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Summary 

The injection of randan dither to suppress limit cycle 
oscillations in second-order direct form digital filter sections 
is discussed. Three types of dither signal are used: uniformly 
distributed random dither, binary randan dither and bandstop dither. 
All the limit cycles in the second-order filter sections can be 
suppressed by the injection of any one of three dither signals. 
No remaining noise appears in the output fran the filter in the 
zero-input condition. 

Experimental comparisons are made of the average time taken 
to suppress limit cycles and of the increase in output noise 
caused by the dither. With binary random dither,the time to suppress 
a limit cycle is comparable with the time for zero-input response of 
a linear filter to decay below the quantization threshold. Bandstop 
dither has the advantage to suppress limit cycles about as quickly 
as binary dither yet it causes an increase in output noise of less 
than 2 GB. 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTORY REMARKS 

When a digital filter is implemented either by software 

or by hardware, numbers are ultimately stored in finite- 

length registers. Consequently, coefficients and signal 

values must be quantized so that they can be stored. In 

this circumstance,errors due to finite precision in the 

representation of numbers are unavoidable. The quantization 

characteristic is a nonlinearity which gives rise to 

nonlinear effects such as limit cycle oscillation as well 

as approximation in a filter realization(!"?), Limit cycle 

oscillations are undesirable, except in the digital 

oscillator applications. 

The suppression of limit cycle oscillation has been 

discussed by many authors ‘1e3+415) | Many methods of limit 

cycle suppression by the use of dither have been proposed. 

Although in most cases, the methods reported are effective 

for limit cycle suppression they have some disadvantages. 

In some cases, not all limit cycles are suppressed. In 

other cases, even the zero-input limit cycle oscillation 

has been suppressed there is still some noise at the filter 

output. This research is mainly concerned with the limit 

cycle suppressions by the injection of somewhat different 
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dither signals which have no disadvantages mentioned above. 

This dissertation first contains a brief review of 

relevant information on digital filter limit cycles and 

discusses the previous work on the use of dither for their 

suppression. Secondly, it shows how a random dither signal 

can be used to suppress limit cycles and yet, in the 

steady state, a zero valued output results when the input 

signal is zero. Then, the principal considerations in the 

dither signal design are introduced. Three types of dither 

signal are proposed. Extensive simulations have verified 

that the limit cycles in the second-order sections can be 

suppressed by the use of any one of the three types of 

dither and once the zero-input limit cycle has been 

suppressed the output of the filter remains zero. Two 

specifications, the time needed to stabilise the filter 

and the increase in output noise by the dither, are 

investigated, 

At least four factors have to be considered when 

implementing a filter. They are:- 

(1) Selection of a specific configuration for the 

filter. 

(2) Choice of the arithmetic mode, i.e., the number 

system to be used. 

(3) Choice of the type of quantization, and 
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(4) Specification of the number of significant digits. 

Limit cycle oscillations may occur in fixed-point 

implementations of recursive digital filters. A recursive 

digital filter is defined as a filter in which the present 

output depends on the present input and past inputs and 

outputs, while for a nonrecursive filter the output depends 

on past and present inputs only. Most digital filters are 

of the fixed-point variety because floating-point arithmetic 

involves more hardware. Also, most filters are recursive 

because for the same degree of approximation, recursive 

filters are generally simpler than nonrecursive forms. A 

cascade or parallel form composed of first- and second-order 

subfilters is preferable over any direct realization of 

a higher order digital filter. Thus, in practice, a higher 

order filter is obtained by combining second-order sections. 

For these reasons, in this dissertation only the fixed-point 

implementations of second-order recursive digital filter 

sections are considered. These filter sections normally 

include feedforward coefficients, as well as feedback 

coefficients. The feedforward coefficients are not 

considered in this dissertation because they are not 

relevant to the limit cycle suppression problem. 

Throughout the paper, it is assumed that quantization is 

performed by rounding. 

Many detailed studies of limit cycles in digital 

filters have been made. A comprehensive summary of this 
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work is given in Reference 6. Some authors have developed 

bounds on the amplitude of the limit cycle oscillations 

in terms of the filter section feedback coefficient values 

A and BB) 1er?), 
Other work has determined the range of 

values of A and B for which various types of limit cycle 

may exist (10) , Some important research about limit 

cycle oscillations is also published in two special issues 

of the IEEE Transactions ‘1+72) 

1.2 METHODS FOR LIMIT CYCLE OSCILLATION SUPPRESSION 

In addition to the injection of the dither there are 

several other methods for limit cycle suppression. In 

order to understand the application of the proposed methods 

in this dissertation it is necessary to introduce other 

methods of limit cycle suppression. In this section the 

methods for limit cycle suppression will be discussed 

briefly. 

1. Increasing the Wordlength of the Signal Representation 

in the Filter Sections 

Because the amplitude of limit cycle oscillation in 

the digital filter is proportional to the quantization 

step q it will be decreased by the reduction of the 

quantization step. For a fixed signal dynamic range, each 

bit increase in the wordlength of the signal representation 

will make the quantization step be half smaller. In other 
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words, it will suppress the limit cycle oscillation by 

6 dB. If the wordlength in the filters can be increased 

sufficiently the limit cycle oscillations can be ignored 

but, of course, still cannot be eliminated totally. As 

will be seen later, in some cases, the amplitude of limit 

cycle may be much bigger (one hundred q, for example) 

than the quantization step, thus a big extra bit is needed. 

This extra bit requirement in wordlength will increase the 

complexity and the cost of the digital filters very much. 

It is worth noting that because the zero-input limit 

cycle oscillation is a correlated noise, it is even more 

harmful than normal noise. In some applications, the 

zero-input limit cycles may be not tolerable. Therefore, 

a more efficient method of limit cycle suppression is 

needed in practice. 

2. Using Wave Digital Filters 

Fettweis proposed some digital filter structures 

related to classical filter networks called wave digital 

filters (wor) (13), Fettweis and Meerkdétter have been 

able to prove that the absence of zero-input limit cycles 

can be guaranteed in WDF if the ideal linear counterpart 

is pseudopassive and if the nonlinear modifications required 

by the finite arithmetic are carried out in such a way 

that the absolute values of nonlinear component output 

is less than or equal to that of the linear counterpart (14,15) | 

This condition is satisfied by the characteristic of a 

oe



magnitdue truncation quantizer. This means that it is 

possible to design a wave digital filter of arbitrary 

order, without limit cycles. 

Although WDF may be free of limit cycle oscillations, 

second-order direct form sections are likely to remain in 

use forsome time. This is partly because of the investment 

that has been made in implementing such filter sections 

(16) as integrated circuits and also because filters using 

a cascade of second-order sections are easy to design. 

3. Using Controlled Quantization 

Controlled quantization has been proposea ‘17? whereby 

the signal is quantized to a larger or a smailer value 

depending on the state variables in the filter. With a 

proper design of such a" controlled rounding" arithmetic, 

the most relevant limit cycles in digital filters can be 

suppressed. An algorithm has been given which guarantees 

the absence of limit cycles of periods larger than two. 

The disadvantages of this method are, first, some constant 

or alternating limit cycles still cannot be suppressed, 

second, it seems a bit complicated to be implemented. 

4. Using Multirate Digital Filter with Periodically Varying 

Coefficients 

Wong and King ‘1®) have shown that a multirate digital 

filter with periodically varying coefficients is capable 

of suppressing limit cycle oscillation in the output 
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completely, provided that the coefficients are suitably 

chosen. 

The disadvantage of this method is that it is 

complicated for complementing a simple second-order filter 

section and before the method is used, one has to do a 

lot of experiments so can choose the coefficients of 

multirate filter suitably. Because a different second- 

order filter section has different coefficients of the 

multirate filter which has no limit cycle. Perhaps that 

is why this method has not been applied widely yet. 

5. Injection of Dither Signal 

For many years, it has been known that limit cycle 

oscillations in continuous-time nonlinear feedback systems 

can often be suppressed by the injection of a dither 

signal ‘1?7°), A digital filter is a discrete-time, 

nonlinear system and some attention has been paid to the 

possibility of suppressing limit cylce oscillations in 

digital filters by the use of dither. Several methods 

for limit cycle suppression have been proposed (977 7>) , 

These methods will be reviewed and discussed in 

Chapter 6. In this research, somewhat different dither 

signals have been used. The methods used have no 

disadvantages of the methods proposed before. 

The essential disadvantage of limit cycle suppression 

by the injection of a small random dither signal is that 
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it introduces a new random noise in the output. But as 

will be seen later, by the use of the bandstop dither 

which is a new type of dither used in our research the 

increase in output noise is very small. 

1.3 PREVIEW OF RESULTS 

From the remarks of the preceding section it follows 

that the limit cycle oscillations occurring in fixed-point 

implementation of recursive second-order digital filters 

can be suppressed by the injection of dither signal. In 

this section, the major results of the following chapters 

are previewed. 

In Chapter 2, the main properties of the basic sections 

are given. This information is necessary for understanding 

the following chapters. It is shown that the direct form 

is inferior to both the cascade and parallel form when the 

effect of coefficient quantization errors and roundoff 

noise after arithmetic operations are considered. The 

first- and second-order filters are basic building blocks 

from which all higher order systems can be synthesized. 

The zeros of the digital filters do not change the nature 

of the limit cycle but influence the magnitude of the 

limit cycle amplitude. Therefore, the basic section which 

has two zeros at the origin on the z-plane is considered 

as a basic configuration in this dissertation. 
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In section 2.1, the stable region of the linear 

second-order filter section (without quantization) is 

derived which is bounded by a triangle on the parameter 

plane. 

In section 2.2, two types of quantization, magnitude- 

truncation and roundoff are discussed. It shows in this 

section that in the first-order filter with magnitude- 

truncation quantizer, no limit cycle can be sustained, 

but with rounding quantizer, the constant or alternating 

limit cycles can exist. With rounding quantizer, variety 

limit cycles may exist in the second-order section. In 

the two quantizer version with magnitude-truncation 

Quantization only limit cycles of periods 1 and 2 can be 

sustained. In the one quantizer version with magnitude- 

truncation quantization limit cycles will be possible only 

for very few values of A and B on the parameter plane. 

The magnitude-truncation quantization has a certain 

advantage over roundoff with respect to the occurrence 

of limit cycles but its quantization error is bigger than 

that with roundoff quantization. 

In Chapter 3, the main properties of zero-input limit 

cycles in the second-order filter sections are discussed. 

It shows that the second-order filter sections with 

multiplication coefficients B for which |B|>0.5 will 

always exhibit limit cycles. The existing conditions of 

limit cylces in the second-order filter section with one 
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rounding quantizer are derived in the appendix. Three 

different types of amplitude bound for limit cycles in 

the second-order filter sections are introduced and 

discussed, The frequency expression of the impulse response 

in linear second-order filter can be used as an approximation 

of the frequency of limit cycles. Especially, when the poles 

of the filter close to the unit circle in the z-plane the 

frequency estimate becomes more accurate. 

The proposed method to suppress the limit cycles in 

the second-order filter sections is described in Chapter 4. 

It shows that the use of the dither may cause the filter 

to leave the limit cycles and make the origin state (0,0) 

on the state plane be a branch point. Once “the origin 

state has been reached the output of the filter remains zero 

as long as the input signal is zero. These properties of 

the proposed method support us to speculate that the dither 

will suppress all limit cycles in any second-order filter 

sections eventually. 

In Chapter 5, the necessity of the limit cycle 

suppression in the second-order filter sections is proved, 

though partly,on the experimental basis. Because the 

quantization nonlinearities occurring in digital filters 

are highly discontinuous functions, it is difficult to prove 

strictly the stabilisation. But for a specified pair of 

coefficient values A and B, it is possible to verify strictly 

whether or not the dither will stabilise the filter. In this 
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chapter, the verification procedures are described with an 

example. By the transition matrix, the maximum transition 

time needed for transition from any limit cycle to the 

origin state can be calculated. The result is verified by 

simulation. 

The previous work on the use of dither for limit cycle 

suppression is first reviewed and discussed in Chapter 6. 

Then, the principal considerations in the dither signal 

design are described. The dither signal should be a random 

signal distributed in the open range (- Z, 2). Three types 

of dither signal are derived from the principal considerations 

of the dither signal design. They are uniformly distributed 

random dither, binary random dither and bandstop dither. 

In Chapter 7, the experimental results are introduced. 

Extensive simulations have verified that all the limit cycles 

in the second-order filter sections can be suppressed by 

the use of any one of the three types of dither. There is 

no remaining noise at the output of filter with zero-input 

signal. 

When dither signal is used to stabilise a digital 

filter, two specifications are of particular interest. 

One of these is the length of time taken for the filter, 

with zero input, to reach the state plane origin from a 

limit cycle. The other specification of interest is the 

increase in the output noise from the filter above the 
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quantization noise which is present when nonzero input 

signals are applied without dither. 

As far as the transition time is concerned, in the 

three types of dither, the preferred order is the binary 

random dither, bandstop dither and uniform dither. The 

mean times for the former two types of dither to effect 

stabilisation are comparable with the decay time for 

the strictly linear filter. + 

As far as the increase in output noise is concerned, 

in the three types of dither, the order of preference is 

the bandstop dither, the uniform random dither and the 

binary random dither. The increase in output noise by 

the bandstop dither when an input signal is present is 

small - equivalent to only a small fraction of one bit 

of the filter wordlength. 

There have been a number of integrated circuit 

implementation of second-order direct form digital 

filter sections, in which large investments have been 

made. The results in this paper should be useful when 

these integrated circuits needed to be used for 

applications where limit cycles are not tolerable. 

The main conclusions about the research are given in 

Chapter 8. This chapter concludes with an indication of 

those problems which remain subject to further research. 
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The major results of this research have been 

presented in Saraga Memorial Colloquium on Electronic 

(45) Filters One paper about this research has been 

prepared for publication ‘4° , 
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CHAPTER 2 

BASIC FILTER SECTIONS 

This chapter provides a general discussion of the 

first- and second-order digital filters which are basic 

building blocks in constructing higher-order digital 

filters. The information in this chapter is necessary 

for understanding the following chapters. The conclusions 

in this chapter will be used later. 

Kaiser (22) has shown that the high order direct form 

digital filter should be avoided because of coefficient 

sensitivity, i.e.,the effect of change of numerical 

coefficients of the filter causes large variations in the 

Ce, have filter response. Also, Knowles and Edwards 

concluded that the direct form is inferior to both the 

cascade and parallel form when the effect of roundoff 

errors after arithmetic operations is considered. Ina 

paper by Edwards, Bradley and Knowles (23) , the above 

mentioned conclusions have been verified using the llth 

order elliptical bandstop filter. Taking scaling into 

account to assure the proper dynamic range for the filter, 

the ratio of the rms noise level due to roundoff after 

multiplication for the direct form, to the rms noise of 

the parallel or the cascade form, was about lope si: 

The second-order section has been chosen as a basic 
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block because this is the minimum order for realising a 

pair of complex conjugate roots such that the polynomials 

of the numerator and denominator of the transfer function 

have real coefficients. Real roots can be realised in 

pairs also, except for the case where the order of the 

filter is odd, in which case use of a first-order 

section becomes necessary. Therefore, the first- and 

second-order filters are basic building. blocks from which 

all higher order systems canbe synthesized. In addition, 

Hess ‘24) has shown that the zeros of a filter are not to 

change the nature of the limit cycle, but to influence the 

magnitude of the limit cycle amplitude. It is for these 

reasons that the study of limit eycles and their suppression 

in discrete-time systems will be restricted to the second- 

order basic section which has two zeros at the origin on 

the z-plane. The first-order filter can be considered as 

a degenerated case of the second-order filter. In this 

thesis, the first- and the second-order filter which has 

two zeros at the origin on the z-plane are called basic 

filter sections or basic sections. 

First, we assume that both the values of sequences 

and the coefficients of linear filter have infinite bit 

precision. Later on, we shall discuss the finite word 

length effects in digital filters where the amplitudes 

are quantized to some specified accuracy. 

=15=



2.1 LINEAR BASIC FILTER SECTIONS 

As mentioned above, in this section both the sample 

values of sequences and the coefficients of linear filter 

are assumed to have infinite bit precision. 

1. The First-Order Filter Section 

Fig. 1 shows the first-order filter section. The 

corresponding difference equation is 

¥(n) = X(n) - AY(n-1) (1) 

where X(n) represents the input sequence and Y(n) denotes 

the filter output signal after n sampling intervals each 

with a duration of sampling period T+ % is the coefficient 

value of the filter. 

Its transfer function is 

H(z) = +4 (2) 
1+Az” 

The impulse response, h(n), is readily obtained as 

(-a)” n20 
h(n) = { 

0 n<O iS) 

Substituting the equation 

z=e® 

into Eqn. (2) the frequency response of the first-order 

filter can be obtained as 

-16-



Y(n) 

  

x(n) 
  

  

      

      

Fig. 1 Block diagram of a first-order digital filter 

==



ih u(e®) = —+_ 
1+aeJ% 

(4) 

Representing H(e?%) as 

¢ : 57H (e2”) 
H(eJ”) = |H(e!”)| e 

gives 

|n(e?*) | = —_~+—__, (5) 
(a+a7+2a cosw) 

fates”) =) Asinw 
oo 1+A cosw 

= =-1 sinw 
Re cosas se) 

Fig. 2'25) shows plots of log|H(e!”)| and 7H(e2") for 

various values of A. As can be seen from this figure, 

the first-order filter has a lowpass characteristic. 

The zero and pole of the transfer function can be 

obtained from Eqn (2). The zero is at the origin on the 

z-plane. And the pole can be determined by p=-A which is 

on the real axis of the z-plane. Fig. 3 shows the positions 

of the zero and pole in the z-plane. 

A linear, time-invariant system is said to be stable 

if every bounded input produces a bounded output. A 

necessary and sufficient condition on the impulse response 

for stability is 
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Fig.2 Frequency response of several first-order filters 
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Z-plane 

  

  
bos i 

Oo shows the position of zero. 

x shows the position of pole when A<O 

A shows the position of pole when A>0O 

Fig. 3 Pole and zero locations for first-order filters.



cy 

zr |hin)| < © (7) 
. n=-0 

According to Eqn. (7) from Eqn. (3) we know that the 

stable condition for the first-order filter section is 

jal <2 (8) 

Fig. 4 shows the impulse responses. when |A|>1 and 

|A|<l respectively. 

For the first-order filter with |A|<l under the zero- 

input condition from any initial state the response of the 

filter will eventually tend to zero. For example, suppose 

A=-0.875 and the initial condition Y(-1) = 8, its zero- 

  

  

  

input response is shown in the following table. 

n ° x 2 3 4 5 6 

Y¥(n) |} 8 7 6.125 | 5.359 | 4.689 | 4.103 | 3.590 

n 7 8 9 lo 11 12 13 
  

Y(n) 3.142 | 2.749 | 2.405 | 2.105 | 1.842 | 1.611 | 1.410 
  

  

Y(n) 1,234 | 1.079 | 0.945 | 0.826 | 0.723 | 0.633 | 0.554 
  

                  ¥(m) | 0.484 | 0.424 tee 0.038 
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2. Second-Order Filter Section 

Fig. 5 shows the block diagram of the second-order 

basic filter section. The corresponding difference 

equation may be written in the form 

Y¥(n) = X(n)-AY (n-1)-ByY (n-2) (9) 

and its transfer function is 

H(z) = 4, (10) 
14Az “+Bz~ 

If we assume the initial conditions Y(-1)=0 and y(-2)=0, 

then the impulse response is readily shown to be one of 

two types. 

TYPE 1 

If the poles hoth are real (but not equal to each 

other) ,then 

h(n) = a, (p)" + a5 (p5)" (11) 

where Py, and Py are real poles and %11°Gp are constant. 

TYPE 2 

If the poles are conjugate complex, then 
n 

h(n) = sipg_sin[(nt1)6] (12)   

where r = /B and 6 = arc cos —& 
2vB 

iD om



(Gis ca aa ae ay CD) 

output 

  

    
          

  

  

  
Fig. 5 Block diagram of a second-order basic filter section. 
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The frequency expression can be written as 

are cos(- +) (13) 
s 2vB 

€ " 
fa

le
 

For B=1, the impulse response is a sinusoid with constant 

amplitude and frequency 

  

Type 1 represents two first-order systems, and the frequency 

response of the first-order section has been considered 

before. 

The frequency response corresponding to Type 2 can 

be written as 

H(e2”) = Z = (14) 
1-2rcosde J%+r 

2.7254 

The log magnitude and phase response of second-order 

systems corresponding to a fixed value of 9 (5) and varying 

6 (25) xr, are shown in Fig. + From these plots it is clear 

that a second-order system represents a simple digital 

resonator. 

The complex poles are readily obtained from Eqn. (10) 

-atva?—4B 
Piao ste aeee 2) 

The existing condition of complex poles is 

2 
a?-4B <o or Be 
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Fig. 6 Frequency response of several second-order filters 
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which implies 

B>0O, (16) 

Fig. 7 shows the positions of the zeros and poles of the 

second-order filter section. 

For the comparison of the time needed for limit cycle 

suppression , in a later chapter, the zero-input decay 

response of the linear second-order filter with specified 

initial conditions is needed. This response can be obtained 

by using state-space techniques {2®) | Consider a filter 

F. in which 
° 

N 

Y(n) = = a,X(n-i) - 
i=o i I

n
g
 

age) i (17) 

Then the Nth-order filter can be represented by the system 

q(n+1) = A q(n) + BX(n) (18) 

Y(n) = € q(n) + Dx(n) (19) 

where A, B, C and D are the matrices defined as follows: 

OL = 6 ses0 0 | 

Oe On mie 50%, 0 

(20) 

PI
 

wt



2-plane 

  a 
A 

Fig. 7 Pole and zero locations for a second-order filter. 
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° 

B=|. (21) 

° 

a 

C= [C, Cy ----- G ] : (22) 

where 

Ce tn Foon 

Coe ane emico anal 

CNNeie acc 

and 

D= [ag] (23) 

The state matrix, q(n+l), consists of N auxiliary 

variables qi), Gp (1) ,.++dy (1) which are called state 

variables. 

q, (ntl) 

Qo (n+1) 

q(ntl) = - (24) 
Gy_ (n+1) 

dy (+1) 
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A second-order basic filter section is characterised by 

Y(n) = Xm) = AY (i=1)) = BY (m=2) 

It can be verified that in the second-order section case the 

matrices are 

  

“k ° 
B= (26) 

1 

  

c= [+B -a] (27) 

and 

Die) (28) 

For a zero-input second-order section, let the initial 

state be Y(-1) and Y(-2). 

Then 

Y(2) 
gton = (29) 

Y(-1) 

and the input 

x(K)S=n0 K=O ln2 jean, ted



Borin = 07.17 25 2.8), new Eqn. (18) gives 

qd) =A q(O) 

q(2) =A q(Q) 

q(3) =A q(2) 

Hence 

2   

  

    

qin) =A g(o) : (30) 

From Eqn. (19) it is clear than 

¥(n) = @ A" Go) 

or 

O Flys [xe2) 
Y¥(n) = [-B -aj | | | (31) 

B -A Vita 2) 

If the coefficient values of the second-order section A, B 

and the initial condition Y(-1), Y(-2) are known, for any n, 

the response of the filter can be obtained from the above 

equation. But as can be seen when n becomes large the 

calculating of Y(n) is rather troublesome. The convenient 

way to get Y(n), the zero-input response of the second-order 

-3]-



filter section, is to simulate the section by the use of 

a small program. 

Now let us derive the stable condition of a linear 

second-order section which is relative to the existing 

condition of the limit cycles in the nonlinear counterpart. 

The second-order filter section as shown in Fig. 5 Le) a 

closed-loop system. As mentioned before, its closed-loop 

transfer function H(z) can be written as 

i es 
BG) THEGT ~ Tag Tepe? i 

where G(z) = az t4B27? is its open-loop transfer function. 

According to the Nyquist criterion, the closed-loop 

system will be stable if the point (-1,0) is not 

encircled by the polar plot of G(jw) for -~<w<, 

The frequency response of the open-loop transfer 

function G(jw) can be achieved by letting z=exp (j27£T.) 

where a is the sampling period. 

Hence, 

G (jw) G(z) j2ntt, 
z=e 

Aexp (-j27fT.) oe Bexp (-j4m£T.) (33) 

-32-



Let 2nfT. = y , Eqn, (33) becomes 

G(y) W Aexp (-jy) +Bexp (-j2y) 
W Acos7+Bcos2y-j (Asiny+Bsin2y) (34) 

In order to check whether the G(jw) encircles the 

point (-1,0), it is enough to check whether the 

intersections of G(jw) with the real ate lie on the right 

of the point (-1,0). If all the intersections are on the 

right of the point (-1,0) the closed-loop system will be 

stable. These intersections can be found by letting the 

imaginary part of Eqn, (34) be equal to zero. 

ImG(y) = -(Asiny+Bsin2y) 

= -siny (A+2Bcosy) Nei) 

= 0 

Eqn, (35) leads to two equations 

siny = 0 (36) 

A+2Bcos y= 0 (37) 

There may be three intersections: 

(A) y = 0, corresponding to f=0 condition. 

The real intersection is 

Giy)|. = ats (38) 
¥=90 

This real intersection will be on the right of the 
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(B) 

(C) 

intersections lie on the right of the point (-1,0). 

point (-1,0), 

if A+B> -1 (38) 

or 1+A+B> O (39) 

Y = 7 , corresponding to f-Qua)es 

The real intersection is 

G(y) = -A+B (40) 
yan 

This real intersection will be on the right of the 

point (=170)!, 

Lf -At+B >-1 

or 1-A+B> O (41) 

cosy =- a corresponding to periodic oscillation 

The real intersection is 

Gly) Alle “es? (42) 
Y= arc cos(- 5B) 

This real intersection will be on the right of the 

point (=1,0);, 

af =—Be= 

One (Bos (43) 

A filter will be linear stable, only if all real 

(41) and (43) define a triangle in the A,B parameter plane 

as shown in Fig. 8. Any linear second-order digital filters 

are stable only if its coefficients are within this triangle 

-34- 

Eqns (39),



a Parameter plane 
  

  

  
Fig. 8 The stable zone (triangle) of the linear second-order 

filter section. 
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in the parameter plane. In zero-input conditions, for all 

initial states, the filter whose coefficients are within 

the triangle in the parameter plane will tend to the zero 

state. For example, suppose that two second-order basic 

sections whose coefficients are A, = -1.25, B 
i Bs 

and Ay = —1.794, ied 0.95833 respectively have initial 

= 0.625, 

states (11,11) then their response are as follows: 

Ay = -1.25, 5, > 0.625. 

  

  

Y(n) 6.875 | 4.297 | 2.868 | 1.678 | 1.049 | 0.656 | 0.410 | 0.256 
  

    ¥(n) | 0.160 | 0.100 | 0.063 | 0.039 | 0.024 | 0.015 | 0.010 se.                     

  

  

  

  

  

  

A, = -1.74, B, = 0.95833 

n 1 2 5 4 5 6 

¥(n) 8.60 | 4.42 | -0.55 | -5.19 | -8.51 | -9.83 

n 7 8 9 sTe) see | 00 

¥(n) =8e9501 76.25. | 2.13 |1-2219| coe ledeo2 

n seen TAS 146 Nera e2C0 ee 

¥(n) see Oso 0.41 eee 0.06 & Se.                   

=oGe



As can be seen from above tables,only if the 

coefficients of a second-order filter are within the 

triangle in the parameter plane whatever the Q-value of 

the filter is the filter must tend to the zero state from 

any initial states. The higher the Q-value, the longer 

the time needed to tend to the zero state. The time 

corresponding to the zero-input response of the filter 

from the initial state to the state after which the 

absolute values of response are less than 0.5 is interested. 

Later on this time will be used as a reference time when 

we compare with the time needed for suppressing limit cycles. 

For above two examples the reference times are respectively 

equal to 77, and 146T. where ie is the sampling period in 

the digital filters. 

2.2 BASIC FILTER SECTIONS WITH QUANTIZATION 
  

In software as well as hardware digital filter 

implementations numbers are ultimately stored in finite- 

length registers. Consequently, coefficients and signal 

values must be quantized before they can be stored. 

The effects of quantization after arithmetic operations 

can be demonstrated with the example of a first-order 

digital filter described by the following difference 

equation: 

Y(n) = X(n) - aAY(n-1) (44) 
-37-



where X(n) is the input sequence. 

Throughout this thesis, the circumflex is used to 

designate the results of finite precision arithmetic, 

i.e. ,quantized numbers. Suppose that all numbers (mn), 

A, X(n) are expressed initially with k significant digits 

and that fixed-point arithmetic is employed for the 

implementation of the difference equation. Calculation 

of the filter response shows that after n iterations Y(n) 

is expressed by numbers with (n+l)k significant digits. 

This example indicates that the number of significant 

digits needed to compute the filter response precisely, 

increase linearly with each Reeeations As long as the 

number of operations performed on a signal remains finite, 

for example, in a nonrecursive digital filter, the increasing 

wordlength is also finite. But as can be seen from Fig. 1 

and Fig.5, the basic filter sections are recursive filters. 

