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SUMMARY 

Clostridium difficile is at present one of the most common nosocomial infections in the 

developed world. Hypervirulent strains (PCR ribotype 027) of C. difficile which produce 

enhanced levels of toxins have also been associated with other characteristics such as a 

greater rate of sporulation and resistance to fluoroquinolones. Infection due to C. difficile 

PCR ribotype 027 has also been associated with greater rates of morbidity and mortality. 

The aim of this thesis was to investigate both the phenotypic and genotypic characteristics 

of two populations of toxigenic clinical isolates of C. difficile which were recovered from 

two separate hospital trusts within the UK. Phenotypic characterisation of the isolates was 

undertaken using analytical profile indexes (APIs), minimum inhibitory concentrations 

(MICs) and S-layer protein typing. In addition to this, isolates were also investigated for 

the production of a range of extracellular enzymes as potential virulence factors. Genotypic 

characterisation was performed using a random amplification of polymorphic DNA 

(RAPD) PCR protocol which was fully optimised in this study, and the gold standard 

method, PCR ribotyping. The discriminatory power of both methods was compared and the 

similarity between the different isolates also analysed. Associations between the 

phenotypic and genotypic characteristics and the recovery location of the isolate were then 

investigated. Extracellular enzyme production and API testing revealed little variation 

between the isolates; with S-layer typing demonstrating low discrimination. Minimum 

inhibitory concentrations did not identify any resistance towards either vancomycin or 

metronidazole; there were however significant differences in the distribution of 

antibiogram profiles of isolates recovered from the two different trusts. The RAPD PCR 

protocol was successfully optimised and alongside PCR ribotyping, effectively typed all of 

the clinical isolates and also identified differences in the number of types defined between 

the two locations.  Both PCR ribotyping and RAPD demonstrated similar discriminatory 

power; however, the two genotyping methods did not generate amplicons that mapped 

directly onto each other and therefore clearly characterised isolates based on different 

genomic markers. The RAPD protocol also identified different subtypes within PCR 

ribotypes, therefore demonstrating that all isolates defined as a particular PCR ribotype 

were not the same strain. No associations could be demonstrated between the phenotypic 

and genotypic characteristics observed; however, the location from which an isolate was 

recovered did appear to influence antibiotic resistance and genotypic characteristics. The 

phenotypic and genotypic characteristics observed amongst the C. difficile isolates in this 

study, may provide a basis for the identification of further targets which may be potentially 

incorporated into future methods for the characterisation of C. difficile isolates. 

Keywords: Clostridium difficile, RAPD, PCR ribotyping, phenotypic, genotypic. 
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CHAPTER 1 INTRODUCTION 

1.1 Clostridium difficile 

Clostridium difficile belongs to the family Costridiaceae and genus Clostridium. This 

genus consists of Gram positive, spore forming bacilli that possess low G+C content 

chromosomal DNA. Clostridia are frequently described as motile obligate anaerobes 

however there is variability in aerotolerance and motility between different species 

(Washington et al., 2005). Over 100 species of Clostridium have been identified to date; 

only thirteen species are considered to be seriously pathogenic towards humans or animals 

(Dupuy et al., 2006). The Clostridia produce more protein toxins than any other genus 

(Johnson, 1999) and unlike other species of pathogenic bacteria, the main cause of their 

pathology is through the action of these toxins which are some of the most potent in nature 

(Johnson, 1999).   

Vegetative cells of C. difficile are typically larger than other bacterial cells measuring 3-

16.9 µm in length, 0.5 -1.9µm in width and producing subterminal spores (Hatheway, 

1990) that are highly resistant to most standard forms of sterilization and disinfection.      

C. difficile is a heterotrophic organism with an optimal growth temperature of 37°C, most 

strains are motile and possess petrichious flagella. Colonies of C. difficile following 48 

hours incubation in anaerobic conditions at 37°C are typically large, flat and slightly grey 

in colour with a ‘ground glass appearance’. C. difficile also has a distinctive ‘elephant 

house’ odour due to the production of iso-valeric acid, iso-caproic acid and p-cresol, which 

are the products of various metabolic pathways within the organism (Levett, 1984). 

First isolated in 1935 from stool samples of newborn children and named Bacillus difficilis, 

C. difficile was initially identified as a commensal organism of the digestive tract of young 

infants (Hall and O' Toole, 1935) and this thought remained for over the next forty years. 
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In 1977 a clostridial toxin was isolated from cases of pseudomembranous colitis (PMC) 

(Larson & Price, 1977) but it was not until 1978 that C. difficile was identified as a cause 

of antibiotic associated PMC and acknowledged as a human pathogen (Bartlett et al., 1978, 

George et al., 1978, Larson et al., 1978).     

1.2 Virulence and pathogenesis 

1.2.1 Cell associated virulence factors 

Some of the cell associated proteins that C. difficile possess contribute to successful 

colonisation within the gut. Some strains of C. difficile possess flagella which are reported 

to be involved in cell adhesion with strains lacking flagella being unable to adhere as 

closely (Tasteyre et al., 2000). Capsules have also been observed in some strains of C. 

difficile which may provide evasion from the host immune system (Davies and Borriello, 

1990).The surface layer proteins of C. difficile have been proposed to have 

immunoreactive properties (Ausiello et al., 2006) and also be involved in adhesion to host 

cells (Calabi et al., 2002). Other cell surface factors reported to have adhesive properties 

include fibronectin binding proteins (Hennequin et al., 2003), Cwp66 (Waligora et al., 

2001) and the heat shock protein GroEL (Hennequin et al., 2001b). It has also been 

reported that some of these proteins also stimulate an immune response (Pechine et al., 

2005). 

1.2.2 Toxin A (TcdA) and Toxin B (TcdB) 

The virulence of C. difficile is attributed to the production of two major toxins; Toxin A 

and Toxin B. Strains of C. difficile that do not produce toxin A and B are not associated 

with disease (Kelly et al., 1994). Both toxins are high molecular weight 

glucosyltransferases (308kDa and 270kDa respectively) and originally both were 

characterised as cytotoxic however, only Toxin A was also regarded as an enterotoxin. In 
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recent years however it has been established that both toxins are also enterotoxic to human 

intestinal cells (Savidge et al., 2003, Pothoulakis and Lamont, 2001). Toxin A and B are 

encoded for by the genes tcdA and tcdB respectively, which reside on the 19.6kb 

pathogenicity locus (PaLoc) in addition to the genes tcdC, tcdD and tcdR (Figure 1.1). The 

genes tcdC and tcdD  are the respective negative and positive regulators of the toxin genes 

(Hundsberger et al., 1997) with evidence suggesting that tcdE is responsible for holin 

function (Tan et al., 2001); facilitating the release of the toxins from the cell. 

 

 

Figure 1.1 Structure of the PaLoc locus, arrows depict the direction in which genes 

are transcribed. Adapted from (Dupuy et al., 2008) 

When the association between C. difficile and PMC was first discovered, initial work 

implicated that there was only one toxin (Toxin B) responsible for the symptoms 

associated with C. difficile infection (CDI); it was not until later that Toxin A was also 

isolated (Taylor et al., 1981). Initial research into both toxins later suggested that Toxin A 

was the more potent of the two toxins and that Toxin B did not have the capacity to cause 

disease unless Toxin A was also produced, with Toxin A providing entry into the cells; this 

was based on work carried out in animal models (Lyerly et al., 1985, Mitchell et al., 1986, 

Torres et al., 1990, Triadafilopoulos et al., 1987). The isolation of the first Toxin A-/B+ 

strain and its characterisation prompted investigations on mammalian cells lines using 

Toxin B alone. The findings from such studies established that Toxin B had the ability to 

cause a disease state independent of Toxin A; thereby demonstrating that Toxin A-/B+ 
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strains do have the capacity to cause symptomatic disease (Pothoulakis et al., 1986, Hecht 

et al., 1992).  The isolation of Toxin A-/B+ strains from patients with CDI are now 

increasing in frequency (Voth and Ballard, 2005) despite being rare in previous years, it is 

also apparent that these strains can cause disease of equal severity as strains that produce 

both toxins (Drudy et al., 2007). Research into the independent action of both toxins has 

long been hindered as C. difficile is hard to genetically manipulate and therefore the 

virulence of strains that only produce Toxin A could not be investigated as these strains do 

not naturally occur in nature (Lyras et al., 2009). New methodologies however using 

genetically manipulated strains of C. difficile have recently allowed novel studies to be 

carried out that investigate the independent action of both toxins in a hamster model. In 

contrast to earlier work, these results have suggested that Toxin B is essential for virulence 

with genetically altered strains that only produce Toxin A markedly losing the ability to 

cause disease (Lyras et al., 2009); such evidence also conflicts with earlier work that 

suggested Toxins A and B work synergistically (Lima et al., 1988, Lyerly et al., 1985). 

Both toxins display a high degree of similarity to each other at the amino acid level (63%) 

(Von Eichel-Streiber et al., 1992) and this is reflected in the structure. Both toxins can be 

divided into three domains: a receptor binding domain, a catalytic or enzymatic domain 

and a translocation domain as depicted in figure 1.2. The region with the greatest similarity 

between the two toxins is seen in the catalytic domain (Voth and Ballard, 2005); this is the 

region that monoglycosylates Rho GTPases within the cell and is responsible for the 

changes in cell physiology. The cytotoxic effect of both toxins is the same, with 

differences between the two originally reported to be the ability of Toxin A to cause fluid  

accumulation (Borriello, 1998) however there is now evidence that contradicts this 

(Savidge et al., 2003). Other apparent differences between the toxins are the variability that 
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occurs in the receptor binding domain and it is this that is likely to govern the differences 

in receptor binding (Jank et al., 2007). 

 

Figure 1. 2 Proposed protein domain structures of Toxin A and Toxin B of C. difficile. 

Adapted from (Voth and Ballard, 2005) 

Both toxins are produced during the late log and stationary phases of growth (Voth and 

Ballard, 2005), allowing cells to have become established within the host gut before toxin 

production begins. Toxins are taken up by host cells through receptor mediated 

endocytosis; the receptors for both toxins differ, with the receptor for Toxin A better 

characterised than that for Toxin B.  The receptor for Toxin A is the disaccharide Galß1-

4GlcNac found on I, X and Y blood antigens that are expressed on several types of cell 

including intestinal epithelial cells (Tucker and Wilkins, 1991); the receptor for Toxin B 

has not yet been identified but its ability to infiltrate a variety of cells suggests a common 

receptor (Voth and Ballard, 2005). Once both the toxin and receptor has been internalised, 

the endosome enclosing them is acidified, this allows the toxin to undergo structural 

transformations upon which the active portions of the toxin (catalytic domain) are released 

into the cytosol. Both toxins exert their effect on cells by glycosylating the Rho family of 

proteins; proteins which are essential for many processes within the cell including 

regulation of the actin cytoskeleton, disruption of tight junctions and parts of the cell cycle 

(Etienne-Manneville and Hall, 2002, Giesemann et al., 2008). Glycosylation of the Rho 

GTPases leads to inactivation and inhibition of their regulatory activity within the cell, 

most notably leading to depolymerisation of the actin cytoskeleton and rounding of the 
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cells and ultimately apoptosis. Cell rounding also leads to the disruption of tight junctions 

due to both the loss in the structure of the actin cytoskeleton but also because Rho proteins 

also regulate tight junctions. The loss of tight junctions then leads to increased 

permeability causing the diarrhoea that is characteristic of CDI (Poxton et al., 2001). Both 

toxins have the capacity to cause changes in host cell physiology and although both toxins 

have the same cytopathic effect on cells, Toxin B is reported to be a more potent cytotoxin 

in comparison to Toxin A (Poxton et al., 2001). 

1.2.3 Binary toxin 

In addition to TcdA and TcdB, some strains of C. difficile also produce a binary toxin 

(CDT) which has been identified as an actin-specific ADP-ribosyltransferase. This toxin is 

similar to other clostridial iota toxins which act specifically on actin within the cell (Popoff 

et al., 1988) The role of the binary toxin in CDI is still unknown at present but this toxin 

has been shown to have a cytopathic effect on vero cells in vitro (Perelle et al., 1997). Not 

all strains of C. difficile produce a binary toxin which indicates that this toxin is not 

essential to the virulence of the organism. The production of this toxin is most frequently 

seen alongside Toxins A and B and is produced by the hypervirulent PCR ribotype 027 

strains (Carter et al., 2007); there have however been reports of strains that produce binary 

toxin only (Stubbs et al., 2000, Geric et al., 2006, Geric et al., 2003).  

1.2.4 Additional secreted virulence factors 

Unlike many other bacteria, C. difficile does not produce a range of additional virulence 

factors such as extracellular enzymes. Although toxin production is well documented as 

the major virulence factor of C. difficile, limited studies have been undertaken to 

investigate the production of other virulence factors such as hydrolytic and proteolytic 

enzymes (Popoff and Dodin, 1985, Seddon and Borriello, 1992, Seddon et al., 1990, Hafiz 
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and Oakley, 1976, Steffen and Hentges, 1981). Studies have indicated that C. difficile may 

produce some extracellular enzymes such as heparinase and hyaluronidase however the 

number of strains investigated has been small and levels of enzyme have been found to 

vary between strains (Hafiz and Oakley, 1976, Steffen and Hentges, 1981).  The variation 

in extracellular enzyme production indicates that C. difficile does not produce obvious 

additional secreted virulence factors but where present are more likely to facilitate its 

survival within the digestive tract (Poxton et al., 2001).  

1.2.5 Spore production 

The ability of C. difficile to produce highly resilient endospores enables effective 

transmission and survival within an environment; they also allow the organism to persist 

within the gut despite antibiotic treatment thereby providing a type of resistance. The 

nosocomial transmission of C. difficile can be largely attributed to the ingestion of spores 

that have been picked up from contaminated surfaces or through aerial transmission 

(Underwood et al., 2009); spore formation allows C. difficile to spread efficiently which is 

why they are so important in its transmission (Lawley et al., 2009). Spores are also 

effectively expelled from patients with CDI through the profuse diarrhoea that is associated 

with the infection; it has been demonstrated that approximately 10
5
 spores can be expelled 

in each gram of faeces from a C. difficile patient in addition to vegetative cells, further 

enhancing transmissibility (Jump et al., 2007). Sporulation occurs when vegetative cells of 

C. difficile are exposed to unfavourable conditions such as nutritional deprivation (Sorg 

and Sonenshein, 2008). In such environments a spore is formed within the mother cell; this 

ensures the preservation of the strain until conditions are such that the spore will be 

stimulated to germinate into its vegetative cell state where it can produce toxin and cause 

disease. Spores of C. difficile germinate in the presence of certain bile salts which are 

found in the small intestine of humans (Wilson, 1983); and it is therefore likely that this is 



Chapter 1 Introduction 

27 

 

where germination occurs in the human body. There are several bile salts that induce the 

germination of C.difficile however sodium taurocholate is the most effective and well 

documented, glycine and thioglycolate also act as co-germinants (Sorg and Sonenshein, 

2008, Wheeldon et al., 2008a). Once spores have been formed they are very hard to 

eliminate as traditional cleaning agents are often ineffective (Wheeldon et al., 2008c); 

sodium hypochlorite eliminates spores (Kaatz et al., 1988)  but is also hazardous to use 

(Rutala and Weber, 1997).The high level of relapse associated with CDI may also be 

attributable to spores (Tang-Feldman et al., 2003) as they can remain unaffected in the gut 

during antibiotic treatment; because spores are not capable of causing disease, symptoms 

will resolve and patients will appear clear of infection. When antibiotic therapy has 

concluded and conditions within the gut again become favourable, spores then germinate 

into vegetative cells, producing toxins and causing a return to a disease state. Without 

effective spore production, the transmission of C. difficile would be considerably more 

difficult.  

1.2.6 Hypervirulent strains of C. difficile 

Strains of C. difficile that produce elevated levels of toxin are described as hypervirulent; 

these strains are often associated with severe cases of infection, complications, and higher 

morbidity and relapse rates (Cookson, 2007). Depending on the typing method used, the 

predominant hypervirulent strain is known as PCR ribotype 027/ PFGE type NAP-1/ 

toxinotype III and REA group B1 and was first isolated and reported in 1985 (Popoff., 

1988); at the time however it was not regarded as a significant strain especially as it was 

very rare. It was not until 2002 in Quebec that this strain began to emerge with regularity 

leading to outbreaks and a significant number of deaths throughout Montreal. By 2005, this 

hypervirulent strain had been isolated from patients in several other countries including the 

United States, England and the Netherlands (Van Steenbergen et al., 2005). This strain is 
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now widespread across many countries in Europe (Hensgens et al., 2009) and there have 

been reports from many countries across the world including Australia, Korea, Japan and 

Hong Kong (Riley et al., 2009, Tae et al., 2009, Kato et al., 2007, Cheng et al., 2009).  Not 

only does the PCR ribotype 027 strain produce excess toxin but the additional binary toxin 

in addition to reports of increased sporulation (Akerlund et al., 2008) and increased 

antimicrobial resistance, most notably towards fluoroquinolones (Mcdonald et al., 2005). 

The reason for the excess production of toxins was initially shown to be due to a specific 

18bp deletion within the tcdC gene; the negative regulator of toxin production with 

deletions then leading to truncated proteins. There is now evidence that suggests that not 

only does this deletion not affect regulation of the toxin (Verdoorn et al., 2010), but also 

that the genomes of other strains of C. difficile contain similar deletions and mutations with 

no detrimental effect to the protein and toxin regulation (Matamouros et al., 2007, 

Spigaglia and Mastrantonio, 2002, Maccannell et al., 2006). Recent analysis has also 

shown that PCR ribotype 027 strains posses an additional 234 genes in comparison to the 

C.difficile strain 630 (PCR ribotype 012) (Stabler et al., 2009) which may account for the 

differences observed in virulence and antibiotic resistance. The hypervirulence of PCR 

ribotype 027 therefore appears less straightforward than previously thought and may be 

due to a combination of several factors. 

There are other hypervirulent strains that have begun to emerge and these are PCR 

ribotypes 017 and 078. Both of these strains have been associated with serious outbreaks of 

CDI and were also previously quite rare (Dawson et al., 2009). PCR ribotype 078 produces 

toxins A and B and has deletions in the tcdC gene, it also produces binary toxin (Goorhuis 

et al., 2008). Isolates belonging to PCR ribotype 017 have displayed high levels of 

resistance to fluoroquinolones however do not produce Toxin A (Dawson et al., 2009) ; 

another indicator that Toxin B is equally as important in disease as Toxin A. The general 
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trend of hypervirulent strains is they appear to go from almost obscurity in a population to 

quite rapid emergence; this was seen with the PCR ribotype 027 strains in several countries 

and an increase in the isolation of PCR ribotype 078 from patients have recently been 

reported in the UK and the Netherlands (Hensgens et al., 2009).  

1.3 Epidemiology, transmission and prevention 

1.3.1 Epidemiology 

Clostridium difficile is the most common cause of nosocomial diarrhoea in developed 

countries (Bacci et al., 2009). Carriage and colonisation rates vary between age groups 

with carriage estimated to be less than 3% in the healthy adult population but as high as 

70% in infants and neonates (Bartlett, 1994). Colonisation rates have also been found to be 

higher amongst hospital employees and caregivers (Giannasca et al., 2004) and those who 

have been hospitalised (Barbut and Petit, 2001).  

Prior to 2003, rates of CDI were significantly lower across North America and Europe. The 

rise in CDI that has been reported in recent years appears to have been triggered by the 

emergence of the PCR ribotype 027 strain which, based on recent evidence, appears to 

have evolved into a more virulent and transmissible strain than had been seen previously 

(Stabler et al., 2009). When outbreaks of CDI began to occur in 2003, those most 

susceptible were hospitalised elderly patients often receiving antibiotic treatment. 

Although this is still the case, reports are increasing where people who do not appear to 

belong to belong to obvious risk groups such as pregnant women and children are 

developing CDI (Klein et al., 2006, Rouphael et al., 2008, Kuijper and Van Dissel, 2008).  

1.3.1.1 Surveillance in England, Wales and Northern Ireland 

Voluntary reporting of C. difficile infection in England and Wales was introduced in 1990 

and in Northern Ireland in 2001. Reports from this time period indicate that rates of CDI 
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had steadily risen since 1990 with a significant increase between 2001 and 2007 (HPA, 

2008). Reporting became mandatory in hospital Trusts throughout England in January 

2004; initially reporting was only mandatory in those over 65, but in April 2007 mandatory 

reporting was extended to all patients over two years of age. Despite the introduction of the 

mandatory reporting scheme, the voluntary reporting scheme is still in place and therefore 

data is still collected for Wales and Northern Ireland and additional Trusts in England. 

Data obtained from the voluntary and mandatory surveillance schemes are not comparable 

for several reasons including different participation rates, and the difference in isolation 

methods, with a positive toxin result not being required for inclusion in the voluntary 

reporting scheme (HPA, 2008). Reports of CDI in England peaked in 2006 and 2007 with  

55,635 and 58,176 cases reported respectively however 2007 also included reports of 

infections in those aged between two and sixty four years old for the first time. In 2008 

cases of CDI fell significantly to 40,704 and have continued to fall in 2009 although there 

have been alterations made to the reporting guidelines (HPA, 2009a).  

1.3.1.2 Clostridium difficile ribotyping network (CDRN) 

The large increase in the number of CDI cases led to an increase in demand for ribotyping 

services and so in April 2007 the Clostridium difficile Ribotyping Network for England 

(CDRNE) was established; the addition of a laboratory in Northern Ireland in April 2009 

has seen the service renamed the Clostridium difficile Ribotyping Network (CDRN). At 

present there are eight laboratories that are part of the CDRN and in addition to ribotyping 

also provide an enhanced fingerprinting service using Multi-locus Variable Number 

Tandem Repeat Analysis (MLVA) and in some cases antibiotic susceptibility testing. An 

enhanced fingerprinting technique was introduced as a higher discriminatory method to 

PCR ribotyping in order to try to discriminate further within PCR ribotypes. Such typing is 

required in order to gather more accurate information about the spread and transmission of 
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C. difficile, especially as reports from 2007/2008 indicated that there were three 

predominant PCR ribotypes (001, 027 and 106) in England and these alone were 

responsible for 70% for C. difficile infections (HPA, 2009b). Characterisation by both 

ribotyping and MLVA is strictly controlled and certain criteria have to be fulfilled in order 

to get C. difficile isolates typed, therefore a large proportion of isolates still remain 

uncharacterised. The CDRN has allowed a larger number of isolates to be typed providing 

more accurate epidemiological information about the PCR ribotype of isolates across a 

large geographical area.  

1.3.1.3 Random sampling scheme  

As most laboratories do not culture for C. difficile there has been little surveillance of 

antibiotic resistance amongst C. difficile isolates. The random sampling scheme was first 

introduced in 2005 to try and monitor the epidemiology of PCR ribotypes and also 

antibiotic susceptibility patterns of C. difficile isolates from across England. The sampling 

scheme includes only acute NHS Trusts in England where a specified number of C. 

difficile toxin positive samples collected during an allocated week have to be sent to the 

Anaerobic Reference Laboratory (ARL) in Cardiff, UK. Here isolates are both ribotyped 

and tested for antibiotic resistance against a panel of eight antimicrobials (vancomycin, 

metronidazole, erythromycin, moxifloxacin, co-amoxiclav, penicillin, imipenem and 

piperacillin-tazobactem) using E test methodology (HPA, 2008). The random sampling 

scheme has identified a rise in minimum inhibitory concentrations (MICs) towards 

metronidazole amongst isolates belonging to the three most common ribotypes of C. 

difficile in England (001, 027 and 106) in comparison to previous years; these MICs are 

also significantly higher amongst these ribotypes in comparison to the less commonly 

isolated ribotypes (HPA, 2008). The more common PCR ribotypes also display higher 



Chapter 1 Introduction 

32 

 

MICs towards erythromycin and moxifloxacin, with isolates belonging to PCR ribotype 

027 displaying resistance to both of these antibiotics (HPA, 2008). 

1.3.1.4 European surveillance 

Similar surveillance systems to that in England have been set up in France, Belgium and 

the Netherlands for the reporting of CDAD. Prior to the outbreaks and the increase in the 

incidence of CDAD; the European Study Group for Clostridium difficile (ESGCD) was 

established in 2001 to promote awareness of C. difficile and provide surveillance on its 

spread throughout Europe. This collaborative surveillance has provided important 

information about the changing epidemiology of C. difficile and in particular that of PCR 

ribotype 027 (Kuijper et al., 2008). The collection of such large pools of data allows 

patterns and trends to be established where they may have gone unnoticed with smaller 

data sets.  

1.3.1.5 Strain epidemiology 

The emergence of PCR ribotype 027 led to enhanced typing, reporting and surveillance of 

C. difficile isolates across Europe and North America. Following the emergence of this 

hypervirulent strain, PCR ribotype 027 has predominated in several countries in recent 

years; there are now reports however of a decline in the incidence of this ribotype in some 

countries (Hensgens et al., 2009). Despite the predominance of PCR ribotype 027 in some 

countries, variations do occur between countries in the frequency of the different PCR 

ribotypes isolated (Kuijper et al., 2008); for example PCR ribotype 106 is one of the most 

frequently isolated PCR ribotypes in the UK however it is rarely isolated in other countries 

(Brazier et al., 2008). In addition to variations in predominant PCR ribotype strains 

between countries and species, PCR ribotypes vary over time as has been demonstrated by 

the rapid and widespread emergence of PCR ribotype 027.  
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1.3.1.6 C. difficile in animals 

Isolation of C. difficile from animals has also shown that different PCR ribotypes 

predominate in animal species with PCR ribotype 078 the most frequently isolated strain 

from pigs, calves and horses (Keel et al., 2007, Goorhuis et al., 2008, Rupnik et al., 2008). 

Studies have also shown that retail meat can also be contaminated with C. difficile (Broda 

et al., 1996, Weese et al., 2005, Rodriguez-Palacios et al., 2007, Songer et al., 2009, 

Weese et al., 2009, Simango and Mwakurudza, 2008). In studies that have investigated the 

isolation of C. difficile from meat products, PCR ribotype 078 is often recovered (Songer et 

al., 2009, Weese et al., 2009). Isolates of C. difficile have also been recovered from other 

food products (Al Saif and Brazier, 1996, Bakri et al., 2009) The increase in the isolation 

of C. difficile from food products humans raises questions about possible transmission 

between animals and humans (Weese, 2010, Rupnik, 2007) although there is at present no 

direct evidence of this; there is evidence that the same strains can cause symptomatic 

disease in both pigs and humans (Debast et al., 2009).  

1.3.2 Transmission of C. difficile  

The faecal-oral route is the route of transmission for C. difficile, through the ingestion of 

spores and cells. Although it is possible that cells may also be ingested and contribute to 

the transmission of CDI, their inability to survive in aerobic environments for sufficient 

amounts of time and the acidic environment of the stomach make this unlikely; spores 

however can survive in aerobic environments and can also survive the low pH conditions 

of the stomach making them the most likely and more effective route of transmission. 

