, the
repulsive forces maybe have greater influence due to solvent-solute interactions. This

could explain the results obtained from the trial-and-error calculations.

As mentioned previously, the idea of using propane as a solute was to compare the
fitted like pair potential with the default like pair potential. The like pair potentials (in
10" J) for propane as calculated by the computer program PP (option heat of
vaporization) are

298.15K -0.033103
310.93 K -0.036630

The fitted like pair potentials are -0.020 and -0.025, respectively. The difference is
quite large, about 30 and 40 % error. This gives thoughts about the reliability of
calculating the equilibrium separation from the heat of vaporization or the molar
volume. As mentioned earlier (section 2.11) this matter was investigated in detail by
Mohammadi (1986) with the result that equation (2.80) is the most accurate equation

for deriving R* values.

- 268 -



4.8.5 Conclusion of the fitted like pair potential calculations

This section describes an attempt to fit the like pair potential for the solute to the
experimental value of the solubility. Ten mixtures were analysed, of them eight
mixtures contained the solutes methane and ethane, whose critical temperatures are
below the temperature of the experimental data. Two mixtures contained propane,

whose critical temperature is above the experimental temperature.

The results of this investigation show that the aim of deriving a single value for the
like pair potential for the solute above its critical temperature was not fulfilled.

Several values for the same solute were derived.

The calculations were carried out using two assumptions. One assumes a constant
difference between the unlike geometric mean pair potential and the unlike London
pair potential, and the other assumes that the AGAPE predicted value of the solvent
vapour phase mole fraction is as it stands. These two assumptions are debatable and

the end results of this fitting attempt illustrate the uncertain nature of this approach.

The results of the calculations are a fitted like pair potential for 5 of the mixtures,
whereas it proved impossible to fit the like pair potential for the other 5 mixtures. The
like pair potential for the solute should be dependent of the temperature, but be the
same value independent of the solvent. The three values of the like pair potential for
methane at 298.15 K that were the results of the calculations showed to be far from
equal. Two of them (in solvents cyclo-hexane and benzene) were close to each other,
whereas the like pair potential for methane dissolved in carbon tetrachloride was very
far from the other two values. The two values for n-propane were, compared to the

values obtained for methane, quite close.

The results showed such a degree of inconsistency that, in the end, it was decided not
to continue this specific approach to fit the like pair potential for the solute. A
probably much better approach would have been to carry out calculations using the, at
that time, just developed AGAPE-FIT method. In the AGAPE-FIT method an unlike
pair potential (neither the geometric mean pair potential nor the London pair potential)

and the size parameter (r) are calculated to fit with experimental values of phase
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equilibrium and one (experimental) data point for one of the excess thermodynamic
properties. Results stemming from applying the AGAPE-FIT method to vapour-
liquid equilibrium showed a discrepancy between the fitted unlike pair potential and
both the London pair potential and the geometric mean pair potential (McCoubrey et
al., 1993). Despite numerous efforts it has not been possible to derived a relationship
between the fitted pair potential and either the London pair potential or the geometric
mean pair potential. The AGAPE-FIT method works very well, and indeed gives
more accurate predictions of phase equilibrium for certain mixtures then the AGAPE
method (Kakhu and Homer, 1996a). The fact that it has not been possible to relate the
fitted unlike pair potential to any of the two pair potentials unfortunately places the
AGAPE-FIT method in the same category of prediction methods as e.g. the UNIFAC
method. There are two major differences though. The UNIFAC method demands a
vast number of experimental data to derive the values of the interaction parameters as
opposed to the AGAPE-FIT method where one single value of an excess
thermodynamic property is enough (of course, besides the mole fractions at that
specific data point). The second difference is that the UNIFAC interaction parameters
have little or no relation to a meaningful physical variable. In the AGAPE-FIT
method the fitted unlike pair potential is a meaningful physical variable. It is just not

related to any of the two pair potentials usually used in the AGAPE model.

Due to the inconsistent results obtained in this analysis and the lack of relationship
between the fitted pair potential obtained from employing the AGAPE-FIT method to
VLE predictions and either the unlike London pair potential nor the geometric mean

pair potential, it was decided not to pursue this specific attempt any further.

4.9 Activity coefficients at infinite dilutions

4.9.1 Activity coefficients at infinite dilution calculated by the AGAPE
method

Values for the activity coefficient for both the solute and the solvent at infinite dilution
were determined by carrying out calculations where the x,,,, was getting smaller and
smaller. The x-values did not match any experimental data, which did not matter in this

case, as the main result of the calculations was the activity coefficient for the solute.
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The calculations were carried out using the a modification of the computer program

VLE (see section 2.11 for a brief description of VLE).

The new version of the computer program used the following input (calculates for
binary mixtures only)
INPUT the components
the temperature
equilibrium separations of the components
the liquid phase composition
OPTION heat of vaporization
OUTPUT the activity coefficients
the vapour phase composition
INTERMEDIATE RESULTS
the like London pair potentials and the unlike London pair
potential from heat of vaporization.

In this case the liquid phase composition was chosen with the x,,,. values to be: 0.1,

solute
0.01, 0.001, and 0.0001. At least the last two calculations gave activity coefficients
for the solute, that were very little different. The sum of the liquid phase
compositions did not equal 1.0 or any experimental results found in the literature, but
this was not thought to be important, as the emphasis in these calculations was the

activity coefficient for the solute at infinite dilution.

After an extensive literature research, the conclusion was, that there were no data for the
activity coefficient for the solute at infinite dilution at temperatures above the critical

temperatures to compare the results obtained with.

4.9.2 Application of MOSCED parameter and the like pair potential

The aim of applying the MOSCED parameter and the like pair potential was an
attempt to calculate the activity coefficient at infinite dilutions using the MOSCED
method but substituting the dispersion parameter with an expression using the like

pair potentials instead.
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The MOSCED and the SPACE methods for calculating the activity coefficients at
infinite dilutions have been discussed in section 2.10.3.16. Of particular interest is the

dispersion parameter, A. In Thomas and Eckert (1984) it is a function of the refractive

index np,
ny — 1
f(nD ) = (__D__h_)
nf) + 2
xnon— aromatic 2O3f(nD) + 3.02 (421)
A‘aromatic - 195f(1’1D) + 279

An attempt to evaluate a possible relation between the MOSCED dispersion

parameter and the London pair potential will be described in this section.

