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It is very well known that contrast detection thresholds improve with the size of a grating-type stimulus, but it is thought that
the benefit of size is abolished for contrast discriminations well above threshold [e.g., Legge, G. E., & Foley, J. M. (1980)].
Here we challenge the generality of this view. We performed contrast detection and contrast discrimination for circular
patches of sine wave grating as a function of stimulus size. We confirm that sensitivity improves with approximately the
fourth-root of stimulus area at detection threshold (a logYlog slope of j0.25) but find individual differences (IDs) for the
suprathreshold discrimination task. For several observers, performance was largely unaffected by area, but for others
performance first improved (by as much as a logYlog slope of j0.5) and then reached a plateau. We replicated these
different results several times on the same observers. All of these results were described in the context of a recent gain
control model of area summation [Meese, T. S. (2004)], extended to accommodate the multiple stimulus sizes used here. In
this model, (i) excitation increased with the fourth-root of stimulus area for all observers, and (ii) IDs in the discrimination
data were described by IDs in the relation between suppression and area. This means that empirical summation in the
contrast discrimination task can be attributed to growth in suppression with stimulus size that does not keep pace with the
growth in excitation.
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Introduction

Psychophysical contrast sensitivity is typically mea-
sured using a two-interval forced-choice paradigm in
which observers discriminate between a null stimulus
interval and an interval containing a test grating with
contrast $C. The reciprocal of $C that corresponds with
some criterion level of performance (e.g., 75% correct) is
referred to as sensitivity. It is well known that sensitivity
improves as the area of the stimulus is increased (Cannon,
1995; Graham, 1989; Howell & Hess, 1978; Luntinen,
Rovamo, & N.s.nen, 1995; Manahilov, Simpson, &
McCulloch, 2001; Meese & Wiliams, 2000; Robson &
Graham, 1981; Rovamo, Luntinen, & N.s.nen, 1993, 1994;
Polat & Tyler, 1999). This phenomenon is often attrib-
uted to probability summation between independent de-
tectors; the greater the number of stimulated detectors,
the greater is the probability of detecting the stimu-
lus (Meese & Williams, 2000; Pelli, 1987; Robson &
Graham, 1981; Tyler & Chen, 2000). But other expla-
nations have also been offered, including physiological
summation (Laming, 1988; Polat & Norcia, 1998; Polat
& Tyler, 1999), matched filtering (Luntinen et al., 1995;
Rovamo et al., 1993, 1994), facilitatory interactions (Bonneh

& Sagi, 1998; Polat & Norcia, 1998; Polat & Tyler, 1999),
and nonlinear transduction followed by signal detection
(Wilson, 1980), all of which remain possibilities.
Consider now how the experiment above can be ex-

tended to contrast discrimination. As before, the observer’s
task is to detect the presence of $C, but this time in the
presence of a pedestal grating (sometimes called a mask)
with contrast C. In this situation, it has been found that so
long as C is greater than a few percent, the detectability
of $C is largely independent of stimulus size (Legge &
Foley, 1980). This is shown in Figure 1, where the rel-
evant data from Legge and Foley have been replotted.
In some vision models, this change in relation between

sensitivity and area with pedestal contrast has been achieved
by disabling the summation process above threshold (Legge
& Foley, 1980; N.s.nen, Tiippana, & Rovamo, 1998;
Swanson, Wilson, & Giese, 1984). But later models have
been devised in which the transition arises much more
smoothly (Cannon, 1995; Cannon & Fullenkamp, 1991a;
N.s.nen et al., 1998; McIlhagga & P..kkPnen, 1999; Meese,
2004). In most of these models, the abolition of area sum-
mation does not involve switching out or changing a process,
but is an emergent property of the model’s architec-
ture. One example is the model developed by Meese
(2004), which was based around a gain control equation
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introduced by Foley (1994). For the situation where the
mask and test stimuli always have the same spatial and
temporal characteristics, the observer’s sensory response
to the stimulus can be expressed as follows:

resp ¼
~
j

ð)j
c p

j
Þ

Z þ~
j

ð2
j
cq
j
Þ
: ð1Þ

The numerator and denominator contain strings of
weighted ()j and 2j) contrast terms. These are often
referred to as excitatory and suppressive terms and this is
the terminology used here, although it should be borne in
mind that other interpretations are possible (see General
discussion). The excitatory and suppressive terms are
raised to expansive powers p and q, respectively (typi-
cally, pjq , 0:4) and summed across field position
(indexed by j). The denominator also contains a saturation
constant (Z), which is often set to 1 when the model’s
degrees of freedom are expressed elsewhere in the model,
as they are here.
At contrast detection threshold for a patch of grating,

the denominator of Equation 1 is dominated by the
saturation constant because other suppressive terms are
negligible due to the low stimulus contrast. In this case,
increasing the size of the grating patch increases only the
level of excitation and area summation occurs. However,
when the test increment is detected on a pedestal that is
sufficiently suprathreshold, then the numerator and the de-
nominator are dominated by the excitatory and suppressive
contrast terms, respectively. For appropriate weightings
of these terms, area summation can be abolished by a ped-
estal of moderate contrast and above because of its con-
comitant impact on excitatory integration and suppression.
According to this model then, the weights of the contrast
terms were in fact appropriately balanced (specifically,
~
j
)j=~j

2j was constant over j) for the average observer
in Legge and Foley’s (1980) contrast discrimination
study, such that area summation appeared absent well
above threshold. The success of this model is shown by
the fit to Legge and Foley’s data replotted in Figure 1
(see figure caption for details).
But other experiments bring the generality of the precise

balance of these weights into question. For example, several
results from psychophysics (Cannon & Fullenkamp, 1991b,
1993; Ejima & Takahashi, 1985; Foley, 1994; Meese, 2004;
Meese, Hess, & Williams, 2001; Olzak & Laurinen, 1999;
Petrov, Carandini, & McKee, 2005; Snowden & Hammett,
1998; Xing & Heeger, 2000; Yu, Klein, & Levi, 2001) and
fMRI (Williams, Singh, & Smith, 2003; Zenger-Landolt &
Heeger, 2003) point to suppressive lateral interactions
between mechanisms responding to co-oriented stimuli,
such as a large patch of grating. One particularly relevant
study here was that of Cannon and Fullenkamp (1993).
They performed contrast matching of a central region of a
stimulus in the presence of a co-oriented surrounding
stimulus, for various contrasts of both center and surround.
For some observers they found that certain surround
configurations suppressed the perceived contrast of the
center stimulus, whereas for other observers the same
surround enhanced perceived contrast of the center. The
authors interpreted their results in terms of competition
between a suppressive process and facilitatory process and
supposed that the balance between these two processes
varied across observers. Of particular concern here is that

Figure 1. Contrast discrimination functions (average of three

observers) for small (0.75 degrees wide) and large (6 degrees

wide) field sizes, replotted from Legge and Foley (1980). Spa-

tial frequency was 2 c/deg and stimulus duration was 200 ms.