When spores of C. difficile are expelled from an infected patient, aerial dissemination of 

spores into the environment occurs where they can persist on a variety of surfaces, thus 

acting as a reservoir of infection (Mulligan et al., 1980). In addition to this, spores are not 
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only shed from symptomatic patients; shedding can occur for up to four weeks following 

the cessation of treatment (Sethi et al., 2010). Healthcare environments are associated with 

the acquisition of several infections including C. difficile; this is not surprising as many 

studies have reported that C. difficile can contaminate many areas of the clinical setting 

(Mulligan et al., 1980, Malamou-Ladas et al., 1983, Fawley and Wilcox, 2001, Samore et 

al., 1996, Kim et al., 1981, Fekety et al., 1981, Cohen et al., 1997, Titov et al., 2000, 

Cohen, 2000) including non clinical areas (Dumford et al., 2009). Contamination has also 

been reported on blood pressure cuffs (Walker et al., 2006) and also manual handling 

equipment (Barnett et al., 1999). In addition to hospital surfaces, C. difficile spores can 

also be isolated from the air (Roberts et al., 2008), providing a greater problem in regards 

to cleaning and infection control. Healthcare workers are also often implemented in the 

transmission of C. difficile (Fekety et al., 1981, Mcfarland et al., 1989) and this is often 

attributed to inadequate hand washing, in addition to this it is proposed that uniforms could 

also be a source (Perry et al., 2001).  

1.3.2.1 Community acquired C. difficile 

Community acquired C. difficile is defined as CDI when a patient has not been hospitalised 

prior to infection; in those who have been recently hospitalised, community acquired CDI 

is defined as infection after twelve weeks of discharge from hospital (HPA, 2009a). If CDI 

presents between four and twelve weeks following discharge from hospital, it is often 

difficult to determine whether this is a hospital or community acquired infection.  

Incidences of C. difficile outside of the healthcare setting appear to be increasing (Dial et 

al., 2006, Wilcox et al., 2008, Bauer et al., 2008, Paltansing et al., 2007) although the 

reasons for this are not known.  
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1.3.3 Prevention of C. difficile infection 

1.3.3.1 Isolation of patients infected with C. difficile 

Patients suspected of having CDI should be immediately removed from the main ward and 

placed in isolation. In a clinical setting which is experiencing outbreaks of CDI, cohort 

wards should be established to isolate clusters of infected patients. Preventative measures 

including single and cohort isolation have been shown to reduce transmission and also 

control outbreaks (National Clostridium difficile Standards Group, 2004, HPA, 2009).  

1.3.3.2 Cleaning of the hospital environment and equipment 

Efficient removal of spores from the hospital environment either through physical removal 

or the use of sporicidal agents including hypochlorite is the most effective way to reduce 

the rate of infection and transmission between patients.  There are limited cleaning agents 

which posses sporicidal activity most notably chlorine, peracetic acid, acidified nitrite and 

gluteraldhyde, however not all of these agents are suitable for use within a clinical setting 

(Wullt et al., 2003c). It is important that such agents are used as the use of some cleaning 

agents have been found to increase sporulation when applied to vegetative cells and can 

therefore contribute to the problem (Fawley et al., 2007).  Chlorine and peracetic acid are 

more frequently found in hospital cleaning agents and although chlorine is known to kill 

spores more efficiently, there are fewer hazards associated with agents containing peracetic 

acid (Wheeldon et al., 2008b). In addition to the application of chemicals to hard surfaces, 

the antimicrobial properties of surfaces such as copper have also been investigated and it 

has been shown that spores of C. difficile are more susceptible to killing under certain 

conditions when on a copper surface (Weaver et al., 2008, Wheeldon et al., 2008c).  Not 

only do C. difficile spores contaminate the hospital environment but also health care 

equipment that is designed for repeated use. Equipment such as thermometers and blood 
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pressure cuffs have been found to contribute to the transmission of C. difficile and it has 

been demonstrated that replacing items such as traditional thermometers with single use 

alternatives can significantly reduce the incidence of CDI (Brooks et al., 1992, Jernigan et 

al., 1998). The Department of Health (DoH) recommends that hospital rooms occupied by 

C. difficile patients should be cleaned daily with a chlorine based hard surface disinfectant 

(at least 1000 ppm available chlorine) (HPA, 2009a). When a C. difficile patient 

permanently vacates a room the mattress, bed linen and curtains should also be changed 

(HPA, 2009a). The aerial dissemination of C. difficile spores means that not only do they 

contaminate surfaces but also remain in the air (Roberts et al., 2008) and these are harder 

to eliminate with hydrogen peroxide vaporisation being the most effective way to eliminate 

such spores (Barbut et al., 2009, Shapey et al., 2008, Boyce et al., 2008). 

1.3.3.3 Handwashing 

 Not only have spores been found to contaminate the hospital environment but also the 

hands of healthcare workers (Mcfarland et al., 1989, Fekety et al., 1981), therefore 

thorough and regular handwashing with soap and water reduces the risk of further 

infection. All healthcare workers should wash their hands both before and after contact 

with CDI patients; it is also recommended that disposable gloves and aprons are worn 

when dealing with C. difficile patients (HPA, 2009a). 

1.3.3.4 Antibiotic prescribing 

Prescribing of antibiotics that are most commonly implicated in the cause of CDI, in 

addition to other broad spectrum antibiotics should be restricted in order to limit the 

number of cases. The antibiotics most frequently associated with the onset of CDI are 

fluoroquinolones, third generation cephalosporins and clindamycin, although virtually all 

antibiotics have been implicated (Kelly et al., 1994, Fekety, 1997). Broad spectrum 



Chapter 1 Introduction 

37 

 

antibiotics are more frequently associated with CDI as they are not specific in the bacteria 

which they target and therefore effectively sterilise the gut making the patient vulnerable to 

CDI if they are in an environment where they are likely to ingest C. difficile spores. Broad 

spectrum antibiotics are usually administered as prophylactic therapy or when the cause of 

an infection is unknown. Restrictions in the prescribing of broad spectrum antibiotics can 

significantly reduce the number of C. difficile cases; (Thomas and Riley, 2003, Kallen et 

al., 2009, Brown et al., 1990, Pear et al., 1994, Gaynes et al., 2004, Mcnulty et al., 1997, 

Khan and Cheesbrough, 2003, Valiquette et al., 2007, Carling et al., 2003) this not only 

controls the unnecessary prescribing of antibiotics but also encourages the prescription of 

antibiotics that are less likely to disrupt the commensal gut flora.  

1.4 Clostridium difficile carriage and infection 

1.4.1 Asymptomatic carriage 

The asymptomatic carriage of C. difficile in adults is reported to be due to previous 

infection (Riggs et al., 2007), prior hospitalisation (Barbut and Petit, 2001) and also 

possible carriage of non-toxin producing isolates (Delmee et al., 2005).  The high rates of 

asymptomatic carriage amongst neonates are believed to be due to immaturity of gut 

receptors to which C. difficile toxins bind (Wilson, 1993); the introduction of normal 

healthy gut flora and colonization resistance then eradicates C. difficile prior to receptor 

maturity (Eglow et al., 1992).  The significant difference in the reported carriage rates of 

C. difficile between infant and adult populations indicates that colonization resistance and 

the immunity that the commensal gut bacteria provide are very influential in CDI and may 

be a factor in carriage also. Due to the nature by which CDI is diagnosed through toxin 

detection alone, actual carriage rates of C. difficile are unknown. Although it is speculated 
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that carriage is due to non toxigenic strains, carriage of toxin producing strains may occur 

but any pathogenic effect inhibited by the presence of commensal bacteria.  

1.4.2 Clostridium difficile infection (CDI) 

Antibiotic associated diarrhoea can be described as unexplained episodes of diarrhoea that 

begin during or up to two months following cessation of antibiotic therapy (Fekety, 1997).  

Most antibiotics have been reported to cause AAD (Barbut and Petit, 2001) with different 

antibiotics  having different occurrence rates (Bignardi, 1998); broad spectrum antibiotics 

and those with activity on gut flora are however more frequently implicated (Bignardi, 

1998). Infectious AAD is due to the disruption of the gut flora, allowing the overgrowth of 

opportunist pathogenic bacteria. Overgrowth of C. difficile is the predominant cause of 

infectious AAD (CDI); other infectious causes include Staphylococcus aureus, Klebsiella 

oxytoca and Clostridium perfringens. A large proportion of AAD cases however are not 

due to infection and are often the result of varied physiological responses to antibiotics 

within the gut (Hogenauer et al., 1998).  

Symptoms of CDI include mild to moderate diarrhoea, sometimes accompanied by 

abdominal pain, fever, nausea, lethargy and dehydration. In uncomplicated cases, CDI can 

often be resolved by discontinuation of the offending antibiotic and rehydration therapy if 

required. In more serious cases of CDI, antibiotic treatment with metronidazole or 

vancomycin is required to eliminate C. difficile from the gut.   

1.4.3 Pseudomembranous colitis  

Pseudomembranous colitis (PMC) was first described in 1893 (Finney, 1986). Primarily 

caused by C. difficile, cases of PMC due to another causative agent are rare and therefore 

the terms PMC and C. difficile colitis are often used interchangeably.  Cases of PMC were 

rarely reported until antibiotic use became widespread with clindamycin being implicated 
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as the cause of PMC in 1974 (Tedesco et al., 1974).  Pseudomembranous colitis occurs in 

10% of AAD cases (Mcfarland, 1998) however in over 90% of these PMC cases, C. 

difficile is the cause (Surawicz and Mcfarland, 1999).  

Symptoms of PMC are similar to those in CDI yet more pronounced with profuse watery 

diarrhoea and severe abdominal pain, often accompanied by fever and swelling and 

tenderness of the abdomen (Kelly et al., 1994). Internal examination reveals the presence 

of yellow pseudomembranous plaques (Figure 1.3) that consist of dead mucosal cells, 

mucous, fibrin and neutrophils with the extent of plaque formation often correlating with 

the severity of symptoms (Kelly et al., 1994). Colitis can also develop without 

pseudomembranes with symptoms being less severe than those associated with PMC.  

 

Figure 1.3 Appearance of a colon from a patient suffering from pseudomembranous 

colitis as a result of C. difficile infection. Adapted from (Kawamoto et al., 1999). 
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1.4.4 Fulminant colitis 

Fulminant colitis occurs in approximately 1-3% of all cases of CDI (Kelly et al., 1994) and 

can lead to further complications such as colonic perforation and peritonitis; there is also a 

high incidence of mortality. Patients are severely ill with abdominal pain and distension, 

fever and tachycardia; diarrhoea may not be present if toxic megacolon or paralytic ileus 

has developed resulting in loss of muscle tone. Surgical intervention is often required to 

prevent further complications and death. 

1.4.5 Toxic megacolon 

Toxic megacolon is a condition whereby the colon rapidly dilates; this can prevent 

peristalsis and therefore diarrhoea can be absent in a patient with this condition. The 

dilation of the colon also causes abdominal distension and tenderness and fever can also be 

present. Toxic megacolon is a rare but life threatening complication of CDI associated with 

a high risk of perforation, sepsis and shock. Treatment of toxic megacolon is usually 

through surgery; either a partial or total colectomy although steroids can also be 

administered to try to reduce inflammation and dilation. 

1.4.6 Colonic perforation and peritonitis 

If the colon becomes too inflamed or dilated this can lead to colonic perforation and 

ultimately peritonitis; a fatal condition if not treated quickly. It is rare that cases of CDI 

progress to such severity as peritonitis but cases do occur and are associated with high 

levels of mortality. Antibiotics are often administered for peritonitis in addition to 

rehydration therapy, surgery is also required.  

1.4.7 Relapse and re-infection of C. difficile infection 

The recurrence rate associated with CDI is high with reported rates of between 7-35% 

(Barbut et al., 2000, Tabaqchali and Jumaa, 1995, Gerding et al., 1995, Fekety et al., 1997) 
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however around 20 % is believed to be the mean number (Fekety et al., 1997). It is not 

clear why recurrence of CDI is so high in comparison to other infections and it is difficult 

to determine if recurrences are due to relapse or re-infection without the use of molecular 

typing methods. Relapse is defined as a recurrence of CDI up to twenty eight days since 

the previous diagnosis, after this period of time it is regarded as re-infection (HPA, 2009a).  

Relapse is often associated with treatment failure where C. difficile has not been 

successfully eradicated from the gut and following cessation of antibiotic therapy, the 

patient again becomes symptomatic due to the same strain. It has been suggested that the 

retention of spores within the gut that are unaffected by antibiotic therapy are likely to be a 

contributing factor (Kelly et al., 1994, Mcfarland, 2005). Another explanation for the high 

recurrence rates associated with CDI is that they are not true relapses and are in fact re-

infection; studies that have investigated this have reported high levels of re-infection 

(Wilcox et al., 1998, Barbut et al., 2000, Tang-Feldman et al., 2003, Alonso et al., 2001, 

O'Neill et al., 1991, Kato et al., 1996, Asha et al., 2006).  Re-infection with C.difficile is 

likely to occur while a patient is still recovering from a previous episode of CDI; it can 

take up to three months for the gut flora to become properly re-established (Mcfarland, 

2005) therefore making them vulnerable to infection for prolonged period of time. In order 

for re-infection to occur a patient not only has be susceptible but also be in an environment 

where they are likely to ingest spores, unfortunately this is usually a hospital or care home 

setting. 

Lack of typing does make it hard to distinguish between relapse and re-infection however 

the widespread typing methods used are restrictive. Within the UK where PCR ribotyping 

is the current method used to type strains, there are a select few ribotypes that predominate. 

Even if PCR ribotyping were to be carried out on all isolates, the isolation of the same 

ribotype from a patient on two occasions does not indicate definite relapse; it could be that 
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a patient has been re-infected with two different strains of the same ribotype. Multilocus 

variant number tandem repeat analysis (MLVA) is now being offered as a service by the 

CDRN providing a greater discriminatory power and greater evolutionary information 

about isolates of C. difficile and has the potential to provide useful information about 

transmission. 

1.4.8 Extra-intestinal infections 

Cases of C. difficile being isolated from infections outside of the intestine are rare although 

there have been several cases reported (Wolf et al., 1998, Jacobs et al., 2001, Feldman et 

al., 1995, Rampling et al., 1985, Cid et al., 1998, Chatila and Manthous, 1995, Byl et al., 

1996, Gerard et al., 1989, Simpson et al., 1996, Spencer et al., 1984, Saginur et al., 1983, 

Bhargava et al., 2000, Incavo et al., 1988, Mccarthy and Stingemore, 1999, Brown et al., 

2007, Stieglbauer et al., 1995, Studemeister et al., 1987, Pron et al., 1995, Gravisse et al., 

2003, Kikkawa et al., 2008, Deptula et al., 2009, Urban et al., 2009, Garcia-Lechuz et al., 

2001) . When C. difficile is isolated from extra-intestinal sites additional species of bacteria 

are often present (polymicrobial infection), especially when the infection site is in close 

proximity to the colon and therefore may be a case of faecal contamination (Garcia-Lechuz 

et al., 2001). What is often surprising about these cases are that the C. difficile strains 

isolated are often non-toxigenic and there are a large number of cases in children (Garcia-

Lechuz et al., 2001).  

1.5 Risk factors 

1.5.1 Antibiotic therapy 

The major risk factor for contracting CDI is recent treatment with antibiotics. Although all 

antibiotics have been implicated as a cause of CDI; third generation cephalosporins, 

fluoroquinolones and clindamycin are considered the greatest risk factors (Bartlett, 
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2006).Several studies have demonstrated that by restricting the use of such antibiotics can 

significantly reduce CDI rates (Thomas and Riley, 2003, Kallen et al., 2009, Brown et al., 

1990, Pear et al., 1994, Gaynes et al., 2004, Mcnulty et al., 1997, Khan and Cheesbrough, 

2003, Valiquette et al., 2007, Carling et al., 2003). Often when antibiotics are administered 

they not only eliminate target bacteria, they also destroy any other species that are 

susceptible. The commensal bacteria of the gut are particularly vulnerable to such 

treatments and when eradicated colonization resistance is lost; this allows opportunistic 

bacteria such as C. difficile to colonise the gut and cause infection. Antibiotic therapy is 

not only a risk factor for the development of CDI but studies have also shown that the 

presence of antibiotics in the gut can increase toxin production (Honda et al., 1983, 

Onderdonk et al., 1979, Adams et al., 2007, Nakamura et al., 1982, Pultz and Donskey, 

2005, Saxton et al., 2009), germination (Saxton et al., 2009) and the expression of 

colonization factors (Hennequin et al., 2001a, Deneve et al., 2008) within the gut . 

1.5.2 Proton pump inhibitors (PPIs) 

It is still not clear whether PPIs are a risk factor for CDI with studies providing conflicting 

results (Cunningham et al., 2003, Jackson et al., 2006, Dalton et al., 2009, Nerandzic et al., 

2009, Ackermann et al., 2003, Al-Tureihi et al., 2005, Dial et al., 2004, Dial et al., 2005, 

Dial et al., 2006, Kazakova et al., 2006). Proton pump inhibitors reduce gastric acid 

secretion and are prescribed for a wide range of ailments including acid reflux and peptic 

ulcers. It is proposed by some that the increased pH in the stomach due to a reduction in 

acid secretion allows the passage of C. difficile into the gut where it can then colonise and 

cause disease (Jump et al., 2007). Ingestion of C. difficile spores is the main route of 

transmission and considering these are resistant to acid; it is not clear why PPIs may 

increase the risk of contracting CDI, for example in the medical condition achlorhydria, 

gastric acid secretions are either absent or very low causing gastric pH to be as high as 
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seven. If PPIs increased the risk of CDI through the proposed mechanism, it would then be 

expected that patients suffering from this condition would also be at increased risk (Dalton 

et al., 2009). It has been proposed that the spores may be stimulated to germinate by bile 

salts within the stomach and the increase in pH then allows the survival of vegetative cells 

(Dial et al., 2006); it has also been suggested that the viability of vegetative cells is 

enhanced on moist surfaces therefore if such cells are ingested, they will survive the 

passage through the stomach due to the increased pH. 

1.5.3 Age 

Increasing age is a risk factor for developing CDI with cases being significantly higher in 

those over sixty five, and when the mandatory reporting scheme was first introduced, only 

CDI in those over sixty five had to be reported. However, incidences are also increasing in 

the younger population to the extent that now in England and Wales all cases of CDI have 

to be reported in those over the age of two. Although age is a risk factor, this is often in 

combination with other factors such as antibiotic treatment and hospital admission, as 

those over sixty five are more likely to become ill due to weakened immune responses and 

are more likely to be prescribed antibiotics and be admitted to hospital.   

1.5.4 Hospital admission 

Those admitted to hospital have an increased chance of being colonised with C. difficile, 

although colonisation does not mean symptomatic disease. A patient is more likely to 

either become colonised with C. difficile or develop CDI when in hospital with isolation 

rates of between 10-35% (Barbut and Petit, 2001, Kuijper et al., 2006a) and positive toxin 

assays in 2-8% reported in hospitalised patients (Barbut and Petit, 2001). In addition to 

this, isolation of C. difficile from stool samples is reported to be proportional to length of 
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stay in hospital (Kuijper et al., 2006a); this is likely to be due to the greater presence of  C. 

difficile spores within the hospital environment (Mcfarland et al., 1989). 

1.5.5 Immune response  

The symptoms associated with CDI can vary significantly and although this was initially 

thought to be due to the virulence of different strains of C. difficile, it has since been 

established that a patient’s immune response can heavily influence the severity and extent 

of their symptoms (Kelly, 2007).  Those who are immunocompromised are at an increased 

risk of CDI; however more subtle differences between hosts can also influence the 

symptoms that a person may experience. Several studies have demonstrated that higher 

antibody levels towards the toxin levels can provide some form of protection against both 

symptomatic infection or recurrence of infection against those who have previously 

suffered from an episode of CDI (Kelly et al., 1992, Kyne et al., 2000, Kyne et al., 2001, 

Aronsson et al., 1985, Aronsson et al., 1983, Bacon and Fekety, 1994, Leung et al., 1991, 

Mulligan et al., 1993, Warny et al., 1994) and this has provided the basis for using 

immunoglobulin therapy as a treatment option (Salcedo et al., 1997). It has also been 

shown that an alternative genotype in the IL-8 gene may predispose a susceptibility to 

CDAD (Jiang et al., 2007).  

1.6 Detection and diagnosis 

1.6.1 Clinical diagnosis 

CDI should be suspected in hospitalised or patients in care establishments who present 

with an unexplained episode of diarrhoea. This alone is often sufficient for a clinician to 

send a stool sample for testing however this suspicion is likely to be further reinforced if 

the patient has additional symptoms such as abdominal pain and fever and also if the 
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patient belongs to a risk group. Diagnosis is confirmed in the laboratory following positive 

detection of C. difficile toxins in a stool sample.  

1.6.2 Laboratory diagnosis 

1.6.2.1Toxin detection 

Within diagnostic laboratories the most common way in which CDI is diagnosed is 

through the use of enzyme immunoassay (EIA) kits that detect the presence of either Toxin 

A or both toxins. Lateral flow or membrane bound assay kits are also used to detect the 

presence of toxin and are generally quicker and easier to perform than EIAs.  Both of these 

methods detect toxin directly from faecal samples and as no culture is required results can 

be obtained quickly; they also have the advantage of being cheaper and less labour 

intensive than other diagnostic tests which is why they are so frequently used in the 

diagnosis of CDI. They are however also associated with poor sensitivity and specificity 

with both false negative and false positive results being reported (Eltringham, 2009). 

 As it was previously thought that only C. difficile strains producing toxin A were capable 

of causing disease, diagnostic kits were designed to detect this toxin only. Following the 

discovery that A-/B+ strains also caused symptomatic disease and the rise in incidence of 

these strains; it is now recommended that only kits with the capacity to detect both toxins 

are used. These kits give a positive result if either of the two toxins is present in a sample; 

allowing for a more accurate diagnosis.  

1.6.2.2 Cytotoxicity Assay 

The gold standard technique for the diagnosis of CDI is cell cytotoxicity assays however, 

this method requires cell culture and a 48 hour incubation period. From a centrifuged stool 

sample, supernatant is removed and exposed to monolayers of cells (cell lines can differ); 

following incubation cells are observed for cell rounding, indicating cytotoxicity. If these 
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effects are then neutralised by the addition of anti-Clostridium sordellii antiserum, a 

positive result is recorded. 

1.6.2.3 Cytotoxigenic culture 

Culturing of stool samples onto selective media followed by cytotoxin assay is another 

method by which CDI can be diagnosed detecting both the presence of C. difficile and its 

toxins. Faecal samples can be cultured directly onto an agar selective for C. difficile such 

as cycloserine cefoxitin fructose agar (CCFA) which will inhibit the growth of other faecal 

bacteria and therefore only C. difficile should in theory grow. Alternatively, a small 

amount of the sample can be suspended in absolute ethanol which eliminates any bacterial 

cells and allows only spores to remain. The suspension is then cultured onto fastidious 

anaerobe agar supplemented with a known germinant of C. difficile spores such as sodium 

taurocholate; this is again selective for the growth of C. difficile. Typical colony 

morphology of C. difficile is greyish, flat colonies with a ‘ground glass’ appearance; this is 

also accompanied by a characteristic ‘elephant house’ odour. Other confirmatory tests such 

as Gram stains and API testing may also be used alongside culture techniques. Culture of 

C. difficile does however require 48 hours of incubation in anaerobic conditions which is 

significantly longer than immunoassay based toxin detection tests.  Culture alone is not 

suitable as a diagnostic method due to asymptomatic carriage of C. difficile. It has been 

suggested that both culture and toxin detection is a better technique by which to diagnose 

CDI and may resolve the issues surrounding misdiagnosis (Delmee et al., 2005) this 

however has significant cost, labour and turnaround time implications.  

1.6.2.4 Glutamate dehydrogenase (GDH) detection 

The specific C. difficile glutamate dehydrogenase enzyme is a common antigen found on 

C. difficile. Assays which utilise antibodies specific to this antigen can be used to detect 
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the presence of C. difficile however like culture this is not sufficient in the diagnosis of 

CDI despite accurate results. As GDH is produced by both toxigenic and non-toxigenic 

strains of C. difficile, a positive outcome is not always indicative of CDI. There are 

however now assays that detect the presence of both GDH and toxin, such tests confirm 

both the presence of C. difficile and the toxigenicity of the strain. These tests provide a two 

step method for the diagnosis of CDI in addition to providing results quickly. 

1.6.2.5 Molecular techniques 

Real time PCR techniques have been developed that detect either the genes for either of the 

toxins of C. difficile or the genes for the specific glutamate dehydrogenase. There are now 

several different published methods on real time PCR for the detection of different C. 

difficile genes including tcdB (Van Den Berg et al., 2007, Peterson et al., 2007, Stamper et 

al., 2009), tcdA and tcdB (Belanger et al., 2003) and tcdC (Sloan et al., 2008) and a 

multiplex real time PCR assay has also been developed that detects four C. difficile genes 

(tcdA, tcdB, cdtA and cdtB) (Wroblewski et al., 2009). These methods have demonstrated 

high levels of sensitivity and specificity in addition to providing results quickly in 

comparison to the other diagnostic methods (Eastwood et al., 2009, Sloan et al., 2008, Van 

Den Berg et al., 2007). Due to the success of such diagnostic methods, two PCR assay kits 

are now available the BD GeneOhm™  Cdiff and ProGastro™ Cd Assay, these assays can 

give results in under two and three hours respectively. The extraction of genomic C. 

difficile DNA directly from faecal samples significantly enhances the result time as no 

prior culture of C. difficile is required. 
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1.7 Treatment 

1.7.1 Metronidazole 

Metronidazole displays bactericidal activity towards both protozoa and many anaerobic 

bacteria. Metronidazole is a nitroimidazole; a class of antimicrobial pro-drugs that require 

reduction by low redox conditions in order to demonstrate activity. Metronidazole is now 

the preferred treatment in the majority of CDI cases as it is more cost effective and 

selective than vancomycin; the only other widely approved treatment for CDI. The 

selective activity of metronidazole is attributed to a unique metabolic pathway found only 

in protozoal and anaerobic cells. When metronidazole diffuses into a cell with a low redox 

potential, ferredoxin donates electrons to the nitro group present on metronidazole. The 

reduction of the nitro group allows the drug to take on its active form; generating 

compounds that interfere with nucleic acid synthesis ultimately leading to cell death.  

Metronidazole is most effective when administered orally and is almost completely 

absorbed. A dosage of 500mg three times a day for ten to fourteen days is usually 

prescribed in uncomplicated cases however each case is judged individually. It has also 

been suggested that metronidazole is equally effective when administered intravenously 

and can even achieve higher therapeutic levels (Bolton and Culshaw, 1986, Dion et al., 

1980). Metronidazole is also much cheaper than vancomycin for the treatment of CDI, 

with metronidazole costing approximately $2 per day in contrast to vancomycin which 

costs $30 per day (Kyne, 2010). Resistance towards metronidazole has been reported 

among C. difficile isolates by several groups (Wong et al., 1999, Brazier et al., 2001, 

Pelaez et al., 2002) and in some cases there is no response when a CDI infection when 

treated with metronidazole (Huang and Nord, 2009).  
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1.7.2 Vancomycin 

Vancomycin is a potent glycopeptide antibiotic used in the treatment of serious Gram 

positive infections. Vancomycin has a bactericidal effect on cells by inhibiting the 

synthesis of the peptidoglycan cell wall and is administered intravenously for the majority 

of infections; this however can lead to side effects and problems relating to toxicity. 

Vancomycin is a large hydrophilic molecule and does not transfer across the intestinal wall 

effectively; therefore treatment of CDI requires oral administration in order to establish the 

high therapeutic concentrations needed in the gut. In recent years the use of vancomycin 

for the treatment of CDI has declined both due to the cost and also concerns regarding the 

acquisition of vancomycin resistance by other organisms that reside in the gut such as 

enterococci. There are cases where vancomycin is still used in the treatment of CDI such as 

relapse or severe complicated cases also when a patient is pregnant, allergic or 

unresponsive to metronidazole or suffering from multiple recurrences of CDI (Poutanen 

and Simor, 2004). 