4.9.3 Results of MOSCED calculations

It was investigated if a relationship exists between A, the parameter presenting the
dispersion forces in the MOSCED method (Thomas and Eckert, 1984 and further
developed in the SPACE method by Hait et al., 1993) and the like pair potentials for the
pure compounds. Thesé methods predict the activity coefficients of infinite dilution at

various temperatures from a number of pure component parameters.

The like pair potentials (®;) and the equilibrium separation (R*) for a number of
relatively high-boiling liquids were calculated using the computer program PP
(described in section 2.11.10) and both options: heat of vaporization and molar volume.
The temperature in all calculations was fixed to 298.15 K, as this is the temperature, for

which values of the dispersion parameter, A were given in Thomas and Eckert (1984).

The results have been plotted in various ways and represented in Appendix 15. The
equilibrium separation and the like pair potential (AGAPE) as a function of natural
logarithm of the dispersion parameter (MOSCED) are shown in Figure 4.25. For the
other option (heat of vaporization), the dispersion parameter was plotted against the
equilibrium separation (AGAPE, left y-axis) and the like pair potentials (right y-axis) as
shown in Figure A15.1.
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Figure 4.25 The equilibrium separation (m, left y-axis and — line) and the like
pair potential (points a, right y-axis and -- line), both obtained from the molar
volume option as a function of the natural logarithm of A and the best fitted

straight lines.

An attempt to combine the MOSCED-parameter and the like London pair potential for
the pure compound was carried out with very limited success. Even though, both linear
and loganithmic scale were used, there was no correlation between the MOSCED-

parameter and the like London pair potential.

The molar volume of the compounds at 298.15 K is another parameter in the MOSCED
method. The molar volume is a very important parameter in the AGAPE calculations,
as the majority of section 4 shows. As the computer program PP calculates the molar
volume for the pure compounds, it would be interesting to compare the two molar
volumes with each other. The results are shown in Table A15-1 and the AGAPE molar
volume (calculated using the Yen-Woods (1966) equation, see Appendix 14) is plotted
as a function of the MOSCED molar volume in Figure A15.2.

4.9.4 Discussion of MOSCED calculations
An attempt to investigate the correlation between the MOSCED dispersion parameter

and the GLP parameters in a different way was carried out. Selecting the components
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in homologous series like alcohols and alkanes and then carry out the same plots as

described above, one of the plots showed an excellent linear regression line.

Two series were chosen. One consisting of methanol. ethanol, and 1-propanol and
the other consisting of n-propane, n-butane, and n-hexane. For each of the series the
like pair potentials (calculated from the molar volume option) was plotted as a
function of the dispersion parameter. Figure 4.26 shows the graphs. As the trendlines

show, there is an excellent linear relationship between the two parameters.
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005+ 7Tl AN
O S N
~ R =0.9994 T-m
& 01+
Q
[e)]
W -0.15 ethanol
.
o
0.2 1 R?=0.9994
-0.25 : = : i |
6.6 6.8 7.0 7.2 7.4 7.6 7.8

lambda- MOSCED

Figure 4.26. The like pair potentials for three alkanes and three alcohols as a

function of A.

4.9.5 Conclusion of MOSCED calculations

A linear relationship between the MOSCED dispersion parameter and the like London
pair potential was shown for two homologous series consisting of three compounds
each. This work was not investigated further, because of lack of homologous series in
both the MOSCED database and the AGAPE database. Overall there was no easy
detectable relationship between the two parameters mentioned. It should be kept in
mind that the MOSCED parameter was only available for compounds which are

solvents at a temperature of 298.15 K.
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Chapter 5 - Compiled discussions

5.1 Results in context to general solubility considerations
As already mentioned in section 4.6, the total analysis of all the investigations carried
out seems to point to the need in a successful molecular thermodynamic model for the
inclusion of effects which reflect a non-rigid underlying structure which 1s tantamount
to the inclusion of both “repulsive” and attractive effects as is done in an equation of

state.

Successful simple treatments of solubility which include cavity formation (Pierotti,
1976) or use the rigid sphere model plus an attractive term (Snider and Herrington,
1967) generate an equation of state, albeit one in which considerable approximations
about molecular sizes and attractive energies are introduced and with individual data

being required for each individual calculation.

In the early 1980's the limitations of the original UNIFAC procedures began to be
recognised but by this time a mass of valuable data had been generated and codified,
mainly for VLE (excess Gibbs function and activity coefficients) on a molecular
group basis. The tables had achieved world-wide use and the project was restructured
to improve the versatility of the parameters in the UNIFAC model. The use of semi
empirical means permitted not only VLE data but also enthalpy and liquid-liquid data
to be codified via the systemisation of activity coefficients at infinite dilution, .

Extensive computer based packages were generated.

By this time also much work had been done by chemical engineers using cubic
equations of state with increasing sophistication to codify higher pressure and high
temperature phase equilibria, and methods for calculating fugacities had also been

computerised.

The end-equation of the reference solvent method (derivation in section 3.3.1) is as

follows
HZ, R X2 Yz

f§ = ———+= (3.13)
Y2,R
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Ify, 1s tabulated as a function of x, in different solvents by UNIFAC and ¥*, r can also
be found from UNIFAC, then, for known values of {°,, approximately 101.325 kPa,
say, X, can be calculated by iteration. Section 4.6 shows the success of this practical
method. Thus although ideas from both systems (activity coefficients and equation of
state) are introduced, by providing group contribution tables for hydrogen, nitrogen,
oxygen, etc., UNIFAC permits for low pressure gas solubilities (where the gas
fugacity f, can be replaced by pressure) a direct calculation without use of an
equation of state and this is possible as long as reference solvents are known of close

proximity to the working solvent.