Here and elsewhere, contrast is expressed in decibels given by

20 log10(C) re 1%, where C ¼ 100ðLmax� LminÞ=ðLmaxþ LminÞ.
The small field condition was fit using the model described in the

Farea summation model_ subsection (Equations 2 and 3). There

are four free parameters in this model, although following Legge

and Foley the exponents p and q were preset to 2.4 and 2,

respectively. The other two (sensitivity) parameters were esti-

mated by a simplex algorithm that minimized the RMS error of

the fit, giving !1 ¼ 4:07 and "1 ¼ 0:64. The model was then fit

to the large field data using a single extra parameter that scaled

the weights ! and " by a factor of 5.7 to give !2 ¼ 23:2 and

"2 ¼ 3:65. This single size-scaling parameter captures three dis-

tinct features of the data: (i) area summation at low mask

contrasts, (ii) the abolition of area summation at high mask

contrasts, and (iii) the cross over of the dipper functions at

intermediate mask contrasts. Formally equivalent models have

been used to describe the similar data transformations seen in

contrast adaptation (Meese, 2004; Meese & Holmes, 2002) and

twin mask paradigms (Foley, 1994; Holmes & Meese, 2004).
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even for conditions in which the center and surround had
the same contrast (meaning the contrast of a small patch of
grating was being matched to a larger one), the level of
contrast attenuation of the larger stimulus patch was not the
same across observers.
These individual differences (IDs; see also Results and

discussion) highlight an interesting possibility. If the
introduction of a contrast pedestal abolishes empirical
area summation (Legge & Foley, 1980) because of the
precise balance of weights in a contrast gain control
equation (Equation 1), then perhaps there are some
observers whose weights are not balanced this way, and
for whom area summation is not abolished.
We examined this by performing contrast detection and

contrast discrimination experiments for four different sizes
of circular patch of sine wave grating for several observers.

Methods

Equipment

Stimuli were stored in the framestore of a VSG2/3 or
VSG2/4, and presentation was controlled by a Pentium
PC. Stimuli were displayed on either (i) a NEC MultiSync
XP17 monitor with mean luminance of 69 cd/m2 and
frame rate of 100 Hz; (ii) an Eizo F553-M monitor with
mean luminance of 66 cd/m2 and a frame rate of 120 Hz;
or (iii) a Sony 20seII monitor with mean luminance of 62
cd/m2 and a frame rate of 120 Hz. Look-up tables were
used to perform gamma correction of the display monitors
and the framestore was operated in either pseudo 12-bit
mode (for the VSG2/3) or pseudo 15-bit mode (for the
VSG2/4). Contrast is reported in percent given by
C ¼ 100½ðLmaxjLminÞ=ðLmax þ LminÞ� and in decibels,
given by 20 log10(C) re 1%.

Stimuli

In most experiments, stimuli consisted of a single circu-
lar patch of a vertical 1 c/deg sine wave grating. This was
in sine phase with a small dark fixation point (4 pixels) in
the center of the display that was visible throughout the ex-
periment. The grating stimulus had its edges smoothed by
a half period of a raised sine function. The sigmoidal ramp
of the window was 1.25 degrees wide and the width of the
window’s half-amplitude was varied from 2.5 to 11.25 de-
grees, which we treat as the nominal stimulus diameter.
In the contrast discrimination experiments, the test stim-

ulus was superimposed on a spatially identical pedestal
stimulus with a contrast of 20% (26 dB). In the detection
experiments, the pedestal stimulus had a contrast of 0%.
In Experiment 3, several stimulus configurations were

constructed from three basic stimulus patterns as follows.
A small stimulus patch (S) was identical to the smallest

patch used in the earlier experiments (nominal diameter
of 2.5 degrees). A large stimulus patch (L) was identi-
cal to the second largest stimulus patch in the main ex-
periments (nominal stimulus diameter of 7.5 degrees). A
doughnut-shaped stimulus (D) was created by subtract-
ing the small stimulus (S) from the large stimulus (L).
These three patterns were combined in different pairs of
test and mask (with a contrast of 20%) to produce five
stimulus configurations. A small stimulus was detected on
a small pedestal (SS), a small stimulus was detected on
a large pedestal (SL), a large stimulus was detected on a
large pedestal (LL), a doughnut was detected on a dough-
nut pedestal (DD), and a doughnut was detected on a large
pedestal (DL). In this experiment, the phase of the entire
stimulus was shifted through 180 degrees on every trial to
reduce the possibility of a build up of retinal afterimages.
In all experiments, stimulus duration was 100 ms and

the viewing distance was 114 cm.

Procedure

A temporal two-interval forced-choice (2IFC) technique
was used and observers detected $C in the presence of C,
where C was 0% (contrast detection) or 20% (contrast
discrimination). The computer determined the temporal
interval that contained $C randomly, and observers
indicated their choice by pressing one of two buttons.
The duration between the offset of the first interval and the
onset of the second interval was 600 ms. A Fthree-down, one-
up_ randomly interleaved staircase procedure (Cornsweet,
1962; Wetherill & Levitt, 1965; Meese, 1995) was used
to control the magnitude of $C. Estimates of threshold
were made using probit analysis (Finney, 1971) to calculate
the 75% correct point of psychometric functions based on
about 100 trials accumulated over the last 12 Freversals_ for
each of a pair of interleaved staircases tracking the same
condition. The data from the first pair of staircase
reversals were always discarded. In different experi-
ments, trials for different size conditions were either
blocked or randomly interleaved (see next subsection).
This gave a total of four different types of main
experiment: blocked and interleaved designs for both
contrast detection and contrast discrimination. Each
observer took part in between 4 and 11 replications of
the four size conditions in each type of experiment they
performed. The data in the figures are the means and
standard errors of these replications. When observers
performed more than one type of experiment, each expe-
riment was completed before a subsequent experiment
was begun. Observers were also given at least 400 trials of
practice before data collection began.
In all experiments, auditory feedback was used to indicate

the correctness of response and the two temporal intervals
were marked by short tones at the onset of the stimulus.
Data collection took place over an 8-year period

between 1997 and 2005.
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Observers and order of experiments

The three authors (TSM, RFH, and CBW) served as
observers for the detection experiment and the discrim-
ination experiment in 1997. Two naBve observers also took
part in both of these experiments (PAA and DHB). Both
were postgraduate psychophysics students and were paid
for the latter part of their contributions. All three authors
performed the interleaved detection experiment before the
interleaved discrimination experiment. PAA and DHB
performed both types of discrimination experiment (inter-
leaved, then blocked) before performing both types of
detection experiment (interleaved, then blocked). PAA
performed the interleaved discrimination experiment twice
(in 2001 and 2004). In 2004, TSM performed all four types
of experiment in the same order as DHB, repeating two of
the experiments first performed in 1997. A further six naBve
observers also performed the interleaved contrast discrim-
ination experiment. Of these, DJH was a research assistant,
RJS was a research fellow, PH and OH were postgraduate
optometry students, JLD was an undergraduate optometry
student who performed the experiment as part of her course
requirement, and HYW was a paid volunteer. TSM, RFH,
and DHB performed Experiment 3 in 2005. At this time,
DHB was no longer naBve to the purpose of the conditions
from the main experiment but was unaware of the purpose
of the novel conditions in Experiment 3. All observers
had normal or optically corrected to normal vision.
After 1997, but before 2001, our standard procedure (in

the Aston laboratory) became to monitor the standard
error of each threshold determined by probit analysis and
to discard and rerun experimental sessions where the
standard error was greater than 3 dB. This was done for
the second and third experiments here, but not the first,
which predated the procedure’s introduction.

Results and discussion

Experiment 1a: Interleaved detection

The results of the interleaved detection experiment are
shown in Figure 2 for five observers. For all observers,
performance improved consistently with an increase
in stimulus area over the range tested. The solid curves

Figure 2. Contrast detection thresholds as a function of stimulus

area for five observers (different panels). In this and other figures,

the abscissa is expressed as 20 times the log of stimulus area to

be consistent with the contrast units of the ordinate (i.e., on both

axes an interval of six units represents a factor of two). The size

scale is normalized to the area of the smallest stimulus. The solid

curve is the best-fitting straight line with a logYlog slope of j0.25,

equivalent to a fourth-root summation rule. Error bars are T1 SE,

where larger than symbol size. See Table 1 for best-fitting slopes.
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are the best-fitting straight lines with a slope of j0.25,
consistent with a fourth-root area summation rule, and
provide good descriptions of the data. The slopes of best-
fitting straight lines to each of these data sets are shown in
Table 1 (see also Experiment 2). The average slope is
very close to a fourth-root summation rule. We do note,
however, that for two observers (PAA and DHB) there is
a tendency for performance to level off at the larger
stimulus size. This is broadly consistent with earlier
findings where area summation has been found to apply
for only limited spatial extent and is probably due to a
general decline in contrast sensitivity away from the fovea
(e.g., Howell & Hess, 1978; Robson & Graham, 1981;
Rovamo et al., 1993).