1.7.3 Additional potential antibiotic treatments 

1.7.3.1 Rifaximin 

Rifaximin is a synthetic antibiotic that inhibits protein synthesis and already approved for 

the treatment of traveller’s diarrhoea in the US. Rifaximin is not absorbed and therefore 

high concentrations are achieved within the gut (Scarpignato and Pelosini, 2005); it 

demonstrates excellent in vitro activity against C. difficile isolates (Marchese et al., 2000) 

and has also been used in vivo with some success particularly as a treatment for multiple 

recurrences of CDI (Johnson et al., 2009, Hecht et al., 2007). Although a promising 

treatment option, resistant strains of C. difficile have already been recovered from patients 
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treated with rifaximin (O'connor et al., 2008, Curry et al., 2009, Hecht et al., 2007); it is 

also very expensive. 

1.7.3.2 Nitazoxanide 

Nitazoxanide is similar to metronidazole; a pro drug with a similar mechanism of action 

and primarily used as an anti protozoal agent. Clinical trials have demonstrated that 

nitazoxanide is as effective as vancomycin and metronidazole in the treatment of CDI 

(Musher et al., 2006, Mcvay and Rolfe, 2000, Hecht et al., 2007, Musher et al., 2009, 

Yangco et al., 2009) and is a possible treatment option. 

1.7.3.3 Fidaxomicin 

Fidaxomicin is a new macrocyclic antibiotic also known by several other names including 

OPT-80, difimicin, PAR-101 and tiacumicin B (Sullivan and Spooner, 2010); currently 

undergoing Phase III clinical trials in the United States (Citron et al., 2009). Fidaxomicin 

works by inhibiting RNA synthesis and has a bactericidal effect on cells and also has a 

narrower spectrum of activity, having a lesser effect on other flora in the gut (Louie et al., 

2009). Studies have reported improved treatment rates and lower recurrence rates with 

fidaxomicin (Louie et al., 2009) .  

1.7.3.4 Linezolid 

Linezolid has been shown to have good in vitro activity towards isolates of C. difficile.  

Linezolid like vancomycin is only used in the treatment of serious Gram positive infections 

and is also expensive; it remains one of the few treatment options for bacteria that have 

developed resistance towards vancomycin and providing other treatments are still available 

for CDI is unlikely to be adopted as a mainstream treatment.  



Chapter 1 Introduction 

52 

 

1.7.3.5 Fusidic acid 

Fusidic acid has been shown to demonstrate excellent in vitro activity towards C. difficile 

and has also been tested in vivo (Wenisch et al., 1996, Wullt and Odenholt, 2004, Noren et 

al., 2006) Although fusidic acid has proven to be equally as effective as metronidazole for 

the treatment of CDI, there have been incidences of relapse reported (Wenisch et al., 1996, 

Wullt and Odenholt, 2004, Noren et al., 2006) . Fusidic acid inhibits protein synthesis in 

Gram positive cells with a bacteriostatic effect on cells and this may contribute to the high 

relapse rate. An additional concern about fusidic acid as a treatment option for CDI is 

resistance as resistant isolates of C. difficile have been recovered from patients who have 

been treated with fusidic acid (Noren et al., 2006). Resistance towards fusidic acid is easily 

acquired and it is inadvisable for it to be administered alone; because of this fusidic acid 

has limited potential in the treatment of CDI. 

1.7.3.6 Tigecycline 

Tigecycline is a bacteriostatic, broad spectrum antibiotic that belongs to the glycylcyclines; 

a new class of antibiotics of which tigecycline is the first. So far the in vitro activity of 

tigecycline against isolates of C. difficile has been found to be excellent (Hecht et al., 

2007, Noren et al., 2009, Baines et al., 2006) and it does not appear to effect toxin 

production or sporulation within the gut (Baines et al., 2006). There is also evidence of 

successful treatment of CDI using tigecycline however studies have been limited (Herpers 

et al., 2009). 

1.7.4 Probiotics 

Probiotics have been suggested as both a prophylactic and treatment in CDI however 

studies have given variable results into their effectiveness (Mcfarland et al., 1994, 

Lawrence et al., 2005, Surawicz et al., 2000, Wullt et al., 2003b). The most common 
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probiotics used are Saccharomyces boulardii and Lactobacillus rhamnosus with the aim of 

such therapy to re-populate the gut and prevent CDI through the action of colonisation 

resistance. Many of the studies that have investigated the effectiveness of probiotics in 

either the prevention of treatment or CDI have failed to provide any strong evidence for 

their use (Pillai and Nelson, 2008). Although argued by some that there is no harm in 

taking probiotics as a preventative measure or as an adjunct to antibiotic therapy; in 

severely immunocompromised patients probiotics can still cause infection (Munoz et al., 

2005).  

1.7.5 Immune Therapies 

1.7.5.1 Clostridium difficile vaccine (ACAM-CDIFF™) 

The C. difficile vaccine is a toxoid vaccine currently in Phase II clinical trials in the UK 

(Kyne, 2010); if the vaccine proves effective it is proposed it would be administered to at 

risk groups. During the current trials at present, the vaccine is being administered to those 

who are experiencing their first episode of CDI with the hope that the vaccine will prevent 

relapses. The vaccine contains toxoid A and toxoid B, simulating an immune response to 

both toxins through the production of serum IgG antitoxin A and serum IgG antitoxin B 

antibodies (Kotloff et al., 2001).  

1.7.5.2 Hyperimmune globulin and intravenous immunoglobulin 

Hyperimmune globulin and intravenous immunoglobulin therapies are primarily used to 

prevent a relapse of CDI infection however such therapies have been used as a treatment in 

severe cases of CDI when other therapies have proved ineffective or when a patient is 

suffering from multiple recurrences (Salcedo et al., 1997, Leung et al., 1991, Mcpherson et 

al., 2006, Murphy et al., 2006, Wilcox, 2004, Beales, 2002, Hassoun and Ibrahim, 2007, 

Koulaouzidis et al., 2008). In a trial however, intravenous immunoglobulin was found to 
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be no more effective than other conventional treatments (Juang et al., 2007). The purpose 

of such therapies is to provide antitoxin antibodies to the immune system of patients who 

appear to have failed to elicit an effective immune response. 

1.7.5.3 Faecal therapy 

Faecal transplant therapy is not widely available or an approved therapy but in a review by 

(Van Nood et al., 2009) has been reported to be extremely effective in both the treatment 

and the prevention of recurrences of CDI. A faecal donor is usually a relation and 

preferably a person who shares the same living environment (Van Nood et al., 2009); the 

faecal transplant is then performed via naso-gastric tube, coloscopy or enema (Van Nood et 

al., 2009). The aim of faecal transplant therapy is to re-colonise the gut with a population 

of commensal organisms similar to those present in the patient prior to infection, this then 

prevents or greatly reduces the risk of further C. difficile overgrowth and predomination. 

Clinical trials using faecal therapy are currently underway in the Netherlands. 

1.7.6 Toxin therapies 

1.7.6.1 Tolevamer 

Tolevamer is a novel non-antimicrobial therapy aimed at inactivation of C. difficile toxins, 

rather than targeting the bacteria, tolevamer binds to the toxins neutralising their activity 

(Braunlin et al., 2004). A major advantage of this therapy is that as the polymer has no 

antimicrobial activity there is no disruption to the gut flora. Despite good results in Phase 

II clinical trials, Phase III trials were ended prematurely as they showed that tolevamer was 

not as effective as vancomycin in treating CDI; these results were also replicated when 

using a gut model (Baines et al., 2009). 
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1.8 The C. difficile genome and typing methods 

Sequencing of the first C. difficile genome was completed and published in 2006. The 

strain selected was C. difficile 630 (PCR ribotype 012); a highly drug resistant strain 

isolated from a patient with PMC in 1982 (Sebaihia et al., 2006). The chromosome of this 

strain was found to 4.29mbp in size with nearly 11% of the genome consisting of 

transposons which it was proposed allowed the potential for the acquisition of genes that 

could enhance the virulence and pathogenicity of the organism (Sebaihia et al., 2006). 

 Two other C. difficile genomes have since been sequenced and both of these belong to 

PCR ribotype 027; strains CD196 and R20291. Strain CD196 was isolated from a patient 

in France in 1985 while the R20291 strain was isolated from patient at Stoke Mandeville 

hospital, UK in 2006 (Stabler et al., 2009). The investigation into the comparison of these 

three sequenced genomes has provided insight not only into the variations between two 

different PCR ribotypes but also differences between strains belonging to the same PCR 

ribotype and how this cluster of isolates may have evolved.  

1.8.1 Immunochemical typing 

Immunochemical fingerprinting techniques were some of the first methods used to identify 

variances between isolates of C. difficile (Nakamura et al., 1981, Wust et al., 1982, Poxton 

et al., 1984), although never used to define distinct types of C.difficile; such experiments 

did however provide the basis for serotyping.  Immunochemical techniques investigate the 

interactions between antigen and antibodies and so in microbiological analysis can be used 

to determine if particular isolates of bacteria are the same through reactions elicited 

between the two. Antigens from the cell surface are extracted and reacted with antiserum 

which has been produced in an animal exposed to whole cell extracts of C. difficile; this is 

often done via crossed immunoelectrophoresis (CIE) and blotting techniques. 
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Immunochemical methods are now rarely used in the typing of C. difficile due to the 

development of molecular methods. 

1.8.2 Serotyping 

Serotyping was the first method that was used to discriminate between different types of  

C. difficile, based on variations between strains of the antigenic properties expressed on the 

cell surface. Serotyping is carried out using slide agglutination or ELISAs using rabbit 

antisera. Serogroups of C. difficile were first defined in 1985 (Delmee et al., 1985) 

however, such work followed previous work on the immunochemical typing of C. difficile 

(Nakamura et al., 1981, Poxton et al., 1984). Ten defined serogroups have been identified; 

each group identified using a capital letter, 20 sub-serogroups of group A can be further 

identified by PAGE. Serotyping has been reported to correlate to some extent with 

toxinotyping (Rupnik et al., 1998). 

1.8.3 Surface layer protein (S-layer) typing 

S-layer typing is a phenotypic technique that extracts surface layer proteins from C. 

difficile. The proteins are extracted from the cell surface using EDTA, urea or guanidine 

hydrochloride before SDS PAGE is performed on the extracted proteins. Most bacteria 

possess an S-layer that consists of a repeating structure of the same one protein; the S-layer 

of C. difficile however consists of two repeating proteins. The two proteins found in C. 

difficile can vary in their molecular mass; a larger protein of approximately 56-48kDa and 

a smaller protein in the range of 45-37kDa. The variances observed in these S-layer 

proteins are encoded by the slpA gene which can also be targeted in a genotypic method. 

The slight variability in mass that can exist in both proteins allows isolates to be grouped 

according to their molecular weight. Although S-layer typing does not have the same 

discriminatory capacity as some molecular techniques it does generally exceed other 
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phenotypic methods and it has been shown to correlate well with PCR ribotyping 

(Mccoubrey and Poxton, 2001). The exact properties of the S-layer proteins are unknown 

but it has been speculated that they could have various adhesive, pathogenic and 

immunogenic properties (Drudy et al., 2004, O'brien et al., 2005, Ausiello et al., 2006); 

their role in serotyping is also unclear.  

1.8.4 Antibiogram profiling 

Antibiogram profiling is the most common phenotypic typing method; it is often used 

alongside genotypic methods and is frequently used in research studies. Not only do 

antibiogram profiles provide useful phenotypic information about an isolate but the 

information is also used in the surveillance of antibiotic resistance in the C.difficile 

population. The emergence of fluoroquinolone resistance amongst isolates of C. difficile 

and high mortality rates associated with such isolates lead to the identification of the 

hypervirulent PCR ribotype 027 strain (Loo et al., 2005) which is now associated with a 

particular antibiogram profile (resistance towards fluoroquinolones and erythromycin and 

sensitivity to clindamycin) (Drudy et al., 2008). Resistance towards antibiotics in C. 

difficile is also highly likely to reflect changes at the genomic level through the uptake of 

resistance genes into the genome in the form of transposons.  

1.8.5 Biochemical typing 

Biochemical typing is used to determine the variability in biochemical and metabolic 

pathways of an organism. The advent of analytical profile index (API) strips has made 

such typing easier and less labour intensive however biochemical testing is now primarily 

used as a method of identification for a bacterial species rather than a typing method. 

Although biochemical typing can provide useful information about a bacterial species; 

results can be highly variable and hard to quantify. In comparison to more advanced 



Chapter 1 Introduction 

58 

 

techniques the discriminatory power of biochemical typing is poor and within many 

bacterial species unlikely to vary at all.  

1.8.6 Toxinotyping 

Toxinotyping is used to detect variability in the PaLoc of different isolates of C. difficile 

(Rupnik et al., 1998), although when first developed only genes encoding for toxins A & B 

were analysed (Rupnik et al., 1997). Toxinotyping combines PCR to initially amplify 

regions within PaLoc, restriction enzymes are then used within these amplified fragments, 

from this restriction fragment length polymorphisms (RFLPs) can be identified and the 

patterns analysed and compared. Restriction patterns from the C. difficile reference strain 

VPI 10463 are used to compare toxinotypes; this strain and all others sharing the same 

pattern within PaLoc are designated toxinotype 0. So far 24 different toxinotypes have 

been identified (Kuijper et al., 2006b)  with roman numerals assigned to distinguish 

different toxinotypes. Toxinotyping demonstrates very good correlation with ribotyping 

(Rupnik et al., 2001), restriction endonuclease analysis (REA) (Geric et al., 2006) and to a 

lesser extent with serotyping (Rupnik et al., 1998) however, it is not as discriminatory as 

some other techniques (Martin et al., 2008). 

1.8.7 Bacteriophage and bacteriocin typing 

There are few published studies that describe the use of bacteriophage and bacteriocin 

typing for the characterisation of C. difficile. As a phenotypic and relatively early typing 

method, the majority of the studies were performed prior to the widespread use of 

molecular techniques and therefore no longer used. Despite this it was a useful typing 

technique and was used for epidemiological typing (Hawkins et al., 1984, Sell et al., 1983, 

Camorlinga-Ponce et al., 1987, Kaatz et al., 1988). Bacteriophage typing characterises 

isolates by testing their susceptibility to different bacteriophages; this is based on the 
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principle that different strains within a species possess different cell surface receptors that 

can be utilised by different bacteriophages (Pitt and Gaston, 1995b). Bacteriocins are 

inhibitory products secreted by bacteria that are species specific however susceptibility 

will vary between strains and it is this variability that is exploited in bacteriocin typing 

(Pitt and Gaston, 1995a). Both bacteriophage and bacteriocin typing is laborious (Sell et 

al., 1983) and not as discriminatory as molecular techniques. 

1.8.8 Restriction endonuclease analysis  

Restriction endonuclease analysis (REA) is a method that allows the analysis of total 

genomic DNA. Restriction enzymes are used to create REA profiles that characteristically 

consist of hundreds of DNA fragments. When first used to type C. difficile (Devlin et al., 

1987), REA was found to be an effective and discriminative method and it is still one of 

the more discriminative techniques for typing C. difficile (Killgore et al., 2008). However, 

due to the large number of fragments produced by REA, both analysis of the gels and 

transferability between laboratories is difficult (Marsh et al., 2006). 

1.8.9 Multi-locus variable number tandem repeat analysis 

Multi-locus variable number tandem repeat analysis (MLVA) is a highly discriminative 

PCR technique based on variable number tandem repeat (VNTR) methodology. In VNTR 

the length of a tandem repeat sequence at only one locus is analysed whereas in MLVA 

several loci are investigated. When using MLVA to genotype C. difficile isolates; the 

length of tandem repeats at seven different loci are used to characterise and determine 

variability between isolates using primers that flank these variable regions (Marsh et al., 

2006). The MLVA method alongside REA has been reported to have the highest level of 

discriminatory power for the typing of C. difficile in a study that compared seven different 

popular typing methods (Killgore et al., 2008). It has also been reported however that the 
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high level of discriminatory power also eradicates strain similarities when presented in a 

dendrogram (Killgore et al., 2008). In 2008, the CDRN announced the availability of 

MLVA for clinical isolates as part of an enhanced typing service however there are strict 

criteria that need to be met in order to use this service (HPA, 2009b). 

1.8.10 Arbitrarily primed PCR/ Random amplification of Polymorphic DNA  

Unlike other PCR based methods random amplification of polymorphic DNA (RAPD)/AP-

PCR requires no prior knowledge of the target genome. One short primer (10bp) is used in 

the reaction to bind to unknown regions within the DNA but in order for regions to be 

amplified both primers must bind in the right direction and also in close enough proximity 

to each other for a fragment to be produced. The basis of RAPD/AP-PCR is that 

polymorphisms within the genome of different isolates will lead to either the absence or 

addition of amplicon fragments, creating different fingerprint patterns. As it is unknown 

where primers bind in RAPD/AP-PCR reactions and if in fact they will bind anywhere, 

initial annealing temperatures are considerably lower than in conventional PCR reactions 

in order to promote binding. The low temperatures however can also encourage non-

specific binding and this then causes issues in the reproducibility and discriminatory 

capabilities of the method, the use of such short primers can also lead to less specific 

binding. When RAPD/AP-PCR has been used to type C. difficile isolates, reproducibility 

has often been reported to be an issue (Bidet et al., 2000, Wullt et al., 2003a) and although 

not as discriminatory as methods such as MLVA, REA and PFGE it is less labour intensive 

and more cost effective.   

1.8.11 Repetitive extragenic palindromic PCR  

Repetitive extragenic palindromic PCR (REP-PCR) is a technique that makes use of 

repetitive sequences, 35-40 bp in length found throughout the genomes of most Gram 
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negative and several Gram positive bacteria. Complementary primers are used to bind to 

these sequences leading to the amplification of regions between repetitive sequences. Since 

first developed (Rademaker et al., 1997), REP-PCR has been used to type many species of 

bacteria due to high levels of reproducibility and discriminatory power associated with the 

method. REP-PCR is not frequently used in the typing of C. difficile, despite initial studies 

indicating that REP-PCR is more discriminatory than PCR ribotyping (Spigaglia and 

Mastrantonio, 2003). Later studies also indicate that REP-PCR has the ability to sub-type 

within defined PCR ribotypes (Rahmati et al., 2005).  

1.8.12 Multi-locus sequence typing  

The multi locus sequence typing (MLST) method was one of the first genomic methods 

with the capability to examine long term bacterial population genetics and epidemiology 

having been used with several other species of bacteria. The reason why MLST can 

provide information about the evolution of a species of bacteria is it involves the 

sequencing of several housekeeping genes (Maiden et al., 1998), and in the case of C. 

difficile typing, only occur once in the genome (Lemee et al., 2004).The sequencing and 

surveillance of such genes across a range of isolates then allows relationships and genetic 

lineages to be determined through the use of mathematical analysis programs. When 

examining C. difficile or other bacterial species from an evolutionary perspective MLST is 

extremely useful however, it is not a method that is suitable for routine typing as the 

sequencing of seven individual loci make it very labour intensive and although this method 

does have a good level of discriminatory power a recent study has reported that it does not 

discriminate as well as MLVA or REA (Killgore et al., 2008). The MLST method can 

however provide additional lineage information that these other methods do not (Marsh et 

al., 2009). 



Chapter 1 Introduction 

62 

 

1.8.13 Amplified fragment length polymorphism 

Amplified fragment length polymorphism (AFLP) is a genotypic technique that was first 

described in 1993 and has been patented by Keygene (Vos et al., 1995); it uses both 

restriction enzymes and PCR methodology to detect polymorphisms throughout the entire 

genomic DNA. Restriction enzymes are first used to digest the entire cellular genomic 

DNA and adaptors are then ligated to the restriction fragments that have been produced. 

Two primers are used that are complementary to both the adaptor and the restriction site, 

and selective nucleotides added to the 3’ end of the primers making amplification more 

specific. Only fragments which posses complementary sequences to the primer-nucleotide 

complex will be amplified, the results of which are usually visualised by polyacrylamide 

denaturing gel electrophoresis or capillary electrophoresis. When first used to type C. 

difficile, AFLP was found to be more discriminatory than PFGE (Klaassen et al., 2002) 

and it has also been reported that it also produces results comparable to PCR ribotyping 

(Van Den Berg et al., 2004). Although relatively easy to perform and less labour intensive 

than some other molecular typing methods it is used infrequently as methods such as 

MLVA, REA and PCR ribotyping are regarded as more discriminatory.  

1.8.14 Surface layer protein A gene sequencing (slpAST) 

Based on the variation that is seen in the S layer proteins of different isolates of C. difficile, 

surface layer protein A sequencing (slpAST) sequences the gene that controls this variation 

in the S layer proteins and was first used in 2002, originally designed as an alternative to 

serotyping (Karjalainen et al., 2002). This method combines PCR and subsequent 

sequencing and therefore is more labour intensive than straight forward PCR techniques; it 

has however been shown to be more discriminatory than PCR ribotyping and can define 

types within ribotypes (Killgore et al., 2008, Kato et al., 2005), as a sequencing technique 

is also more transferable between laboratories (Kato et al., 2005). 
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1.8.15 Pulsed field gel electrophoresis 

Pulsed field gel electrophoresis (PFGE) was developed in 1984 by Schwartz & Cantor 

(Schwartz and Cantor, 1984) as a method by which large fragment lengths of DNA (>50 

kb) could be separated. The application of periodic changes in the direction of the 

electrical field enables larger fragments to separate and resolve on the gel. It is frequently 

used in the characterisation of many bacteria and is often regarded as the gold standard; it 

is the standard method of typing for C. difficile isolates in North America with strains 

identified with NAP and a preceding number. The discriminatory capacity of PFGE has 

been known to be of a high standard since it was first used however (Kristjansson et al., 

1994), as this and several other investigations discovered, some strains of C. difficile could 

not be typed due to degradation of the DNA. Due to this, other methods had to be 

developed that would provide reproducible and discriminatory results for the typing of C. 

difficile, it was not until a successful modification of the method that this problem was 

resolved (Alonso et al., 2005). The discriminatory power of PFGE is very good and similar 

to that of REA (Kristjansson et al., 1994, Killgore et al., 2008) when typing isolates of C. 

difficile, it is still however a very labour intensive technique (Killgore et al., 2008) in 

comparison to PCR methods.  

1.8.16 PCR ribotyping 

PCR ribotyping is currently the gold standard method in the UK for the genotyping of      

C. difficile isolates and so far over one hundred different ribotypes have been defined 

(Stubbs et al., 1999). Primers are used that flank the 16S-23S intergenic spacer regions of 

C. difficile, although the 16S and 23S genes are highly conserved, the length of the spacer 

region between them are highly variable; this provides individual fingerprint patterns for 

the different ribotypes (Brazier et al., 2001). The initial protocol for PCR ribotyping was 

long and labour intensive however this was later modified to allow for the routine use of 
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typing clinical isolates (O’Neill et al., 1996).  PCR ribotypes are identified by the order in 

which they were discovered and represented by a three digit number. Although PCR 

ribotyping is very discriminatory, the predominance of particular ribotypes has meant that 

this method no longer provides sufficient epidemiological information, especially in 

regards to outbreaks (Fawley et al., 2008). 

1.9 Aims and objectives 

Clostridium difficile is one of the most common causes of nosocomial infection in the 

western world and cases have been steadily rising over the past decade. A significant rise 

in cases over more recent years has been due to the emergence of a hypervirulent strain of 

C. difficile identified as PCR ribotype 027. Toxins A and B are the major virulence factors 

produced by C. difficile; however, information regarding phenotypic characteristics of C. 

difficile isolates and virulence factors such as enzymes is scarce and dated. PCR ribotyping 

is the gold standard method used to genotypically type C. difficile isolates in the UK. The 

increase in CDI cases in the UK has also seen a predominance of only a few PCR ribotypes 

and this has restricted the epidemiological use of the PCR ribotyping method. To 

investigate both phenotypic and genotypic characteristics of two C. difficile populations 

recovered from two separate tertiary referral trusts within the West Midlands, UK, a 

number of methods were employed.  

The aims of this study were to: 

 Determine if any of the clinical C. difficile isolates recovered from the two tertiary 

referral trusts produced extracellular enzymes as potential virulence factors. 

 Determine the minimum inhibitory concentrations (MICs) of twelve antibiotics in 

all of the clinical isolates recovered. 
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 Optimise a random amplification of polymorphic DNA (RAPD) protocol that is 

reproducible and able to discriminate between different strains of C. difficile. 

 Characterise clinical isolates using the optimised RAPD protocol and the current 

gold standard typing method, PCR ribotyping, and compare the discriminatory 

power of both methods.  

 Determine if there are any associations between the phenotypic and genotypic 

characteristics observed in the clinical isolates. 
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CHAPTER 2  PHENOTYPIC CHARACTERISATION OF 

CLOSTRIDIUM DIFFICILE 

2.1 INTRODUCTION 

Phenotypic characteristics are frequently used in the identification of many bacterial 

species, with colony morphology, odour, Gram stain result and virulence factor production 

(e.g. haemolysins) often providing enough information to make a preliminary identification 

in routine clinical microbiology laboratories. In addition to this, antibiotic sensitivity 

testing is often carried out; this provides additional information including identification of 

the appropriate treatment option and epidemiological surveillance of antibiotic resistance 

throughout the species population. Furthermore antibiotic sensitivity testing will generate 

an antibiogram pattern for each clinical isolate which may be used, albeit with low 

discriminatory power, to identify strain similarity. However, unlike many other bacterial 

species, C. difficile is not routinely cultured in diagnostic laboratories due to detection and 

diagnosis being established through direct testing of a faecal sample, this is despite 

suggestions that culture is required due to constant changes that are occurring within the C. 

difficile population (Wren, 2006, Stabler et al., 2009). As a result of this, the phenotypic 

characteristics of C. difficile have not been widely explored. 

The lack of recent investigation into the biochemical reactions and enzyme production of 

C. difficile mean that it is not known whether such characteristics have changed within the 

population; this may be likely as both antibiotic resistance and spore production are known 

to vary within the species. The detection of previously unseen fluoroquinolone resistance 

in C. difficile isolates highlighted the emergence of the hypervirulent PCR ribotype 027 

strain and demonstrates the importance of culture and antibiotic surveillance.  

Although vancomycin and metronidazole resistance is not yet a clinical problem there are 

already isolated reports of metronidazole resistance (Wong et al., 1999, Brazier et al., 
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2001, Pelaez et al., 2002). Susceptibility testing of other antibiotics, particularly those that 

are frequently associated with inducing CDI, is important in providing information that can 

be used locally to influence antibiotic prescribing policies and possibly reduce rates of CDI 

The development of molecular techniques over recent years has seen phenotypic 

characterisation often being overlooked; as a result there has been little research published 

in recent years that have investigated phenotypic characteristics of C. difficile. Although 

these methods are generally time consuming and slow to produce results in comparison to 

genotypic methods, the results can often provide considerable insight into an organism. 