In a recursive filter, a wordlength reduction is necessary 

to prevent the ‘signals from acquiring an ever-increasing 

wordlength. Any practical filter, realised with k 

significant digits, has to include quantization after each 

arithmetic operation so as to keep the results at a 

specified finite precision. Quantization introduces 

inherent nonlinearity which tend to make the original 

linear stable system zero-input unstable (27) | 

If the input to a system is identically zero, then 

starting from some initial condition the signals in the 
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system will either grow beyond any bound or will converge 

to one of the so called equilibrium solutions. As far as 

digital filter is concerned, since every state Y(n) in the 

absence of an input has a unique successor, and since the 

nonlinear digital filter is a finite state system, 

(quantized and bounded in amplitude), there are only two 

possibilities for its autonomous behaviour. Either the 

zero state is reached after a finite- time, or a periodic 

oscillation will result, which is referred to as a limit 

cycle or zero-input limit eycle (27) | 

To be able to analyse the nonlinear effects on the 

response of digital filters, it is necessary to consider 

the type of arithmetic used, and the type of nonlinearity 

introduced into the digital filter through finite precision 

arithmetic. 

There are a variety of types of arithmetic that are 

used in the implementation of digital systems. Among the 

most common are fixed-point and floating-point. A hybrid 

between these arithmetic types was introduced called block 

floating point arithmetic. 

Kaneko ‘28) , while excluding the possibilities of 

overflow and underflow, proved that limit cycles of 

considerable amplitudes can be found with floating-point 

arithmetic. Lacroix ‘2?! has studied the limit cycles 

that may result from underflow and he found regions for 
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the coefficients of a second-order digital filter for which 

such limit cycles can be found. Sandberg 30) has derived 

the asymptotically stable condition for floating-point 

arithmetic in the presence of roundoff and shown that this 

condition will be satisfied if the damping of the infinite 

precision counterpart of the digital filter is sufficiently 

"large" relative to the number of bits allotted to the 

mantissa of the date. Under these conditions limit 

cycle response to a zero-input or to an input sequence 

that approaches zero is also ruled out. If in case of 

underflow the signal is made zero then the stability region, 

which can be derived,is always approximately that of fixed- 

point with magnitude-truncation 1°) , As will be seen later, 

this stability region of fixed-point with magnitude- 

truncation is very "large", in other words, the unstability 

region is very small. Thus, generally speaking, limit 

cycle oscillations are not a problem when floating-point 

is used. In addition, most digital filters use fixed-point 

arithmetic because floating-point arithmetic involves more 

hardware. Therefore, in this thesis, only fixed-point 

arithmetic is considered. 

In digital filters, two types of nonlinearities are 

connected with the adders and quantizers respectively. 

If numbers are added whose sum exceeds the dynamic 

range of the adder "overflow" occurs. This "overflow" 

leads to a severe nonlinearity. Ebert et cae and 
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Jackson independently recognised the possibility of large 

amplitude limit cycles resulting from adder overflow with 

wrap-around arithmetic. Ebert et al. derived the conditions 

for the existence of overflow limit cycles and showed that 

by introducing saturation arithmetic the oscillations could 

be eliminated. In following chapters, it will be assumed 

that the adders in the digital filter are linear and 

overflow effects can be neglected. 

The other type of nonlinearity is connected with the 

quantizers in the digital filters. 

I. Quantization 

It has been mentioned at the beginning of this 

section that wordlength reduction must be applied in the 

closed loop in digital filters. This can be done by 

affecting the least significant bits only, i.e., 

quantization. Quantization can be performed by substituting 

the nearest possible word that can be represented by the 

limited number of bits. There are two standard methods 

for eliminating the low-order bits; rounding and 

truncation. 

Suppose that any number x with E §XSE. is 
min max 

represented by a fixed-point format and the quantization 

step size is q. In the following chapters we assume q 

equal to one. 
—Ajl—



(A) Rounding 

Rounding x to the nearest integral multiple of q is 

a familiar method. The rounded number is designated by 

[x], The relationship between [xlp and x is shown in 

Fig. 9. The difference of the signals, §(n) = x-[x]p is 

called quantization error or quantization noise. It is 

clear from Fig. 9, that the error signal satisfies the 

relation 

a a 3 < 6s 3 (45) 

Under certain, not overly restrictive,assumptions it can 

be shown that if the number x can be treated as a random 

sequence then the quantization error is uniformly 

distributed in the closed range [- 3, $ J. The probability 

distribution of the quantization error for rounding is 

shown in Fig. 12(a). 

(B) Truncation 

Depending on the negative number representation used, 

there exist two types of truncation; magnitude truncation 

and value truncation. 

(a) Magnitude Truncation 

In a representation of the signals by sign and 

magnitude this leads to magnitude truncation quantization 

with a characteristic as shown in Fig. 10. It is clear 

mA



    

    

    

  

  

Fig. 9 Quantizer characteristic with rounding. 
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Fig. 10 Quantizer characteristic with magnitude-truncation. 
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from Fig. 10 that the quantization error satisfies the 

relation 

  
aa (46) 

Similarly, if the number x can be treated as a random 

sequence the probability distribution of the quantization 

noise can be shown as in Fig. 12(b). 

(b) Value Truncation 

Value truncation results when a two's complement 

number representation is used. Fig. 11 and Fig. 12(c) 

show its characteristic and probability distribution of 

the quantization error respectively. 

The value truncation is not considered in detail 

because the results are similar to the ones for rounding 

with a constant input added as value truncation introduces 

only a bias of 3a for every quantizer. 

As can be seen from Fig. 12, the variance of the 

quantization error for magnitude-truncation is four times 

bigger than that for roundoff. Claasen et ar, (©) have 

shown that under nonzero input condition, the digital 

filters with magnitude-truncation quantizer have quantization 

noise power (5-10) times bigger than that when roundoff 

is used. Therefore, in practice a roundoff quantizer is 

preferrable to a truncation quantizer. But as will be 
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Fig. 12 Probability density functions: (a) for roundoff error 

(b) for magnitude-truncation error and (c) for value- 

truncation error. 
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pointed out later, from the view point of limit cycle 

appearance the truncation quantization has its own 

advantage. 

2, Limit Cycles in the First-Order Filter Section 

(A) The First-Order Filter With Magnitude Truncation 

Quantizer 

The conclusion is that in zero-input conditions no 

nonzero limit cycle can be sustained with this kind of 

system. Fig. 13 shows the block diagram of the first-order 

filter with magnitude truncation quantizer. Its difference 

equation with zero-input can be written as 

Y(n) = [-a ¥(n-1)] wr t 6pm) (47) 

where from the magnitude quantization characteristic one 

knows that 6,,(n)< 1 and |A|<l from the linear stable 

condition Eqn. (8). 

In the first-order system, the limit cycles occurring 

can be of only two forms: constant magnitude and sign for 

A negative, or constant magnitude with alternating signs 

for A positive. 

The conclusion about no limit cycle existing in the 

first-order filter with magnitude-truncation quantizer can 

be proved by the contrary method. 
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Fig.13 Block diagram of a first-order digital filter with quantizer. 
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In the first case, assume that -1<A<O suppose a 

positive steady-state limit cycle exists, then from the 

exiting condition 

¥m) = ¥(n-1) (48) 

Because A<O and ¥(n)>0 

“AY (n-1)>0 : (49) 

In this case, from the characteristic of the magnitude- 

truncation one knows that 

¥(n) = -A Yin-1)- y(n) (50) 

where 

O < Sp(n)<1 

Because 

Yn) = ¥(n-1) 

One obtains 

-8n(n) 
Va = ee (51) 

1+A 

As can be seen from this equation, when 6p (n)=0, then 
a 
Y(m)=0. That means that no limit cycle exists. 

But for 

0<5,(n)<1, Eqn (51) shows that 

Yin)< °



This conclusion is contrary to the hypothesis made above. 

In other words, the limit cycle does not exist. 

Therefore, for this case the only equilibrium is 

Yin) = ¥m-1) =0 

for neN, where Ny is a finite value. 

For other cases, along the similar lines with above, 

the same conclusion can be obtained. The same example 

used in Section 2.1 (A=-0.875, Y(O) = 8) is chosen but 

here, a magnitude-truncation quantizer is included. It 

is easy to verify that the zero-input response is as 

£follows:- 

T6545, 493) Ohl O1Os Ones 

In summary, in the first-order filter with magnitude 

truncation quantizer under zero-input conditions the only 

equilibrium is zero state, i.e.,no zero-input limit cycle 

exists. 

(B) The First-Order Filter Section With Rounding Quantizer 
  

The conclusion is that in the first-order filter only 

constant magnitude (with constant signs or alternating 

signs) limit cycles exist. 

Refer to Fig. 13, the difference equation with 

rounding quantizer under zero-input condtion can be written 

as 
=51=



¥(n) =[-A¥(n-1)]p 

= AY (n-1)-6(n) (52) 

where from the roundoff quantization characteristic one 

knows that 

-O.5< 6(n) ¢ 0.5 

and from the stable condition Enq. (8) - 

la] <1 

here [.], represents the roundoff quantization. 

As mentioned above for the first-order system the 

limit cycles occurring can be of only two forms; constant 

magnitude and sign for A negative, or constant magnitude 

with alternating signs for A positive. 

First, suppose A is negative, then a steady-state 

limit cycle exists. 

¥(n) = Y¥(n-1) 

Substitute above equation into Eqn (52), we obtain 

¥(n) = inn (-$)   

where INT(X) represents the integer part of xX. 

Because 6(n) satisfies the inequality 

=O. 5a 0 (hye 0). 5: 

ey Ye



therefore the limit cycle Y(n) satisfies 

=0.5 
1+A 

0.5 
enue 1+A 
  ) € ¥(n) 6 INT(   ) 

or the amplitude of Y(n), K,satisfies the inequality 

On5 
Ks INT (TR (53) 

Similarly, suppose A is positive then constant 

magnitude with alternating signs limit cycles exist. The 

amplitude, K, satisfies the inequality 

0.5 kK < INT(G=>) (54) 

Combining the above two cases, the amplitude of limit 

cycles in the first-order filters with roundoff 

quantization, K, satisfies 

K < inn (72s) (55) 

As an example, we chose the example used in Section 

2.1, i.e., A=-0.875 Y(o) = 8 but this time the roundoff 

quantizer is included. t is readily verified that the 

zero-input response is as follows: 

  

  

x(n) w 6 S 4 4 4 oes                     

The amplitude of the constant limit cycle is 4. 
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According to the Eqn.(55) the bound 
x " 0.5 

ENT al 

0.5 ) 
1-0.875 

INT (. 

The experimental data is exactly consistent with the 

theoretical formula. 

3. Limit Cycles in the Second-Order Filter Sections 

There are two different ways of implementing the 

quantizations in the second-order gebticns as shown in 

Fig. 14(a) and 14(b). Between these two ways there is 

the following difference: In Fig. 14(a), full precision 

is maintained in the feedback loop as long as possible 

and the necessary limitation of the wordlength occurs 

only once, whereas, in Fig. 14(b), the wordlength is 

limited immediately after the multipliers. The former 

structure is called one quantizer version and the later 

two quantizer version. 

In the condition of zero-input, x(n)=0,the sections 

given in Fig. 14(a) and (b) are described respectively by 

the difference equations 

Yin) = [-a?~m-1) - BY (n-21], (56) 
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dither Yin) 

    

  -1 Y(n-2)   

                

  

  

  

    

(a) One quantizer version 2 

Y¥(n) 
  

    

    
          

      

  

    

            

  

    

(b) Two quantizer version 

Fig. 14 ‘Two ways of implementing the quantizations in the second- 

order filter sections (a) One quantizer version, (b) Two 

quantizer version. 
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and 

¥(n) = [-a¥@n-1)]9 + [-BY@-2)], (57) 

where a represents the operation of quantization and 

¥(n) denotes the quantized output signal of the filter 

after n sampling intervals each with a duration of TS: A 

and B are the coefficient values of the filter. 

In this thesis, we have mainly concentrated our 

attention on the one quantizer version. But the principle 

of limit cycle suppression is also suitable to the two 

quantizer version. In the following sections we will 

discuss the limit cycles in the second-order filter with 

rounding- and truncation-quantizer, respectively. 

(A) Limit Cycles in the Second-Order Filter Section with 

Rounding Quantizer 

As mentioned before, quantization introduces inherent 

nonlinearity. Because of this nonlinearity limit cycles 

may appear in the digital filter. 

For example, in one rounding quantizer version, suppose 

the coefficients, A=-1.74, B=0.95833. It can readily be 

verified by setting the filter to different initial states 

that the limit cycles which can appear in the filter are 

as follows, where one complete period of each limit cycle 

is shown. 
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Limit Cycle 1: 

westOr Dy, Oy Lig 12, 97 5,0, —9,,-9, —11, <11, =9, -5, 25. 

Limit Cycle 2: 

watw ty D7 87 9718, 57) 1, —3,1-6, <8, =—8, =6, =3, «02 

Limit Cycle 3: 

sea ty 2 ete e=e Oey) Ly 3,110 ;8 0, O70, Sy cae 

Limit Cycle 4: 

ven) Or 37 Dy 87 6% 5y7 3, 0; —3,)—5, —6, 6, —5, =3; 25 

Limit Cycle 5: 

oer ts 3 4, 4, 3, 1, -1, <3, -4, <4, <3, 1, 2.2 

Limit Cycle 6: 

+++ O, 1, 2, 3, 3, 2, 1, 0, -1, -2, -3, -3, -2, -1, ... 

Limit Cycle 7: 

eee eerie: «ss 

Limit Cycle 8: 

esis ub ply diy cele 

Limit Cycle 9: 

Caley Lp iy Nees 

Limit Cycle 1o: 

pee pee ey eee 

This example will be frequently used in this thesis. 

It is of interest to compare the limit cycles in the 
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two quantizer version with the same coefficients. The 

corresponding limit cycles are as follows: 

Limit Cycle 1: 

wes) Opie, 16, 17, 15,10, 37-5; -12, -16,<=17, <15,:=10, +3, .:. 

Limit Cycle 2: 

eeu, Oy ich, L1,/6,,3;—37 -O,—11,;°—11, <8, =3, «.s 

Limit Cycle 3: 

eva Oy 6, 107,11, 97 5, 076-5).—9, =11, =10, 6, 21 

Limit Cycle 4: 

... 0, -6, -10, -11, -9, -5, 0, 5, 9) 11, 10, 6, ... 

Limit Cycle 5: 

«s+ 4, 8, 10,.9,16, 1,.-4, -8, -10, =9, -6, =1l, «.. 

Limit Cycle 6: 

esinpadiy 67 dy 10; (8704; —17) 6, —9, -10, =8, —4, cee 

Limit Cycle 7: 

tee, Sy beet, 9e 7, 3, 2, —6, =p —8, 6,7) 27. «.e 

Limit Cycle 8: 

soe 73, -7, -9, -9, -7, -3, 2, 6, 8, 8, 6, 2, «.. 

Limit Cycle 9: 

«os Ly 5, 8, 9, 8, 5, 1, -3, -6, -7, -6, -3, ... 

Limit Cycle 10; 

SSOP SLR TO EOI SH Op Opel ety Oy 17 COP RS pe mee 
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Limit Cycle 11: 

ooo O, 4, 7, 8, 7, 4,0, 4, <7, -8, -7,p —4% oes 

Limit Cycle 12: 

L2G SOT, 1g; Dee 2 By TP eT gS arco) ee 

Limit Cycle 13: 

1M) ee Ohh 6, Ay dee-o) 47, 25,4 8-2) Se, 

Limit Cycle 14: 

see “1, -4, -6, -6, -4, 1, 2, 4, 5, 5, 4, 2, «se 

Limit Cycle 15: 

«s+ O, 3, 5, 6, 5, 3, O, -3, -5, -6, -5, -3, ... 

Limit Cycle 16: 

geen Sr ora as coreg, tan Spey, 37 hy aes 

Limit Cycle 17: 

cae Op Be Sy By BOs, “20 93, 3, 2) ae 

Limit Cycle 18: 

Fes Op) 1p 2p Op al De ly ae 

Limit Cycle 19: 

Limit Cycle 20: 

As can be seen from the above two examples, although 

with the same coefficients the limit cycles in two quantizer 
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version is quite different with that in one quantizer 

version. The properties of limit cycles in the second- 

order section with rounding quantizer will be discussed 

in detail later. 

(B) Limit Cycles in the Second-Order Filter Section with 

Magnitude Truncation Quantizer 

(a) One Quantizer Version 

Claasen et at (92733134) ove investigated the zero-input 

behaviour of second-order digital filters with one 

magnitude truncation quantizer. They proved that the area 

of absolute stability of the nonlinear filter is the shaded 

area in Fig. 15. This area, where no limit cycles can 

occur, is bounded by the left- and right-hand sides of the 

linear stable triangle, by a part of the ellipse 

A?+8B(B-1)=0 and by the two straight lines |A|=2-B, In 

the area remaining only in the small trapezoid area defined 

by the intervals 1>B30.94 and 1.42<|A|<2 limit cycles have 

been found with simulations using fixed-point arithmetic. 

It is worth pointing out that in the above trapezoid area 

only small number of A, B coefficient combinations can lead 

to limit cycles. What is more, even though the limit cycles 

exist, there are a number of initial conditions from which 

the steady-state zero-input responses of the filter are 

zero. Only about (25-40)% of these limit cycles are 
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I.C. exist 

          
   

  

RS 

TORS 
XKOO 
Coen, 

I.C. exist 

  

Fig. 15 Stability diagram for the second-order digital filter 

with one magnitude-truncation quantizer. 
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accessible. An accessible limit cycle means that it can 

be reached from initial conditions that do not pertain 

to that limit cycle. On the other hand, an inaccessible 

limit cycle only appears if the filter is started with 

initial conditions pertaining to that limit cycle. 

Apparently, in practice, only accessible limit cycles 

are troublesome, because the probability of occurrence of 

inaccessible limit cycles is very small. For the filter 

which has the coefficients A=-1.74, B=0.95833 but with 

one magnitude-truncation quantizer, the simulation showed 

that no limit cycles exist. 

In the second-order section with the coefficients 

A=-1.640625, B=0.953125 and with one magnitude-truncation 

quantizer, only one limit cycle exists. The limit cycle 

sequence is as follows: 

soto 7G LOy gels —5,,—9 —1O, = Tie HL, otis 

Fig. 16 shows the initial states in the area bounded by 

the amplitude bound of the limit cycle in the state plane 

from which the limit cycle can be reached. As can be 

seen, among the 442 states in the area there are only 

76 states from which the limit cycle can be obtained. In 

other words, there are 82.8 percent of states from which 

the origin state can be reached. 

Claasen et al, (34) have shown the limit cycles for 

214 ee LG 
— (ag) B= T38) and with 
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a filter with coefficients A=



Yin) 

  

  

°° ° ° g 1o 

° ° 
° ° 90 ° 

oper S| 
° 

O50 
° ° 
° oo © 

° 
° ° 2 

J 66 ~o—o—! ¥(n-1) 
-10 S ° lo 

° 

° Cec 
° 

° ° 

° ° 

om ° oo 
° ° 

oo 

Fig. 16 Part of the state plane of the second-order filter 

(A=-1.640625, B=O.953125) with one magnitude-truncation, 

with initial conditions indicated fram which a limit 

cycle will result. 
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one magnitude-truncation quantizer. In this filter, two 

limit cycles exist. One is accessible whereas another is 

inaccessible. In the area in the state plane which is 

bounded by +20, there are 1681 states. But only 142 states 

exist from which the limit cycles will be obtained. There 

are more than 90 percent of states from which the origin 

state can be reached. 

The conclusion is that in a filter with one magnitude- 

truncation quantizer.limit cycles will be possible only for 

very few values of coefficients A and B. Moreover, for 

those values of A and B for which limit cycles are possible 

the probability of the occurrence of a limit cycle is small. 

Therefore, if the initial state of the second-order section 

is chosen randomly, it is unlikely that the limit cycle 

will be obtained, i.e.,the origin state will be reached 

with large probability. This fact is helpful for understanding 

the principle of limit cycle suppression by the injection 

of random dither. 

(b) Two Quantizer Version 

The second-order filter with two magnitude-truncation 

(35) quantizers has been analysed by Kao , who derived regions 

where limit cycles of periods 1 and 2 occur. These regions 

are defined by the linear stable triangle and |A|>1. 

Claasen et al, 2) have derived the stability region with 

the frequency domain criteria. The stability diagram is 
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shown in Fig. 17. Only limit cycles of length 1 and 2 

have been observed by simulations and they are found in 

> 10). the triangle for value |A| For high-Q poles 

(Bgl) only limit cycles with amplitudes equal to one 

quantization step are accessible 37), 

In some cases, limit cycles of periods 1 and 2 have no 

serious consequences in practical applications. 

Comparing with its counterpart with rounding 

quantizers, with respect to the occurrence of limit cycles, 

the filter with truncation has its own advantage. 

2.3 SUMMARY 

The main properties of the basic sections have been 

given in this chapter. 

The direct form is inferior to both the cascade and 

parallel form when the effect of coefficient quantization 

errors and roundoff noise after arithmetic operations are 

considered. The first- and second-order filters are basic 

building blocks from which all higher order systems can 

be synthesised. The zeros of the digital filters do not 

change the nature of the limit cycle but influence the 

magnitude of the limit cycle amplitude. Therefore the 

basic section which has two zeros at the origin on the 

Z-plane is used as a basic model in this research. 
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only ampl. 1 B only ampl. 1 
accessible accessible 

  

I: limit cycles of length 1 exist 

II: limit cycles of length 2 exist 

Fig. 17 Stability diagram for the second-order digital filter with 

two magnitude-truncation quantizers. 
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The linear first-order filter has a lowpass characteristic. 

Its stability criterion is the absolute value of the filter 

coefficient less than unity. 

The second-order filter represents a simple digital 

resonator. The frequency of the impulse response of the 

linear second-order section is shown in Eqn. (13). The 

stable region of the linear second-order filter section 

is bounded by a triangle in the parameter space. 

In a recursive filter, quantization is necessary to 

prevent the signals from acquiring an ever-increasing 

wordlength. In this research, the fixed-point arithmetic 

has been used. Two types of quantization: magnitude- 

truncation and roundoff have been discussed. 

In the first-order filter with magnitude-truncation 

quantizer, no limit cycle can be sustained. But with 

rounding quantizer, the constant amplitude limit cycles 

can exist. 

There are two different ways of implementing the 

quantizations in the second-order sections. With rounding 

quantizer, variety limit cycle may exist in the second- 

order section. But in the two quantizer version with 

magnitude-truncation quantization only limit cycles of 

periods 1 and 2 can be sustained. In the one quantizer 

version with magnitude-truncation quantization limit cycles 

will be possible only for very few values of A and B in the 
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parameter space. Moreover, for those values of A and B 

for which limit cycles are possible the probability of 

the occurrence of a limit cycle is small. 

Either the filters with one or two magnitude-truncation 

quantizers have certain advantages over roundoff with 

respect to the occurrence of limit cycles. But their 

quantization errors are bigger than that with roundoff 

quantization, 

The properties of limit cycles in the second-order 

filter section with rounding quantizers will be discussed 

in more detail in the next chapter. 
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CHAPTER 3 

ZERO-INPUT LIMIT CYCLES IN THE SECOND-ORDER 

DIGITAL FILTERS 

As mentioned in Chapter 2, although magnitude-truncation 

quantization has certain advantages over roundoff with 

respect to the occurrence of limit cycles, the digital 

filters with magnitude-truncation quantizations have much 

more quantization noise than that when roundoff is used. 

Therefore, in practice, a rounding quantizer is preferrable 

to a truncation quantizer. This research only considers 

the filters with roundoff quantizers. 

3.1 QUANTIZATION ERROR IN PRESENCE OF ROUNDOFF 
  

In the condition of zero input X(n)=0, one quantizer 

and two quantizer version filters with roundoff (refer to 

Fig. 14(a) and 14(b)) can be described respectively by the 

difference equations 

y(n) [-a¥ m-1)-BY (n-2)], (58) 

and 

Yn) [-A¥ (n-1)], +[-BY(n-2)], (59) 

where le represents the operation of roundoff quantization. 

In this chapter, we first pay attention to the limit 

cycles in the one quantizer version, then describe the 
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features of limit cycles in the two quantizer version. 

In the second-order basic filter section with one 

quantizer, the output of the rounding quantizer can be 

expressed as 

[-a¥ (n-1)-B¥(n-2)] 2 = AY (n-1)-BY (n-2)-6 (n) (60) 

where 

-AY(n-1)-BY(n-2) and 6(n) are the exact products 

and quantization error respectively. 

From the characteristic of roundoff quantization 

shown in Fig. 9, one knows that 

Jem) |< 0.5 : (61) 

where the quantization step, q, has been assumed equal to 

unity. 

If the input signal changes in its dynamic range and 

the signal levels throughout the filter are much larger 

than the quantization step q, the following reasonable 

assumptionscan be made; 

(kt) 6,@) and 6; tk) are statistically independent 

for any value of n (k#o), and 

(2) §,; (nd and 5 Gtk) are statistically independent 

for any value of n or k (i#j), here the subscripts i, j 

stand for different quantizers. 

-70-



Once the-above assumptions are valid, as far as the 

error signal d(n) is concerned, the filter can be treated 

as a linear system. This results in a stochastic approach, 

The quantization error é(n) is described by a uniform 

probability density function. The assumption leads to 

acceptably accurate results for most applications with 

high signal level and sufficient spectral content. As 

will be seen later, when we consider the quantization noise 

power with high level input signal, the stochastic approach 

will be used. 

However, in the zero-input limit cycle study, above 

assumptions are not valid. Since the output of a quantizer 

is a single-valued function of the input, a given input 

yields a definite output and, consequently, a definite 

roundoff quantization error sequence é(n). Ifa zero-input 

limit cycle exists, 6(n) can be a periodic or constant or 

alternating sign sequence depending on the limit cycle 

type. 

The fact that there is correlation among 6(n) is a 

feature when limit cycles appear. For example, in Eqn (58) 

let A=-1.74, B=0.95833 and y(-1) = 5, ¥(-2) = 9. The signal 

values after rounding to the nearest integer and the roundoff 

quantization errors are shown in Table 1. As can be seen 

from the table, the filter with the specified initial state 

has a periodic limit cycle whose period is 147. and the 

roundoff quantization error is also a periodic sequence with 
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TABLE 1 

The example shows that when a periodic limit cycle 

exists the quantization error is also a periodic sequence 
  

© 
O
I
 

H
U
 

P
F
w
W
H
e
 

DB 
P
P
P
 

RP
 

RP 
B
B
 

n
u
 

® 
W
N
 

HE 
O 

Y(n) w [-AY (n-1)-B¥ (n-2)] 2 

O(n) = -AY(n-1)-BY (n-2) -¥ (n) 

where A=-1.74, B=0.95833, Y(o)=5, Y¥(-1)=9 

  

Yin) s(n) = 

0 7-0.0750299999 Ae 

=5 -0.20835 

-9 =053 

=11 -0.1316500001 

-11 -0.4849700001 

-9 -0. 4016300001 one period 

<5 OnLss 7. 

oO 0.0750299999 

0.20835 

9 Ons 

deli O.43 265: 

Td 0. 4849700001 

0. 4016300001 

5 -0.11837 he 
=050750299999 

“5 =07 20835 
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the same period. 

Therefore, in the zero-input limit cycle study, 

especially in the theory of limit cycle generation the 

stochastic approach cannot be applied. Parker and Hess ‘*? 

by a deterministic approach have analyzed the limit cycle 

oscillations in fixed-point implementations of recursive 

digital filters due to roundoff and truncation 

quantization after multiplication. 

3.2 CLASSIFICATION OF LIMIT CYCLES 

There are several different ways to classify the limit 

cycles in the digital filters. Each way has its own feature 

and from it some important properties about limit cycles 

can be obtained, 

De. Classification of Limit Cycles Based on the Period 

Three different types of limit cycle may be distinguished; 

constant, alternating and periodic. In a constant limit 

cycle, the output is the same at each sampling instant 

e.g. (...,2,2,2,-..). In an alternating limit cycle, 

the output alternates between values of opposite polarity, 

e.g. (...,4,-4,4,-4,...). Although, strictly speaking, constant 

and alternating limit cycles are also periodic, the term 

periodic limit cycle is reserved here for limit cycles 

whose period is greater than two clock instant, e.g. 
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(seen LS as Aue Sy le iti pe ter at oy Hotel meee ‘The 

example A=-1.74, B=0.95833 shown in Chapter 2 has six 

periodic, four constant limit cycles and no alternating 

limit cycles. The constant and alternating limit cycles 

have zero- and Nyquist-frequency,respectively. Periodic 

limit cycle is a sort of thing that we should pay more 

attention to. 

2. Classification of Limit Cycles Based on Accessibility 

Considerations ‘37? 

The following two types of limit cycle can be 

distinguished. 

(A) Inaccessible Limit Cycle 

They only appear if the filter is started with initial 

condition pertaining to that limit cycle. Hence, if the 

filter is started with randomly chosen initial conditions 

it is unlikely that these will correspond to a point on a 

limit cycle, i.e.,the probability of occurrence of 

inaccessible limit cycles is very small. 

In our typical example (second-order section with one 

rounding quantizer, A=-1.74, B=0.95833), two periodic limit 

cycles (limit cycle 4 and 5) and all the constant limit 

cycles are inaccessible, 
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(B) Accessible Limit Cycle 

They can be reached from initial conditions that do 

not pertain to that limit cycle. In this case, there has 

to be at least one state Yin) of the filter corresponding 

to a point of the limit cycle, which state can be reached 

from at least two different states Y(n-1) and ¥'(n-1), 

the predecessors of Yin). Thus both states have, as their 

successor, the state Yin). The point corresponding to such 

a state is called a branch point. Apparently, an accessible 

limit cycle has at least one branch point. But 

inaccessible limit cycles have no branch points. Accessible 

limit cycles are observed more frequently in the digital 

filter. In the example just mentioned above, the other 

four periodic limit cycles (limit cycles 1, 2, 3 and 6) 

are accessible. In the region bounded with ¥(n-1) = 231 

and ¥(n) = +11 in the state plane which is defined by Y(n) 

and yin ty there are 46 initial states except the states 

which pertain to that limit cycle from there the period limit 

cycle 1 will be reached eventually. For periodic limit 

cycles 2, 3 and 6 the corresponding numbers of the initial 

states are 48, 48 and 302 respectively. 