Experiment 1b: Interleaved discrimination

The results of the interleaved discrimination experiment
are shown in Figure 3 for 11 observers (solid symbols are
for the same five observers as in Figure 2). The
discrimination thresholds have been normalized across
observers to illustrate the trends. For completeness, the
thresholds and standard errors for the smallest stimulus
size for each observer are given in Table 2. Whereas the
pattern of results for the detection experiment was
consistent across observers, this is clearly not the case
for the discrimination experiment. For some observers
(e.g., TSM), there was little or no improvement in
performance as stimulus size increased. For others (e.g.,
PAA), there was a clear improvement in performance
with stimulus size, although in most cases performance
tended to plateau or deteriorate again as stimulus size
continued to increase. The solid grey curves show pre-
dictions for fourth-root and square-root summation rules.
In some cases, summation was greater than the fourth-root

rule and closer to the square-root rule, at least for the
initial part of the function (i.e., the left side of the plot).
Overall, there is a great deal of variation across observers,

but the average performance (crossed square symbols)
indicates that sensitivity is higher for the larger stimuli than
for the smallest, showing that the overall variability is around
a systematic trend. We confirmed these observations by
performing a balanced ANOVA on a restricted set of the raw
data1 where replication was a random factor. The results
were highly significant for the main effects of area
(F3;135 ¼ 41:7, p G .001) and observer (F9;135 ¼ 9:96,
p G .001), and the interaction between area and observer
was also significant (F27;135 ¼ 1:79, p = .016).

Experiment 2: Blocked and interleaved
detection and discrimination

In the detection experiment above, the different size
conditions were interleaved in an attempt to keep the spatial
window of attention fixed so that this was not confounded
with stimulus size (Graham, 1989; Tyler & Chen, 2000).
It seemed reasonable to use the same design for the

Observer Experiment type Figure Slope Exponent

CBW Interleaved 1 j0.194 5.15

RFH Interleaved 1 j0.314 3.18

TSM Interleaved 1 j0.255 3.92

PAA Interleaved 1 and 3 j0.252 3.97

DHB Interleaved 1 and 3 j0.217 4.61

TSM Interleaved 3 j0.230 4.35

TSM Blocked 3 j0.279 3.58

PAA Blocked 3 j0.233 4.29

DHB Blocked 3 j0.227 4.41

Mean Y Y j0.244 4.10

SE Y Y j0.012 0.17

Table 1. LogYlog slopes of best-fitting straight lines to the

detection data from Experiments 1a, b, and 2. The final column

is the reciprocal of the absolute slope and equivalent to the best-

fitting exponent in a Minkowski spatial pooling metric, assuming a

linear contrast transducer.

Figure 3. Contrast discrimination thresholds (pedestal contrast

was 20%) as a function of stimulus area for 11 observers and

their average. The discrimination thresholds have been normal-

ized to 0 dB for the smallest stimulus size (see Table 2 for

absolute discrimination thresholds). For clarity, error bars (T1 SE)

are shown for two observers only (PAA and RJS). The average

standard error is also shown. The grey curves are predictions for

fourth-root and square-root (quadratic) summation rules. The dark

curves are fits of the descriptive model (see text for details). The

right-hand y-axis is explained in the model section of the text.

Solid symbols denote the observers who took part in the

detection experiment in Figure 2.
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discrimination experiment against which the detection data
were to be compared. However, the situation is slightly
different in the discrimination experiment because the
clearly visible mask stimulus provides the observer with
information about the size of the test stimulus on the first
interval of each trial. It is not obvious how this might have
affected the results, but it is possible that it prompted
different strategies of attention across observers (see Results
and discussion). To test whether this could be held
responsible for the IDs in the discrimination data, the
experiment was repeated using a blocked design on three
observers, two of whom had shown summation for contrast
discrimination (PAA and DHB) and one of whom had not
(TSM). For completeness, these observers repeated the
detection experiment also using a blocked design. For all
three observers, the data for the two different experiments
and the two different designs were gathered within a few
days of each other (see Methods).
A comparison of the interleaved and blocked detection

experiments is shown in Figure 4. All of these results are
broadly consistent with a fourth-root summation rule (see
Table 1 for best fits) and replicate the findings in Figure 2.
The results for the discrimination task are shown in
Figure 5 and replicate the main findings in Figure 3.
Performance is little affected by area for TSM, but PAA
and DHB both show improvement over the initial region
of the functions. The curves in Figure 5 are the best fits of
a fourth-root summation rule. Clearly, this rule is
inadequate for all these discrimination data.
But the main point here is that blocking or interleaving

trials for different stimulus sizes had no systematic effect
on the results for either the detection task or the discrim-
ination task. In other words, the IDs are replicable and
robust to the choice of experimental design.

Figure 4. Contrast detection thresholds for three observers

(different panels) for interleaved and blocked experimental de-

signs (different symbols). The curves are the best-fitting straight

lines with a logYlog slope of j0.25. This summation rule provides

a good description of these data. Error bars show T1 SE. For PAA

and DHB, the interleaved data are replotted from Figure 2.

Observer

Detection

threshold

(dB)

SE

(dB) n

Discrimination

threshold

(dB)

SE

(dB) n

CBW j3.74 0.64 4 12.88 1.89 6

RFH 0.78 0.54 4 11.27 0.62 6

TSM j3.07 0.28 6 7.50 1.00 6

PAA j3.10 0.40 4 12.00 0.82 8

DHB j2.78 1.11 4 9.33 0.78 6

HYW Y Y Y 5.83 2.63 6

JLB Y Y Y 9.73 1.40 11

DJH Y Y Y 8.65 1.15 8

OH Y Y Y 11.14 1.10 8

PH Y Y Y 9.32 1.02 5

RJS Y Y Y 11.99 0.71 6

Table 2. Thresholds, standard errors, and number of replications

for the smallest stimulus size. Detection thresholds are for the five

observers in Figure 2 and discrimination thresholds are for the 11

observers in Figure 3. Note that the variation in detection

thresholds is well within the range that might be expected from

the modelfest observers (e.g., Watson, 2000).
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Model preamble

In this section, we extend an earlier model of area
summation (Meese, 2004) to accommodate the multiple
stimulus sizes used here. After constraining the model to
fit all the detection data and the discrimination threshold
for the smallest stimulus size, we were left with three free
parameters (three suppressive weights), which were ad-
justed to fit the relative levels of summation in Figure 3.
As the number of free parameters equals the number of
data points being fit for each observer, it is not surprising
that the model performs so well (see Figure 3). However,
the exercise allows us to make several points. First we are
demonstrating that a widely used expression for contrast
gain control (Foley, 1994) can be readily adapted to
accommodate IDs in contrast discrimination data while at
the same time describing a consistent pattern of results at
detection threshold. Second, the analysis points to a
possible locus of the IDs. Third, we show that on this
interpretation, area summation data at and well above
detection threshold deliver good approximations of differ-
ent model parameters directly.
In the Appendix, we consider the relationship between

the descriptive model developed here and several versions
employing Minkowski summation.