In this chapter, the phenotypic characteristics of a panel of clinical isolates of C. difficile 

were explored.  Firstly the biochemical profile patterns (biotypes) and the ability of the 

isolates to produce a range of virulence factors was investigated. Secondly the isolates 

were characterised using S-layer typing using SDS PAGE. Finally, the susceptibility 

patterns against a panel of twelve antibiotics were determined by minimum inhibitory 

concentration. 
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2.2 MATERIALS AND METHODS 

2.2.1 Isolates of C. difficile 

Sixty two clinical isolates of C. difficile obtained from two hospital tertiary care Trusts 

(designated A and B) in the West Midlands, UK were phenotypically characterised: thirty 

two isolates were recovered from Trust A, and the remaining thirty from Trust B. Isolates 

were recovered from patients between the time period 2004 -2005.  In addition to these 

clinical isolates two control strains were also included; the reference strain National 

Collection of Type Cultures (NCTC) 11204 and a reference PCR ribotype 027 strain 

R20291 were also included in the investigation. A panel of eleven different genetically 

characterised PCR ribotypes (001, 002, 005, 014, 015, 017,023, 027, 064, 078 and 106) 

obtained from the North East HPA laboratory, Newcastle-upon-Tyne, UK were also 

included in MIC determination. 

2.2.2 Recovery of C. difficile from clinical faecal specimens   

Sixty two clinical isolates of C. difficile were recovered from C. difficile toxin positive 

faecal specimens obtained from Trusts A and B. Thirty two of the isolates were recovered 

from Trust A, while the remaining thirty of the isolates were from Trust B. Isolates were 

stored using a Microbank bacterial preservation system (Pro-Lab Diagnostics, UK) at        

–70°C until required.  

Faecal samples had been stored at -20°C until required, C. difficile was recovered from 

clinical samples from Trust B using alcohol shock methodology. A sterile swab was used 

to place a pea sized amount of faecal matter into one millilitre of pure ethanol, vortexed 

and left at room temperature for one hour. One hundred microlitres of suspension was then 

removed and cultured onto Fastidious Anaerobe Agar (LabM, UK) supplemented with 

0.1% (
w
/v) sodium taurocholate (Sigma-Aldrich, UK) and 5% (

v
/v) horse blood (Southern 
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Group Laboratories, UK); agar plates were then incubated in anaerobic conditions at 37°C 

for 48 hours. 

Following incubation, plates were observed for growth of C. difficile. Suspect colonies 

were identified by typical characteristics including ‘fried egg’ or ‘ground glass’ colony 

morphology and characteristic ‘elephant house’ odour. Suspected C. difficile colonies were 

then Gram stained to confirm identification and subcultured onto Wilkins-Chalgren 

anaerobe agar (Oxoid, UK) to ensure pure growth. One colony from a pure culture was 

then taken and used to inoculate beads which were then stored at -70°C until needed.  

2.2.3 API Biotyping 

The API (Analytical Profile Index) rapid ID 32A (Biomerieux, France) was used in 

accordance with the manufacturers recommendations as a confirmatory test for the positive 

identification of C. difficile and also to identify any differences in biotypes between the 

different isolates.  

2.2.4 Detection of extracellular virulence factors 

2.2.4.1 Lipase production 

Lipase production was detected using olive oil agar (Farrell et al., 1993) which comprised 

of 3% (
w
/v) agar no. 1 (Oxoid, UK), 1% (

w
/v) tryptone (Oxoid, UK), 0.5% (

w
/v) NaCl 

(Fisher Scientific, UK), 0.001% (
w
/v) rhodamine B (Sigma-Aldrich, UK) and 2.5% (

v
/v) 

olive oil (Sainsbury’s Ltd, UK). Colonies of C. difficile from 48 hour culture plates were 

used to inoculate the surface of the agar which was then incubated in anaerobic conditions 

at 37°C for a further 48 hours. Lipase production was confirmed through the growth of 

bright pink colonies that fluoresced orange under UV light. As a positive control 

Pseudomonas aeruginosa American Type Culture Collection (ATCC) 15442 was used and 

Streptococcus pyogenes NCTC 11200 was as a negative control. 
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2.2.4.2 Non-specific protease production 

To detect non specific protease production, 1% (
w
/v) agar no.1 was supplemented with 1 % 

(
w
/v) skimmed milk powder (Premier Foods, UK). Colonies of C. difficile from 48 hour 

cultures were used to inoculate the surface of the agar and incubated in anaerobic 

conditions at 37°C for 48 hours; protease production was confirmed through a zone of 

clearing around the colonies. The positive and negative controls used for this test were P. 

aeruginosa ATCC 15442 and S. aureus ATCC 29213 respectively. 

2.2.4.3 DNase production 

DNase production was detected using DNase agar (Oxoid, UK) in accordance with 

manufacturer’s instructions; S. aureus ATCC 29213 was used for a positive control and 

Staphylococcus epidermidis RP62A was used as a negative control. Colonies of C. difficile 

from 48 hour cultures were inoculated on to the surface of the agar and incubated in 

anaerobic conditions at 37°C for a further 48 hours. Following incubation the agar was 

then flooded with 1M HCl in order to visualise the results; a clearing around the colony 

indicating DNase production.  

2.2.4.4 Haemolysin production 

Tests for haemolysis of both horse and sheep blood were investigated using Wilkins-

Chalgren anaerobic agar supplemented with 5% (
v
/v) horse blood (Southern Group 

Laboratories, UK) and 5% (
v
/v) sheep blood (Southern Group Laboratories, UK) 

respectively. Colonies of C. difficile from 48 hour cultures were inoculated on to the 

surface of the agar and incubated in anaerobic conditions at 37°C for 48 hours. Haemolysin 

production was confirmed through a clear zone around the colonies. The control strains 

used for both blood types were S. pyogenes NCTC 11200 and Escherichia coli ATCC 

25922 as positive and negative controls respectively 
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2.2.4.5 Gelatinase production 

Nutrient gelatin (Oxoid, UK) was used to detect the production of gelatinase; E. coli 

ATCC 25922 and S. epidermidis RP62A served as positive and negative controls 

respectively. Nutrient gelatin was poured into test tubes and stab inoculated with one 

colony of C. difficile. Tubes were then incubated for 2 weeks in anaerobic conditions at 

37°C. Following incubation tubes were then refrigerated at 4°C for 1 hour. Gelatinase 

production was indicated when nutrient gelatin remained in liquid form following 

refrigeration. 

2.2.4.6 Urease production 

Urease production was detected using urea agar slopes (Oxoid, UK); Proteus mirabilis 

NCTC 8309 and E. coli ATCC 25922 were used as positive and negative controls 

respectively. The surface of urea slopes were inoculated with one colony of C. difficile and 

incubated for 5 hours in anaerobic conditions at 37°C. Urease production was confirmed 

by a pink discolouration of the urea agar. 

2.2.4.7 Toxin production 

Toxin A & B production was confirmed using Premier™ Toxins A&B immunoassay kit 

(Meridian Biosciences, USA) and carried out according to the manufacturer’s instructions.  

2.2.5 Susceptibility testing 

Minimum Inhibitory Concentrations (MICs) of a panel of antibiotics were determined 

using the agar dilution method as recommended by the Clinical and Laboratory Standards 

Institute (CLSI) (CLSI, 2007) on Wilkins-Chalgren anaerobe agar (Oxoid) and each test 

was performed in triplicate. Antibiotic solutions were made as described in appendix (1). 

Ten microlitres of an overnight culture of C. difficile grown in Wilkins-Chalgren broth 
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(Oxoid, UK) was adjusted to 10
7
 CFU/ml and inoculated onto agar to give a final 

concentration of 10
5
 CFU per spot. Plates were incubated for 48 hours at 37°C in anaerobic 

conditions. The MIC was determined as the lowest concentration at which growth was 

inhibited; growth of a single colony was disregarded. The following antimicrobials were 

tested: cefotaxime (Melford Laboratories Ltd, UK), chloramphenicol (Sigma-Aldrich), 

clindamycin (Duchefa, Netherlands), erythromycin (Sigma-Aldrich), fusidic acid (LEO 

Pharmaceuticals, Buckinghamshire, UK), imipenem (Merck, Sharp & Dohme Ltd, 

Northumberland, UK), levofloxacin (Hoechst Marion Roussel, Ltd, Middlesex, UK), 

linezolid (Pfzier Ltd, Kent, UK), metronidazole (Sigma Aldrich), rifampicin (Melford 

Laboratories Ltd), tetracycline (Sigma Aldrich) and vancomycin (Sigma Aldrich). 

Table 2.1 Antibiotics tested and breakpoints used. (Breakpoints defined by the 

European Committee on Antimicrobial Susceptibility Testing (EUCAST)). 

Antibiotic Breakpoint (µg/mL) 

Cefotaxime >2 

Chloramphenicol >8 

Clindamycin >4 

Erythromycin >4 

Fusidic Acid >0.5 

Imipenem >8 

Levofloxacin >2 

Linezolid >4 

Metronidazole >4 

Rifampicin >1 

Tetracycline >2 

Vancomycin >8 
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2.2.5.1 Calibration curve 

Three separate isolates of C. difficile were used to produce data for a standard curve; the 

isolates used were NCTC 11204 and clinical strains numbers B1 and Z1591. Forty eight 

hour colonies were used to inoculate 10ml of Wilkins-Chalgren anaerobe broth which was 

then incubated for 24 hours at 37°C in anaerobic conditions.  

One hundred microlitres of each culture was used to inoculate a further 20mls of Wilkins 

Chalgren anaerobe broth and cultures were incubated for 48 hours at 37°C in anaerobic 

conditions. At intervals within the 48 hour period, one millilitre of each culture was taken 

and an optical density reading taken at A600. A further 1ml was taken from the culture and 

serial dilutions were carried out to a concentration of 10
-6

. Of these dilutions, 100ml of 

culture at 10
-2

 to 10
-6

 was taken and each spread onto Wilkins-Chalgren Anaerobe Agar 

with a wedge shaped spreader. Plates were incubated for 48 hours at 37°C in an anaerobic 

cabinet and average colony counts for each time point and dilution were then used to 

produce a calibration curve.  

2.2.5.2 Chi-square (χ
2
) analysis 

Chi square analysis was used to determine if there were significant associations between 

isolate location and antibiotic sensitivity, and also isolate location and resistance towards 

individual antibiotics. Significant associations were determined using the chi square 

equation: 

 

Where O is the observed frequency with which resistance occurs within the population and 

E is the expected frequency with which resistance would occur within a population. 
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2.2.5.3 Simpson’s index of diversity 

The diversity of antibiogram profiles obtained from the isolates recovered from different 

trusts was determined using Simpson’s index of diversity (D): 

 

Where N is the total number of strains in the sample population and n is the number of 

strains belonging to the profile type. 

2.2.6 S-layer typing 

2.2.6.1 Extraction of S-layer proteins with urea to use in SDS-PAGE analysis 

Surface layer proteins from C. difficile isolates were extracted using a modification of the 

method of (Cerquetti et al, 2000). Colonies of C. difficile were taken from 48 hour cultures 

and used to inoculate 50mls of proteose peptone yeast (PPY) broth (2% (
w
/v) proteose 

peptone (Difco, USA), 1% (
w
/v) yeast extract (Oxoid, UK) and 0.5% (

w
/v) sodium chloride 

(Fisher Scientific, UK)),  supplemented with 0.04% (
w
/v) sodium carbonate (Fisher 

Scientific, UK) and 0.075% (
w
/v) cysteine hydrochloride (Sigma-Aldrich, UK). Broths 

were then incubated for 24 hours and following incubation cells were harvested by 

centrifugation at 5800 x g for 30 minutes. Pelleted cells were then washed with 1ml of 

50mM Tris-HCl pH 7.4 and centrifuged again at 5800 x g for 30 minutes at 4°C and the 

supernatant was discarded. The resulting pellet was add to 2mls of 8M urea/Tris-HCl pH 

8.3 and 500µl of 2mM phenylmethylsulfonylfluoride (PMSF) and vortexed before being 

incubated for 1hour at 37°C. After incubation the suspension was centrifuged at 19000 x g 

for 30 minutes and the supernatant containing the extracted surface layer proteins removed 

and stored at -20°C until required.  
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2.2.6.2 Preparation of samples for SDS-PAGE analysis 

Samples of supernatent containing the extracted S-layer proteins were allowed to thaw at 

room temperature and vortexed prior to 50µl of sample being added to 50µl of sample 

denaturing buffer which was prepared as described in appendix (2). Samples were then 

heated at 94°C for 12 minutes prior to loading into the gel. 

2.2.6.3 Preparation and running of gels for SDS-PAGE analysis 

Gels and buffers were prepared as outlined in appendix (2) and using the mini PROTEAN 

3 cell (Bio Rad, USA).Samples were loaded into the stacking gel using a 30µl Hamilton 

microlitre syringe. Into the stacking gel, 12µl of sample was loaded into the wells; 8µl of 

proteins standard was loaded into the wells at the ends of the stacking gel (protein 

standards are described in appendix 2). Gels were run at 200 volts until samples reached 

the end of the separating gel.  

2.2.6.4 Staining and visualisation of gels 

Gels were stained using Coomassie blue, the stain and de-stain were prepared according to 

the relevant table in appendix (2). Gels were stained  by flooding the gel for at least 1 hour 

in Coomassie blue stain, this was then replaced with Coomassie blue de-stain which was 

routinely replaced once the de-stain began to change colour. For best results de-stain was 

replaced once before being left overnight. Once de-stained, gels were photographed using 

GeneSnap, (Syngene, UK). 
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2.3 RESULTS 

2.3.1 C. difficile isolates 

All isolates were characteristic of C. difficile in colonial morphology; odour and Gram 

stain although slight variations were also observed among all of these characteristics.  The 

Gram stain and colonial morphology of the C. difficile reference strain NCTC 11204 are 

shown in figures 2.1 and 2.2 respectively and are the standard by which the clinical isolates 

were compared.  

 

Figure 2.1 Gram stain of C. difficile reference strain NCTC 11204 which is 

representative of the typical appearance of C. difficile. 
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Figure 2.2 Colony morphology of C. difficile reference strain NCTC 11204 which is 

representative of the typical appearance of C. difficile. 

2.3.2 API Biotyping 

All 62 clinical isolates and the two reference strains of C. difficile were typed using the 

Rapid ID 32A API system and from these 6 different biotypes were obtained. Five of the 

isolates failed to induce reactions in any of the tests and so no profiles were obtained for 

these isolates. Sixty four percent of isolates produced the same API profile number. All 

isolates were confirmed to be C. difficile despite some the variation observed in some of 

the tests. The different API profiles produced and the number of isolates that produced 

each profile is described in table 2.2. The API result for isolate 13 from Trust B is depicted 

in figure 2.3, displaying positive reactions in proline and leucine arylamidase that are 

characteristic of C. difficile.  
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Figure 2.3 API results for isolate B13 recovered from Trust B. Positive reactions in 

the proline arylamidase (ProA), leucine arylamidase (LeuA) and reduction of nitrates 

(NIT) were recorded. 

 

Table 2.2 API biotype prevalence and distribution among the 64 isolates of C. difficile. 

API Profile 

Number 

Number of 

Isolates 

Trust A   Trust B  

0000020000 8 (12.5%) 2 (6%)   5(17%)  

0000022000 41(64%) 26 (81%)   14(47%)  

0000022200 6 (9%) 1 (3%)   5(17%)  

0000122000 2 (3%) 0   2(7%)  

0002032000 1 (2%) 1(3%)   0  

1000020000 1(2%) 1(3%)   0  

 

A positive proline arylamidase reaction test was observed in all isolates that produced a 

profile result and was overall positive in 92% of the isolates tested. Only isolates that failed 

to produce a reaction and produced no profile gave negative results for this test. A positive 

reaction to the leucine arylamidase test was also observed in 80% of the isolates.  The 

frequency with which positive reactions were observed among the tests is depicted in 

figure 2.4. 
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Figure 2.4 The frequency with which positive reactions for the individual biochemical 

tests in the Rapid ID 32A were recorded. 

2.3.3 Extracellular virulence factor production 

All clinical isolates tested were negative for lipase, non-specific protease, DNase, 

haemolysin, urease and gelatinase production; all isolates were however positive for toxin 

production. 

2.3.4 Antimicrobial susceptibility of clinical isolates 

All isolates were sensitive to metronidazole and vancomycin as defined by the breakpoints 

used; varying degrees of resistance was observed towards all of the other antibiotics tested. 

Among the isolates tested, resistance was observed most frequently towards cefotaxime, 

clindamycin, fusidic acid and levofloxacin; resistance towards chloramphenicol and 

linezolid was recorded less frequently in twenty and two percent of isolates respectively. 

The frequency of resistance towards each antimicrobial between is presented in figure 2.5. 
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Figure 2.5 The frequency of resistance observed among the clinical isolates against 

the tested antibiotics. 

There were also variances in resistance in the isolates recovered from the two separate 

locations (Table 2.3). Isolates from Trust A demonstrated increased susceptibility to the 

panel of antimicrobials tested with isolates displaying resistance to an average of 4 

antimicrobials however, isolates from Trust B demonstrated resistance to an average of  8 

antimicrobials. The range and modal MICs also varied between the two Trusts, this data is 

presented in table 2.4. In total 29 different antibiogram profiles were obtained; profiles 

were exclusive to the location from which the isolate was recovered with no single profile 
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being observed in both trusts.  A more diverse range of antibiogram profiles was observed 

in the isolates recovered from Trust A; isolates within this population were also resistant to 

fewer antibiotics in comparison to isolates recovered from Trust B. Isolates recovered from 

Trust B were resistant to a greater number of the antimicrobials tested and therefore the 

range of antibiogram profiles in this population was less diverse. 

Table 2.3 Frequency of resistance (%) observed in isolates from the two separate 

Trusts. 

Antibiotic Trust A Trust B 

Cefotaxime 97 100 

Chloramphenicol 24 17 

Clindamycin 62 97 

Erythromycin 50 93 

Fusidic Acid 100 83 

Imipenem 80 6 

Levofloxacin 82 97 

Linezolid 0 3 

Metronidazole 0 0 

Rifampicin 12 100 

Tetracycline 50 100 

Vancomycin 0 0 
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Table 2.4 The range and modal MICs recorded for each of the antibiotics tested. 

               

* Modal MIC value is above resistance breakpoint 

 

 

Antimicrobial Agent 

 

Modal MIC (µg/mL) Range (µg/mL) 

Trust A Trust B Trust A Trust B 

Fusidic Acid 2* 4* 1 - 16 0.125 – 16 

Tetracycline 4* 4* 0.5 - 64 4 - 64 

Cefotaxime 4* 128* 2 - 128 64 - 128 

Levofloxacin 4* 256* 1 - ≥ 256 2 - 256 

Clindamycin 4 16* 0.5 - 32 2 - 32 

Imipenem 4 16* 0.125 - 16 8 - 16 

Rifampicin 0.016 4* 0.016 - 32 4 - 32 

Erythromycin 4 512* 0.5 - ≥ 512 2 - ≥ 512 

Chloramphenicol 2 4 2 - 32 4 - 64 

Linezolid 4 4 1 - 4 0.5 - 8 

Metronidazole 0.5 0.5 0.064 - 4 0.25 - 4 

Vancomycin 0.5 2 0.5 - 2 0.125 - 4 
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2.3.3.1 Calibration curve 

A calibration curve for the growth of C. difficile was produced by plotting the average OD 

values of the three isolates used against the average corresponding log cfu/mL results 

(Figure 2.6). There was a significant correlation observed between OD and cfu/ml. 

Figure 2.6 Calibration curve for the average growth of three C. difficile strains. 

2.3.3.2 Chi-square (χ2) analysis  

Analysis of the data using Chi-square (χ
2
) revealed a significant association (P=0.001)

 

between isolate location and antibiotic susceptibility. When investigated individually 

significant associations (P=0.001) between location of isolation and susceptibility towards 

tetracycline, rifampicin, imipenem, clindamycin and erythromycin was observed.  
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2.3.3.3 Simpson’s index of diversity (D) 

Simpson’s diversity indices of 0.945 and 0.767 were calculated for Trusts A and B 

respectively, demonstrating a greater diversity of antibiogram profiles amongst the isolates 

obtained from Trust A. 

2.3.5 Antibiotic susceptibility of control ribotypes 

No resistance towards metronidazole or vancomycin was observed in this population. The 

MICs recorded for each antibiotic are presented in Table 2.5. Among the control PCR 

ribotypes, resistance towards cefotaxime and levofloxacin and sensitivity towards 

metronidazole, vancomycin, rifampicin and linezolid was uniform throughout the 

population (Table 2.6). Antibiogram profiles varied between the different PCR ribotypes 

however for PCR ribotypes 015, 023 and 027 profiles were the same.  

Table 2.5 MICs of control PCR ribotype strains against tested antibiotics. 

PCR 

ribotype 

a
MIC (µg/mL) 

Cef Chl Cli Ery Fuc Imi Lev Lin Met Rif Tet Van 

001 16 8 4 1 0.25 4 4 0.25 1 <0.016 4 2 

002 >512 8 32 2 2 32 8 0.25 0.25 <0.016 1 1 

005 128 16 16 2 1 16 128 0.25 0.25 <0.016 8 1 

014 512 16 32 2 0.25 32 8 0.25 0.25 <0.016 0.5 1 

015 >512 8 32 2 0.25 32 8 0.25 0.25 <0.016 <0.016 1 

017 >512 16 >512 >512 4 32 8 0.25 0.25 <0.016 512 1 

023 128 8 8 2 0.5 16 128 0.25 0.5 <0.016 0.5 0.5 

027 >512 8 16 >512 1 16 256 0.25 2 <0.016 0.5 1 

064 64 8 16 2 0.25 16 128 0.25 0.25 <0.016 4 2 

078 128 8 8 2 0.25 16 128 0.25 2 <0.016 0.032 1 

106 >512 8 16 512 32 16 >256 0.25 0.25 <0.016 0.064 0.5 

a
Antibiotic abbreviations: Cef (cefotaxime), Chl (chloramphenicol), Cli (clindamycin), Ery 

(erythromycin), Fuc (fusidic acid), Imi (imipenem), Lev (levofloxacin), Lin (linezolid), 

Met (metronidazole), Rif (rifampicin), Tet (tetracycline) and Van (vancomycin). 
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Table 2.6 Resistance/sensitivity profiles for control PCR ribotype strains against 

tested antibiotics  

PCR 

ribotype 

ab
R/S 

Cef Chl Cli Ery Fuc Imi Lev Lin Met Rif Tet Van 

001 R S S S S S R S S S R S 

002 R S R S R R R S S S S S 

005 R R R S R R R S S S R S 

014 R R R S S R R S S S S S 

015 R S R S S R R S S S S S 

017 R R R R R R R S S S R S 

023 R S R S S R R S S S S S 

027 R S R R R R R S S S S S 

064 R S R S S R R S S S R S 

078 R S R S S R R S S S S S 

106 R S R R R R R S S S S S 

a
Antibiotic abbreviations: Cef (cefotaxime), Chl (chloramphenicol), Cli (clindamycin),                    

Ery (erythromycin), Fuc (fusidic acid), Imi (imipenem), Lev (levofloxacin), Lin 

(linezolid), Met (metronidazole), Rif (rifampicin), Tet (tetracycline) and Van 

(vancomycin). 
b
R: resistance, S: sensitive 

 

 

2.3.6 Surface layer protein typing 

There was great variation observed in the S-layer proteins with few isolates possessing 

both the same high and low molecular mass surface layer proteins. The high molecular 

mass proteins ranged between 56 – 48 kDa with the low molecular mass proteins ranging 

between 45 – 36kDa with more variation occurring amongst the low molecular mass 

proteins.  An example of the S-layer proteins extracted is shown in figure 2.7. 
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Figure 2.7 Example of gel displaying extracted S-layer proteins from isolates of C. 

difficile. Lanes are labelled according to the appropriate isolate. 
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2.4 DISCUSSION 

Although C. difficile has some very distinguishing phenotypic characteristics, slight 

variations were observed in colony morphology, odour and cell morphology as seen in a 

Gram stain. Variations in colony and cell morphology have also been reported by others 

although it is not known why these differences occur. Subtle differences in odour may be 

due to differences in fermentation and differences in the ratio of volatile fatty acids 

produced between different strains; this may also be associated with slight differences in 

their metabolism and biochemical reactions within the cell.  

There was little variation in the API profiles of the isolates tested with positive reactions in 

the proline and leucine arylamidase tests being characteristic of C. difficile.  The 

production of such enzymes by most of the C. difficile isolates tested here demonstrates 

that the organism utilises proline and leucine in metabolic reactions.  It is known that C. 

difficile requires particular amino acids for growth; utilizing them as a carbon source for 

fermentation pathways rather than traditional sources such as sugars; this is also clearly 

apparent in the API tests. Proline, leucine, isoleucine, valine, tryptophan, methionine and 

cysteine have been reported to be required for the optimal growth of C. difficile and it is 

these unusual fermentation pathways that cause the characteristic odour of C. difficile. In 

six of the isolates tested, positive reactions were also recorded for alanine arylamidase 

indicating that some isolates may also use alanine in metabolic pathways; a positive result 

in the nitrate reduction test was also observed in two isolates however this is likely to be a 

false positive result. Other positive results that were recorded were sporadic and occurred 

only in individual isolates, this is suggestive of a false positive result however further tests 

would be required to rule this out. 

All sixty two of the clinical isolates were negative for the production of any of the 

extracellular virulence factors tested with the exception of that for toxin A/B production. 
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There is limited research available that has investigated this area however the results here 

concur with work carried out by others (Seddon et al., 1990) with the exception of 

gelatinase and protease production where activity was reported to vary between the isolates 

tested (Hafiz and Oakley, 1976, Seddon and Borriello, 1992, Steffen and Hentges, 1981). 

The observation that the production of additional hydrolytic and proteolytic enzymes (not 

tested here) varied between isolates in other studies (Seddon and Borriello, 1992, Seddon 

et al., 1990), indicates that they are unlikely to contribute independently to the 

pathogenesis of C. difficile infection and are more likely to facilitate the survival of the 

organism within the human gastrointestinal tract (Poxton et al., 2001). This is supported by 

the observation that strains of C. difficile identified as highly virulent are more likely to 

produce proteolytic enzymes and in higher levels (Seddon and Borriello, 1992). Unlike 

other organisms, C. difficile does not produce a range of virulence factors with its 

pathogenicity likely to be attributed to toxin production alone and hypervirulence being 

due only to excessive levels of toxin production. It is known that some strains of C. 

difficile also produces a binary toxin however the role of this in virulence is still unclear. 

The genome of C. difficile is reported to contain a large number of transposons (Sebaihia et 

al., 2006) suggesting the potential for the acquisition of additional virulence factors; there 

appears to be no evidence however that this occurs and it may be that genes that control 

such mechanisms are not as easily transferred and acquired as antibiotic resistance genes 

for example.  

There is little current research into the investigation of the production of extracellular 

virulence factors, earlier and initial research is also limited with sample sizes often being 

small (Hafiz and Oakley, 1976, Seddon et al., 1990, Steffen and Hentges, 1981, Seddon 

and Borriello, 1992). Phenotypic changes have been reported in C. difficile and it has 

recently been reported that there are several notable changes in recent hypervirulent PCR 
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ribotype 027 strains when compared to historic strains, that may be responsible for the 

phenotypic variations that are being observed (Stabler et al., 2009). Although no changes 

have yet been reported in the production of extracellular virulence factors by C. difficile, 

such reporting demonstrates that increased surveillance and continued investigation is 

required. 