As mentioned before, since every state Y(n) in the 

absence of an input has a unique successor, and since the 

nonlinear digital filter is a finite state system, there 

are only two possibilities for its autonomous behaviour. 

Either the zero-state is reached after a finite time, or 
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a limit cycle will result. In other words, if the zero 

state (0,0) is not a branch point it cannot be reached 

from other states and limit cycles must necessarily exist. 

Claasen et ai (37) have proved that in case oreor two 

rounding operations are used, the origin state (0,0) is 

a branch point only if |B|<O.5. Therefore, such 

second-order filters with multiplication coefficient B for 

which |B|30.5 will always exhibit limit cycles. By using 

the same idea it is also shown that where one or two 

magnitude-truncation operations are used, (0,0) is always 

a branch point for |B|<l, and limit cycles do not 

necessarily exist. 

3. Classification of Limit Cycles Based on Symmetr 

(37) 

  

Considerations 

As regards symmetry, two types of limit cycle can he, 

in general, distinguished. 

TYPE A Symmetric Limit Cycle 

The length N of the limit cycle is even and the limit 

cycle has half-wave symmetry 

Y¥ (m+ 5) = -Y¥(n) for all n (62) 

In our typical example, periodic limit cycle 1, 4, 5 

and 6 pertain this type. 

A further distinction is Type Al: 5 is odd,and Type A2: 

is even. 

NI
Z 
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As can be seen, in the example above, the limit cycle 

1, 4 and 6 are Type Al and limit cycle 5 is Type A2. 

TYPE B Asymmetric Limit Cycle 

All limit cycles which are not of Type A are called 

asymmetric limit cycles. These can be subdivided 

into Type Bl: N is odd, and Type B2: N is even. 

In the example above, both limit cycle 2 and 3 pertain 

Type Bl. 

With this classification method a relation has been 

given in Table out between the limit cycles of a 

second-order digital filter with the coefficients (-A,B) 

and a second-order digital filter that has the same 

structure but coefficients (A, B). It can be seen from 

this table that a limit cycle of Type Al in the filter 

with -A and B transforms into two limit cycles of Type Bl 

in the filter with A and B which have the same amplitudes 

as that of Type Al but with lengths that have been halved. 

In addition, two constant limit cycles in the filter with 

(-A,B) transform into an alternating limit cycle in the 

filter with (A,B). 

From these relations at least two useful conclusions 

can be made: 

First, once one has found the limit cycles in the 
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second-order filter with coefficients (-A,B) one also 

knows the structure of the limit cycles in the filter 

with coefficients (A,B). For example, by the relation 

just mentioned, we can derive the limit cycles in the 

second-order basic filter section with the coefficients 

A=1.74, B=0.95833 from the typical example used before 

(A=-1.74, B=0.95833). 

According to Table 2, one Type Al limit cycle will 

be transformed into two Type Bl limit cycles. Type A2 

will be still transformed into Type A2. Two constant limit 

cycles will be transformed into one alternating limit cycle. 

In the procedure of transformation the feature is that 

the sign of the number is changed alternatively. 

The transformed results are as follows, where the 

Combination numbers which designate the limit cycle show 

the way of the transformation. For example, Limit Cycle 

1A and 1B indicate that both limit cycles come from 

the original Limit Cycle 1, and Limit Cycle 23 indicates 

that this limit cycle comes from the original limit Cycles 

2 and 3. 

Limit Cycle 1A 

was Op 5) 91,11, 9, 5) eas 

Limit Cycle 1B: 

wine OR Oy Spe tape m lly Oe: Dip oreo 

=o



Limit Cycle 23: 

ane cbr, tn 200 On Sr ~hri-or 7 —Or Oy -O, 3 1p —5 8, =O, O0->, 

dp Sx, —0; 16) =O Oy a3 gees 

Limit Cycle 4A: 

He; 037-5, 16-605) -3,6 a 

Limit Cycle 4B: 

= ol Op 7 Dra Oy. 8 Dy Sy aee oe . 

Limit Cycle 5: 

soaks Lense 47 “473% “Lal, 3p 45 49) 37 one 

Limit Cycle 6A: 

see Oy =, 2, 3; 155 —2, by aes 

Limit Cycle 6B: 

eNO I%G=s2) 3,-53,02) <1, ee. 

Limit Cycle 89: 

seme peg, ly uetace 

Limit Cycle 70: 

see 2, —2, 2, =2) oe 

Above results have been verified by the simulation. 

The second conclusion is that any bounds on the 

magnitude of a limit cycle response evaluated with the 

assumption that A<O, B>O are equally valid for A>O and 

B>O. 
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3.3 SUCCESSIVE-VALUE PHASE-PLANE prior ?) 

The successive-value phase-plane or sometimes called 

state plane for second-order digital filters is defined in 

a cartesian coordinate system with the Y axis representing 

Yin) and the X axis representing Yin-1). The successive- 

value phase-plane plot results of a second-order filter 

recorded on this state plane. For a given point or state 

in this plane, the successive state is uniquely determined 

for a digital filter with zero input. A limit cycle 

exists where a sequence of successive-value points in the 

phase-plane forms a closed curve when they are jointed by 

straight lines. Fig. 18 illustrates the successive- value 

phase-plane plot for the digital filter frequently used as 

an example. It can be seen that with a constant limit 

cycle, each successive state of the filter lies at the 

same point of the state plane. The plot corresponding to 

an alternating limit cycle includes only two state points, 

and the plot of a periodic limit cycle which has a period 

of NT. includes N points. 

Successive-value phase-plane plots provide a useful 

means for displaying the nature of the limit cycles of a 

digital filter. By the use of the program shown in 

Appendix 1, the successiye-value phase-plane plot can be 

displayed on the screen of computer PET. 
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Yin) 

  

    
Fig. 18 The successive-value phase plane plot for the second-order 

section with coefficients A=-1.74, B=0.95833. 
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3.4 PARAMETER SPACE 

The existing conditions of limit cycles in the 

second-order digital filter depend on the coefficient 

values A and B. Therefore, it is convenient to show 

these conditions on a coordinate system with the X axis 

representing coefficient A and the Y axis representing 

coefficient B. The coefficients A, B define a plane 

called parameter space. 

The existing conditions of various limit cycles in 

the second-order filter with one rounding quantizer have 

been derived by a simple way in the Appendix 2. The 

regions in the parameter space where various limit cycles 

exist is shown in Fig. 19. The linear stable region 

bounded by a triangle mentioned earlier is also shown in 

the same figure. Values of A and B for which this filter 

is stable have been obtained by applying the frequency 

domain criterion ‘10 | This asymptotic stable region is 

also shown with shaded area in Fig. 19. Fig. 19 is the 

same with that shown in the reference (10), but here gives 

two extra bound lines which give more information. As can 

be seen from Fig. 19, the area which bounded by the triangle 

and B>O.5 can be divided further into several subregions. 

In some subregions only constant or alternating limit cycles 

are possible. This information has not been found in the 

published literatures. 
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region GHKJG periodic limit cycles exist 

xegicn DGJD and RPMR both periodic and constant limit cycles exist 

region EKHE and SPNS both periodic and alternating limit cycles exist 

region DJPRD only constant limit cycles exist 

region EKPSE only alternating limit cycles exist 

B
e
 

B
B
 

BF 

region PMFNP three types of limit cycles exist 

Fig. 19 Region of asymptotic stability for one rounding quantizer 

and regions where limit cycles can occur. 
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As references, Fig. 20, Fig. 15 and Fig. 17 show the 

parameter space plots with two rounding, one magnitude- 

truncation and two magnitude truncation quantizers 

respectively (10) | 

3.5 DIFFERENT PROPERTIES OF THE LIMIT CYCLES IN SECOND- 

ORDER FILTER SECTIONS WITH ROUNDOFF BETWEEN ONE- AND 

TWO-QUANTIZER VERSIONS 

At least two differences between the limit cycles in 

the second-order filters with one- and two-rounding 

quantizers can be distinguished. These differences are as 

follows: 

(1) As shown in Appendix 2, with one rounding quantizer 

all constant or alternating limit cycles are successive in 

unit of q in amplitude, i.e.,they are +1, +2, +3, ..., +C 

where C is the maximum amplitude of the limit cycles. It 

has been found by experiments that with one rounding 

quantizer all periodic limit cycle trajectories surround 

all constant or alternating limit cycles in the state plane. 

From this fact, the bound lines DJ, KE in Fig. 19 have 

been derived. These bounds were verified by simulations. 

No exceptions have been found. No constant or alternating 

limit cycles lie among the periodic limit cycles in the 

state plane. 

As contrasted with one quantizer case, with two 

rounding quantizers constant or alternating limit cycles 
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Length 1 B Length 2 
inaccessible inaccessible 

II 

  

limit cycles of length 1 exist 

limit cycles of length 2 exist 

Fig. 20 Region of stability for two rounding quantizers and regions 

where limit cycles can occur. 
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can lie among the periodic limit cycles. 

(2) With two rounding quantizers in some region of 

the parameter space there is a special kind of periodic 

limit cycle called pinwheel limit eycie 2), Its trajectory 

surrounds the origin state (0,0) in the state plane 

several circles. But in contrast with two rounding quantizer 

version, with one quantizer we have not found any pinwheel 

limit cycles. As can be seen later, although there are 

those differences they will not influence the suppression 

of limit cycles by the injection of random dither. 

3.6 AMPLITUDE BOUNDS OF LIMIT CYCLES 

Three different types of amplitude bound for limit 

cycles in the second-order digital filters have been 

given in the literature. 

1. Absolute Bounds 

Several authors have derived bounds on the maximum 

value of the limit cycles for general types of digital 

filter 71/729), Application of these bounds for 

determining the internal wordlength of the filter will 

guarantee the neglect of zero-input limit cycles in the 

output. The difficulty with the absolute bounds is that 

they apply to the situation where all errors add up in 

the worst possible way. Thus, the absolute bounds are in 

general overly pessimistic compared with the other bounds. 
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These bounds are seldom used in practice but they provide 

the biggest bounds which can never be exceeded. Among the 

absolute bounds, we only list out the bounds of Long and 

trick”), 

6 
ee for BsO, or B>O and 2vBs |A| 

K —_, for B>o and 2644 -1<|al|< 2/B (63) 
(1-vB) 

6 (1+vB) 
for B>O and |a|<2B/2 -1 

Z 
a-B) /1- 4. 

where 6 is a constant and 6=0.5 for one quantizer or 6=1 

for two quantizers. 

Using the typical example, A=-1.74, B=0.95833. The 

coefficients satisfy the inequality 

lal < 28/52 -1 = 1.957 7B Z 

therefore the bound 

; < OU) = 103.66 
AL (1-B)Y1- Fs 

The bounds for one and two rounding quantizer versions are 

51 and 103 respectively. 
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As respected, for the example, the bounds of one- 

and two-quantizer version, 51 and 103 are much bigger than 

the actual maximum amplitudes of limit cycles, 11 and 17. 

2. RMS Bounds 

Sandberg and Kaiser (8) have derived a bound on the rms 

value of the quantization error. As contrasted with the 

absolute bounds, this bound gives no information on the 

maximum amplitude of a limit cycle. In other words, this 

bound can be exceeded. 

For the second-order section, the rms bounds are as 

follows: 

Q 
For the constant limit cycles Ks TisAsB) (64) 

: ears 6 
For the alternating limit cycles Ks T=]a] 5 (65) 

For the periodic limit cycles 

é 
4B 

oe for B>O and |Al< cEa 

(1-B) (1- 7) 

Ks 66 bp (66) 

5 4B 
for either B<O or B>O and |A|> TH 

1-|A| +B 
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where 6 is a constant and 46=0.5 for one rounding quantizer 

version or 6=l1 for two quantizer version. 

Let us still go back to the typical example, A=-1.74, 

B=0.95833. In the example, the coefficients satisfy the 

inequality 

lal < ygp = 1.957 

Therefore, the bound of the periodic limit cycles 

8 zs i SiemnGnEeDAE ote! 
A (-B) G- 45) 

The bounds for one and two rounding quantizer versions are 

26 and 52 respectively. 

Comparing with the absolute bound one knows that the 

absolute bound is (1+YB) times bigger than rms bound. 

When B+l, (1+VB)+2. The rms bound is simple to evaluate 

and the maximum value of the limit cycle will not exceed 

this bound by a factor of more than 2. 

3. Approximate Bound 

Jackson ‘9? has derived an estimate of the limit cycle 

amplitude based on an effective value linear model. This 

bound can be written as 

= 0.5 
K, = INT G77) (67)



where INT(X) denotes the integer part of X. 

Since this bound is based on the assumption that the 

nonlinear system oscillates if B has an "effective value" 

B'=1, which is a carry-over from linear theory, there may 

exist exceptions. Parker and Hess ‘*) have pointed out 

that Jackson's bound may be exceeded in some cases. Claasen 

et ai. Gn have proved that where there are two roundoff 

quantizers the value derived by Jackson is in fact a lower 

bound for the maximum amplitude of the possible limit 

cycles. This means that there must exist at least one limit 

cycle with an amplitude larger than or equal to this 

bound. 

It is easy to verify that for the typical example 

=-1.74, B=0.95833, the Kot which is a very good estimation 

for one quantizer version but for two quantizer version 

this bound is exceeded by 6. 

Jackson's bound is a simplest one in the bound 

expressions proposed. In most cases, especially for one 

quantizer version, it is accurate enough. Hess 24) has 

shown on his simulation studies that for two quantizer 

version exceptions from the effective value linear model 

occur for Bz 2 and for values of A around +1.5, +1.0, +0.5. 

For these cases, he suggested that the following bound 

can be an alternative. 

K = ie (68) 

which is three times bigger than the bound of Jackson. 
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3.7 .. FREQUENCY OF LIMIT CYCLE 

It is not difficult to obtain the frequency expression 

of the impulse response in a linear (without quantizer) 

second-order filter section. 

As mentioned earlier, for a linear second-order basic 

section, its difference equation can be. written as 

Y(n) = X(m) - AY(n-1) - BY(n-2) 

If the poles are complex its impulse response is 

n 

h(n) = (s$55) sin [(n+1)0] 

where xr = VB and 6 = arc cos(- a) 

For B=1, the impulse response is a sinusoid with 

constant amplitude and frequency 

ey Eee: A f= & t) arc cos(- 5) 

It is difficult to obtain an accurate frequency 

expression of limit cycles in the second-order digital 

filter, because of the nonlinearity. Although limit 

cycles in a digital system with only one nonlinearity can 

also be studied with the describing function method, this 

method is an approximate one which only gives results if 

the occurring limit cycles are almost sinusoidal. However, 

in order to get an impression about the possibility of 
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frequency of these limit cycles, Claasen et ate?) with 

describing function method have derived a frequency expression 

Deeee Bn AC+B°-1 
fae T, arc cos( “s33—— ) (69) 

or 

ere ig AC+B°-1, 7-1 
T= OTe © {are COs ane (70) 

Using the typical example, substituting the coefficients 

A=-1.74, B=0.95833 into above equation we know that the 

period of limit cycle is 13T,, which is accurate enough. 

But apparently, when the coefficients A>O, B71 above 

frequency expression cannot be applied because the argument 

ar+Be=1 
DAB ) may be greater than unity. 

It is worth pointing out that if the poles are close 

to the unit circle in the Z-plane the limit cycle is 

approximately sinusoidal with a frequency close to the 

value given by the frequency expression of the linear model. 

Still substituting the coefficients A=-1.74, B=0.95833 

into the Eqn. (13) the period is 147, which is a good 

estimation. As peepee ec in this case the above two frequency 

expressions are similar because in high-Q cases, the limit 

cycles approximate sinusoid and the describing function 

method becomes more accurate. In fact when B>l, Egn. (70) 

degenerates to Eqn. (13). 
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3.8 SUMMARY 

In this chapter we have discussed the main properties 

of zero-input limit cycles in second-order filters. 

There are two different analytical ways of quantization 

error; stochastic and deterministic. Both methods have 

their own applications, It is important to understand 

the assumptions of these two methods. In this research 

both methods will be applied in different situations. 

When limit cycles exist the quantization error 

sequences 6(n) can be either constant, alternating or 

periodic. The correlation among 6(n) is a feature when 

limit cycles exist. 

The second-order digital filters with multiplication 

coefficient B for which |B|>0.5 will always exhibit limit 

cycles. Three different types of limit cycle may be 

distinguished; constant, alternating and periodic. 

Successive-value phase-plane plots provide a useful 

means for displaying the nature of the limit cycles of a 

digital filter. The existing conditions of limit cycles 

can be shown, with a convenient way, in the parameter 

Space. By the use of these parameter space plots, one 

can choose the coefficient values A and B correctly, iso 

as to obtain a certain kind of limit cycle, This is 

important in the simulations, 
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Three different types of amplitude bound for limit 

cycles in the second-order digital filters have been given. 

These bounds are important not only in the determining 

of the internal wordlength of filter but also in the 

searching limit cycles in the filter because these bounds 

give the regions in the state plane where the limit cycles 

occur. One must be careful in the applications because 

each bound has its own restriction, 

It is easy to estimate the occurrence of constant 

or alternating limit cycles from the parameter space plot. 

But one can only estimate the frequency of periodic limit 

cycles approximately. When the poles of the filter close 

to the unit circle in the Z-plane the frequency estimate 

becomes accurate. Simulations have shown that limit cycles 

of very long periods are possible, 

Now we are in the position to discuss the methods 

of limit cycle suppression. 
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CHAPTER 4 

STABILIZATION BY THE INJECTION OF DITHER 

It has been known for a long time that limit cycle 

oscillations in nonlinear, continuous-time feedback systems 

can be suppressed by the injection of a random dither 

Signal 27-0) A recursive digital filter with quantization 

is a nonlinear, discrete-time feedback system. As mentioned 

in Chapter 1, several authors have studied the use of added 

dither for suppressing the limit cycles in digital filters, 

but in this research somewhat different approaches have 

been used which have certain advaritages over the methods 

proposed before. 

4.1 THE PROPOSED METHOD TO SUPPRESS LIMIT CYCLES 

We have known that if a limit cycle in the second- 

order basic section exists, Y(n) and the quantization error 

6(n) both are periodic or constant or alternating 

sequence depending on the limit cycle type. The basic idea 

of this proposed approach of suppressing the limit cycles 

is to inject a minimum pseudo-random noise at the front of 

quantizer (see Fig. 14), so as to break the periodicity 

of the quantization errors. This pseudo-random noise is 

called dither (1) | 
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For the sake of simplicity, in the following chapters, 

unless specifically stated, only one quantizer version 

is considered. But the proposed method is effective to 

two quantizer version as well. In the absence of dither, 

the nth output from the filter, Y(n), is given by 

Yin) [-AY (n-1)-B¥ (n-2)], 

~AY (n-1)-BY (n-2)-6 (n) : (7) W 

where bales represents the operation of roundoff quantization, 

and |g(n) |< 0.5. 

The above equation can be rewritten as 

~AY (n-1)-BY(n-2) = [-AY (n-1)-BY (n-2)] )+5 (n) (72) 

If a random dither distributed in the open range (- 2, g ) 

is added at the nth instant, the resulting nth output from 

the filter, Y¥' (n), is given by 

y(n), = [-A¥ (n-1)-BY (n-2) +d (n)], (73) 

where d(n) is the random dither and |d(n) |< 0.5 because 

the quantization step q has been assumed equal to one. 

The difference of Y'(n) and Y(n) can be written as 

¥'(n)-¥(n) = [-ay (n-1) -BY (n-2) +4 (n) ] ,~ [-ay (n-1)-BY (n-2)], 

(74) 

Substitute Eqn. (72) into the above equation and we 

obtain 
Pty



¥" (n)-¥ (n) 

=([-av (n-1)-BY (n-2)] ,+6(n) +4(n)] 2 [-a¥ (n-1)-BY (-2)], 

= [st) tdi], (75) 

In the case where the filter is not at the origin state, 

the sum “AY (n-1)-BY (n-2) is, in general, not an integer 

multiple of gq, even though ¥(n-1) and ¥(n-2) are integer 

multiples of q. Specially, if a limit cycle exists it is 

impossible that 5(n) are equal to zero for all n. Because 

suppose that a limit cycle exists and 6(n)=O for alln 

then that means no roundoff exists and the quantizer has 

no influence to the filter. But in this case there must 

be no limit cycle in the filter. This conclusion conflicts 

with the initial assumption. 

Thus, if a random dither distributed in (- 3, 3) is 

added at the nth instant, there is a nonzero probability 

that 

¥" (n)-¥ (n) tt [s@+am], 

ad (76) 

In other words, if the present state of the filter is 

on a limit cycle, with the addition of dither, there is a 

nonzero probability that the next state will be off that 

limit cycle. Although this does not guarantee that dither 

will stabilise the filter, i.e.,ensure that with zero 
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input, the filter eventually reaches the origin state, 

the effect of the dither in causing the filter to leave 

the limit cycle makes it reasonable to speculate that 

the dither will suppress limit cycles in the second-order 

filters. In the next chapter, we will discuss this 

problem in detail. 

4.2 SOME NOTES ON THE PROPOSED METHOD TO SUPPRESS LIMIT CYCLES 

It is necessary to point out the properties of the 

proposed method to suppress limit cycles. Some properties 

show the possibility of limit cycle suppression. 

(1) Once a limit cycle has been suppressed the output 

signal from the filter remains at zero as long as the 

input signal is zero. From then on, the dither has no 

influence on the output. This statement can be readily 

proved from the equation 

¥'(n) = [-A¥' (n-1)-BY" (n-2)4a(n)] (77) 

When a limit cycle has been suppressed means 

¥'(n-1) = ¥'(n-2) = 0 

and because 

ldim)| < 0.5 

%'(n) = [afm], =0 (78) 
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(2) 

In some cases, this property is important because 

it means no remaining noise is left after the limit 

cycle has been suppressed. 

The injection of the dither makes the origin point 

(0,0) in the state plane be branch point even the 

coefficient B of the second-order filter satisfies 

that 1>|B|>0.5. 

As mentioned earlier, without dither, in case one 

or two rounding operations are used, the origin (0,0) 

is a branch point only if |B|<O.5 and from this 

statement one asserts that the filters with 

multiplication coefficient B for which |B|>0.5 will 

always exhibit limit cycles. 

But after adding dither the situation is quite different. 

As shown in Appendix 3, in case one or two rounding 

quantizers are used even though 1>|B/>0.5 the origin 

state (0,0) still can be a branch point only if 

(a) in one quantizer case the dither is added at 

the front of quantizer, or 

(b) in two quantiser case the dithers are added 

respectively at the front of two quantizers, or 

(c) in two quantizer case the dither is only added 

at the front of B coefficient product quantizer. 

It is also shown in the Appendix 3 that it is impossible 
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(3) 

when two quantizers are used to suppress the limit 

cycles by the addition of the dither at the front 

of coefficient A product quantizer only. Because in 

this case the origin state is not a branch point 

any more. 

These arguments show the intuitive reason of 

suppressing limit cycles by the use of the random 

dither. 

The injection of a uniformly distributed random dither 

makes the statistical quantization characteristic 

(mean value output versus input) linearise. 

It has been proved in Appendix 4 that with a concept 

of equivalent quantizer that when a dither uniformly 

distributed in (- 2, 4) is used the mean value output 

from the equivalent quantizer varies with the input 

with a linear manner. This statement at least shows 

the tendency of linearisation by the use of the 

uniformly distributed random dither. 

In the two quantizer version, two dither signals can 

be taken from the same random sequence generator. 

In the two rounding quantizer version with dither, 

the difference equation can be written as 

2m) = Lave (n-1) +4, (n)] y+ [-BY! (n-2) 44a, (nd], (79) 
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Suppose that 

[-ay" Gallia = -aY! (n-1)-4, (n) (80) 

and 

[-BY' (n-2)], = ~BY' (n-2)-6, (n) (81) 

where 

[6 (n) |< o.5 and |, @) |< 0.5 

Therefore, 

¥" (n)=[-A¥" (n-1)] gt [6 (n) +4, (2) ] pt [-BY! (n-2)] pt (0), (n) +4, (mJy 

(82) 

Because, in general, 5, (n) and 5, (n) are different 

and their correlation is small, even d, (n)=d)(n), the 

values of [s,,(n) +4, (n)] p and (6), (n) +4, (n)], still can 

be different and their correlation is also small. 

It is expected that by the use of the same dither, 

the purpose of limit cycle suppression can still be 

carried out, and the simulation has verified this 

expection. 

4.3 SUMMARY 

The proposed method to suppress the limit cycles in 

the second-order digital filters has been described. The 

use of the dither may cause the filter to leave the limit 

cycles and make the origin state (0,0) be branch point. 
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Once the origin state has been reached the state of 

filter will stay there as long as the input signal is 

zero. These properties of the proposed method support us 

to speculate that the dither will suppress limit cycles 

in the second-order filters eventually. 

One of the advantages of this method is that in the 

zero-input condition, once the limit cycle has been 

suppressed the output signal remains at zero, i.,é€.,no 

remaining noise left. 

In the next chapter, the effect of the dither on the 

limit cycle suppression will be discussed further. 
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CHAPTER 5 

HOW DITHER AFFECTS THE LIMIT CYCLES 

Although two properties of the proposed method to 

suppress limit cycles in the second-order digital filters 

mentioned in Chapter 4 make it reasonable to speculate 

that the dither will suppress limit cycles, those have 

not proved that the dither will stabilize the filters yet. 

In this chapter, we will first verify the stabilization 

for a particular pair of coefficient values A and B, then 

prove it for general cases though it is not strict in the 

mathematical sense. 

5.1 VERIFICATION OF THE STABILIZATION BY THE USE OF 

DITHER FOR A PARTICULAR PAIR OF COEFFICIENT VALUES 

A_AND B 

For a particular pair of coefficient values A and B, 

it is possible to verify that dither will stabilise the 

filter. This can be done as follows: 

First, all the limit cycles are identified, for examole, 

by simulating the digital filter using all possible initial 

states in the zone of the state plane where limit cycles 

may exist. This zone can be determined by use of the known 

bounds on limit cycle amplitudes. 

Second, each state is examined to determine which limit 
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cycle it belongs to and is labelled to indicate this. 

The initial state from which the limit cycle can be 

reached is said to belong to that limit cycle. In 

practice, this can be done concurrently with the first step. 

Third, each limit cycle is examined in turn to 

determine which other limit cycles can be reached from 

it when dither is added. This can be done by examining 

each state on the limit cycle, finding which state can be 

reached from there when dither is present and noting the 

limit cycles to which these states belong. 

Lastly, a directed graph called transition diagram ‘39) 

results, showing which limit cycles can be reached from 

which others. It can be discovered from this transition 

diagram whether or not it is possible to reach the origin 

from every one of the limit cycles. 

In the following sections, we will describe the 

procedure with the example frequently used before, step by 

step. As will be seen, although we use the typical example, 

any specified pair of coefficient values A and B is 

suitable, i.e.,the procedure mentioned is general. 

1. Identify All the Limit Cycles in the Second-Order Filter 

Section With Coefficient Values A=-1.74, B=0.95833 

The amplitude bound of the limit cycles in the filter 

section is found by the use of Jackson's bound formula. 

This bound is equal to 1l. In the state plane, this 
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bound defines a zone which is bounded by Y(n) = +11 and 

Y(n-1) = +11. Apparently, there are (ix2+1)? = 529 

states altogether including two axes themselves. Having 

known the coefficients and initial condition it is 

easy to simulate the filter with the computer and find 

the limit cycles. All the limit cycles have been shown 

in Fig. 18 before. 

2. Obtain the "Distribution Diagram" of Limit Cycles 

First, each limit cycle is numbered successively from 

1,2,3,4, ... As mentioned earlier, for this example, there 

are 10 limit cycles, therefore each limit cycle from the 

largest periodic one to the smallest constant one is given 

by the number from 1 to 10 respectively. Each state in 

the zone defined by the amplitude bound of limit cycle is 

used in turn as an initial state. The limit cycle which 

the initial state belongs to can be found by simulation 

and the initial state is indicated by the same number with 

that of the limit cycle. After 529 steps the "distribution 

diagram" of the limit cycles can be obtained as shown in 

Fig. 21. Because the Jackson's bound may be exceeded, a 

check is necessary. No larger limit cycles have been found 

outside the zone for this example. 

3. ‘Determine Which Other Limit Cycles can be Reached from 

Each Limit Cycle when the Dither is Added 

In this example, suppose a uniformly distributed dither 
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Fig. 21 "Distribution diagram" of the limit cycles in the example 

shows to which limit cycle each state belongs. 
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is used. If this random dither is added at the nth instant 

then the difference of the output from the filter with and 

without dither can be written as 

¥'(n) = (mn) = [8(n) + a(n)] é 

Because the dither is uniform distributed in the open 

range (- $, 9) and |é(n)|< 0.5 the following equation can 

be obtained. 

glk 

¥* (a), =" ¥ (mn) =5 0 (83) 

=r 

It is reasonable to assume that the probability of 

occurrence of each value in the three possible numbers is 

equal to }: In other words, by the addition of the dither, 

there is a probability of 4 that the filter will stay at 

the same limit cycle. Both probabilities of leave off the 

original limit cycle to two neighbouring states are also 

equal to 3 respectively. 