Area summation model

For the main experiments here, Equation 1 can be
rewritten as follows:

respi cð Þ ¼ !ic
p

1þ "ic
q
; ð2Þ

where respi is the contrast response of the visual system to
the mask or mask plus test stimulus, c is stimulus contrast
(in percent), the exponent p controls the rate of response
acceleration at low stimulus contrasts, the exponent dif-
ference ( pjq) controls the rate of response compression at
higher contrasts, and the coefficients !i and "i control the
weights of excitation and suppression for the four different
stimulus sizes (i ¼ 1to 4). Here, we find it convenient to
express the weights as Â and B̂ for the smallest stimulus
size (i ¼ 1) and use Ai and Bi to express the weights for
the other stimulus sizes relative to those for i ¼ 1. Thus,
!i ¼ Â I Ai; "i ¼ B̂ I Bi and Ai ¼ Bi ¼ 1. As we shall see
later, our conclusions do not require precise estimates of
the linear scaling parameters Â and B̂, and our interest is
confined mainly to Ai and Bi. [Intuitively, this is because
the interesting features of the data are not the IDs in
absolute thresholds (e.g., see Table 2), but those differ-
ences that remain after normalization (i.e., the interaction
between observer and area).]
Our data do not constrain the values of p and q so

we set these to default values of 2.4 and 2, respectively
(Legge & Foley, 1980). As we illustrate below, these

Figure 5. Contrast discrimination thresholds (pedestal contrast

was 20%) for three observers (different panels) for interleaved

and blocked experimental designs (different symbols). The curves

are the best-fitting straight lines with a logYlog slope of j0.25.

This summation rule provides a poor description of these data.

Error bars show T1 SE. For DHB, the interleaved data are

replotted from Figure 2.
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choices of p and q are not critical for our conclusions,
although p should be a little larger than q. Instead, we
might have simplified the model by omitting p and q from
our analysis, but we prefer to include them for complete-
ness and comparison with other work.
A stimulus is detected when

respdiff i ¼ respiðC þ $CÞj respiðCÞ ¼ 1; ð3Þ

where C þ $C ¼ c for the mask + test stimulus, and
C ¼ c for the mask stimulus alone. This formulation is
consistent with a limiting Gaussian noise source that is late
and additive.
In the contrast detection task, Equation 2 reduces to

respiðcÞ , Â I Aic
p ð4Þ

because when mask contrast (C) equals zero, the denom-
inator of Equation 2 is dominated by the saturation con-
stant of unity.2

From Equation 4, it is clear that with p already set
to 2.4, the contrast at detection threshold (where
respdiff i ¼ 1) for the smallest stimulus size gives an
estimate of Â because

Â ,
1

$C p : ð5Þ

Furthermore, from Equations 3 and 4,

Ai ,
1

ð$Ci=$C1Þp
: ð6Þ

But from the curve fitting in Figures 3 and 5, we know
that the detection data are well described by a fourth-root
area summation rule, so we set

$Ci=$C1 ¼ ðareai=area1Þj1=4; ð7Þ

where areai is the area of the ith stimulus size. From
Equations 6 and 7, we now have

Ai , ðareai=area1Þp=4: ð8Þ
Thus, Equation 8 sets the slope of the area summation

curve at threshold, and the vertical offset that provides the
best fit of this curve to the data (e.g., see Figures 2 and 4)
provides another way of estimating Â .
We now turn our attention to the contrast discrimina-

tion task. Equations 2 and 3 specify the model completely
and were fit to the data in Figure 2, where the values of "i
were solved numerically. For the six observers for whom
we did not measure detection thresholds, we assume that
the fourth-root summation rule is a fair description of
their sensitivity at threshold. We then created synthetic
detection data for these observers ( justified by the sim-

ulations described below) as follows. For the smallest
stimulus size, the differences between the detection and
discrimination thresholds were averaged from the five
observers who performed both tasks (Figures 2 and 3).
For each of the other observers, this value was subtracted
from their discrimination threshold to give an estimate of
detection threshold for the smallest stimulus. The remain-
der of the synthetic detection data was set according to a
fourth-root summation rule.
The solid curves in Figure 3 are the fits of the model to

the data. The values of Â and B̂ (not shown) are of little
interest as they serve merely to offset the fits (i.e., to
describe the main effect of observer by sliding the
detection and discrimination fits vertically on log axes).
However, the interaction between observer and size is
described by Bi, whose values are revealed in an
interesting way. Consider the following. In the discrim-
ination task, Equation 2 reduces to

respiðcÞ , ð!i="iÞcðpjqÞ ð9Þ

because the contrast term in the denominator of Equation 2
dominates the saturation constant.
Combining Equations 3 and 9, we have

ðC þ $CiÞð pjqÞ
jCð pjqÞ , "i=!i: ð10Þ

For reasonable values of p and q, the left-hand side of
Equation 10 is approximately linear with $C over a reason-
able range of contrast, as shown in Figure 6. This means

$Ci

$C1

,
"i=!i
"1=!1

; ð11Þ

and therefore

$Ci

$C1
,

Bi

Ai

: ð12Þ

In other words, according to this model, the data in
Figure 3, which plot 20 log10($Ci=$C1), provide a direct
estimate of how the weight of suppression grows with
area (Bi) relative to the growing weight (Ai) of excitation
(right-hand ordinate of Figure 3).
Another view of these parameters is given in Figure 7,

where Ai and Bi are plotted separately for each ob-
server (only Bi differ across observers). Note that because
this model is really just an alternative description of
the data, it necessarily reflects the noise in our data as
well as the parameters of interest. Nevertheless, a com-
parison of Figures 3 and 7 reveals a clear trend. In con-
trast discrimination, empirical area summation occurs if
the suppressive weight Bi does not keep pace with the
excitatory weight Ai as stimulus size increases. (Note that
on the axes of Figure 7, the slope of Ai against area is
given by p=4.)
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In making the assertion above regarding the right-
hand ordinate of Figure 3, we made several approxima-
tions. We justified all of these by extensive simulations in
which we tried the following adjustments in fitting the full
version of the model. We set detection threshold for the
smallest stimulus to j6, j3, 0, 3, and +6 dB relative to
the estimate from the synthetic data described above for
each observer. We then tried all possible combinations of
the following model parameters, with each estimate of
threshold: p ¼ 2:4; p ¼ 3; pjq ¼ 0:3; pjq ¼ 0:4; pjq ¼
0:5. This produced a total of 330 simulations. We found
that deviations between the data $Ci=$C1 and the model
parameter ratio Bi=Ai were typically negligible and rarely
worse than 0.3 dB. Only for observers CBW and RJS did
the deviations exceed 0.5 dB. Even then, this was for a
limited set of parameter values and typically for only the
data points where discrimination thresholds were worse
than that for the smallest stimulus.
In sum, we have shown that each data point from

Experiments 1a, b, and 2 carries a very good approximation
to a direct quantitative interpretation within the context of a
widely used model of contrast gain control. On this view,
the IDs between observers provide a direct indication of
different parameter values between observers.

Experiment 3: Spatial inhomogeneity and
lateral interactions for contrast discrimination

From Experiments 1a, b, and 2, it is clear that in a
contrast discrimination task, increasing the size of the

stimulus confers no advantage for some observers (e.g.,
TSM) but does for others (e.g., RFH, DHB, and PAA).
One possibility is that the gain in performance for the
larger stimuli might be due to greater sensitivity to
contrast increments in the outer stimulus regions. We
tested this by performing a final experiment in which we
measured contrast discrimination thresholds for a small
stimulus patch (SS), a large stimulus patch (LL), and a
doughnut stimulus (DD) constructed from the difference
between the first two stimuli (see Methods). We also in-
vestigated two further configurations. In the Introduction
section, we highlighted that IDs have been found for lat-
eral interactions in a contrast-matching task (Cannon &
Fullenkamp, 1993). On a much smaller sample of
observers (n ¼ 3), Meese (2004) also found IDs for
lateral interactions using a contrast discrimination task.
But the models (and experiments) above do not determine
whether the IDs seen here are due to IDs in size functions
of surround interactions, self-suppression, or a combina-
tion of the two because for each stimulus size all the
suppressive effects are described by a single generic
suppression parameter Bi. To try and shed some light on
this, we included conditions in which the pedestals were
always large and the test stimulus was either a small
central patch (SL) or the outer annular region of the
stimulus (DL).
We gathered data from three observers using the

blocked design. From the earlier experiments, it was
known that two of the observers show area summation for

Figure 6. The left-hand side of Equation 10 is approximately a

linear function of $C. Solid curves show Equation 10 for three

different values of p� q, and dashed curves are the best-fitting

straight lines over the range $C ¼ 0 to 8%.