No resistance was observed in any of the clinical isolates tested towards metronidazole and 

vancomycin; this was to be expected as vancomycin resistance has yet to be detected and 

reports of metronidazole resistance are rare and sporadic (Wong et al., 1999, Brazier et al., 

2001, Pelaez et al., 2002). The high frequency of resistance towards cefotaxime, 

clindamycin and levofloxacin among the isolates is a result that correlates well with work 

by others; these antibiotics are also some of the most frequently implied precipitating 

antibiotics in CDI.  Resistance towards erythromycin, fusidic acid, rifampicin and 

tetracycline was also relatively widespread throughout this population of C. difficile 

isolates. Both fusidic acid and rifampicin have been reported to show good activity towards 

C. difficile in vitro however the ease with which resistance is acquired and rapid 

emergence of resistance towards both antibiotics has prevented its use as a viable treatment 

option. Resistance towards erythromycin and tetracycline is easily acquired by bacteria 

through the transferring of the erm (B) and tet genes respectively, both of these genes have 

been detected in C. difficile isolates (Spigaglia et al., 2005a, Spigaglia et al., 2008, Adams 

et al., 2002, Schmidt et al., 2007, Tang-Feldman et al., 2005, Spigaglia et al., 2005b) and it 

is therefore likely that these genes are present in the isolates tested.  

 Antibiograms have been used successfully in the profiling of many species of bacteria, 

however when used alone they often demonstrate low discriminatory power and fail to 

differentiate between isolates having limited use in epidemiological studies (Worthington 

et al., 2000). The use of antibiogram profiling is an invaluable tool in the surveillance of 
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antibiotic resistance and as demonstrated here can be used to establish associations 

between sets of isolates and variables such as location. The benefits of antibiogram 

profiling has already been demonstrated; with previously unseen fluoroquinolone 

resistance highlighting the emergence of a new strain (Loo et al., 2005) and a particular 

antibiogram profile also being indicative of the hypervirulent PCR ribotype 027 strain 

(Drudy et al., 2008).  Significant differences were observed in the antibiogram profiles of 

C. difficile isolates recovered from Trusts A & B; similar observations in the antibiogram 

profiles of C. difficile isolates from different locations within the UK have previouslybeen  

reported (Bendle et al., 2004). Such observations highlight differences in the susceptibility 

of C. difficile isolates to particular antibiotics and are likely to be a response to differences 

in local selective pressures such as prescribing policies and antibiotic pressures (Taori et 

al., 2010). The differences observed in isolates from the two separate locations indicate 

that C. difficile has the ability to successfully adapt to a local environment despite multiple 

selective pressures being exerted. The adaptability of C. difficile to its environment is 

likely to be due to the presence of a high number of transposons within the genome (11%) 

(Sebaihia et al., 2006), allowing genes to be acquired that will ultimately enhance the 

survival of the organism particularly within the gut. In this instance it is proposed that C. 

difficile may acquire genes that confer resistance to antibiotics that are often prescribed as 

a prophylactic measure for other infections in contrast to those used in the treatment of 

CDI. Treatment of CDI is standardised between hospital Trusts (mainly due to the lack of 

treatment options) however prophylactic prescribing policies are not, thus potentially 

explaining the antibiotic resistance variability that has been observed in this study. Despite 

the observation of such differences, there has also been widespread increase in MICs 

towards metronidazole, moxifloxacin and clindamycin amongst C. difficile isolates in 

England and Wales (HPA, 2008), most notably among the most predominant ribotypes. 
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This suggests that prolonged exposure to these antibiotics has led to an increase MICs 

which could then lead to resistance in isolates of C. difficile.  Although  the development of 

resistance in bacteria is a natural phenomenon, excessive antibiotic use within an 

environment can also exert a selective pressure (Cohen, 2000), leading to reduced 

susceptibility and ultimately antimicrobial resistance (Austin et al., 1999).  The differences 

observed in this investigation are likely to have been influenced by non-standardised 

prescribing policies within the Trusts from which they were obtained. This same reasoning 

however also suggests that uniformity and standardisation in prescribing policies would 

lead to high levels of widespread resistance towards selected antibiotics amongst C. 

difficile isolates. Therefore restrictions in antibiotic administration and/or uniform rotation 

of antibiotics across Trusts may be more appropriate in reducing the spread of resistance in 

C. difficile isolates.  

The antibiogram profiles for PCR ribotypes 015, 023 and 078 were the same although the 

individual MICs did vary. Resistance was observed towards clindamycin in PCR ribotype 

027 and although sensitivity to clindamycin was previously observed to be a characteristic 

of PCR ribotype 027 strains, resistance in now being observed in these strains (Drudy et 

al., 2008). A high level of resistance (256 µg/ml) was observed towards levofloxacin in 

PCR ribotype 027 strain which is frequently observed in high levels in these strains 

(Deneve et al., 2009, Razavi et al., 2007, Mcdonald et al., 2005). Due to the small sample 

size used here it is not possible to determine if the antibiogram profiles or any of the 

susceptibility traits observed here are characteristic of a particular ribotype.  

A great deal of variation was observed among the isolates tested. This method of typing 

has been reported to correlate well with PCR ribotyping (Mccoubrey and Poxton, 2001) 

however it would seem that with the variation observed this is unlikely in this group of 

isolates. It has been proposed that the S-layer proteins are involved in cell attachment and 
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immune responses and therefore the variances that occur may be responsible for 

differences that have been observed in CDI and symptoms reported.  

2.5 CONCLUSION 

Clinical isolates of C. difficile were indistinguishable when compared on the results 

from extracellular virulence factor production indicating that toxin production alone is 

responsible for the virulence of the organism. This suggests that the virulence mechanisms 

that are already possessed by C. difficile are sufficient for pathogenesis and survival and 

therefore the acquisition of further virulence factors are unlikely to be of benefit to the 

organism. Antibiogram profiles were highly variable between isolates as a whole 

population and also between the two trusts from which they were recovered; however, 

discriminatory power was limited by the level of resistance in Trust endemic strains which 

is likely to be influenced by prescribing policy. These results highlight how local selective 

pressures influence isolates of C. difficile and demonstrate a need for restriction and or 

rotation in antibiotic usage policies between Trusts in contrast to uniform standardisation.  
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CHAPTER 3  OPTIMISATION OF A RANDOM AMPLIFIED                    

POLYMORPHIC DNA PCR PROTOCOL FOR THE GENOTYPIC 

CHARACTERISATION OF CLOSTRIDIUM DIFFICILE 

3.1 INTRODUCTION 

Prior to the routine use of molecular techniques, phenotypic and immunochemical methods 

were adopted to identify and characterise bacteria. Phenotypic characteristics of 

microorganisms including colonial morphology, Gram stain reaction and odour can often 

identify bacteria to at least the genus level however additional tests are usually required for 

species identification. Phenotypic characterisation of microorganisms often lacks 

discriminatory power and rarely detects variances between strains that belong to the same 

species. However, genotypic characterisation of microorganisms can provide a much 

greater discriminatory capacity and can generate much more information about an 

organism. Despite providing greater discriminatory capabilities, many molecular 

techniques are time consuming and often require specialist equipment which can render 

them unsuitable for routine clinical purposes; they also require a great deal of development 

and optimisation in order to produce desired results.  

Random amplification of polymorphic DNA (RAPD PCR) (also referred to as arbitrary 

primed PCR) has been applied to genetically type many different species of bacteria and is 

characterised by its use of short primers, low annealing temperatures and unique to other 

PCR methods, no prior knowledge of the genome being required. RAPD PCR is a rapid 

and cost effective method and its user friendly application makes it attractive for genetic 

characterisation of microorganisms in routine laboratories. However, RAPD PCR is often 

criticised for its reduced discriminatory power and lack of reproducibility in comparison to 

other methods. The gold standard typing method for C. difficile isolates in the UK is 

currently PCR ribotyping which is documented to be both highly reproducible and 
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discriminatory. However, there are limitations to the discriminatory power of PCR 

ribotyping and therefore other methods which are more discriminative are now being 

employed. RAPD PCR has previously been used to characterise C. difficile using a variety 

of different primers (Barbut et al., 1993, Barbut et al., 1994, Chachaty et al., 1994, Van 

Dijck et al., 1996, Wilcox et al., 1998, Pituch et al., 2001, Silva et al., 1994, Killgore and 

Kato, 1994, Wilks and Tabaqchali, 1994, Martirosian et al., 1995, Collier et al., 1996, 

Lemann et al., 1997, Cohen et al., 1997, Samore et al., 1997, Rafferty et al., 1998, Wullt 

and Laurell, 1999, Titov et al., 2000, Bidet et al., 2000, Martirosian et al., 2005), and often 

compared with other methods such as pulsed field gel electrophoresis (PFGE), PCR 

ribotyping and REP PCR (Chachaty et al., 1994, Van Dijck et al., 1996, Killgore and Kato, 

1994, Martirosian et al., 1995, Tang et al., 1995, Collier et al., 1996, Bidet et al., 2000, 

Wada et al., 1980, Wullt et al., 2003a, Fawley et al., 2005). Whilst these studies generated 

promising data with RAPD PCR, problems associated with reproducibility and 

discriminatory power were documented when compared to other methods. Published 

RAPD PCR methodologies that have been used to genetically characterise isolates of C. 

difficile show little evidence of the optimisation of the methods which may influence the 

results.  

To improve the reproducibility of RAPD PCR, the components of the reaction need careful 

titration to maximise and ensure the efficiency of the primer used (Hilton et al., 1997, 

Perry, 2004).  Furthermore, optimisation of the concentration of all components in a PCR 

reaction is crucial and is largely influenced by the primers used; therefore RAPD protocols 

cannot always be transferred between species of bacteria, especially if different areas of the 

genome are being targeted.  

In this chapter the optimisation of a RAPD protocol that is suitable for the typing of C. 

difficile is described.  
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3.2 MATERIALS AND METHODS 

3.2.1 DNA extraction 

3.2.1.1 Method 1 (DNA extraction using phenol extraction and ethanol precipitation) 

Colonies of C. difficile were used to inoculate 10mls of Wilkins-Chalgren anaerobe broth 

(Oxoid, UK). Following incubation at 37°C in anaerobic conditions for 24 hours, 1.5mls of 

culture was removed and centrifuged at 15000 x g for 4 minutes. The supernatant was 

discarded and pellet re-suspended in 300µl of TE buffer (10mM Tris, pH8, 10mM EDTA, 

pH8) before being added to 500µl of lysozyme (8 mg/ml) (Sigma Aldrich, UK) and 

incubated for 15 minutes at 37°C and then for a further 10 minutes at 75°C. After these 

initial stages of incubation, 100µl  10% (
w
/v) SDS (Fisher Scientific, UK) and 5µl DNase 

(10mg/ml) (Sigma Aldrich, UK) were added to samples before being incubated for a 

further 10 minutes at 75°C.  Before a final incubation period at 65°C for 2 hours, 1µl 

proteinase K (20mg/ml) (Sigma Aldrich, UK) was added to the sample. 

Following incubation 200µl of sample was removed and added to an equal volume of 

phenol (Sigma Aldrich, UK), before being vortexed to form an emulsion and then 

centrifuged for 1 minute at 15000 x g. The top aqueous layer containing the DNA was then 

removed and dispensed into a separate centrifuge tube; to the bottom remaining layer a 

volume of SDW equal to half the volume of this layer was added before being vortexed 

briefly and centrifuged at 15000 x g  for 1 minute. The upper phase resulting from the 

second centrifugation was added to the upper aqueous phase that had been removed 

previously and the tube containing the remaining lower phenol layer discarded. To the 

centrifuge tube containing both upper aqueous layers an equal volume of phenol: 

chloroform (50:50) was added; again the mixture vortexed to an emulsion and centrifuged 

for 1 minute at 15000 x g.  The top phase was again removed and placed in a separate 
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centrifuge tube; to the remaining lower layer a volume of SDW equal to half the volume of 

this remaining layer added as previous and the mixture again vortexed, centrifuged and the 

upper layer added to the previous extract taken. To the extracted upper layers, an equal 

volume of chloroform was added, vortexed and centrifuged. The top layer was removed to 

a new tube before another volume of chloroform was added before being vortexed and 

centrifuged again. The resulting upper layer was again removed to the tube containing the 

first extract and the tube containing the chloroform discarded. 

To the extracted DNA solution, a volume of 3M sodium acetate (Fisher Scientific, UK) 

equal to 1/10 of the final sample was added and vortexed. Absolute ethanol that had 

previously been stored at -70°C was then used to fill the centrifuge tube before being 

stored at -20°Cfor 15-18 hours. Samples were then centrifuged at 15000 x g for 20 minutes 

and the resulting pellet left to air dry for 1 hour. The pellet was then suspended in 200µl of 

SDW and stored at -20°C until required. 

3.2.1.2 Method 2 (DNA extraction through boiling of whole cells) 

C. difficile was cultured onto Wilkins-Chalgren anaerobe agar (Oxoid, UK) and incubated 

for 24 hours at 37°C in anaerobic conditions. All colonies were then taken and suspended 

in 1 ml of SDW and centrifuged for 4 minutes at 15000 x g, the supernatant was discarded 

and pellet washed once with 1 ml of SDW. The resulting pellet was re-suspended in 100µl 

of SDW in a PCR tube and incubated for 12 minutes at 94°C before being centrifuged for 4 

minutes at 1500 x g. The supernatant containing the crude DNA extract was then used in 

PCR reaction.  
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3.2.1.3 Method 3 (DNA extraction through boiling of whole cells with Chelex® 100 

resin)  

C. difficile isolates were cultured onto Wilkins-Chalgren anaerobe agar and incubated for 

24 hours at 37°C in an anaerobic cabinet (Don Whitley, UK) for 24 hours. All colonies 

were then suspended in a 0.5% (
w
/v) Chelex® 100 resin (Bio-Rad, UK) suspension which 

was briefly vortexed before being incubated in a water bath at 94°C for 12 minutes. 

Samples were then centrifuged for 10 minutes at 15000 x g and the supernatant containing 

the crude DNA extract used in the RAPD reaction. 

3.2.2 DNA analysis 

3.2.2.1 Analysis of DNA quality 

The quality of extracted DNA by each of the methods described in 3.2.1 was determined 

by gel electrophoresis to ensure that the DNA had remained intact. Ten microlitres of the 

DNA suspension was mixed with 2µl of loading buffer (0.25% (
w
/v) bromophenol blue 

(Sigma Aldrich, UK), and 30% (
v
/v) glycerol (Fisher Scientific, UK)) and loaded into a 2% 

(
w
/v) agarose gel (Geneflow, UK) containing 1µg/ml ethidium bromide (Sigma Aldrich, 

UK); 5 microlitres of a DNA ladder 3000-300bp (Geneflow, UK) was also loaded as a 

standard. Gel electrophoresis was performed in 1 x TAE (40mM Tris-HCl, 1mM EDTA 

and 0.1% (
v
/v) glacial acetic acid, pH 8) for 1 hour at 100V. Gels were visualised under UV 

light using the GBOX-EF Gel Documentation System (Syngene, UK) and images captured 

using Genesnap software (Syngene, UK). 

3.2.2.2 Analysis of DNA quantity and purity 

A UV spectrophotometer (Jenway, UK) was used to determine both DNA quantity and 

purity. Ten microlitres of DNA sample was mixed with 990µl of SDW in a UV compatible 

cuvette and the contents measured at wavelengths of both A260 and A280. The analysis of 
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samples at A260 allowed the quantity of extracted DNA to be measured; values expressed 

as a ratio of values obtained from both measurements determines the purity of the DNA 

that has been recovered. Ratios of between 1.7 and 1.9 indicate good quality DNA and 

reading between these two values are the ideal for PCR reactions.  

3.2.3 RAPD protocol 

As a template for further development and characterisation of C. difficile isolates a 

previously published RAPD protocol for the genetic characterisation of MRSA was 

adopted (J. Caddick, PhD Thesis, Aston University, 2005). This initial RAPD reaction 

contained 2µl of 5ng/µl DNA template, 2.5µl 10x PCR Buffer (100mM Tris-HCl pH 8.8, 

250 mM KCl, 35mM MgCl2), 0.6µl 100µM primer (Eurofins MWG biotech, Germany), 

0.5µl 10mM dNTPs (Promega, UK), 19.15 µl SDW and 0.25µl of 5 units/µl Taq DNA 

polymerase (Promega, UK), making a final reaction volume of 25µl. Amplification cycles 

were carried out on a  Peltier Thermal Cycler-200 (MJ Research, USA) using the cycles as 

follows: an initial cycle at 94°C for four minutes and thirty seconds; five cycles of thirty 

seconds at 94°C, two minutes at 20°C and one minute at 72°C followed by thirty five 

cycles of thirty seconds at 94°C, thirty seconds at 30°C and one minute at 72°C and finally 

a extension of five minutes at 72°C. Samples were then stored at 4°C until analysis by gel 

electrophoresis. 
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3.2.4 RAPD reaction optimisation 

3.2.4.1 Isolate selection 

Three C. difficile isolates were selected for use in the optimisation of the RAPD protocol: 

C. difficile NCTC 11204 and two clinical isolates designated AZ169 and B17.  

3.2.4.2 Primer selection 

Four primers were initially selected based on work published by other authors (Table 3.1) 

and are shown in table 3.1. All primers were initially tested with the RAPD protocol 

described in section 3.2.3 using DNA extracted as described in section 3.2.1.1. Primers 

producing clear amplicon patterns that demonstrated the potential for discrimination 

between different strains were selected to continue with the optimisation process. 

Table 3.1 RAPD Primers 

Primer Sequence (5’-3’) Reference 

AP1 TCA CGA TGC CA (Wullt and Laurell, 1999) 

AP2 CTA GGA CCG C (Killgore and Kato, 1994) 

AP3 TCA CGA TGC A (Martirosian et al., 1995) 

AP4 TCA CGC TGC A (Barbut et al., 1993) 

  

3.2.4.3 Buffer Selection 

Buffers were made up according to the composition of the buffers described in the Opti-

prime™ Optimisation Kit (Stratagene, USA). The compositions of all the buffers tested are 

described in table 3.2. Each buffer was tested in combination with all five primers outlined 
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in table 3.1 and with phenol extracted DNA (section 3.2.1.1) from the strains described in 

section 3.2.3.2. The optimal buffer was selected where clear distinct amplicons were 

produced and adopted for use in future RAPD reactions. 

Table 3.2 Buffer composition (Opti-prime™ Optimisation Kit, Stratagene, USA) 

Buffer 1 2 3 4 5 6 7 8 9 10 11 12 

MgCl2 mM 1.5 1.5 3.5 3.5 1.5 1.5 3.5 3.5 1.5 1.5 3.5 3.5 

KCl mM 25 75 25 75 25 75 25 75 25 75 25 75 

pH 8.3 8.3 8.3 8.3 8.8 8.8 8.8 8.8 9.2 9.2 9.2 9.2 

Tris-HCl mM 10 10 10 10 10 10 10 10 10 10 10 10 

 

3.2.4.4 Primer concentration 

Optimal concentration of the selected primers was determined using phenol extracted DNA 

(section 3.2.1.1) from reference strain NCTC 11204 and clinical isolates AZ169 and B17. 

Using the RAPD protocol in section 3.2.3 duplicate reactions were performed using primer 

concentrations of 50, 100, 200 and 300µM.  The primer concentration that produced clear 

distinct amplicon patterns was selected and adopted for use in future RAPD reactions. 

3.2.4.5 dNTP concentration 

Optimal dNTP concentration was determined using phenol extracted DNA (section 

3.2.1.1) from reference strain NCTC 11204 and clinical isolates AZ16 and B17. Using the 

RAPD protocol in section 3.2.2 duplicate reactions were performed at dNTP 

concentrations of 5, 10, 20 and 30 mM. The dNTP concentration that produced clear 

distinct amplicon patterns was selected and adopted for use in future RAPD reactions. 
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3.2.4.6 Template DNA extractions 

The modified RAPD reaction was performed using DNA from reference strain NCTC 

11204 and clinical isolates AZ169 and B17 using three methods described in sections 

3.2.1.1-3.2.1.3. Profiles were compared to determine if the crude extraction methods 

produced results comparable to that of high quality phenol extracted DNA. Comparisons of 

the two crude extraction methods were also made to determine which was superior for use 

in RAPD reactions.  

3.2.4.7 Template DNA concentration  

The effect of DNA template concentration on the modified RAPD reaction was 

investigated using phenol extracted DNA (section 3.2.1.1) from reference strain NCTC 

11204 and clinical isolates AZ169 and B17. Using the optimised RAPD protocol, reactions 

were performed using DNA template at concentrations of 5, 10, 15, 20 and 25 ng/µl. This 

was to determine if the RAPD reaction was affected by the quantity of DNA template 

used; this is a factor when using crude extractions of DNA where the quantity is not 

measured and calibrated. Profiles were compared to determine if results appeared impaired 

through the presence of additional DNA in the reaction.  

3.2.4.8 Transferability between thermocyclers 

The modified RAPD protocol was used in reactions that were then placed on a different 

thermocycler. 

3.2.4.9 Discrimination of PCR ribotypes using optimised RAPD protocol 

Eleven known PCR ribotypes (001, 002, 005, 014, 015, 017, 023, 027, 064, 078 and 106) 

were characterised using the modified RAPD protocol to determine if this method had a 

similar discriminatory capacity to PCR ribotyping. This protocol was also used to type 
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isolates known to be of the same PCR ribotype to determine if this method also identified 

them as the same.  

3.2.4.10 RAPD reproducibility 

DNA extractions were performed over different periods of times, using different 

subcultures of cells to ensure that the RAPD protocol produced sable reproducible profiles. 
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3.3 RESULTS 

3.3.1 Effects of primer and reaction buffer on RAPD reaction 

Four primers were initially selected for the optimisation process; the template DNA from 

the three different strains (NCTC 11204, 027 and AZ 172) was tested alongside all four 

primers (AP1, AP2, AP3, AP4) and all twelve buffers; these profiles are shown in figures 

3.1-3.12. 

The primers found to have the best discriminatory capacity were AP3 and AP4 (in 

reactions independent of each other); these primers produced clear patterns with a 

sufficient number of amplicons demonstrating greater potential to be able to discriminate 

between different PCR ribotypes. The patterns produced by these primers were also more 

consistent across the three DNA templates; providing discriminate results for each. The 

amplicon patterns produced by primers AP1 and AP2 did not discriminate between 

different PCR ribotypes. 

Buffer composition significantly influences amplification results and for primers AP3 and 

AP4 a KCl concentration of 25mM was required for successful amplification (lanes 1, 3, 5, 

7, 9 & 11) although amplification could sometimes be seen at a 75mM concentration of 

KCl. This result suggests that these primers therefore remain stable over a range of pH 

values and MgCl2 concentrations and are KCl concentration dependent. Amplification 

appeared most severely inhibited by both a low MgCl2 concentration (1.5mM) and high 

KCl (75mM) concentration within the same reaction (lanes 2, 6 and 10).  
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Figure 3.1 RAPD profiles of strain NCTC 11204 using primer AP1 and reaction 

buffers 1-12 detailed in table 3.2. Lanes are labelled according to the appropriate 

buffer.  

 

Figure 3.2 RAPD profiles of strain NCTC 11204 using primer AP2 and reaction 

buffers 1-12 detailed in table 3.2. Lanes are labelled according to the appropriate 

buffer.  
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Figure 3.3 RAPD profiles of strain NCTC 11204 using primer AP3 using reaction 

buffers 1-12 detailed in table 3.2. Lanes are labelled according to the appropriate 

buffer. 

 

Figure 3.4 RAPD profiles of strain NCTC 11202 using primer AP4 and reaction 

buffers 1-12 detailed in table 3.2. Lanes are labelled according to the appropriate 

buffer. 
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Figure 3.5 RAPD profiles of strain 027 using primer AP1 and reaction buffers 1-12 

detailed in table 3.2. Lanes are labelled according to the appropriate buffer. 

 

 

Figure 3.6 RAPD profiles of strain 027 using primer AP2 and reaction buffers 1-12 

detailed in table 3.2. Lanes are labelled according to the appropriate buffer. 
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Figure 3.7 RAPD profiles of strain 027 using primer AP3 and reaction buffers 1-12 

detailed in table 3.2. Lanes are labelled according to the appropriate buffer. 

 

Figure 3.8 RAPD profiles of strain 027 using primer AP4 and reaction buffers 1-12 

detailed in table 3.2. Lanes are labelled according to the appropriate buffer. 
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Figure 3.9 RAPD profiles of strain AZ172 using primer AP1 and reaction buffers      

1-12 detailed in table 3.2. Lanes are labelled according to the appropriate buffer. 

 

 

Figure 3.10 RAPD profiles of strain AZ172 using primer AP2 and reaction buffers 1-

12 detailed in table 3.2. Lanes are labelled according to the appropriate buffer. 
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Figure 3.11RAPD profiles of strain AZ172 using primer AP3 and reaction buffers 1-

12 detailed in table 3.2. Lanes are labelled according to the appropriate buffer. 

 

 

Figure 3.12 RAPD profiles of strain AZ172 using primer AP4 and reaction buffers 1-

12 detailed in table 3.2. Lanes are labelled according to the appropriate buffer. 
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3.3.2 Effect of primer concentration 

Primers AP3 and AP4 were used in concentrations of 50, 100, 200 and 300µM alongside 

buffer 7 in RAPD reactions. Primer AP3 produced amplicon patterns at both 50µM and 

100µM concentrations, above these concentrations however amplification was inhibited. 

When using primer AP3 in RAPD reactions, there was little difference in the quality of 

profiles produced using primer concentrations of 50µM and 100µM and therefore the 

lower of the two was selected for future experiments. In contrast to primer AP3, primer 

AP4 produced amplicon patterns at all of the primer concentrations tested. When using 

primer AP4 in RAPD reactions, the profiles produced at primer concentrations of 100µM 

and 200µM were regarded as being better quality and producing more consistent profiles 

across the three stains of DNA. As a result a primer concentration of 100µM was selected 

for used in RAPD reactions using primer AP4. 
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Figure 3.13 RAPD profiles of strain NCTC 11204 using primer AP3. Lanes are 

labelled according to the appropriate primer concentration. N: negative control; 

MW: molecular weight ladder (bp)  

 

Figure 3.14 RAPD profiles of strain 027 using primer AP3. Lanes are labelled 

according to the appropriate primer concentration. N: negative control; MW: 

molecular weight ladder (bp). 
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Figure 3.15 RAPD profiles of strain AZ172 using primer AP3. Lanes are labelled 

according to the appropriate primer concentration. N: negative control; MW: 

molecular weight ladder (bp). 

 

Figure 3.16 RAPD profiles of strain NCTC 11204 using primer AP4. Lanes are 

labelled according to the appropriate primer concentration. N: negative control; 

MW: molecular weight ladder (bp). 
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Figure 3.17 RAPD profiles of strain 027 using primer AP4. Lanes are labelled 

according to the appropriate primer concentration. N: negative control; MW: 

molecular weight ladder (bp). 

 

Figure 3.18 RAPD profiles of strain AZ172 using primer AP4. Lanes are labelled 

according to the appropriate primer concentration. N: negative control; MW: 

molecular weight ladder (bp). 
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3.3.3 Effect of dNTP concentration 

Primers AP3 and AP4 were used in separate reactions alongside buffer 7 and 5mM, 10mM, 

20mM and 30mM concentrations of dNTPs. Within the RAPD reaction using primer AP3, 

5mM and 10mM concentrations of dNTPs both supported amplification to a similar extent; 

producing profiles of a similar quality. Concentrations of 20mM and 30mM inhibited the 

reaction with no profiles being produced at a concentration of 30mM. A concentration of 

10mM was selected for use in future reactions with primer AP3. When optimising dNTP 

concentrations for RAPD reactions using primer AP4, amplification was also more 

successfully supported at the lower concentrations of 5mM and 10mM, the optimal 

concentration of 10mM was therefore also selected for RAPD reactions using primer AP4. 

