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Sumary

The injection of randam dither to suppress limit cycle
oscillations in second-order direct form digital filter sections
is discussed. Three types of dither signal are used: uniformly
distributed randam dither, binary random dither and bandstop dither.
All the limit cycles in the second-order filter sections can be
suppressed by the injection of any one of three dither signals.
No remaining noise appears in the output fram the filter in the
zero—-input condition.

Experimental comparisons are made of the average time taken
to suppress limit cycles and of the increase in output noise
caused by the dither. With binary random dither,the time to suppress
a limit cycle is camparable with the time for zero-input response of
a linear filter to decay below the quantization threshold. Bandstop
dither has the advantage to suppress limit cycles about as quickly
as binary dither yet it causes an increase in output noise of less
than 2 dB.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTORY REMARKS

When a digital filter is implemented either by software
or by hardware, numbers are ultimately stored in finite-
length registers. Consequently, coefficients and signal
values must be quantized so that they can be stored. In
this circumstance,errors due to finite precision in the
representation of numbers are unavoidable. The quantization
characteristic is a nonlinearity which gives rise to
nonlinear effects such as limit cycle oscillation as well

as approximation in a filter realization(l’z).

Limit cycle
oscillations are undesirable, except in the digital

oscillator applications.

The suppression of limit cycle oscillation has been

discussed by many authors{l'3’4'5)

. Many methods of limit
cycle suppression by the use of dither have been proposed.
Although in most cases, the methods reported are effective
for limit cycle suppression they have some disadvantages.
In some cases, not all limit cycles are suppressed. In
other cases, even the zero-input limit cycle oscillation
has been suppressed there is still some noise at the filter

output. This research is mainly concerned with the limit

cycle suppressions by the injection of somewhat different
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dither signals which have no disadvantages mentioned above.

This dissertation first contains a brief review of
relevant information on digital filter limit cycles and
discusses the previous work on the use of dither for their
suppression. Secondly, it shows how a random dither signal
can be used to suppress limit cycles and yet, in the
steady state, a zero valued output results when the input
signal is zero. Then, the principal cohsiderations in the
dither signal design are introduced. Three types of dither
signal are proposed. Extensive simulations have verified
that the limit cycles in the second-order sections can be
suppressed by the use of any one of the three types of
dither and once the zero-input limit cycle has been
suppressed the output of the filter remains zero. Two
specifications, the time needed to stabilise the filter
and the increase in output noise by the dither, are

investigated,

At least four factors have to be considered when

implementing a filter. They are:-

(1) Selection of a specific configuration for the

filter.

(2) Choice of the arithmetic mode, i.e., the number

system to be used.

(3) Choice of the type of quantization, and
oo



(4) Specification of the number of significant digits.

Limit cycle oscillations may occur in fixed-point
implementations of recursive digital filters. A recursive
digital filter is defined as a filter in which the present
output depends on the present input and past inputs and
outputs, while for a nonrecursive filter the output depends
on past and present inputs only. Most digital filters are
of the fixed-point variety because floating-point arithmetic
involves more hardware. Also, most filters are recursive
because for the same degree of approximation, recursive
filters are generally simpler than nonrecursive forms. A
cascade or parallel form composed of first- and second-order
subfilters is preferable over any direct realization of
a higher order digital filter. Thus, in practice, a higher
order filter is obtained by combining second-order sections.
For these reasons, in this dissertation only the fixed-point
implementations of second-order recursive digital filter
sections are considered. These filter sections normally
include feedforward coefficients, as well as feedback
coefficients. The feedforward coefficients are not
considered in this dissertation because they are not
relevant to the limit cycle suppression problem.

Throughout the paper, it is assumed that quantization is

performed by rounding.

Many detailed studies of limit cycles in digital
filters have been made. A comprehensive summary of this
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work is given in Reference 6. Some authors have developed
bounds on the amplitude of the limit cycle oscillations

in terms of the filter section feedback coefficient wvalues
A and B(7,8,9}- Other work has determined the range of
values of A and B for which various types of limit cycle
may exist{lo). Some important research about limit

cycle oscillations is also published in two special issues

of the IEEE Transactions{ll’lz).

1.2 METHODS FOR LIMIT CYCLE OSCILLATION SUPPRESSION

In addition to the injection of the dither there are
several other methods for limit cydle suppression. In
order to understand the application of the pfoposed methods
in this dissertation it is necessary to introduce other
methods of limit cycle suppression. In this section the
methods for limit cycle suppression will be discussed

briefly.

1. Increasing the Wordlength of the Signal Representation

in the Filter Sections

Because the amplitude of limit cycle oscillation in
the digital filter is proportional to the quantization
step g it will be decreased by the reduction of the
quantization step. For a fixed signal dynamic range, each
bit increase in the wordlength of the signal representation
will make the quantization step be half smaller. In other

il



words, it will suppress the limit cycle oscillation by

6 dB. If the wordlength in the filters can be increased
sufficiently the limit cycle oscillations can be ignored
but, of course, still cannot be eliminated totally. As
will be seen later, in some cases, the amplitude of limit
cycle may be much bigger (one hundred g, for example)

than the quantization step, thus a big extra bit is needed.
This extra bit requirement in wordlength will increase the
complexity and the cost of the digital filters very much.
It is worth noting that because the zero-input limit

cycle oscillation is a correlated noise, it is even more
harmful than normal noise. In some applications, the
zero-input limit cycles may be not tolerable. Therefore,
a more efficient method of limit cycle suppression is

needed in practice.

2, Using Wave Digital Filters

Fettweis proposed some digital filter structures
related to classical filter networks called wave digital
filters (WDF)(lBJ. Fettweis and Meerkotter have been
able to prove that the absence of zero-input limit cycles
can be guaranteed in WDF if the ideal linear counterpart
is pseudopassive and if the nonlinear modifications required
by the finite arithmetic are carried out in such a way
that the absolute values of nonlinear component output
is less than or equal to that of the linear counterpart(l4'15)

This condition is satisfied by the characteristic of a

b



magnitdue truncation quantizer. This means that it is
possible to design a wave digital filter of arbitrary

order, without limit cycles.

Although WDF may be free of limit cycle oscillations,
second-order direct form sections are likely to remain in
use for some time. This is partly because of the investment
that has been made in implementing such filter sections

(16)

as integrated circuits and also because filters using

a cascade of second-order sections are easy to design.

3. Using Controlled Quantization

Controlled guantization has been proposed(l7)

whereby
the signal is quantized to a larger or a smaller value
depending on the state variables in the filter. With a
proper design of such a" controlled rounding" arithmetic,
the most relevant limit cycles in digital filters can be
suppressed. An algorithm has been given which guarantees
the absence of limit cycles of periods larger than two.
The disadvantages of this method are, first, some constant

or alternating limit cycles still cannot be suppressed,

second, it seems a bit complicated to be implemented.

4, Using Multirate Digital Filter with Periodically Varying

Coefficients

Wong and King(lg} have shown that a multirate digital

filter with periodically varying coefficients is capable

of suppressing limit cycle oscillation in the output
—G—



completely, provided that the coefficients are suitably

chosen.

The disadvantage of this method is that it is
complicated for complementing a simple second-order filter
section and before the method is used, one has to do a
lot of experiments so can choose the coefficients of
multirate filter suitably. Because a different second-
order filter section has different coefficients of the
multirate filter which has no limit cycle. Perhaps that

is why this method has not been applied widely yet.

5. Injection of Dither Signal

For many years, it has been known that limit cycle
oscillations in continuous-time nonlinear feedback systems
can often be suppressed by the injection of a dither
signa1l‘l?#20) ' 3 qigital filter is a discrete-time,
nonlinear system and some attention has been paid to the
possibility of suppressing limit cylce oscillations in
digital filters by the use of dither. Several methods

for limit cycle suppression have been proposed(l'B’Q’s).

These methods will be reviewed and discussed in
Chapter 6. In this research, somewhat different dither
signals have been used. The methods used have no

disadvantages of the methods proposed before.

The essential disadvantage of limit cycle suppression
by the injection of a small random dither signal is that
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it introduces a new random noise in the output. But as
will be seen later, by the use of the bandstop dither
which is a new type of dither used in our research the

increase in output noise is very small.

1.3 PREVIEW OF RESULTS

From the remarks of the preceding section it follows
that the limit cycle oscillations occurring in fixed-point
implementation of recursive second-order digital filters
can be suppressed by the injection of dither signal. 1In
this section, the major results of the following chapters

are previewed.

In Chapter 2, the main properties of the basic sections
are given. This information is necessary for understanding
the following chapters. It is shown that the direct form
is inferior to both the cascade and parallel form when the
effect of coefficient gquantization errors and roundoff
noise after arithmetic operations are considered. The
first- and second-order filters are basic building blocks
from which all higher order systems can be synthesized.

The zeros of the digital filters do not change the nature
of the limit cycle but influence the magnitude of the
limit cycle amplitude. Therefore, the basic section which
has two zeros at the origin on the z-plane is considered

as a basic configuration in this dissertation.
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In section 2.1, the stable region of the linear
second-order filter section (without quantization) is
derived which is bounded by a triangle on the parameter

plane.

In section 2.2, two types of quantization, magnitude-
truncation and roundoff are discussed. It shows in this
section that in the first-order filter with magnitude-
truncation quantizer, no limit cycle can be sustained,
but with rounding quantizer, the constant or alternating
limit cycles can exist. With rounding quantizer, variety
limit cycles may exist in the second-order section. 1In
the two quantizer version with magnitude-truncation
quantization only limit cycles of periods 1 and 2 can be
sustained. In the one quantizer version with magnitude-
truncation quantization limit cycles will be possible only
for very few values of A and B on the parameter plane.

The magnitude-truncation quantization has a certain
advantage over roundoff with respect to the occurrence
of limit cycles but its quantization error is bigger than

that with roundoff quantization.

In Chapter 3, the main properties of zero-input limit
cycles in the second-order filter sections are discussed.
It shows that the second-order filter sections with
multiplication coefficients B for which |B|>0.5 will
always exhibit limit cycles. The existing conditions of
limit cylces in the second-order filter section with one

-0=



rounding quantizer are derived in the appendix. Three
différent types of amplitude bound for limit cycles in

the second-order filter sections are introduced and
discussed. The frequency expression of the impulse response
in linear second-order filter can be used as an approximation
of the frequency of limit cycles. Especially, when the poles
of the filter close to the unit circle in the z-plane the

frequency estimate becomes more accurate.

The proposed method to suppress the limit cycles in
the second-order filter sections is described in Chapter 4.
It shows that the use of the dither may cause the filter
to leave the limit cycles and make the origin state (0,0)
on the state plane be a branch point. Once the origin
state has been reached the output of the filter remains zero
as long as the input signal is zero. These properties of
the proposed method support us to speculate that the dither
will suppress all limit cycles in any second-order filter

sections eventually.

In Chapter 5, the necessity of the limit cycle
suppression in the second-order filter sections is proved,
though partly,on the experimental basis. Because the
quantization nonlinearities occurring in digital filters
are highly discontinuous functions, it is difficult to prove
strictly the stabilisation. But for a specified pair of
coefficient values A and B, it is possible to verify strictly

whether or not the dither will stabilise the filter. In this

-10-



chapter, the verification procedures are described with an
example. By the transition matrix, the maximum transition
time needed for transition from any limit cycle to the

origin state can be calculated. The result is verified by

simulation.

The previous work on the use of dither for limit cycle
suppression is first reviewed and discussed in Chapter 6.
Then, the principal considerations in the dither signal
design are described. The dither signal should be a random
signal distributed in the open range (- %, %). Three types
of dither signal are derived from the principal considerations
of the dither signal design. They are uniformly distributed

random dither, binary random dither and bandstop dither.

In Chapter 7, the experimental results are introduced.
Extensive simulations have verified that all the limit cycles
in the second-order filter sections can be suppressed by
the use of any one of the three types of dither. There is
no remaining noise at the output of filter with zero-input

signal.

When dither signal is used to stabilise a digital
filter, two specifications are of particular interest.
One of these is the length of time taken for the filter,
with zero input, to reach the state plane origin from a
limit cycle. The other specification of interest is the

increase in the output noise from the filter above the

-11-



quantization noise which is present when nonzero input

signals are applied without dither.

As far as the transition time is concerned, in the
three types of dither, the preferred order is the binary
random dither, bandstop dither and uniform dither. The
mean times for the former two types of dither to effect
stabilisation are comparable with the decay time for

the strictly linear filter. X

As far as the increase in output noise is concerned,
in the three types of dither, the order of preference is
the bandstop dither, the uniform random dither and the
binary random dither. The increase in output noise by
the bandstop dither when an input signal is present is
small - equivalent to only a small fraction of one bit

of the filter wordlength.

There have been a number of integrated circuit
implementation of second-order direct form digital
filter sections, in which large investments have been
made. The results in this paper should be useful when
these integrated circuits needed to be used for

applications where limit cycles are not tolerable.

The main conclusions about the research are given in
Chapter 8. This chapter concludes with an indication of

those problems which remain subject to further research.
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The major results of this research have been

presented in Saraga Memorial Colloquium on Electronic

Filters(45). One paper about this research has been

prepared for publication(46).

=B



CHAPTER 2

BASIC FILTER SECTIONS

This chapter provides a general discussion of the
first- and second-order digital filters which are basic
building blocks in constructing higher-order digital
filters. The information in this chapter is necessary
for understanding the following chapters. The conclusions

in this chapter will be used later.

Kaiser(Zl)

has shown that the high order direct form
digital filter should be avoided because of coefficient
sensitivity, i.e.,the effect of change of numerical
coefficients of the filter causes large variations in the

(22) have

filter response. Also, Knowles and Edwards
concluded that the direct form is inferior to both the
cascade and parallel form when the effect of roundoff
errors after arithmetic operations is considered. In a
paper by Edwards, Bradley and Knowles(ZB}, the above
mentioned conclusions have been verified using the 1lth
order elliptical bandstop filter. Taking scaling into
account to assure the proper dynamic range for the filter,
the ratio of the rms noise level due to roundoff after
multiplication for the direct form, to the rms noise of

the parallel or the cascade form, was about lOlz:l.

The second-order section has been chosen as a basic

-14-



block because this is the minimum order for realising a
paif of complex conjugate roots such that the polynomials
of the numerator and denominator of the transfer function
have real coefficients. Real roots can be realised in
pairs also, except for the case where the order of the
filter is odd, in which case use of a first-order

section becomes necessary. Therefore, the first- and
second-order filters are basic building. blocks from which
all higher order systems can be synthesized. In addition,
Hess(24) has shown that the zeros of a filter are not to
change the nature of the limit cycle, but to influence the
magnitude of the limit cycle amplitude. It is for these
reasons that the study of limit cyéles and tpeir suppression_
in discrete-time systems will be restricted to the second-
order basic section which has two zeros at the origin on
the z-plane. The first-order filter can be considered as
a degenerated case of the second-order filter. 1In this
thesis, the first- and the second-order filter which has
two zeros at the origin on the z-plane are called basic

filter sections or basic sections.

First, we assume that both the values of sequences
and the coefficients of linear filter have infinite bit
precision. Later on, we shall discuss the finite word
length effects in digital filters where the amplitudes

are quantized to some specified accuracy.
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2,1 LINEAR BASIC FILTER SECTIONS

As mentioned above, in this section both the sample
values of sequences and the coefficients of linear filter

are assumed to have infinite bit precision.

l. The First-Order Filter Section

Fig. 1 shows the first-order filter section. The

corresponding difference equation is
¥(n) = X(n) - aA¥{(n-1) (1)

where X(n) represents the input sequence and Y(n) denotes
the filter output signal after n sampling intervals each
with a duration of sampling period T, A is the coefficient

value of the filter.

Its transfer function is

H(z) = —2— (2)

1+Az

The impulse response, h(n), is readily obtained as

(-A)n nz0
hin) = { 3
LTo! n<o0 (3)

Substituting the equation

z = el
into Egn. (2) the frequency response of the first-order

filter can be obtained as
-16=



—0 Y (n)

X (n) Y (n-1)

Fig. 1 Block diagram of a first-order digital filter
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H(ejw) = —"—l_ (4)

1+pe” Y

Representing H(ejm) as

. jw
. : j/H(e” ")
H(ed¥) = lH(er)| e
gives
|H(eI¥) | = 2 . (5)
(L+A"+2A cosw)
Fan = Asinw
[H(e”") = tan = T e
= @ - tan_l(——Eiag—) (6)
cos Ww+A
: (25) jw jw
Fig. 2 shows plots of log|H(e’ )| and /H(e’ ) for
various values of A. As can be seen from this figure,
the first-order filter has a lowpass characteristic.
The zero and pole of the transfer function can be
obtained from Egn (2). The zero is at the origin on the

z-plane., And the pole can be determined by p=-A which is
on the real axis of the z-plane. Fig. 3 shows the positions

of the zero and pole in the z-plane.

A linear, time-invariant system is said to be stable
if every bounded input produces a bounded output. A
necessary and sufficient condition on the impulse response

for stability is
-18-



jw
20106, , |H(e?*) |

~A=0.99
0.95
0.9
<7
1 = 0.5
o} 211
jw
[H(e") -2A=0.99
71 S U
5 r—-‘-O.95
—0.9
——0.7
5
w
0 . 21
il
-3 B

Fig.2 Frequency response of several first-order filters
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Z-plane

4 fan N

3 h N 1
O shows the positicon of zero.
X shows the position of pole when A<Q
A shows the position of pole when A>0

Fig. 3 Pole and zero locaticns for first-order filters.



o0

£ |hm)]| < (7)

. ==

According to Egn. (7) from Egn. (3) we know that the

stable condition for the first-order filter section is

A&l < 1 (8)

Fig. 4 shows the impulse responses. when |A|>1 and

|A|<1 respectively.

For the first-order filter with |A|<l under the zero-
input condition from any initial state the response of the
filter will eventually tend to zero. For example, suppose

A=-0.875 and the initial condition Y (-1l) = 8, its zero-

input response is shown in the following table,
n 0] : 2 3 4 5 6
Y(n) | 8 7 6.125 | 5,359 | 4.689 | 4.103 | 3.5%0
n 7 8 9 10 (5] 12 13

Y(n) 3.142 | 2,749 1 2.405 | 2,105 | 1.842 | 1.611 | 1.410

Y(n) 1.234 | 1.079 | 0.945 | 0.826 | 0.723 | 0.633 | 0.554

Y(n) | 0.484 | 0.424 . 0.038
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h(n)
l STABLE FILTER

(a)

”TTTTTTT???---

n

i) UNSTABLE FILTER

? (b)

HTTTTTTH

Fig. 4 The impulse response of a stable (|A[<1l) and
unstable (|A|>1) first-crder filter.
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2. Second-Order Filter Section

Fig. 5 shows the block diagram of the second-order
basic filter section. The corresponding difference

equation may be written in the form

Y(n) = X(n)-AY(n-1)-BY (n-2) (9)

and its transfer function is

H(z) = El = (10)
1+Az “+Bz

If we assume the initial conditions Y (-1)=0 and Y(-2)=0,
then the impulse response is readily shown to be one of

two types.
TYPE 1

If the poles both are real (but not equal to each

other), then

)1'1

h(n) = a;(p;)" + o, (p, (11)

where p; and P, are real poles and Gqys-0, are constant,.

TYPE 2

If the poles are conjugate complex, then
n

h(n) = S’i"na sin[(n+1)6] (12)

where r = VB and 6 = arc cos —2

2/B

=



*© v(n)
output

x(n) =
m 1 -1 1 | ¥n=2)

=4

Fig. 5 Block diagram of a second-order basic filter section.
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The frequency expression can be written as

arc cos(- —2-) (13)

U..'r=l_
Ts 2vVB

For B=1, the impulse response is a sinusoid with constant

amplitude and frequency

arc cos(%é)

=
I
HPA

S

-

Type 1 represents two first-order systems, and the frequency
response of the first-order section has been considered

before,

The frequency response corresponding to Type 2 can

be written as

1

jw+r2e—2]w

H(ejw) =

= (14)
l-2rcosbe

The log magnitude and phase response of second-order
systems corresponding to a fixed value of 8(%) and varying

r, are shown in Fig. 6(25)

. From these plots it is clear
that a second-order system represents a simple digital

resonator.