Suppose that there is a limit cycle which includes N 

states in the state plane. Then after adding dither, the 

number of states which can be reached is 3N. From the 

"distribution diagram" of limit cycles we know which state 

belongs to which limit cycle. Therefore, the probability 

of transition from a limit cycle i to limit cycle j can 

be calculated. 

For example, limit cycle 1 includes 14 states. Hence 

by the injection of the dither, 14x3=42 states, can be 
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reached by the filter. From the "distribution diagram" 

of limit cycle we know that in the 42 states, 14 states 

belong to the limit cycle 1 itself, 6 states belong to 

limit cycle 2, 6 states belong to limit cycle 3, 16 states 

belong to the limit cycle 6. It is clear that by the 

use of dither, the filter either stays at the original 

limit cycle or moves from limit cycle 1 to limit cycle 

14 
2, 3 and 6. The probabilities of the transition are Rm 

Ss SS and is respectively. 

Along the same way, the probabilities of transition 

from any limit cycle to others can be calculated. 

4. Drawing the Transition Diagram 

As we have known that without dither a digital filter 

with coefficients A, B lying on some region in the parameter 

space will continue to oscillate in a particular limit 

cycle depending on the initial condition. However, when 

dither is injected it becomes possible for the filter to 

move between limit cycles. The state of the filter is, 

therefore, no longer trapped in a particular limit cycle 

but can move randomly from one to another. These transitions 

can be graphically represented by a transition diagram ‘39) | 

In the transition diagram, each node is numbered to 

represent one limit cycle. A directed line segment or 

branch is drawn from each node i to each node j and labelled 

with the transition probability, Pie Note that because 
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from the origin state the filter cannot move to any limit 

cycle except the origin state itself, the probability of 

transition from origin to origin is one. This state is 

called a trapping state. 

Fig. 22 shows the direct graph corresponding to the 

filter section used as an example above. The nodes from 

1 to 10 represent 10 limit cycles and node 11 represents 

the origin state. The probabilities of transition from 

each limit cycle to others have been calculated as above. 

It can be seen from the transition diagram that each 

limit cycle can be reached from some other limit cycles. 

Although the origin state cannot be reached directly from 

all the limit cycles, there is no limit cycle from which 

the origin cannot be reached indirectly if necessary. 

Once the filter reaches the origin the filter remains 

at this state as long as the input signal is zero. Thus, 

for this particular filter, it is proved that the dither 

signal stabilises it. 

5.2 THE MAXIMUM TRANSITION TIME NEEDED TO MOVE FROM ANY 

LIMIT CYCLE TO THE ORIGIN STATE 

As mentioned earlier, without dither for the second- 

order filter with the coefficient |B|>0.5, the origin 

state is not a branch point. Therefore, each state except 

the origin in the state plane must belong to one limit cycle. 
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The origin state only belongs to itself. Apparently, at 

any instant, a second-order filter must occupy a state. 

We say that a filter "occupies" limit cycle i when it 

occupies a state which belongs to the limit cycle i. 

We have specified a set of conditional probabilities 

Py j that a filter which now occupies limit cycle i will 
, 

occupy limit cycle j after its next transition. As just 

mentioned, since the filter must occupy a limit cycle 

after its next transition, therefore 

N+1 

tuepree = (84) ye ad 

where N is the total number of limit cycles which the 

filter may occupy. The upper limit of the summation is 

(N+1) including the origin state (0,0). 

The probability that the filter will remain in i, 

p has been included in the above equation. Apparently, dg 

since the Py j are probabilities 
, 

aes (85) 0 <p, 58 

The transition probabilities Py may be ranged in matrix 
, j 

form called a transition probability matrix. 

Dipl sues en eo oe Pl NT 

(1) Bogie Foi? E2325 Po, Ne 
i (86) 

Py+1,1 Pn+1,2 Pnei,3°* Pn+1,N+1 
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a1) 
where p represents the first-step transition matrix 

and the sum of elements in each row is equal to unity. 

For the example used above, the first-step transition 

matrix has been known and can be written as follows: 

ae & & 0, 0 2 O SOMO” 3.0 o| 

a 8 5 a ° x OMOF BOs OO 

5 5 4 aq ° z OO One) 

° 3 4S # s s OF FOL SOA ue Oi 

© oc 0 % z s OO 30 5 One 0 

so CCC RRR ED B® ce) 
oC Oo © 3 3 0. 0 0 ..0 

On OFF One O “0: 3 oO 3 0) 0 © 

O09: 30°70 , 0 3 oo 3 oO 9 

oF OF OF O20 3 On OPO 3 ° 

OnT Or OeeO” OnE OIG, CO ORO Ee     
As mentioned before, the injection of dither makes the filter 

section move from one limit cycle to another. The transition 

between limit cycles can be treated as a Markov process. 

(39) According to Markov theory , the Mth step transition 

probability matrix can be expressed as 

pM) = [pty (88) 

iss



The matrix multiplication has been carried out by 

computer. The calculated results show that when the 

transition step M is greater than 310, all the elements 

in the last column in the Mth transition probability 

matrix tend to 1 and the others tend to zero with the 

error less than 1x1074, see 

Oi O gs Oss Om 0 OGL 0180 Ofeiinl 

Op OLMO) 0 ecOmOuvO 10-0010 => 

Ow OF OO 0) 1ONNOuOr se 0 = 4 

Ors0) OM OmkOm 0 MOL Om OlLO Ts 

(ee CVE) <1) ey Lovee) Tey) Mey 

prteiio of 0 olor on 0 oO 1 (88) 

OMMO aC BION Ono. =O" 0. Ono! - 1 

OMG LAO MiG wo! 70, 6 Grouson mont 

OO 70-7080). 0) 6. 10. 0 10 a 

OmeO) | OMNOS HOMO SOO) On Ome 

on 088 Op Cimon orn CE. OF COMO, 1. |     
It means that in the sense of statistics, the filter 

should reach the origin state (0,0) from any limit cycle 

after about 310 step transitions. This has, of course, 

proved the stabilisation by the use of the dither for the 

specified filter. As will be seen later, in 1000 simulations 

the median value of the transition time from the largest 

limit cycle to the origin for the filter in this example 

iS) 330 De which nears the transition time, 310 aor calculated 

above. 
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5.3 VERIFICATION OF THE STABILIZATION BY THE INJECTION 

OF DITHER FOR GENERAL CASES 

1. Equivalent Quantizer 

The only one nonlinear element (overflow has been 

excluded) is the rounding quantizer. Therefore, we will 

pay more attention on the rounding quantizer with dither. 

Both dither adder (including the dither generator) 

and quantizer itself can be treated as an equivalent 

quantizer Qar as shown in Fig. 23. Its input and output 

signal are “AY (n-1) -BY (n-2) and [-a¥ (n-1)-BY (n-2)+4(n)] 

respectively. Fig. 24 shows the quantization characteristic 

of Qe: In the figure, the solid line represents the 

quantization characteristic of the rounding quanitzer, 

the dashed line shows the new possible values because of 

the use of dither, and the 45° line represents the ideal 

linear case, i.e.,in case no quantization and dither are 

used, 

The characteristic of Q, consists of two parts as 

shown in Fig. 24; one part lies in the sector between the 

45° line and X-axis which is just the magnitude-truncation 

characteristic, other part lies in the sector between the 

45° line and Y-axis called a rounding up characteristic. 

The dither makes the characteristic of the quantizer jump 

randomly between these two parts. 

15



  

  -AY (n-1)-BY(n-2P > [AY (n-1)-BY (n-2)+4(n) J, 
      

Fig. 23 Equivalent quantizer. 
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2. The Magnitude-Truncation Part in the Characteristic 

of OF Tends to Stabilize the Filter 
  

As mentioned in Chapter 2 and 3, the areas of 

asymptotic stability of the second-order digital filters 

with one and two magnitude-truncation quantizers in the 

parameter space have been derived by using the frequency 

domain criteria for absence of zero-input limit cycles. 

Comparing the filter with the rounding quantizer, the 

area of asymptotic stability of the filter with 

magnitude-truncation quantization is much bigger than 

that of the filter with roundoff quantization. Contrast 

with roundoff, whatever one or two magnitude-truncation 

quantizers are used the origin state is a branch point. 

In particular, for one magnitude-truncation quantizer, 

limit cycles occur for only a very few values of the 

multiplier coefficients A and B. In these limit cycles, 

only about (25~40)% are accessible. 

For the filter with two magnitude-truncation quantizers, 

only constant or alternating limit cycles have been 

observed by simulations and they are found in the linear 

stable triangle area for values |A|>l. For high-Q poles 

(Bgl) only limit cycles with magnitudes equal to one 

quantization step are accessible. In this case, by the use 

of the dither, the filter may move to the origin state 

with a very big probability, because there are at least 
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two predecessors of the origin state defined by (0,+1). 

The important fact which supports the argument on 

stabilization is that whatever one or two magnitude- 

truncation quantizers are used, even for those coefficients 

with which the limit cycles exist there are still a large 

number of initial states in the state plane from which 

the filter will move to the origin state (0,0). Our 

simulations showed that averagely speaking, there are 

about 50% or more states in the state plane from which 

the origin can be reached by the filter with the 

coefficients which lie on the unstable area in the 

parameter space. In other words, for any second-order 

filter with magnitude-truncation quantization the origin 

state (0,0) can be reached from all or at least a large 

number of initial states. 

The conclusion is that if the filter is started with 

randomly chosen initial conditions, any second-order 

filter with magnitude - truncation quantization can reach 

the origin state (0,0) with a big non-zero probability. 

As we have known, the dither makes the filter move state 

by state, randomly. Once the origin state has been 

reached, the filter sticks there as long as the input is 

zero. 
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3. The Rounding Up Part in the Characteristic of Q 

Makes the Filter be Unstable 

This argument is readily proved, because in this 

case the origin state is not a branch point. 

4. The Filter With the Characteristic of Q. is,ina 

Broad Sense, Zero-Input Stable 

As mentioned earlier, the dither makes the characteristic 

of the quantizer jump randomly between truncation and 

rounding up parts. We have concluded on the basis of 

experiment that when the magnitude-truncation characteristic 

part is used, the filter will tend to move with a big 

probability towards to the origin state and nen the 

rounding up characteristic part is used, the filter will 

tend to move off the origin state. The dither signal 

makes the filter move state by state, randomly. These 

transitions continue until the origin state is reached. 

Since the transition is random after some finite time, 

the filter can move to the origin state. Once the origin 

state is reached, the filter will remain there as long 

as the input is zero. 

Now the stabilization by the injection of dither has 

been proved. 

By the use of the program listed in the Appendix 1, 

the suppressing procedure of limit cycles can be shown on 
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the screen of the computer PET. The trajectory shown 

on the screen represents the variation of the state 

occupied by the filter. As can be seen, by the use of 

the dither, the trajectory sometimes moves away from the 

origin, and sometimes moves towards the origin. This 

procedure continues until the origin state is reached. 

As soon as the filter reaches the (0,0) state, it remains 

there if the input keeps being zero. 

This observation verifies what has previously been stated. 

5.4 SUMMARY 

In this chapter the necessity of the limit cycle 

suppression in the second-order digital filters by the 

use of dither has been proved though partly on the 

experimental basis. Because the quantization nonlinearities 

occurring in digital filters are highly discontinuous 

functions, it is difficult to prove the stabilization 

strictly. But for a specified pair of coefficient values 

A and B, it is possible to verify that the dither will 

stabilize the filter. By Markov theory, the maximum 

transition time needed for transition from any limit cycle 

to the origin state may be calculated. The result has 

been verified by simulation. 

In principle, in the proposed method to suppress the 

limit cycles,a rounding quantizer with the random dither 
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is equivalent to a controlled quantizer where the 

quantization is controlled by the dither. Depending on 

the signal in the filter and the dither, the quantization 

is switched between magnitude-truncation and rounding up 

randomly. The magnitude-truncation part tends to stabilize 

the filter but the rounding up part makes the filter 

become unstable. Once the limit cycle has been suppressed 

the output from the filter keeps zero as long as the input 

keeps zero-it is not necessary for the filter to be 

symptotically stable. The necessary condition of stabilization 

is that the origin state can be reached with nonzero 

probability. The magnitude-truncation part in the 

characteristic of the equivalent peat ee provides this 

possibility. This concept has been used to prove the 

stabilization of the filter by the injection of the random 

dither. 
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CHAPTER 6 

DITHER SIGNALS 

So far in this thesis only one kind of dither signal, 

uniformly distributed random dither, has been used. This 

chapter will proceed with further discussion on dither 

signal. Firstly, the previous work on the use of dither 

for limit cycle suppression will be reviewed and discussed. 

Then, the principal considerations of designing dither 

signal will be described. Finally, several dither signals 

which have been verified by simulation will be introduced. 

6.1 REVIEW AND DISCUSSION OF THE PREVIOUS WORK ON THE 

USE OF DITHER FOR LIMIT CYCLE SUPPRESSION 

In this section we will review and discuss the methods 

of limit cycle suppression proposed before to find out 

their advantages and disadvantages. This discussion is 

very helpful to propose the principal considerations of 

designing dither signals. 

A number of methods for using added dither to suppress 

limit cycles have been suggested. In the following text 

the relevant methods will be discussed one by one. 

1 Randomized Quantization Methoa '3) 

In this method the quantization is switched randomly 

between truncating and rounding. This is equivalent to 

the addition of a random dither at the front of rounding 

ae —



quantizer whose value is either O or (- 4/2 + €) where 

€ is a very small positive number compared with the 

quantization step q. The equivalent quantization 

characteristic of the whole quantization system is shown 

dn, FIg.e 25). 

It is readily proved that for truncation quantization 

the origin state is a branch point and its predecessors 

are (O,+ 1). But as we know for roundoff quantization 

the origin is not a branch point. Therefore, in order to 

reach the origin state (0,0) truncation must have occurred 

while in the states (0, + 1). Simulation has verified 

that this method can reduce or suppress limit cycles in 

digital filters. 

In this method, when a roundoff quantization is used, 

the filter tends to form a limit cycle whose amplitude 

depends on the initial condition, but when the truncation 

quantization is used, the filter, in general, tends to 

move to the origin state, i.e.,tends to decrease the 

amplitude of output signal from the filter. Therefore, 

when the rounding quantization is used again, the filter 

tends to form a smaller limit cycle because the filter 

starts at a new smaller initial state. In this way, 

whenever the filter is switched to truncation quantization, 

the amplitude of limit cycle oscillation will be decreased 

to some smaller value. This procedure will repeat randomly 

until the limit cycle is suppressed. Because of the mono- 

tonic decreasing characteristic of the oscillation during 
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Fig. 25 The characteristic of equivalent quantizer in the 

randomized quantization method. 
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the switching period, this method can make the filter 

reach the origin state in a shorter time. Once a limit 

cycle has been suppressed, the output from the filter 

remains zero as long as the input signal is zero, i.e., 

there is no remaining noise at the output terminal. The 

disadvantage of this method is that some constant or 

alternating limit cycles cannot be suppressed. The 

reason is quite clear from the equivalent characteristic 

of quantization. As can be seen from Fig. 25 there is 

half a range of X, the input of the quantizer, where there 

is no difference between truncating and rounding. As 

mentioned earlier, when a constant or alternating limit 

cycle exists, the input of the quantizer is also a 

constant. Apparently, when this input signal of 

quantizer just lies in the range where there is no 

difference between truncating and rounding, then the 

quantization switching between truncating and rounding 

has no influence on the limit cycle. In this case, the 

limit cycle, of course, cannot be suppressed. When 

constant or alternating limit cycles exist, the roundoff 

quantization error |é(n)| is a constant. As mentioned 

earlier, the difference of the quantizer output with 

and without dither is (6 (n) i din)]g where d(n) is equal 

to either O or - a +e. It is clear that when 

O < 6(n) < 4q then whatever the rounding or truncating 

takes place (6 (n) + ain) Jy = 0. In other words, the 

equivalent dither has no influence on the output value 

seo



of the quantizer. 

In order to suppress these kinds of limit cycle, we 

have to extend the range where the quantization characteristic 

is changeable. This purpose can be obtained by extending 

the range of the equivalent dither signal to (-q/2, q/2). 

This is an important consideration in the dither signal 

designing. 

2. The Method of Limit Cycle Suppression proposed 

by Rashidi and Bogner(9) 

In this method, a stabilizing signal Sar of amplitude 

Agr is added to the coefficient B product branch as 

shown in Fig. 26. Ss, is normally random. 

If the whole coefficient B branch except delay block 

is treated as an equivalent quantizer, then its equivalent 

quantization characteristic is shown in Fig. 27. In this 

figure the shaded areas represent the regions where the 

transition of the quantization function can occur. The 

amplitude of the stabilizing signal needed for limit 

cycle suppression has been given by the formulae in the 

paper (5) which dependson the coefficients A and B. 

The simulation shows that most limit cycles in the 

second-order digital filters can be suppressed by the 

use of this method. Once a limit cycle has been 

suppressed there is no remaining noise at the output 

terminal in zero-input condition. But as can be seen 

from the equivalent quantization characteristic shown 
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Fig. 26 Block diagram of the method for limit cycle suppression 

proposed by Rashidi and Bogner. 
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Fig. 27 The characteristic of equivalent quantizer in Fig. 26. 
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in Fig. 27, the region where the transition of the 

quantization function can occur is not wide enough. 

There are still some regions where the quantization 

characteristic has no difference with the roundoff 

quantization. It can be expected that there may be some 

constant or alternating limit cycles which cannot be 

suppressed by the use of this method. For example when 

this method is applied to the filter with the coefficient 

Values A = = 1 and B = 2, i.e, (al, = 32, (2), =—t; 

and aB=B-[B), Si-O 71875. Reference '9) gives the formula 

to decide the amplitude of stabilizing signal. According 

to Eqn. (25a) in oy ee mT(0.5//AB] Ja = 2q. Suppose 

that the initial conditions are y(-1) = ¥(-2) =5, it is 

readily verified that the output from the filter is also 

equal to 5. Therefore, the filter provides a constant 

limit cycle (..., 5,5,5, +++) which cannot be suppressed 

by the use of the method. Other examples are the filters 

with coefficients A = - 1.58, B = 0.605 and A = -1.8125, 

B = 0.828125. In these filters the constant limit cycles 

(..-, 5,5,5, .-.) cannot be suppressed either. 

Additionally, because the stabilizing signal Se is 

added before the multiplication the amplitude A depends 

on the coefficient B. Therefore, when B changes, Ae should 

be adjusted also. 

From this method one knows again that the region 

where the transition of the quantization function can 
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occur must be wide enough otherwise there must be some 

constant or alternating limit cycles which cannot be 

suppressed by the use of dither. The intuition tells 

us that it will be safe if this region is extended to 

the whole range of the input signal of the equivalent 

quantizer. How wide the region should be depends on the 

coefficient values. This problem will be discussed 

later. 

3. The Method of Limit Cycle Suppression Proposed 

by Biit tner 4) 

In this method, two basic random roundings RR1 and 

RR2 are used. 

In RR1, two added signals first add together precisely, 

then the bit having half of the weight of the LSB is 

replaced with the instantaneous value of a binary random 

sequence. Finally, the roundoff quantization is used. 

Similarly, the replacement and the rounding quantizer 

can be treated as an equivalent quantizer and the equi- 

valentquantization characteristic is the same with that 

shown in Fig. 24. It is clear that the transition 

region where the jump of the quantization function can 

occur is wide enough. As can be expected, all the limit 

cycles in the second-order filters can be suppressed 

by this method. But because the magnitude of the binary 

random sequence is equal to 0.5 with 50% probability, 

even the limit cycle has been suppressed, the output 

SS



from the filter does not vanish for zero-input. Instead, 

a noise-like signal is produced at the output. This 

extraneous noise is called the remaining noise. It is 

worth noting that because of the feedback in the recursive 

filter, this remaining noise is not necessarily very 

small. 

Apparently, if the amplitude of added dither is near, 

_but less than 0.5, then the remaining*noise will vanish. 

This is another key point that should be considered in 

the dither signal design. 

With method RR2, as mentioned in the original paper, 

some constant or alternating limit cyles still cannot 

be suppressed. 

4. Folding-frequency Dither Methoa‘?) , 

This method was proposed by Blackman in 1965. In 

this method, one folding-frequency dither, (-1)™b, 

where D = 4q - A and A is less than (1-B)q, is added 

before rounding. Blackman has asserted that by the use 

of the dither, the limit cycles (he called limit cycle 

phenomenon dead band effect of roundoff errors), will 

be suppressed. But he has only studied the first-order 

filters. 

The simulations showed that this dither results in 

quicker limit cycle suppression than uniformly distributed 

random dither, due to the greater amplitude of the dither 

resulting in more frequent transitions between the various 
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limit cycles. But the simulations also showed that there 

were a lot of exceptions in the second-order sections in 

which some limit cycles could not be suppressed. For the 

typical example (A =-1.74, B = 0.95833, one quantizer) in 

the, (il x2 24+ ie = 529 states there are 102 initial states 

from which the origin could not be reached by the use of 

this alternative sign dither. For example, suppose the 

initial state is Y(-1), Y(-2) = 3,3 then the outputs from 

the filter without dither are as follows, 

wewg, 2y bon Oy = by —25 = 378-3, 2, Hl, 0, ers, 37 eee 

But the steady-state outputs from the filter with a dither 

Onsg(=1)— are as follows, 

hos ES Ee Sy sy) 33, 28, = 27a, Lowes, 2.4 

As can be seen from the above data, because of periodicity 

of this dither for some initial conditions the filter can 

never reach the origin state but another limit cycle. From 

this example another principal consideration in the dither 

signal design can be obtained i.e, the dither should not 

be periodic. 

In this section, the main previous works on the use of 

dither for limit cycle suppression have been reviewed and 

discussed. As has been seen, although all these methods 

proposed before can be applied to suppress the limit cycles 

in the second-order filters but either with some methods some 

constant or alternating limit cycles cannot be suppressed, 

or with other methods even when the limit cycle has been 

suppressed there is remaining noise at the output terminal 

of the filter. 

Apparently, one needs some methods with which all 
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the limit cycles in the second-order filters can be 

suppressed and once the limit cycle has been suppressed 

the output should keep being zero as long as the input is 

zero. 

6.2 PRINCIPAL CONSIDERATIONS IN THE DITHER SIGNAL DESIGN 

From the above review and discussion of the previous 

work on the use of dither for limit cycle suppression, 

some principal considerations in the dither signal design 

can be obtained. 

(1) The amplitude of dither should be big enough to change 

the output of the quantizer. 

As mentioned earlier, the difference of the output 

of the quantizer with and without dither is” 

a as 
x(n) - ¥(n) = [6(n) + din)], 

It is clear that in order to change the output of 

the quantizer, the dither must satisfy the following 

inequality 

| (6) + é)J,| > 2 (89) 

Apparently, the bigger the dither amplitude, the easier 

to change the output of the quantizer. 

(2) The amplitude of dither should be small enough to 

satisfy 

[aim], =0 

|d(n)| < 0.5 (90) 
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Above equation insures that once the filter has reached 

the origin state (0.0) (in this case, the quantization 

error é(n) = 0) the dither does not change the state of 

the filter any more. 

(3) The dither should have same probabilities of being 

positive and negative. 

Because the input sequence to quantizer is sometimes 

rounded up where the quantization error 6(n) has the opposite 

sign with the output value of the quantizer Y(n) and some- 

times rounded down where 6(n) has the same sign with GME 

In a statistical sense, the probabilities of round up and 

round down are equal, only if the dither also has same 

probabilities of being positive and negative the dither 

can possibly change the sequence to be rounded down from 

round up or vice versa. 

(4) The dither should be a non-periodic sequence. This 

requirement is from the experience of the use of folding- 

frequency dither method described in the last section. 

Combining the above requirements of the dither signal one 

knows that the dither signal should be a random signal 

distributed in the open range (-q/2, g/2). With the dither, 

the transition region in the equivalent quantization 

characteristic will be extended to the whole range of 

the input sequence of quantizer. It could be expected 

that all the limit cycles in the digital filters would 

be suppressed and there would be no remaining noise at 
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output in the zero-input condition. As will be described 

later, the simulations have verified this expectation. 

6.3 SOME USEFUL DITHER SIGNALS 

According to above requirements of the dither signal, 

three types of dither signal have been proposed and used 

in our research. 

Le Uniformly Distributed Dither Signals 

This dither is a pseudo-random sequence whose values 

are distributed uniformly in the open range (-q/2,q/2). 

Fig. 28 shows its probability distribution function. From 

the probability distribution function, it is clear that 

the uniformly distributed dither signal has mean value 

of zero. Its variance can be readily calculated as 

follows: 

Variance = E[(d-mg)*] 

= E[d?] 
q/2 

= f a? dx 
q 

-q/2 

= q?/12 (91) 

There are several methods to generate the uniformly 

distributed pseudo-random sequence. In this research the 

program shown in Appendix 5 is used to generate the 

uniformly distributed pseudo-random sequence by computer. 

By the use of this program the computer gives a pseudo- 

random real number taken from a uniform distribution between 

O andl. The subroutine uses a multiplicative congruential 
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method. 

p = 1347 x p moa 2°9 (92) 

The output sequence of the computer is equal to eyo 

approximately. Here P is a variable whose value is 

preserved between calls of the subroutine. Its initial 

value is 123456789 x (224 + 1) but this may be altered. 

Because the output sequence P is distributed between O 

and 1, the sequence (P - 0.5) 18, of course, distributed 

between -O.5 and 0.5. The sequence (P - 0.5) is applied 

as the uniformly distributed dither. Fig. 29 shows its 

relative frequency histogram calculated from 1024 

a 
samples. As can be seen, principlly, this sequence is 

uniformly distributed in the range (-q/2,q/2). 

Simulations have shown that the limit cycles in the 

second-order digital filter can be suppressed by the use 

of this dither. Once the limit cycle has been suppressed 

no remaining noise exists at the output terminal of the filter. 

One disadvantage of this dither is that the time 

needed for the limit cycle suppression is long. For the 

example often used, this time is about 330 ue where tS 

is a sampling period. This is because the amplitude of 

the dither is distributed uniformly in the range (-q/2,q/2). 

With relatively large probability the instantaneous 

value of dither is not big enough to change the values 

of the quantizer. Therefore, the transition of the filter 

state between limit cycles is not frequent. It can be 
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expected that if the probability when the absolute value 

of the dither tends to 0.5q is much larger than that 

when the dither is small, then the above disadvantage 

may be overcome. The extreme case leads to the second 

type of dither. 

2s Binary Random Dither 

As mentioned before, the advantage of the use of the 

folding-frequency dither is that the filter might reach 

the origin state in a shorter time due to the greater 

amplitude of the dither resulting in more frequent 

transitions between the various limit cycles. But because 

of the periodicity of this dither for some initial 

conditions the filter can never reach the origin but 

another limit cycle. Therefore, it would be hopeful to 

find a type of dither whose values keep at maximum, but 

are rid from the periodicity. Since the amplitude of the 

new dither should be fixed at the maximum value, the only 

way to get rid of the periodicity is changing the sign 

of the new dither randomly. This task can be reached by 

taking the sign of a random sequence (uniformly or Gaussian 

distributed) which distributes symmetrically between 

positive and negative values. 

This new type of dither is called binary random dither 

which takes values (-g/2 + A) or (q/2 - A) with equal 

probability , where A is a positive quantity much smaller 

than q. We will discuss the value A later in this chapter. 
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The binary dither is readily generated from the 

uniformly distributed dither by the following equation. 

D, = sign (D,,) +(q/2-A) (93) 

where D, and Pi represent the binary and uniformly 

distributed dither respectively, and Sign(x) represents 

the sign of xX. 

Fig. 30 shows its probability distribution. The mean 

value of the distribution is zero. The variance of this 

dither can be calculated as follows: 

Variance E[(D,-Mq)*) 

=(D,*) 
age (94) i} 

The variance of the binary random dither is three times 

bigger than that of the uniformly distributed dither. As 

could be expected, the simulation showed that when nonzero 

input signal was input, the noise output from the filter 

with binary random dither was also bigger than that with 

uniformly distributed dither. But as mentioned above, since 

the greater amplitudes of the dither result in more frequent 

transitions between the various limit cycles, the 

suppression of limit cycles with the binary random dither 

is faster than uniformly distributed dither. The increased 

noise at output is the penalty. 

In summary, with the uniformly distributed dither the 

filter has a smaller noise output when a nonzero input 
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signal is added but it takes a longer time to suppress 

limit cycles. On the other hand, with the binary random 

dither, the limit cyles can be suppressed quicker, but the 

noise from the filter is bigger than that with the 

uniformly distributed dither, when the input signal is 

nonzero. 

It is reasonable to ask the question that whether 

it is possible to generate a type of dither which has 

been the advantages, i.e., smaller output noise and quicker 

limit cycle suppression. This question leads to the 

third type of dither signal. 

ol Band-stop Dither 

When dither is used to stabilize a filter, two 

specifications are of particular interest. One of these 

is the increase in the output noise from the filter 

above the quantization noise without dither which is 

present when nonzero input signals are applied. The 

other specification of interest is the length of time 

taken for the filter, with zero input, to reach the 

state-plane origin from a limit cycle. 

First, let us discuss the possibility of reducing 

the output noise caused by the dither. 

As we have known that when the input signal is zero, 

after the transition time to the origin state (0,0), the 

dither will not affect the states of the filter any more, 

i.e.,once the limit cycles have been suppressed the output 
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from the filter stays at zero as long as the input is zero. 