 

Figure 3.19 RAPD profiles of strain NCTC 11204 using primer AP3. Lanes are 

labelled according to the appropriate dNTP concentration. N: negative control; MW: 

molecular weight ladder (bp). 
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Figure 3.20 RAPD profiles of strain 027 using primer AP3. Lanes are labelled 

according to the appropriate dNTP concentration. N: negative control; MW: 

molecular weight ladder (bp). 

 

Figure 3.21 RAPD profiles of strain AZ172 using primer AP3. Lanes are labelled 

according to the appropriate dNTP concentration, N: negative concentration; MW: 

molecular weight ladder (bp). 
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Figure 3.22 RAPD profiles of strain NCTC 11204 using primer AP4. Lanes are 

labelled according to the appropriate dNTP concentration. N: negative control; MW: 

molecular weight ladder (bp). 

 

Figure 3.23 RAPD profiles of strain 027 using primer AP4. Lanes are labelled 

according to the appropriate dNTP concentration. N: negative control; MW: 

molecular weight ladder (bp). 
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Figure 3.24 RAPD profiles of strain AZ172 using primer AP4. Lanes are labelled 

according to the appropriate dNTP concentrations. N: negative control; MW: 

molecular weight ladder (bp). 

3.3.4 Comparison of DNA extraction methods 

Phenol extracted template DNA (section 3.2.1.1) was used throughout optimisation and 

this was then compared with two DNA boil extraction methods (section 3.2.1.2-3.2.1.3). 

DNA from three strains (NCTC 11204, 027, Z172) were used in optimised RAPD 

protocols using AP3 and the profiles obtained compared and shown in figure 3.25. The 

RAPD profiles obtained using phenol extracted DNA (method 1) were superior to those 

obtained using DNA from boil extraction methods (method 2 & 3). Template DNA 

extracted using method one produced more amplicons above three hundred base pairs 

which were largely absent in the reactions using DNA from boil extraction methods; below 

this profiles produced were very similar and therefore discrimination between the strains 

was still possible. Profiles were stable and reproducible for all extraction methods when 

repeated on separate occasions. Template DNA obtained from boiling cells with chelex-
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100 resin (method 3) produced clearer profiles than from boiling cells alone and this 

extraction method was selected for future RAPD reactions.  

 

Figure 3.25 RAPD profiles of strains NCTC 11204, 027 and AZ172 using DNA 

obtained from three different extraction methods as described in section 3.2.1 and 

amplified using primer AP3. 
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3.3.5 Template DNA concentration 

Known concentrations of phenol extracted DNA were used to determine the effect of 

template DNA concentration on the optimised RAPD reactions. The effect of DNA 

template concentration was tested with strain NCTC 11204 using primer AP3 shown in 

figure 3.26; and primer AP4 shown in figure 3.27. Using the concentrations of template 

DNA 5, 10, 20, 30, 40 and 50 ng per reaction; for both primers none of the tested 

concentrations appeared to be inhibitory or optimal to the RAPD reaction with the same 

profiles of the same quality produced for each concentration. The lack of effect this range 

of DNA concentrations had on the modified RAPD reaction demonstrates that a crude boil 

extract is suitable for use with such reactions where DNA concentration is not measured 

and likely to vary. 

 

Figure 3.26 RAPD profiles of strain NCTC 11204 using primer AP3 with different 

concentrations of template DNA per reaction. Lanes are labelled according to DNA 

template concentration. N: negative control; MW: molecular weight ladder (bp). 
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Figure 3.27 RAPD profiles of strain NCTC 11204 using primer AP4 with different 

concentrations of template DNA per reaction. Lanes are labelled according to DNA 

template concentration. N: negative control; MW: molecular weight ladder (bp). 
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3.3.6 Transferability between PCR thermocyclers 

Throughout optimisation, the same PCR thermocycler was used, when reactions were 

performed on a different thermocycler, little variation was observed between the profiles 

produced.  

3.3.7 Discrimination of PCR ribotypes 

Eleven different PCR ribotypes were analysed using the optimised RAPD protocol using 

primers AP3 and AP4 in independent reactions; DNA for all reactions was extracted using 

method 3 (section 3.2.1.3). Both primers when used in independent reactions produced 

discriminate RAPD profiles for each of the PCR ribotypes tested as shown in figure 3.28 

and figure 3.29. Isolates known to be the same PCR ribotype were also analysed by this 

RAPD protocol to determine if they were identified as the same. Reactions using primers 

AP3 and AP4 in independent tests were used to characterise eight clinical isolates of PCR 

ribotype 106, five clinical isolates of PCR ribotype 001 and five clinical isolates of PCR 

ribotype 027. The primers used in both RAPD reactions grouped isolates the same as PCR 

ribotyping shown in figures 3.30-3.33. 
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Figure 3.28 RAPD profiles of eleven known PCR ribotypes using primer AP3. Lanes 

are labelled according to PCR ribotype. MW: molecular weight ladder (bp). 

 

Figure 3.29 RAPD profiles of eleven known PCR ribotypes using primer AP4. Lanes 

are labelled according to PCR ribotype. MW: molecular weight ladder (bp). 
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Figure 3.30 RAPD profiles of eight clinical isolates of PCR ribotype 106, types using 

primer AP3. N: negative control; MW: molecular weight ladder (bp) 

 

Figure 3.31 RAPD profiles of eight clinical isolates of PCR ribotype 106, typed using 

primer AP4. N: negative control; MW: molecular weight ladder (bp). 
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Figure 3.32 RAPD profiles of five clinical isolates of PCR ribotype 001 and five 

clinical isolates of PCR ribotype 027, typed using primer AP3. N: negative control; 

MW: molecular weight ladder (bp). 

 

Figure 3.33 RAPD profiles of five clinical isolates of PCR ribotype 001 and five 

clinical isolates of PCR ribotype 027, typed using primer AP4. N: negative control; 

MW: molecular weight ladder (bp). 
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3.4 DISCUSSION 

The aim of this chapter was to develop and optimise two independent RAPD protocols for 

the genetic characterisation of C. difficile isolates to a standard of discriminatory power 

and reproducibility comparable to PCR ribotyping. Both optimised protocols were then 

used to characterise eleven control isolates of C. difficile known to belong to eleven 

different PCR ribotypes to determine if the optimised protocols could discriminate between 

them. Identical PCR ribotypes of C. difficile were also analysed to determine if the RAPD 

protocol would identify these as the same type.  

Despite being a relatively quick and cost effective method of genetic characterisation, 

RAPD is often criticised on grounds of reproducibility and discriminatory power. As a 

result RAPD has been used infrequently in the typing of C. difficile isolates when 

compared to other methods such as PCR ribotyping and PFGE which are the gold standard 

methods used in the UK and North America respectively. The PCR methodology is very 

specific and RAPD is no exception to this; as a result protocols are not always readily 

transferable between laboratories and if not properly optimised can produce sub-standard 

results (Cobb and Clarkson, 1994), it is therefore recommended that RAPD protocols are 

thoroughly optimised in order to provide optimal amplification (Tyler et al., 1997). Both 

PCR ribotyping and PFGE are regarded as much more robust and by some have been 

reported to be more discriminative than RAPD for the typing of C. difficile; however for 

both of these methods results are time consuming and PFGE is renowned for being a 

labour intensive technique. Although over one hundred different PCR ribotypes have been 

identified, very often only limited PCR ribotypes will predominate within a region or area 

causing limitations in the PCR ribotyping technique as although isolates may belong to the 

same ribotype, they may still be different strains. This lack of further discrimination with 
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PCR ribotyping hinders epidemiological mapping as further strain variability cannot be 

detected.  

As the target of amplification is unknown in RAPD, ideally more than one primer should 

be selected for initial testing as amplicon patterns will differ depending on the primer 

sequence. The four primers initially selected here were chosen as they had been used with 

some success by others in earlier work using RAPD to type C. difficile (Barbut et al., 1993, 

Killgore and Kato, 1994, Martirosian et al., 1995, Wullt and Laurell, 1999) and therefore it 

had been demonstrated that these primers had the potential to produce amplicons in an 

optimised PCR reaction. In this study, primers AP3 and AP4 were selected for 

optimisation due to ability to potentially provide an adequate number of amplicons to 

allow for discrimination between strains but not so many amplicons that discrimination 

would be difficult. Although some of the patterns produced by AP1 and AP2 also showed 

potential, results were less consistent across the different template DNA.  

Optimisation was carried out according using a systematic methodology similar to that 

described by (Hopkins and Hilton, 2001) using a buffer matrix design (Optiprime, 

Stratagene) that allows optimal concentrations of MgCl2 and KCl and the pH of the 

reaction to be determined simultaneously. The pH and concentrations of MgCl2 and KCl 

are crucial to a PCR reaction and if too high or low can inhibit amplification completely or 

cause non specific priming and inaccurate results. PCR reactions are often reported to be 

MgCl2 dependent with this variable being regarded more important than others due to the 

range of effect the ions have on the reaction. During the optimisation process here 

amplification was supported at both MgCl2 concentrations tested (1.5mM and 3.5mM). 

Within the PCR reaction MgCl2 has multiple roles; it acts as a cofactor to Taq polymerase 

in addition to promoting primer template binding and forming complexes with dNTPs 

allowing them to be utilised by Taq polymerase (Kolmodin and Birch, 2002). If 
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concentrations of MgCl2 are too low this is likely to inhibit amplification with insufficient 

amplicons being produced (Williams et al., 1993) as primers may not bind efficiently to 

the template, dNTPs may not be utilised and Taq polymerase may not function. High 

concentrations of MgCl2 can also have a detrimental effect on PCR reactions causing non 

specific binding (Williams et al., 1993) likely due to enhanced activity of Taq polymerase 

that allows non specific binding to both the DNA and dNTPs and can also inhibit 

denaturation of template DNA (Perry et al., 2003). 

Salt concentration is also important in PCR reactions and like MgCl2 influences primer 

binding and the activity of Taq polymerase with incorrect concentrations causing similar 

problems associated with MgCl2 variation. The primers selected here for optimisation 

appear to be dependent on KCl concentration for successful amplification. Like MgCl2, 

KCl also influences primer binding and Taq polymerase activity (Hilton et al., 1997) and 

therefore concentrations that are too high or low can also cause the problems that are 

observed with inaccurate MgCl2 concentrations.  

The influence of pH on PCR reactions is not well documented and the primers selected for 

use in this investigation were stable across the pH range tested; despite this optimal pH in 

PCR reactions should not be overlooked especially as enzymes such as Taq polymerase 

can be very sensitive to such changes.  High KCl concentration in most reactions appeared 

to be inhibitory with no amplicons being produced although there were some exceptions. 

Amplification appeared most severely inhibited in the presence of higher KCl 

concentration (75mM) and a low MgCl2 concentration (1.5mM) although amplification has 

been seen to occur in the presence of one of these variables. Results such as this indicate 

that the RAPD reaction is not only influenced by individual components but also by the 

interaction of these with each other. Buffer 7 (3.5mM MgCl2, 25mM KCl, 10mM Tris-Hcl, 
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pH 8.8) was selected as it consistently produced higher quality amplicon patterns across 

the three strains used. 

Optimal primer concentration varied for both of the primers thus demonstrating the 

importance of optimisation. Amplification was inhibited when primer AP3 was used at 

higher concentrations (200µM and 300µM) possibly due to insufficient concentrations of 

other components in the reaction to support adequate amplification throughout all of the 

cycles. Amplification was supported across all primer concentrations when using primer 

AP4 although the optimal concentration was at 100µM. If primer concentration is too low 

then a lack of product will often result producing fewer or no bands at all; if primer 

concentration is too high then this can cause non specific binding or completely inhibit the 

reaction (Muralidharan and Wakeland, 1993). It has also been reported that products of 

RAPD reactions are influenced by different batches of primer (Tyler et al., 1997) and as a 

result different batches were used throughout optimisation to ensure that this had no 

influence and therefore unlikely to effect future reactions. Like primer stocks, variability 

between different stocks of dNTPs have also been reported to influence RAPD reactions 

(Tyler et al., 1997) however this was not found to be the case here. Reactions were 

inhibited at the highest dNTP concentration with lower concentrations producing better 

results, because dNTPs also utilise MgCl2, the ratio between these two components is also 

very important (Blanchard et al., 1993). As this was the final stage in the optimisation 

process it is likely that the lower concentrations of dNTPs here were optimal for the 

concentration of MgCl2 present, with there being insufficient levels of MgCl2 to support 

higher concentrations of dNTPs. 

Although template DNA concentration was kept at a constant concentration through the 

optimisation process, the use of phenol extracted DNA is not practical for routine testing of 

isolates both due to the time taken to extract the DNA but also the hazards associated with 
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using phenol and chloroform. Cruder extraction techniques whereby whole cells are boiled 

have been used by others with results for both methods being reported to be of similar 

quality (Mazurier and Wernars, 1992, Lawrence et al., 1993, Howell et al., 1996, Hilton et 

al., 1997). An additional extraction method that boiled cells with Chelex-100 resin was 

also tested based on DNA extraction methods used for PCR ribotyping of C. difficile 

(Stubbs et al., 1999). As would be expected the reactions that contained phenol extracted 

DNA produced the clearest profiles; despite this there was good similarity between the 

profiles obtained for the three methods tested therefore demonstrating that boiling of whole 

cells is a suitable extraction method for RAPD analysis. Using a crude DNA extraction 

method means that the quantity of DNA within a reaction will vary and this is known to 

influence RAPD reactions.  Due to the optimisation process, DNA concentration had to 

remain constant and this is not a true reflection of a RAPD reaction using a crude DNA 

extract. Using the optimised RAPD reaction mixture, the concentration of the DNA 

template was varied to determine if this would influence the results. As the concentration 

of DNA template did not affect results, this confirmed that a crude but less labour intensive 

method of DNA extraction may be incorporated within the RAPD protocol. Transferability 

is often reported to be an inherent problem with molecular protocols, in particular the 

thermocycler used (Tyler et al., 1997) however this was not found in this study. 

Following optimisation it was important to determine if the protocol could discriminate 

between different PCR ribotypes and also group isolates of the same known PCR ribotype 

together using crude extracted template DNA. If the protocols had failed to do this, the 

optimisation process would have had to been repeated using different primers. Both 

primers were able to discriminate between the PCR ribotypes of C. difficile, genetic 

characterisation of further ribotypes is required to fully assess the value of the method. 

When DNA was extracted from the defined PCR ribotypes using the phenol extraction 
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method however, some strains appeared very similar in the amplicon patterns that were 

produced. This may be due to the DNA being better preserved when extracted using 

phenol allowing more amplicons to be produced; it therefore appears that the use of boil 

extracted DNA allows for discrimination between these profiles as there is likely to be 

some damage to the DNA. Testing was performed on several different occasions using 

different subcultures of bacterial strains in order to assess the reproducibility of the 

protocol and reproducibility was excellent. Sometimes when experiments were repeated, 

some of the fainter bands varied between repetitions however the stronger clearer 

amplicons remained constant and it these amplicons on which discrimination was based. 

3.5 CONCLUSION 

Optimisation is very important when a new primer-template DNA combination is being 

tested and this has been demonstrated here. Although phenol extracted DNA produced 

clearer amplicon patterns, not only is this not a practical extraction method for RAPD 

analysis, its use compromises the discriminatory power of the protocol. The interaction of 

all variable components of the reaction appears to be very influential on the results 

obtained for this protocol with KCl appearing to be the most crucial factor. Based on the 

eleven defined PCR ribotypes used here, RAPD appears to be equally as discriminative as 

PCR ribotyping, producing reproducible profiles and grouping known PCR ribotypes 

together.  

It may be possible that RAPD could be used as a suitable typing method for C. difficile 

isolates due to its reproducibility; simplicity and relatively quick results. Further PCR 

ribotypes would need to be tested in addition to other factors such as transferability of the 

method between laboratories.  
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CHAPTER 4 GENOTYPIC CHARATERISATION OF CLOSTRIDIUM 

DIFFICILE USING PCR RIBOTYPING AND A RANDOM 

AMPLIFIED POLYMORPHIC DNA PCR PROTOCOL 

4.1 INTRODUCTION 

Many different methods have been used in the genotypic characterisation of C. difficile 

since its emergence as a serious hospital associated infection. In the genotypic 

characterisation of other species of bacteria, pulsed field gel electrophoresis (PFGE) is 

often regarded as the gold standard by which to type isolates. In North America, PFGE is 

widely used to characterise isolates of C. difficile for epidemiological purposes. When 

PFGE was first used to characterise isolates of C. difficile, some isolates could not be typed 

due to apparent degradation of the genomic DNA prior to the addition of restriction 

enzymes. This has since been resolved and PFGE can now type all strains of C. difficile 

(Alonso et al., 2005). Prior to this however, other suitable methods had to be investigated 

leading to the development of PCR ribotyping for the characterisation of C. difficile 

isolates. The PCR ribotyping method has gained worldwide acceptance as a suitable and 

reproducible method by which to type isolates of C. difficile, and is used in many countries 

as the gold standard method including the UK. Although PCR ribotyping can provide 

effective discrimination, the predominance of selected ribotypes within different 

geographical areas has meant that this method now provides limited information on the 

transmission and epidemiology of C. difficile strains and possible subtypes (HPA, 2009b). 

In contrast to PCR ribotyping, RAPD when previously used to characterise C. difficile has 

often been disregarded in favour of other methods on the grounds of reproducibility and 

discriminatory power (Brazier, 1998). Most studies that have used RAPD have done so in 

order to compare different typing methods (Chachaty et al., 1994, Van Dijck et al., 1996) 

however, it has been used in various studies to genotypically characterise bacterial isolates 
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(Barbut et al., 1994, Van Dijck et al., 1996, Wilcox et al., 1998, Fawley and Wilcox, 2001, 

Pituch et al., 2001, Baker et al., 2010). Although issues regarding reproducibility and 

discrimination are often reported with the RAPD method, it has been demonstrated that 

effective optimisation when used to characterise other species of bacteria can greatly 

enhance results (Hilton et al., 1997, Perry et al., 2003).  As a genotypic method, RAPD is 

cost effective and can provide results in a relatively short space of time. The use of random 

primers also lends adaptability to the methodology allowing different sequences to be 

targeted within the bacterial genome.  

The aim of this chapter was to determine the PCR ribotypes and RAPD profiles of the sixty 

two clinical isolates of C. difficile (from Trust A and B) using a standard protocol and the 

optimised protocols outlined in chapter 3 and compare the discriminatory power of both 

methods. 
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4.2 MATERIALS AND METHODS 

4.2.1 PCR ribotyping 

Isolates of C. difficile were cultured onto Wilkins-Chalgren agar and incubated overnight 

at 37°C in an anaerobic cabinet. Colonies were then suspended in 100µl of a 0.5% (
w
/v) 

Chelex® 100 resin solution and vortexed briefly before being incubated in a boiling water 

bath for 12 minutes. A negative control containing only a suspension of Chelex® 100 resin 

was also used for each experiment. Following incubation, samples were then centrifuged at 

15000 x g for 10 minutes and the supernatant removed and stored at 4°C for no longer then 

24 hours until required. The PCR reaction mixture was prepared as follows: 5µl DNA 

sample, 0.5µl 50µM P3 primer (5’ CTG GGG TGA AGT CGT AAC AAG G 3’), 0.5µl 

50µM P5 primer (5’ GCG CCC TTT GTA GCT TGA CC 3’), 10µl (4mM total 

concentration) dNTPs, 1.5µl 1.5mM MgCl2, 0.25µl (5U/µl) Taq polymerase and 32.25µl 

sterile distilled water to give a total volume of 50µl per reaction. Amplification cycles were 

then carried out using a Peltier Thermal Cycler-200 (MJ Research, USA) as follows: thirty 

cycles of 95°C for two minutes, 92°C for one minute and 55°C for one minute followed by 

a final cycle of 72°C for ninety seconds, 95°C for one minute, 55°C for forty five seconds 

and a final extension stage of 72°C for five minutes. Following amplification, tubes were 

then removed from the cycler and heated at 75°C on a heating block for 45 minutes with 

the lids open in order to concentrate the PCR products. Samples were stored at 4°C if not 

immediately required. To the PCR product 5µl of loading buffer was added ((0.25% (
w
/v) 

bromophenol blue (Sigma Aldrich, UK), and 30% (
v
/v) glycerol (Fisher Scientific, UK)) 

and 5µl of sample was loaded into wells of a 3% agarose gel. In addition 5µl of DNA 

ladder (Super ladder Low 100bp marker, AB gene, UK) was also added to both end wells 

and between every 5-6 sample lanes. Gel electrophoresis was performed in 1 x TAE 
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(40mM Tris-HCl, 1mM EDTA and 0.1% (
v
/v) glacial acetic acid, pH 8) and gels ran for 3 

hours at 200 volts.  

To enable gels to be visualised, gels were stained by soaking in 0.005% (
w
/v) ethidium 

bromide solution (Sigma Aldrich, UK) for 20 minutes and then rinsing in sterile distilled 

water. Gels were visualised under UV light using the GBOX-EF Gel Documentation 

System (Syngene, UK) and images captured using Genesnap software (Syngene, UK). 

4.2.2 RAPD protocol 

Isolates were cultured onto Wilkins-Chalgren anaerobe agar and incubated for 24 hours at 

37°C in an anaerobic cabinet (Don Whitley, UK). Colonies were then suspended in a 0.5% 

(
w
/v) Chelex® 100 resin (Bio-Rad, UK) suspension which was briefly vortexed before 

being incubated in a water bath at 94°C for 12 minutes; a negative control containing only 

a suspension of Chelex® 100 resin was also used for each experiment.  Samples were then 

centrifuged for ten minutes at 15000 x g and the supernatant containing the crude DNA 

extract used in the RAPD reaction, samples were stored at 4°C until required. The relevant 

PCR reaction mixtures used are outlined in sections 4.2.2.1 and 4.2.2.2. Amplification 

cycles were then carried out using a Peltier Thermal Cycler-200 (MJ Research, USA) using 

cycles as follows: five cycles of 94°C for four minutes and thirty seconds, 94°C for thirty 

seconds, 24°C for two minutes and 72°C for one minute followed by thirty cycles of 94°C 

for thirty seconds, 30°C for thirty seconds and 72°C for one minute. Following 

amplification, 5µl of loading buffer was added to the PCR samples which were stored at 

4°C if not used immediately. Gel electrophoresis was carried out using a 2% (
w
/v) agarose 

gel and performed in 1 x TAE; 5µl of DNA ladder were added to the centre and end wells 

and 15µl of PCR product was loaded into the remaining wells.  Gels were run at 80 volts 

for 1 hour and 24 minutes until samples reached the end of the gel. To enable gels to be 
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visualised, gels were stained by soaking in 0.005% (
w
/v) ethidium bromide solution (Sigma 

Aldrich, UK) for twenty minutes and then rinsing in sterile distilled water. Gels were 

visualised under UV light using the GBOX-EF Gel Documentation System (Syngene, UK) 

and images captured using Genesnap software (Syngene, UK). 

4.2.2.1 Protocol using primer AP3 

The PCR reaction mixture when characterising with primer AP3 was follows: 2µl DNA 

sample, 0.3µl 100µM primer (5’ TCA CGA TGC A 3’), 1µl 10mM dNTPs, 2.5µl buffer 7 

(3.5mM MgCl2, 25mM KCl, 10mM Tris-HCl, pH 8.8), 0.25µl (5U/µl) Taq polymerase and 

18.95µl sterile distilled water to give a total volume of 25µl per reaction. 

4.2.2.2 Protocol using primer AP4 

The PCR reaction mixture used when characterising with primer AP4 was as follows: 2µl 

DNA sample, 0.6µl 100µM primer (5’ TCA CGC TGC A 3’), 1µl 10mM DNTPs, 2.5µl 

buffer 7 (3.5mM MgCl2, 25mM KCl, 10mM Tris-HCl, pH 8.8), 0.25 (5U/µL) Taq 

polymerase and 18.65µl sterile distilled water to give a total volume of 25µl per reaction.  

4.2.2.3 Typeability and discriminatory power of PCR ribotyping and the optimised 

RAPD protocol 

The typeability and discriminatory power of PCR ribotyping and both primers used in the 

optimised RAPD protocol was calculated using Simpson’s index of diversity (D) (given in 

section 2.2.5.3). 
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4.3 RESULTS 

4.3.1 PCR ribotyping of reference strains 

Amplicon profiles of reference PCR ribotype isolates produced at Aston University, and 

reference profiles provided by the HPA North East Laboratory were compared for 

similarity to determine the validity of the method used.  Dendrograms produced by the two 

separate institutions were identical (Figure 4.1 and 4.2). The amplicon profiles produced 

using the modified PCR ribotyping protocol were comparable to the reference profiles 

indicating reproducibility of the method employed.  Four distinct clones were produced at 

the 70% similarity level; the largest cluster formed contained four isolates (PCR ribotypes 

001, 014, 015 and 064) at the 88% similarity level; PCR ribotype 017 demonstrated no 

similarity to the other PCR ribotypes at the 70% similarity level.  

 

 

 

Figure 4.1 Dendrogramatic representation of the eleven PCR ribotype profiles. 

Similarity was calculated using Dice coefficient and represented by UPGMA 

clustering. Profiles were provided by Andrew Sails, North East HPA laboratory, 

Newcastle-upon-Tyne, UK. 
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Figure 4.2 Dendrogramatic representation of the eleven PCR ribotypes. The profiles 

here were produced using reference PCR ribotypes at Aston University. Similarity 

was calculated using Dice co-efficient and represented by UPGMA clustering. 

 

4.3.2 PCR ribotyping of clinical isolates of C. difficile 

The sixty two clinical isolates of C. difficile were characterised by the PCR ribotyping 

protocol outlined in section 4.2.1. Using the reference profiles isolates were identified as 

belonging to PCR ribotypes 001, 002, 014, 027, 064 and 106 (Figure 4.3). The PCR 

ribotype of fourteen of the sixty two isolates (23%) could not be identified as amplicon 

profiles did not match any of the reference profiles available. The thirty two isolates 

recovered from Trust A formed ten separate clones at a 68% similarity level when analysed 

with GelCompar (Figure 4.4); clones consisted of between one and five isolates. Among 

the isolates recovered from Trust A, six different PCR ribotypes were identified with PCR 

ribotypes 001 and 014 were most frequently observed in this population of isolates (Table 

4.1).Eleven of the isolates recovered from Trust A formed four clones that could not be 

% similarity PCR ribotype 
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assigned to a PCR ribotype using the reference profiles available; two of these clones each 

comprised of four isolates with the two further clones consisting of two and a single 

isolate. The thirty isolates recovered from Trust B formed six distinct clones at the 74% 

similarity level when analysed with GelCompar (Figure 4.5); twenty six of the isolates 

(87%) were identified as belonging to either PCR ribotype 027 and 106. One isolate was 

assigned to PCR ribotype 001 with the PCR ribotypes of the remaining three isolates being 

unidentifiable based on the reference profiles available; these isolates formed three 

separate clones consisting of one isolate each. When all sixty two isolates were compiled 

together on the same dendrogram (Figure 4.3), six clones were produced where isolates 

could not be assigned to a PCR ribotype based on the reference profiles available. Clones 

were exclusive to the location from which they were recovered with the exception of one 

(four isolates from Trust A and one isolates from Trust B).  