The complex poles are readily obtained from Egn. (10)

—at/a%-4B

The existing condition of complex poles is

A2

A2-4B <0 or B> T

-25-~
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Fig. 6 Frequency response of several second-order filters
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which implies
B >0. (16)

Fig. 7 shows the positions of the zeros and poles of the

second-order filter section.

For the comparison of the time needed for limit cycle
suppression , in a later chapter, the zero-input decay
response of the linear second-order filter with specified
initial conditions is needed. This response can be obtained
by using state-space techniques(zﬁ). Consider a filter
F_ in which

O

N
Yin) = ¥ aix(n-i) -
i=0 i

| e B

lbiY(n—i) : (17)

Then the Nth-order filter can be represented by the system

qg(n+l) = A g(n) + BX(n) (18)
Y(n) = C g(n) + DX(n) (19)

where ﬁ, ﬁ, C and D are the matrices defined as follows:

DI o a0

0 0] 1 Ol e Wik

i
]

¥ esiels (20)

0 0] 0 7 e

D= s0m 000 s =D

e



Z-plane

.
e

Fig. 7 Pole and zero locations for a second-order £ilter.
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(0]
(0]
B = (21)
0
=3 l -
C=1[C; C .uenn Cy ] s (22)
where
Gy = iqp = agiby
Ko & Beco 5 180 Baly
CN BB ao bl
and
D= [ao] (23]
The state matrix, g(n+l), consists of N auxiliary
variables ql(n), qz(n),...qN(n) which are called state
variables.
-ql{n_l_l) -
d, (n+1)
g (n+l) = : (24)
qN_l(n+l)
gy (n+1) |
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A second-order basic filter section is characterised by

Y(n) = X(n) - AY(n-1) - BY(n-2)

It can be verified that in the second-order section case the

matrices are

(25)

3 0
B = (26)
1

C=[-B -a] (27)
and
D=1f17] (28)
For a zero-input second-order section, let the initial
state be Y(-1) and Y(-2).
Then
Y(=2)
g(o) = (29)
Y(=1)
and the input
X(K) = O K=O'l'2;-.o'n_l



For'n = O, 5L 2; Jiesy A=l Egn. (18) gives

gtl) = a g (0)

q(2) =2 q(i]

qts)] = A ql2)
Hence

g(2) = X g (o)

e 3

g(n) = & glo) | ‘ (30)

From Egqn. (19) it is clear than

Y(n) = C A" g(o)
or
0 = TR Feesy
Y(n) = [-B =-A] (31)
-B -2 Y (-1)

If the coefficient values of the second-order section A, B
and the initial condition Y(-1), ¥(-2) are known, for any n,
the response of the filter can be obtained from the above
equation. But as can be seen when n becomes large the
calculating of Y(n) is rather troublesome. The convenient

way to get Y(n), the zero-input response of the second-order

_31_



filter section, is to simulate the section by the use of

a small program.

Now let us derive the stable condition of a linear
second-order section which is relative to the existing
condition of the limit cycles in the nonlinear counterpart.
The second-order filter section as shown in Fig. 5 is a
closed-loop system. As mentioned before, its closed-loop

transfer function H(z) can be written as

o q, 52 1
g i#Gi2) l+Az“l+Bz“2 b

where G(z) = Az"l+Bz“2 is its open-loop transfer function.

According to the Nyquist criterion, the closed-loop
system will be stable if the point (=-1,0) is not

encircled by the polar plot of G(jw) for =wo<w<w,

The frequency response of the open-loop transfer
function G(jw) can be achieved by letting z=exp(j2nfTs)

where 'I'S is the sampling period.

Hence,

G(jw) G(z) I2mET

Z=e

Aexp(-jZﬁfTS) + BexP(—j4ﬁfTS) (33)
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Let 21TfTs = vy , Egn, (33) becomes

]

G(y) Aexp (=jy) +Bexp (=3 2Y)

I

Acosy+Bcos2y-j (Asiny+Bsin2y) (34)

In order to check whether the G(jw) encircles the
point (-1,0), it is enough to check whether the
intersections of G(jw) with the real axls lie on the right
of the point (-1,0). If all the intersections are on the
right of the point (-1,0) the closed-loop system will be

stable. These intersections can be found by letting the

imaginary part of Egn, (34) be equal to zero.

ImG(Y) = -(Asiny+Bsin2y)
= -sin"( (A'i'ZBCOSY) (35)
=0
Egn, (35) leads to two equations
siny = O (36)
A+2Bcos y¥= 0O (37)
There may be three intersections:
(A) y = 0, corresponding to f=0 condition.
The real intersection is
Glyl |, = A+B (38)

=0
This real intersection will be on the right of the
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if AFB> =] (38)

or 1+A+B> O (39)

(B) ¥ = m , corresponding to 1‘E=(2Ts)_l
The real intersection is
G(y) = =X+B (40)

Sl

This real intersection will be on the right of the

point (=1;0),

s 5 -A+B >-1
or 1-A+B> O (41)
(C) cosy =- %ﬁ corresponding to periodic oscillation

The real intersection is

G(Y) A = (42)
¥= arc cos (- iﬁ)

This real intersection will be on the right of the
point (=1,0),
3L -B>=1

or R (43)

A filter will be linear stable, only if all real
intersections lie on the right of the point (-1,0). Egns(39),
(41) and (43) define a triangle in the A,B parameter plane
as shown in Fig. 8. Any linear second-order digital filters
are stable only if its coefficients are within this triangle

=3 AL



1 Parameter plane

Fig. 8 The stable zone (triangle) of the linear seccond-order
filter section.
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in the parameter plane. In zero-input conditions, for all
initial states, the filter whose coefficients are within
the triangle in the parameter plane will tend to the zero
state. For example, suppose that two second-order basic
sections whose coefficients are A B ="0,625,

: 1
-1.74, B, = 0.95833 respectively have initial

= -1.25;

and A2 =

states (11,11) then their response are as follows:

Al = =].25, Bl = 10,625,
n 1 2 3 4 5 6 7 8
Y(n) 6.875 | 4.297 | 2.868 | 1.678 | 1.049 | 0.656 | 0.410 | 0.256
n 9 10 11 12 13 14 15 ese
¥Y(n) | 0.160 | 0.100 | 0.063 | 0.039 | 0.024 | 0.015 | 0.010 cas
A, = -1.74, B, = 0.95833

n E 2 3 4 5 6

Y (n) 8.60 442 |'~0.55" 1 .=5.19 | -8.51 | -9.83

n 7 8 9 10 oo 1 10O

Y (n) =595 | =6,15 | =2.13 2,49 wie'e | =1.02

n ... 145 146 . s 2(13 LA

Y{n) .. O-Sl O- 4l LU 0.0G LI A




As can be seen from above tables,only if the
coefficients of a second-order filter are within the
triangle in the parameter plane whatever the Q-value of
the filter is the filter must tend to the zero state from
any initial states. The higher the Q-value, the longer
the time needed to tend to the zero state. The time
corresponding to the zero-input response of the filter
from the initial state to the state after which the
absolute values of response are less than 0.5 is interested.
Later on this time will be used as a reference time when
we compare with the time needed for suppressing limit cycles.
For above two examples the reference times are respectively
equal to TTS and 146Ts where TS is the sampling period in

the digital filters.

2.2 BASIC FILTER SECTIONS WITH QUANTIZATION

In software as well as hardware digital filter
implementations numbers are ultimately stored in finite-
length registers. Consequently, coefficients and signal

values must be quantized before they can be stored.

The effects of quantization after arithmetic operations
can be demonstrated with the example of a first-order
digital filter described by the following difference
equation:

Y(n) = X(n) - AY(n-1) (44)
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where X(n) is the input sequence.

Throughout this thesis, the circumflex is used to
designate the results of finite precision arithmetic,
i.e. rquantized numbers. Suppose that all numbers §(n),
A, ﬁ(n) are expressed initially with k significant digits
and that fixed-point arithmetic is employed for the
implementation of the difference equation. Calculation

of the filter response shows that after n iterations Y(n)

is expressed by numbers with (n+l)k significant digits.

This example indicates that the number of significant
digits needed to compute the filter response precisely,
increase linearly with each iteration. As lpng as the
number of operations performed on a signal remains finite,
for example, in a nonrecursive digital filter, the increasing
wordlength is also finite. But as can be seen from Fig. 1
and Fig.5, the basic filter sections are recursive filters.
In a recursive filter, a wordlength reduction is necessary
to prevent the signals from acquiring an ever-increasing
wordlength. Any practical filter, realised with k
significant digits, has to include quantization after each
arithmetic operation so as to keep the results at a
specified finite precision. Quantization introduces
inherent nonlinearity which tend to make the original

linear stable system zero-input unstable(27).

If the input to a system is identically zero, then

starting from some initial condition the signals in the
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system will either grow beyond any bound or will converge
to one of the so called equilibrium solutions. As far as
digital filter is concerned, since every state Q(n) in the
absence of an input has a unique successor, and since the
nonlinear digital filter is a finite state system,
(quantized and bounded in amplitude), there are only two
possibilities for its autonomous behaviour. Either the
zero state is reached after a finite- time, or a periodic
oscillation will result, which is referred to as a limit

cycle or zero-input limit cycle(27).

To be able to analyse the nonlinear effects on the
response of digital filters, it is necessary to consider
the type of arithmetic used, and the type of nonlinearity
introduced into the digital filter through finite precision

arithmetic.

There are a variety of types of arithmetic that are
used in the implementation of digital systems. Among the
most common are fixed-point and floating-point. A hybrid
between these arithmetic types was introduced called block

floating point arithmetic.

(28)

Kaneko , while excluding the possibilities of

overflow and underflow, proved that limit cycles of
considerable amplitudes can be found with floating-point

(

arithmetic. Lacroix 438 has studied the limit cycles
that may result from underflow and he found regions for
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the coefficients of a second-order digital filter for which

(30) has derived

sucﬁ limit cycles can be found. Sandberg
the asymptotically stable condition for floating-point
arithmetic in the presence of roundoff and shown that this
condition will be satisfied if the damping of the infinite
precision counterpart of the digital filter is sufficiently
"large" relative to the number of bits allotted to the
mantissa of the date. Under these conditions limit

cycle response to a zero-input or to an input sequence

that approaches zero is also ruled out. If in case of
underflow the signal is made zero then the stability region,
which can be derived, is always approximately that of fixed-
point with magnitude—truncation(loy. As wil} be seen later,'
this stability region of fixed-point with magnitude-
truncation is very "large", in other words, the unstability
region is very small. Thus, generally speaking, limit
cycle oscillations are not a problem when floating-point

is used. 1In addition, most digital filters use fixed-point
arithmetic because floating-point arithmetic involves more

hardware. Therefore, in this thesis, only fixed-point

arithmetic is considered.

In digital filters, two types of nonlinearities are

connected with the adders and quantizers respectively.

If numbers are added whose sum exceeds the dynamic
range of the adder "overflow" occurs. This "overflow"
leads to a severe nonlinearity. Ebert et al.(3l) and
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Jackson independently recognised the possibility of large
amplitude limit cycles resulting from adder overflow with
wrap—-around arithmetic. Ebert et al. derived the conditions
for the existence of overflow limit cycles and showed that
by introducing saturation arithmetic the oscillations could
be eliminated. In following chapters, it will be assumed
that the adders in the digital filter are linear and

overflow effects can be neglected.

The other type of nonlinearity is connected with the

gquantizers in the digital filters.

i Quantization

It has been mentioned at the beginning of this
section that wordlength reduction must be applied in the
closed loop in digital filters. This can be done by
affecting the least significant bits only, i.e.,
quantization. Quantization can be performed by substituting
the nearest possible word that can be represented by the
limited number of bits. There are two standard methods
for eliminating the low-order bits; rounding and

truncation.

. 3 .
Suppose that any number x with Eminsx“Emax is

represented by a fixed-point format and the guantization

step size is gq. In the following chapters we assume g

equal to one.
==



(A) Rounding

Rounding x to the nearest integral multiple of gq is
a familiar method. The rounded number is designated by
[x]R. The relationship between [x]R and x is shown in
Fig. 9. The difference of the signals, §(n) = x-[x]R is
called quantization error or quantization noise. It is
clear from Fig. 9, that the error signal satisfies the

-

relation

Under certain, not overly restrictive,assumptions it can

be shown that if the number x can be treated as a random
sequence then the quantization error is uniformly
distributed in the closed range [- %, % ]. The probability
distribution of the quantization error for rounding is

shown in ¥ig. 12(a).

(B) Truncation

Depending on the negative number representation used,
there exist two types of truncation; magnitude truncation

and value truncation.

(a) Magnitude Truncation

In a representation of the signals by sign and
magnitude this leads to magnitude truncation quantization
with a characteristic as shown in Fig. 10. It is clear

e



Fig. 9 Quantizer characteristic with rounding.
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Fig. 10 Quantizer characteristic with magnitude-truncation.
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from Fig. 10 that the quantization error satisfies the

relation

< q (46)
Similarly, if the number x can be treated as a random
sequence the probability distribution of the quantization

noise can be shown as in Fig. 12(b).

(b) WValue Truncation

Value truncation results when a two's complement
number representation is used. Fig. 1l and Fig. 12 (c)
show its characteristic and probability distribution of

the quantization error respectively.

The value truncation is not considered in detail
because the results are similar to the ones for rounding
with a constant input added as value truncation introduces
only a bias of %q for every quantizer.

As can be seen from Fig. 12, the variance of the
quantization error for magnitude-truncation is four times
bigger than that for roundoff. Claasen et al.(G) have
shown that under nonzero input condition, the digital
filters with magnitude-truncation quantizZer have quantization
noise power (5-10) times bigger than that when roundoff
is used. Therefore, in practice a roundoff qguantizer is

preferrable to a truncation quantizer. But as will be
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(a)

(b)

(c)

P (6)

mean value = O2
v = El...
& variance 13
g
o)
-9 O S
2 2
mean value = O2
P (8} &
MT variance - 3
1
29
8
—-q O q
?YI‘((S} mean value = %
= 2
q 1 = g—
variance 12
O g :

Fig. 12 Probability density functions: (a) for roundoff error

(b) for magnitude-truncation error and (c) for value-

truncation error.
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pointed out later, from the view point of limit cycle
appearance the truncation quantization has its own

advantage.

L Limit Cycles in the First-Order Filter Section

(A) The First-Order Filter With Magnitude Truncation

Quantizer

The conclusion is that in zero-input conditions no
nonzero limit cycle can be sustained with this kind of
system. Fig. 13 shows the block diagram of the first-order
filter with magnitude truncation quantizer. 1Its difference

equation with zero-input can be written as

Yin) Foi-A ¥in=J} 8o £ 8. (n) (47)

where from the magnitude quantization characteristic one
knows that §,(n)< 1 and |A|<1 from the linear stable

condition Egn. (8).

In the first-order system, the limit cycles occurring
can be of only two forms: constant magnitude and sign for

A negative, or constant magnitude with alternating signs

for A positive.

The conclusion about no limit cycle existing in the
first-order filter with magnitude-truncation guantizer can
be proved by the contrary method.
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x(n) ¥ (n-1)
O———e(::h\\ Q > Z_l

Fig.13 Block diagram of a first-order digital filter with quantizer.
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In the first case, assume that -1<A<O suppose a
positive steady-state limit cycle exists, then from the

exiting condition

¥() = ¥(n-1) (48)
Because A<O and Q(n)>0
~AY (n-1)>0 5 (49)

In this case, from the characteristic of the magnitude-

truncation one knows that

g(n) = -A Q(n—ll- 6p(n) - (50)
where

O € §p(n)<l
Because

2n) = T(a-1)

One obtains

A -8 _(n)
YiR) =~ (51)

1+A
As can be seen from this equation, when GT(n)=O, then
¥(n)=0. That means that no limit cycle exists.

But for

O<6T(n)<l, Egqn (51) shows that

g(n)< 0



This conclusion is contrary to the hypothesis made above.

In other words, the limit cycle does not exist.
Therefore, for this case the only equilibrium is
Y(n) = ¥(n-1) = 0

for n>Ng where N is a finite value.

For other cases, along the similar lines with above,
the same conclusion can be obtained. The same example
used in Section 2.1 (A=-0.875, Y(0) = 8) is chosen but
here, a magnitude-truncation quantizer is included. It
is easy to verify that the zero-input response is as

follows:-
T46,5,4,3,2:1,0,0,0;. «%

In summary, in the first-order filter with magnitude
truncation quantizer under zero-input conditions the only
equilibrium is zero state, i.e.,no zero-input limit cycle

exists.

(B) The First-Order Filter Section With Rounding Quantizer

The conclusion is that in the first-order filter only
constant magnitude (with constant signs or alternating

signs) limit cycles exist.

Refer to Fig. 13, the difference egquation with
rounding quantizer under zero-input conqpion can be written

as
-5]1-



¥(n) =[-a¥(n-11],
= -AY (n-11-5(n) (52)

where from the roundoff quantization characteristic one

knows that
=0,.5¢ §(n) £ 0.5
apd from the stable condition Enq. (8) -~
Pl <)
here [.]. represents the roundoff quantization.

As mentioned above for the first-order system the
limit cycles occurring can be of only two forms; constant
magnitude and sign for A negative, or constant magnitude

with alternating signs for A positive,

First, suppose A is negative, then a steady-state

limit cycle exists.
Y(n) = ¥Y(n-1)

Substitute above equation into Egn (52), we obtain

Y(n) = INT{:%-E)—)

where INT(X) represents the integer part of X.

Because ¢ (n) satisfies the inequality

=0. 5. %0(n]1€ 0.5
B



~

therefore the limit cycle Y(n) satisfies

=0.5
1+A

0.3

s T+A

) & Yin). s, INT(

)

or the amplitude of Y(n), K,satisfies the inequality

K< INT (91-—;—;) (53)

Similarly, suppose A is positive then constant
magnitude with alternating signs limit cycles exist. The

amplitude, K, satisfies the inequality
Q<5
K ¢ INT (323) (54)

Combining the above two cases, the amplitude of limit
cycles in the first-order filters with roundoff

quantization, K, satisfies
0.5
K g INT(l—_m) £55)

As an example, we chcse the example used in Section
2.1, di.e., A==0.875 Y(o) = 8 but this time the roundoff
quantizer is included. t is readily verified that the

zero-input response is as follows:

Y (n) 7 6 5 + 4 = s ou

The amplitude of the constant limit cycle is 4.
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According to the Egn. (55) the bound

=
Il

0D
INT (l—_TA—l)

N

The experimental data is exactly consistent with the

-

theoretical formula.

3. Limit Cycles in the Second-Order Filter Sections

There are two different ways of implementing the
guantizations in the second-order séctions as shown in
Fig. 1l4(a) and 14(b). Between these two ways there is
the following difference: In Fig. l4(a), full precision
is maintained in the feedback loop as long as possible
and the necessary limitation of the wordlength occurs
only once, whereas, in Fig. 14(b), the wordlength is
limited immediately after the multipliers. The former
structure is called one quantizer version and the later

two quantizer version.

~

In the condition of zero-input, x(n)=0,the sections
given in Fig. l4(a) and (b) are described respectively by

the difference equations
¢n) = [-a2(n-1) - B?(n-z)_]Q (56)
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dither E‘E(n)
Q >0
I
|
;;(n) = par L Tl
| 0 Zl Y (n—-1) zl Y (n-2)
~=x
h
-A =1
(a) One quantizer version y
Y (n)
30
x(n) |
| > Z—l z—l
JT“?‘/
=B
dither
Q Q
|

(b) Two quantizer version

Fig. 14 Two ways of implementing the quantizations in the second-
order filter sections (a) One quantizer version, (b) Two

quantizer versicn.

-55—



and ;

Y(n) = [-av (-1, + [-BY(m-2)], (57)

where [.]Q represents the operation of quantization and
Y (n) denotes the quantized output signal of the filter
after n sampling intervals each with a duration of TS. A

and B are the coefficient values of the filter.