The simplest illustration of the direct use of an equation-of-state method arises from
the thermodynamic equation

V% (07 PS)=0," y,P (5.1)
where

£’ =o P? (5.2)
with ¢ as the fugacity coefficient. Here @, is evaluated from the virial equation. If
the vapour phase 1s ideal this becomes

? %=y, (5.3)
which is equation (2.20), where ¢;" and ¢," are evaluated from an equation of state in

the standard expressions of P, V, and T.

Cubic equations of state are all modifications of the van der Waals equation of state
and the variables remain a” and b’. The relationship between mixing rules in these
equations of state and excess free energy models was first introduced by Huron-Vidal
(1979) as

a’ /b = > x;a /b -G/ In2 (5.4)
where this expression is derived to accompany with the Redlich-Kwong equation of
state, they took the infinite pressure limit of the excess Gibbs free energy in the

Redlich-Kwong model, where v ="1b" and also assuming b" = 2>x,b",.

By matching the parameters with G" at zero or low pressure instead it becomes
possible to use the massive UNIFAC system of G* values to determine the a’ and b’

parameters for use in equations of state. Equations for fugacity can be obtained in
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terms of a” and b which are variously normalised to the excess Gibbs energies of the
UNIFAC model. Procedures of this kind appear to be the way forward, but are not
without problems. Such problems have recently been highlighted by Michelsen and
Heidemann (1996), where they state that many of the newly developed mixing rules
mainly effect the liquid behaviour and have little effect on the vapour phase. This
leads to liquid excess free energies only partly obtained from the activity coefficient
model, with other significant terms arising from elsewhere in the equation of state. A
recently developed method by Novenario et al. (1996) takes another route. To obtain
the mixture parameter a for a cubic equation of state, the excess free energy of the
solution model is matched to that of the equation of state at a molar volume equal to a
fixed multiple of the excluded volume b such that all of the mixed liquids are at a low
pressure. They have been able to predict VLE for highly non-ideal mixtures, such as
acetone and cyclo hexane. Their results appear to predict very well even for a binary

mixture of acetone and water.

For the purposes of calculating or predicting Henry's law constants, these procedures
may be used in any hybrid systems. For this y” can be obtained directly from the
revised UNIFAC methods well fitted to infinite dilution activity coefficients and the
relation

H =y f" (5.5)
used. f is the fugacity of a hypothetical liquid at the system temperature and
pressure.

UNIFAC has now fitted tables to include “gases” like nitrogen, oxygen, or argon.

5.2 An intuitive approach to gas-liquid solubility

Breman et al. (1994) presented measured solubilities of a number of common gases
and vapours over a range of temperatures in several solvents including hexadecane
and 1-hexadecanol in an interesting, recent paper. The data show very little difference
between the solubilities in these two solvents suggesting that the effect of the alcohol

(OH) group 1s overwhelmed by the long chain group.

This observation may be related to a system for correlating gas-liquid solubilities as a

function of solvent structure which was introduced by Abraham and Nasehzadeh
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(1981) and re-established recently by Thomas and Eckert (1984). In this the activity
coefficients at infinite dilution were analysed as a function of functional groups
exercising “dipole” or “hydrogen bonding” effects on top of the basic dispersion force
“solubilities”. It has been shown that an additivity equation can be constructed in
which the solubility in hexadecane is taken as an “ideal” dispersion force norm to

which perturbations may be added by structures.

Calculations of 1deal Raoult's law solubilities for gases even such as hydrogen sulfide
or hydrogen chloride show these to be very close to the measured solubilities in
hexadecane and nearer still to the measured solubilities in heptane. Thus this norm
actually corresponds to a Raoult's law norm or activity coefficients approximately
equal to unity on the symmetrical convention. Calculations for permanent gases like
nitrogen, oxygen or argon suggest that this is true also using extrapolated saturated

vapour pressures or fugacity estimates.

The fact that a framework of solubility perturbations may be constructed from this
norm makes for a simpler way of incorporating many organic compounds. [t probably
does not embrace water which because of its very small molecular size exerts unique
effects not easily captured in such an analysis. Indeed, there seems little doubt that it
is the very small size rather then the hydrogen bond effect which dictates the solvent

power of water (Ben-Amotz and Herschback, 1990).

Examination of the data of Battino and Clever (1966) and of Breman et al. (1994)
shows that solubilities increase by a factor of about 3 on passing from methanol to
undecanol. Experimental data for the activity coefficient at infinite dilution of
heptane in a series of alcohols shows that in octanol y” is approximately unity whereas
in methanol it is close to 3. This indicates that the strong hydrogen bond effect of
methanol 1s almost completely diluted by the time the OH group has 8 carbon atoms

attached.
By contrast the solubility of propane changes very slowly on passing from C,

hydrocarbon to C,, hydrocarbon. Indeed the solubility of other non-polar gases
behave similarly (IUPAC Solubility Data Series (Clever, 1979 (vol. 1), Clever, 1980
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(vol. 4), Young, 1981 (vol. 5/6), Battino, 1981 (vol. 7), Hayduk, 1982 (vol. 9), Battino,
1982 (vol. 10), Hayduk, 1986 (vol. 24), and Clever and Young, 1987 (vol. 27/28)).

It seems probably therefore that most progress in understanding the solubility of gases
and vapours at ambient temperature will come from a study of simple functional
matrices along the lines of the linear free energy relationships set out by Abraham and

Nasehzadeh (1981).

For temperature dependence of solubility we probably need to look to the scaled-
particle method for computing the partial entropy of solution. In an “ideal” solution
the partial molar entropy equals -R In x which will change with temperature as x
changes with p/p’,. For most systems, even those behaving ideally at ambient
temperatures, the vapour pressure will have to be estimated above the critical point
and the accuracy of the estimates of the fugacity with temperature become

questionable.

Bo et al. (1993) have shown that scaled-particle calculations gave good estimates of
Henry's constant even for alcohols and there seems every reason to believe that
entropy terms thus calculated would predict solubilities for 50-100 K from the

reference point.

For the light gases (H,, N, or He) it seems clear that in hydrocarbon solvents the
temperature change of enthalpy 1s very small and in oxygenated solvents the solubility
goes up with temperature (rather than down as for most solutes, a phenomena
mentioned in Chapter 3) due to positive entropy changes since no residual attractive

energies remain.