Figure 7. Suppressive weight parameter Bi for all observers. The

excitatory parameter Ai was the same for all observers and is

shown on the same axes for comparison (open green square with

diagonal hash).
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contrast discrimination (RFH and DHB) and one does not
(TSM).
Normalized discrimination thresholds are shown in

Figure 8 and reveal several points. A comparison of SS
and LL shows that the earlier area summation results have
been replicated for all three observers. A comparison of
the SS and SL configurations reveal that the surround has
no effect for TSM but causes a drop in performance for
RFH and DHB. For TSM, this confirms a result from
Meese (2004). A similar result can also be seen for the
average observer in Yu, Klein, and Levi (2003). For the
other two observers here (RFH and DHB), the influence
of the surround was qualitatively similar to that shown by
observer SK in the Meese (2004) study, JYS and KMF in
Foley (1994), and JMF in Foley and Chen (1999).
Consider now, a comparison between the small (SS)

and doughnut (DD) configurations. Just as we anticipated,
RFH and DHB showed greater sensitivity to the DD
configuration than the SS configuration, whereas TSM
did not. This is consistent with the view that the ad-
vantage for the large (LL) configuration for RFH and
DHB was due in part to a higher sensitivity to contrast
increments in the surround region than in the center
region. Broadly speaking, a similar pattern of results was
also seen for the DL configuration. Overall, the qualitative
pattern of results across stimulus configurations was sim-
ilar for RFH and DHB (the area summation observers),
who were different from TSM (the no area summation
observer).

In the remainder of this section, we consider how the
results from Experiment 3 might be described within the
context of the model we have been discussing. Readers
concerned primarily with the main empirical results of
this paper could skip to the General discussion without
loss of continuity.

Model overview

There are numerous model configurations that we
might have constructed involving different assump-
tions about the number of detecting mechanisms and
the nature of the lateral interactions, and the present data
do little to guide or constrain these decisions. Never-
theless, we thought it natural to consider several variants
of at least one simple model as follows. In our most
general formulation, we suppose that the observer
integrates signal and pedestal contrast over the signal
region only, as suggested by Meese (2004), and according
to a fourth-root rule. We also suppose that the denomi-
nator consists of three contrast terms. One of these is a
self-suppressive term whose weight changes with stim-
ulus size. In a Fconstrained_ version of the model, it
remains proportional to the excitatory term ( just as in
Figure 1). In an Funconstrained_ version, it is multiplied
by a single free parameter + , when the size of the test
is greater than S. The two other contrast terms control
lateral interactions.
In one variant of our model, the lateral effects are

additive (e.g., inhibitory) and in another variant they are
subtractive (e.g., dis-inhibitory).

Numerator terms and fixed parameters

The model exponents were fixed at p ¼ 2:4 and q ¼ 2
as before. The excitatory weights for the three differ-
ent test stimuli were set according to Equation 8, where
area1 ¼ 1 for the small stimulus, area3 ¼ 9 for the large
stimulus, and area2 ¼ 8 for the doughnut stimulus. The ex-
citatory linear scaling parameter, Â, was set to 1. Specifi-
cally this gives

!1 ¼ 1;
!2 ¼ 8 p=4;
!3 ¼ 9 p=4:

There were no free parameters for this part of the
model.

The unconstrained model

There were three contrast terms in the denominator of
the gain control equation. They were self-suppression ("i),
a lateral interaction from the center on a test in the

Figure 8. Normalized contrast discrimination thresholds for five

different spatial configurations of test and mask stimuli (S = small,

L = large, and D = doughnut). Pedestal contrast was 20%.

Different shaded bars are for different observers. Error bars show

T1 SEM of six replications.
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surround region ("cs), and a lateral interaction from the
surround on a test in the center region ("sc). The weights
"cs and "sc were free parameters in the model. The self-
suppression term was set as follows:

"
1
¼ B̂ I !

1
;

"
2
¼ B̂ I !

2
I + ;

"
3
¼ B̂ I !

3
I + ;

where B̂ and + were free parameters in the model.
The contrast terms were combined to give the following

model equation:

resp c; i; cc; csð Þ ¼ !ic
p

1þ "ic
q þ "sccs

p þ "cscc
q ; ð13Þ

where cc and cs were center and surround contrasts in-
volved in the lateral interactions. These were determined by
the stimulus configuration as shown in Table 3. The pa-
rameter c was the contrast in the test region and i was the
index for the excitatory and self-suppressive weight pa-
rameters as described above (see Table 3). Strictly speak-
ing, the saturation constant (set to unity in Equation 13)
represented a degree of freedom for this experiment. But
as we were dealing with high contrast stimuli (a pedestal
contrast of 20%), its effect should be negligible, as it was
here.
The model has four free parameters in total (B̂; + ; "cs

and "sc).

The constrained model

In a constrained version of the model, the number of
free parameters was reduced to three by setting + ¼ 1.
This tests the hypothesis that the observed differences in
discrimination thresholds can be understood in terms of
lateral interactions alone.

Additive or subtractive lateral interactions
in the contrast gain pool?

We tested two variants of the model for each version
described above. In both variants, the term "i was

constrained to be Q0. In an additive variant, the terms
"sc and "cs were also Q0 and represent lateral suppression.
In a subtractive variant, the terms "sc and "cs were e0 and
represent lateral dis-inhibition, or contrast enhancement.

Model fits

The models were fit to each of the three observers’ data
using a downhill simplex algorithm to minimize the RMS
error of the fit (in decibels). The results for the con-
strained model described above (three free parameters)
are shown in the top row of Figure 9 (see Table 4 for
parameter values and RMS error). There are several
points. For all observers, the subtractive variant provided
better fits than the additive variant. For RFH and DHB,
the additive variant clearly failed to describe the data, but
the subtractive variant also has shortcomings. For RFH
and DHB, it overestimates sensitivity to SS and under-
estimates sensitivity to LL to such an extent that, contrary
to empirical observations, little or no area summation is
predicted. This means that within the framework of the
models considered here, the IDs cannot be understood in
terms of different lateral interactions alone.

Unconstrained model

In this model, + was a free parameter meaning that the
relation between self-suppression and area was not con-
strained to be the same as that between excitation and
area. For TSM, the best-fitting value was close to unity
(see Table 3), meaning that improvement in model
performance was marginal. For RFH and DHB, + was
markedly less than unity, and the performance of both
variants of the model improved substantially. For the
additive variant, however, the model was unable to
account for the degradation in performance produced by
adding a surround (SS vs. SL for RFH and DHB). Even
when fitting was restricted to the first three configura-
tions (SS, SL, and LL), the additive version failed to
distinguish between the SS and SL configurations for both
RFH and DHB (not shown). This is because the attenuat-
ing effects of the surround require the surround suppres-
sion weight ("sc) to be relatively large ["1 ¼ 0:22 and
"sc ¼ 3:03 for RFH and "1 ¼ 0:17 and "sc ¼ 0:91 for
DHB, when fit to SS and SL alone (not shown)]. But this
results in far too much suppression for the LL configura-
tion, where the larger excitatory weight provides insuffi-
cient compensation in the model. In short, the additive
version of Equation 13 simply cannot handle the mag-
nitude of both of these effects (SS vs. SL and SS vs. LL)
for either RFH or DHB.
It is noteworthy that the problem with the additive

variant (see above) did not arise in the Meese (2004)
study where a similar model was fit to dipper functions