There is no remaining noise at the output. On the other 

hand, when the input is nonzero, there is extra output 

noise caused by the dither. From Fig. 14, it is clear that 

the transfer function of the dither is the same with that 

of the input signal. Because of the filtering of the 

filter, only the frequency components of the dither which 

lie on the pass band can pass the filter, and all the 

components which lie on the stop band cannot pass the 

filter, or precisely speaking, for the later components 

the filter will give them a big attentuation. Hence, 

intuitively, we can expect that before the dither is 

added to the filter if we remove the frequency components 

of the dither which lie on the pass band of the filter, 

then it is possible to reduce the output noise caused by 

the dither. All the other components of the dither will 

be filtered out by the filter itself. 

Second, let us discuss the possibility of reducing 

the transition time to the origin state in the state plane. 

For a second-order digital filter section, if the poles are 

close to the unit circle in the Z-plane, a periodic limit 

cycle is approximately sinusoidal with a frequency close 

to the resonant frequency of the corresponding section 

without the quantizer. When the poles are not close to 

the unit circle in the Z-plane, the periods of the limit 

ore 
cycles are divergent but, in general, they still around 

the reciprocal of the resonant frequency of the section. 
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When the procedure of the limit cycle suppression on the 

screen of the computer PET was investigated, it was found 

that the periodic limit cycle sometimes tended to be 

suppressed, but sometimes tended to be enlarged at the 

frequency near the resonant frequency. This enlargement 

makes the transition time to the origin state be postponed. 

Therefore, it is helpful for shortening the transition 

time to remove the frequency components of the dither 

ach lie around the resonant frequency. As discussed in 

Chapter 2, the second-order basic section has a bandpass 

characteristic and the central frequency of the pass band 

is the resonant frequency. 

Fortunately, above two requirements, reducing the 

output noise and shortening the transition time to the 

origin, require the same thing, i.e. to remove the 

frequency components of the dither which lie around the 

resonant frequency of the section. At the same time, of 

course, the dither still has to satisfy the inequality 

[a(m)| < 4q. 

We have discussed two kinds of dither, uniformly 

distributed dither and binary random dither. It is difficult, 

if it is not impossible, to obtain a binary dither signal 

which has no components around the resonant frequency of 

the filter. Now, what we want to do is to find a type of 

dither signal which has uniform probability distribution 

in the range (-g/2, q/2) and the frequency components 

lain around the resonant frequency have been removed. 
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Veltman, Van den Bos, de Bruine, de Ruiter and 

Verloren ‘4°) have proposed a synthesis method of random 

signals with a prescribed amplitude probability density 

function and a prescribed power density spectrum. But 

for our purpose, a simpler method can be used. In Fig. 

31, the input sequence X is assumed to be a wide band 

Gaussian noise. The sequence X is first added to a 

linear bandstop filter so as to remove the frequency 

components lain on the stop band whose centre is the 

resonant frequency of the filter to be stabilised. The 

output of the bandstop filter, Y, has Gaussian property 

too. Then the sequence Y passes a memoryless nonlinear 

network. This nonlinear characteristic transforms the 

Gaussian probability density function into a uniform 

distribution one. Because the nonlinear transformation 

will result in intermodulation products of the bandstop 

filtered dither falling within the stop band, this 

transformation also changes the power density spectrum 

of its input signal. Although Veltman et al. have 

described the method how to calculate the influence of 

the nonlinear network and compensate the linear filter 

so that the output of the nonlinearity produces the 

described frequency behaviours, but the simulation on 

a digital computer showed that in our case, the non- 

linearity gave minor changes in the power density 

Spectrum. The simulations have shown that for our 

purpose, the output of the nonlinear network has been 
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a good dither signal already. The bandstop dither generating 

will be described in detail in Chapter 7. 

As will be seen in the next chapter, the experiments 

have verified that the bandstop dither has the property of 

suppressing limit cycles quickly without causing much 

increase in output noise. 

6.4 A NOTE ON THE DITHER SIGNALS 

There are two questions about the dither signals 

that we have not yet discussed. The first one is how many 

bits are needed for storing the dither signal. For example 

the uniformly distributed random dither is distributed in 

the open range (- q/2, q/2).. The question is how many 

places of the dither value are needed for the limit cycle . 

suppressing. 

In general, the more places the dither has, the more 

bits it needs. The second question is how to decide two 

values, (-G/2+A) and (Q/2-A), in the binary random dither signal 

design. These two questions will be discussed in this 

section. As mentioned earlier, one of the important 

considerations in the dither signal design is that the 

amplitude of the dither should be big enough to change 

the output of the quantizer. This requires the dither 

signal to satisfy the inequality 

([6(n) + 4in)|J, 22 

or 

| (n)i + a(n) 3 0.5 
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As pointed out earlier, for a periodic limit cycle, 

the quantization error ¢(n) is also periodic and varies 

between - q/2 and q/2. In general,there is at least one 

of §(n) in a period which is bigger than, for example 

say, 0.25q. For the example often used, the maximum 

of 6(n) corresponding to the largest periodic limit 

cycle is equal to 0.48497q. Therefore, generally 

speaking, the suppression of periodic limit cycles only 

requires small amplitude dither which needs 2 or 3 bits 

because there is at least one state of the periodic limit 

cycle which can be changed by the use of small amplitude 

dither. But it is clear that if one wants to shorten 

the transition time to the origin then big amplitude 

is still desirable so as to change as many states on the 

limit cycle as possible. In our research for insurance 

we choose that [a(n) | vay = 0.499, which needs 9 bits for 

storing. But it does not mean that this is necessary. 

In some cases, most critical situations occur when the 

constant or alternating limit cycles exist. 

Suppose that without dither a constant limit cycle 

with value C exists, i.e., 

Cc (- ac - BC], 

C(-A = B) = 6 (95) 

where § is the quantization error which is a constant 

when a constant limit cycle exists. 

From the linear stable condition (the triangle in 
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the parameter space) the coefficient values A and B 

satisfy the inequality. 

SS Bes 

Let -A-B=1-8 (96) 

where 

Baas: 

Substitute Eq. (96) into Eq. (95). We obtain 

" (Opp capt iy GI 1) a . 

Ba 6 =Cp,=7— € (PF + Alt 2B) (97) 

Equation (97) shows that the quantization error 

has a opposite sign as that of C because 8 > O. And |6| 

decreases with |C| proportionally. Apparently, the minimum 

of |C| is equal to unity. Therefore, the minimum of the 

quantization error, 6, satisfies 

{6| =1l+A+B (98) 
min 

when constant limit cycle exists. 

Along the same way, when the alternating limit cycles 

exist the following inequality can be obtained 

[6] =1-A+B (99) 
min 

Now it is clear from the |6| expression that in 
min 

order to suppress all constant or alternating limit cycles 

the minimum amplitude of the dither should satisfy the 

inequality 

[1 - [A] +B + d(n)| 20.5 

or 

|d(n)| 2 0.5 - (1 - |A] +B) (100) 
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The inequality (100) whose variables are the 

coefficient values A and B determines the number of bits 

needed for the dither signal. As a very special example, 

suppose the value (1 - |A| + B) < 0.01, then it is clear 

that |d(n) | = 0.499 is still not big enough. We have 
max 

to increase the places of the dither so as to suppress 

the constant or alternating limit cycles whose amplitude 

is lq. Apparently, in this case, the time needed to 

suppress this constant limit cyle or alternating limit 

cycle by the uniformly distributed dither will be long. 

For the binary random dither, (- q/2 + A) or (q/2 - A), 

4 should satify the inequality 

o<A<1- [al +B (101) 

Similarly, only if the value (1- |A| + B) < 0.01 |d(n) |= 

0.499 is not big enough and the increase of the bits 

needed for storing the dither is necessary. 

For the example often used in the thesis, A = - 1.74, 

B = 0.95833, A should satisfy that 

A sel 1674 + (0.958339 = 0.21833 

In other words, the amplitude of the binary dither should 

be greater than 0.28167 which is much less than 0.499. In 

this case, the amplitude of 0.499 is big enough. In fact 

in this example, it is possible to reduce the places of 

the dither, i.e.,reduce the bits needed for dither storing. 

Simulation has verified this binary random dither. 
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6.5 SUMMARY 

In this chapter, the previous works on the use of 

dither for limit cycle suppression have first been reviewed 

and discussed. Then the principal considerations in the 

dither signal design have been described. The dither 

signal should be a random signal distributed in the open 

range (- q/2, q/2). Three types of dither signal have 

been derived from the principal considerations of the 

dither signal design. They are uniformly distributed random 

dither, binary random dither and bandstop dither. All the 

limit cycles in the second-order digital filters can be 

suppressed by the use of these three dither signals and 

there is no remaining noise at the output terminal when 

the input signal is zero. Each dither has its own 

characteristics. The simplest one for generating is the 

uniformly distributed dither. But it takes longer time 

for the limit cycle suppression by the use of it. When 

the binary random dither is used, the transition time to 

the origin on the state plane is shortest but the penalty 

is the increase of the output noise with nonzero input 

signal. It seems that the best dither for limit cycle 

suppression is the bandstop dither which has the advantage 

of suppressing limit cylces quickly without causing much 

increase in output noise. The penalty for the advantage 

is the complexity in the dither generating. But in 

systems already using many identical digital filters, 

the extra complexity need not be significant. 
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It is possible to generate other dither signals from 

the principal consideration in the dither signal design. 

But it seems that these three types of dither may have 

satisfied different requirements already. 

The process of generating bandstop dither needs 

further study. In particular, it could be possible to 

use bandstop dither signals which have been synthesised 

by computer and stored in ROM. Further studies are needed 

on the best form for the spectrum of the bandstop dither. 

In particular, it is not known how deep should be the 

notch in the spectrum. Any further improvements would 

probably be small. 

It is very hopeful if one can find a method to 

generate the bandstopped binary dither signal It is 

expected that the transition time to the origin state 

and the increase of the output noise with nonzero input 

signal would be reduced further by the injection of the 

bandstopped binary dither. 

Finally, in Section 6.4, it is concluded that the 

number of bits needed for storing the dither signal and 

the values in the binary random dither depend on the 

coefficient values A and B. 

In the next chapter, the experimental results will 

be presented. 
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CHAPTER 7 

EXPERIMENTAL RESULTS 

In order to verify the proposed methods for limit 

cycle suppression extensive simulations have been carried 

out with computers using the three types of dither signal 

mentioned above. In this research, three different computers 

have been used for different purposes; PET, PDP-11 and 

HARRIS 500. But most simulations were implemented with 

the HARRIS 500. Fortran language was mainly used, but 

basic was also applied occasionally. 

In the research, three kinds of experiments have 

been done. In the first kind of experiments, some were 

for verifying the limit cycle theory such as the existing 

conditions, classifications, amplitude bounds and frequency 

expression etc. The other simulations were for verifying, 

roughly, the methods of limit cycle suppression proposed 

in this thesis. The purpose of the second kind of 

experiments was to obtain the outline of the time needed 

for the limit cycle suppression by the use of the dither. 

At the same time, the use of dither for stabilizing the 

digital filter was checked further. The emphasis of the 

third kind of experiments was to investigate the effect 

of dither on the output noise from the filter section. 

In the following sections the three kinds of experiment 
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will be presented respectively. 

7.1 GENERAL SIMULATIONS ON THE LIMIT CYCLES IN THE 

SECOND-ORDER DIGITAL FILTER SECTIONS 

1. Second-Order Filter Section With Quantization 

As mentioned in the second chapter, there are two 

different ways of implementing the Geant seers in the 

second-order sections: one quantizer and two quantizer 

versions. In the zero input condition, these two versions 

are described respectively, by the difference equations 

¥(n) (-aY (n-1) = BY (n-2)], . (102) 

and 

Yn) W [-av(n-1)], + (-By(n-2)], (103) 

where [eI represents the operation of quantization. 

The roundoff quantization, Xl, can be simulated by 

the following arithemtic 

[Xl = Sign (X) xinteger [absolute(X) +0.5] (104) 

where sign(X), integer (X) and absolute(X) represent the 

sign of X, integer of X and the absolute value of X 

respectively. 

Using fortran language, the expression can be written 

as 
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SIGN(1.0,X) * INT(ABS(X)+0.5) (105) 

Using basic language, above expression can be written as 

SGN(X) * INT(ABS(X)+0.5) (106) 

The magnitude-truncating quantization, blae can be simulated 

by the arithmetic 

x = sign(X)+ integer [absolute (x) (107) 
MT 

Similarly, using fortran language the above expression can 

be written as 

SIGN(1.0,X)*INT(ABS (X) ) (108) 

Using basic language, the corresponding statement is 

SGN (X)¥* INT (ABS (X) ) (109) 

By the use of the above statements and the corresponding 

difference equations, the second-order filter sections can 

be readily simulated with the computer. 

2. Limit Cycles in the Second-Order Filter Sections 

In order to find out the limit cycles in various 

filters, first, we must determine the amplitude bound of 

the limit cycles. Usually, Jackson's bound expression is 

used because it is easy to calculate and it gives the 

minimum bound in the all bound expressions. As mentioned 

earlier, checking is necessary because this bound may be 
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exceeded in some special cases. Suppose this bound is K, 

then there are (2K+1) states in the region defined by the 

bound in the state plane incuding the origin state itself. 

Secondly, each of (2K+1) 2 states is assumed as an 

initial state of the second-order filter section in turn. 

The filter is operated until a limit cycle or the origin 

state is reached. The limit cycles can be readily recognised 

from the periodicity. It is clear from difference equation 

that for a filter if ¥(n-1) and ¥(n-2) change sign 

simultaneously then ¥(n) also only change the sign. 

Therefore, if the initial state @=1)5 Y(n-2)) belongs 

to a Type A periodic limit cycle (see Section 3.2), then 

the initial state (-¥ (n=1),-¥ (n-2)) also belongs to the same 

limit cycle since Type A limit cycle has half-wave symmetry, 

i.e., the equation Y(n+ 3) = -Y¥(n) exists. 

Because the rounding and magnitude-truncation 

characteristics are described by odd functions, consequently, 

if there is a limit cycle of Type B in the filter, Y(1), 

¥(2),.-.-¥(N), then a limit cycle of Type B can also be 

maintained in the same filter described by Evi voy e 

-¥(N), which is different from the former. If the former 

is designated by Type B* and the later by B_, then a similar 

conclusion can be obtained that if the initial state 

(¥(n-1), Y(n-2)) belongs to a Type BY limit cycle, then the 

initial state (-¥(n-1),-¥(n-2)) belongs to the Type B” 

limit cycle. 
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These two conclusions can be used to save the time 

for searching limit cycles to half, because only half 

initial states of (2K+1)? need to be used in the simulations. 

The limit cycles in the example often used have been listed 

in Chapter 2. Fig. 21 and Fig. 32 show which limit cycle 

each initial state belongs to in one- and two-quantizer 

versions respectively. 

3. Limit Cycle Displaying 

By the use of the program in Appendix 6, the limit 

cycles can be displayed on the screen of computer PET. 

For a clear display, the initial states on the different 

limit cycles have to be chosen. In the typical example, 

there are 10 different limit cycles, therefore, we have 

to input successively 10 initial states which are 

respectively on the 10 limit cycles. After a certain 

time, all the 10 limit cycles can be displayed on the 

screen. By the use of the program in Appendix 7, the 

limit cycles can be printed out with computer and printer. 

Before running the program, the sequences which limit 

cycles consist of have to be input. The print of the 

limit cycles in the typical example is also shown in 

Appendix 7. 

7.2 GENERATIONS OF THREE TYPES OF DITHER SIGNAL IN SIMULATION 

In the simulation, three types of dither signal 

described in Chapter 6 have been used; uniformly distributed 
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Fig. 32 The state plane plot shows which limit cycle each state belongs 

to for the filter sectim (A=-1.74, B=0.95833) with 

two quantizers. 
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random dither, binary random dither and bandstop dither. 

In this section, the methods how to generate these three 

types of dither signal will be first described and then 

the experimental results will be presented. 

1. Uniformly Distributed Random Dither 

When basic language is used a random sequence, RND, 

which is uniformly distributed between } and 1 can be 

delivered by the computer PET or HARRIS 500. In this 

case, the random sequence (RND-O.5) is used as uniformly 

distributed random dither. 

For computer HARRIS 500, when fortran language is 

used a random sequence which is also uniformly distributed 

between O and 1 can be delivered by calling a subroutine, 

GOSCAF, in the NAG library. Appendix 5 shows the subroutine 

and how to call it by an example. 

2. Binary Random Dither 

Because in the uniformly distributed dither signal 

both the sign and the magnitude are random, the sign 

information of the uniform dither can be used as the sign 

of the binary dither. The problem about how to determine 

the two values of the binary random dither has been 

discussed in Chapter 6. 

Therefore, in order to generate the binary random dither, 
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first, the uniformly distributed random dither is 

generated, then let the sign of the binary random dither 

be the same with the sign of uniform dither. For the sake 

of simplicity, the amplitude of the binary dither is 

assumed equal to 0.499. 

When basic language is used, the corresponding statements 

for the binary dither generating are as follows: 

DU RND-O.5 (110) 

DB u SGN (DU)*0. 499 (ia) 

When fortran language is used, the corresponding statements 

for the binary random dither generating can be written as 

u DU GOS5CAF (X)-0.5 (112) 

DB i SIGN(1.0,DU)#*0.499 (423) 

3. Bandstop Dither 

The block diagram for generating the bandstop dither 

has been shown in Fig. 31 before. Each block in this 

diagram will be described in detail as follows: 

(A) The Generator of Input Gaussian Random Sequence 
  

As mentioned in Chapter 6, the input sequence X in 

Fig. 31 should be a wide band Gaussian noise with a flat 

spectrum. In the simulation, this Gaussian random sequence 
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came from a subroutine in the NAG library of computer 

centre. The computer used was a HARRIS 500. The subroutine 

of generating the Gaussian noise X is shown in Appendix 8. 

The standard deviation and mean value of the Gaussian 

random sequence used in the simulation were 1 and 0 

respectively. As an example, some numbers of the Gaussian 

sequence is also listed in Appendix 8. Fig. 33 and Fig. 34 

show the power spectrum and probability density function 

respectively. As can be seen, above requirements on the 

input sequence X are essentially satisfied. 

(B) The Linear Bandstop Filter 

Because the second-order basic filter section has a 

bandpass characteristic, the linear filter should be a 

bandstop filter. The centre of the stop band should be 

equal to the centre of the pass band of the filter to be 

stabilized. 

In the experiments, two types of bandstop filter 

have been used: Butterworth and Elliptic. The bandstop 

filters were designed by the computer. 

The Butterworth bandstop digital filter design program 

requires three input data: the order of lowpass prototype, 

lower cutoff frequency and upper cutoff freqeuncy. The 

order of lowpass prototype is equal to half the order of 

bandstop filter. Two cutoff frequencies are in unit of 
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Power Density Spectrum 

1.0 

OSS a 

  i | Frequency 

° oO. 25F. 0.5F 

Fig. 33 The power density spectrum of Gaussian randam sequence used 

in the research. The FFT with Hamming Window was repeated 

127 times. The average values are shown here. 
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Fig. 34 The probability density function of the Gaussian randam 

sequence generated by program. 
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Nyquist frequency. After the input data have been typed 

in, the computer will give the stopband width, the zeros 

and poles of lowpass prototype, the zeros and poles of 

bandstop filter and the coefficient values of the second- 

order sections. This program can give the frequency 

response of the designed filter if the operator requests. 

The program for elliptic bandstop digital filrex 

design has been shown in the reference (41). The 

parameters entered into the program are the filter order, 

the dB ripple in the passband, the sampling frequency, 

the stopband edge frequencies and a stopband attenuation 

in units of dB. The program requests an input by typing 

the line 

N, DBR, FS, Fl, F2, F3 OR  DBDOWN 

The variable N is the order of the filter in the 

s-plane. A zero or negative value entered for N terminates 

the program. For bandstop filters, the filter order in 

the Z-plane will equal to 2N. If the input data are entered 

FS 
with O<F1<F2< zz a bandpass filter is defined. If the 

input data are entered with O<F2<Fl< = , a bandstop filter 

is defined. The final data entry is F3 OR DBDOWN. If it 

is positive and lies within the stopband, the entry defines 

one stopband edge frequency. If the entry is negative, it 

is used as the stopband attenuation. In the program output 

the denominator and numerator coefficients are listed for 
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the transfer function T(Z) where 

M+1 
Zz ptijyzt? 

= 2 T(4) = Mile ees (114) 

z A(i)Z 

i=l 

(C) The Nonlinear Memoryless Network 

The purpose of the nonlinear network is to transform 

a Gllassian distributed sequence Y, into a uniformly 

distributed sequence, Z. The calculation of the nonlinear 

curve is straight forward. 

az = R@) ay (115) 
p(Z) 

with p(Y) and p(Z) respectively the Gaussian and the 

uniform probability density. Again, the quantization 

step, q, is assumed to equal to unity. 

For Gaussian sequence 

ft = (ven)? p(¥) = (ov2m)"~ exp[ 3] (-wcv<w) (116) 
207 a 

where the mean value up is equal to the mean value of input 

and is equal to zero. o is the standard deviation of Y 

which is not equal to the deviation of X, i.e., the o of 

Y is not equal to unity any more. Therefore, in order to 

get a unity standard deviation, we have to scale the 
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sequence before it is input to the nonlinear network. 

For uniformly distributed random output Z, 

p(2) Ses (-0.5<2Z<0.5) (117) 

Hence, the nonlinear gain can be written as 

2 
GZre pity )- = (o/zm) 71 esti ( -(¥-) fee 2 2) 
ay p(Z) 202 r. 

=e Be 
= (Ov2m)>” exp ( 3) (118) 

20 

or 

=] -y? 8 
dz = (ov2T) exp (—y;) dy (119) 

20 

Let Y = OY, where Yy has a unity standard deviation, or 

dy = ody, (120) 

Therefore, 

2 

<1 mai 
a2 = (over) exp (—=-) 0 ay, 

-1 “vf 
= (/2T) exp (—-) ay, (121) 

-1 vy 2 = {(v2t) exp(—-) a¥, 

Y 
= 3 ert (7) Hc (22) 

where C is constant. 
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When aesyi se the function $ erf (75) distributes in 

the range (-0.5, 0.5), it is just the function that we 

want. It is interesting that the function $ erf(Y,) itself 

is also in the range (-0.5, 0.5). As will be discussed, 

for our purpose, it seems that the nonlinear function 

sere (y,) is preferable to lereiGh. In the following 

sections, when the function 3 erf(Y,) is used the dither 

is called bandstop dither 1 and when the funcation 
y 

3 erf (53) is used the dither is called bandstop dither 2. 

The error function 5 ext (Yy) can be expressed by 

series form 4?) 

‘ 5 cree 

Z= a =o (123) 
J=0 Ji (25+1) 

Eqn. (123) is convenient to be simulated by computer. 

Fig. 35 shows the simulation characteristic of this nonlinear 

network. In the simulation, J is taken from 0 to 32. As 

can be seen from Fig. 35, the nonlinear network just like 

a suppressor which suppresses the Gaussian random signal 

whose values are distributed in tiniee range into a uniform 

random sequence whose values are distributed in the range 

eae 

(D) Scaler 

In the simulation because J in Eqn. (123) is finite 

and taken from O to 32, when the value of Yy becomes bigger 
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Fig. 35 

  
The characteristic of nonlinear memoryless network in the 

bandstop dither 1 generator. 
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than 4, the error of the simulation becomes too big. 

Hence, it is necessary to limit the value of Y,- This 

can be done by scaling before the sequence input to the 

nonlinear network. In the simulation, the reciprocal of 

the standard deviation is used as a scaling factor. Therefore 

Yy has a unity standard deviation. In this case, the 

probability of |¥,| exceeding 3 is very small. 

Now, referring to Fig. 31, it is clear that when the 

Gaussian random sequence with zero mean and unity 

standard deviation whose power spectrum is approximately 

flat is applied to the bandstop filter, the output from 

the bandstop filter is still Gaussian but the frequency 

components falling within the stop band have been attenuated. 

The stop band is greater than the pass band of the filter 

section to be Piapiged and both have the same centre 

frequency, the components whose frequencies fall within 

the pass band of the basic section in the output sequence 

from the bandstop filter have been attenuated seriously. 

The purpose of the scaler is transforming the non-unity 

standard deviation input sequence into a unity standard 

deviation sequence so as to reduce the distribution range 

of the output sequence. This is requested by the limited 

dynamic range of the nonlinear network. The output from 

the nonlinear network is the bandstop dither which 

distributes approximately uniformly in the range (- a; a) 

and has very small frequency components falling within 
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the pass band of the filter section to be stabilized. 

Fig. 36 and Fig. 37 show the examples of the 

probability distribution of the bandstop dither 1 and 2 

respectively. As can be expected, the probability 

distribution of bandstop dither 2 is flat in the range 

(= 3, 3) because the function $ ert Gh) satisfies Eqn. (122). 

It can be seen from Fig. 36, although the probability 

distribution of bandstop dither 1 is approximately flat 

but there are two peaks around the values -0O.5 and 0.5. 

As mentioned before, these greater probabilities of big 

dither magnitude may shorten the time needed for the 

transition from any limit cycle to.the origin state on 

the state plane due to the bigger amplitude of the dither 

resulting in more frequent transitions. Hence from 

reducing the transition time point of view, bandstop 

dither 1 is preferable to the bandstop dither 2. 

On the other hand, because the function gore (¥y) 

causes stronger nonlinear than func tion $eré (55) it must 

lead to more distortion in the power density spectrum of 

the bandstop dither. Fig. 38 and Fig. 39 show,respectively, 

the power density spectrums of the bandstop dither 1 and 

bandstop dither 2. It is clear from these two figures 

that the stop band attenuation of Pneebandatcn dither 1 

is indeed less than that of the bandstop dither 2, But 

this decrease of stop band attenuation is small, (about 

2 dB in these examples). 
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O.15- 2048 samples, stop 
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Fig. 36 The relative frequency histogram of the bandstop dither 1. 

The nonlinear network whose characteristic is jexé (¥}) has 

been used. 
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Fig. 37 The relative frequency histogram of the bandstop dither 2. 

The nonlinear network whose characteristic is Jerk Ba) has 

been used. 
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LOG MAGNITUDE IN dB 

128 samples ,Hanming Window 

=19.018 

  
=12 0s 

NORMALISED FREQUENCY 

-14.0 | 1 | J 
0.0 0.125 0.25 0.375 0.5 
  
  

Fig. 38 The power density spectrum of the bandstop dither 1 whose 

stop band width was equal to (0.08-0.14)Fs. The nonlinear 

function Jeré (Y,) was used. 
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Fig. 39 The power density spectrum of the bandstop dither 2 whose 

stop band VASE ee equal to (0.08~0.14)Fs. The nmlinear 

function dere ( 7) was used. 
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In words,bandstop dither 1 has such a probability 

density distribution that is helpful for reducing the 

time needed to stabilise the basic filter section but it 

may cause a bit more increase in the output noise due to 

more intermodulation products falling within the stop band 

of the dither. In contrast with bandstop dither 1, the 

bandstop dither 2 has bigger stop band attenuation than 

bandstop dither 1, therefore it causes smaller increase 

in the output noise but a longer time for filter section 

stabilization is needed. As will be seen later, the 

experimental results have verified this conclusion. 

7.3 SIMULATIONS OF LIMIT CYCLE SUPPRESSION 

When the uniformly distributed or the binary random 

dither is used, the simulation of limit cycle suppression 

is simple. The only thing to do is to add the dither at 

the proper point as shown in Fig. 14. The simulations 

have verified that all the limit cycles in the second-order 

sections used can be suppressed without remaining noise in 

the zero input condition. Fig. 40 shows an example of 

limit cycle suppression. This is the example frequently 

used. The initial state is (5, 12). As can be seen from 

this figure, after 92 transitions, the filter reaches 

the origin state by the use of the uniformly distributed 

random dither. Once the limit cycle has been suppressed, 

the output keeps being zero in the zero input condition. 
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For the sake of comparison, the zero-input response of 

the section without dither is also shown inthe Fig. 40. 

Fig. 41 shows the output response in the same example but 

the binary random dither was used and the corresponding 

trajectory on the state plane from the initial state to 

the origin is shown in Fig. 42. 

When the bandstop dither is used, the situation is a 

bit complicated. Fig. 43 shows the total experimental block 

diagram. 

The transfer function of the linear bandstop filter 

can be written as 

_ F(i¢zaz7t42p2-242027342p274) (124) 
asaz lepz7?4ce2734p274 

  

Hy, (2) 

For a second-order bandstop filter 

2c =Z2D=C=D=0O0 

As we have known that when a Gaussian random sequence with 

zero mean and unity standard deviation is applied into 

a linear filter, the standard deviation of the output 

from the filter, o, is not equal to one. The standard 

deviation o can be calculated as 

  

(125) 
n=0 

where h(n) is the impulse response of the linear bandstop 

fllten. 
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Fig. 42 The trajectory correspmding to Fig. 41 on the state plane. 
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Fig. 43 The experimental block diagram of the limit cycle suppression 

in the second-order filter section with bandstop dither. 
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Only is the filter linear stable, the impulse response, 

h(n), is convergent and when all the coefficients of the 

bandstop filter are known, o can be calculated by computer 

easily. Appendix 9 shows the program for the calculation. 