In this thesis, we have mainly concentrated our
attention on the one quantizer version. But the principle
of limit cycle suppression is also suitable to the two
quantizer version. In the following sections we will
discuss the limit cycles in the second-order filter with

rounding- and truncation-quantizer, respectively.

(A) Limit Cycles in the Second-Order Filter Section with

Rounding Quantizer

As mentioned before, quantization introduces inherent
nonlinearity. Because of this nonlinearity limit cycles

may appear in the digital filter.

For example, in one rounding gquantizer version, suppose
the coefficients, A=-1.74, B=0.95833. It can readily be
verified by setting the filter to different initial states
that the limit cycles which can appear in the filter are
as follows, where one complete period of each limit cycle

is shown.
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Limit Cycle 1:

wox Oy 5, 9, 11, 11, 9, 5, O, =5, =9, =11, =11, =9, =5, ...

Limit Cycle 2:

.an l’ 5, 8, 9' 8' 5, lf '-3' _6’ _8, -8’ “6' _3' -aa

Limit Cycle 3:

bae il wh, oaly =G sl eip=l, 3, 16,8, 8.8, 3 sva

Limit Cycle 4:

.. O' 3, 5' 6' 6' 5' 3; O' -3' -5' _6' -6' -5' “3‘ .-aa

Limit Cycle 5:

eos 15 3, 44 4, 3, 1, -1, =3, =4, =4, =3, -1, ...

Limit Cycle 6:

. Of l' 2’ 3’ 3, 2, lr O' _1, _2' _3' _3, _2, -l' e

Limit Cycle 7:
S P P
Limit Cycle 8:

St ey 3 BT R

Limit Cycle 9:

. _l' -l’ _l; ..

Limit Cycle 10:

s _2, "'2' _2; .o

This example will be frequently used in this thesis.

It is of interest to compare the limit cycles in the
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two quantizer version with the same coefficients. The

corresponding limit cycles are as follows:

Limit Cycle 1:

. ea 5’ 12, 16; 17' 15' lO' 3, _5' _12' _16, _l?’ _15' —'10, _3' .

Limit Cycle 2:

- e 3; 8' ll' ll; 8; 3; _3f -8' _lly _llr _8, _3' e

-

Limit Cycle 3:

e O; 6; lO, ll; 9' 5' O; —5, _9, _l}.' "'lo; -6" ..

Limit Cycle 4:

e O, _6’ ""10, "li' _9’ _5' O, 5' 9, ll’ lOr 6; .

Limit Cycle 5:

“as 4' 8; lo, 9, 6' l' _4; _8, —10, -9' _6’ _l; e

Limit Cycle 6:

e lf 6, 9' lo, 8’ 4; _l' _6, '-9' -10; _8; _4' s

Limit Cycle 7:

sas 3; ?p 9; g' 7’ 3; _2' _6, —8, -8' _6f _2; .

Limit Cycle 8:

ene) gl g =0y Gy el =R By 6, 8y BB, 29 dde

Limit Cycle 9:

LY l, 5’ 8' 9’ 8' 5; l’ “3' _6’ ""7" _6f —3’ -

Limit Cycle 10;

s e g et =S ety =Bt el E30 60 T B B e
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Limit Cycle 11:

. o; 4; ?’ 8, 7, 4, O, "'4, _7’ _8' _?' -4,- . s

Limit Cycle 12:

doh By g ey Sy Tor=By =y =i, = =B =R e

Limit Cycle 13:

-n e l' 4' 6' 6f 4' l’ —2, "-4' -5’ -Sf _4’ _2;' .o

Limit Cycle 14:

. “l’ -4; _6, -6' -4' -l’ 2, 4, 5, 5' 4, 2' .en

Limit Cycle 15:

-aw O, 3' 5' 6' 5' 3,' O, _3’ _5'- —6, _5’ _3' - e

Limit Cycle 16:

wh gy S Gy Ay By Ly =L, =354, "4r _3: =Ly wwe

Limit Cycle 17:

" O’ 2; 3’ 3; 2’ Of _2' _3, _3' —2, e

Limit Cycle 18:

“ww O' l' 2’ 2' l’ O' -l' _2; —2' ﬂl' -

Limit Cycle 19:

Limit Cycle 20:

. —l' _l' _l, s

As can be seen from the above two examples, although
with the same coefficients the limit cycles in two gquantizer
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version is quite different with that in one quantizer
version. The properties of limit cycles in the second-
order section with rounding quantizer will be discussed

in detail later.

(B) Limit Cycles in the Second-Order Filter Section with

Magnitude Truncation Quantizer

(a) One Quantizer Version

Claasen et a1532’33'34£ave investigated the zero-input
behaviour of second-order digital filters with one
magnitude truncation quantizer. They proved that the area
of absolute stability of the nonlinear filter is the shaded
area in Fig. 15. This area, where no limit cycles can
occur, is bounded by the left- and right-hand sides of the
linear stable triangle, by a part of the ellipse
A%+8B(B-1)=0 and by the two straight lines |A|=2-B. 1In
the area remaining only in the small trapezoid area defined
by the intervals 1>B30.94 and 1.425<|A|<2 limit cycles have
been found with simulations using fixed-point arithmetic.
It is worth pointing out that in the above trapezoid area
only small number of A, B coefficient combinations can lead
to limit cycles. What is more, even though the limit cycles
exist, there are a number of initial conditions from which
the steady-state zero-input responses of the filter are

zero. Only about (25-40)% of these limit cycles are
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I.C. exist I.C. exist

Fig. 15 Stability diagram for the second-order digital filter
with one magnitude-truncation quantizer.
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accgssible. An accessible limit cycle means that it can
be reached from initial conditions that do not pertain

to that limit cycle. On the other hand, an inaccessible
limit cycle only appears if the filter is started with
initial conditions pertaining to that limit cvcle.
Apparently, in practice, only accessible limit cycles

are troublesome, because the probability of occurrence of
inaccessible limit cycles is very small. For the filter
which has the coefficients A=-1.74, B=0.95833 but with
one magnitude~truncation quantizer, the simulation showed

that no limit cycles exist.

In the second-order section with the coefficients
==-1.640625, B=0.953125 and with one magnitude-truncation
quantizer, only one limit cycle exists. The limit cycle

sequence is as follows:
ol R T S S LR T T S

Fig. 16 shows the initial states in the area bounded by
the amplitude bound of the limit cycle in the state plane
from which the limit cycle can be reached. As can be
seen, among the 442 states in the area there are only

76 states from which the limit cycle can be obtained. In
other words, there are 82.8 percent of states from which

the origin state can be reached.

Claasen et al.{34) have shown the limit cycles for

A : 5 5 L 214 _ 126 :
a filter with coefficients A_-(ngl’ B = ijgl and with

-(2-



§(n)

o 0 o o o 10
o o o
o0 0 o o o
i, e
0
0 lo}
o) o
Q o0 o
o
o o ~
o 8 ik Y (n-1)
21008 0 o 10
o
(o] o 0 (o]
o o
o o}
o
o o o
o i 0o 0 oo
o} o [o)

Fig. 16 Part of the state plane of the second-order filter
(A=-1.640625, B=0.953125) with one magnitude-truncation,
with initial conditions indicated fram which a limit

cycle will result.
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one magnitude-truncation quantizer. In this filter, two
limit cycles exist. One is accessible whereas another is
inaccessible. 1In the area in the state plane which is
bounded by *20, there are 1681 states. But only 142 states
exist from which the limit cycles will be obtained. There
are more than 90 percent of states from which the origin

state can be reached.

The conclusion is that in a filter with one magnitude-
truncation quantizer .limit cycles will be possible only for
very few values of coefficients A and B. Moreover, for
those values of A and B for which limit cycles are possible
the probability of the occurrence of a limit cycle is small.
Therefore, if the initial state of the second-order section
is chosen randomly, it is unlikely that the limit cycle
will be obtained, i.e.,the origin state will be reached
with large probability. This fact is helpful for understanding
the principle of limit cycle suppression by the injection

of random dither.

(b) Two Quantizer Version

The second-order filter with two magnitude-truncation

(35)

quantizers has been analysed by Kao ; who derived regions
where limit cycles of periods 1 and 2 occur. These regions
are defined by the linear stable triangle and |A[>1.
Claasen et al.(36) have derived the stability region with

the frequency domain criteria. The stability diagram is
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shown in Fig. 17. Only limit cycles of length 1 and 2
have been observed by simulations and they are found in

51 (10)

the triangle for value |A| . For high-Q poles

(B£1l) only limit cycles with amplitudes equal to one

quantization step are accessible(37).

In some cases, limit cycles of periods 1 and 2 have no

serious consequences in practical applications.

Comparing with its counterpart with rounding
quantizers, with respect to the occurrence of limit cycles,

the filter with truncation has its own advantage.

2.3 SUMMARY

The main properties of the basic sections have been

given in this chapter.

The direct form is inferior to both the cascade and
parallel form when the effect of coefficient guantization
errors and roundoff noise after arithmetic operations are
considered. The first- and second-order filters are basic
building blocks from which all higher order systems can
be synthesised. The zeros of the digital filters do not
change the nature of the limit cycle but influence the
magnitude of the limit cycle amplitude. Therefore the
basic section which has two zeros at the origin on the
Z-plane is used as a basic model in this research.
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only ampl. 1 B only ampl. 1

accessible 1 accessible
\ £ ,
ik stable 5
A
-1 i
-1

I : limit cycles of length 1 exist
IT: limit cycles of length 2 exist

Fig. 17 Stability diagram for the second-order digital filter with
two magnitude-truncation quantizers.
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The linear first-order filter has a lowpass characteristic.
Its stability criterion is the absolute value of the filter

coefficient less than unitv.

The second-order filter represents a simple digital
resonator. The frequency of the impulse response of the
linear second-order section is shown in Egn. (13). The
stable region of the linear second-order filter section

is bounded by a triangle in the parameter space.

In a recursive filter, quantization is necessary to
prevent the signals from acquiring an ever-increasing
wordlength. In this research, the fixed-point arithmetic
has been used. Two types of quantization: magnitude-

truncation and roundoff have been discussed.

In the first-order filter with magnitude-truncation
quantizer, no limit cycle can be sustained. But with
rounding quantizer, the constant amplitude limit cyvcles

can exist.

There are two different ways of implementing the
quantizations in the second-order sections. With rounding
quantizer, variety limit cycle may exist in the second-
order section. But in the two quantizer version with
magnitude-truncation quantization only limit cycles of
periods 1 and 2 can be sustained. In the one quantizer
version with magnitude-truncation quantization limit cycles

will be possible only for very few values of A and B in the

-57—
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parameter space. Moreover, for those values of A and B
for which limit cycles are possible the probability of

the occurrence of a limit cycle is small.

Either the filters with one or two magnitude-truncation
guantizers have certain advantages over roundoff with
respect to the occurrence of limit cycles. But their
gquantization errors are bigger than that with roundoff

-

quantization.

The properties of limit cycles in the second-order
filter section with rounding quantizers will be discussed

in more detail in the next chapter.
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CHAPTER 3

ZERO-INPUT LIMIT CYCLES IN THE SECOND-ORDER

DIGITAL FILTERS

As mentioned in Chapter 2, although magnitude-truncation
quantization has certain advantages over roundoff with
respect to the occurrence of limit cycles, the digital
filters with magnitude-truncation quantizations have much
more quantization noise than that when roundoff is used.
Therefore, in practice, a rounding quantizer is preferrable
to a truncation quantizer. This research only considers

the filters with roundoff quantizers.

3.1 QUANTIZATION ERROR IN PRESENCE OF ROUNDOFF

In the condition of zero input X(n)=0, one quantizer
and two gquantizer version filters with roundoff (refer to
Fig. 1l4(a) and 14(b)) can be described respectively by the

difference equations

Y(n) = [-AY(n-1)-BY(n-21] (58)
and

§(n]

[Pa¥iE=1) ] +[—BY(n-2}JR (59)
where L'lR represents the operation of roundoff quantization.

In this chapter, we first pay attention to the limit
Cycles in the one quantizer version, then describe the
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features of limit cycles in the two guantizer version.

In the second-order basic filter section with one
gquantizer, the output of the rounding quantizer can be

expressed as
[—AQLn-l}-BQ(n—zljR = -Ag(n-ll—BQLn—2)—6(n} (60)

where

-AY (n-1)-BY (n-2) and § (n) are the exact products

and quantization error respectively.

From the characteristic of roundoff gqguantization

shown in Fig. 2, one knows that
|8 (n)|< 0.5 i (61)

where the quantization step, g, has been assumed equal to

unity.

If the input signal changes in its dynamic range and
the signal levels throughout the filter are much larger
than the gquantization step g, the following reasonable

assumptions can be made;

(1) §;(n) and §; (n+k) are statistically independent

for any value of n (k#o), and

(2) §&;(n) and éj(n+kl are statistically independent
for any value of n or k (i#j), here the subscripts i, j
stand for different quantizers.
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Once the -above assumptions are valid, as far as the
error signal ¢ (n) is concerned, the filter can be treated
as a linear system. This results in a stochastic approach.
The quantization error d6(n) is described by a uniform
probability density function. The assumption leads to
acceptably accurate results for most applications with
high signal level and sufficient spectral content. As
will be seen later, when we consider thequantization noise
power with high level input signal, the stochastic approach

will be used.

However, in the zero-input limit cycle study, above
assumptions are not valid. Since the output of a guantizer
is a single-valued function of the input, a given input
yields a definite output and, consequently, a definite
roundoff quantization error sequence §(n). If a zero-input
limit cycle exists, 6(n) can be a periodic or constant or
alternating sign sequence depending on the limit cycle

type.

The fact that there is correlation among ¢ (n) is a
feature when limit cycles appear. For example, in Egn (58)
let A=-1.74, B=0.95833 and Y(-1) = 35, ¥Y(-2) = 9, The signal
values after rounding to the nearest integer and the roundoff
quantization errors are shown in Table 1. As can be seen
from the table, the filter with the specified initial state
has a periodic limit cycle whose period is 1-'-1TS and the

roundoff quantization error is also a periodic sequence with

-71=



TABLE 1

The example shows that when a periodic limit cycle

exists the quantization error is also a periodic sequence

O 00 =1 oy U o e o B

H H H P
o O 1 T Sl 00 T o T = O o

Y (n)

1]

[—A§(n—1)-s§(n—2)JR

d(n) -AQ(n—lJ*BQ{n—Z)-Q(n)

where A=-1.74, B=0.95833, Y(o0)=5, Y(-1)=9

§(n} § (n)
0 -0.0750299999 -
-5 -0.20835
-9 -0.3
-11 -0.1316500001
-11 -0.4849700001
-9 -0.4016300001 one period
-5 0.11837 '
0 0.0750299999
5 0.20835
9 0.3
11 0.13165
11 0.4843700001
0.4016300001
5 -0.11837 ¥
-0.0750299999
-5 -0.20835

. -
-
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the same period.

Therefore, in the zero-input limit cycle study,
especially in the theory of limit cycle generation the
stochastic approach cannot be applied. Parker and Hesscz)
by a deterministic approach have analyzed the limit cycle
oscillations in fixed-point implementations of recursive

digital filters due to roundoff and truncation

guantization after multiplication.

3.2 CLASSIFICATION OF LIMIT CYCLES

There are several different ways to classify the limit
cycles in the digital filters. Each way has its own feature
and from it some important properties about limit cycles

can be obtained.

i Lot Classification of Limit Cycles Based on the Period

Three different types of limit cycle may be distinguished;
constant, alternating and periodic. In a constant limit
cycle, the output is the same at each sampling instant
€.ge (ee¢es2,2,2,...). In an alternating limit cycle,
the output alternates between values of opposite polarity,
e.g. (...,4,-4,4,-4,...). Although, strictly speaking, constant
and alternating limit cycles are also periodic, the term
periodic limit cycle is reserved here for limit cycles

whose period is greater than two clock instant, e.q.

=



(oier Ly 35 i 4 3 1y Iml,0=3, =8 0 =i, =30 w1 Lioe)e . The
example A=-1.74, B=0.95833 shown in Chapter 2 has six
periodic, four constant limit cycles and no alternating
limit cycles. The constant and alternating limit cycles
have zero- and Nyquist-frequency,respectively. Periodic
limit cycle is a sort of thing that we should pay more
attention to,

2. Classification of Limit Cycles Based on Accessibility
(37)

Considerations

The following two types of limit cycle can be

distinguished.

(A) Inaccessible Limit Cycle

They only appear if the filter is started with initial
condition pertaining to that limit cycle. Hence, if the
filter is started with randomly chosen initial conditions
it is unlikely that these will correspond to a point on a
limit cycle, i.e.,the probability of occurrence of

inaccessible limit cycles is very small.

In our typical example (second-order section with one
rounding quantizer, A=-1.74, B=0.95833), two periodic limit
cycles (limit cycle 4 and 5) and all the constant limit

cycles are inaccessible.

S ¥



(B) Accessible Limit Cycle

They can be reached from initial conditions that do
not pertain to that limit cycle. In this case, there has
to be at least one state Q(n) of the filter corresponding
to a point of the limit cycle, which state can be reached
from at least two different states ;(n-l) and Q'(n—l),
the predecessors of g(n). Thus both states have, as their
successor, the state g(n]. The point corresponding to such
a state is called a branch point. Apparently, an accessible
limit cycle has at least one branch point. But
inaccessible limit cycles have no branch points. Accessible
limit cycles are observed more frequently in the digital
filter. 1In the example just mentioned above, the other
four periodic limit cycles (limit cycles 1, 2, 3 and 6)
are accessible. In the region bounded with Q(n—l) iy
and Q(n) = *11 in the state plane which is defined by Q[n}
and Q{n-l], there are 46 initial states except the states
which pertain to that limit cycle from there the period limit
cycle 1 will be reached eventually. For periodic limit

cycles 2, 3 and 6 the corresponding numbers of the initial

states are 48, 48 and 302 respectively.

As mentioned before, since every state Q(n} in the
absence of an input has a unique successor, and since the
nonlinear digital filter is a finite state system, there
are only two possibilities for its autonomous behaviour.

Either the zero-state is reached after a finite time, or

-75-



a limit cycle will result. In other words, if the zero
state (0,0) is not a branch point it cannot be reached
from other states and limit cycles must necessarily exist.

Claasen et al(ﬂl

have proved that in case omeor two
rounding operations are used, the origin state (0,0) is

a branch point only if |B|<0.5. Therefore, such
second-order filters with multiplication coefficient B for
which |[B[30.5 will always exhibit limit cycles. By using
fhe same idea it is also shown that where one or two
magnitude-truncation operations are used, (0,0) is always

a branch point for |B|<l, and limit cycles do not

necessarily exist.

3. Classification of Limit Cycles Based on Symmetry
(37)

Considerations

As regards symmetry, two types of limit cycle can be,

in general, distinguished.
TYPE A Symmetric Limit Cycle

The length N of the limit cycle is even and the limit

cycle has half-wave symmetry
Y (n+ 5) = =Y (n) for all n (62)

In our typical example, periodic limit cycle 1, 4, 5

and 6 pertain this type.

A further distinction is Type Al: % is odd,and Type A2:
= is even
2 -
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As can be seen, in the example above, the limit cycle

l, 4 and 6 are Type Al and limit cycle 5 is Type AZ2.

TYPE B Asymmetric Limit Cycle

All limit cycles which are not of Type A are called
asymmetric limit cycles. These can be subdivided

into Type Bl: N is odd, and Type B2: N is even,

In the example above, both limit cycle 2 and 3 pertain

Type Bl.

With this classification method a relation has been
given in Table 2(37) between the limit cycles of a
second-order digital filter with the coefficients (-A,B)
and a second-order digital filter that has the same
structure but coefficients (A, B). It can be seen from
this table that a limit cycle of Type Al in the filter
with -A and B transforms into two limit cycles of Type Bl
in the filter with A and B which have the same amplitudes
as that of Type Al but with lengths that have been halved.
In addition, two constant limit cycles in the filter with
(-A,B) transform into an alternating limit cycle in the

filter with (A,B).
From these relations at least two useful conclusions
can be made:

First, once one has found the limit cycles in the
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second-order filter with coefficients (-A,B) one also
knows the structure of the limit cycles in the filter
with coefficients (A,B). For example, by the relation
just mentioned, we can derive the limit cycles in the
second-order basic filter section with the coefficients
A=1.74, B=0.95833 from the typical example used before

(A=-1.74, B=0.95833).