SS SL LL DD DL

c C + $C C + $C C + $C C + $C C + $C

i 1 1 3 2 2

Cc 0 0 C + $C 0 C

Cs 0 C C + $C 0 0

Table 3. Contrast and parameter assignments for the models and

five stimulus configurations in Experiment 3. C is the pedestal

contrast and $C is the test contrast.
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for configurations similar to some of those used here (SS,
SL, and LL), although observer SK in that study was
qualitatively similar to RFH and DHB here. [The
parameters Swc; SwsðSLÞ, and SwsðLLÞ in model version

2B of that study are related to "1 ; "sc, and ("sc þ "3j"1),
respectively, in the present study.] Probably part of the
reason for this difference is that the largeYsmall area ratio
was much greater in Meese (2004) than in Experiment 3

Additive Subtractive

TSM RFH DHB TSM RFH DHB

Constrained

RMS error (dB) 1.104 3.999 1.708 0.403 1.386 1.066

" 0.167 0.182 0.150 0.157 0.168 0.138

"cs 0.000 0.001 0.011 j0.035 j0.032 j0.000
"sc 0.006 0.664 0.000 j0.000 j0.029 j0.012
+(fixed) 1 1 1 1 1 1

Unconstrained

RMS error (dB) 0.923 2.546 0.478 0.254 0.236 0.175

" 0.152 0.312 0.184 0.151 0.220 0.171

"cs 0.000 0.000 0.001 j0.033 j0.037 j0.002
"sc 0.001 0.000 0.000 j0.000 j0.031 j0.007
+ 1.137 0.511 0.694 1.075 0.681 0.745

Table 4. Free parameter values (to three decimal places) and goodness of fit for the four different model variants fit to the results from

Experiment 3.

Figure 9. Contrast discrimination thresholds (replotted from Figure 8) for three observers (different columns) and four different model

variants (different rows and different curves). The constrained and unconstrained model fits (3 and 4 free parameters, respectively) are

shown in the top and bottom rows (see Table 4 for model parameters). Solid (green) curves are for the additive model variant and dashed

(red) curves are for the subtractive model variant.
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here (by a factor of 8.5), and substantial lateral suppres-
sion (for the SL configuration) could be compensated by
the larger excitatory weight in the LL configuration in
Meese (2004). The SS versus LL effect was also less for
observer SK in that study than it was for RFH or DHB
here.
Returning to the present work, for the subtractive

variant of the unconstrained model, the model curves slid
nicely into place (compare the dashed, red curves for the
constrained and unconstrained models in Figure 9). How-
ever, with only one fewer free parameters than data points
for each observer, the fits could be fortuitous, and while
we feel confident in rejecting the additive models, at least
for RFH, the unconstrained subtractive model must re-
main a tentative proposal until it receives further direct
testing. Furthermore, it should be noted that the subtrac-
tive model variant was developed specifically for the high
contrast stimuli used here. It is clear that further develop-
ment would be required to handle stimuli that cause the
denominator of Equation 13 to become very small (result-
ing in extremely high contrast responses) or negative, as
could happen if the surround contrast was much higher
than the center contrast (due to the negative contrast term).
Finally, we note that the subtractive variant describes

the drop in performance produced by the surrounding
mask (SS vs. SL) for RFH and DHB, although the
surround diminishes the overall level of suppression for
the SL configuration in the model (i.e., the model causes
masking by contrast enhancement, not suppression).
Similar counterintuitive model behaviors have been noted
several times before (Bruce, Green, & Georgeson, 2003;
Chen & Tyler, 2002; Meese, 2004; Yu, Klein, & Levi,
2003). It is noteworthy though that to achieve the same
level of lateral masking (SS vs. SL), the strength of the
interaction is very much weaker when it is negative than
when it is positive (e.g., for RFH, "sc ¼ 3:03 from the text
above, or "sc ¼ j0:031 from Table 4).

General discussion

Summary of main results and model

We have investigated area summation at and above
detection threshold for 1 c/deg circular patches of grating
with retinal field sizes between 2.5 and 11.25 degrees. At
detection threshold, we confirmed the fourth-root summa-
tion-of-area rule that has been described many times
before (e.g., see Graham, 1989). Previous work (Legge &
Foley, 1980) found no summation of contrast when the
test stimulus was placed upon a pedestal whose size was
matched to the test, leading to the widespread view that
area summation is abolished well above threshold (e.g.,
McIlhagga & P..kkPnen, 1999; N.s.nen et al., 1998).

However, using a pedestal contrast of 20%, we found the
pattern of results varied across 11 observers. Most
observers showed little or no summation with area, but
this was not universal. For some observers, summation
was quite marked being even greater than that seen in the
detection case. However, for no observer did the contrast
discrimination data follow a fourth-root summation rule
over the range of stimulus sizes in which it was seen in
the detection experiment. These general observations did
not depend upon whether the experiment used a blocked
or interleaved design for stimulus area.
We describe all of the results in the context of a

contrast gain control model. On this model, the pattern of
excitatory weights across our range of stimulus sizes
follows a fourth-root law for all observers tested (subject
to log scaling by an accelerating nonlinearity, p), de-
scribing the good approximation of this rule at detection
threshold. However, the pattern of suppression in the
model is much less similar across observers, and this
describes the IDs seen in the discrimination data. For
some observers, suppression grows with approximately
the fourth-root of stimulus area (subject to the same
scaling as the excitatory weight), in which case behavior
in the discrimination task is as though there is little or no
summation of contrast. However, for other observers,
suppression grows more slowly than this, resulting in
contrast summation behavior that can reach or exceed
quadratic summation in the early part of the discrim-
ination function.

Alternative explanations and
possible confounds

One question is whether the observer differences truly
represent differences in sensory processes, or differences
in strategy in the discrimination task. If the variation in
discrimination thresholds is to be attributed to strategy,
then it must be one that would lead some observers to
perform least well for the smallest stimulus size. One
possibility is that observers allocated their attention to
stimulus regions away from the center of the display,
compromising performance for the smallest stimulus. This
is at least plausible in the interleaved designVperhaps the
larger stimulus patches draw attention away from the
centerVbut it seems very unlikely in the blocked design.
In this case, one would have to argue that an observer’s
ability to attend to the center of the display was com-
promised in the smallest size condition, even when he or
she knew that this would be the most appropriate strategy
for a block of 100 or so trials. This is difficult to reconcile
with conventional thinking in visual psychophysics.
Another way in which strategy might be important is if

the contrast response to the large stimulus was not
uniform. In this case, performance might depend upon
which part of the stimulus contrast judgements were being
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made. Clearly, we cannot rule out this possibility, but the
fact remains that for some observers there was a region
available in the large stimulus, which allowed perform-
ance to improve over that in the small stimulus, and this
invokes a sensory process. Another possibility along
similar lines is that multiple visual mechanisms are
involved. For example, the large patch might be processed
by multiple mechanisms with various sized regions of
integration, suppression, and other lateral interactions.
The observer is then faced with the problem of deciding
which mechanisms to use for the task. Perhaps some
observers (those that show area summation) are more
adept at selecting the more efficient mechanisms for the
larger stimuli, and that this is responsible for the IDs. In
this case, Equation 2 summarizes the net behavior of the
entire process of sensation and mechanism selection.
Other issues regarding the IDs here concern psycho-

physical experience and learning/practice (e.g., Adini,
Wilonsky, Haspel, Tsodyks, & Sagi, 2004; Yu, Klein, &
Levi, 2004). The first of these factors is certainly not
important for our results. TSM and RFH each have more
than 16 years experience of psychophysical observations.
Yet these two observers fall at the opposite extremes of
our range, showing no and substantial area summation for
contrast discrimination, respectively. We also think that
task/stimulus-specific learning is unlikely to be important
for our effect, at least in the medium term. TSM, RFH,
DHB, and PAA each began the study with about 400 trials
of practice on the main contrast discrimination task (using
the interleaved design). Subsequently, TSM showed little
or no area summation in the four out of four times he
performed the task (see Results and discussion). However,
RFH, DHB, and PAA showed the effect every time they
were tested (twice, three, and three times, respectively).
Of course, we cannot rule out the possibility that
continued testing might cause a change in the behavior
of one or more of these observers, but this does little to
explain away our results.
Another potentially confounding factor worth consider-