5.3 The solubility of solutes in hydrocarbons and the concept

of near ideal solubility

An observation of solubility of volatiles in normal hydrocarbons of moderate chain
length suggests these to be close to their ideal solubility. Prausnitz et al. (1986) shows
that for hydrogen dissolved in n-heptane the solubility at 298.15 K is 0.0007 moles
compared to 0.0008 ideal and carbon dioxide to be 0.0122 moles compared to ideal of
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0.0160. Published data for the solubility of propane in hydrocarbon Cs to C at
298.15 K shows values of 0.115 moles to 0.133 in the longer chain compound
(IUPAC Solubility Data Series Hayduk, 1986 (vol. 24)). A calculation based on
published vapour pressures for propane gives the saturated vapour pressure to be
899.9 kPa at 298 K which gives for a 101.324 kPa saturated solution an ideal
solubility of 0.113 moles.

Recently published data for hydrogen sulfide show a surprising conformity to the
pattern. Values for Henry's constant given by Yokoyama et al. (1993) are given in
Table 5-1 together with solubility of hydrogen sulfide in n-dodecane from Feng and
Mather (1993) and Hu et al. (1985).

Mixture T (K) H Vapour H (ideal)
(solute - solvent) experimental | pressure of | calculated
(MPa) solute (MPa) (MPa)
propane - n-hexane 298 8.6 8.4
propane - n-hexadecane 300 8.4 8.4
butane - n-hexane 323 24 2.4
butane - n-hexadecane 300 2.1 2.4
hydrogen sulifide - 313 2.61 2.958 2.95
n-dodecane
hydrogen sulfide - 352 4.52 6.26 6.98
n-dodecane

Table 5-1. Values of Henry's constant for mixture at two different

temperatures.

A calculation of saturated vapour pressure from data in Daubert and Danner (1994)
(see Table 5.1) gives an ideal solubility of 0.0343 for hydrogen sulfide. The
calculations are limited because of the critical temperature of hydrogen sulfide of 373
K. Even though, the calculations show that the simple concept of ideal solubility in
hydrocarbons can go quite far in reasonable practical estimates for oil Industry

purposes.
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During 1960° to 1990° a number of authors (Preston et al., 1971, Gunn et al., 1966,
Yorizane and Miyano, 1978) achieved corresponding states graphical correlations of
Henry's law constants making some use of lattice or equation of state ideas usually
requiring a knowledge of the critical pressure and the critical temperature and possibly
the acentric factor. Such correlations go a long way as a first order prediction of gas

solubility in most common organic liquids.

Second order predictions can well be achieved by the use of methods by Sander et al.
(1983) based on UNIFAC procedures. With the advent of the modified UNIFAC
groups which include volatile substances like argon, oxygen and nitrogen and the
continuous availability of more experimental data for potential “reference” solvents,
like those from the Zavagoza laboratories (Gibanel et al., 1993) or those from Hayduk
and co-workers (1971, 1973 and 1975), Battino and Clever (1966). Such calculations

can be extended to quite high molecular weight species (up to C,,) with success.

The creation of a ubiquitous molecular model which rationalise and give good
predictions for solvents which may range from the high solubility perfluorocarbons to
the specially low solubility of non-ionic materials in water may have to wait some
time. The treatment of non-ionic solutions in water with its specialised structure and
large entropic effect poses a major problem in itself. Although, as this study has
shown, there is no broadly sensible energetic reason why water with its high enthalpy
of vaporization should show correlated low solubilities. The changes from different
solutes and temperatures will remain a complex function. For liquid water, the

changes will probably only be calculable using pure water as the reference fluid.

An alternative 1s to develop an equation of state designed for water, as has been done
recently by Miiller and Gubbins (1995). Their equation of state takes into account
repulsive, dispersive, multipolar and association interactions. At this stage, their

model needs some improvements, but its prospects look promising.
To expect to create a single model which would embrace the complexity of liquid

water and take account of the homologous organic liquids is very demanding. The

behaviour of both Henry's law constants and activity coefficients at infinite dilution
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probably becomes more and more determined by Flory-Huggins type entropy
considerations, as the solvents have chain lengths in excess of 10 carbon atoms
(Parcher et al., 1975). Even sophisticated equations of state, particularly the
conventional cubic equations of state, however normalised, have problems with

mixtures where the size differences of solutes and solvents are great.

The case of fluorocarbon fluids which show anomalously low un-like pair interactions
with hydrocarbons yet appear to have high dissolving power for inert gases can not be
rationalised by unlike pair potential parameters alone since the heat of vaporization is
not very different from hydrocarbons. It is, however, the case that the orientation of
these chain fluids is somewhat more randomised than that of hydrocarbons and
certainly their high densities give them low values of internal pressure and solubility
parameters, again suggesting that specific structural effects may have significant

influence on the solution behaviour.

It seems as though this dependence of gas solubility on specific structural nature of
solvents makes the rationalisation of quantitative behaviour so structure (entropy)
sensitive that the usual mean field theories of intermolecular interaction (even those of
the GLP method which does assume rapid rotation and overall spherical shapes) can

not be expected to cope over the wide spectrum.

The orientational averaging of any one thermodynamic parameter like the heat of
vaporization can not necessarily reflect the corresponding averaging of even a similar
property like solubility across the fields of polarity and anisotropy. Perhaps models

and computer simulation procedures will be able to overcome this in the future.

5.4 Final discussions

The objective of this work was to employ the concept of the AGAPE model (and
indirectly the generalized London potential theory) to predict solubilities of gases in
liquids. The AGAPE model is able to predict the solubility of gases in liquids with
reasonable accuracy within the limitations of the AGAPE model, mainly at conditions
below the critical conditions of the solute. As with any other activity coefficient

model, the difficulty lies in the fact that what is predicted, when applying an activity
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coefficient model to solubilities, are the activity coefficients, and the end results are
the vapour mole fractions. To predict solubility, the liquid phase mole fractions

should be the end results, and not the input values.