According to Table 2, one Type Al limit cycle will
be transformed into two Type Bl limit cycles. Type A2
will be still transformed into Type A2. Two constant limit
cycles will be transformed into cne alternating limit cycle.
In the procedure of transformation the feature is that

the sign of the number is changed alternatively.

The transformed results are as follows, where the
combination numbers which designate the limit cycle show
the way of the transformation. For example, Limit Cycle

1A and 1B indicate that both limit cycles come from
the original Limit Cycle 1, and Limit Cycle 23 indicates
that this limit cycle comes from the original Limit Cycles

2 and 3.

Limit Cycle 1A:

“na O’ _5, 9, —ll’ ll' _9' 5; -a e

Limit Cycle 1B:

-ea O' 5’ _9’ ll’ _ll’ 9’ -5' “-ns



Limit Cycle 23:

" e.-1,5,-8,9, -8, 5 -1, -3, 6, -8, 8, =6, 3, 1, -5, 8, -9, 8, -5,
1' 3' _6' 8, _8' 6’ -3’ “wa

Limit Cycle 4A:

. O; 3, —5' 6, _6, 5, -3; “ws
Limit Cycle 4B:

. Of “3' 5' -6; 6; _5, 3; " -
Limit Cycle 5:

. s l; l' -3; 4' -4; 3, _l,_'l' 3; “4' 4; -3f ..
Limit Cycle 6A:

- O, _l, 2, —3' 3’ _2f l' .
Limit Cycle 6B:

R O; l' -2; 3' _3; 2f -l' .
Limit Cycle 89:

. 1' _l' l' -l; . e
Limit Cycle 70:

CR 2; _2, 2, _2, .-

Above results have been verified by the simulation.

The second conclusion is that

any bounds on the

magnitude of a limit cycle response evaluated with the

assumption that A<0O, B>0

B>0.
-80-
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3.3 SUCCESSIVE-VALUE PHASE-PLANE'PLOTLz)

The successive-value phase-plane or sometimes called
state plane for second-order digital filters is defined in
a cartesian coordinate system with the Y axis representing
§(n) and the X axis representing §(n~l}. The successive-
value phase-plane plot results of a second-order filter
recorded on this state plane. For a given point or state
in this plane, the successive state is uniquely determined
for a digital filter with zero input. A limit cycle
exists where a sequence of successive-value points in the
phase-plane forms a closed curve when they are jointed by
straight lines. Fig. 18 illustrates the successive- value
phase-plane plot for the digital filter frequently used as
an example. It can be seen that with a constant limit
cycle, each successive state of the filter lies at the
same point of the state plane. The plot corresponding to
an alternating limit cycle includes only two state points,
and the plot of a periodic limit cycle which has a period

of NTS includes N points.

Successive-value phase-plane plots provide a useful
means for displaying the nature of the limit cycles of a
digital filter. By the use of the program shown in
Appendix 1, the successive-value phase-plane plot can be

displayed on the screen of computer PET.
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Q(n)

Fig. 18 The successive-value phase plane plot for the second-order
section with coefficients A=-1.74, B=0.95833.
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3.4 PARAMETER SPACE

The existing conditions of limit cycles in the
second-order digital filter depend on the coefficient
values A and B. Therefore, it is convenient to show
these conditions on a coordinate system with the X axis
representing coefficient A and the Y axis representing
coefficient B. The coefficients A, B define a plane

called parameter space.

The existing conditions of various limit cycles in
the second-order filter with one rounding quantizer have
been derived by a simple way in the Appendix 2. The
regions in the parameter space where various limit cycles
exist is shown in Fig. 19. The linear stable region
bounded by a triangle mentioned earlier is also shown in
the same figure. Values of A and B for which this filter
is stable have been obtained by applying the frequency

domain criterion(lo).

This asymptotic stable region is

also shown with shaded area in Fig. 19. Fig. 19 is the

same with that shown in the reference (10), but here gives
two extra bound lines which give more information. As can

be seen from Fig. 19, the area which bounded by the triangle
and B>0.5 can be divided further into several subregions.

In some subregions only constant or alternating limit cycles
are possible. This information has not been found in the

published literatures.
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region GHKJG periodic limit cycles exist

region DGID and RPMR both periodic and constant Yimit cycles exist
region FKHE and SPNS both periodic and altermating limit cycles exist
regicn DIPRD only constant limit cycles exist

region EKPSE only alternating limit cycles exist

BB 5. BE &

region PMFNP three types of limit cycles exist

Fig. 19 Region of asymptotic stability for one rounding quantizer

and regions where limit cycles can occur.
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As references, Fig. 20, Fig. 15 and Fig. 17 show the
parameter space plots with two rounding, one magnitude-
truncation and two magnitude truncation quantizers

respectively(lol.

3.5 DIFFERENT PROPERTIES OF THE LIMIT CYCLES IN SECOND-

ORDER FILTER SECTIONS WITH ROUNDOFF BETWEEN ONE- AND

TWO-QUANTIZER VERSIONS

At least two differences between the limit cycles in
the second-order filters with one- and two-rounding
quantizers can be distinguished. These differences are as

follows:

(1) As shown in Appendix 2, with one rounding quantizer
all constant or alternating limit cycles are successive in
unit of g in amplitude, i.e.,they are £1, #2, %3, ..., 2C
where C is the maximum amplitude of the limit cycles. It
has been found by experiments that with one rounding
quantizer all periodic limit cycle trajectories surround
all constant or alternating limit cycles in the state plane.
From this fact, the bound lines DJ, KE in Fig. 19 have
been derived. These bounds were verified by simulations.

No exceptions have been found. No constant or alternating

limit cycles lie among the periodic limit cycles in the

state plane.

As contrasted with one quantizer case, with two

rounding quantizers constant or alternating limit cycles
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Length 1 B Length 2

inaccessible 1 inaccessible
T T e :
N | §XILst ] )
L \ 1 @ t / A
-2 -1 1
-1

limit cycles of length 1 exist
limit cycles of length 2 exist

Fig. 20 Region of stability for two rounding quantizers and regions

where limit cycles can occur,
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can lie among the periodic limit cycles.

(2) With two rounding quantizers in some region of
the parameter space there is a special kind of periodic
limit cycle called pinwheel limit cycle(3l. Its trajectory
surrounds the origin state (0,0) in the state plane
several circles. But in contrast with two rounding quantizer
version, with one quantizer we have not found any pinwheel
limit cycles. As can be seen later, although there are

those differences they will not influence the suppression

of limit cycles by the injection of random dither.

3.6 AMPLITUDE BOUNDS OF LIMIT CYCLES

Three different types of amplitude bound for limit
cycles in the second-order digital filters have been

given in the literature.

1. Absolute Bounds

Several authors have derived bounds on the maximum
value of the limit cycles for general types of digital
filterﬁz'?’38). Application of these bounds for
determining the internal wordlength of the filter will
guarantee the neglect of zero-input limit cycles in the
output. The difficulty with the absolute bounds is that
they apply to the situation where all errors add up in
the worst possible way. Thus, the absolute bounds are in

general overly pessimistic compared with the other bounds.
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These bounds are seldom used in practice but they provide
thehbiggest bounds which can never be exceeded. Among the

absolute bounds, we only list out the bounds of Long and

Trick(7}.
8
TTRTE for B<O, or B>0 and 2vBg |A|
K < ———Ji——i for B>0 and .2B 7% -1<|Al< 2/B (63)
T (1-vB)
8 (1+vVB)
for B>0 and |A|<2B/2% -1
2
A
| (1-B)/1- =

where 6 is a constant and §=0.5 for one quantizer or ¢&=1

for two quantizers.

Using the typical example, A=-1.74, B=0.95833. The

coefficients satisfy the inequality

|a| < 2B 7% -1 = 1,957

therefore the bound

. : § (1+vYB)

z_
A
(l-B) )/l- ﬁ

= 103.64

The bounds for one and two rounding quantizer versions are

51 and 103 respectively.
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As respected, for the example, the bounds of one-
and two-quantizer version, 51 and 103 are much bigger than

the actual maximum amplitudes of limit cycles, 11 and 17.

2. RMS Bounds

(8)

Sandberg and Kaiser have derived a bound on the rms
value of the quantization error. As contrasted with the
absolute bounds, this bound gives no information on the

maximum amplitude of a limit cycle. In other words, this

bound can be exceeded.

For the second-order section, the rms bounds are as

follows:

Q

For the constant limit cycles Kcs Ti7a+8) (64)
. Pl &
For the alternating limit cycles Kas T:TKT:E (65)
For the periodic limit cycles
| s 4B
AZ N for B>0O and |A[< 1=
(1=B) (1- 1B’
K < 66
bS (66)
R 4B
T for either B<O or B>0 and |A|a-I;§
1- |A|+B
L
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where § is a constant and §6=0.5 for one rounding quantizer

version or 8=1 for two quantizer version.

Let us still go back to the typical example, A=-1.74,
B=0.95833. 1In the example, the coefficients satisfy the

inequality

-

Therefore, the bound of the periodic limit cycles

3

= 52,368
(1=B) (1- éf .
4B

The bounds for one and two rounding quantizer versions are

26 and 52 respectively.

Comparing with the absolute bound one knows that the
absolute bound is (1+YB) times bigger than rms bound.

When B-+1l, (1+/B)+2. The rms bound is simple to evaluate

and the maximum value of the limit cycle will not exceed

this bound by a factor of more than 2.

3. Approximate Bound

(9)

Jackson has derived an estimate of the limit cycle
amplitude based on an effective value linear model. This

bound can be written as

- S
Kp = INT CE'ET) (67)



where INT(X) denotes the integer part of X.

Since this bound is based on the assumption that the
nonlinear system oscillates if B has an "effective value"
B'=1l, which is a carry-over from linear theory, there may

(2)

exist exceptions. Parker and Hess have pointed out

that Jackson's bound may be exceeded in some cases. Claasen

et al.L37l

have proved that where there are two roundoff
quantizers the value derived by Jackson is in fact a lower
bound for the maximum amplitude of the possible limit
cycles. This means that there must exist at least one limit

cycle with an amplitude larger than or equal to this

bound.

It is easy to verify that for the typical example
A=-1.,74, B=0.95833, the KD=ll which is a very good estimation
for one quantizer version but for two quantizer version

this bound is exceeded by 6.

Jackson's bound is a simplest one in the bound
expressions proposed. In most cases, especially for one

: : i : 24
quantizer version, it is accurate enough. I—Iess"L )

has
shown on his simulation studies that for two quantizer
version exceptions from the effective value linear model
gccur for B> % and for values of A around *1.5, +1.0, #0.5.

For these cases, he suggested that the following bound

can be an alternative.

o= 1-1-'3 (68)

which is three times bigger than the bound of Jackson.
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357 « EREQUENCY OF LIMIT CY.CLE

It is not difficult to obtain the frequency expression
of the impulse response in a linear (without quantizer)

second-order filter section.

As mentioned earlier, for a linear second-order basic

section, its difference equatibn can be. written as
Y (n)e= X n) - A¥{n=-i3) - BY(n-2)
If the poles are complex its impulse response is

n
h(n) = (Z3z5) sin [(n+1)6]

where r = VB and § = arc cos(- i%ﬁl

For B=1l, the impulse response is a sinusoid with
constant amplitude and frequency
- 1 - A
f = (2TT ) arc cos( 2)

£s

It is difficult to obtain an accurate frequency
expression of limit cycles in the second-order digital
filter, because of the nonlinearity. Although limit
cycles in a digital system with only one nonlinearity can
also be studied with the describing function method, this
method is an approximate one which only gives results if
the occurring limit cycles are almost sinusoidal. However,
in order to get an impression about the possibility of
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frequency of these limit cycles, Claasen et al(33) with

describing function method have derived a frequency expression

2. o2
o9y A“+B -1
f = o7 T arc cos( S ) (69)
or
2 il
I K +B =1l,4=1
T = 27 T, [arc COS('_EKE__)J (70)

Using the typical example, substituting the coefficients
A=-1.74, B=0.95833 into above equation we know that the
pericd of limit cycle is 13TS, which is accurate enough.

But apparently, when the coefficients A+O, B#l above

frequency expression cannot be applied because the argument

A2+Bz—1

( 2AB

) may be greater than unity.

It is worth pointing out that if the poles are close
to the unit circle in the Z-plane the limit cycle is
approximately sinusoidal with a frequency close to the
value given by the frequency expression of the linear model.
Still substituting the coefficients A=-1.74, B=0.95833
into the Egn. (13) the period is l4Ts which is a good
estimation. As fespected, in this case the above two frequency
expressions are similar because in high-Q cases, the limit
cycles approximate sinusoid and the describing function
method becomes more accurate. In fact when B+1l, Egn. (70)

degenerates to Egn. (13).
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3.8 SUMMARY

In this chapter we have discussed the main properties
of zero-input limit cycles in second-order filters.
There are two different analytical ways of quantization
error; stochastic and deterministic. Both methods have
their own applications. It is important to understand
the assumptions of these two méthods. In this research

both methods will be applied in different situations.

When limit cycles exist the quantization error
sequences ¢ (n) can be either constant, alternating or
periodic. The correlation among & (n) is a feature when

limit cycles exist.

The second-order digital filters with multiplication
coefficient B for which |B|>0.5 will always exhibit limit
cycles. Three different types of limit cycle may be

distinguished; constant, alternating and periodic.

Successive-value phase-plane plots provide a useful
means for displaying the nature of the limit cycles of a
digital filter. The existing conditions of limit cycles
can be shown, with a convenient way, in the parameter
space. By the use of these parameter space plots, one
can choose the coefficient values A and B correctly, so
as to obtain a certain kind of limit cycle. This is

important in the simulations,
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Three different types of amplitude bound for limit
cycles in the second-order digital filters have been given.
These bounds are important not only in the determining
of the internal wordlength of filter but also in the
searching limit cycles in the filter because these bounds
give the regions in the state plane where the limit cycles
occur. One must be careful in the applications because

each bound has its own restriction.

It is easy to estimate the occurrence of constant
or alternating limit cycles from the parameter space plot.
But one can only estimate the frequency of periodic limit
cycles approximately. When the poles of the filter close
to the unit circle in the Z-plane the frequency estimate
becomes accurate. Simulations have shown that limit cycles

of very long periods are possible,.

Now we are in the position to discuss the methods

of limit cycle suppression.
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CHAPTER 4

STABILIZATION BY THE INJECTION OF DITHER

It has been known for a long time that limit cycle
oscillations in nonlinear, continuous-time feedback systems
can be suppressed by the injection of a random dither

signal(lg’zo)

. A recursive digital filter with guantization
is a nonlinear, discrete-time feedback system. As mentioned
in Chapter 1, several authors have studied the use of added

dither for suppressing the limit cycles in digital filters,

but in this research somewhat different approaches have

been used which have certain advartages over the methods

proposed before.

4,1 THE PROPOSED METHOD TO SUPPRESS LIMIT CYCLES

We have known that if a limit cycle in the second-
order basic section exists, Q(n) and the quantization error
6§ (n) both are periodic or constant or alternating
sequence depending on the limit cycle type. The basic idea
of this proposed approach of suppressing the limit cycles
is to inject a minimum pseudo-random noise at the front of
quantizer (see Fig. 14), so as to break the periodicity
of the quantization errors. This pseudo-random noise is

called dither(ll.
-0f=



For the sake of simplicity, in the following chapters,
unléss specifically stated, only one quantizer version
is considered. But the proposed method is effective to
two quantizer version as well. In the absence of dither,

the nth output from the filter, Y(n), is given by

Q(n)

[-AY (n-1)-BY (n-2)]

~AY (n-1)-BY (n-2) =6 (n) ! (71)

where [']R represents the operation of roundoff quantization,

and ]s(n)|s 0.5.
The above equation can be rewritten as
-AY (n-1)-BY (n-2) = [-AY(n-1)-BY (n-2)] o+3 (n) (72)

If a random dither distributed in the open range (- %, % )
is added at the nth instant, the resulting nth output from

the f£ilter, Y'!'(n), is given by

%'(n) [—AQ(n-l)-BQ(n-2)+d(n)]R (73)

where d(n) is the random dither and [d(n)]< 0.5 because

the quantization step g has been assumed equal to one.
The difference of ¥'(n) and Y(n) can be written as

¥V ) -Y () = J:~AY(n-l)—BY(_n~2).+d(n)jR-[—AY(n—l)-BY(n-2)]R
(74)
Substitute Egqn. (72) into the above equation and we

obtain
=gas



€' (n)-¥ (n)
=[[-A¥ (n-1)-BY (n-2)] p+6 (n) +d (n) ] - [-AY (n-1) -BY¥ (n-2) ]
= [sm)+am)], (75)

In the case where the filter is not at the origin state,
the sum —A?(n-ll-B§(n-2} is, in general, not an integer
multiple of g, even though §Ln—l) and Q(n—Z} are integer
multiples of g. Specially, if a limit cycle exists it is
impossible that § (n) are equal to zero for all n. Because
suppose that a limit cycle exists and § (n)=0 for all n

then that means no roundoff exists and the quantizer has

no influence to the filter. But in this case there must

be no limit cycle in the filter. This conclusion conflicts

with the initial assumption.

Thus, if a random dither distributed in (- %, %) is
added at the nth instant, there is a nonzero probability

that

]

Y'(n)-¥(n) = [s(ni+d(n)],

= tq (76)

In other words, if the present state of the filter is
on a limit cycle, with the addition of dither, there is a
nonzero probability that the next state will be off that
limit cycle. Although this does not guarantee that dither

will stabilise the filter, i.e.,ensure that with zero
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input, the filter eventually reaches the origin state,
the-effect of the dither in causing the filter to leave
the limit cycle makes it reasonable to speculate that

the dither will suppress limit cycles in the second-order
filters. In the next chapter, we will discuss this

problem in detail.

4,2 SOME NOTES ON THE PROPOSED METHOD TO SUPPRESS LIMIT CYCLES

It is necessary to point out the properties of the
proposed method to suppress limit cycl es. Some properties

show the possibility of limit cycle suppression.

(1) Once a limit cycle has been suppressed the output
signal from the filter remains at zero as long as the
input signal is zero. From then on, the dither has no
influence on the output. This statement can be readily

proved from the eguation

Y'(n) = [-AY' (n-1)-B¥' (n-2)+d ()] (77)
When a limit cycle has been suppressed means

Q'(n-l} = Q‘(n—Zl = 0

and because

ldm)| < 0.5

g'(n) = [dm)]; =0 (78)
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(2)

In some cases, this property is important because
it means no remaining noise is left after the limit

cycle has been suppressed.

The injection of the dither makes the origin point
(0,0) in the state plane be branch point even the
coefficient B of the second-order filter satisfies

that 1>|B|>0.5.

As mentioned earlier, without dither, in case one
or two rounding operations are used, the origin (0,0)
is a branch point only if |B|<0.5 and from this
statement one asserts that the filters with
multiplication coefficient B for which |B|[>0.5 will

always exhibit limit cycles.

But after adding dither the situation is quite different.
As shown in Appendix 3, in case one or two rounding
guantizers are used even though 1>|B|>0.5 the origin

state (0,0) still can be a branch point only if

(a) in one gquantizer case the dither is added at

the front of quantizer, or

(b) in two gquantiser case the dithers are added

respectively at the front of two quantizers, or

(c) in two quantizer case the dither is only added

at the front of B coefficient product quantizer.

It is also shown in the Appendix 3 that it is impossible
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(3)

when two quantizers are used to suppress the limit
cycles by the addition of the dither at the front

of coefficient A product quantizer only. Because in
this case the origin state is not a branch point

any more.

These arguments show the intuitive reason of
suppressing limit cycles by the use of the random

dither.

The injection of a uniformly distributed random dither
makes the statistical quantization characteristic

(mean value output versus input) linearise.