The procedures of doing a simulation are as follows: 

1. Designing the Second-Order Basic Section to be Stabilized 

The first step is choosing the pass band of the section, 

for example, 0.3 Fo = O.3) Fs where ce is the sampling 

frequency. Then by the use of the program mentioned before, 

a second order Butterworth bandpass digital filter can be 

designed. 

Its transfer function is 

2 2 +02B 2 

+0B 27° 

= F(1+02a 2 

iron 27+ 

  

Be) 

1 =2 

1+0A Z 
<=. (126) 

+OB Z 

when the order of the prototype filter which is now equal 

to one and the pass band edges of the filter, for example 

0.3F, and 0.31F,, have been typed in, the printer should 

print out the coefficient values OZA=0.0, OZB=-1.0, OA 

and OB. As mentioned earlier, because the zeros do not 

affect the number of limit cycles, they only affect the 

relative magnitude of the limit cycles, we can only 
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consider the poles of the second-order filter. Therefore, 

the transfer function of the second-order filter section 

can be expressed as 

1 He 2) 2 ee ee (127) 
- 1+0az7++0Bz 

2. Designing the Bandstop Filter 

In the research, both Butterworth and elliptic bandstop 

filters were used. The orders were 2 or 4. According 

to different types of the filter, the different programs 

can be applied. 

At this stage, one important question is how to 

choose the width of stop band. 

There are at least three factors that should be 

considered. First, the stop band width should be greater 

than the pass band width of the filter section to be 

stabilized. The frequencies of the limit cycles are 

divergent although they are, in general, still near by 

the resonant frequency of the section and 3 dB attenuation 

at stop band edges is not enough for improving limit cycle 

suppression. Second, the stop band width should not be 

too wide, otherwise with the big probability the 

instantaneous values of the bandstop dither may not be 

big enough for limit cycle suppression because most 
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frequency components have been suppressed. Third, the 

stop band width should not be too wide, otherwise the 

distortion of the stop band characteristic will be more 

serious. More intermodulation products which are caused 

by the nonlinear network following the bandstop filter 

will fall within the wide stop band. Therefore, it is 

expected that there may be an optimum stop band width 

for the limit cycle suppression. Here "optimum" means 

the shortest time needed for limit cycle suppression. 

In order to find the "optimum" stop band width, five 

different widths have been used. They are equal to l, 2, 

3, 4 and 5 times pass band of width of the second-order 

section to be stabilized respectively. The simulations 

have shown that generally when the stop band width is 

equal to three or four times pass band width of the 

section to be stabilized the performance of the limit 

cycle suppression is better. 

3. Calculating the Standard Deviation of the Response 

of the Bandstop Filter by the Program shown in 

Appendix 9 

4. Scaling the Output Sequence of the Bandstop Filter 

The scaling factor is equal to z 
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5. Generating the Bandstop Dither Signal by the Program 

Shown in Appendix 10 

This program requests an input which consists of the 

parameters from step 1-4 above. 

6. Simulating the Basic Second-order Filter Section, 

Setting the Initial State 

Then, the procedure of the limit cycle suppression 

by the use of the bandstop dither can be printed out by 

the computer. 

7.4 TIME FOR STABILIZATION 

The experiments to determine the time for dither to 

affect stabilization have been done by simulations. 

Among the three types of dither signal mentioned 

before the uniformly distributed random dither is a basic 

type. The others come from it and are mainly for improving 

the performances of the limit cycle suppression. Therefore, 

first we pay attention to the use of uniformly distributed 

dither. Then, the results of the use of other dither signals 

will be presented. 

1. Results of the Use of Uniformly Distributed Random 

Dither 

Several different methods to measure the time for 
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stabilization have been used. 

In the first method, the average time from each 

initial state in the amplitude bound zone of the limit 

cycle to the origin of the state plane were measured. 

In the second method, in each case the filter section 

started at the same state which was on or "outside" the 

largest limit cycle on the state plane. Here "outside" 

means that the distance from the initial state to the origin 

on the state plane is bigger than the maximum distance 

from the states on the largest limit cycle. Then the time 

for transition to the origin was measured, because the dither 

was random, this time was also random. Simulation was 

repeated 1000 times. Hence the cumulative distribution 

function (CDF) for the transition time could be obtained. 

The median value corresponding to 50% probability was 

interested, 

The third method of measurement is similar with the 

second one but the mean value of the transition time was 

used. 

It is expected that the requirements to the uniformly 

distributed random dither are not strict, i.e.,no special 

strict requirements are needed on the correlation, 

probability distribution, etc. In order to obtain the 

impression about the effect of the use of different uniform 

random dither, the uniform random dither signals from 
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different computers have been used. As will be seen from 

the results, (See Figs.44 - 61), the performance of the 

limit cycle suppression does not much depend on the 

characteristic of the uniform random dither. Therefore, 

the uniformly distributed random dither can be generated 

by a simple method. 

As mentioned in Chapter 2, there are two different 

ways of implementing the quantizations ba the second-order 

digital filters: one quantizer and the two quantizer versions. 

In the two quantizer version, a dither can be added to the 

two coefficient products simultaneously or only to the B 

coefficient product. In other words, there may be three 

cases; one quantizer one dither, two quantizérs two dithers 

and two quantizers B dither. In the simulations all the 

three cases have been included, 

Table 3 shows the results when the uniformly distributed 

dither was used. In this table, six types of second-order 

filter section have been applied. The coefficient 

combinations were: A=+1.74, B=0.95833, A= +1.875, B=0.91875; 

A =11.25, B=0.825. Each pair of filters without dither 

respectively has periodic and constant (alternating); constant 

(alternating); and periodic limit cycles. In each case, 

the filter was initialised to the state (11,11). The 

simulation was repeated 1000 times, enabling an accurate 

estimate of the median time for stabilization to be made. 

The CDF in each case is shown in Fig. 44 to Fig. 61. 
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From these CDF it can be expected that the distribution of 

transition times to the origin are approximately normal. 

2. Results of the Use of the Binary Random Dither 

In this research, the amplitude of the dither was 

assumed to be 0.499. As mentioned in Chapter 6, this 

amplitude is, in general, big enough except in the very 

special case |1-|A|+B|< 0.001. < 

For convenience of comparing,’the same filters and 

the same methods used in the simulation with uniformly 

distributed random dither have been applied. All the 

results are also shown in Table 3.. As can be expected, 

the table shows that the transition time for the 

stabilization when the binary random dither is used is 

much less than that when the uniformly distributed dither 

is used. Specially, when the Q-value of the second-order 

section is high, this improvement is distinguished. For 

the example often used in this thesis, its improved 

transition time is only about one fourth to one third 

of that when the uniformly distributed random dither is 

used. This is particularly desirable, because only in 

high-Q cases, the transition times are very long, and 

the improvement is most remarkable. 

3. Results of the Use of the Bandstop Dither 

The program used in the simulation of limit cycle 

suppression by the use of the bandstop dither is shown in 
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Appendix 10. In this program, statement 55 calls a Gaussian 

random sequence with a unit standard deviation and zero 

mean. Statement 57 simulates the bandstop filter. 

Statement 66 scales the output from the bandstop filter 

so as to get a filtered Gaussian sequence with unity standard 

deviation. Statements 70-96 simulate the nonlinear network. 

The output from this nonlinear network is the required 

bandstop dither. Statements 100-117 simulate the basic 

second-order section. In the simulation, the initial 

condition of the basic filter section was (11,11) and the 

input signal was zero. The section was operated until the 

origin state was reached. The computer calculated the 

number of steps. Each simulation was repeated 100 times. 

The computer printed out the cumulative distribution 

function CDF. The median values of the transition time 

are shown in Table 4, For the sake of convenient comparing, 

the median values corresponding to the use of the uniformly 

distributed dither and the binary random dither are also 

listed in the same table. 

An interesting simulation is the use of a bandpass 

filter instead of a bandstop filter to generate the dither. 

This type of dither has bigger frequency components falling 

within the pass band of the section to be stabilized. Let 

us call it bandpass dither. In contrast with the bandstop 

dither, it is expected that when bandpass dither is used 

the transition time to the origin should be increased very 

much. In the simulation, the fourth-order elliptic passband 
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filters were used. The experimental results have also 

been listed in the Table 4. As can be seen from these 

data, when bandpass dither signals were used, the 

transition times to the origin were increased by several 

ten times of that when the uniformly distributed dither 

signals were used. It is worth noting that the limit 

cycles in the second-order filters still can be suppressed 

by the use of the bandpass dither although the transition 

time to the origin is much longer. 

It can be expected that when the input signal is not 

zero, the extra noise by the bandpass dither would be much 

greater. Therefore, we do not think that the bandpass 

dither is a useful dither signal. But these simulations 

have verified, from other points of view, the idea of 

the bandstop dither. 

In order to find out the "optimum" stop band width 

of the bandstop filter from the shortest transition time 

point of view, various stop band widths have been used. 

Table 5 shows the median transition times with various 

bandstop dithers. As can be seen from the table, the 

“optimum" stop band width is equal to three (or possibly 

four) times pass band width of the filter section to be 

stabilized. 

4. Summary About the Time for Stabilization 

From the simulation, as far as the transition time to 
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TABLE 5 

The median transition times to the origin with various stop band 

widths of the bandstop filter in bandstop dither 1 generation 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

-3dB £requencies Median transition time to the origin] 

oe WAS} Woa2i, | Wo=3, | W=5H, 

Olson 110 98 95 97 

Ono 52 47 46 48 

0.2, 0.21 101 94 98 93 

0.3 10r3i 115 108 108 104 

0.3, 0.32 58 58 58 55 

0.4, 0.41 152 120 124 123 

0.4, 0.42 74 67 68 64 

0.42, 0.43 158 149 u4o | 144 

0.1, 0.101 1550 | 1375 | 1233 | 1250 

0.2, 0.201 1060 | 1160 950 963 

0.3, 0.301 1217. | 1163 | 1067. | 1150 

0.4, 0.401 2300 | 1680 | 1450 | 1625               

*Note: Frequencies as multiples of the sampling frequency. 
Time as multiples of the sampling period 
W_ represents the stop band width of the fourth-order 
elliptic bandstop filter in the bandstop dither 1 
generation. 
W, represents the pass band width of the filter 
séction to ke stabilized. 
The initial state is (11,11). 
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the origin state is concerned, the following conclusions 

can be obtained. 

(A) The Shortest Time Needed for the Stabilization of 

Second-order Filter Section can be Obtained by the 

Use of the Binary Random Dither 

As can be seen from the data in Table 4, for high-Q 

filter section, the improvement of the median transition 

times to the origin is outstanding. This is very desirable 

because in this case the transition time is long. For 

example, when the pass band of the filter section to be 

stabilized is from 0.4F. to 0.41F, where F, is the sampling 

frequency, the transition time to the origin is reduced 

from 223 Ts with uniformly distributed random dither to 

110 t with the binary random dither. But for low-Q 

filter section, the improvement of the median transition 

time is not apparent, in some cases even no improvement 

at all. For example, when the filter section with pass 

band (0. 3~0.38) PF, is used, no improvement has been found. 

(Both transition times are 17T,). 

Practically, in low-Q case, the improvement of the 

transition time is not necessary because even with 

uniformly distributed random dither the transition time 

is short. For the example above, the transition time 

is only i7T,. 

Hence, in high-Q filter section for a quick stabilization 
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the binary random dither is recommended. 

(B) For High-Q Filter Sections, the Transition Times with 
  

Bandstop Dither may be Near but in General, still 
  

Longer than that with the Binary Random Dither. 

For example, when the filter section with pass band 

(0.3-0.31)F, is used, the median transition times with 

binary random dither and bandstop dither are respectively 

eau to 98T. and 1loT.. The difference is only 11%. As 

will be seen later, for mean transition time the difference 

is even smaller. 

The disadvantage of the bandstop dither is the 

complication in generation. But as will be seen in the 

next section, its advantage is that it causes smaller 

extra output noise in the non-zero input condition. 

As far as the transition time is concerned, for low-Q 

filter section, the uniformly distributed random dither is 

prefered because it is simple to generate and the 

transition time to the origin is short enough, for example 

less than 50 oes For medium-Q basic section, the transition 

time with uniformly distributed dither is also medium, 

for example from 50 ee to 100 Ty. For this case, the 

second-order bandstop dither (in the generation a second- 

order bandstop filter is used) is recommended because 

higher-order cannot offer extra improvement. For high-Q 

basic section, the transition time with uniformly distributed 
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random dither is long, for example longer than 100 To. 

In this case, the fourth-order bandstop dither signal is 

recommended because it can shorten the transition time 

further. 

(C) From the View Point of the Shortest Transition Time 

to the Origin, the Recommended Stop Band Width is 

Equal to Three or Four Times the Pass Band Width of 

the Second-order Basic Filter Section in the Bandstop 

Dither Generation. 

As can be seen from Table 5, when the bandstop dither 

signal is used, the transition time to the origin with a 

bandstop filter whose stop band width is equal to three 

times pass band width of the basic section to be stabilised 

is, in general, the shortest. For a medium-Q basic section 

with bandstop dither, when the stop band width is equal to 

or greater than two times pass band width of the basic 

section the difference of the transition time is not very 

apparent but the improvement does exist. Therefore, to 

put it briefly, a bandstop filter whose stop band width 

is equal to three times pass band width of the basic 

section is recommended. 

In the next section, another important aspect of the 

experimental results in the dither application, i.e., the 

effect of dither on the output noise when the input signal 

is applied,will be presented. 
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7.5 THE EFFECT OF DITHER ON THE OUTPUT NOISE 

Although when input is zero and the limit cycle has 

been suppressed the dither has no influence on the output 

from the filter, when the input is nonzero, the dither 

should be considered as an additive noise. If the amplitude 

of the input signal is much bigger than the quantization 

step, then the following assumptions are true. 

(1) Any two different samples from the same noise 

source are uncorrelated. 

(2) Any two different noise sources (i.e., associated 

with different multipliers) regarded as random 

process, are uncorrelated. 

(3) Each quantization noise and the dither are 

uncorrelated with the input sequence. 

Thus each quantization noise source is modelled as a 

discrete stationary white random process with a uniform 

power density spectrum of 4. If the uniformly distributed 

random dither is used, then the dither can also be treated 

like a quantization noise. For the other two dither signals, 

they can be treated as independent random noise sequence 

but have different power spectrums. The measurement shows 

that the power spectrum of the binary random dither still 

approximates uniform. Whatever dither signals are used, 

at output terminal each quantization noise power and dither 
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power can be added independently. 

Suppose that there are P noise sources including the 

dither and quantization noise. Consider the Kth noise 

source e,(n). Let hy (n) be the impulse response from the 

noise source to the filter output. The output noise 

components E,(n), due solely to ex (n), may be obtained 

via convolution as 

n 
Ey(n) = = hy(m) &,(n-m) a8) 

m=O 

The variance of E, (n) may be obtained as 

2 n n 
Sox (n) = ELE hy (meg (n-m) 2 hy (2)ex (n-2)] 

m=0 2=0 

im. ah 
= = £ hy(m)h, (2)E[e, (n-m)e,(n-2)] 

m=0 2=0 K K K K 

n n 2 
=. 2 = oh, (m)h, (2) 6 (2-m)o 

m=0 2=0 KK = 

or 

n 
2 2 2 

o =o. £ hy(m) (129) OK SEG K 

where Fe is the variance of input noise if the input noise 
2 

is uniformly distributed in (- 3, 3) then of = S etn 

the limit, as n tends to infinity, the variance oo (1) 

tends to the steady-state limit 
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co 
2 2 2 

o =o = hy, (m) (130) Ok ie ans 

The total steady-state noise variance oF is then 

2 
oA ae oe (I3 5) 

K=1 

Similarly, because each noise is independent with the input 

signal, the noise and signal power can be added independently 

at the ouput terminal. 

To determine the effect of dither on the output noise, 

the filter was simulated with a sinusoidal input at a 

frequency close to its resonance and with an amplitude 

corresponding to full use of a ten-bit wordléngth in the 

output. 

The procedures in the simulation are as follows: 

First, no dither was added. The amplitude of sinusoidal 

input signal was chosen such that ten-bit wordlength was 

fully used by the output sinusoidal signal. This sinusoid 

was applied to the second-order section with one quantizer, 

The power spectrum of the output from the filter was 

estimated by use of the FFT, with a Hamming Window. The 

Hamming Window is of the form 

2m N-1 N-1 0.54 + 0.46 cos (>>) - CHP) sas 

Wy (a) = (132) 
0.0 elsewhere 

-218-



Fig. 62 shows the frequency response of a Hamming 

Window. In the simulation, the total number of points, N, 

was equal to 2048, Although, the overall frequency 

response of the Hamming Window appears to have no ripples 

beyond w = =. this is not the case. On the linear amplitude 

scale of Fig. 62, however, the ripples are not visible. 

The main lobe of the frequency response of the Hamming 

Window is twice the width of the main lobe of the frequency 

response with the rectangular window. Because the frequency 

of the input sinusoidal signal was just the integer multiples 

of the = , there were three points on the spectrum 

corresponding to the frequency of the sinusoid. These 

three points were used to measure the signal. There were, 

of course, some noise components included in these three 

points, but because the signal component was much bigger than 

the noise components and the pass band of the filter section 

included much more spectrum points, the error of measurement 

was small. The other points on the spectrum were used to 

provide an estimate of the mean square value of the noise. 

This mean square value of the noise was considered as the 

quantization noise and treated as a reference power level 

1.67, O-dBe 

Then, each type of dither signal was added respectively. 

The input signal was the same with above. In each estimation 

of power spectrum, the FFT were used thirty times successively 

and the average values were considered as the estimate of 
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Wy (2) 

  

= 
a
5
 

Fig. 62 Frequency response of a Hamming Window. 
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the power spectrum. The increase in the unit of dB was 

interesting. The program used is shown in Appendix ll. 

The increase in output noise due to the uniform 

dither and the binary dither could easily be calculated 

if it could be assumed that the effect of the filter 

quantization is equivalent to the addition of a random 

error whose mean square value is x and if nonlinear effects 

could be ignored, uniform random dither would then produce 

an increase in output noise of 3 dB and binary random 

dither would produce an increase of 6 dB. In reality, 

nonlinear effects cannot be ignored and the increase in 

noise will be somewhat different. 

Table 6 shows the results for a number of second-order 

sections, corresponding to a variety of filter centre 

frequencies and bandwidth. In this table, two types of 

bandstop dither were used. The experimental results have 

verified the expectation mentioned before, i.e.,bandstop 

dither 1 results in a quicker limit cycle suppression but 

it causes a bit bigger increase in the output noise. In 

contrast with this, bandstop dither 2 causes a bit smaller 

output noise increase but it needs longer time to suppress 

the zero-input limit cycles in the second-order filter 

sections. The difference between the two increases in 

output noise is less than 1 dB. 

As can be seen from the table, the increase in output 

noise varies from case to case, but the binary random dither 
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consistently results in an increase in noise nearly 3 dB 

more than the increase with uniform random dither. The 

increase in output noise with bandstop dither is about 

4 QB less than with the binary random dither. This is 

an encouraging result. As can be expected,the experimental 

results show that when the bandstop dither is used, the 

increase in the output noise is smallest. The increase 

in output noise with the bandstop dither is about (1.0~ 

1.5) GB less than with uniformly distributed random dither. 

The biggest increase in the output noise appears when the 

binary random dither is used. But our simulations show 

that the practical increase in the output noise is less 

than that would be expected due to addition in a linear 

filter as a result of the nonlinear effects of quantization. 

As a summary of the use of dither signals, the mean 

times for stabilization corresponding to different filters 

with different dither signals are also shown in Table 6. 

In each case, an initial state on the largest amplitude 

limit cycle was used. The simulation was repeated 1000 

times, enabling an accurate estimation of the mean time 

for stabilization to be made. The standard errors of the 

mean times (the definition of this term will be given 

later) are also shown in the table together with the 

mean times, 

The mean of a sample is a point estimate of the mean 

of the parent population. As mentioned earlier, the 

=223-



distribution of transition time to the origin is approximately 

normale But we know neither the mean value, u, nor the 

standard deviation of the parent population, o. From the 

theory of the sampling and estimation in statistics 43), 

we know that for large samples (e.g.,n330) the standard 

deviation of the sample, s,may be used as an approximation 

to the standard deviation of the population o. The 

sampling distribution of means of samples of size n from 

a population which is N(u,o*) is NOu92) where oS = = 

called the standard error of the mean. In our estimations, 

the mean of the time for stabilization X and the standard 

deviation of the sample s could be obtained by calculating 

from the transition time dieeripntion: The sample size, 

n, was equal to 1000. Hence it is accurate enough to use 

the standard deviation of the sample, s, as an approximation 

to the standard deviation of the population, oc, i.e.,the 

standard error oF a Ta can be obtained. As well 

known for a normal distribution, the probabilities that 

a sample mean will lie between the limits u-1.960_ and 

u+1.960_ or u-2.570_ and u+2.570_ are 0.95 or 0.99 respectively. 

In other words, we cs be 85 ox 3 percent certain that a 

sample mean will not differ from the population mean by 

more than 1.960_ or 2.57c_. If the mean value of a sample, 

x, lies within ioe ie ot Bee and u+1.960_ (or 

un2.5705 and cee ee the mean etna of the ae ae Ur 

must lie within the limits X -1.969_ and X + 1.969 (or 
x 

X=2.570_ and X+2.570_), (see Fig. 63). Therefore, we can 
x Xx 
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Xa1. 960% oo Dale 9605 
i r 
  

a Ee u 2 yp -1. 9605 ut. 9605 

      

Fig. 63 If X lies within the limits un. 9605, 

then uy must lie within the limits X-1, 9603 and X41. 9605, 

and p+l. 960y 
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be 95 (or 99) percent sure that the mean value of the 

population, yu, lies within the limits X-1.960_ and 

X+1.960_ (or X-2.570_ and X+2.570_). As can = seen from 

Table “a the ae errors are area smaller than the 

mean X, i.e., the estimations are accurate. 

To provide a comparison for the transition time to 

the origin, the table also shows the time for the response 

of a filter without quantization to decay below the 

amplitude $ from the same initial state. 

The results in this table show clearly that the 

binary random dither and the bandstop dither result in 

more rapid stabilization than uniform dither. The mean 

times for the binary random dither and the bandstop dither 

to effect stabilization are comparable with the decay time 

for the strictly linear filter. 

7.6 SUMMARY 

In order to verify the proposed methods for limit 

cycle suppression extensive simulations have been carried 

out. The main results of the simulations have been 

presented in this chapter. 

Three types of dither signal: uniform random dither, 

binary random dither and bandstop dither have been 

obtained by the simulations. The use of these dither 

=226—



signals for limit cycle suppression in a variety of filter 

sections have been studied experimentally. 

When dither is used to stabilize a digital filter, 

two specifications are of particular interest, One of 

these is the length of time taken for the filter, with 

zero input, to reach the state plane origin from a limit 

cycle. The other specification of interest is the increase 

in the output noise from the filter above the quantization 

noise which is present when nonzero input signals are 

applied without dither. 

Several different methods to measure the time for 

stabilization by the use of dither have been used: the 

average transition time from each initial state within 

the amplitude bound zone of the limit cycle in the state 

plane to the origin; the median and mean of the transition 

time from same initial state to the origin in 1000 times 

simulations. The time for the response of the linear 

version of the digital filter section (without quantization) 

to decay below the threshold of 3 from the same initial 

state has been used as a reference time in the comparison 

of the transition time to the origin. As far as this 

transition time is concerned, in the three types of dither, 

the order of preference is the binary random dither, 

bandstop dither and uniform random dither signals. The 

mean times for the former two types of dither to affect 

stabilization are comparable with the decay time for the 
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strictly linear filter. 

To determine the effect of dither on the output 

noise, the filter was simulated with a sinusoidal input 

at a frequency close to its resonance and with an output 

amplitude corresponding to full use of a ten-bit wordlength. 

The power spectrum of the output from the filter was 

estimated by use of the FFT, with a Hamming Window. The 

points on the spectrum corresponding to the frequency of 

the sinusoid were used to measure the signal power. The 

other points on the spectrum were used to provide an 

estimate of the mean square value of the noise. The 

quantization noise with the same signal but without 

dither is used as a reference of the noise output. The 

increase in output noise above the quantization noise is 

interesting. 

As far as the increase in output noise is concerned 

in the three types of dither, the order of preference is 

the bandstop dither, the uniform random dither and the 

binary random dither. 

The main conclusions about this research will be 

discussed in the next chapter. 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS 

FOR FUTHER RESEARCH 

The purpose of this research has been to contribute 

methods of limit cycle oscillation suppression in the 

second-order filter sections by the use of somewhat 

different dither signals which have no disadvantages of 

the methods proposed before. 

Despite the fact that these limit cycles can be made 

arbitrarily small by increasing the number of significant 

digits of the data, in practice, this increase is not 

desirable because it increases the cost and complexity 

of the filter. 

When input signal is zero, only limit cycle 

oscillation exists. Because limit cycles are correlated 

noise it is more harmful than normal noise. Especially, 

when these integrated circuits need to be used for 

applications where limit cycles are not tolerable, an 

effective method to suppress limit cycle is very necessary. 

The major contributions of this research are now 

summarized. In Chapter 3, two new existence conditions of 

constant and alternating limit cycles in the second-order 

filter section with one rounding quantizer have been derived 

on the experimental basis. In Chapter 4, the mechanism of 
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the limit cycle suppression by the injection of dither 

has been explained qualitatively. From the statistical 

average point of view, the injection of dither tends to 

linearize the nonlinear characteristic of rounding quantizer. 

In Chapter 5, the necessity of the limit cycle suppression 

in the second-order filter sections has been proved partly 

on the experimental basis, It has been shown that for any 

particular second-order digital filter section, i.e.,one 

with specified coefficient values of A and B, it is straight- 

forward to determine rigorously whether or not dither will 

suppress all limit cycles. By the transition matrix, the 

maximum transition time needed for transition from any 

limit cycle to the origin state oa Bie state plane can 

be calculated. In Chapter 6, by checking the characteristic 

of the equivalent quantizer, the principal considerations 

of the dither signal design have been described. Three 

types of dither signal have been proposed. All the limit 

cycles in the second-order filter sections can be suppressed 

by the use of any one of the three dithers. Once the zero- 

input limit cycle has been suppressed, the output from 

the filter remains zero, i.e., no remaining noise left at 

all. Extensive simulations have been done. In none of 

the filter sections examined has dither, of the forms 

described here, failed to suppress limit cycles. The 

limit cycle suppression by the injection of the three 

dither signals were verified. The experimental results 

have been presented in Chapter 7. These results show 
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clearly that binary random dither results in more rapid 

stabilization than uniform and bandstop dither signals. 

The mean times for binary random dither and bandstop 

dither to affect stabilization are comparable with the 

decay time for the strictly linear filter. The increase 

in output noise varies from case to case, but binary 

random dither consistently results in an increase in noise, 

nearly 3 dB more than the increase with uniform random 

dither. This is expected by the fact that the variance 

of binary dither is three times bigger than that of 

uniform dither. The results with bandstop dither are 

encouraging. From the experimental results, it is apparent 

that bandstop dither has combined the advantages of binary 

dither and uniform dither. The stabilization times with 

bandstop dither are similar to those with binary dither 

which, as mentioned above, are themselves similar to the 

decay times of the filter without quantizer. The increase 

by the bandstop dither in output noise is, in each case, 

(1~1.5) dB smaller than the increase by uniform dither. 

Two types of bandstop dither have been used. By the 

injection of bandstop dither 1, the time needed for the 

stabilization of filter section can be reduced further 

but it will cause a bit more increase in output noise than 

that caused by bandstop dither 2. The increase in output 

noise due to bandstop dither 2 is smallest, but the time 

for the stabilization of filter section is longer than 

that when bandstop dither 1 is used. The difference between 
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two increases in output noise is less than 1 dB. The 

significance is that if the nonlinear function $eré (CY) 

is used where C is a positive constant, C can be used as 

a control coefficient. By changing the value of C, the 

trade-off between transition time and output noise increase 

is possible. It can be expected when C is much greater 

than 1 the dither would have a similar performance with 

binary dither, and when C is less than a the transition 

time would be long though the output noise increase might 

be slightly smaller. 

Each dither signal has its own advantages and 

disadvantages. We believe that each dither signal can 

find its own application. For uniformly distributed dither, 

it is easy to be generated and has smaller noise increase 

in the output but it needs a long time to stabilize the 

filter sections. Binary random dither can stabilize the 

filter section quickly, and it is still easy to be 

generated, but has a larger noise increase in the output. 

For bandstop dither, it can suppress the limit cycles 

quickly and has very small noise increase in the output 

but it is complicated to be obtained. However, bandstop dither 

can be applied to the system where many identical digital 

filters have been included already. In this case, the 

extra complexity need not be significant. 

There remain several unanswered problems which have 

arisen as a result of this research and should be noted for 
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further investigation. Among them are the following: 

(1) It is not clear whether there would be any 

advantage in achieving lower spectral levels within the 

stop band than those which have been used here. The 

results given, show that the formsof bandstop dither used 

in the experiments already result in only a small increase in 

output noise and the limit cycles disappear about as quickly 

as the normal resonant decay of a linear filter without 

quantization. 

(2) Simpler methods for generating bandstop dither 

than described in this paper may exist. For example, 

Steiglitz's Markov process scheme for generating signals 

with a required spectrum ‘44) might be applicable. It 

could be possible to use bandstop dither signals which have 

been synthesised by computer and stored in ROM (read only 

memory). 