This is where most models experience difficulties, because, ideally, a model
developed to predict solubility of gases in liquids should be able to predict the liquid
phase mole fractions from the known variables: temperature and (total) pressure. This
should be theoretically possible according to the phase rule. As it can be seen from
the thermodynamic background in Chapter 2, the majority of the thermodynamic
relations and equations combine the vapour phase mole fractions in some way or
another to the liquid phase mole fractions. It is thus practically difficult to develop a

model in terms of independent parameters: temperature and pressure.

It was hoped to achieve a first stage to a prediction model, if it had been possible to
produce a similar graph as in Figure 4.2 by replacing the solvent independent force
constant with the solvent and solute dependent unlike pair potential. Common
mixtures, which have been examined in the literature were chosen. The unlike pair
potential was calculated by as many means as possible: dependent on temperature, at a
“standard” temperature, the geometric and the London pair potential were examined,
the interchange energy was employed, mixtures with water were included and
excluded, and the two options of deriving a value for the equilibrium distance were
employed. All these results were analysed in various ways of which the most
important was distinguishing between the analysis of a single solute dissolved in a

number of solvents, or analysing a number of solutes dissolved in a single solvent.

The result of these analyses is that there is indeed a linear relationship similar to that
in Figure 4.2 between the unlike pair potential and the logarithm of the solubility.

The closest linear relationship and thus the first stage of a prediction model, where
some unlike pair potential is used to predict solubility, is at different options for each
individual mixture. In other words, there is no clear indication of how to choose the
parameters for an arbitrary mixture to calculate the unlike pair potential (also in the
variant of the interchange energy) that will enable a reasonable accurate prediction of

the solubility.
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However, overall the analysis eliminates some of the options. It is clear from the
results that the pair potential (whether like or unlike) is definitely a function of
temperature. There is a tendency for the potentials calculated using the heat of
vaporization option to give better results then when using the molar volume option.
No such tendency was observed when employing the unlike London pair potential as

opposed to the geometric mean unlike potential.

The analysis could only be carried out as a result of the development of the
extrapolation method, where the equilibrium distance is extrapolated beyond the
critical temperature of the “permanent” gases in order to obtain a value for the like
pair potential for the gas in its supercritical state. This method was successfully

applied in this study.

In this work a number of polar compounds and compounds containing hydrogen
bonding have been included despite that the basic London theory excludes compounds
like that. The results show that the alcohols: methanol. ethanol. and 1-propanol can
be included as they are in the London theory and be expected to give reasonable
accurate results. Water represents a bigger problem, and the overall conclusion is not

to expect accurate results for mixtures where water is included.

The solubility prediction results using extrapolated values of the solubility parameter
gave much better prediction results then when employing the literature values of the
solubility parameters, even though the regular solution calculations of the solubility
contain a number of parameters which are determined with large uncertainties. From
this minor investigation it seems that taking the van der Waals forces to be the
dominant forces both in the polar compounds and compounds containing hydrogen

bonding achieves better solubility predictions.
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Chapter 6 - Final conclusions and suggestions for
future work

6.1 Final conclusions in relationship to solubility

This work began from an optimistic belief that the provision of an improved
molecular combining rule for the attractions between unlike non-polar polyatomic
molecules would enable the construction of a “simple” theory of dilute solutions of

non-polar compounds including supercritical gases.

It has long been known that solubility of gases and vapours in common solvents at
room temperature can be rationalised in terms of a grid of interaction effects made up
from the like molecule interactions on the one hand and solubility parameter
differences on the other. The search for a well defined unlike pair potential which
would represent a dominant term in the mixing rule appropriate to dilute solutions has

therefore been the main theme in this work.

Much of the work here has tended to show that the behaviour of dilute solutions of
vapours is a good pointer to the behaviour of that of gases and that actually both can
be embraced in one theory. In both cases however, since solubility is dictated by a
free energy (Gibbs energy), one might expect both entropy and enthalpy terms to pay
an independent part in its make up. In practice, it appears that for a variety of solvents
either the entropy of solution is nearly constant, or it is sufficiently correlated with the
enthalpy of solution to demonstrate a broad correlation between solubility and an

intermolecular energy parameter at a standard temperature such as 298.15 K.

By contrast, the search for a detailed mixing rule which might be used to explain
structure dependence or temperature dependence of solubility more closely, reveals
the great sensitivity of activity coefficient models such as AGAPE to the assumptions
made about both the like-pair and unlike-pair molecular interaction potentials. This
suggests that, rather as in the successful UNIFAC treatment of excess free energies of
more concentrated solutions, the energy parameters fit subsume a substantial entropy
term, and the comparative success of the geometric mean combining rule (Berthelot's
rule) may be somewhat of an artefact of the algebra of the models rather than a

demonstration of the molecular interactions of the London type.
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Correlations making use of corresponding states principles have been useful for broad
understanding and interpretation by comparison to those models which are more
properly defined as equation-of-state type which appear to deal more sensitively with
both effects. Although in any cubic equation of state the parameters “a” and “b” are
open to some ambiguity, may be temperature dependent or even correlated, they do
provide a reasonable way of representing the principally energetic effect through “a”
and the more geometrical repulsive or entropy related forces via “b”. Even here,
though however, it seems that model predictions may draw some benefit from the
phenomenological compensations which actually occur in balancing enthalpic and
entropic effects. This is probably demonstrated in the difficulty all models experience
in extending their predictions to aqueous solutions. In the case of water as a solvent,
entropic terms are very large and explicit and do not seem to be easily embraced in the

scaled particle model or cavity procedure used for prediction.

Even for non-aqueous solvents the behaviour of both Henry's law constants and
infinite dilution activity coefficients become more and more determined by Flory-
Huggins combinational entropy considerations as the solvents have chain lengths in
excess to 10 carbon atoms (Parcher et al., 1975). Despite their sophistication, even
modern equations of state, particularly conventional cubic equations, however
normalised, have problems with mixtures where the size difference of solutes and

solvents are great.

By comparison, systems which “buy into” the vast base of phase equilibrium data
contained in UNIFAC, by interfacing with it have much to offer for detailed
prediction. Another fruitful area would appear to be a detailed study of linear free
energy relationships using a common sense analysis of groupings instead of those

dictated by UNIFAC.