It has been proved in Appendix 4 that with a concept
of equivalent quantizer that when a dither uniformly
distributed in (- %, %) is used the mean wvalue output
from the equivalent quantizer varies with the input
with a linear manner. This statement at least shows
the tendency of linearisation by the use of the

uniformly distributed random dither.

In the two quantizer version, two dither signals can

be taken from the same random sequence generator.

In the two rounding quantizer version with dither,

the difference equation can be written as

2t () = [-A% (n-1)4a, (n)] p+ [-BY" (n-2) 44, ()] (79)
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Suppose that

[~a¥Sn-1) |4 = -aY" (n-1}-0_ (n} (80)
and

[-BY® (n-2):|R = -BY (n=2)=6, (n) (81)
where

léa(n)ic 0.5 and |8, (n)|g 0.5

Therefore,

Y'(n)=[-A§'(n-l)jR+[5a(n)+da(n)]R+[-B§'(n-z)]R+[ab(n}+ab<n)

(82)
Because, in general, Sa(n) and éb(n) are different
and their correlation is small, even da(n)=db(n), the

values of fda(n)+da(n}]R and [db(n)+db(n)jR still can

be different and their correlation is also small.

It is expected that by the use of the same dither,
the purpose of limit cycle suppression can still be
carried out, and the simulation has verified this

expection.

SUMMARY

The proposed method to suppress the limit cycles in

the second-order digital filters has been described. The

use of the dither may cause the filter to leave the limit

cycles and make the origin state (0,0) be branch point.

~102-
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Once the origin state has been reached the state of
filter will stay there as long as the input signal is
zero. These properties of the proposed method support us
to speculate that the dither will suppress limit cycles

in the second-order filters eventually.

One of the advantages of this method is that in the
zero-input condition, once the limit cycle has been
suppressed the output signal remains at zerxo, i.e.,no

remaining noise left.

In the next chapter, the effect of the dither on the

limit cycle suppression will be discussed further.
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CHAPTER 5

HOW DITHER AFFECTS THE LIMIT CYCLES

Although two properties of the proposed method to
suppress limit cycles in the second-order digital filters
mentioned in Chapter 4 make it reasonable to speculate
that the dither will suppress limit cycles, those have
not proved that the dither will stabilize the filters yet.
In this chapter, we will first verify the stabilization
for a particular pair of coefficient values A and B, then
prove it for general cases though it is not strict in the

mathematical sense.

5.1 VERIFICATION OF THE STABILIZATION BY THE USE OF

DITHER FOR A PARTICULAR PAIR OF COEFFICIENT VALUES

A AND B

For a particular pair of coefficient values A and B,
it is possible to verify that dither will stabilise the

filter. This can be done as follows:

First, all the limit cycles are identified, for examole,
by simulating the digital filter using all possible initial
states in the zone of the state plane where limit cycles
may exist. This zone can be determined by use of the known

bounds on limit cycle amplitudes.

Second, each state is examined to determine which limit
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cycle it belongs to and is labelled to indicate this.
The initial state from which the limit cycle can be
reached is said to belong to that limit cycle. 1In

practice, this can be done concurrently with the first step.

Third, each limit cycle is examined in turn to
determine which other limit cycles can be reached from
it when dither is added. This can be done by examining
g¢ach state on the limit cycle, finding ;hich state can be

reached from there when dither is present and noting the

limit cycles to which these states belong.

Lastly, a directed graph called transition diagram(39)

results, showing which limit cycles can be reached from
which others. It can be discovered from this transition
diagram whether or not it is possible to reach the origin

from every one of the limit cycles.

In the following sections, we will describe the
procedure with the example frequently used before, step by
step. As will be seen, although we use the typical example,
any specified pair of coefficient values A and B is

suitable, i.e.,the procedure mentioned is general.

l. Identify All the Limit Cycles in the Second-Order Filter

Section With Coefficient Values A=-1.74, B=0.95833

The amplitude bound of the limit cycles in the filter
section is found by the use of Jackson's bound formula.
This bound is equal to 11. In the state plane, this
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bound defines a zone which is bounded by Y(n) = *11 and

v (n-1)

Il

+11. Apparently, there are (llx2+l}2 = 529
states altogether including two axes themselves. Having
known the coefficients and initial condition it is

easy to simulate the filter with the computer and find
the limit cycles. All the limit cycles have been shown

in Fig. 18 before.

2. Obtain the "Distribution Diagram" of Limit Cycles

First, each limit cycle is numbered successively from
1,2,3,4, ... As mentioned earlier, for this example, there
are 10 limit cycles, therefore each limit cycle from the
largest periodic one to the smallest constant one is given
by the number from 1 to 1O respectively. Each state in
the zone defined by the amplitude bound of limit cycle is
used in turn as an initial state. The limit cycle which
the initial state belongs to can be found by simulation
and the initial state is indicated by the same number with
that of the limit cycle., After 529 steps the "distribution
diagram" of the limit cycles can be obtained as shown in
Fig. 21. Because the Jackson's bound may be exceeded, a
check is necsssary. ©No larger limit cycles have been found

outside the zcne for this example.

3. Determine Which Other Limit Cycles can be Reached from

" Each Limit Cvcle when the Dither is Added

In this example, suppose a uniformly distributed dither
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Fig. 21 "Distribution diagram" of the limit cycles in the example
shows to which limit cycle each state beleongs.

*

(*) limit cycle
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is used. If this random dither is added at the nth instant
then the difference of the output from the filter with and

without dither can be written as

Y'(n) - Y(n) = [6(n) + d(n)] 3

Because the dither is uniform distributed in the open
range (- %, %) and |[§(n)|< 0.5 the following equation can
be obtained.
+1
Y'(n) - ¥Y(n) =40 (83)
-1
It is reasonable to assume that the probability of
occurrence of each value in the three possible numbers is
equal to %. In other words, by the addition of the dither,
there is a probability of % that the filter will stay at
the same limit cycle. Both probabilities of leave off the
original limit cycle to two neighbouring states are also

equal to % respectively.

Suppose that there is a limit cycle which includes N
states in the state plane. Then after adding dither, the
number of states which can be reached is 3N. From the
"distribution diagram" of limit cycles we know which state
belongs to which limit cycle. Therefore, the probability
of transition from a limit cycle i to limit cycle j can

be calculated.

For example, limit cycle 1 includes 14 states. Hence

by the injection of the dither, 14x3=42 states, can be
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reached by the filter. From the "distribution diagram"

of iinit cycle we know that in the 42 states, 14 states
belong to the limit cycle 1 itself, 6 states belong to
limit cycle 2, 6 states belong to limit cycle'3, 16 states
belong to the limit cycle 6. It is clear that by the

use of dither, the filter either stays at the original
limit cycle or moves from limit cycle 1 to limit cycle

2, 3 and 6. The probabilities of the transition are %% “

16 ¢
i3’ a3’ and v respectively.

Along the same way, the probabilities of transition

from any limit cycle to others can be calculated.

4., Drawing the Transition Diagram

As we have known that without dither a digital filter
with coefficients A, B lying on some region in the parameter
space will continue to oscillate in a particular limit
cycle depending on the initial condition. However, when
dither is injected it becomes possible for the filter to
move between limit cycles. The state of the filter is,
therefore, no longer trapped in a particular limit cycle
but can move randomly from one to another. These transitions
can be graphically represented by a transition diagram(Sgl.
In the transition diagram, each node is numbered to
represent one limit cycle. A directed line segment or

branch is drawn from each node i to each node j and labelled

with the transition probability, Pi 3 Note that because

r
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from the origin state the filter cannot move to any limit
cycle except the origin state itself, the probability of
transition from origin to origin is one. This state is

called a trapping state.

Fig. 22 shows the direct graph corresponding to the
filter section used as an example above. The nodes from
1l to 10 represent 10 limit cycles and node 1l represents
the origin state. The probabilities of transition from

each limit cycle to others have been calculated as above.

It can be seen from the transition diagram that each
limit cycle can be reached from some other limit cycles.
Although the origin state cannot be reached directly from
all the limit cycles, there is no limit cycle from which

the origin cannot be reached indirectly if necessary.

Once the filter reaches the origin the filter remains
at this state as long as the input signal is zero. Thus,
for this particular filter, it is proved that the dither

signal stabilises it.

5.2 THE MAXIMUM TRANSITION TIME NEEDED TO MOVE FROM ANY

LIMIT CYCLE TO THE ORIGIN STATE

As mentioned earlier, without dither for the second-
order filter with the coefficient |B|>0.5, the origin
state is not a branch point. Therefore, each state except

the origin in the state plane must belong to one limit cycle.
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The origin state only belongs to itself. Apparently, at
any instant, a second-order filter must occupy a state.
We say that a filter "occupies" limit cycle i when it

occupies a state which belongs to the limit cycle i.

We have specified a set of conditional probabilities

P that a filter which now occupies limit cycle i will

i,3
occupy limit cycle j after its next transition. As just

mentioned, since the filter must occupy a limit cycle

after its next transition, therefore

+
Lippg =1 (84)

where N is the total number of limit cycles which the
filter may occupy. The upper limit of the summation is

(N+1) including the origin state (0,0).

The probability that the filter will remain in i,

P has been included in the above equation. Apparently,

iad’

since the p,

. are probabilities
1,]

0 <p 1 (85)

¢ Ak
1,]

The transition probabilities Py 3 may be ranged in matrix
r

form called a transition probability matrix.

p- -

Bial k1,20 'Bgtgcee s Dytieen

(1} Boel ' Eg o3 Pal3 teeBa NIy
P (86)

L - .. - . - s = L

Pn+1,1 PN+1,2 Pn+1,3°°  Pn+l,nN+1
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where p represents the first-step transition matrix

and the sum of elements in each row is equal to unity.

For the example used above, the first-step transition

matrix has been known and can be written as follows:

- -

2 %00 £0 00 0 o
525 %50 3000 0 0
%%@%g—go%ooooo
o 22 2 20 0 0 0 o0
ooo%@%—g%gooooo
o a0o bREEE LY o
o 0. 0P 0 % % .0 0. 0.9
ooooo%o%ooo
T R L U
ooooo%ooo%o
i T o S S T

As mentioned before, the injection of dither makes the filter
section move from one limit cycle to another. The transition
between limit cycles can be treated as a Markov process.

(39)

According to Markov theory » the Mth step transition

probability matrix can be expressed as

E(M) - [E(l)JM (88)
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The matrix multiplication has been carried out by
computer. The calculated results show that when the
transition step M is greater than 310, all the elements
in the last column in the Mth transition probability
matrix tend to 1 and the others tend to zero with the

error less than lX10_4, i.8.,

B 5830 30 0-LBRED" . 01 L6, 05 ¥R
0. S04 - O+ 0tV 0 ‘0. o -2
oo s T S TR TR S S T R
Gr JO* T OIS0 A0 o el o oL g
g0 BN s L0ite ot ket o Ns
pMizlo o 0o 000 0 0 0 0 @ 1 (88)
o TS S U T TR T B TR |
(o R Y R S TR Y T O T S
o0 6 oo 0 0 0. .0 B%a
O DD SO0 0T o 0y 04
o o TR B L TG e, T T

It means that in the sense of statistics, the filter
should reach the origin state (0,0) from any limit cycle
after about 310 step transitions. This has, of course,
proved the stabilisation by the use of the dither for the
specified filter. As will be seen later, in 1000 simulations
the median value of the transition time from the largest
limit cycle to the origin for the filter in this example
is 330 e which nears the transition time, 310 Ts’ calculated

above.
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5.3 VERIFICATION OF THE STABILIZATION BY THE INJECTION

OF DITHER FOR GENERAL CASES

1. Eqguivalent Quantizer

The only one nonlinear element (overflow has been
excluded) is the rounding quantizer. Therefore, we will

pay more attention on the rounding quantizer with dither.

Both dither adder (including the dither generator)
and quantizer itself can be treated as an equivalent
guantizer Qe’ as shown in Fig. 23. 1Its input and output
signal are -m?(n—l)-BQ(n-z) and [-AQ(n-l)-BQ(n—2)+d(n)]R
respectively. Fig. 24 shows the quantization characteristic
of Qg+ In the figure, the solid line represents the
quantization characteristic of the rounding quanitzer,
the dashed line shows the new possible values because of
the use of dither, and the 45° line represents the ideal
linear case, i.e.,in case no quantization and dither are

used.

The characteristic of Qe consists of two parts as
shown in Fig. 24; one part lies in the sector between the
45° line and X-axis which is just the magnitude-truncation
characteristic, other part lies in the sector between the
45° line and Y-axis called a rounding up characteristic.
The dither makes the characteristic of the quantizer Jjump

randomly between these two parts.
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Fig. 24 Characteristic of equivalent quantizer Qu-
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2. The Magnitude-Truncation Part in the Characteristic

of Qe Tends to Stabilize the Filter

As mentioned in Chapter 2 and 3, the areas of
asymptotic stability of the second-order digital filters
with one and two magnitude-truncation quantizers in the
parameter space have been derived by using the frequency
domain criteria for absence of zero-input limit cycles.
Comparing the filter with the rounding quantizer, the
area of asymptotic stability of the filter with
magnitude-truncation quantization is much bigger than
that of the filter with roundoff quantization. Contrast
with roundoff, whatever one or two magnitude-truncation

quantizers are used the origin state is a branch point.

In particular, for one magnitude-truncation quantizer,
limit cycles occur for only a very few values of the
multiplier coefficients A and B. 1In these limit cycles,

only about (25~40)% are accessible.

For the filter with two magnitude-truncation quantizers,
only constant or alternating limit cycles have been
observed by simulations and they are found in the linear
stable triangle area for values |A|>1l. For high-Q poles
(B<l) only limit cycles with magnitudes equal to one
quantization step are accessible. In this case, by the use
of the dither, the filter may move to the origin state

with a very big probability, because there are at least
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two predecessors of the origin state defined by (0,%1).

The important fact which supports the argument on
stabilization is that whatever one or two magnitude-
truncation quantizers are used, even for those coefficients
with which the limit cycles exist there are still a large
number of initial states in the state plane from which
the filter will move to the origin state (0,0). Our
simulations showed that averagely speaking, there are
about 50% or more states in the state plane from which
the origin can be reached by the filter with the
coefficients which lie on the unstable area in the
parameter space. In other words, for any second-order
filter with magnitude-truncation quantization the origin
state (0,0) can be reached from all or at least a large

number of initial states.

The conclusion is that if the filter is started with
randomly chosen initial conditions, any second-order
filter with magnitude - truncation quantization can reach
the origin state (0,0) with a big non-zero probability.
As we have known, the dither makes the filter move state
by state, randomly. Once the origin state has been
reached, the filter sticks there as long as the input is

ZErXo.
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3. The Rounding Up Part in the Characteristic of Q_

'Makes the Filter be Unstable

This argument is readily proved, because in this

case the origin state is not a branch point.

4. The Filter With the Characteristic of Q 1is,in a

=

Broad Sense, Zero-Input Stable

-~

As mentioned earlier, the dither makes the characteristic
of the quantizer jump randomly between truncation and
rounding up parts. We have concluded on the basis of
experiment that when the magnitude-truncation characteristic
part is used, the filter will tend.to move with a big
probability towards to the origin state and ;hen the
rounding up characteristic part is used, the filter will
tend to move off the origin state. The dither signal
nmakes the filter move state by state, randomly. These
transitions continue until the origin state is reached.
Since the transition is random after some finite time,
the filter can move to the origin state. Once the origin
state is reached, the filter will remain there as long

as the input is zero.

Now the stabilization by the injection of dither has

been proved.

By the use of the program listed in the Appendix 1,

the suppressing procedure of limit cycles can be shown on
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the screen of the computer PET. The trajectory shown

on the screen represents the variation of the state
occupied by the filter. As can be seen, by the use of
the dither, the trajectory sometimes moves away from the
origin, and sometimes moves towards the origin. This
procedure continues until the origin state is reached.

As soon as the filter reaches the (0,0) state, it remains

there if the input keeps being zero.

This observation verifies what has previously been stated.

5.4 SUMMARY

In this chapter the necessity of the limit cycle
suppression in the second-order digital filters by the
use of dither has been proved though partly on the
experimental basis. Because the quantization nonlinearities
occurring in digital filters are highly discontinuous
functions, it is difficult to prove the stabilization
strictly. But for a specified pair of coefficient values
A and B, it is possible to verify that the dither will
stabilize the filter. By Markov theory, the maximum
transition time needed for transition from any limit cycle
to the origin state may be calculated. The result has

been verified by simulation.

In principle, in the proposed method to suppress the

limit cycles,a rounding gquantizer with the random dither
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is equivalent to a controlled quantizer where the
quaﬁtization is controlled by the dither. Depending on

the signal in the filter and the dither, the quantization
is switched between magnitude-truncation and rounding up
randomly. The magnitude-truncation part tends to stabilize
the filter but the rounding up part makes the filter
become unstable. Once the limit cycle has been suppressed
the output from the filter keeps zero as long as the input
keeps zero - it is not necessary for the filter to be
symptotically stable. The necessary condition of stabilization
is that the origin state can be reached with nonzero
probability. The magnitude-truncation part in the
characteristic of the equivalent qﬁantizer p:ovides this
possibility. This concept has been used to prove the
stabilization of the filter by the injection of the random

dither.
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CHAPTER 6

DITHER SIGNALS

So far in this thesis only one kind of dither signal,
uniformly distributed random dither, has been used. This
chapter will proceed with further discussion on dither
signal. Firstly, the previous work on the use of dither
for limit cycle suppression will be reviewed and discussed.
Then, the principal considerations of designing dither
signal will be described. Finally, several dither signals

which have been verified by simulation will be introduced.

6.1 REVIEW AND DISCUSSION OF THE PREVIOUS WORK ON THE

USE OF DITHER FOR LIMIT CYCLE SUPPRESSION

In this section we will review and discuss the methods
of limit cycle suppression proposed before to find out
their advantages and disadvantages. This discussion is

very helpful to propose the principal considerations of

designing dither signals.

A number of methods for using added dither to suppress
limit cycles have been suggested. In the following text

the relevant methods will be discussed one by one.

3 Randomized Quantization Method(B)

In this method the guantization is switched randomly
between truncating and rounding. This is equivalent to

the addition of a random dither at the front of rounding
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gquantizer whose value is either 0 or (- 1/2 + €) where

€ is a very small positive number compared with the
quantization step g. The equivalent quantization
characteristic of the whole guantization system is shown

in. Pilgoy25,

It is readily proved that for truncation quantization
the origin state is a branch point and its predecessors
are (O,+ 1). But as we know for roundeff quantization
the origin is not a branch point. Therefore, in order to
reach the origin state (0,0) truncation must have occurred
while in the states (O, + 1). Simulation has verified
that this method can reduce or suppress limit cycles in

digital filters.

In this method, when a roundoff quantization is used,
the filter tends to form a limit cycle whose amplitude
depends on the initial condition, but when the truncation
quantization is used, the filter, in general, tends to
move to the origin state, i.e.,tends to decrease the
amplitude of output signal from the filter. Therefore,
when the rounding guantization is used again, the filter
tends to form a smaller limit cycle because the filter
starts at a new smaller initial state. In this way ,
whenever the filter is switched to truncation guantization,
the amplitude of limit cycle oscillation will be decreased
to some smaller value. This procedure will repeat randomly
until the limit cycle is suppressed. Because of the mono-

tonic decreasing characteristic of the oscillation during
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Fig. 25 The characteristic of equivalent quantizer in the

randamized quantization method.
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the switching period, this method can make the filter
reach the origin state in a shorter time. Once a limit
cycle has been suppressed, the output from the filter
remains zero as long as the input signal is zero, i.e.,
there is no remaining noise at the output terminal. The
disadvantage of this method is that some constant or
alternating limit cycles cannot be suppressed. The
reason is quite clear from the equival?nt characteristic
of quantization. As can be seen from Fig. 25 there is
half a range of X, the input of the quantizer, where there
is no difference between truncating and rounding. As
mentioned earlier, when a constant or alternating limit
cycle exists, the input of the quantizer is also a
constant. Apparently, when this input signél of
quantizer just lies in the range where there is no
difference between truncating and rounding, then the
quantization switching between truncating and rounding
has no influence on the limit cycle. In this case, the
limit cycle, of course, cannot be suppressed. When
constant or alternating limit cycles exist, the roundoff

'8(n)| is a constant. As mentioned

guantization error
earlier, the difference of the guantizer output with

and without dither is [6(n) + d(n)]Q where d(n) is equal
to either O or - %‘ + €. It is clear that when

O < 6(n) < %g then whatever the rounding or truncating
takes place [é(n) + d{n)]Q = 0. In other words, the

equivalent dither has no influence on the output value

=126-



of the guantizer.