Table 4.1 Frequency with which PCR ribotypes occurred amongst the isolates 

(percentage frequency indicated in parentheses). 

PCR Ribotype Trust A Trust B Total 

001 5 (16%) 0 5 (8%) 

002 4 (13%) 0 4 (6%) 

014 5 (16%) 0 5 (8%) 

027 3 (9%) 14 (47%) 17 (27%) 

064 2 (6%) 1 (3%). 3 (5%) 

106 2 (6%) 12 (40%) 14 (23%) 

Undefined 11 (34%) 3 (10%) 14 (23%) 
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Figure 4.3 Dendrogramatic representation of all sixty two clinical isolates of C. 

difficile and reference PCR ribotypes characterised by PCR ribotyping. Similarity 

was calculated using Dice coefficient and represented by UPGMA clustering.  
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Figure 4.4 Dendrogramatic representation of the thirty two clinical isolates of C. 

difficile recovered from Trust A characterised by PCR ribotyping. Similarity was 

calculated using Dice coefficient and represented by UPGMA clustering. 
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Figure 4.5 Dendrogramatic representation of the thirty clinical isolates of C. difficile 

recovered from Trust B characterised by PCR ribotyping. Similarity was calculated 

using Dice coefficient and represented by UPGMA clustering. 
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4.3.3 RAPD of reference isolates 

The amplicon patterns produced from RAPD reactions using both primers AP3 and AP4 

were found to discriminate between the eleven PCR ribotype reference strains used (Figure 

4.6 and 4.7). The RAPD method employed was also deemed reproducible following 

triplicate application of the method to any one reference isolate (Figure 4.8 and 4.9). When 

analysed using GelCompar, the RAPD amplification profiles of the PCR ribotype control 

strains produced two distinct clusters at the 40% similarity when primer AP3 was used 

(Figure 4.6); the two clusters were formed from nine of the eleven isolates with the final 

cluster consisting of two isolates. When primer AP4 was used in the RAPD reaction, the 

clones produced were much more distinct (Figure 4.7); three clones were produced 

consisting of one, four and six isolates. Two clones were present at the 60% similarity 

level that consisted of ten isolates; at this level of similarity the remaining isolate was 

clustered separately. 
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Figure 4.6 Dendrogramatic representation of the eleven reference PCR ribotype 

isolates characterised using RAPD primer AP3. Similarity was calculated using Dice 

coefficient and represented by UPGMA clustering. 

 

 

Figure 4.7 Dendrogramatic representation of the eleven reference PCR ribotype 

isolates characterised using RAPD primer AP4. Similarity was calculated using Dice 

coefficient and represented by UPGMA clustering. 
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Figure 4.8 Dendrogramatic representation of amplicon profiles obtained from 

multiple RAPD reactions using primer AP3 and DNA extracted from reference PCR 

ribotypes at different times. Similarity was calculated using Dice coefficient and 

UPGMA clustering. 
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Figure 4.9 Dendrogramatic representation of amplicon profiles obtained from 

multiple RAPD reactions using primer AP4 and DNA extracted from reference PCR 

ribotypes at different times. Similarity was calculated using Dice coefficient and 

UPGMA clustering. 
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4.3.4 RAPD of clinical isolates of C. difficile  

When the clinical isolates recovered from Trust A were characterised using primer AP3 in 

the RAPD reaction, thirteen clusters were formed at the 60% similarity level (Figure 4.10), 

however five of these clusters were individual isolates. The remaining isolates were 

grouped into eight clusters comprising of between two and seven isolates. When the 

isolates recovered from Trust A were characterised using primer AP4 (Figure 4.11), seven 

clusters were formed at the 58% similarity level. Four of these were individual isolates 

with twenty eight of the isolates being grouped into three clusters comprising of five, nine 

and fourteen isolates. The three major clusters within this population of isolates were 

formed at the 76% similarity level. The clustering observed amongst the isolates recovered 

from Trust A differed greatly for both primers.  

When the clinical isolates recovered from Trust B were characterised using primer AP3, 

six clusters were formed at the 66% similarity level (Figure 4.12). Twenty six isolates were 

assigned to two major clusters of fifteen and eleven isolates; the remaining four isolates 

formed four individual and distinct clones. The same pattern of clustering was also evident 

when the clinical isolates recovered from Trust B were characterised using primer AP4 

although the six clones were formed at a similarity level of 70% and the relationships and 

similarity between the isolates did differ (Figure 4.13). Both primers did however 

designate isolates B3, B6, B11 and B27 as isolated clones. 

The profiles produced using RAPD primer AP3 were unique to the Trust from which they 

were recovered however this was not evident when isolates were characterised using 

primer AP4. When all sixty two isolates characterised with the same primer were compiled 

on the same dendrogram, isolates were very clearly segregated. When isolates were 

characterised using primer AP3, two very distinct clusters were formed, each comprising 
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of isolates recovered from the corresponding trust (Figure 4.14). There was one exception 

to this however with isolate B6 which demonstrated a greater level of similarity to isolates 

from Trust A than those recovered from Trust B. The cluster mainly consisting of isolates 

from Trust A was split into two further clusters at the 70% similarity level, each of these 

comprised of smaller distinct clones. When isolates were characterised using primer AP4 

again two distinct clusters were formed; each representing isolates from the two respective 

trusts (Figure 4.15). There were also two exceptions to this, isolates B3 and B11 

demonstrated a greater degree of similarity to the isolates recovered from Trust A than 

those recovered from Trust B. In contrast to the multiple clones formed among isolates 

recovered from Trust A; isolates from Trust B demonstrated greater similarity to each 

other both with larger clusters being formed and also greater similarity being observed 

between the clusters produced.  
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Figure 4.10 Dendrogramatic representation of the thirty two clinical isolates of C. 

difficile recovered from Trust A and characterised using RAPD primer AP3. 

Similarity was calculated using Dice coefficient and UPGMA clustering. 
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Figure 4.11 Dendrogramatic representation of the thirty two clinical isolates of C. 

difficile recovered from Trust A and characterised using RAPD primer AP4. 

Similarity was calculated using Dice coefficient and UPGMA clustering.  
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Figure 4.12 Dendrogramatic representation of the thirty clinical isolates of C. difficile 

recovered from Trust B and characterised using RAPD primer AP3. Similarity was 

calculated using Dice coefficient and UPGMA clustering. 
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Figure 4.13 Dendrogramatic representation of the thirty clinical isolates of C. difficile 

recovered from Trust B and characterised using RAPD primer AP4. Similarity was 

calculated using Dice coefficient and UPGMA clustering. 
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Figure 4.14 Dendrogramatic representation of all sixty two clinical isolates of C. 

difficile characterised by RAPD using primer AP3. Similarity was calculated using 

Dice coefficient and represented by UPGMA clustering. 
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Figure 4.15 Dendrogramatic representation of all sixty two clinical isolates of C. 

difficile characterised by RAPD using primer AP4. Similarity was calculated using 

Dice coefficient and represented by UPGMA clustering. 
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4.3.5 Typeability and discriminatory power of PCR ribotyping and the optimised 

RAPD protocol 

All isolates were typeable by both PCR ribotyping and the optimised RAPD protocol. The 

discriminatory powers of both methods are outlined in table 4.2. Characterisation of 

isolates using RAPD and primer AP3 demonstrated the greatest discriminatory power 

(0.89) followed by PCR ribotyping (0.86) and then RAPD using primer AP4 (0.58). 
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Table 4.2 Discrimination indices of PCR ribotyping and RAPD calculated from 

typing of all sixty two clinical C. difficile isolates. 

Typing Method Number of 

types 

Type Number of 

isolates 

Discriminatory index 

(D) 

PCR Ribotyping 12 001 5 (5) 0.86 

  002 4 (4)  

  014 5 (5)  

  027 17 (3, 14)  

  064 3 (2,1)  

  106 14 (2, 12)  

  U(a) 1 (1)  

  U(b) 1 (1)  

  U(c) 1 (1)  

  U(d) 2 (2)  

  U(e) 5 (4, 1)  

  U(f) 4 (4)  

RAPD (AP3) 18 A 3 (3) 0.89 

  B 7 (7)  

  C 1 (1)  

  D 3 (3)  

  E 1 (1)  

  F 2 (2)  

  G 3 (3)  

  H 5 (5)  

  I 2 (2)  

  J 2 (2)  

  K 1 (1)  

  L 1 (1)  

  M 1 (1)  

  N 11 (11)  

  O 1 (1)  

  P 15 (15)  

  Q 1 (1)  

  R 1 (1)  

RAPD (AP4) 10 a 5 (5) 0.58 

  b 1 (1)  

  c 1 (1)  

  d 1 (1)  

  e 8 (7, 1)  

  f 4 (4)  

  g 39 (13, 26)  

  h 1 (1)  

  i 1 (1)  

  j 1 (1)  
a
Total number of strains (Bold text indicates isolates recovered from Trust A and bold 

italicised text indicates isolates recovered from Trust B). 
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 4.3.6 Comparison of PCR ribotyping and the optimised RAPD protocol for the 

characterisation of C. difficile isolates 

When isolates were characterised by RAPD, eighteen and ten different types were defined 

using primers AP3 and AP4 respectively (Figure 4.16 & Figure 4.17). When isolates were 

characterised by PCR ribotyping, twelve different types were defined. The types defined 

by both RAPD primers therefore did not map directly to the types defined by PCR 

ribotyping. Characterisation and the types defined by both primers using the optimised 

RAPD protocol showed little resemblance to those types defined by PCR ribotyping. 

Although typing of the clinical isolates using RAPD did not discriminate between each 

individual ribotype and cluster isolates of the same PCR ribotype together, isolates were 

clearly characterised and grouped together based on other polymorphisms. The more 

common PCR ribotypes (in particular PCR ribotypes 027 and 106) when characterised by 

RAPD, produced profiles that were often clustered together on a dendrogram, however this 

did not occur in all cases.  
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Figure 4.16 Dendrogramatic representation of all sixty two clinical isolates of C. 

difficile and corresponding PCR ribotypes characterised by RAPD using primer AP3. 

Similarity was calculated using Dice coefficient and represented by UPGMA 

clustering. 
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Figure 4.17 Dendrogramatic representation of all sixty two clinical isolates of C. 

difficile and corresponding PCR ribotypes characterised by RAPD using primer AP4. 

Similarity was calculated using Dice coefficient and represented by UPGMA 

clustering. 
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4.3.7 RAPD Types present within PCR ribotypes 

The different RAPD types defined for each PCR ribotype are shown in table 4.3. The use 

of both PCR ribotype and RAPD type has allowed possible subtypes to be identified within 

PCR ribotypes. This has then been used to determine if isolates belonging to the same PCR 

ribotype are in fact the same or variants within the PCR ribotype. The use of primer AP3 in 

the RAPD reaction identified a greater number of subtypes within a defined PCR ribotype 

when compared to primer AP4. The only exception to this was PCR ribotype 001, where 

only one PCR ribotype was identified. When using RAPD, all isolates belonging to a 

defined PCR ribotype (where there was more than one isolate) could be further subtyped.  
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Table 4.3 The RAPD types defined within each PCR ribotype. 

PCR 

Ribotype 

No. of RAPD 

Types Defined 

(AP3) 

Isolates 

No. of RAPD 

Types Defined 

(AP4) 

Isolates 

001 3 

(AZ66, AZ150, AZ159) 

(AZ169) 

(AZ176) 

4 

(AZ66, AZ150) 

(AZ159) 

(AZ169) 

(AZ176) 

002 4 

(AZ158) 

(AZ171) 

(AZ1580) 

(AZ1591) 

2 

(AZ158) 

(AZ171,AZ1580, 

AZ1591) 

014 4 

(AZ163) 

(AZ166) 

(AZ167, AZ168) 

(AZ173) 

3 

(AZ166) 

(AZ163,AZ167, AZ168) 

(AZ173) 

027 4 

(B1, B5, B12, B15, B20, 

B21, B22, B23, B24, B30) 

(B14, B19, B33) 

(AZ172) 

(AZ1577, AZ1578) 

2 

(B1, B5, B12, B14, B15, 

B19, B20, B21, B22, 

B23, B24, B30, B33, 

AZ1577, AZ1578) 

(AZ172) 

064 2 
(B6) 

(AZ229, AZ1579) 
2 

(B6) 

(AZ229, AZ1579) 

106 4 

(B4, B7, B8, B9, B10, 

B17, B25, B28) 

(B13, B16, B32) 

(AZ387, AZ1568) 

(B27) 

2 

(B4, B7, B8, B9, B10, 

B13, B16, B17, B25, 

B28, B32, AZ387, 

AZ1568) 

(B27) 

U(a) 1 B34 1 B34 

U(b) 1 AZ251 1 AZ251 

U(c) 1 B11 1 B11 

U(d) 2 
(AZ177) 

(AZ179) 
2 

(AZ177) 

(AZ179) 

U(e) 4 

(B3) 

(AZ161) 

(AZ162) 

(AZ164, AZ170) 

3 

(B3, AZ161) 

(AZ162, AZ170) 

(AZ164) 

U(f) 4 

(AZ16) 

(AZ21) 

(AZ160) 

(AZ175) 

2 
(AZ16, AZ21, AZ175) 

(AZ160) 

U(g) 1 (B2) 1 (B2) 
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4.4 DISCUSSION 

The distribution of PCR ribotypes varied greatly between the two locations. A greater 

diversity of PCR ribotypes was observed among the isolates recovered from Trust A 

compared to the isolates recovered from Trust B which predominantly belonged to PCR 

ribotypes 027 and 106. Differences in the PCR ribotype epidemiology of C. difficile 

isolates recovered from different locations have been previously reported with the 

distribution of PCR ribotypes being known to vary significantly between countries 

(Kuijper et al., 2008). In this study the significant variation in PCR ribotypes observed here 

between two locations in relatively close proximity appears to be a unique and previously 

unreported occurrence. All of the clinical isolates were recovered from their respective 

Trusts in 2004-2005; prior to well documented outbreaks of CDI in UK hospital trusts such 

as Stoke Mandeville and the significant increase in CDI cases in the years that followed. 

This increase in CDI cases often due to outbreak situations saw not only the emergence of 

PCR ribotype 027 but also predominance of particular ribotypes (001, 027 and 106). The 

predominance of PCR ribotypes 027 and 106 observed amongst the isolates recovered 

from Trust B is now a frequent occurrence in healthcare settings across the UK, however 

this observation is unexpected amongst a population of historical isolates from this time 

period. Although the isolates from both trusts are likely to have been acquired within the 

trust environment, the variability in the PCR ribotypes observed amongst isolates 

recovered from Trust A suggest that transmission may have been more restricted and less 

widespread between patients; possibly due to better infection control procedures. The 

predominance of only two PCR ribotypes amongst the isolates from Trust B indicate that 

isolates may have been acquired and continually spread within the trust environment; 

either through direct contact with other infected patients or transmission via contaminated 

surfaces. However, it has now been established that PCR ribotyping as a genotyping 



Chapter 4 Genotypic Characterisation of Clostridium difficile using PCR 

Ribotyping and a Random Amplified Polymorphic DNA PCR Protocol 

162 

 

method for the characterisation of C. difficile no longer provides enough discrimination to 

accurately determine the spread and epidemiology of CDI as sub types within PCR 

ribotypes are known to exist (Rhamati et al., 2005, Northey et al., 2005). As a result more 

discriminatory genotyping methods such as MLVA are now being employed to 

characterise isolates.  

The PCR ribotype of fifteen of the clinical isolates (representing six different PCR 

ribotypes) were indefinable based on the eleven reference amplicon profiles available and 

therefore inhibited the PCR ribotype identification of some of the isolates. The remaining 

reference isolates and associated profiles obtained were eleven of the most common PCR 

ribotypes in the UK at present. The predominance and prevalence of PCR ribotypes are 

known to change over time (Brazier, 1998) and considering that these isolates were 

recovered from the respective trusts over five years ago indicates a possible reason why the 

PCR ribotype of some of the isolates could not be defined. 

Although both primers in the RAPD protocol were found to discriminate between the 

eleven reference PCR ribotype isolates; the same pattern of results were not replicated 

when applied to the population of clinical isolates. Both primers had the capacity to type 

and discriminate between different isolates of C. difficile when the clinical isolates were 

characterised using RAPD. Eighteen and ten different RAPD types were defined using 

primers AP3 and AP4 respectively; this was in comparison to the twelve different types 

identified with PCR ribotyping. Discriminate RAPD profiles were produced for different 

PCR ribotypes however, this result was not always consistent and also isolates known to 

belong to different PCR ribotypes were found to produce the same RAPD profile type. The 

variability observed explains why distinct profiles were produced for each of the different 

PCR ribotype isolates; there appeared to be no association between the profiles produced 

for each typing method and therefore is likely that the initial results from the 
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characterisation of the reference strains were due to chance.  The lack of association 

between the profiles produced for the two typing methods and also the way different PCR 

ribotypes were clustered together on a dendrogram, demonstrates that although the RAPD 

primers used were not capable of distinguishing between different PCR ribotypes they 

clearly had the capacity to discriminate between different strains of C. difficile by using 

different genotypic markers. This is further supported by the comparison of RAPD profiles 

produced from clinical isolates with those of the reference isolates. Profiles from clinical 

isolates could not be effectively matched to reference profiles and results did not always 

correlate with that of the ribotype.  

When the typeability and discriminatory power of both methods was investigated, the 

discriminatory index of PCR ribotyping and RAPD using primer AP3 were similar with 

RAPD typing demonstrating a slightly higher index. Typing by RAPD using primer AP4 

however had a significantly lower discriminatory index. When primer AP3 was used to 

characterise isolates, the amplicon profiles were more varied in the number and position of 

the amplicons produced when compared to the patterns produced with primer AP4. This is 

likely to contribute to the why the discriminatory index of primer AP3 is so much better. 

This indicates that the regions where polymorphisms were being detected within the 

genome with primer AP3 were likely to vary to a greater extent than those being detected 

with primer AP4. Notably however, primer AP4 does not type isolates of C. difficile to the 

same standard as AP3 and therefore is not an ideal primer for the characterisation of 

isolates. 

Although the types defined using primers AP3 and AP4 with the RAPD protocol clearly 

did not map onto the PCR ribotypes, there were similarities observed between PCR 

ribotyping and RAPD. The variability in the number of PCR ribotypes identified between 

the two trusts was also observed with RAPD typing; a greater number of different types 
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were consistently defined amongst isolates recovered from Trust A in comparison to those 

from Trust B. Such similarities between the different methods lends support to the 

typeability and discriminatory capacity of RAPD as a genotypic method for the typing of 

C. difficile isolates as a similar level of discrimination is evident. Isolates belonging to 

PCR ribotype 027 and 106 would often produce the same RAPD profile with the two PCR 

ribotypes often being indistinguishable from each other. In addition to this, when RAPD 

profiles were complied on a dendrogram it was apparent that isolates belonging to PCR 

ribotypes 027 and 106 were more frequently clustered together to form several clones of 

distinct RAPD types. The observation that isolates belonging to more frequently 

encountered PCR ribotypes appear to posses the same polymorphisms indicates that such 

changes may be associated with the frequency with which they are encountered within a 

population. Such an example may be the acquisition of a gene that promotes or enhances 

the likelihood of survival within an environment; this has already been seen in isolates of 

C. difficile where resistance and reduced susceptibility towards some antibiotics is more 

prevalent amongst isolates belonging to more common PCR ribotypes (HPA, 2008). What 

is also apparent from the results here is that RAPD has identified variability in isolates 

between two locations. This therefore suggests that RAPD may also be useful in providing 

epidemiological information for populations of C. difficile isolates, both within local 

environments and also in the identification of endemic clones. 

By combining the information obtained from characterising the clinical isolates by both 

PCR ribotyping and RAPD, this has established that polymorphisms exist between isolates 

belonging to the same ribotype. This therefore indicates that different isolates may have 

been responsible for infection despite the ribotypes being the same. Another explanation 

however could also be that subtle polymorphisms may have occurred between the same 

strain in different patients.  Due to the nature of RAPD it is not known what 
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polymorphisms are being detected within the genome and therefore it can be difficult to 

determine where variability is occurring; the polymorphisms being detected here could be 

the result of gene loss or acquisition, or single nucleotide polymorphisms (SNPs). 

4.5 CONCLUSION 

Significant differences were observed in both PCR ribotype and RAPD type epidemiology 

amongst the isolates recovered from the two different trusts; both the number of types and 

the predominance of types varied between the two locations. Although RAPD typing does 

not map directly onto PCR ribotyping, the optimised protocol can discriminate between 

different isolates and notably also identify subtypes within PCR ribotypes. The two RAPD 

primers produced very different discriminatory indices and if future work were to be done, 

primer AP4 would not be used. The results here indicate that not only has RAPD the 

potential to discriminate between different strains of C. difficile, this methodology could be 

further developed and used to genotype isolates of C. difficile as both an independent 

method but also in combination with other genotypic methods such as PCR ribotyping. 
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CHAPTER 5 GENOTYPIC CHARACTERISTICS OF ISOLATES OF 

CLOSTRIDIUM DIFFICILE AND ASSOCIATIONS BETWEEN 

GENOTYPIC AND PHENOTYPIC CHARACTERISTICS                        

5.1 INTRODUCTION 

Alterations in both the phenotype and genotype of a bacterial cell can have a significant 

effect on bacterial pathogenicity. A change or polymorphism within the genome does not 

always influence phenotypic characteristics and this is frequently the case; with changes 

often undetected and insignificant. In a small proportion of cases however, variations often 

in the form of mutations or through the acquisition of genes, are detected through the 

development of resistance to antibiotics or the production of additional or enhanced levels 

of extracellular virulence factors. Within many species of pathogenic bacteria, strains are 

often present within the population that have the capacity to induce either a more virulent 

state of disease or that are more difficult to treat due to increased resistance towards 

antibiotics (e.g. MRSA, Panton-Valentine Leukocidin (PVL) MRSA and extended 

spectrum beta lactamase (ESBL) producing E.coli). The acquisition or development of 

characteristics that are directly related to the virulence of the organism often promote its 

survival and are generally regarded with more interest than other phenotypic characteristics 

that are not directly associated to virulence or pathogenicity. As has been demonstrated 

with the PCR ribotype 027 strain of C. difficile, a change in one phenotypic characteristic 

can also be associated with other phenotypic changes such as a altered antibiotic resistance 

profiles and sporulation rate (Loo et al., 2005, Ackerlund et al., 2008), in addition to the 

acquisition of other genes (Huang et al., 2009). It is not known why so many changes 

appear to have occurred within the PCR ribotype 027genome and if these are all the result 

of one significant alteration or several. It is however possible that some of the phenotypes 

may have been present prior to the change that resulted in excess toxin production and 



Chapter 5 Genotypic Characteristics of Isolates of Clostridium difficile and 

Associations Between Genotypic and Phenotypic Characteristics 

167 

 

were only identified following this observation. Such variability and the known mobility of 

the C. difficile genome (Sebaihia et al., 2006) demonstrate a need for further investigations 

into both phenotypic and genotypic traits of C. difficile isolates. Associations between 

genotypic and phenotypic characteristics can initially be made from observing particular 

phenotypes and seeing if these can be associated with any genotypic traits; RAPD provides 

an ideal tool for such detection as a large population of isolates can be investigated 

relatively quickly and cost effectively with the potential of identifying several associations.  

As a genotypic method, RAPD is often rejected in favour of other methods; however, due 

to no specific targets being used and the application of the primer to the whole of the 

genome, RAPD has the potential to provide much information about the genome of the 

organism. Although RAPD detects polymorphisms within isolates which can be used to 

detect variability, this same methodology can also be used to define characteristics of a 

species. 

In this chapter the phenotypic and genotypic characteristics observed amongst isolates of 

C. difficile were analysed to determine if any associations between particular phenotypic 

and genotypic traits exist.  
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5.2 MATERIALS AND METHODS  

5.2.1 PCR ribotyping 

PCR ribotyping was performed as described in section 4.2.1.PCR ribotyping was 

performed on both reference and clinical isolates described in section 2.2.1. 

5.2.2 RAPD  

RAPD was performed as described in section 4.2.2. RAPD was performed on both the 

reference and clinical isolates described in section 2.2.1. 

5.2.3 API Biotyping 

API Biotyping was carried out as described in section 2.2.3. Biotyping was performed on 

only the clinical isolates described in section 2.2.1 

5.2.4 MIC determination 

MIC values were determined as described in section 2.2.5. MIC determination was 

performed on both the reference and clinical isolates described in section 2.2.1. 

5.2.5 S-layer typing 

S-layer typing was performed as described in 2.2.6. S-layer typing was performed on the 

clinical isolate described in section 2.2.1. 
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5.3 RESULTS 

5.3.1 PCR ribotypes and antibiogram profiles 

There were no antibiogram profiles that appeared to be exclusive or characteristic of any of 

the PCR ribotypes identified. The antibiogram profiles of PCR ribotype reference isolates 

015, 023 and 078 were identical, but varied for each of the other PCR ribotypes. Resistance 

towards chloramphenicol, erythromycin, fusidic acid and tetracycline varied most 

frequently between the eleven reference strains. Resistance towards cefotaxime and 

levofloxacin was consistent amongst the reference isolates alongside susceptibility towards 

linezolid, metronidazole, rifampicin and vancomycin. The antibiogram profiles for each of 

the reference PCR ribotype isolates is shown in table 5.1.  

When the clinical isolates were defined by PCR ribotype and antibiogram profiles 

compared, none of the isolates defined as belonging to the same ribotype displayed the 

same antibiogram profile; this included both the defined and indefinable PCR ribotypes. 

There was however some trends identified where resistance or sensitivity was constant 

throughout a particular PCR ribotype. Levofloxacin resistance was observed amongst all 

clinical isolates that were identified as belonging to PCR ribotype 001, 027 and 064; this 

was also observed in the corresponding reference isolates. Fusidic acid resistance was 

observed amongst all isolates that were identified as belonging to PCR ribotypes 002 and 

014 and although resistance was detected towards fusidic acid in the PCR ribotype 002 

reference isolate, the PCR ribotype 014 reference isolate was susceptible.  All isolates 

identified as belonging to PCR ribotypes 001, 002, 014 and 064 were sensitive to linezolid 

and again this was mirrored in the reference isolates. Isolates belonging to PCR ribotype 

001 and 002 all displayed susceptibility to imipenem with those that belonged to PCR 

ribotype 002 all also displaying susceptibility to rifampicin. Although PCR ribotype 
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reference isolates 001 and 002 were susceptible to imipenem and rifampicin respectively, 

resistance towards imipenem was detected in PCR ribotype reference strain 002. Amongst 

all of the isolates where PCR ribotype was indefinable, all of the isolates displayed 

resistance to cefotaxime and fusidic acid and sensitivity towards chloramphenicol and 

linezolid. When these isolates were further divided into the six distinct types that were 

defined, the only consistency observed was imipenem sensitivity in the undefined group 

comprising of isolates AZ16, AZ21, AZ160 and AZ175. The distribution of antibiogram 

profiles amongst the different PCR ribotypes is shown in figure 5.1. 