Prospects of extending solubility models which work for non-aqueous solvents to
water are mixed. Computer simulation procedures allow perturbation treatments to
predict behaviour of different systems in water but to find a coherent and simple

model which will embrace all solvents including water is difficult.
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Finally, the clearest single message of this work is to point to the need to embrace

some repulsive forces in models for solubility.

6.2 Final conclusions of work

The conclusions of this investigation can be described as:

A linear relationship between the logarithm of the solubility and the solute
characteristic (e/k;) has been proven by Hildebrand and Scott (1962). Such a
relationship has been further investigated in this work using the unlike pair potential
instead of the solute characteristic. Three methods have been employed, one where
the unlike potential is considered independent of temperature, one where the like
potential for the solvent is a function of temperature and finally the method where
both like potentials are functions of temperature. The options: unlike London pair
potential, unlike geometric mean potential and the like potentials calculated from

either the heat of vaporization or the molar volume have been examined.

A very reasonable linear relationship was achieved for the analysis of various solutes
dissolved in a single solvent, except for water. The relationship improved when the
unlike pair potential was a function of temperature. When analysing a single solute
dissolved in a series of solvents, the linear relationship improved dramatically for the

case, where the unlike pair potential was a function of temperature.

The conclusion of the linear relationship investigation is that the linear relationship
closest to a straight line is obtained when both like potentials for the solute and
solvent are functions of temperature. This result is consistent with the previous use of

the AGAPE equations for predicting vapour-liquid equilibrium.

A number of mixtures has been investigated, i.e., water and n-butane. The solubilities
of various solutes dissolved in water are much lower then the solubilities in n-butane.
This leads to the conclusion that it is doubtful whether a solubility prediction model,

based on a lattice model will be able to handle the full range of solubility values.
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The previous investigations involved a number of low-boiling gases such as argon,
nitrogen, hydrogen, and oxygen. For these gases it was necessary to develop a
method to obtain a pseudo “liquid-like” like pair potential at temperatures above their
critical temperatures. Such a method (the extrapolation method) was developed and

applied successfully in this work.

The total pressure and the temperature were predicted, respectively for a number of
mixtures which fall within the limitations of the AGAPE theory using the
experimental solubility as a known parameter. Reasonable accurate values compared
to both the measured pressure and the measured temperature, respectively were
obtained. The accuracy was in the same order of magnitude as the results obtained

from employing three other prediction methods.

The prediction of solubilities for mixtures including water and three alcohols
(solvents) gave more accurate values compared to the experimental solubilities, when
employing the regular solution theory using extrapolated values of the solubility
parameter (pretending that the van der Waals forces dominate) then when using the
literature values of the solubility parameter (where the forces also include dispersion

forces).

A linear relationship between the MOSCED dispersion parameter and the like London
pair potential was achieved for two homologous series consisting of three alcohols
and three linear hydrocarbons, respectively. For the majority of the compounds
included in the AGAPE database there were no easy detectable relationship between
the two parameters mentioned. It should be kept in mind that the MOSCED
parameter was only available for compounds which are solvents at a temperature of

298.15 K.
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6.3 Suggestions for future work
6.3.1 Improvements in the basic London theory

There are a number of ways that the basic London theory could be improved.

London's dispersion forces only account for the attractive forces (and short-range
repulsive forces) and one suggestion for future work would be to incorporate the long-
range repulsive forces in the calculation of the pair potentials. The Lennard-Jones
potential takes into account both the attractive and the repulsive forces, but
application of the Lennard-Jones potential to predict phase equilibrium has not been
as successful as the use of the London forces. Development of a new theory based on
London's intermolecular forces and including a term to account for the repulsive

forces could lead to improved phase equilibria predictions.

The basic London theory was developed for non-polar compounds and for compounds
containing no hydrogen bonding. Research in the past has shown this approach to be
quite successful, when a Flory-Huggins-like term is added to incorporate the
compounds containing hydrogen bonding. Similarly, an added term could account for
the polar components. This would extend the concept of the London theory to include
many more components. Some compounds which are polar and contain hydrogen
bonding, e.g., methanol, ethanol, and 1-propanol have already been successfully
included in the AGAPE database without added terms for the polarizability or the
hydrogen bonding. Predictions involving acetic acid which also forms a dimer, and
therefore needs special focus, are shown to be less accurate. The same was the case
for water which also forms a dimer and higher. Including terms to account for polar
compounds and compounds containing hydrogen bonding would result in better

prediction results for compounds such as acetic acid and water.

In all the calculations carried out in the work, the equilibrium separation for the mixture
is calculated as the arithmetic mean values of the two equilibrium separations. This
agrees with the very reasonable VLE predictions published by Kakhu and co-workers
(Homer et al., 1991, Kakhu and Homer, 1996a, Kakhu and Homer, 1996b, and Kakhu et
al., 1995), where the arithmetic mean value has been used, too. However, in cases

where the difference in the sizes of the two compounds was large, Mohammadi (1986)
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used the maximum of the equilibrium separations as the equilibrium separation for the

mixture.

To investigate this concept and incorporate it in the AGAPE theory, is another

suggestion for improving the London theory.

A way of include larger molecules such as hydrocarbons with 6 to 12 carbon atoms in
the London theory is by imaging that a small molecule like argon or methane does not
“see” the whole of a large molecule with 6 to 12 carbon atoms, but just the ends of the
larger molecule. This would agree very well with the London theory, where the
molecules are assumed to be spherical. If, in the first instance, the hydrocarbons
containing 6 to 12 carbon atoms could be symbolised with a “pseudo” ethane or .
propane molecule, this would open up the way for a whole range of larger compounds

to be included in the AGAPE predictions.

Recently, attention has been paid to some inconsistency in the distribution of the C-H
moment for hydrocarbons. This has initiated some work on a different distribution of
charge, where the polarizability for the carbon atoms is lower then the values used in
this work (where the same values as used throughout the published prediction results
by Kakhu and co-workers have been used to make ensure compatibility), while the
polarizability of the hydrogen atoms is larger. The work is in an early stage, but also
here the preliminary results for a mixture of methane and carbon tetrafluoride
indicates a much better prediction for the energy then the results previously obtained

for this mixture.