In order to suppress these kinds of limit cycle, we
have to extend the range where the gquantization characteristic
is changeable. This purpose can be obtained by extending
the range of the equivalent dither signal to (-g/2, g/2).
This is an important consideration in the dither signal

designing.

2% The Method of Limit Cycle Suppression proposed

by Rashidi and Bogner(s)

In this method, a stabilizing signal Sn’ of amplitude
AS, is added to the coefficient B product branch as

shown in Fig. 26. Sn is normally random.

If the whole coefficient B branch except delay block
is treated as an equivalent gquantizer, then its equivalent
guantization characteristic is shown in Fig. 27. 1In this
figure the shaded areas represent the regions where the
transition of the quantization function can occur. The
amplitude of the stabilizing signal needed for limit
cycle suppression has been given by the formulae in the

(5)

paper which dependson the coefficients A and B.

The simulation shows that most limit cycles in the
second-order digital filters can be suppressed by the
use of this method. Once a limit cycle has been
suppressed there is no remaining noise at the output
terminal in zero-input condition. But as can be seen
from the equivalent quantization characteristic shown

o
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Fig. 26 Block diagram of the method for limit cycle suppression
proposed by Rashidi and Bogner.
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Fig. 27 The characteristic of equivalent quantizer in Fig. 26.
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in Fig. 27, the region where the transition of the
quahtization function can occur is not wide enough.
There are still some regions where the quantization
characteristic has no difference with the roundoff
quantization. It can be expected that there may be some
constant or alternating limit cycles which cannot be
suppressed by the use of this method. For example when

this method is applied to the filter with the coefficient

= 200 TS E N S o =
values A = g4 and B = g4’ l.e.,[AlR = =2y [B]R 1,
and &B=B—[B]R == 03 I18T5 Reference(SJ gives the formula

to decide the amplitude of stabilizing signal. According

to Egn. (25a) in (5)

; Bg = MT[0.5/1AB]]g = 2q. Suppose
that the initial conditions are Y(;l) = Y(=2) =5, it 18
readily verified that the output from the filter is also
equal to 5. Therefore, the filter provides a constant
limit cycle (..., 5,5,5, «+¢.) which cannot be suppressed
by the use of the method. Other examples are the filters
with coefficients A = - 1.58, B = 0.605 and A = -1.8125,

B = 0.828125. 1In these filters the constant limit cycles

(ee., 5,5,5, ...) cannot be suppressed either.

Additionally, because the stabilizing signal Srl is
added before the multiplication the amplitude A depends
on the coefficient B. Therefore, when B changes, AS should

be adjusted also.

From this method one knows again that the region

where the transition of the guantization function can
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occur must be wide enough otherwise there must be some
constant or alternating limit cycles which cannot be
suppressed by the use of dither. The intuition tells

us that it will be safe if this region is extended to
the whole range of the input signal of the equivalent
guantizer. How wide the region should be depends on the
coefficient values. This problem will be discussed
later.

3. The Method of Limit Cycle Suporession Proposed
(4)

by Biittner

In this method, two basic random roundings RR1l and

RR2 are used.

In RR1l, two added signals first add together precisely,
then the bit having half of the weight of the LSB is
replaced with the instantaneous value of a binary random

sequence. Finally, the roundoff quantization is used.

Similarly, the replacement and the rounding quantizer
can be treated as an equivalent quantizer and the equi-
valentquantization characteristic is the same with that
shown in Fig. 24. It is clear that the transition
region where the jump of the guantization function can
occur is wide enough. As can be expected, all the limit
cycles in the second-order filters can be suppressed
by this method. But because the magnitude of the binary
random sequence is equal to 0.5 with 50% probability,

even the limit cycle has been suppressed, the output
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from the filter does not vanish for zero-input. Instead,
a noise-like signal is produced at the output. This
extraneous noise is called the remaining noise. It is
worth noting that because of the feedback in the recursive
filter, this remaining noise is not necessarily very

small.

Apparently, if the amplitude of added dither is near,
‘but less than 0.5, then the remaining‘'noise will vanish.
This is another key point that should be considered in

the dither signal design.

With method RR2, as mentioned in the original paper,
some constant or alternating limit cyles still cannot

be suppressed.

4, Folding-frequency Dither Method(l}:

This method was proposed by Blackman in 1965. 1In
this method, one folding-frequency dither, (—l)nD,
where D = ¥q - A and A is less than (1-B)g, is added
before rounding. Blackman has asserted that by the use
of the dither, the limit cycles (he called limit cycle
phenomenon dead band effect of roundoff errors), will
be suppressed. But he has only studied the first-order

filters.

The simulations showed that this dither results in
quicker limit cycle suppression than uniformly distributed
random dither, due to the greater amplitude of the dither
resulting in more frequent transitions between the various
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limit cycles. But the simulations also showed that there
were a lot of exceptions in the second-order sections in
which some limit cycles could not be suppressed. For the
typical example (A =-1.74, B = 0.95833, one quantizer) in
the (11 X 2 + l)2 = 529 states there are 102 initial states
from which the origin could not be reached by the use of
this alternative sign dither. For example, suppose the
initial state is Y(-1), Y(-2) = 3,3 then the outputs from
the filter without dither are as follows,

cssp 2y Lp 8=k, =2, S30NERE w2, =], O, 1,293, 3, .

But the steady-state outputs from the filter with a dither
0.49(—1)n are as follows,

.- s sy 3’ 2’ l' -l' _2' _3f -3’ _3' -2'-]-’ l 2 3, 3' ..

& “r
As can be seen from the above data, because of periodicity
of this dither for some initial conditions the filter can
never reach the origin state but another limit cycle. From
this example another principal consideration in the dither

signal design can be obtained i.e, the dither should not

be periodic.

In this section, the main previous works on the use of
dither for limit cycle suppression have been reviewed and
discussed. As has been seen, although all these methods
proposed before can be applied to suppress the limit cycles
in the second-order filters but either with some methods some
constant or alternating limit cycles cannot be suppressed,
or with other methods even when the limit cycle has been
suppressed there is remaining noise at the output terminal
of the filter.

Apparently, one needs some methods with which all
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the limit cycles in the second-order filters can be
suppressed and once the limit cycle has been suppressed
theloutput should keep being zero as long as the input is

Zero.

6.2 PRINCIPAL CONSIDERATIONS IN THE DITHER SIGNAL DESIGN

From the above review and discussion of the previous
work on the use of dither for limit cycle suppression,

some principal considerations in the dither signal design

can be obtained.

(1) The amplitude of dither should be big enough to change

the output of the quantizer.

As mentioned earlier, the difference of the output

of the quantizer with and without dither is’
A’ ~ X
Y(n) - ¥(n) = [§(n) + d@m)],

It is clear that in order to change the output of
the quantizer, the dither must satisfy the following

inequality
| (6(m) + an)]gl 3 1 (89)

Apparently, the bigger the dither amplitude, the easier

to change the output of the quantizer.

(2) The amplitude of dither should be small enough to

satisfy

[am)]g =0

or

fdin) | < . 0.5 (90)
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Above equation insures that once the filter has reached
the origin state (0.0) (in this case, the gquantization
error 6§ (n) = O0) the dither does not change the state of

the filter any more.

(3) The dither should have same probabilities of being

positive and negative.

Because the input sequence to quantizer is sometimes
rounded up where the quantization error §(n) has the opposite
sign with the output value of the quantizer Q{n) and some-
times rounded down where 6 (n) has the same sign with Q(n}.

In a statistical sense, the probabilities of round up and
round down are equal, only if the dither also has same
probabilities of being positive and negative the dither

can possibly change the sequence to be rounded down from

round up oOr vice versa.

(4) The dither should be a non-periodic sequence. This
requirement is from the experience of the use of folding-
frequency dither method described in the last section.
Combining the above requirements of the dither signal one
knows that the dither signal should be a random signal
distributed in the open range (-gq/2, g/2). With the dither,
the transition region in the equivalent quantization
characteristic will be extended to the whole range of

the input sequence of guantizer. It could be expected

that all the limit cycles in the digital filters would

be suppressed and there would be no remaining noise at
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output in the zero-input condition. As will be described

later, the simulations have verified this expectation.

6.3 SOME USEFUL DITHER SIGNALS

According to above requirements of the dither signal,

three types of dither signal have been proposed and used

in our research.

; Uniformly Distributed Dither Signals

This dither is a pseudo-random sequence whose values
are distributed uniformly in the open range (-q/2,q/2).
Fig. 28 shows its probability distribution function. From
the probability distribution function, it is clear that
the uniformly distributed dither signal has mean value
of zero. 1Its variance can be readily calcuiated as
follows:

Variance = E[(d—md)z]

= g2 /12 (91)
There are several methods to generate the uniformly
distributed pseudo-random sequence. In this research the
program shown in Appendix 5 is used to generate the

uniformly distributed pseudo-random sequence by computer.

By the use of this program the computer gives a pseudo-
random real number taken from a uniform distribution between

O and 1. The subroutine uses a multiplicative congruential

-136-



PDF

.-Dlt—-

b
2

value of dither
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method.

e 1313 X P mod 259 (92)

The output sequence of the computer is equal to P/259

approximately. Here P is a variable whose value is
preserved between calls of the subroutine. Its initial
value is 123456789 x (232 + 1) but this may be altered.
Because the output sequence P is distributed between O
and 1, the seqgquence (P - 0.5) is, of céurse, distributed
between -0.5 and 0.5. The sequence (P - 0.5) is applied
as the uniformly distributed dither. Fig. 29 shows its
relative frequency histogram calculated from 1024

a
samples. As can be seen, principlly, this sequence is

uniformly distributed in the range (-q/2,q/2).

Simulations have shown that the limit cycles in the
second-order digital filter can be suppressed by the use
of this dither. Once the limit cycle has been suppressed

no remaining noise exists at the output terminal of the filter.

One disadvantage of this dither is that the time
needed for the limit cycle suppression is long. For the
example often used, this time is about 330 T, where Tg
is a sampling period. This is because the amplitude of
the dither is distributed uniformly in the range (-g/2,9/2).
With relatively large probability the instantaneous
value of dither is not big enough to change the values
of the quantizer. Therefore, the transition of the filter

state Dbetween limit cycles is not frequent. It can be
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Fig. 29 The relative frequency histogram of the uniformly
distributed randam dither.
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expected that if the probability when the absolute value

of the dither tends to 0.5q is much larger than that
when the dither is small, then the above disadvantage
may be overcome. The extreme case leads to the second

type of dither.

25 Binary Random Dither

As mentioned before, the advantage of the use of the
folding-frequency dither is that the filter might reach
the origin state in a shorter time due to the greater
amplitude of the dither resulting in more frequent
transitions between the various limit cycles. But because
of the periodicity of this dither for some initial
conditions the filter can never reach the origin but
another limit cycle. Therefore, it would be hopeful to
find a type of dither whose values keep at maximum, but
are rid from the periodicity. Since the amplitude of the
new dither should be fixed at the maximum value, the only
way to get rid of the periodicity is changing the sign
of the new dither randomly. This task can be reached by
taking the sign of a random sequence (uniformly or Gaussian
distributed) which distributes symmetrically between

positive and negative values.

This new type of dither is called binary random dither
which takes values (=g/2 + A) or (q/2 - A) with equal
probability , where A is a positive guantity much smaller

than g. We will discuss the value A later in this chapter.
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The binary dither is readily generated from the

uniformly distributed dither by the following equation.
D, = sign (D) *(q/2-4) (93)

where Dy and Du represent the binary and uniformly
distributed dither respectively, and Sign(x) represents

the sign of X.

Fig. 30 shows its probability distribution. The mean
value of the distribution is zero. The variance of this

dither can be calculated as follows:
! = = 2
Variance = E[(Db Md)]

E(D,*]

k- g? (94)

]

The variance of the binary random dither is three times
bigger than that of the uniformly distributed dither. As
could be expected, the simulation showed that when nonzero
input signal was input, the noise output from the filter
with binary random dither was also bigger than that with
uniformly distributed dither. But as mentioned above, since
the greater amplitudes of the dither result in more frequent
transitions between the various limit cycles, the
suppression of limit cycles with the binary random dither

is faster than uniformly distributed dither. The increased

noise at output is the penalty.

In summary, with the uniformly distributed dither the

filter has a smaller noise output when a nonzero input
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signal is added but it takes a longer time to suppress
limit cycles. On the other hand, with the binary random
dither, the limit cyles can be suppressed quicker, but the
noise from the filter is bigger than that with the
uniformly distributed dither, when the input signal is

nonzero.

It is reasonable to ask the question that whether
it is possible to generate a type of dither which has
Both the advantages, i.e., smaller output noise and quicker
limit cycle suppression. This question leads to the

third type of dither signal.

3. Band-stop Dither

When dither is used to stabilize a filter, two
specifications are of particular interest. One of these
is the increase in the output noise from the filter
above the quantization noise without dither which is
present when nonzero input signals are applied. The
other specification of interest is the length of time
taken for the filter, with zero input, to reach the

state-plane origin from a limit cycle.

First, let us discuss the possibility of reducing

the output noise caused by the dither.

As we have known that when the input signal is zero,
after the transition time to the origin state (0,0), the
dither will not affect the states of the filter any more,
i.e.,once the limit cycles have been suppressed the output
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from the filter stays at zero as long as the input is zero.
There is no remaining noise at the output. On the other
hand, when the input is nonzero, there is extra output
noise caused by the dither. From Fig. 14, it is clear that
the transfer function of the dither is the same wifh that
of the input signal. Because of the filtering of the
filter, only the frequency components of the dither which
lie on the pass band can pass the filter, and all the
components which lie on the stop band cannot pass the
filter, or precisely speaking, for the later components

the filter will give them a big attentuation. Hence,
intuitively, we can expect that before the dither is

added to the filter if we remove the frequency components
of the dither which lie on the pass band of the filter,
then it is possible to reduce the output noise caused by
the dither. All the other components of the dither will

be filtered out by the filter itself.

Second, let us discuss the possibility of reducing
the transition time to the origin state in the state plane.
For a second-order digital filter section, if the poles are
close to the unit circle in the Z-plane, a periodic limit
cycle is approximately sinusoidal with a frequency close
to the resonant frequency of the corresponding section
without the quantizer. When the poles are not close to
the unit circle in the Z-plane, the periods of the limit

are

cycles are divergent but, in general, they still around

the reciprocal of the resonant frequency of the section.
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When the procedure of the limit cycle suppression on the
scréen of the computer PET was investigated, it was found
that the periodic limit cycle sometimes tended to be
suppressed, but sometimes tended to be enlarged at the
frequency near the resonant frequency. This enlargement
makes the transition time to the origin state be postponed.
Therefore, it is helpful for shortening the transition
time to remove the frequency components of the dither
thch lie around the resonant frequency. As discussed in
Chapter 2, the second-order basic section has a bandpass
characteristic and the central frequency of the pass band

is the resonant frequency.

Fortunately, above two requirements, reducing the
output noise and shortening the transition time to the
origin, require the same thing, i.e. to remove the
frequency components of the dither which lie around the
resonant freguency of the section. At the same time, of
course, the dither still has to satisfy the inequality

|d(n)| < %q.

We have discussed two kinds of dither, uniformly
distributed dither and binary random dither. It is difficult,
if it is not impossible, to obtain a binary dither signal
which has no components around the resonant frequency of
the filter. Now, what we want to do is to find a type of
dither signal which has uniform probability distribution
in the range (-gq/2, q/2) and the frequency components

lain around the resonant frequency have been removed.
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Veltman, Van den Bos, de Bruine, de Ruiter and
Verloren(4o) have proposed a synthesis method of random
signals with a prescribed amplitude probability density
function and a prescribed power density spectrum. But
for our purpose, a simpler method can be used. 1In Fig.
31, the input sequence X is assumed to be a wide band
Gaussian noise. The sequence X is first added to a
linear bandstop filter so as to remove the frequency
components lain on the stop band whose centre is the
resonant frequency of the filter to be stabilised. The
output of the bandstop filter, Y, has Gaussian property
too. Then the sequence Y passes a memoryless nonlinear
network. This nonlinear characteristic transforms the
Gaussian probability density function into a uniform
distribution one. Because the nonlinear transformation
will result in intermodulation products of the bandstop
filtered dither falling within the stop band, this
transformation also changes the power density spectrum
of its input signal. Although Veltman et al. have
described the method how to calculate the influence of
the nonlinear network and compensate the linear filter
so that the output of the nonlinearity produces the
described frequency behaviours, but the simulation on
a digital computer showed that in our case, the non-
linearity gave minor changes in the power density
spectrum. The simulations have shown that for our

purpose, the output of the nonlinear network has been
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a good dither signal already. The bandstop dither generating

will be described in detail in Chapter 7.

As will be seen in the next chapter, the experiments
have verified that the bandstop dither has the property of

suppressing limit cycles quickly without causing much

increase in output noise.

6.4 A NOTE ON THE DITHER SIGNALS

There are two questions about the dither signals
that we have not yet discussed. The first one is how many
bits are needed for storing the dither signal. For example
the uniformly distributed random dither is distributed in
the open range (- g/2, q/2). The question is how many
places of the dither value are needed for tHe limit cycle %

suppressing.

In general, the more places the dither has, the more
bits it needs. The second question is how to decide two
values, (-Q/2+2) and (Q/2-4), in the binary random dither signal
design. These two guestions will be discussed in this
section. As mentioned earlier, one of the important
considerations in the dither signal design is that the
amplitude of the dither should be big enough to change
the output of the quantizer. This requires the dither
signal to satisfy the inequality

(Ism) +dm)|], 31

or

|6(n) +d(n)| > 0.5
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As pointed out earlier, for a periodic limit cycle,
the guantization error ¢(n) is also periodic and varies
between - g/2 and gq/2. In general, there is at least one
of §(n) in a period which is bigger than, for example
say, 0.25g. For the example often used, the maximum
of §(n) corresponding to the largest periodic limit
cycle is equal to 0.48497g. Therefore, generally
speaking, the suppression of periodic limit cycles only
requires small amplitude dither which needs 2 or 3 bits
because there is at least one state of the periodic limit
cycle which can be changed by the use of small amplitude
dither. But it is clear that if one wants to shorten
the transition time to the origin then big amplitude
is still desirable so as to change as many states on the
limit cycle as possible. In our research for insurance

we choose that ld(n)im = 0.499, which needs 9 bits for

ax
storing. But it does not mean that this is necessary.
In some cases, most critical situations occur when the

constant or alternating limit cycles exist.

Suppose that without dither a constant limit cycle

with value C exists, i.e.,

C

(- ac - BC}R

C(=&2 - B) =6 (95)

where § is the quantization error which is a constant

when a constant limit cycle exists.

From the linear stable condition (the triangle in
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the parameter space) the coefficient values A and B

satisfy the inequality.

b e |
let -A=-B=1-28 (96)
where

e

Substitute Eg. (96) into Eg. (95). We obtain

C=C (1 =5gF = §

I

or 8 -CB = =C (1 + A + B) (97)

Equation (97) shows that the quantization error
has a opposite sign as that of C because 8 > 0. And |§|
decreases with |C| proportionally. Apparently, the minimum
of |C| is equal to unity. Therefore, the minimum of the
quantization error, ¢, satisfies

6

| .. =1 +A+B (98)
min

when constant limit cycle exists.