ing is that of eye movements. Observers were instructed
to fixate the center of the display, although we had no
formal method of monitoring this. In principle, eye
movements could move the stimulus away from the more
sensitive region of the fovea and such an effect would be
most severe for the smallest stimulus. So one possibility is
that those observers who showed area summation for
contrast discrimination were those who made eye move-
ments in this task and compromised their sensitivity to the
smallest stimulus. But (a) the detection data, which were
consistent across observers, do not suggest a rapid de-
cline in contrast sensitivity over the central region of
the visual field (at 1 c/deg); so (b) the eye movements
needed to produce the effect would have to be in the order
of a few degrees and in any case frequent; and (c) of the
three observers who showed the area effect several times
(RFH, PAA, and DHB), all were well motivated, one was

highly experienced (RFH), another was psychophysically
well-practiced throughout (PAA), and the other was
psychophysically experienced by the time he performed
Experiment 3 (DHB). We think it unlikely that all three of
these observers invalidated their data with frequent eye
movements.
Another possibility is that the critical difference

between the observers is some unknown factor that
strongly correlates with suppression. For example, there
is some evidence to suggest that lack of attention can
enhance the effects of surround suppression (Zenger,
Braun, & Koch, 2000) and that the presence of attention
can enhance lateral facilitation (Shani & Sagi, 2005),
although differences in task and stimulus design make
comparisons with the present study problematic. Never-
theless, perhaps those observers who show lower levels of
area summation for contrast discrimination were generally
less attentive than the other observers. But even if there
was an intermediate factor involved (such as attention),
this would not undermine our analysis, which simply
describes the latter part of this process (the differences in
suppression).

Individual differences

Our main empirical finding is that for some observers,
contrast discrimination is not invariant with stimulus size
(for a pedestal contrast of 20%). This contrasts with the
study of Legge and Foley (1980), which is widely cited as
showing no area summation for contrast discrimination.
Legge and Foley measured dipper functions for 2 c/deg
horizontal strips of grating with heights of 6 degrees and
widths of 0.75 and 6 degrees. Their data were presented
as the average of three observers (see Figure 1) and show
area summation for low contrast pedestals, but an absence
of area summation at higher contrasts. This general
observation was confirmed on two other observers (TSM
and PN) by Meese (2004) for 1 c/deg circular grating
patches with diameters of 2 and 17.5 degrees, and for the
average of two observers by Chirimuuta and Tolhurst
(2005) who used a 2.7 c/deg Gabor patch and a grating. It
is plausible that these observers had an arrangement of
visual parameters similar to that of TSM, for whom it was
shown again here that stimulus size has little or no effect
in the contrast discrimination task. Close inspection of the
data from the third observer (SK) from the Meese study, on
the other hand, does show a small amount of summation
(in the order of 2 dB) in the upper region of the dipper
function (at and above a mask contrast of 8%, or 18 dB),
consistent with the average level of summation seen here.
In another study, Bonneh and Sagi (1999) performed

contrast discrimination for circular patches of 12.5 c/deg
gratings presented with their centers 2.4 degrees into the
periphery. Direct comparisons with the main experiments
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from the present study are complicated by the facts that
different spatial frequencies were used and different re-
gions of the retina were stimulated as a function of area.
However, Bonneh and Sagi’s contrast discrimination func-
tions were not flat functions of stimulus area (deviations
were in the order of 3 dB) and they differed across their
two observers (see the circle symbols in their Figure 2).
It is difficult to judge whether these variations can be at-
tributed solely to measurement error, but they are not in-
consistent with the notion of IDs in suppression.
In a further study, Meese et al. (2001) compared contrast

discrimination thresholds for stimuli containing single and
multiple (177) Gabor patches with various spatial config-
urations (spatial frequency was 6.2 c/deg). For all three
observers (TSM, CBW, and RFH), they found that perfor-
mance was better in the multiple patch condition. ButV
and especially when only the results from the co-oriented
condition of Meese and Holmes (2002) are consideredV
the number effect was most substantial for RFH (10.6 dB),
smallest for TSM (2.4 dB), and intermediate for CBW
(4.1 dB). This is a similar pattern of IDs seen for the same
three observers in the current study (see Figure 3).
As mentioned in the Introduction, there are several

instances in which IDs have been found for surround
suppression when the surrounding mask and central test
patch have the same spatial frequency and orientation. In
a contrast-matching task, Cannon and Fullenkamp
(1991b) found that the effect of suppression from a
surround mask was consistently less (by about 3 dB) for
one of their observers than the other two, but only when
the mask was close to the test (see their Figure 5). Yu
et al. (2001) also found IDs in surround suppression in
contrast matches across their four observers (see their
Figure 2a) using a spatial frequency of 8 c/deg. When the
surround contrast was four times the center contrast, the
differences between observers were as much as 6 dB.
Cannon and Fullenkamp (1993) carried out a study
designed specifically to address IDs in surround effects
on contrast matching. Of particular note here, they found
large differences across 10 observers (in the order of T6
dB) when the surround and center regions were of the
same contrast (e.g., compare the 1X panels for observers
MM, MS, and DR in their Figures 3, 4, and 6). Most of
the Cannon and Fullenkamp study was conducted using a
spatial frequency of 8 c/deg, but IDs were also found for
two observers at 2 c/deg.

Sensory accounts

In the model above, IDs were ascribed to different
weights of suppression (Bi), but could variations in other
model parameters be responsible? The model parameters
on the numerator of Equation 2 are set by the detection
data, which leaves only the possibility that the exponent q
varies with stimulus size. This is not easily dismissed, and
a conservative position would state that the IDs in contrast

discrimination are due to IDs in suppression, arising from
variations across Bi and/or qi. But one consequence of
attributing the effects to q is that the exponent difference
( pjq) would also vary with stimulus size and this pre-
dicts that the dipper handles of contrast masking functions
should vary with stimulus size. The present data do not
address this, but we know of no evidence to suggest it is
so. Indeed, in the Meese (2004) study, IDs in contrast
masking functions were consistent with different patterns
in the parameter referred to here as Bi.
One natural interpretation of the suppression process

we have been discussing is inhibition. However, Legge
and Foley (1980) took a very different view. They attrib-
uted area summation at threshold to probability summa-
tion among independent detecting mechanisms (see
Appendix) and the loss of summation above threshold to
a loss of independence due to correlated noise. Our results
do not discount this possibility and could be reinterpreted
as IDs in the extent to which noise becomes correlated
above threshold.
Yet another possible interpretation of Bi is that it does

not interfere with the signal to noise ratio by changing the
signal level (through suppression), but achieves an equiva-
lent outcome (for detection and discrimination) by changing
the noise level. If noise is more severe at higher con-
trasts, as would be the case if there were a multiplicative
noise component (see Chirimuuta & Tolhurst, 2005;
McIlhagga & P..kkPnen, 1999), then IDs in Bi might
reflect individual variations of noise with stimulus size.