(3) It would be interesting to find a method by which 

a binary dither signal with an approximate bandstop spectrum 

could be generated. 
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APPENDIX 1 

Program used with Computer PET to display the 

procedure of limit cycle suppression on 

the state plane 
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tALHHARAAK AAP AR SARK ADEE AKA RAAKAARK AKA AH AEX AERR AN AEE THRASH AHEAK KH HREHERHS 
[HARRAH AALA RRA LA HAA AR ARK AAR AR AA AAA FHAAR A ARAAERA SHES SAA EAH AARHH RAHA ERAHES 
LEARARHHH EE 
+# Pdn y ee F FL TERMINAL: 68 20 JUL 82 21:24 
LLHREAHEA EE 

tALHAARRARALRAARAAS AAA RAR SHAR AAA AA ERARAK AAAABRARA SN EARAAS RARE EK HAREEAHAES 
PtH RHPA SAR EAR AK KARA AH RANA TR HAAASA RRAK HAN AA KEEM REE SASSER HARHARHARH AE AS RHEHS 

    

B=0. 95833 
10 PRINI" * 
50 INPUT" Xi" X1 
50 INPUT"X2"3 X2 
7. REM 
30 REM PLOT SPOTS.............. 
PO REM 

FOR I=1 TO 24 
BRIN cru a torn Hee ageton Iie Ae lie Rea, ai A Mas 4 
HEXT I 
REM 5 
REM PLOT LINES 
REM 
FOR I=1 TO 25 
POKE(32768+40%1+20), 66 
NEXT I 
FOR I=0 TO 37 
POKE(22768+499+1), 45 
NEXT I 
FOR K=1 TO 10000:REM PLOT 16000 FOINTS. 
RXX=RND(2)-0, 5 
RX=SGN(RXX) 40. 399 
REM 
REM COMPUTE NEXT STATE 
Yis-A#X1—-B#X2+C4RX 
Y=SCN(Y1) #IN1 (ABS (Y1)+0. 5) 
x2=X1 
X1sY 
PRINT" a 
PRINT"X1: "3 
PRINT’ X2 
PRINI “A: 
REM 
REM PLOT STATE PLANE POINT 
REM 
Loc=32748 
FOR L=1 T 

9 FOR LA=i TO 10:POKELOC, 160: 

  

   

                            

    

  

   

      

     

   

    

+(13-X1)#40+(xX2-20) 
o2 

   
10 FOR LA=1 TO 10: POKELGS, 32 

120 NEXT L 
20 POKELOC, 42 
40 NEXT K 
50 END 
tee be 
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APPENDIX 2 

The existence conditions of limit cycles in the 

second-order basic filter section with 

one rounding quantizer 

1. The existence condition of constant limit cycles 

Suppose that a constant limit cycle with magnitude 

c exists. Then Eqn (58) becomes 

a W [ -ac-Bc], 

C(-A-B)- 6 (A2.1) 

where |6|<0.5, 6 is the quantization error. 

According to the linear stable condition, Eqn (38), we 

know that 

~A-B<1 

Let -A-B = 1-8 (A2.2) 

where 8> 0. 

Hence, Eqn (A2.1) can be written as 

Cy =#e(1-8) 6 

or 

6 =-C8 = -C(1+A+B) (A2.3) 
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Eqn (A2.3) shows that § has the opposite sign as that of 

C because 8>0 and |6| increases with |C| proportionally. 

The minimum of |C| satisfies 

[Coles min 

And the maximum of |6| satisfies 

l6lnax = 0-2 

Therefore, the ratio of 6 7C. i tive and ee is negative a 
min 

satisfies 

6 
max _ 

cee 
min 

“0.5 

From Eqn (A2.3) the existence condition of the constant 

limit cycles can be obtained as 

=> 
1HA4B ¢ MS* = 0.5 

min 

or 

A+B+0.5 < 0 (A2.4) 

The equation 

A+B+0.5 = 0 (A2.5) 

describes the boundary line GN in Fig. 19. 

In Eqn (A2.3), the constant C must be integer and the 

maximum of 6 is 0.5, therefore, the amplitude bound of 

constant limit cycles can be derived as 
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© i¢ O15 
Boe Ca INT) (A2.6) 

Eqn (A2.6) is in unit of the quantization step, q. 

It is clear from Eqn (A2.3) that because Cae satisfies 

Chax (1+AtB) € 0.5 (A2.7) 

all integers of C whose absolute values are less than Cnax 

also satisfy 

C(1+A+B) < 0.5 (A2.8) 

No integer which is greater than Cran satisfies Eqn (A2.8). 

In other words, all constant limit cycles in the second- 

order filter section are successive in magnitude, i.e., they 

must, be tk, e225 E35... *C ax’ 

2. The existence condition of alternating limit cycles 

Along the same way as above, it is readily 

verified that the existence condition of alternating limit 

cycles is 

=ATBtO.5' < 0 (A2.9) 

The equation 

-A+B10.5 = 0 (A2.10) 

describes the boundary line HM in Fig. 19. 

The amplitude bound of alternating limit cycles can 
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be written as 

x 0.5 
B, = INT (SSB) (A2.11) 

3. The existence condition of periodic limit cycles 

Claasen et aie have proved that the second-order 

digital filters with coefficient B for which |B|>0.5 will 

always exist limit cycles. Therefore, the existence 

condition of periodic limit cycles can be written as 

|B] 20.5 (A2.12) 

The equations 

B= +0.5 (A2.13) 

describe the boundary lines IL and RS in Fig. 19. 

From the amplitude bound of periodic limit cycles proposed 

by Jackson !9) 

- a0) 
se INT (725) 

the existence condition, Eqn (A2.12) can be also obtained 

because 

Bo nen = 

4. Two extra boundary lines 

It is possible that in some regions on the parameter 
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plane both constant (or alternating) and periodic limit 

cycles exist simultaneously. Let the amplitude bound of 

constant limit cycle be equal to that of periodic limit 

cycle we obtain 

O.5e Cae IND SG ee= IND Gee! (A2.14) 

Let the amplitude bound of alternating limit cycle be 

equal to that of periodic limit cycle we obtain 

Oe5), Cus 
INT (Sp) = INT (F558) (A2.15) 

From Eqn (A2.14), a new boundary line can be derived. 

1-B = 1+A+B 

or 

A= 2B (A2.16) 

Similarly, from Eqn (A2.15) we obtain 

I-B = 1=AtB 

or 

A = 2B (A2.17) 

Eqn (A2.16) and Eqn (A2.17) define the two boundary 

lines DJ and KE in Fig, 19, respectively, 

In the regions DIJ and KLE on the parameter plane 

of Fig, 19, the amplitude bounds of periodic limit cycles 

are less than that of constant and alternating limit cycles 

respectively. The experiments found that for the filter 
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with only one rounding quantizer, the periodic limit 

cycle trajectories on the state plane surround all the 

constant or alternating limit cycles. In other words, 

the amplitude bound of periodic limit cycle is always 

greater than that of the constant or alternating limit 

cycle. This observation asserts that in the regions DIJ 

and KLE the periodic limit cycle do not exist. 
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APPENDIX 3 

When the coefficient value B of the second-order 

filter section satisfies 1>|B|>0.5, the origin 

state (0,0) on the state plane becomes 
  

a_branch point by the use of dither 
  

Refer to Fig. 14. Three cases can be defined. 

In case 1, the second-order filter section has one 

rounding quantizer one dither as shown in Fig. 14(a). The 

following equation is satisfied 

¥(n) = [-Ay(m-1) - By(m-2) + DJ, (A3.1) 

In case 2, the section has two rounding quantizers 

and two dither signals. The difference equation can be 

written as 

¥(n) = [-AY(n-1) + DJ + [-BY(n-2) + Dip (A3.2) 

In case 3, the section has two rounding quantizers 

and one dither signal added at the front of coefficient 

B product quantizer. The difference equation is 

Cee [-a¥in-1)], + [ -By (n-2) +d], (A3.3) 

Apparently, for any cases above, if ¥ (n-1)=¥ (n-2) =0 then 
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Y(n)=0. Hence, the origin state (0,0) is a stationary 

point, one of its predecessors is (0,0) itself. For the 

origin state (0,0) to be a branch point, there must be 

at least another predecessor (0,K), where the integer KO. 

Suppose the filter section is at the state (Y(n-l), 

¥(n-2))=(0,K). 

For case 1, the difference equation is 

¥(n) = [-AY(n-1) - BY(n-2) + DJ, 

([-BK + D], (A3. 4) 

For case 2, 

¥(n) [-a¥(n-1) + D], +[-BY(m-2) + 0], 

[pes (-BKie aD]. 

[-Bk 4D], (A3.5) 

For case 37 

¥(n) = [-a¥(n-1)], + [-BY(n-2) + DJ, i) 
W [-BK + De (A3.6) 

As can be seen, above three cases lead to the same 

expression. Since the dither D is distributed in the open 

range (- 4, ) when 1>|B|>0.5, and K=tl, the probability 
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of satisfying the equation 

Y(n) [-BK+D], 

a 
(A3.7) 

is nonzero. In other words, when the random dither which 

distributes in the open range (- 3, =) is used the states 

(Wey Y(n-2)) = (0,+1) may be the predecessors of the 

origin state (0,0), i.e., the origin state becomes a branch 

point 

In case 4, the filter section has two quantizers but 

the dither is added at the front of the coefficient A 

product quantizer. Its difference equation can be written 

as 

one [-a¥(n-1) +0] + [-BY (n-2)], (A3.8) 

At state (0,K), the Eqn. (A3.8) becomes 

Y(n) [pj at [-BK] R 

[-BK], (A3.9) 

Apparently, when 1>|B|20.5 and K is a nonzero integer 

Y(n) = [-BK] , 

x O (A3.10) 

In this case, the origin state is not a branch state. In 
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other words, the limit cycles cannot be suppressed by the 

use of the random dither when the dither is added at the 

front of A coefficient product quantizer. The simulation 

has verified this conclusion. 
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APPENDIX 4 

The uniformly distributed random dither tends to 

linearize the roundoff quantization characteristic 

From the probability density function of uniform 

dither, its cumulative probability distribution can be 

readily obtained as shown in Fig. A4.1l(a). 

Suppose that the input signal of a rounding quantizer 

without dither is 

~AY(n-1)-BY(n-2) = Y(n)+6 (A4.1) 

where the quantization error |6|<0.5 and Y(n) = [-a¥ (n-1)- 

BY (n-2)],. After adding dither, the composite signal 6+D 

has a cumulative probability distribution as shown in 

Fig. A4.1(b). It is clear from this figure that when 

6>0 the probability of the composite signal Y(n)4D+6 being 

less than Y(n)+0.5 is (1-5) or the probability of the 

composite signal Y(n)4D+6 being equal or greater than 

¥(n)+0.5 is 6, when é6< 0 the probability of the composite 

signal Y(n) 4D46 being less than ¥(n)-0.5 is |6| or the 

probability of ¥(n)+D+6 being equal or greater than 

¥(n)-0.5 is 1-[6 
  

Now both the dither adder and the rounding quantizer 

itself can be treated as an equivalent quantizer. Its 

input signal is Y(n)+6 and the output signal is 
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P(x) 

P(x)=D+0.5 

0-5 

     

  

P(x")=D40. 5-6 

(S<O)   
(b) 

Fig. A4.1(a) Cumulative probability distribution of the uniform dither, 
(b) Cumulative probability distribution of the composite signal 

(dither and quantization error). 

ee



[¥(n)+64D] as shown in Fig, A4.2 . 

When 6>0, there are two possibilities. 

(1) If the composite signal Y(n)+6+D2 Y(n)+0.5,.e., 

6+D20.5 the equivalent quantizer Q, outputs Y(n)41 

and the corresponding probability is 6. 

(2) If the composite signal Y(n)+6+D<Y(n)+0.5, i.e., 

6+D<O.5 the equivalent quantizer Q. outputs Y(n) and 

the corresponding probability is 1-6. 

The mean value of the output is 

M TY (n) +1] 6+¥ (n) (1-8) 

tl Y¥(n) +6 (A4.2) 

Similarly, when 6<0, the mean value of the output is 

M ty(n)-1] [a] + Ym) -|6]) 

Y(n)-|6| 

Y(n)+ 6 (A4.3) 

It is clear from Eqn (A4.2) and Eqn (A4.3) that when 

the uniform dither is used, the mean value of the equivalent 

quantizer output is varied linearly with the input of the 

equivalent quantizer, Y(n) +6. Fig. A4.3(b) shows the 

statistical characteristic (mean value output versus input) 

of the equivalent quantizer. For comparing, Fig. A4.3(a) 

shows the characteristic with roundoff and possible output 

values after adding dither and rounding operation. 
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¥(n)+ pe res) es R 
      

Fig. A4.2 Equivalent quantizer. 
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Fig. A4.3 (a) Roundoff characteristic with dither 

(b) Statistical characteristic of the equivalent quantizer. 
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APPENDIX 5 

Program used for the generation of the 
  

uniformly distributed random dither 
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G05 — Random 

13. Example 

Program 

20 

99999 
99993, 

Results 

Number Generators 

GO5CAF 

(contd) 

GOSCAF EXAMPLE PROGRAM TEXT = 

MARK 6 RELEASE NAG COPYRIGHT 1977 

+. LOCAL SCALARS «- 
REAL X 
INTEGER I, NOUT 
.. FUNCTION REFERENCES .- 
REAL GOSCAF 
++ SUBROUTINE REFERENCES .. 
GOSCBF 

DATA NOUT /6/ 
WRITE (NOUT, 99999) 
CALL GOSCBF(O) 
DO 20 I=1,5 

¥ = COSCAF(X) 
WRITE (NOUT,99993) 

CONTINUE 
STOP : 
FORMAT (4(1%/)> 31H GOSCAF EXAMPLE PROGRAM PESULTS/1%) 
FORMAT (1%) F10+4) 
END 

GOSCAF EXAMPLE PROGRAM RESULTS 

0.7951 
0.2257 
0-3713 
0-2250 
0.8787 

  

  
NAGFLIB: 1423/0 :Mk6:May77 Page 3 (last) 

  
  

-252-



APPENDIX 6 

Program used with Computer PET to display the 

limit cycles on the state plane 
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W
O
N
G
U
b
 
W
H
 

g 

10 100 
11 110 
42 120 
13 130 
14 140 
15°150 
14 160 
17 170 
18 180 
19 190 
20 200 
21 210 
22 220 
23 230 
24 240 
25 250 
26 260 
27.127: 
28 280 
29 290 
30 300 
31.310 
32 320 
33 330 
34 340 
35 350 
34 360 
37 370 
38 380 
39 390 
40 400 
41 410 
42 420 
43 430 
44 440 
45 450 
46 460 
47 470 
48 480 
49 490 
50 500 
Si S10 
52 520 
53 530 
54 540 
55 600 
EOF.. 
EOT.. 

20 C= 
20 A= 
40 B= 
50 FRINT®® 
60 FOR I=1 TO 10 
7OMPREMT S26 9 Laie) ® 
80 INPUT Z(T) 
9O PRINT'WC"SI9")* 

  

10 DIM Z(10)7W(10) 
0 
1.74 

0.95833 

INFUT WC) 

NEXT I 
REM 
REM PLOT SPOTS +eeeeeereeeens 
REM 
FROEN[ *? 
FOR I=1 TO 24 
FRINT secre errr errr errr reer ererrreereererree” 
NEXT 1 
REM 2 
REM PLOT LINES 
REM 
FOR I=0 TO 25 
FPOKE(32768+40KI+20) ¥46 
NEXT I 
FOR I=0 TO 39 
POKE (32768448041) 945 
NEXT I 
FOR M=1 TO 10 

X1=Z(M) 
X2=W(M) 
FOR K=1 TO 3O0?REM PLOT 30 POINTS 
RXX=RNDI(2)-0.5 
RX=SGN(RXX)*0.499 

REM 
REM COMPUTE NEXT STATEsseressees 
Y1=-AxX1-BXX2+CXRX 
Y=SGN(Y1L)KINTCABS(Y1)+0.5) 
X2=X1 
x1=Y 
PRINT* 
PRINT*X12"5X1 
PRINT"X23°3X2 
PRINT “KS "Sh 
REM 
REM FLOT STATE PLANE FOINT+oseoes 
REM 

LOC=32768+(13-X1)k40+4+(X2-20) 
FOR L=1 TO 2 

FOR LA=1 TO 103POKELOC,160%NEXT 
FOR LA=1 TO 10tPOKELOC,32:NEXT 
NEXT L 
FOKELOCsM+47 
NEXT K 
NEXT M 
END 
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APPENDIX 7 

Program used to print out the limit cycles 

on the state plane 
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LALLA AAA GA $44 FHA AA ADA AAEAR LEENA EN ARH AA EHH HA ADHERE AHHH EERE EES 
SH AARAAR AAG A SHA LARA A LEAR AM RR AER AES AKAMA A RHA AHR ES 
pM aR 

Pdn 6 e798 Fat TERMINAL: 68 15 FEB 82 22:16:04 
pA ae bea 
pe aA a ete A te 
PAG HEHE SEA aE 

  

FARRA ATH THEA RARAAHRAA HAHA HHH AHH HEHEHE EHR EHR HEHEHE 
SER RAEALR RE LA AAKATHAAAARHARHARHA HAH HHAR HER REA RHE HEH EH 

    

; THIS PROSRAN RE PLOT OF THE LIMIT CYCLES IN DIGITAL FILTERS 

    

TOTAL NUMBER OF THE LIMIT CYCLES BEING PLOTTED 
W100), X¢100) 

TON GRAPH( 70, 70) 
DIMENSICN AK{10) 

YCI) HOLDS Tite DATA GF Y(N), ISTHE MAXIMUM OF THE PERIOD OF THE LIMIT CYCL 
XCI} HOLDS Tit DATA GF Y(N-1) 

C GRAPH(I, J} HOLDS THE WHOLE DATA IN Y(N)-Y(N-1) PLANE 
© I,J ARE EQU&! TO DOUBLE OF THE MAXIMUM OF Y(N 

    

INTECER 1.(10) : 
INTEGER MAX 

c L(I) HOLDS THE PERIOD OF EACH LIMIT CYCLE 
c MAX IS THE MAXIMUM OF THE LIMIT CYCLES 

DATA DOT/1H. /, BLANK/1H / 

DATA AK CL) /LH1/) AKC2)/1H2/, AK(3)/1H3/, AK( 4) /1H4/, AKC 5) /1H5/ 
DATA AKCE)/LHS/, AK(7)/1H7/, AK(B) /1HB/, AKCF) /1H9/, AK(10)/1HO/ 

€ READ TL FROM THF FILE 14 
READ(14, 50) TL, MAX 

SO FORMAT(2I5) 
C SKIP TO THE TGP OF THE PAGE 

WRITEC1S, 65) 
60 FORMATCLH1) 

WRIFE(15, 70) fl, MAX 

70 FORMATC2¥, © THe TOTAL NUMBER OF THE LIMIT CYCLES=’,15,’ THE 
MUN OF THE LIMIT CYCLES=/, 15) 

RRAY THAT HOLDS THE GRAPH 
=15) 70 

      

   
100 GRAFHCI. J) =BLANK 

C PUT DOTS INTO THE GRAPH SO AS TO FORM X,Y AXES 
DO 205 J=1,76 

200 GRAPH(Sé, J)=DOT 
DO SCO I=1,70 

SOO GRAPH(1, 363=bOT 
C READ THE DATA GF L¢I) FROM THE FILE 14 

READ{14, 400) i(L¢1),1I=1, TL) 
$00 FORMAT (1015) 
S00 CONTINUE 

PUT THE DATA OF THO LIMIT CYCLES SUCCESSIVELY INTO Y(I) AND X(1I),AND ’ 
“Kt REPRESENTS Tite (CTH LIMIT CYCLE: 
INPUT THE DATA OF THE FIRST LIMIT CYCLE 

DO 703 ¢ otk 

GO TO (565, 510, 515, 520, 525, 530, 535, 535, 535, 535),N 
S05 READ(145, 605) (X¢1),T=1,L¢1)) 
605 FORMAT( 14515) 

GO TO ASO 
510 READ(14,610) (X(1), T=1,L(2)) 
610 FORMAT( 1315) 

GO TG 650 

     

  

a
o
0
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515 READ(14,615) (X(1), 1=1,L(3)) 
615 FORMAT(1315) 

GO TO 650 
S20 READ{(15, 620) {X(1), T=1,L(4)) 
620 FORMAT(1415) 

60 TO 650 
#5 READ{14,625) (X(1), I#1,L¢5)) 

5 FORMAST(1215) 
GO TO 655 

530 READ(14,630) (X(1), 1=1,L(6)) 
$630 FORMAT(1415) 

6O TO 450 
935 READ(145,635) (X(1), I=1,L(N)) 
635 FORMAT(IS) 
650 Y(LCM)D=xC 1) 

Mi=L(N)-1 
DO 700 T=1,M1 

700 Y(T)=X(1+1) 
SET UP DO LEOP TO DEAL WITH THE KTH LIMIT CYCLE 

DO eCO K=1,L¢(M) 
CONVERT THE DATA INTO SUBSCRIPT VALUES 

T=3* (MAX+14+Y(K)) 
VEBHCMAX+14+X(K) ) 

CHECK THAT POINI LIES WITHIN GRAPH, AS EXPECTED, AND ENTER ’K’ IF SO 
800 IF (I.GE.1 . AND. I.LE.70 . AND. J.GE.1 . AND. J. LE. 70) 

1 GRAPH(I, J)=AKiN) 
CLEAR K(1},Y(I) SO AS TO PREPARE TO RECEIVE NEXT DATA OF LIMIT CYCLE 

DO 850 I=1,L¢N) 
XT 

  

PRINT Th: RAPH 
DG 930 I=1,70 
Ti=71-1 

910 WRISE(15, 920) (GRAPH(T1, J), J=1, 70) 
920 FORMAT(1H, 7OA1) 
930 CONTI? 

stor 
END 

  

VK 

REE EREEE LEK RRS 

  

RRR ER RRR E EER RR EK KK RARE RHEE HEHE SEE EH EEE 
SAAARHAAL LSS A FAAS ALS AARHAAATAAAR A GARY SAH AHAN AARHAHAHEAKAHHA HEHEHE ER HERES 
RARER 

dn 4 2499-HML TERMINAL: 68 15 FEB 82 22:16:40 
ARBRE RS 
AARAARAA EARL A AR ADA AAARARARAA ANH A AA AAE RH FEE EEE EEE EE EE eae ESE aE EH 
SREAARRA TALS A LARAN ALAA AMAA EATH AG AAA HHA A HAAR EH EEE SE EEE EE EH 
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Figs A?.1 

An example of the print by the 
use of the program shown in 
Appendix 7. 
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APPENDIX 8 

Program used for the generation of a 

normal (Gaussian) distribution sequence 
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G05 - Random Number Generators 

GO 

1, Purpose 

SDDF 

GOSDDF returns a pseudo-random real number taken from a normal (Gaussian) 
distribution with mean A and standard deviation B. 

IMPORTANT: before using this routine, read the appropriate machine 

implementation document to check the interpretation of italicised 
terms and other implementation-dependent details. 

2. Specification (FORTRAN Iv) 

real FUNCTION GOSDDF(A,B) 
ec real A,B 

3. Description - 

The distribution has PDF (probability density function 

  cca") 
p(x) = exp [- ; 

vam B 2B 

The routine uses the method of Brent [5]. - 

4, References 

[1] KNUTH, D.E. 
The Art of Computer Programming, Vol. 2. 
Addison-Wesley, 1969. 

[2] HAMMERSLEY, J.M, and HANDSCOMB, D.C. 
Monte-Carlo Methods. 
Methuen, Published 1964, Reprinted 1967. 

(3] KENDALL, M.G. and STUART, A. 
The Advanced Theory of Statistics, Vol. 1. 

Griffin 3rd Edition, 1969, 

[4] NEAVE, H. 
A Random Number Package. 

Computer Applications in the Natural and Social Sciences, No. 14, 
Department of Geography, University of Nottingham, 1972, 

[5] BRENT, R.P. 
Algorithm 488. 
C.A.C.M., p. 704, 1974. 

NAGFLIB:1451/0:Mk6 :May77 : ‘ Page 1 
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G05 - Random Number Generators 

GOSDDF 

5. Parameters 

A - real. 
On entry, A specifies the parameter (mean) A of the 

distribution. 

Unchanged on exit. 

B - real. 
On entry, B specifies the parameter (standard deviation 

B of the distribution. If B is negative, the distribution of 

the generated numbers - though not the actual sequence - is 

the same as if the absolute value of B were used. 
Unchanged on exit. 

6. Error Indicators None. 

7. Auxiliary Routines 

This routine calls the NAG Library routine GOSCAF. 

8. Timing 

See appropriate implementation document. 

9. Storage 

Storage required by internally declared arrays, including those of 

auxiliary routines is 41 real elements. 

10. Accuracy Not applicable. 

11. Further Comments 

This routine uses a labelled COMMON block with the name BGOSCA. 

12. Keywords 

Gaussian Distribution, Random Numbers. 

Normal Distribution, Random Numbers. 

Random Numbers, Gaussian Distribution. 

Random Numbers, Normally Distributed. 

13. Example 

The example program prints the first five pseudo-random real numbers 
from a normal distribution with mean 1.0 and standard deviation 1.5, 
generated by GO5DDF after initialization by GOSCBF. 

  

Page 2 
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G05 - Random Number Generators 

GOSDDF 

13. Example (contd) 

Program 

This single precision example program may require amendment 

i) for use in a DOUBLE PRECISION implementation 

ii) for use in either precision in certain implementations. 

The results produced may differ slightly. 

       

  

C EXAMPLE PROGRAY TEXT 
c ASE NAG COPYRIGHT 1977 
p ALARS «+ 

: nOUT - 
e WICTIOGN REFERENCES -- 

REAL COSDI 
¢ +» SUBROUTINE REFEREICES .. 
c GOSCBF 
c - 

DATA NCUT /6/ 
WE (1OUT, 99999) 
CALL GOSCBF(0) 
DO 20 1=1.5 

X = GOSDDF(1-0,1-5)    ea 
WRITE (NOUT,99998) X 

JE 

    

(4(1X/)» 314% COSDDF 
(1X) F10-4) 

Results 

  

NAGFLIB 
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APPENDIX 9 

Program for the calculation of standard deviation 

of output from bandstop filter when a Gaussian 

random sequence N(O,17) is input 
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AAAHHEH LAR AAR AA AAA RAG AER H ERA RAAAN AAA RAARRAR RARE ALGER ARAAARARERER AA RARER 

AAAHLAAAH AAD HAAH AAG TAA AARA RHEE LAK EALAA NAAR AER AEN AA RAAD HARA AER EAR RRA EG 

HAAKAEREHRH 

SHOP Se a 2499-HAL TERMINAL: 70 20 JUL 82 14:42 

HEA RARHAAHS 

AA AHAAAAA BAAN AA ALAN AA AAAR AGH EA LAAARAR HARK AM KARR AAY RARREAA AHAAR REE FRRAA EA 

Set HAARAA HASH AANARA HH AAAK AAR ARH AAL A AHRAK A ANAHRAAE AAA AARAALAARAR RAHA AHA AES 

  

    

1c 
2 ¢ THIS PROGRAM GIVceS THi= SQUARE SUMMATION OF THE IMPULSE RESPONSE 

ac 
4 MENSION (1000), (1000) 
5 TS=15 
& 932933 
7 | 509526 

8 | 236048 

9 O° 
10 F=0. 7547628 

17 WRITE (NG JT, 50) A,B,C 

12 50 FORMAT (2X, ZHA=, F10. 6 2X, 2H3=, F10. 6, 2X, 2HC=, F10. 6) 
i3 WRITE(NGUT, 60) DF * 

14 60' FORMAT (2X, ZHD=, F10. 6, 2X, 2HE=, F10. 6) 
LS po 100 I=1, 1000 

14 xX(I)=0.0 

17 Y¥(I)=0.0 

is 100 CONTINUS 

19 X(3)=1.0 

2 Y¥(1>=0.0 

21 Y¥(2)=0.0 

22 DO 200 N=3, 1003 

2 YON) SF#CK OND 4+C#X (N-1) +D#X (N- 2) )-AeY(N-1)-B #Y¥(N-2) 

24 205 CONTINUE * 

DO 350 I=3, 1003 

26 Y(I)S=Y¥( I) #42 

27 350 CONTINUS 

28 DO 400 N=3, 1003 
29 SIGMAP=SIGMA2+Y (NN) 
30 400 CONTINUE 

Si SIGMA=SGRT(SIGMA2) 
32 WRITE(NSUT, 500) SIGMA 

33 S00 FORMAT(2X, 23HTHE STANDARD DEVIATION=, F15. 8) 

34 STOP 

25 END 
Bao SVk 

EOE... 