Along the same way, when the alternating limit cycles

exist the following inequality can be obtained

léimin =1-A+8B (99)

Now it is clear from the |4§| expression that in

min

order to suppress all constant or alternating limit cycles

the minimum amplitude of the dither should satisfy the

inequality
|1 - |A] + B + d(n)| > 0.5
or
|lda(n)| » 0.5 - (1 - |a| + B) (100)
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The inequality (100) whose variables are the
coefficient values A and B determines the number of bits
needed for the dither signal. As a very special example,
suppose the value (1 - |A| + B) < 0.01, then it is clear
that |d(n)[max = 0.499 is still not big enough. We have
to increase the places of the dither so as to suppress
the constant or alternating limit cycles whose amplitude
is 1lg. Apparently, in this case, the time needed to
suppress this constant limit cyle or alternating limit
cycle by the uniformly distributed dither will be long.
For the binary random dither, (- gq/2 + A) or (gq/2 - 4),

A should satify the inequality
O<Ac<1l-|al +8B (101)

Similarly, only if the value (1- |A| + B) < 0.01 |d(n)|=
0.499 is not big enough and the increase of the bits

needed for storing the dither is necessary.

For the example often used in the thesis, A = - 1.74,
B = 0.95833, A should satisfy that

g <+l = 1,74 +.0,95833 = 0,21833

In other words, the amplitude of the binary dither should
be greater than 0.28167 which is much less than 0.499. 1In
this case, the amplitude of 0.499 is big enough. In fact
in this example, it is possible to reduce the places of

the dither, i.e.,reduce the bits needed for dither storing.

Simulation has verified this binary random dither.
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6.5 SUMMARY

In this chapter, the previous works on the use of
dither for limit cycle suppression have first been reviewed
and discussed. Then the principal considerations in the
dither signal design have been described. The dither
signal should be a random signal distributed in the open
range (- gq/2, g/2). Three types of dither signal have
been derived from the principal considerations of the
dither signal design. They are uniformly distributed random
dither, binary random dither and bandstop dither. All the
limit cycles in the second-order digital filters can be
suppressed by the use of these three dither signals and
there is no remaining noise at the output terminal when
the input signal is zero. Each dither has its own
characteristics. The simplest one for generating is the
uniformly distributed dither. But it takes longer time
for the limit cycle suppression by the use of it. When
the binary random dither is used, the transition time to
the origin on the state plane is shortest but the penalty
is the increase of the output noise with nonzero input
signal. It seems that the best dither for limit cycle
suppression is the bandstop dither which has the advantage
of suppressing limit cylces guickly without causing much
increase in output noise. The penalty for the advantage
is the complexity in the dither generating. But in
systems already using many identical digital filters,

the extra complexity need not be significant.
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It is possible to generate other dither signals from
the principal consideration in the dither signal design.
But it seems that these three types of dither may have

satisfied different requirements already.

The process of generating bandstop dither needs
further study. In particular, it could be possible to
use bandstop dither signals which have been synthesised
by computer and stored in ROM. Further studies are needed
on the best form for the spectrum of the bandstop dither.
In particular, it is not known how deep should be the
notch in the spectrum. Any further improvements would

probably be small.

It is very hopeful if one can find a method to
generate the bandstopped binary dither signal It is
expected that the transition time to the origin state
and the increase of the output noise with nonzero input
signal would be reduced further by the injection of the

bandstopped binary dither.

Finally, in Section 6.4, it is concluded that the
number of bits needed for storing the dither signal and
the values in the binary random dither depend on the

coefficient values A and B.

In the next chapter, the experimental results will

be presented.
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CHAPTER 7

EXPERIMENTAL RESULTS

In order to verify the proposed methods for limit
cycle suppression extensive simulations have been carried
out with computers using the three types of dither signal
mentioned above. 1In this research, three different computers
have been used for different purposes; PET, PDP-1l1l and
HARRIS 500. But most simulations were implemented with
the HARRIS 500. Fortran language was mainly used, but

basic was also applied occasionally.

In the research, three kinds of experiments have
been done. 1In the first kind of experiments, some were
for verifying the limit cycle theory such as the existing
conditions, classifications, amplitude bounds and frequency
expression etc. The other simulations were for verifying,
roughly, the methods of limit cycle suppression proposed
in this thesis. The purpose of the second kind of
experiments was to obtain the outline of the time needed
for the limit cycle suppression by the use of the dither.
At the same time, the use of dither for stabilizing the
digital filter was checked further. The emphasis of the
third kind of experiments was to investigate the effect

of dither on the output noise from the filter section.

In the following sections the three kinds of experiment
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will be presented respectively.

7.1 GENERAL SIMULATIONS ON THE LIMIT CYCLES IN THE

SECOND-ORDER DIGITAL FILTER SECTIONS

l. Second-Order Filter Section With Quantization

As mentioned in the second chapter, there are two
different ways of implementing the quantizations in the
second-order sections: one guantizer and two gquantizer

versions. In the zero input condition, these two versioens

are described respectively, by the difference equations

¥ (n) {-AQ(n—l) - B§(n—2)]Q | (102)

and

§(n)

I

[-a¥ (-1 ], + [~BY(n—21]Q (103)
where [.IQ represents the operation of quantization.

The roundoff quantization, [X]., can be simulated by

R!

the following arithemtic
EX]R = Sign (X) xinteger [absolute(X) +0.5] (104)

where sign(X), integer (X) and absolute (X) represent the
sign of X, integer of X and the absolute value of X

respectively.

Using fortran language, the expression can be written

as
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SIGN(1l.0,X) % INT(ABS(X)+0.5) (105)
Using basic language, above expression can be written as
SGN (X) # INT(ABS(X)+0.5) (106)

The magnitude-truncating quantization, LXIMT' can be simulated

by the arithmetic
[X]MT = sign(X):integer [absolute (X) ] (107)

Similarly, using fortran language the above expression can

be written as

SIGN(1l.0,X)*INT (ABS (X)) (108)
Using basic language, the corresponding statement is

SGN (X)*INT (ABS (X)) (109)

By the use of the above statements and the corresponding
difference equations, the second-order filter sections can

be readily simulated with the computer.

2. Limit Cycles in the Second-Order Filter Sections

In order to find out the limit cycles in various
filters, first, we must determine the amplitude bound of
the limit cycles. Usually, Jackson's bound expression is
used because it is easy to calculate and it gives the
minimum bound in the all bound expressions. As mentioned

earlier, checking is necessary because this bound may be
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exceeded in some special cases. Suppose this bound is K,
then there are (2K+l)_2 states in the region defined by the

bound in the state plane incuding the origin state itself.

Secondly, each of (2K+l)2 states is assumed as an
initial state of the second-order filter section in turn.
The filter is operated until a limit cycle or the origin
state is reached. The limit cycles can be readily recognised
from the periodicity. It is clear from difference equation
that for a filter if Q(n—l) and §(n-2) change sign
simultaneously then Q(n) also only change the sign. .
Therefore, if the initial state (Q(n-l), §(n—2)) belongs
to a Type A periodic limit cycle (see Section 3.2), then
the initial state {-Q(n—ll-%(n—Z)).also beloﬁgs to the same
limit cycle since Type A limit cycle has half-wave symmetry,
i.e., the equation Q(n+ %) - ~§(n) exists.

Because the rounding and magnitude-truncation
characteristics are described by odd functions, consequently,
if there is a limit cycle of Type B in the filter, g(l),
§(2},...§(N}, then a limit cycle of Type B can also be
maintained in the same filter described by —Q(l),-§(2),...
-§{N), which is different from the former. If the former
is designated by Type BY and the later by B , then a similar
conclusion can be obtained that if the initial state
{Q(n-l), Q(n—2}) belongs to a Type BV limit cycle, then the
initial state (-Q(n—l),—?(n-2]) belongs to the Type B~

limit cycle.
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These two conclusions can be used to save the time
for searching limit cycles to half, because only half
initial states of (2K+l)2 need to be used in the simulations.
The limit cycles in the example often used have been listed
in Chapter 2. Fig. 21 and Fig. 32 show which limit cycle
each initial state belongs to in one- and two-quantizer

versions respectively.

3. Limit Cycle Displaying

By the use of the program in Appendix 6, the limit
cycles can be displayed on the screen of computer PET.
For a clear display, the initial states on the different
limit cycles have to be chosen. 1In the typical example,
there are 10 different limit cycles, therefore, we have
to input successively 10 initial states which are
respectively on the 10 limit cycles. After a certain
time, all the 10 limit cycles can be displayed on the
screen. By the use of the program in Appendix 7, the
limit cycles can be printed out with computer and printer.
Before running the program, the sequences which limit
Ccycles consist of have to be input. The print of the
limit cycles in the typical example is also shown in

Appendix 7.

7.2 GENERATIONS OF THREE TYPES OF DITHER SIGNAL IN SIMULATION

In the simulation, three types of dither signal
described in Chapter 6 have been used; uniformly distributed
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random dither, binary random dither and bandstop dither.
In this section, the methods how to generate these three
types of dither signal will be first described and then

the experimental results will be presented.

1. Uniformly Distributed Random Dither

When basic language is used a random sequence, RND,
which is uniformly distributed between é and 1 can be
delivered by the computer PET or HARRIS 500. In this
case, the random sequence (RND-0.5) is used as uniformly

distributed random dither.

For computer HARRIS 500, when fortran l;nguage is
used a random sequence which is also uniformly distributed
between O and 1 can be delivered by calling a subroutine,
GO5CAF, in the NAG library. Appendix 5 shows the subroutine

and how to call it by an example.

2, Binary Random Dither

Because in the uniformly distributed dither signal
both the sign and the magnitude are random, the sign
information of the uniform dither can be used as the sign
of the binary dither. The problem about how to determine
the two values of the binary random dither has been

discussed in Chapter 6.

Therefore, in order to generate the binary random dither,
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first, the uniformly distributed random dither is
generated, then let the sign of the binary random dither
be the same with the sign of uniform dither. For the sake
of simplicity, the amplitude of the binary dither is

assumed equal to 0.499.

When basic language is used, the corresponding statements

for the binary dither generating are as follows:

DU RND-0.5 (110)

DB

l

SGN (DU)%0.499 (111)

- When fortran language is used, the corresponding statements

for the binary random dither generating can be written as

I

DU GO5CAF (X)=-0.5 (112}

DB

Il

SIGN(1.0,DU)*0.499 (113)

3. Bandstop Dither

The block diagram for generating the bandstop dither
has been shown in Fig. 31 before. Each block in this

diagram will be described in detail as follows:

(A) The Generator of Input Gaussian Random Sequence

As mentioned in Chapter 6, the input sequence X in
Fig. 31 should be a wide band Gaussian noise with a flat
spectrum. In the simulation, this Gaussian random sequence
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came from a subroutine in the NAG library of computer
centre. The computer used was a HARRIS 500. The subroutine

of generating the Gaussian noise X is shown in Appendix 8.

The standard deviation and mean value of the Gaussian
random sequence used in the simulation were 1 and O
respectively. As an example, some numbers of the Gaussian
sequence is also listed in Appendix 8. Fig. 33 and Fig. 34
show the power spectrum and probability‘density function

respectively. As can be seen, above reguirements on the

input sequence X are essentially satisfied.

(B) The Linear Bandstop Filter

Because the second-order basic filter séction has a
bandpass characteristic, the linear filter should be a
bandstop filter. The centre of the stop band should be
equal to the centre of the pass band of the filter to be

stabilized.

In the experiments, two types of bandstop filter
have been used: Butterworth and Elliptic. The bandstop

filters were designed by the computer.

The Butterworth bandstop digital filter design program
requires three input data: the order of lowpass prototype,
lower cutoff frequency and upper cutoff fregeuncy. The
order of lowpass prototype is equal to half the order of

bandstop filter. Two cutoff frequencies are in unit of
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Fig. 33 The power density spectrum of Gaussian randam sequence used
in the research. The FFT with Hamming Window was repeated

127 times. The average values are shown here.
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Probability density function

« Statistical data in
8192 samples

=0.40 — standard Gaussian

distribution

Standard Gaussian
distribution

2.0 3.0

Fig. 34 The probability density function of the Gaussian randam

sequence generated by program.
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Nyquist frequency. After the input data have been typed
in, the computer will give the stopband width, the zeros
and poles of lowpass prototype, the zeros and poles of
bandstop filter and the coefficient values of the second-
order sections. This program can give the frequency

response of the designed filter if the operator requests.

The program for elliptic bandstop gigital filter
déSLQn has been shown in the reference (41). The
parameters entered into the program are the filter order,
the dB ripple in the passband, the sampling frequency,
the stopband edge frequencies and a stopband attenuation
in units of dB. The program requests an input by typing

the line
N, DBR, FS, Fl1, F2, F3 OR DBDOWN

The variable N is the order of the filter in the
s-plane. A zero or negative value entered for N terminates
the program. For bandstop filters, the filter order in
the Z-plane will equal to 2N. If the input data are entered

with O<F1l<F2< %é, a bandpass filter is defined. If the

input data are entered with O<F2<F1< §§ , @ bandstop filter
is defined. The final data entry is F3 OR DBDOWN. If it
is positive and lies within the stopband, the enﬁry defines
one stopband edge frequency. If the entry is negative, it
is used as the stopband attenuation. In the program output

the denominator and numerator coefficients are listed for
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the transfer function T(Z) where

M+1 o
'21 p(i)Z
n—l=
T(Z) = 377 e (114)
5, A(i)Z
i=1

(C) The Nonlinear Memorvless Network

The purpose of the nonlinear network is to transform
a Guassian distributed sequence Y, into a uniformly
distributed sequence, Z. The calculation of the nonlinear

curve is straight forward.

dz = R&) gy (115)
p(2)
with p(Y) and p(Z) respectively the Gaussian and the
uniform probability density. Again, the quantization
step, g, is assumed to equal to unity.
For Gaussian sequence
-1 - (y-u) 2
p(Y) = (0V/21) " exp[ =25  (~w<¥<w) (116)
2a% s

where the mean value p is equal to the mean value of input
and is equal to zero. o is the standard deviation of ¥
which is not equal to the deviation of X, i.e., the ¢ of

Y is not equal to unity any more. Therefore, in order to
get a unity standard deviation, we have to scale the
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sequence before it is input to the nonlinear network.

For uniformly distributed random output Z,

p(zZ) = 1 (-0.5<Z<0.5) (117)

Hence, the nonlinear gain can be written as

2
dz _ p(¥) _ {O/EF)_l exp [ ={Eot)
e — = P _______]
dy p(2) 202
-1 -Y2
= (Ov2T) exp ( —) (118)
20
or
dz = (ov2m) exp (—) dy (119)
20

Let ¥ = oYl where Yl has a unity standard deviation, or
dy = ody, (120)

Therefore,

<1 'Yi
a2z = (ov2rw) exp(—i—)c le
-1 'Yi
= (V27) exp (—=) 4y, (121)
e~ <
-1 ql -
z .= [ (VZ¥%) exp(—fu) ay,
b
b 1
=5 erf (75) +0.C (i22)

where C is constant.

=lei-



it
’ I 1 ; : ;
When -w<Yl<oo the function 5 erf(7§} distributes in

the range (-0.5, 0.5), it is just the function that we

want. It is interesting that the function - erf(Yl) itself

2

is also in the range (-0.5, 0.5). As will be discussed,

for our purpose, it seems that the nonlinear function
Y

1 : 1 1 .

ierf(Yl) is preferable to Eerf(7§). In the following

sections, when the function % erf(Yl) is used the dither

is called bandstop dither 1 and when the funcation
¥
% erf(7%} is used the dither is called bandstop dither 2.

The error function % erf (Yl) can be expressed by

series form(42)
5 = (_l)JYl2J+1
7 = o= z f12:3))

J=0 J1!(2J+1)

Egn. (123) is convenient to be simulated by computer.
Fig. 35 shows the simulation characteristic of this nonlinear
network. In the simulation, J is taken from O to 32. As
can be seen from Fig. 35, the nonlinear network just like
a suppressor which suppresses the Gaussian random signal
in-

whose values are distributed in finite range into a uniform

random sequence whose values are distributed in the range

(- %r %)-
(D) Scaler

In the simulation because J in Eqn. (123) is finite
and taken from O to 32, when the value of Yl becomes bigger
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Fig. 35 The characteristic of nonlinear memoryless network in the

bandstop dither 1 generator.
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than 4, the error of the simulation becomes too big.

Hence, it is necessary to limit the wvalue of Yl' This

can be done by scaling before the sequence input to the
nonlinear network. In the simulation, the reciprocal of

the standard deviation is used as a scaling factor. Therefore
Y, has a unity standard deviation. 1In this case, the

probability of]YlIexceeding 3 is very small.

Now, referring to Fig. 31, it is clear that when the
Gaussian random sequence with zero mean and unity
standard deviation whose power spectrum is approximately
flat is applied to the bandstop filter, the output from
the bandstop filter is still Gaussian but the frequency
components falling within the stop band have been attenuated.
The stop band is greater than the pass band of the filter
section to be étabilized and both have the same centre
frequency, the components whose frequencies fall within
the pass band of the basic section in the output seguence
from the bandstop filter have been attenuated seriously.
The purpose of the scaler is transforming the non-unity
standard deviation input sequence into a unity standard
deviation sequence so as to reduce the distribution range
of the output sequence. This is requested by the limited
dynamic range of the nonlinear network. The output from
the nonlinear network is the bandstop dither which
distributes approximately uniformly in the range (- %, %}
and has very small frequency components falling within
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the pass band of the filter section to be stabilized.

Fig. 36 and Fig. 37 show the examples of the
probability distribution of the bandstop dither 1 and 2
respectively. As can be expected, the probability

distribution of bandstop dither 2 is flat in the range
¥

3 % erf(7%) satisfies Egn. (122).

It can be seen from Fig. 36, although the probability

(= 9, %) because the function

distribution of bandstop dither 1 is aﬁbroximately flat
but there are two peaks around the values -0.5 and 0.5.
As mentioned before, these greater probabilities of big
dither magnitude may shorten the time needed for the
transition from any limit cycle to the origin state on
the state plane due to the bigger amplitude of the dither
resulting in more frequent transitions. Hence from
reducing the transition time point of view, bandstop

dither 1 is preferable to the bandstop dither 2.

On the other hand, because the function %srf(Yl)
causes stronger nonlinear than func tion %erf{i%) it must
lead to more distortion in the power density spectrum of
the bandstop dither. Fig. 38 and Fig. 39 show,respectively,
the power density spectrums of the bandstop dither 1 and
bandstop dither 2. It is clear from these two figures
that the stop band attenuation of the-bandstop dither 1
is indeed less than that of the bandstop dither 2, But
this decrease of stop band attenuation is small, (about

2 dB in these examples).
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Fig. 36 The relative frequency histogram of the bandstop dither 1.
The nonlinear network whose characteristic is %erf (Yl) has
been used.
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Fig. 37 The relative frequency histogram of the bandstop dither 2.
The nonlinear network whose characteristic is %erf( 7%) has
been used.
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Fig. 38 The power density spectrum of the bandstop dither 1 whose
stop band width was equal to (0.08~0.14)Fs. The nonlinear

function %‘erf (Yl) was used.

-174-



LOG MAGNITUDE IN dB

-2.0 &

0.0 |

| 240

4.0 |

6.0

128 samples,Hamming Window

NORMALISED FREQUENCY
l I |

0.0

0,125 0.25 0.375

Fig. 39 The power density spectrum of the bandstcp dither 2 whose

stop band widtf&was equal to (0.08~0.14)Fs. The nonlinear
1

function Eerf( :%) was used.
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In words,bandstop dither 1 has such a probability
density distribution that is helpful for reducing the
time needed to stabilise the basic filter section but it
may cause a bit more increase in the output noise due to
more intermodulation products falling within the stop band
of the dither. 1In contrast with bandstop dither 1, the
bandstop dither 2 has bigger stop band attenuation than
bandstop dither 1, therefore it causes smaller increase
in the output noise but a longer time for filter section
stabilization is needed. As will be seen later, the

experimental results have verified this conclusion.