Minkowski summation

Our gain control model of summation includes a
weighting factor (!i) applied to the excitatory contrast
term as a function of stimulus size (i). Another form of
summation, widely used in the spatial vision literature, is
Minkowski summation, where summation over j ¼ 1 to n
variables (v) is achieved as follows:

Minkowskisum¼ð~
j

jv
j
jkÞ1=k

; ð14Þ

where k controls the form of summation. It is possible to
recast the present model this way, where Minkowski sum-
mation across area (Graham, 1989; Meese & Williams,
2000; Robson & Graham, 1981), replaces our area sum-
mation parameter !i, and the free parameters are recalcu-
lated for subscript j (different stimulus regions) instead of
subscript i (different stimulus sizes). But what part of the
model should be equated with vj in Equation 14? In the
Appendix, we show that equating vj with cp is identical to
the current model when the Minkowski exponent k ¼ 4=p.
We also show that equating vj with either resp or respdif f is
plausible.
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Conclusions

Consistent with much previous work, we find that a fourth-
root summation rule provides a good description of area
summation at contrast detection threshold for 1 c/deg patches
of grating. This provides a direct indication of the weight of
excitation subject to scaling (on log axes) by an excitatory
response exponent p. Also consistent with earlier conclu-
sions, we find that the fourth-root summation rule does not
extend to contrast discrimination. However, we do find a
highly significant size effect for contrast discrimination
across our group of 11 observers. This has probably been
missed in previous studies because contrast discrimina-
tion data (including ours) tend to be noisy, the average
effect is small (about a factor of 1.25, or 2 dB), and the
effect is not present for all observers. While we cannot
rule out nonsensory (e.g., strategy based) explanations of
our data, there is nothing that directs us to this inter-
pretation. Instead, we describe the effects in terms of a
contrast gain control equation. On this view, the area sum-
mation function for contrast discrimination does not reveal
the excitatory summation process but provides information
about a suppressive process. For all observers, the weight
of suppression grows with stimulus size, but for many it
does not keep pace with the weight of excitation. The IDs
seen in this study suggest that suppression not only varies
with stimulus size but also across observers.

Appendix

Here we consider the relation between the model used in the
main body of the paper and various model for-
mulations using Minkowski summation. The purpose is
to show that our own descriptive model, which uses exci-
tatory weights indexed by area (Ai), is largely consistent
with other formulations where summation is achieved us-
ing a Minkowski metric. We do this by replacing Ai with
Minkowski summation (in three different ways) and show
that the models are either identical (for detection) or very
similar (for discrimination).
The stimulus response for the model used in this paper

is Equation 2, which is repeated here for clarity:

respi cð Þ ¼ !ic
p

1þ "ic
q
; ðA1Þ

where i is the index for stimulus size (here, i ¼ 1 to 4).
We also repeat that Minkowski summation of j ¼ 1 to

n variables (v) is achieved as follows:

Minkowskisum ¼ ð~
j

jvjjkÞ1=k

; ðA2Þ

where k controls the form of summation.

Minkowski summation of a single
interval response

From the main body of the paper, Equation A1 can be
rewritten as

respi cð Þ ¼ ÂAic
p

1þ "ic
q
: ðA3Þ

Eradicating Ai and applying Minkowski summation to
the response to a single stimulus interval, we have

respi cð Þ ¼ ½ ~
j � areai

j Âcp

1þ 1jcq
jk�1=k; ðA4Þ

where j is the elementary unit of size, areai is the ith stim-
ulus size, and 1j replaces "i. This gives us an alternative
formulation against which to compare our own model.

Contrast detection

For contrast detection, we use the same approximation
as in the main body of the paper. Thus, Equation A4
becomes

respiðcÞ , Â½ ~
j � areai

ckp�1=k: ðA5Þ

This can be rewritten as

respi cð Þ , Â
areai

area1

1=k
cp: ðA6Þ

This is the same as the model in the main body of the
paper (Equations 4 and 8), when k ¼ 4=p.

Contrast discrimination

For contrast discrimination, we use the same approximation
as in the main body of the paper. Thus, Equation A4 becomes

respi cð Þ , Â½ ~
j � area1

ð ckðpjqÞ

j1jj
k
Þ�1=k: ðA7Þ

This can be rewritten as

respiðcÞ , ÂcðpjqÞ½ ~
j � areai

j1jjjk�1=k; ðA8Þ

which is the same as

respiðcÞ , ÂcðpjqÞ1¶i; ðA9Þ
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where

1¶i ¼ ½ ~
j � areai

j1jj
jk�1=k: ðA10Þ

Thus, a comparison of Equations A9 and 9 (in the main
body of the paper) shows that the two formulations are the
same when

1¶i ¼
Ai

"i
: ðA11Þ

This is equivalent to saying

1

B̂1¶i
¼ Bi

Ai

: ðA12Þ

Equation A10 cannot decrease as a function of i, which
means that the left-hand side of Equation A12 can never
be an increasing function of i. This is at odds with the
right-hand side of Equation A12, which from Figure 3
(right-hand ordinate) does increase slightly for some
observers over some regions of the function. However,
the discrepancies are minor, and simulations with this
version of the model (not shown) produce good fits to the
data suggesting that this is a viable formulation of the
model.
Another possibility is to lift the restriction that the sign

of 1i is not preserved. By rewriting j1ij as signð1iÞj1ij,
where signð1iÞ ¼ 1 if 1i Q 0, and signð1iÞ ¼ j1 if 1i G 0,
then Equation A9 can fit the data exactly. As this
formulation implies negative contributions in the summa-
tion process, it violates the conventional interpretation
of Minkowski summation in terms of nonlinear sum-
mation among independent neural responses, which are
always positive. However, it could survive as an
abstract description of the consequences of nonlinear
suppressive interactions between the elementary units in
question.

Minkowski summation of response difference

In this formulation, Minkowski summation is applied to the
response difference between the mask and mask + test in-
tervals (e.g., Watson & Solomon, 1997). From (Equations 2,
3, and A2), we proceed as before by replacing Ai with the
Minkowski sum to give

½ ~
j � areai

j ÂðC þ $CÞp

1þ 1jðC þ $CÞq j
ÂCp

1þ 1jC
qj

k�1=k ¼ 1; ðA13Þ

which is another formulation we wish to compare to
our own.

Contrast detection

For contrast detection, C ¼ 0 and $C ¼ c. Therefore,
using the same approximation as before, Equation A13
reduces to

Â½ ~
j � areai

c
kp�1=k , 1: ðA14Þ

This is the same as Equation A5, with respstim ¼ 1, and
therefore extends the earlier proof to the formulation con-
sidered here.

Contrast discrimination

Using the same approximation for contrast discrim-
ination as before, Equation A13 becomes

Â½ ~
j � areai

jðC þ $CÞpjq
jCpjq

1j
jk�1=k , 1; ðA15Þ

which simplifies to

Â½ðC þ $CÞpjq
jCpjq�½ ~

j � areai

j1jjjk�1=k , 1; ðA16Þ

which rearranges to

ÂðC þ $CÞpjq½ ~
j � areai

j1jjjk�1=kjÂC pjq½ ~
j � areai

j1jjjk�1=k , 1:

ðA17Þ

Both parts of the left-hand side of Equation A17 have
the same form as Equation A8, which extends the previous
proof to the formulation considered here with the same
caveat as before.

Minkowski summation of numerator response

In this novel formulation, Ai is replaced by Minkowski
summation of the contrast term on the numerator of
Equation A3. With k ¼ 4=p, this preserves the fourth-
root summation behavior of the numerator (Equation 8)
and leaves the rest of the model intact. It is there-
fore identical to the model in the main body of this paper.
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Footnotes

1To perform a balanced ANOVA, it was necessary
to omit some of our data from the analysis. Most
observers performed at least six replications of each
condition (see Table 2). Therefore, we were able to
include the last six thresholds measured for 10 of our 11
observers in the analysis. This resulted in 64 of the 304
estimates of contrast discrimination threshold being
omitted. Most of the omitted data were from two
observers (JLB and PH).

2We justified this simplification by comparing fits of
the simplified model (Equation 4) with the full model
(Equation 2) to the detection data, where the values of "i
in the full model were set by the discrimination data, and
the values of Ai were constrained as described below. The
differences in the fits of the two versions of the model
were negligible (e.g., in Figure 2, deviations were be-
tween j0.13 and 0.15 dB for RFH and even less for TSM).
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