5 AARAERRAK AAHAA HARK AAR AAR A ARAARAAHRAR ADH SAR AAKAARA AGA AAAARAAN AAT BA RAARARS: 

    A SN SAMAR ARH A ERAARAAR AAR AK AA REA AHAAN AEN ARRAAR ATH ASK AERA AR RAKE AH AAR RAY 

HAHAHAHAHA 
we Pdn 7 2499-HML TERMINAL: 70 20 JUL 82 14:4 
HARRAAE AHA 
HAARAAK AAR AAHAAN AAR A ARAAH SA RAAHAAK KARAAK PARADA AREER SH AEA AARAE RARE RAE RARER 

AA LRAAK AAA AR AAR AAR ADH AAA AK KERNAN AAERAN ERAGE REE NS SSA AKA ARA RARER RRA RAAR 
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NA ARAARAAAAAK AAR AARAAR ARYL SARAH RAAAAK AAR ARHAAR AAA A SAE HRAH AEH RARER NER HEEH: 
SRARARLAALAARAAAAAA AAR FAK EH RAAR ARKH THAD LARA ARR A LAS AAA ARARAEARHAA SEER ERY 
HAARHEHA HHS 
#% Pdn a 2499-HML TERMINAL: 70 20 JUL 82 14:4: 
RARRAARARRE 

HALRRARAARAAR AAA L ARAARA RRA RRA AK MARAE R AMAA RATA TH HEAR SHAFHHEA HAAR HES 
SARAH RARAARAARADR AAR RARE S EARAKMARK AARHAL RENAN MAREE SSA SAN AHEEH EER EERE ES 

    

1 A= 0.932738 B= 0.507526 C= 1.236068 
2 D= 1.000000 F= 0.754763 
3 THE STANDARD DEVIATIGN= 1. 03888544 

ARERARHAARAAK RAR ARHAAA LAGH AHAARAA AY LHAAHA SAHAARRAA ASA AAAAARSHAEK RAY SHH SAY 
RRR AAR AAR AAR RAN AAHAA RAG HHA NH SARAH HEHEHE 
ARREHRHRHEE 

#* Pdn az 24997- 
SHAHRHHRAREE 

RRARAARAAAAARA AN AARKARAARA ARAL HARK ARRAN AAKAKH RATES RAN KAMAARASEK RRR SRR KE TH? 
AAARRAARARRAAR RAG AA LARS LARAARAAE AAR AAR AAR LAK AARARAS ALARA HAHA ANHALERHAR SESH? 

   TREPHAAR RFRA HSHEHS KE AEA 

  

iL TERMINAL: 70 20 JUL 82 14:40 
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APPENDIX 10 

Program for the calculation of time needed for   

stabilization by the use of dither 
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HRA EER AREAA REAR LAH AERA AA AREA RA LEELA SHARAN HERALD LAA RAA RAE HER HHEH AAHHEE 
HHARKAE HAHA REAR AREA REAR AHHH RA AHA HRAK AKER A EER RARE REE REE AERA REE RRES 
HHHHHEHHHHH 
#% Pdn 7 2499-HML TERMINAL: 54 26 JUL 82 97:4 
HAKKAR H HH 

HRAEKAK HAHA ARH AARHA AE EK ERR HA HAAN HHH REE REA RHEARS AH HAHRARHEEHEERAREEH 
HAAHRAREARAA REAR RARAARAAL LARA RAR ALK LAK RARER HAAR RAR EAH HAHEHAR HEH RARESH 

1 C THREE TYPES OF DITHER CAN BE USED 
2 C THEY ARE UNIFORI4! Y DISTRIBUTED RANDOM DITHER, BINARY RANDOM DITHER AND 
3 C BANDSTOP DITHER 
4 C THIS PROGRAM GIVES THE MEAN VALUE AND STANDARD DEVIATION OF THE 
5 C TRANSITION TIME FROM THE LARGEST LIMIT CYCLE TO THE ORIGIN 
6 C STATE ON THE STATE PLANE 
a DIMENSION @(1000) 
8 DIMENSION E(10) 
9 REAL MS, MEAN 
10 REAL GOSCAF 
11 REAL GOSDDF 
12 NOUT=15 
13 C IF KRIT IS LESS THAN ZERO UNIFORM DITHER WILL BE USED 
14 C IF KRIT IS EQUA! TO ZERO BINARY DITHER WILL BE USED. 
15 C IF KRIT IS GREATER THAN ZERO BANDSTGP DITHER WILL BE USED. 
16 KRIT=2 
17 C DA AND OB ARE THE COEFFICIENT VALUES OF THE BASIC FILTER SECTION 
18 OA=-1. 452679 
a7 OB=0. 881619 
20 IF (CARIT.LE.O) GO TO 111 
21 C A,8,C,D,F,ZA,ZB,ZC AND ZD ARE THE COEFFICIENT VALUES OF 
22 C THE BANDSTOP FILTER. 

    

23 A=-2. 78770841 
24 . 55450670 
25 2. 31321908 
26 . 697549120 
27 F=0. 645716253 
28 ZA=-2. 02590537/F 
29 ZB=2. 88042372/F 
20 ZC=ZA 
31 ZD=1.0 
32 C SIGMA SQUARE IS THE SQUARE SUMMATICN OF THE IMPULSE RESPONSE 
33 C OF THE BANDSTOP FILTER. IT IS USED AS A SCALE FACTOR SO AS TO 
34 C NORMALIZE THE STANDARD DEVIATION OF THE SEQUENCE AT THE 
35 C NONLINEAR NETWORK INPUT 
36 SIGMA=0. 79647261 
37-111 PI=4. OXDATAN(1. 0) 
38 CALL GOSCBF(O) 
39 DO 320 V=1, 1000 
40 © XX1 AND XX2 DEFINE A INITIAL STATE WHICH IS ON THE LARGEST 
41 C LIMIT CYCLE 
42 XX1=4.0 
43 XxX2=4.0 
44 Z1=0.0 
4s Z2=0.0 
46 Z3=0.0 
47 24=0.0 
48 X1=0.0 
4g X2=0.0 
50 X3=0.0 
Si X4=0.0 
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c LET 

555 

NOTE 
THER 
DEVI 
PUT 
NON-' 
NUM) 
DENS a

a
g
a
a
n
a
a
a
 

c Xx I 

444 

K1=0 
pO 50 K=1, 100000 
IF (KRIT.LE.O) GO TO 444 
ZX=GOSDDF (0.0, 1.0) 
THE INPU1 GAUSSIAN DATA PASS A SPECIAL DIGITAL FILTER 
=-A#Z1—-B*Z2-C#Z3-D#Z4+F # ( ZX+ZA#X1+ZBHX2+ZC#X3+ZD#X4) 

24=Z3 
Z3=72 
Z2=Z1 
Z1=Z 
X4=X3 
XQ=X2 
2=X1 

X1=ZX 
Z=Z/SIGMA 
IF (4B8S(Z).LT.3.0) GO TO 555 
Z=SIGN(1. 0, Z)#3.0 
CONTINUE 
Z=Z*SQRT(1. 0/72. 0) 
THAT THE DEVIATION OF THE NUMBERS AT THE OUTPUT HAS BEEN CHANGE! 

EFORE THE NUMBERS HAVE TO BE DEVIDED BY THE SIGMA, STANDARD 
ATION. 
THE GAUSSIAN RANDOM NUMSERS (AFTER BEING DEVIDED BY SIGMA) INTO ¢ 
LINEAR NETWORK SO AS TO GENERATE A UNIFORM DISTRIBUTION RANDOM 
ERS AND THE NON-LINEAR GIVES ONLY MINOR CHANGES IN THE POWER 
ITY SPECTRUM. 
Wi=1.0 
E(2)=1.0 
DO 26 JJ=1,32 
FJ=FLOAT (JJ? 
W2=W1#(-1. 0) 
ZZP1=W24 (Z4#JJ) 
ZZP2=Z##(JI+1) 

Wi=We 
E(1)=FUxXE(2) 
E(2)=E(1) 
ZZ2=E(1)#(2. OXF U+1. 0) 
ZZP3=ZZP2/2Z2 
Z2Z3=ZZP34ZZP1 
2Z24=2Z24+ZZ3 
CONTINUE 
ZZ5=(ZZ4+Z)/SQRT(PI) 
ZZ4=0.0 
S THE BANDSTOP DITHER SEQUENCE 
XX=ZZ5 
CONTINUE 
IF CARIT.LT. 0) GO TO 222 
IF (KRIT.EQ@.0) GO TO 333 
Y1=-OA#XX1-OB*XX2+XX 
GO TO 666 
XU=GOSCAF (XK) 
Y1=-OA#KX1—-OB*XX2+XU-0. 5 
GO TO 646 
XU=GOSCAF(X)-0.5 
RX=SIGN(1. 0, XU)#0. 499 
Y1=-OA#XX1-OB*XX2+RX 
Y=SIGN(1. 0, Y1)#AINT(ABS(Y1)+0. 5) 
Ki=K1+1 
XX2=KX1 
XX1=Y 
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112 JI=INT(XX1) 
113 J2=INT(XX2) 
114 IF(J1.EQ@.0) GO TO 45 
115 ¢cO TO SO 

116 45 IF(J2.EQ@.0) GO TO 60 
ay, SO CONTINUE 
118 69 Q(J)=K1 
119 AJ=FLOAT (J) 
120 AJJ=AJ/100. 0 
lel TAJJ=INT(AJU) 
122 FIA=FLOAT (ITAJJ) 

123 IF (AJ. EQ. 100. O#FIA) GO TO 394 
124 GO TO 320 
125 394 WRITE(3, 376) AdJ 
126 396 FORMAT(2X,F8. 4) 
127 320 CONTINUE 
128 WRITE(NOUT, 392) A,B,C, D,F, SIGMA 
129 392 FORMAT (2X, 6F12. 8) 
130 SUM=0. 0 
131 DO 400 I=1, 1000 
132 SUM=SUM+Q(T) 
133 400 CONTINUE 
134 MEAN=SUM/1000. 0 
135 MS=0. 0 
136 DO 450 I=1, 1000 
137 MS=MS+(Q(1)-MEAN) ##2 
138 450 CONTINUE 
139 SD=SGRT(i1S/999. 0) 
140 SDOM=SD/SQRT(1000. 0) 

141 WRITE(NOUT, SOO) MEAN, SDOM 
142 500 FORMAT (2X, “THE MEAN=",F12. 6, “THE STANDARD DEVIATION=",F12. 6) 
143 sToP 
144 END 
145 $VX 
EOre. 

HAAKRAHHAA HAAR ARHA EH LR HRAA RAK AAHAAKAALAA HAA ERA RARE AAA SHA A HAAR LAER RRA A ERAT 
AAAKAAK RRA A AHRAAA AHA RARER EAHA RARER SHA LKAHEALA RHA SHRANK FRR EHRARREA ERE 
HARRAH HHRHS 

## Pdn ¥ 24979-HML TERMINAL: 54 26 JUL 82 9: A 
HEARHHRHHERHE 
HAHAHAHA RARLAA RR AR RERAARAAAAEA HAA AAA AHHAAR AAHAH REAR EA RAAR RAKE REALE HRE RARE 
HAANRARAARAAKAAR AERA ANAARAE HAH RA A AANRAA HE AS KRRARRAHRA HRA RRA RRAERARRAREAH 
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LHAHRAA KAA HREA AAR AAAA AE ARKA HAAR AARAES AAHRE RAR AA KLAR AA REA HRA HRA KEE REA REAR 
EH MAK AA AAA HEA LARA EAA AEH AKA RHR AA A LARK EAH AAR AAK EHR AA RAE RER EAE RAAK AAR 

REAR HHHE 
RGH 7 2499-HML TERMINAL: 54 26 JUL 82 9:40:1 
RARER 
HEA HKARHA HANH AARAA ALAR RAHA AAA SHARAN AHAAHHAH HARRAH AH EAHRH ANE RE EERE SH 

AGHA RAAA AAG LAK RHEE AR RRA AHR LAK REAR AK AA RRA HKAR RA HAA KE RARA AHA ARERR RAR EAR 

    

-2. 78770841 3.55450670 -2.31321908 0.69754912 0.64571625 0. 79647261 

THE MEAN= 49. S40000THE STANDARD DEVIATION= 1. 145246 

CARLA ALAA AAA LAA RHAAAA AAHARAAA REA RAR HAAR AH HAA H AA RAAK RARAAHRRAR ERASER AEE ES 

SHAH A AAA HAARK ALLA AK AAAHHAA ALAA EAHA R AHHH HAAR HARAARAAR RARER RRR HAR AEE SH 

CLRHHHAAHH 
+ Pdn 7 2499-HML TERMINAL: 54 26 JUL 82 9:40:1 
SHEER 
$EHLAHALA RAK AAA EMAAR AHR AE A AEH HAH ARERR NEARER EERE HRA HES 

SAHAAHAAHKARAAH AARAAK AAR AAARARAAR EAHA NAAR ARH RAHA AA HHAH AAR RARE AREA RRA RAS K 
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APPENDIX 11 

Program for the calculation of the increase in output 

noise from the basic filter section by the dither 
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HAAR HRA HAA LAER ARAAR RAK AARH AAD LAARAA AAA HRA RAH RA AAR EAR AA HHA HHA REAHEE ES 
HARRAH LAAAA REAR REKRA RAR HRRAR HAA LAR LAH EA HRAR RE HAAR EAR AAR EAHA RHHRHARRRAHERE 
HARRHEHEH RE 

## Pdn 7 2499-HML TERMINAL: 67 26 JUL 82 11:1 
HARHHHHHHEE 

HAARHAHHAK AA HAA KHAN LAH KAM ARREARS HA RRAHH ANS AHREHR HEH HER AAH HEH HARE AEE EH: 
HAARAAHAA HAAR RRA ARAARAAL RARER HAA RAR RAR HAA RAR KLA EKA HAHA A HAE HHAEREHEE REE! 

1 C THIS PROGRAM GIVES THE INCREASE IN THE OUTPUT NOISE (DB) FROM THE 
2 C SECOND-ORDER FILTER SECTION DUE TO THE INJECTION OF DITHER 
3 C THIS PROGRAM ALSO GIVES THE STANDARD ERROR OF THE OUTPUT NOISE 
4 C INCREASE. THE QUANTIZATION NOISE WITHOUT DITHER IS USED AS THE 
S C REFERENCE LEVeL. THE INITIAL STATE OF THE SECTION IS AT THE 
6& C ORIGIN OF THE STATE PLANE. A SINUSOIDAL SIGNAL IS INPUT TO THE 
7 € SECOND-ORDER FILTER SECTION. THE OUTPUT FROM THE SECTION IS 
8 C ANALYZED BY THE FFT. 
9 C HAMMING WINDCW IS USED AND N=2048 
10 DIMENSION E(10) 

11 DIMENSION X(2048),W(2048), XREAL (2048) 
12 DIMENSION XIMAG(2048),P(2048) 

13 DIMENSION TPN(50), TPS(50) _ 
14 “REAL GOSCAF 
15 REAL SOSDDF 

16 C IF KRIT 1S LESS THAN ZERO UNIFORM DITHER WILL BE USED. 
17 C IF KRIT IS EQUAL TO ZERO BINARY DITHER WILL BE USED. 
18 C IF ARIT IS GREATER THAN ZERO BAND STOP DITHER WILL BE USED 
19 KRIT=2 
20 NOUT=15 

21 C QN IS THE QUANTIZATION NOISE WITHOUT DITHER WHEN A SINE WAVE IS INPU’ 
22 QN=6974, 2 : 
23 C OA AND OB ARE THE COEFFICIENT VALUES OF THE BASIC FILTER SECTION 
24 OA=-1. 452679 ; 
25 OB=0. 881619 
26 TE CARIT, LEO} 260) FOE 24 
27 C A,B,C, D,F, ZA, ZB, ZC, AND ZD ARE THE COEFFICENTS OF THE BANDSTOP FILTER 
28 A=-2. 78770341 

    

29 . 535459670 
30 2. 31321908 
31 D=0. 697549120 
32 F=0. 645716253 
33 ZA=-2. 02590537/F 
34 7B=2. 88042372/F 
35 ZC=ZA 
36 ZD=1.0 
37 C SIGMA SQUARE IS THE SQUARE SUMMATION OF THE IMPULSE RESPONSE OF 
38 C BANDSTOP FILTER. IT IS USED AS A SCALE FACTOR SO AS TO NORMALIZE 
39 C€ THE STANDARD DEVIATION OF THE SEQUENCE AT THE NONLINEAR 
40 C NETWORK INPUT 
41 SIGMA=9. 79647261 
42 111 PI=4. O#DATAN(1. 0) 
43 C HAMMING WINDOW FUNCTION, N=2048 

  

a4 DO 2 I=1, 2048 
45 H=FLOAT (11-1024) 
46 WC1)=0. 5440. 46#COS(2. O#PI*#H/2048. 0) 
47 2 CONTINUE 
48 Cc USENERGY IN HAMMING WINDOW 
49 U=0. 0 
50 DO 4 I=1,2048 
Si AEHW( I) ##2 
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U=U+AE 
4 CONTINUE 

po 5 I=1,2048 
5 P(I)=0.0 

CALL GOSCBF(O? 

DO 50 v=1,39 

  

Z1=0.0 
ce: 
-O 
Re} 
-a 
-o 
in 
=O: 
0: 

XX2=0.0 
C IN ORDER TO OBTAIN A STEADY-STATE SINUSOIDAL OUTPUT THE FIRST 3584 
C SAMPLES HAVE TO BE OMITTED 

DO 6 1=1, 5432 
FI=FLOAT(1I)-1.0 
IF (ARIT.LE.O) GO TO 444 
ZX=GOSDDF (0.0,1.0) 

C LET THE INPU1 GAUSSIAN DATA PASS A SPECIAL DIGITAL FILTER 
Z=-A*Z1-B#Z2-C#Z3-D#Z4+F # ( ZX+ZA#X1+ZB#X2+ZC#X3+ZD%X4) 
24=23 
Z3=Z2 
Z2=Z1 
Z1=Z 
X4=X3 
X3=X2 
X2=X1 
X1=ZX 
Z=Z/SIGMA 
IF (ABS(Z).LT.3.0) GO TO 555 
Z=SIGN(1. 0, Z)#3.0 

555 CONTINUE 
Z=Z#SQRT(1. 0/72. 0) 

NOTE THAT THe DEVIATION OF THE NUMBERS AT THE OUTPUT HAS BEEN CHANGED 
THEREFORE THe NUMBERS HAVE TO BE DIVIDED BY THE SIGMA, STANDARD 
DEVIATION 
PUT THE GAUSSIAN RANCOM NUMBERS (AFTER BEING DIVIDED BY SIGMA) INTO é 
NON-LINEAR NETWORK SO AS TO GENERATE A UNIFORM DISTRIBUTION RANDOM C 
NUMBERS AND THE NON-LINEAR GIVES ONLY MINOR CHANGES IN THE POWER 
DENSITY SPECTRUM 

Wi=1.0 
E(2)=1.0 
DO 26 JJ=1,32 
FU=FLOAT (JJ) 
W2=W1#(-1. 0) 
ZZP1=W24(Z4*JJ) 
ZZP2=Z44(JU+1) 
Wi=W2 
E(1)=FJ#E(2) 
E(2)=E(1) 
ZZ2=E(1)#(2. O#FU+1. 0) 
ZZP3=ZZP2/ZZ2 
ZZ3=ZZP3*ZZP1 
22Z4=224+2ZZ3 

26 CONTINUE 
ZZ5=(Z2Z4+Z)/SQRT(PI) 

a
a
q
a
a
n
0
n
a
g
a
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112 ZZ4=0. 0 

113 IF (ABS(ZZ5).LT.0.5) GO TO 30 
114 ZS=SIGN(1. 0, ZZ5)#0. 4999 

115 C XX IS THE BANDSTOP DITHER SEQUENCE. SZ IS THE SINUSOIDAL INPUT. 
116 30 XX=ZZ5 

Tat 444 SZ=38. 49*SIN(2. O#P1#14. 0/128. O+FI) 

  

118 IG (KRIT, LT..0) GO TO 222 
119 IF (KRIT.EQ.0) GO TO 333 
12 Y1=-OA#XX1-OB#XX24+SZ+XX 
121 GO TO 646 
122 222 XU=GOSCAF(X) 
123 Y1=-OA+#XX1-OB#XX2+SZ+XU-0. 5 
124 GO TO 646 
125 333 XU=GOSCAF(X)-0.5 
126 RX=SIGN(1. 0, XU)#*0. 499 
127 Y1=-OA*XX1-OB#XX2+SZ+RX 
128 665 Y=SIGN(1. 0, Y1)*#AINT(ABS(Y1)+0. 5) 
129 XX2=XX1 
130 XX1 
131 IF (I. LE. 3584) GO TO 6 
132 X(1-3584) =v : 
133 6 CONTINUE 
134 DO 40 I=1,2048 
135 XREAL (1) =X (1) #W(1) 
136 XIMAC(1)=0. 0 
137 40 CONTINUs 
138 CALL FFT(XREAL, XIMAG, 2048, 11) 
139 DO 42 I=1, 2048 
140 P(I)=P(1)+(XREAL (1) ##2+XIMAG(1)##2)/U 
141 42 CONTINUE i 
142 WRITE(3, 44) J 
143 44 FORMAT(2X, ‘J=", 12) 
144 TOTP1=0. 0 
145 DO 70 I=1,223 
146 70 TOTP1=TOTP1+P (1) 
147 TOTP2=0. 0 
148 DO 80 I=224, 226 
149 80 TOTP2=TOTP2+P (1) 
150 TOTP3=0. 0 
157 DO 90 I=227, 1823 
152 90 TOTPS=TOTP3+P (1) 
153 TOTP4=0. 0 
154 DO 96 1=1824, 1826 
165 96 TOTP4=TOTP4+P (1) 
156 TOTP5=0. 0 
157 DO 98 I=1827, 2048 
158 98 TOTPS=TOTPS+P (1) 
159 TPN(J)=TOTP1+TOTP3+TOTPS 
160 TPS(J)=TOTP2+TOTP4 
161 DO 801 I=1,2048 
162 801 P(1)=0.0 
163 50 CONTINUE 
164 DO 901 J=1,30 
165 TPN(J)=10. O#ALOG10(TPN(J)/QN) 
166 901 CONTINUE 
167 AMEAN=0. 0 
168 DO 902 J=1,30 
169 AMEAN=AMEAN+TPN( J) 
170 = 902: CONTINUE 
171 AMEAN=4MEAN/30. 0 
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172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
162 
183 
184 
185 
186 
187 
189 
189 
190 
19k 
192 
193 
194 
195 
196 
127 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
227 
230 
231 

903 

S2 

54 

56 

57 

606 
667 

707 
778 
148 
So 

802 

804 

905 

906 

907 

102 

STAD=0. 0 
DO 903 J=1,30 
STAD=STAD+(TPN(J)—-AMEAN) ##2 
CONTINUE 
STAD=SQRT(STAD/29. 0) 
STAR=STAD/SQRT(30. 0) 
WRITE(NOUT, 52) 
FORMAT (2X, ‘ THE POWER SPECTRUM OF THE OUTPUT OF THE SECTION ‘) 
WRITE(NOUT, 54) 
FORMAT(2X, ‘THE INPUT OF THE SECTION IS AS FOLLOWS ’) 
WRITE(NOUT, 56) 

FORMAT (2X, "38. 49*SIN(2. O#PI#14. 0/128. OXFI) ") 
IF (ARIT.LT.O) GO TO 606 
IF (KRIT.EQ.0) GO TO 707 
WRITE (NOUT, 57) 

FORMAT(2X, * BANDSTOP DITHER ‘) 
GO TO 148 
WRITE(NOUT, 667) 

FORMAT (2X, ‘ UNIFORM DITHER ‘> 
GO TO 148 
WRITE(NOUT, 778) 
FORMAT (2X, ‘ BINARY DITHER ’) 
WRITE(NOUT, 58) OA, OB 
FORMAT (2X, ‘THE COEFFICIENTS OA=’,F12. 8, ‘OB=’,F12. 8) 
WRITE(NOUT, 123) QN 

FORMAT(2X, ‘ THE QUANTIZATION NOISE =’, F14. 4) 
WRITE(NOUT, 802) 
FORMAT(2X, ‘THE INCREASE OF NOISE IN EACH SIMULATION ‘’) 
WRITE(NOUT, 804) (TPN(J), J=1, 30) 
FORMAT (2X, F15. 6) 
WRITE(NOUT, 905) AMEAN 
FORMAT (2X, ‘THE MEAN OF NOISE INCREASE=’,F10. 6, ‘DB’) 
WRITE(NOUT, 906) STAD 

FORMAT (2X, ‘THE STANDARD DEVIATION=’,F10. 6, ’DB’) 
WRITE(NOUT, 907) STAR 
FORMAT(2X, ‘THE STANDARD ERROR=’,F10. 6 ’DB’) 
sToP 
END 

SUBROUTINE FFT(XREAL, XIMAG, N, NU) 
DIMENSION XREAL(N), XIMAG(N) 
N2=N/2 
NUL=NU-1 
K=0 
DO 100 L=1,NU 
DO 101 I=1,N2 
P=IBITR(K/2#*#*NU1, NU) 
ARG=6. 283185#P/FLOAT(N) 
Cc=COS(ARG) 
S=SIN(ARG) 
KLS=K+1 
KIN2=K1+N2 

TREAL=XREAL (K1N2) #C+XIMAG(KIN2)#S 
TIMAG=XIMAG(KIN2) #C—XREAL (KIN2)#S 
XREAL (K1N2)=XREAL(K1)-TREAL 
XIMAG(KIN2)=XIMAG(K1)-TIMAG 
XREAL (K1)=XREAL(K1)+TREAL 
XIMAG(K1)=XIMAG(K1)+TIMAG 
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232 

  

  

233 
234 IF (K.LT.N)GD TO 102 
235 K=0 
226 NUL=NUL-1 
237 100 N2=N2/2 
238 DO 103 K=1,N 
239 ISIBITR(K-1, NU) +1 
240 IF(I.LE.%) GO TO 103 
241 TREAL=XREAL (K) 
242 TIMAC=KIMAG(K) 
243 XREAL (A) =XREAL (1) 
244 XIMAG(K)=XIMAG(T) 
245 XREAL (1) =TREAL 
246 XIMAG(1)=TIMAS 
247 103 CONTINUE 
248 RETURN 
249 END 
250 : 
ast : 
252 FUNCTIGN IBITR (J,NU) 
252 JisJ 
254 IBITR=0 
255 DO 200 I=1, NU 
254 J2=J1/2 
257 IBITR=IBITR#2+(J1-2%U2) 
258 200 Ji=v2 
259 RETURN 
260 END 
261 $VXx 
EOF. 

ARAREA REAR RAR HAR RAK RAK RAK AARAA HAAR RAR LAK RAH RARHEH HAHA ARKANRA RHR EREH EERE 
MAARHARAARKA RHA LAAN RA AAAA ER HA KAA NAAR EAR KARE RELA NAAR RAR HAREA HEHEHE HAE RE ES 
HAERAERH AEE 

#% Pdn 7 2499-HML TERMINAL: 67 26 JUL 82 11:15 
HRSHRHHHH HEHE 
HAARRARAAHAAR RAK AAKAARAR RK AH ARR ARNAAR HAS HARKER RE RAE HAA HHH REA HAHAH AE HHS SS 
RRAEREREAR AAA AREA LE ARRA LR ARREERA HEHE AK AA RER EKER RAHA HAR KHRAKHEE HEHEHE 
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LLG HLALAA REA LAER AARAA AER AAA HA REA HH AMER ERK H AAR KAR AA HEA HEE LEEHEH HERRERA ES 

HHA KERR EA AAA HHA RARER HEA REAR HH HRHA LEMKE HEHEHE HR EH HA AAA REA HHE HRA H ERE KA HAE 

HH 
#*% Pdn e 2499-HML TERMINAL: 67 26 JUL 82 11:16 
HARB 

ALA RHA AAA LEE KEAN LARA AAHA A RAK AHH ARERR A NAME E HAA RARE RE RHA ERE E 

AKAHAA EAA AAG AREA REA REE AK ARH EK AEH HARARE RARER NRE RHR BR EERE HEEES 

1 THE POWER SPECTRUM OF THE OUTPUT OF THE SECTION 
2 THE INPUT OF THE SECTION IS AS FOLLOWS 
3 3S. 49#SIN(2. O#PI#14. 0/128. O#FI) 
4 BANDSTOP DITHER 
5 THE COEFFICIENTS OA= -1.452679000B= 0. 88161900 
6 THE QUANTIZATION NOISE = 6974. 2000 
7 THE INCREASE OF NOISE IN EACH SIMULATION 
8 6. 2083908 
9 6. 252093 
10 5. 791453 
Ly 5. 253524 
12 4. 961397 
13 5. 344134 
14 5. 477463 
15 5. 993696 
16 4. 760712 

ee 5. 667707 
18 4. 928636 
19 5. 397100 
20 5. 793648 
21 5S. 243185 
22 5. 715346 
23 5. 079063 
24 5. 736177 
25 6. 453139 
2 5.519683 
27 5. 929192 
28 5. 039081 
29 5S. 644546 
30 5. 605036 
31 5. 4463432 
32 5. 224590 
33 4.855541 
34 5. 251187 
3s 5S. 113703 
36 5. 434075 
37 5S. 664541 
38 THE MEAN OF NOISE INCREASE= 5. 493418DB 
39 THE STANDARD DEVIATION= 0. 422882DB 
40 THE STANDARD ERROR= 0. 077207DB8 

AEA KAAHAARAA LAAN AA HA RAAK AHH AAA ARHA HALA HEA ELA EAA RA AREA RRA RAKED ER ERRAE 
AAAMRRARAAHS AAAAMRAH RARE ARERHE EK A AKAAHR AA RHERRA HRA AA LAK ARHAHH AREER RRR RARE H 

HERR A 
#% Pdn 7 2497-HML TERMINAL: 67 26 JUL 82 11:11 
HARE EHHEER 
EAARARRALAAAHHRARK AN AAHAA AK AERA AAA RA SHAS RARE HEA HEHA RHA RHA RA AHAA HHH RARER EE: 
HAARKARAAL AA LA RAAK ARH AK RHEE AK AK RA RRA RHA RH RRA RHA ERA RRA REA RAH HEA RARE KER: 
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