Resistance towards both clindamycin and erythromycin is known to be encoded on the 

ermB gene and resistance to both of these antibiotics was detected in thirty six (58%) of 

the clinical isolates. Of these isolates, thirteen were identified as belonging to PCR 

ribotype 106 (93% of isolates identified as belonging to PCR ribotype 106 in this 

population) and twelve were identified as belonging to PCR ribotype 027 (75% of isolates 

identified as belonging to PCR ribotype 027 in this population). The antibiogram profiles 

for the PCR ribotype reference strains 027 and 106 also displayed resistance to both of 

these antibiotics in addition to PCR ribotype 017. Amongst isolates that displayed 

resistance to clindamycin and erythromycin, tetracycline and rifampicin resistance was 

also frequently observed in these isolates. Additional tetracycline resistance was observed 

in thirty four of the thirty six isolates and rifampicin resistance in twenty nine of these 

isolates. With the exception of one isolate from Trust A, resistance towards rifampicin and 

tetracycline together was only observed in isolates recovered from Trust B.  
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Table 5.1 Antibiogram profiles of reference PCR ribotype isolates. 

PCR 

ribotype 

Antibiotic 

 Cef Chl Cli Ery Fuc Imi Lev Lin Met Rif Tet Van 

001 R S S S S S R S S S R S 

002 R S R S R R R S S S S S 

005 R R R S R R R S S S R S 

014 R R R S S R R S S S S S 

015 R S R S S R R S S S S S 

017 R R R R R R R S S S R S 

023 R S R S S R R S S S S S 

027 R S R R R R R S S S S S 

064 R S R S S R R S S S R S 

078 R S R S S R R S S S S S 

106 R S R R R R R S S S S S 

S: sensitive; R: resistant; cef: cefotaxime; chl: chloramphenicol; ery: erythromycin;      fuc: 

fusidic acid; imi: imipenem; lev: levofloxacin; lin: linezolid; met: metronidazole;     rif: 

rifampicin; tet: tetracycline; van: vancomycin 
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R: resistant; S: sensitive; cef: cefotaxime; chl: chloramphenicol; cli: clindamycin; ery: 

erythromycin; fuc: fusidic acid; imi: imipenem; lev: levofloxacin; lin: linezolid; met: 

metronidazole; rif: rifampicin; tet: tetracycline; van: vancomycin 

Figure 5.1 Dendrogramatic representation of profiles generated from PCR ribotyping 

of all clinical isolates and associated antibiogram profiles. Similarity was calculated 

using Dice coefficient and represented by UPGMA clustering 
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5.3.2 RAPD types and antibiogram profiles 

The antibiogram profiles defined for each RAPD type appeared completely random with 

no associations being made between a particular antibiotic resistance profile or trait. 

Consistent with PCR ribotyping, the isolates identified as belonging to a particular RAPD 

type did not demonstrate a single or predominant antibiogram profile. Resistance towards 

rifampicin and tetracycline was predominant in isolates that were defined as belonging to 

the two largest RAPD clusters when characterised using primer AP3. Although trends such 

as these did appear amongst isolates belonging to certain types, they were neither 

consistent nor exclusive, therefore could not be defined as a characteristic of that genotype. 

When isolates were characterised using primer AP4, all isolates that were defined as 

belonging to one cluster displayed resistance to both clindamycin and tetracycline but there 

was no resistance towards either erythromycin or rifampicin as seen in other genotypes. 
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R: resistant; S: sensitive; cef: cefotaxime; chlor; chloramphenicol; cli: clindamycin; ery: erythromycin; fuc: 

fusidic acid; imi: imipenem; lev: levofloxacin; lin: linezolid; met: metronidazole; rif: rifampicin; tet: 

tetracycline; van: vancomycin 

Figure 5.2 Dendrogramatic representation of profiles generated from RAPD using 

AP3 and associated antibiogram profiles. Similarity was calculated using Dice 

coefficient and represented by UPGMA clustering. 
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  R: resistant; S: sensitive; cef: cefotaxime; chl: chloramphenicol; cli: clindamycin; ery: 

erythromycin; fuc: fusidic acid; imi: imipenem; lev: levofloxacin; lin: linezolid; met: 

metronidazole; rif: rifampicin; tet: tetracycline; van: vancomycin 

Figure 5.3 Dendrogramatic representation of profiles generated using RAPD and 

primer AP4 and associated antibiogram profiles. Similarity was calculated using Dice 

coefficient and represented by UPGMA clustering. 
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5.3.3 Genotypic characteristics of PCR ribotypes 

Amplicons that appear characteristic of many isolates of C. difficile were produced in the 

majority of the isolates when typed using PCR ribotyping. An amplicon of 299bp was 

evident in nine of (82%) the eleven reference profiles produced, absent in the isolates 002 

and 078. This amplicon was also absent from eight of the profiles generated from the 

clinical isolates; these isolates belonged to PCR ribotype 002 with the remaining isolates 

being of undefined PCR ribotype (Figure 5.4). Among the profiles generated from the 

reference isolates, an amplicon of 362bp was present in all isolates (Figure 5.4).In contrast 

to this, an amplicon of 584bp was present in a large majority of both clinical and reference 

isolates. 

 

 

Figure 5.4 Image of PCR ribotype reference isolates and identification of 299bp 

amplicon. Lanes are labelled according to the relevant PCR ribotype isolate. 
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5.3.4 Genotypic characteristics of defined RAPD types 

Consistent with PCR ribotyping, characteristic amplicons were evident when all isolates 

were typed using both AP3 and AP4 RAPD primers. Both primers also generated 

amplicons that were only present in isolates recovered from one location; there were 

however no amplicons that were consistently produced in all of the isolates recovered from 

one location. When typed using primer AP3, amplicons of 928bp, 1038bp and 1099bp 

were only seen in isolates recovered from Trust A, however each of these amplicons was 

not present in all of these isolates (Figure 5.5) The 1038bp amplicon was present in all 

isolates identified as belonging to one particular RAPD type when characterised using AP3 

and was only seen in one other isolate (AZ387). An amplicon of 697bp was also present in 

all isolates belonging to a different RAPD type (Figure 5.6). This amplicon was also only 

generated in isolates recovered from Trust B.  Two amplicons were generated in a high 

frequency amongst isolates regardless of the location from which they were recovered; 

these were identified as being 520bp and 307bp in size (Figure 5.7). The amplicon of 

520bp was generated in all isolates whereas the amplicon of 307bp was only present in 

fifty six of the clinical isolates.   
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Figure 5.5 Image of clone of isolates highlighting amplicons of 1099bp, 1038bp and 

928bp. These amplicons were only observed in isolates recovered from Trust A. 

 

When isolates were characterised using primer AP4, an amplicon of 214bp was present in 

all of the isolates with the exception of one (isolate B11); amplicons of 542bp and 452bp 

were also present in sixty one (98%) and fifty nine (95%) of the isolates respectively 

(Figure 5.6). While the majority of isolates generated profiles that contained each of these 

amplicons, at least one of each of these three amplicons was present in each isolate. An 

amplicon of 663bp in length was present in isolates belonging to three different RAPD 

types when characterised using primer AP4. In isolates belonging one other RAPD type a 

pattern of four amplicons were present (567bp, 542bp, 474bp and 452bp), this 

characteristic was not observed in any of the other isolates. 
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Figure 5.6 Image of profiles generated using RAPD and primer AP4, indicating 

amplicons of 214bp, 452bp and 542bp. 

 

Amongst the six isolates that generated a positive reaction for the alanine arylamidase 

biochemical test in the API, four of these isolates (66%) belonged to PCR ribotype 027; the 

remaining two isolates belonged to PCR ribotype 106 and an undefined PCR ribotype. No 

other associations were evident between genotype and the restricted biotype profiles 

produced.  
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5.3.5 Associations between S-layer proteins and genotypic characteristics 

No significant associations between isolates of a particular genotype defined by either 

RAPD, PCR ribotyping, or S layer protein type could be made. The S-layer types defined 

for the isolates here appeared to vary randomly with no particular S-layer type appearing to 

be unique to a specific genotype. However, an association could be made between PCR 

ribotype and S-layer; PCR ribotypes 014 and 106 were S layer types 5236 and 5436 and 

were present in 88% and 80% of isolates respectively. When isolates were typed using 

RAPD and primer AP3, a clone of eleven isolates all possessed the S-layer type 5236, this 

was also observed in a clone of isolates characterised by primer AP4. The isolates that 

formed each of these clones were almost exactly the same with the exception of one 

isolate.  
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5.4 DISCUSSION 

When characterising the C. difficile isolates using both PCR ribotyping and RAPD, it was 

apparent that there were amplicons produced that both varied between isolates as would be 

expected for any typing method but also those that appeared to be characteristic and 

consistent between the isolates. Such amplicons were produced in all isolates when typed 

using RAPD and in a large proportion of the isolates tested with PCR ribotyping. For both 

of the typing methods, the amplicons produced that were present in all or a large 

proportion of the isolates were generally of smaller size. When characterised using RAPD, 

the amplicons of a more variable nature were typically around 500bp-1000bp; the 

amplicons produced by PCR ribotyping were no greater than 600bp with variable 

amplicons of between 300bp and 500bp. This observation was consistent across all of the 

isolates tested; probably due to smaller amplicons being easier to generate in comparison 

to those which are larger. The DNA extraction protocol for each of these typing methods is 

relatively crude which although quickly extracts DNA from the cell also compromises the 

integrity of the DNA, making it more vulnerable to shearing and therefore prevents 

amplification. This is likely to have occurred during DNA extraction of both of these 

typing methods and is therefore why larger amplicons were less frequently observed and 

not regarded as robust enough amplicons for use in differentiation.  

Although it is not known what regions of the genome the consistent amplicons represent, 

they suggest that these are regions that are highly conserved within the genome. It may be 

possible that these regions are highly conserved amongst several species of bacteria 

however it may also be possible that these amplicons may represent regions that are 

characteristic of the Clostridium genus or C. difficile as a species. Whether these amplicons 

are species specific or found in a greater number of bacteria, the high frequency of 
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occurrence suggests that these regions may represent genes that are essential to the survival 

of the bacteria. Further investigations involving the typing of other species of bacteria and 

Clostridia to determine if similar amplicons are also produced, and sequencing experiments 

to identify the amplified region would be beneficial in identifying possible targets that 

could be used to differentiate between strains. Although RAPD has been shown to be a 

discriminatory and robust technique by which to characterise isolates of C. difficile, it is 

unlikely that it would ever be adopted as a widespread method to genotype C. difficile 

isolates. This is in part due to previous criticisms of the RAPD method and also the need 

for typing techniques such as MLVA, which demonstrates a much greater discriminatory 

power than either PCR ribotyping or RAPD, can offer. The profiles produced here 

however may indicate that RAPD could be used to identify possible targets for more 

specific characterisation and discrimination. 

As described in Chapter 4, a greater variability was observed in the types defined by both 

genotypic methods amongst isolates recovered from Trust A compared to Trust B; this 

pattern of results was also observed in the antibiogram profiles of the isolates. Although 

the level of diversity in both the genotypes defined and antibiogram profiles were similar 

for isolates from each of the trusts, there was no clear mapping or association with one 

particular antibiogram type and a corresponding genotype. No significant associations 

could be made between PCR ribotype and antibiogram profile, with no resistance towards 

a particular antibiotic being exclusive to one ribotype. Associations have been made with 

fluoroquinolone resistance and clindamycin susceptibility amongst isolates belonging to 

PCR ribotype 027; there are also associations amongst isolates belonging to more common 

PCR ribotypes in the UK and an increase in MICs towards metronidazole. Although 

isolates belonging to PCR ribotype 027 were initially associated with susceptibility to 
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clindamycin, this is no longer the case and additionally, clindamycin resistance was 

observed amongst the majority of PCR ribotype 027 isolates in this study. Although there 

was little cross over between the PCR ribotypes observed between the two trusts, isolates 

belonging to PCR ribotypes 027, 064 and 106 were recovered from both locations with 

quite significant differences observed depending on recovery location. Isolates identified 

as belonging to PCR ribotype 027 recovered from Trust B generally displayed resistance to 

a greater number of antibiotics in comparison to those recovered from Trust A, this was 

also found with isolates belonging to both PCR ribotype 064 and 106. Results such as this 

suggest that the PCR ribotype of an isolate is unlikely to be an indicator of antibiotic 

resistance in C. difficile, probably due to the ease with which antibiotic resistance can 

spread through a population and the predominance of few PCR ribotypes. These results 

suggest that the location from which an isolate is recovered is more likely to be an 

indicator of antibiotic resistance and although antibiotic prescribing polices are highly 

likely to be a factor in this, other pressures such as infection control procedures and the 

prevalence of other bacteria in the environment may also be of influence. Biocide 

resistance has been reported in other species of bacteria; and although the spores of C. 

difficile are known to be difficult to eradicate, vegetative cells of C. difficile are generally 

quite susceptible. However, just as antibiotic resistance has developed in bacteria through 

exposure to sub-inhibitory levels of antimicrobials, this same reasoning can be applied to 

biocide resistance and there are also reports of cross resistance towards both antibiotics and 

biocides (Russell, 1998, Braoudaki & Hilton, 2004). The cleaning products used in 

hospitals vary between trusts and therefore different populations of bacteria may be 

exposed to different pressures based on the cleaning product used. In addition to this and 

harder to control is the population of bacteria that are present within a clinical setting. One 

reason why vancomycin has been restricted for the treatment of CDI is to try to prevent the 



Chapter 5 Genotypic Characteristics of Isolates of Clostridium difficile and 

Associations Between Genotypic and Phenotypic Characteristics 

184 

 

further development of VRE as both organisms are found in the gut. The ability of C. 

difficile to acquire resistance genes and the presence of the many other species of bacteria 

that are found in the gut provides many opportunities for genetic information to be 

exchanged; this can be problematic if resistance within a bacterial population in a hospital 

is widespread. The different environmental conditions as described above are likely to 

have influenced the isolates investigated here. A high proportion of both PCR ribotype 027 

and 106 isolates, both where clindamycin and erythromycin resistance was observed were 

recorded. Although it is not known whether the resistance observed in the isolates here has 

been encoded by the ermB gene it is likely. The prevalence of such a resistance pattern in 

these two predominant PCR ribotypes suggests that such resistance has spread among a 

population of isolates that are more frequently encountered and therefore have more 

exposure to antimicrobials. This again lends support to the suggestion that location and 

prevalence may be a greater indicator of antibiotic resistance in C. difficile as a greater 

proportion of isolates recovered from Trust B displayed this resistance pattern. Also, this 

profile was not observed in all isolates belonging to PCR ribotype 027 and, isolates that did 

not belong to PCR ribotypes 027 or 106 also displayed this antibiotic resistance profile.  

No associations could be made between biotype and genotype this however is likely to be 

due to the restricted biotype profiles that were produced. The isolated positive results for 

the alanine arylamidase test were most frequently recorded in isolates belonging to PCR 

ribotype 027; this could therefore be linked to the virulence of this strain. The PCR 

ribotype 027 strain is regarded as more virulent due to its enhanced toxin production; this 

however does not explain other aspects of the strains virulence such as enhanced resistance 

and sporulation rate. Although the ability to produce alanine arylamidase does not directly 

link to the virulence of the strain either, this could provide nutritional or other advantages.  
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There was no association between the defined genotypes and S-layer types of the clinical 

isolates of C. difficile investigated here. There have been reports that S-layer typing 

correlates well with ribotyping (McCoubrey et al., 2001). Whilst a small association could 

be made between S-layer and PCR ribotype in this study, in general, S-layer type varied 

both between PCR ribotype and RAPD type. It has been reported by others (McCoubrey & 

Poxton , 2001) that the most common S-layer type observed (5236) here correlates with 

PCR ribotype 001. Although this S-layer type was found frequently in this population of C. 

difficile isolates, the isolates were found to belong to a variety of different ribotypes. Two 

clusters produced from RAPD typing, one from each of the RAPD primers, which 

contained only isolates that had S-layer types 5263. This however was not exclusive to the 

clusters formed.  

5.5 CONCLUSION 

The phenotypic characteristics displayed by C. difficile isolates appeared to be influenced 

to a greater extent by location and prevalence within a population rather than the PCR 

ribotype to which they belonged suggesting that maybe too much emphasis is placed on the 

PCR ribotype of an isolate. No significant associations could be made between the 

phenotypic and genotypic traits observed here. The variability that was observed both in 

genotypic profiles and antibiotic resistance suggest that in order for such associations to be 

made further investigation of both phenotypic traits and genotypic analysis of C. difficile is 

required. 
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CHAPTER 6 GENERAL DISCUSSION 

This research aimed to identify the phenotypic and genotypic characteristics of two 

populations of C. difficile isolates that had been recovered from two separate tertiary 

referral trusts. Isolates were then characterised by both PCR ribotyping and RAPD and the 

discriminatory power of both methods compared. Finally, the phenotypic characteristics 

and amplicon profiles produced by both genotypic methods were analysed to determine if 

any associations between the phenotype and genotype of the isolates could be determined.  

There is a lack of current research into the phenotypic characteristics of C. difficile and 

there is a need for this to be addressed in order to gain further insight into the 

microorganism. Although Toxins A and B are the major virulence factors of C. difficile, 

there may be other factors present in some strains which enhance virulence and promote 

further pathogenicity. If other virulence factors were present and characteristic of some 

strains, not only would a greater understanding of the microorganism be gained but also 

could potentially be incorporated into a diagnostic test or typing method. As highlighted in 

this current study, the phenotypic characteristics of C. difficile are likely to be influenced 

by many factors and therefore it is possible that such influences have led to changes within 

some strains which are at present unknown as they have not been investigated. Historical 

phenotypic data such as that reported by (Seddon & Boriello, 1978, Hafiz, 1980) is still 

relied upon when reporting the phenotypic characteristics of C. difficile; however, 

evolutionary changes may have occurred within the species that have altered this. This is 

supported by work undertaken by (Stabler et al., 2099), where despite a large proportion of 

conserved genes within both current and historical isolates of C. difficile PCR ribotype 

027, there were also regions within the genome where significant differences were 

observed. It is thought that these alterations are responsible for the hypervirulent state 

observed in current PCR ribotype 027 isolates. Although many of the phenotypic 
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characteristics observed in this study provided little data to allow discrimination between 

C. difficile isolates (with the exception of antibiogram profiles), there are other traits which 

could be investigated such as the sporulation rate of different isolates and biocide 

resistance. The antibiogram profiles observed in the current investigation, and the variation 

observed between the two different trusts is likely to be the result of differences in the 

antibiotic prescribing policies of the two different trusts. This observation has been 

suggested by others who have undertaken similar studies (Taori et al., 2009). Although the 

results are suggestive that a difference in antibiotic prescribing policies influenced the 

differences observed in the antibiogram profiles, the prescribing policies for the two Trusts 

were not available and therefore no further information can be gained. Historic antibiotic 

prescribing policies from when the isolates were recovered from the respective Trusts 

would be needed in order to confirm that antibiotic prescribing policies were responsible 

for the differences observed in the antibiogram profiles between the two Trusts. In addition 

to this, further studies using current C. difficile isolates and antibiotic prescribing policies 

from the same two Trusts would be needed. Such work may then be able to determine if 

antibiotic resistance had been influenced over time and exposure to particular antibiotics. 

There is a lack of treatment options for CDI and therefore treatment is generally quite 

uniform between different trusts. This therefore indicates that antibiotics prescribed for 

prophylaxis prior to high risk surgical procedures and for the treatment of other infections 

such as MRSA are more likely to be causing the selective pressure that is driving the 

antibiotic resistance that was observed in this study Although these antibiotics are not 

being used in the treatment of CDI, it is still likely that the microorganism is being exposed 

to sub-inhibitory concentrations within the gut of patients which can allow resistance to 

develop. It has been demonstrated that C. difficile spores are prevalent in many clinical 

settings, and the ingestion of these spores is known to be the main route of transmission for 
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CDI. Spores are also ingested by patients who do not have a compromised gut flora and 

therefore cause no symptomatic disease; however, C.difficile spores will still germinate 

into vegetative cells within a healthy human gut and therefore can still be exposed to other 

antimicrobials. Although it is the vegetative cells of C. difficile that initially acquire such 

resistance, if the cell then sporulates, genomic information is passed on to the spore. 

Although the development of resistance to some of the antibiotics tested in this study has 

no effect on the treatment of CDI, this allows isolates of C. difficile to become reservoirs of 

antibiotic resistance which can then be transferred to other species of bacteria. It is 

therefore possible that other bacteria encountered by C. difficile in different healthcare 

settings can also influence the characteristics of different isolates. As the results in this 

study indicate; C. difficile does appear to adapt to the selective pressures of the local 

environment. There are other pressures within a healthcare setting that C. difficile is likely 

to encounter such as biocides and hand hygiene products and these again could also be 

responsible for phenotypic and genotypic changes within the bacteria. At present there is 

no published work that has examined resistance or the development of resistance to such 

agents in C. difficile vegetative cells; this again highlights the need for further investigation 

into phenotypic characteristics of C. difficile.  

The acceptance of RAPD as a widespread typing method for C. difficile isolates is 

unlikely. This is in part due to criticisms regarding discriminatory power and 

reproducibility (Brazier, 1998) and although it has been shown that the thorough 

optimisation of RAPD can improve results (Hilton et al., 1997, Perry et al., 2003) it is still 

not a favoured technique. In addition to this, the development of other typing methods that 

are highly discriminatory such as MLVA and MLST are now being favoured over even 

standard methods such as PCR ribotyping. Although RAPD may not be adapted as a 

widespread method for the typing of C. difficile isolates, what has been established in this 
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study is that RAPD could be useful in local epidemiological typing.  As has also been 

identified in this study, RAPD identified different types in a similar pattern to both PCR 

ribotyping and antibiogram profiling, providing support to the RAPD method.  Within each 

of the various PCR ribotypes defined, varying RAPD types were identified, thus 

identifying further ‘subtypes’ within PCR ribotypes; subtypes have also been defined by 

REP-PCR and PFGE (Rahmati et al., 2005, Northey et al., 2005). Such typing is very 

useful as an epidemiological tool as it demonstrates that although isolates are identified as 

the same PCR ribotype, this does not necessarily mean that they are the same strain. The 

use of RAPD within a clinical setting could therefore potentially identify whether patients 

have been infected with the same isolate of C. difficile. The PCR ribotyping method and 

RAPD protocol used here both target different areas of the genome; PCR ribotyping targets 

the intergenic spacer regions while RAPD is applied to the whole genome. As a result the 

two methods are not strictly comparable due to different targets however; the results here 

do suggest that they may be compatible. Initially a PCR ribotype could be defined, 

followed by a RAPD type to determine if infecting isolates are the same. The results here 

suggest that either RAPD alone or RAPD in combination with PCR ribotyping could be 

used to map the local epidemiology of CDI. As has been demonstrated here, this appears to 

work well however; testing of a greater number of isolates from more Trusts would be 

required in addition to possible sequencing of the genome.  

Another potential use for RAPD would be to use the protocol to characterise a variety of 

different C. difficile isolates and identify the regions of DNA that were being targeted by 

the primers used. This would involve sequencing amplicons generated and identifying the 

amplified regions of DNA and the genes which they were part of. If these targets were 

found to be suitable for the characterisation of C. difficile isolates, these could be 

developed into a more specific PCR protocol and if multiple targets were identified this 
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could be used in a multiplex PCR protocol. If both species specific targets and strain 

variable targets were identified then this could be further developed into a protocol that is 

used in the identification of C. difficile. Although sequencing DNA is ultimately the best 

way to both characterise isolates and identify potential targets to be used in a typing or 

identification protocol, this is costly and labour intensive. In addition to this, sequencing 

would need to be carried out on a variety of isolates which again would increase both costs 

and labour. In contrast to this, RAPD is a cost effective and quick technique, allowing a lot 

of isolates to be analysed over a shorter period of time and could potentially identify 

targets more quickly. 

The potential influence of environmental pressures on C. difficile may demonstrate why 

few apparent associations could be made between the phenotypic and genotypic traits 

investigated here. There did however appear to be some association between the traits due 

to the patterns that were observed between the two trusts for both genotypic methods and 

antibiogram profiling. Phenotypic characteristics of C. difficile isolates appeared to be 

associated with location or prevalence within an environment rather than any particular 

genotype. Associations between PCR ribotyping and particular phenotypic characteristics 

are often made; however, such characteristics may actually be due to the prevalence within 

an environment rather than being due to the PCR ribotype of an isolate. An example of this 

is the increase in MICs towards clindamycin, metronidazole and moxifloxacin (HPA, 

2008) that has been reported among the more predominant PCR ribotypes. If other PCR 

ribotypes were observed to be predominant, then it is likely that the same patterns in 

antibiotic resistance would be seen in these.  

From the results presented in this study it appears that both genotypic and phenotypic 

characteristics of C. difficile isolates are influenced by the local environment; most likely 

through local selective pressures in the form of antibiotic prescribing and infection control 
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policies. The variability that was observed using both genotypic methods and also the 

antibiogram profiles suggests that C. difficile is a highly adaptive microorganism with the 

potential to acquire mechanisms that are specific to the promotion of its survival in a given 

environment. The differences that were observed using antibiogram profiling, PCR 

ribotyping and RAPD indicate that changes may be occurring in several different areas of 

the genome. The use of these three methods alone to characterise C. difficile has provided 

insight into the organism and demonstrates the need for further investigations into the 

characteristics and local epidemiology of the bacteria.  
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APPENDICES 

Appendix (1) 

Preparation of antibiotic solutions 

Antibiotics were in powder or crystalline form except levofloxacin and linezolid which 

were in solution at concentrations of 5mg/ml and 2 mg/ml respectively. Antibiotics were 

soluble in sterile distilled water with the exception of erythromycin and metronidazole 

which were dissolved in 20% ethanol and rifampicin which was dissolved in a weak acetic 

acid solution before being further diluted. As a control, both ethanol and the weak acetic 

acid were incorporated into agar without any antimicrobial to determine if these solutions 

were having an inhibitory effect rather than the antibiotic tested. Antibiotics were made up 

to a concentration twenty times greater than the highest concentration required and 

dilutions made from this where required. Antibiotic solutions were freshly prepared each 

day with the exception of levofloxacin and linezolid which were already in solution. 
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Appendix (2)  

Composition of the gels, buffers and stains used in S-layer protein analysis. 

 

Sample Denaturing Buffer 

10% (
w
/v) SDS 5mls 

0.5M Tris HCl (pH 6.8) 2.5ml 

Sterile double distilled water 5mls 

Glycerol 2.5ml 

2-mercaptoethanol 250µl 

5% (w/v) Bromophenol Blue 200µl 

 

Protein Standard Markers 

Bovine Albumin 66 (kDa) 

Ovalbumin 45 (kDa) 

Glyceraldehyde 3-phosphate Dehydrogenase 36 (kDa) 

Carbonic anhydrase 29 (kDa) 

Trypsinogen 24 (kDa) 

 

Separating Gel (12%) 

Stock 1 (40% (w/v) acyrlamide 0.8% (w/v) 

bis (N,N’-methylene bisacrylamide) 
6mls 

10% (w/v) SDS 0.5ml 

1.5M Tris HCl pH 8.8 6.2ml 

Sterile double distilled water 7.8mls 

TEMED 50µl 

10% (w/v) AMPS 70µl 
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Running Buffer 

10% (w/v) SDS 20mls 

Tris 6g 

Glycine 28.8g 

Make up to 2 litres with double distilled water 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Stacking Gel 

Stock 2 ( 30% (w/v) acrylamide 0.8% (w/v) 

bis (N-N’-methylene bisacrylamide) 
2.5ml 

10% SDS 150µl 

0.5M Tris-HCl buffer (pH 6.8) 3.8ml 

Sterile Double Distilled Water 8mls 

TEMED 40µl 

10% AMPS 50µl 
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