The generalized London potential accounts for rotation between two unlike molecules
by using an averaged value. Closer examination of especially the hydrocarbon-
fluorocarbon interactions suggests that instead of using an average, the London
potential between unlike molecules ought to account for variable rates of relative

rotation.

-290 -




6.3.2 The AGAPE theory

The MHV2 methods shows that it is possible to combine an equation of state with an
activity coefficient model, and then apply the activity coefficient model to high
pressures. The AGAPE model which is limited to low pressure due to the assumption
of vapour phase ideality could be treated the same way. The combination of the
AGAPE activity coefficient model with an equation of state has, in fact, started in this
Department. The chosen equation of state is a modification of the van der Waals
equation of state. The work is at an early stage, but very preliminary results are

promising.

6.3.3 Improvements of solubility calculations in the future

Attempt to understand the anomalously high solubility of gases in perfluoro
compounds as well as the unusually low solubility of gases in water by detailed
reference to specific structure effects would seem to be a future way forward to

improve solubility calculations.
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Nomenclature

a Redlich-Kwong constant

aa a correction exponent (calculated from solute properties)

ac acidity in the MOSCED model

a, activity of component 1

a'; van der Waals constant for molecular pairs 1-

a’ activity of component i at standard state

a’ parameter in the AGAPE equation

a" molar excess Helmholtz energy

a™, a'™, hard-sphere diameters for the solvent and the solute,
respectively

%, 2%, % temperature parameters (modified UNIFAC equations)

a’ UNIFAC group interaction parameter for compound m and n

a’ van der Waals constant

A, parameter in the UNIWAALS equation

Ay Margules constant

Ay van der Waals surface area

Ay van der Waals surface area of component 1

Ayl van Laar constant

AP, BP, C”, D®, E”, e parameters in the Daubert and Danner heat of vaporization

equation

AF excess Helmholtz energy

AR parameter in the reference solvent equation

AS parameter in a fitting equation for the normalised activity
coefficient

AV parameter in the UNIWAALS equation

A, B,C,D,and E parameters in a fitting equation

b Redlich-Kwong constant

bc basicity in the MOSCED model

b%,, b%, parameters in the AGAPE equations

b’ van der Waals constant

B second virial coefficient
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Bmix
BH
B77

B,

BS.

@

Cmix

Cin
Cina
CIZZ
Caun
Con
Con
o
CR‘

second virial coefficient of the mixture

second virial coefficient of the pure component 1

second virial coefficient of the pure component 2

second virial coefficient corresponding to the 1-2 interaction
parameter in the reference solvent equation

parameter in a fitting equation for the normalised activity
coefficient

parameter i1 the UNIWAALS equation

parameter for component i in the UNIWAALS equation
variant of the second virial coefficient, depending on
temperature

van Laar constant

cohesive-energy density

a constant to convert to the right units, equals 60.24 in this
work

third virial coefficient

third virial coefficient of the mixture

heat capacity

third virial coefficient of the pure component 1

third virial coefficient of the molecules 1-1-2 interaction
third virial coefficient of the molecules 1-2-2 interaction
third virial coefficient of the molecules 2-1-1 interaction
third virial coefficient of the molecules 2-2-1 interaction
third virial coefficient of the pure component 2
multicomponent AGAPE equation parameter

parameter in the reference solvent equation

variant of the third virial coefficient, depending on
temperature

parameter in the UNIWAALS equation

equilibrium separation of one atom i from the centre of

mass

fourth virial coefficient
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variant of the fourth virial coefficient, depending on
temperature

electric charges

mean-square value of the dispersion field

fugacity of component 1

fugacity of component 1 at standard state
fugacity of component i in the compressed phase
fugacity of component 1 in the gaseous phase
fugacity of component i in the liquid phase
saturated vapour fugacity of component i
fugacity of component i in the vapour phase
fugacity of component i in phase o

fugacity of component i in phase [3

numbers of degrees of freedom

force

a factor, assigned to account for the molecular rotations

partial molar Gibbs energy for component i

partial excess molar Gibbs energy for component i
partial molar Gibbs energy for the solute, cavity forming term

in the scaled-particle model equation

partial molar Gibbs energy for the solute, interaction term

in the scaled-particle model equation

excess molar Gibbs energy

Gibbs energy

excess Gibbs energy

excess Gibbs energy at infinite pressure

molar enthalpy

molar enthalpy for the pure gas (2)

molar enthalpy of the hypothetical pure liquid (2) at the
temperature of the solution

partial molar enthalpy of the hypothetical pure liquid (2) at

the temperature of the solution
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Al ., molar enthalpy of vaporization for component i

h* excess molar enthalpy

H enthalpy

H Henry’s constant

H;; Henry’s constant for solute 1 in solvent j

H; et Henry’s constant taken at some arbitrary reference pressure P’

H, Henry’s constant for solute 1 in reference solvent R

AH,,, latent heat (enthalpy) of vaporization

H* excess enthalpy

I first ionization potential

] repulsion constant in the Lennard-Jones potential

J calculated separately for each contribution due to dipole,
induction, and dispersion effect

k attraction constant in the Lennard-Jones potential

k, Boltzmann's constant (=1.38084-107 J/K)

i characteristic binary constant, represents the deviation from

the geometric mean

K, equilibrium constant

| intermolecular distance

L Avogadro’s number of molecules in a mole (=6.023-10%
mol™)

m number of components

m, dipole moment of component i

m", number of whole molecular contacts that a central molecule 1
makes with molecules of type 2 in its coordination shell

m", corresponding number that same central molecule 1 makes
with molecules of type 1 in its coordination shell

<m’> bonded atom mean square moment (3av( % /2)

n, number of moles of compound i

np refractive index

Ny total number of moles

N, molecules of type 1

N, number of nearest neighbours of type 1-1
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number of nearest neighbours of type 1-2

molecules of type 2

number of nearest neighbours of type 2-2

partial pressure

partial pressure of the dissolved gas

partial pressure of component i in the gas phase
partial pressure of component 1 at standard state

total pressure

difference in potential energy

potential energy

standard state pressure

saturated vapour pressure of component i

reduced pressure

critical pressure

critical pressure of component i

some arbitrary reference pressure

relative contact surface areas of two molecules
multicomponent AGAPE parameter

fitting parameters in the MHV2 mixing rule
UNIFAC parameter

external surface area of molecule i

UNIFAC surface area parameter for group k
difference 1n sizes of the molecular volumes between two
molecules

multicomponent AGAPE parameter

distance between atoms in two rotating molecules i and j
averaging of the inverse sixth power of Iy

a radil parameter in the hard-sphere equation
UNIFAC parameter

universal gas constant (=8.31439 J/(mol K) )
equilibrium intermolecular separation for pure liquid
equilibrium intermolecular separation for pure liquid

component 1
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mix

-

-

AU
A[Jl 1> AUZZ
UE

Vv

mix

V.

equilibrium intermolecular separation for a mixture
UNIFAC volume parameter for group k

molar entropy for the pure gas (2)

molar entropy of the hypothetical pure liquid at the

temperature of the solution
partial molar entropy of the hypothetical pure liquid (2) at

the temperature of the solution

molar excess entropy

entropy

€XCess entropy

number of whole molecular contacts that a central molecule 1
makes with molecules of type 2 in its coordination shell
corresponding number that same central molecule 1 makes
with molecules of type 1 in its coordination shell

absolute temperature

reduced temperature

reduced temperature of component 1
critical temperature

critical temperature of component i
reference temperature

constant specific to the solute

parameter used in the UNIQUAC equations
energy of complete vaporization

excess molar energy

potential energy

total potential energy

change 1n total molar energy due to mixing
AGAPE parameters

€Xcess energy

molar volume

molar volume of component i

molar volume for the mixture

molar volume of component i in the compressed phase
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<

<|

<
—

<

< <
@]

N __g g\

N

N N DB

mix

N N

Z VW

partial molar volume of component i (in the liquid phase)

partial molar volume of component 1 (in the liquid phase) at

infinite dilution

excess molar volume

molar volume of the pure liquid
volume

partial volume of component i

critical volume

molecular volume

molecular volume of component i
excess volume

mole fraction of the dissolved gas

mole fraction of component i in the liquid phase

solubility of component 2 in a reference solvent R

fractions of the total number of molecules around the central

molecule 1 that are of type 2 or 1

parameter in the UNIFAC equations

mole fraction of component i in the vapour phase
scaled-particle parameter

volume fractions of component i

molecular volume fraction of component i

interchange energy

number of structurally equivalent atoms J in the molecule
number of nearest neighbours (coordination number)
(vapour or liquid) phase composition of component i
compressibility

compressibility of the mixture

critical compressibility

compressibility as expressed by Redlich-Kwong equation of
state

compressibility as expressed by van der Waals equation of

State



N

<>

Y

Yxey

o
Y2, r

o

|

Jox

parameter in the UNIWAALS equation

electronic time averaging

polarizability for molecule 1

relative volatility

constant specific to the solute

Huron-Vidal parameter used in the MHV2 model
Huron-Vidal parameter used in the MHV2 model for the
molecules 1-j

Huron-Vidal parameter used in the MHV2 model for the
mixture

phases

universal constant for simple gases

activity coefficient of component i in the liquid phase

residual activity coefficient of group k in a reference solution
containing only molecules of type

activity coefficient of component 2 in the gaseous phase in a
reference solvent R at infinite dilution

activity coefficient of component i in the liquid phase at
infinite dilution

activity coefficient of component i in the unsymmetric
convention

parameter in the UNIFAC equation

solubility parameter of component i

average solubility parameter for the entire solution
negative minimum energy

constant depending on the intermolecular distance and the
potential function

constant for polar, non-associated liquid

parameter in the UNIFAC equation
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e A

®© ® o

A

multicomponent AGAPE parameter

UNIQUAC parameter, surface fraction of component i
parameter in the UNIFAC equation

parameter in the UNIQUAC equation

parameter in Kohler's calculation of the interchange energy
dispersion parameter in the MOSCED equations

parameter in the multicomponent AGAPE equations

Boltzman parameter factor (used in the Wilson equations)
related to potential energies of a 1-2 pair and a 1-1 pair,
respectively

chemical potential of component i

chemical potential of component i at standard state
number of groups of type k in molecule i

frequency for molecule i in its unexcited state

local volume fraction for component i

parameter in the MOSCED equation

number of phases

density

reduced, saturated density

saturated density

intermolecular distance when @ = 0 (distance parameter in
the Lennard-Jones potential)

hard-sphere diameter for component i

hard-sphere diameter

parameter in the multicomponent AGAPE equations
fugacity coefficient of component i

liquid fugacity coefficient of component i

saturated vapour fugacity coefficient of component i
vapour fugacity coefficient of component i

fugacity coefficient of component i at standard state
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S

i

S o

ij

=

min

@,

ij
X

km

SUPERSCRIPTS

'm
combinatorial
residual

A

C

E

FV

<2C‘V>Wa®

liquid fugacity coefficient of the solute (component 2) in the
liquid solvent at infinite dilution

potential energy

net potential energy between two molecules i and i

net potential energy between two molecules i and j

minimum potential energy

average potential energy between two dipoles i and j

parameter in the MOSCED equation

binary parameter for Wilson equation in the UNIFAC
equations

Pitzer's acentric factor

UNIFAC parameter

Planck’s constant (=6.6242-10™* Js)

molecular

AGAPE
compressed phase
€XCess

free volume
group
hard-sphere
liquid phase
saturated phase
UNIFAC
UNIWAALS

vapour phase
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SUBSCRIPTS

standard state

infinite

cavity

dissolved gas phase
component

an atom 1 1n a molecule
ideal state

mixture

reduced

solvent
vaporization

vapour pressure (of component 1)
critical

Daubert and Danner
Interaction
Margules

reference solvent
Redlich-Kwong

van der Laar

van der Waals
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