7.3 SIMULATIONS OF LIMIT CYCLE SUPPRESSION

When the uniformly distributed or the binary random
dither is used, the simulation of limit cycle suppression
is simple. The only thing to do is to add the dither at
the proper point as shown in Fig. 14. The simulations
have verified that all the limit cycles in the second-order
sections used can be suppressed without remaining noise in
the zero input condition. Fig. 40 shows an example of
limit cycle suppression. This is the example frequently
used. The initial state is (5, 12). As can be seen from
this figure, after 92 transitions, the filter reaches
the origin state by the use of the uniformly distributed
random dither. Once the limit cycle has been suppressed,
the output keeps being zero in the zero input condition.
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For the sake of comparison, the zero-input response of
the section without dither is also shown in the Fig. 40.
Fig. 41 shows the output response in the same example but
the binary random dither was used and the corresponding
trajectory on the state plane from the initial state to

the origin is shown in Fig. 42.

When the bandstop dither is used, the situation is a

bhit complicated. Fig. 43 shows the total experimental block

diagram.

The transfer function of the linear bandstop filter

can be written as

d 2 3 4

F(1+ZAZ2 “+2ZB2 “+2C2 ~+2Z2DZ )

H (2Z2) = — = a =
ks 1+a2" Y4Bz %+cz " 3+pz 4

(124)
For a second-order bandstop filter
ZC =ZD =C =D =0

As we have known that when a Gaussian random sequence with
zero mean and unity standard deviation is applied into

a linear filter, the standard deviation of the output
from the filter, o, is not equal to one. The standard

deviation ¢ can be calculated as

(n {&25)

Q
]
(o]
I 1 8
(@]
i
ro

where h(n) is the impulse response of the linear bandstop

filter.
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Fig. 42 The trajectory corresponding to Fig. 41 on the state plane.
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Fig. 43 The experimental block diagram of the limit cycle suppression

in the second-order filter section with bandstop dither.
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Only is the filter linear stable, the impulse response,
h(n), is convergent and when all the coefficients of the
bandstop filter are known, 0 can be calculated by computer

easily. Appendix 9 shows the program for the calculation.

The procedures of doing a simulation are as follows:

1. Designing the Second-Order Basic Section to be Stabilized

The first step is choosing the pass band of the section,
for example, 0.3 FS = D321 Fa where FS is the sampling
frequency. Then by the use of the program mentioned before,
a second order Butterworth bandpass digital filter can be

designed.
Its transfer function is

1 2

+0ZB 2 °)
+0B 7=2

_ F(1+02A 2~
1408 27"

Hp(Z)

1 -2

1+0A Z

- = (126)
+0B 2
when the order of the prototype filter which is now equal
to one and the pass band edges of the filter, for example
0.3F and O.31FS, have been typed in, the printer should
print out the coefficient values 0ZA=0.0, 0ZB=-1.0, OA
and OB. As mentioned earlier, because the zeros do not

affect the number of limit cycles, they only affect the

relative magnitude of the limit cycles, we can only
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consider the poles of the second-order filter. Therefore,
the transfer function of the second-order filter section
can be expressed as

1
Ho[2) = T - (127)

1+0AZ ~+OBZ

2, Designing the Bandstop Filter

In the research, both Butterworth and elliptic bandstop
filters were used. The orders were 2 or 4., According
to different types of the filter, the different programs

can be applied.

At this stage, one important question is how to

choose the width of stop band.

There are at least three factors that should be
considered. First, the stop band width should be greater
than the pass band width of the filter section to be
stabilized. The frequencies of the limit cycles are
divergent although they are, in general, still near by
the resonant frequency of the section and 3 dB attenuation
at stop band edges is not enough for improving limit cycle
suppression., Second, the stop band width should not be
too wide, otherwise with the big probability the
instantaneous values of the bandstop dither may not be

big enough for limit cycle suppression because most
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frequency components have been suppressed. Third, the
stop band width should not be too wide, otherwise the
distortion of the stop band characteristic will be more
serious. More intermodulation products which are caused
by the nonlinear network following the bandstop filter
will fall within the wide stop band. Therefore, it is
expected that there may be an optimum stop band width
for the limit cycle suppression. Here "optimum" means

the shortest time needed for limit cycle suppression.

In order to find the "optimum" stop band width, five
different widths have been used. They are equal to 1, 2,
3, 4 and 5 times pass band of width of the second-order
section to be stabilized respectively. The simulations
have shown that generally when the stop band width is
equal to three or four times pass band width of the
section to be stabilized the performance of the limit

cycle suppression is better.

3. Calculating the Standard Deviation of the Response

of the Bandstop Filter by the Program shown in

Appendix 9

4, Scaling the Output Sequence of the Bandstop Filter

The scaling factor is equal to %.
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5. Generating the Bandstop Dither Signal by the Program

Shown in Appendix 10

This program requests an input which consists of the

parameters from step 1-4 above.

6. Simulating the Basic Second-order Filter Section,

Setting the Initial State

-

Then, the procedure of the limit cycle suppression
by the use of the bandstop dither can be printed out by

the computer.

7.4 TIME FOR STABILIZATION

The experiments to determine the time for dither to

affect stabilization have been done by simulations.

Among the three types of dither signal mentioned
before the uniformly distributed random dither is a basic
type. The others come from it and are mainly for improving
the performances of the limit cycle suppression. Therefore,
first we pay attention to the use of uniformly distributed
dither. Then, the results of the use of other dither signals

will be presented.

1. Results of the Use of Uniformly Distributed Random

Dither

Several different methods to measure the time for
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stabilization have been used.

In the first method, the average time from each
initial state in the amplitude bound zone of the limit

cycle to the origin of the state plane were measured.

In the second method, in each case the filter section
started at the same state which was on or "outside" the
largest limit cycle on the state plane. Here "outside"
means that the distance from the initial state to the origin
on the state plane is bigger than the maximum distance
from the states on the largest limit cycle. Then the time
for transition to the origin was measured, because the dither
was random, this time was also random. Simulation was
repeated 1000 times. Hence the cumulative distribution
function (CDF) for the transition time could be obtained.
The median value corresponding to 50% probability was

interested.

The third method of measurement is similar with the
second one but the mean value of the transition time was

used.

It is expected that the requirements to the uniformly
distributed random dither are not strict, i.e., no special
strict requirements are needed on the correlation,
probability distribution, etc. In order to obtain the
impression about the effect of the use of different uniform

random dither, the uniform random dither signals from
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different computers have been used. As will be seen from
the fesults, (See Figs.44 - 61), the performance of the
limit cycle suppression does not much depend on the
characteristic of the uniform random dither. Therefore,
the uniformly distributed random dither can be generated
by a simple metheod.

As mentioned in Chapter 2, there are two different
ways of implementing the gquantizations ln the second-order
digital filters: one quantizer and the two quantizer versions.
In the two quantizer version, a dither can be added to the
two coefficient products simultaneously or only to the B
coefficient product. In other words, there may be three
cases; one quantizer one dither, two quantizérs two dithers
and two quantizers B dither. 1In the simulations all the

three cases have been included.

Table 3 shows the results when the uniformly distributed
dither was used. 1In this table, six types of second-order
filter section have been applied. The ccefficient
combinations were: A=t1,74, B=0,95833, A= 1,875, B=0.91875;

A =:x1.25, B=0.825. Each pair of filters without dither
respectively has periodic and constant (alternating); constant
(2alternating); and periodic limit cycles. In each case,

the filter was initialised to the state (11,11). The
simulation was repeated 1000 times, enabling an accurate

estimate of the median time for stabilization to be made.

The CDF in each case is shown in Fig. 44 to Fig. 61.
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From these CDF it can be expected that the distribution of

transition times to the origin are approximately normal.

2. Results of the Use of the Binary Random Dither

In this research, the amplitude of the dither was
assumed to be 0.499. As mentioned in Chapter 6, this
amplitude is, in general, big enough except in the very

special case |1-|A|+B|s 0.001. g

For convenience of comparing, "the same filters and
the same methods used in the simulation with uniformly
distributed random dither have been applied. All the
results are also shown in Table 3. . As can be expected,
the table shows that the transition time for- the
stabilization when the binary random dither is used is
much less than that when the uniformly distributed dither
is used. Specially, when the Q-value of the second-order
section is high, this improvement is distinguished. For
the example often used in this thesis, its improved
transition time is only about one fourth to one third
of that when the uniformly distributed random dither is
used. This is particularly desirable, because only in
high-Q cases, the transition times are very 1long , and

the improvement is most remarkable.

3. Results of the Use of the Bandstop Dither

The program used in the simulation of limit cycle

suppression by the use of the bandstop dither is shown in
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Appendix 10. In this program, statement 55 calls a Gaussian
random sequence with a unit standard deviation and zero
mean, Statement 57 simulates the bandstop filter.

Statement 66 scales the output from the bandstop filter

so as to get a filtered Gaussian sequence with unity standard
deviation. Statements 70-96 simulate the nonlinear network.
The output from this nonlinear network is the required
bandstop dither. Statements 100-117 simulate the basic
second-order section. In the simulation, the initial
condition of the basic filter section was (11,11) and the
input signal was zero. The section was operated until the
origin state was reached. The computer calculated the
number of steps. Each simulation was repeated 100 times.
The computer printed out the cumulative distribution
function CDF. The median values of the transition time

are shown in Table 4. For the sake of convenient comparing,
the median values corresponding to the use of the uniformly
distributed dither and the binary random dither are also

listed in the same table.

An intereéting simulation is the use of a bandpass
filter instead of a bandstop filter to generate the dither.
This type of dither has bigger frequency components falling
within the pass band of the section to be stabilized. Let
us call it bandpass dither. 1In contrast with the bandstop
dither, it is expected that when bandpass dither is used
the transition time to the origin should be increased very
much. In the simulation, the fourth-order elliptic passband
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filters were used. The experimental results have also
been listed in the Table 4. As can be seen from these
data, when bandpass dither signals were used, the
transition times to the origin were increased by several
ten times of that when the uniformly distributed dither
signals were used. It is worth noting that the limit
cycles in the second-order filters still can be suppressed
by the use of the bandpass dither although the transition

time to the origin is much longer.

It can be expected that when the input signal is not
zero, the extra noise by the bandpass dither would be much
greater. Therefore, we do not think that the bandpass
dither is a useful dither signal. But these simulations
have verified, from other points of view, the idea of

the bandstop dither.

In order to find out the "optimum" stop band width
of the bandstop filter from the shortest transition time
point of view, various stop band widths have been used.
Table 5 shows the median transition times with various
bandstop dithers. As can be seen from the table, the
"optimum" stop band width is equal to three (or possibly
four) times pass band width of the filter section to be

stabilized.

4. Summary About the Time for Stabilization

From the simulation, as far as the transition time to
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TABLE 5
The median transition times to the origin with various stop band

widths of the bandstop filter in bandstop dither 1 generation

-3GB frequencies Median transition time to the origin
e L ) e
O.iEcu 110 98 95 97
0.1, 0.12 52 47 46 48
0.2, 0.21 100 | 94 98 93
0.3,0:31 115 108 108 104
0.3,,.0137 58 58 58 55
0.4, 0.41 152 120 124 123
0.4, 0.42 74 67 68 64
0.42, 0.43 158 149 140 | 144
0.1, 0.101 1550 | 1375 | 1233 | 1250
0.2, 0.201 1060 | 1160 950 963
0.3, 0.301 1217 . 12163 .| 1067 ¢ 1150,
0.4, 0.401 2300 | 1680 | 1450 | 1625

*Note: Frequencies as multiples of the sampling frequency.
Time as multiples of the sampling period
W_ represents the stop band width of the fourth-order
eTliptic bandstop filter in the bandstop dither 1
generation.
W_ represents the pass band width of the filter
séction to be stabilized.
The initial state is (11,11).
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the origin state is concerned, the following conclusions

can be obtained.

(A) The Shortest Time Needed for the Stabilization of

Second-order Filter Section can be Obtained by the

Use of the Binary Random Dither

As can be seen from the data in Table 4, for high-Q
filter section, the improvement of the median transition
times to the origin is outstanding. This is very desirable
because in this case the transition time is long. For
example, when the pass band of the filter section to be
stabilized is from 0.4F_ to 0.41F, where F, is the sampling
frequency, the transition time to the origin is reduced
from 223 Ts with uniformly distributed random dither to
110 Ts with the binary random dither. But for low-Q
filter section, the improvement of the median transition
time is not apparent, in some cases even no improvement
at all. For example, when the filter section with pass
band (0.3--0.38)1:‘s is used, no improvement has been found.

(Both transition times are l?Ts).

Practically, in low-Q case, the improvement of the
transition time is not necessary because even with
uniformly distributed random dither the transition time
is short. For the example above, the transition time

is only l?TS.

Hence, in high-Q filter section for a quick stabilization
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the binary random dither is recommended.

(B) For High-Q Filter Sections, the Transition Times with

Bandstop Dither may be Near but in General, still

Longer than that with the Binary Random Dither.

For example, when the filter section with pass band
(O.3—O.3l)Fs is used, the median transition times with
binary random dither and bandstop dither are respectively
eéual to 98'1‘S and llOTS. The difference is only 11l%. As
will be seen later, for mean transition time the difference

is even smaller.

The disadvantage of the bandstop dither is the
complication in generation. But as will be seen in the
next section, its advantage is that it causes smaller

extra output noise in the non-zero input condition.

As far as the transition time is concerned, for low=Q
filter section, the uniformly distributed random dither is
prefered because it is simple to generate and the
transition time to the origin is short enough, for example
less than 50 Ts. For medium-Q basic section, the transition
time with uniformly distributed dither is also medium,
for example from 50 T, to 100 Ts. For this case, the
second-order bandstop dither (in the generation a second-
order bandstop filter is used) is recommended because
higher-order cannot offer extra improvement. For high-0Q

basic section, the transition time with uniformly distributed

~214~



random dither is long, for example longer than 100 Tg.
In this case, the fourth-order bandstop dither signal is
recommended because it can shorten the transition time

further.

(C) From the View Point of the Shortest Transition Time

to the Origin, the Recommended Stop Band Width is

Equal to Three or Four Times the Pass Band Width of

the Second-order Basic Filter Section in the Bandstop

Dither Generation.

As can be seen from Table 5, when the bandstop dither
signal is used, the transition time to the origin with a
bandstop filter whose stop band width is equal to three
times pass band width of the basic section to be stabilised
is, in general, the shortest. For a medium-Q basic section
with bandstop dither, when the stop band width is equal to
or greater than two times pass band width of the basic
section the difference of the transition time is not very
apparent but the improvement does exist. Therefore, to
put it briefly, a bandstop filter whose stop band width
is equal to three times pass band width of the basic

section is recommended.

In the next section, another important aspect of the
experimental results in the dither application, i.e., the
effect of dither on the output noise when the input signal

is applied,will be presented.
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7.5 THE EFFECT OF DITHER ON THE OUTPUT NOISE

Although when input is zero and the limit cycle has
been suppressed the dither has no influence on the output
from the filter, when the input is nonzero, the dither
should be considered as an additive noise. If the amplitude
of the input signal is much bigger than the quantization

step, then the following assumptions are true.

-

(1) Any two different samples from the same noise

source are uncorrelated.

(2) Any two different noise sources (i.e., associated
with different multipliers) regarded as random

process, are uncorrelated.

(3) Each guantization noise and the dither are

uncorrelated with the input sequence.

Thus each gquantization noise source is modelled as a
discrete stationary white random process with a uniform
power density spectrum of %;. If the uniformly distributed
random dither is used, then the dither can also be treated
like a quantization noise. For the other two dither signals,
they can be treated as independent random noise sequence
but have different power spectrums. The measurement shows
that the power spectrum of the binary random dither still

approximates uniform. Whatever dither signals are used,

at output terminal each quantization noise power and dither
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power can be added independently.

Suppose that there are P noise sources including the
dither and quantization noise. Consider the Kth noise
source eK(n). Let hK(nl be the impulse response from the
noise source to the filter output. The output noise
components EK{nl, due solely to eK(n), may be obtained

via convolution as

n
Eg(n) = I h (m) & (n-m) {LeBi
K K
m=0
The variance of EK(n) may be obtained as
2 In n
05,(n) = E[ £ hy(me,(n-m) I h (R)e,(n-2)]
OK e T K P K
n n
= £ I h,(mh,(R)E[e,(n-m)e,(n-2)]
meg 150 = K i
n n 2
= . ¥ £ h,(m)h,(2)8(2-m)o
m=0 =0 % 8 S
or
n
2 2 2
o = g L h;(m) (129)
OK e =0 K

where Og is the variance of input noise if the input noise

2
is uniformly distributed in (- %, %} then 02 = %5 LN
the limit, as n tends to infinity, the variance GSK(n)

tends to the steady-state limit
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co

0oy =92 I BE(m) (130)
m=0

The total steady-state noise variance Ug is then

i

2
gos =ik g (131)
0 7 iy OK

Similarly, because each noise is independent with the input
signal, the noise and signal power can be added independently

at the ouput terminal.

To determine the effect of dither on the output noise,
the filter was simulated with a sinusoidal input at a
frequency close to its resonance and with an amplitudé
corresponding to full use of a ten-bit wordlength in the

output.
The procedures in the simulation are as follows:

First, no dither was added. The amplitude of sinusoidal
input signal was chosen such that ten-bit wordlength was
fully used by the output sinusoidal signal. This sinusoid
was applied to the second-order section with one quantizer.
The power spectrum of the output from the filter was
estimated by use of the FFT, with a Hamming Window. The
Hamming Window is of the form

27Tn N=1

N=-1
0.54 + 0.46 COS(—ﬁ— —(—5—}SHS—§—
Wy(n) =

(132
0.0 elsewhere
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Fig. 62 shows the frequency response of a Hamming
Window. In the simulation, the total number of points, N,
was equal to 2048. Although, the overall frequency
response of the Hamming Window appears to have no ripples
beyond w = %E, this is not the case. On the linear amplitude
scale of Fig. 62, however, the ripples are not visible.

The main lobe of the frequency response of the Hamming

Window is twice the width of the main lobe of the fregquency
response with the rectangular window. Because the fregquency
of the input sinusoidal signal was just the integer multiples
of the ;5  there were three points on the spectrum
corresponding to the frequency of the sinusoid. These

three points were used to measure the signal. There were,

of course, some noise components included in these three
points, but because the signal component was much bigger than
the noise components and the pass band of the filter section
included much more spectrum points, the error of measurement
was small. The other points on the spectrum were used to
provide an estimate of the mean square value of the noise.
This mean square value of the noise was considered as the
quantization noise and treated as a reference power level

i.8y, O dB.

Then, each type of dither signal was added respectively.
The input signal was the same with above. In each estimation
of power spectrum, the FFT were used thirty times successively
and the average values were considered as the estimate of
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Fig. 62 Frequency response of a Hamming Window.
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the power spectrum. The increase in the unit of dB was

interesting. The program used is shown in Appendix 1l.

The increase in output noise due to the uniform
dither and the binary dither could easily be calculated
if it could be assumed that the effect of the filter
quantization is equivalent to the addition of a random
error whose mean square value is %; and if nonlinear effects
could be ignored, uniform random dither would then produce
an increase in output noise of 3 dB and binary random
dither would produce an increase of 6 dB. In reality,

nonlinear effects cannot be ignored and the increase in

noise will be somewhat different.

Table 6 shows the results for a number of second-order
sections, corresponding to a variety of filter centre
frequencies and bandwidth. In this table, two types of
bandstop dither were used. The experimental results have
verified the expectation mentioned before, i.e.,bandstop
dither 1 results in a quicker limit cycle suppression but
it causes a bit bigger increase in the output noise. 1In
contrast with this, bandstop dither 2 causes a bit smaller
output noise increase but it needs longer time to suppress
the zero-input limit cycles in the second-order filter
sections. The difference between the two increases in

output noise is less than 1 dB.

As can be seen from the table, the increase in output
noise varies from case to case, but the binary random dither
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consistently results in an increase in noise nearly 3 dB
more than the increase with uniform random dither. The
increase in output noise with bandstop dither is about

4 dB less than with the binary random dither. This is

an encouraging result., As can be expected,the experimental
results show that when the bandstop dither is used, the
increase in the output noise is smallest. The increase

in output noise with the bandstop dither is about (1.0~
1.5) dB less than with uniformly distributed random dither.
The biggest increase in the output noise appears when the
binary random dither is used. But our simulations show
that the practical increase in the output noise is less
than that would be expected due to addition in a linear

filter as a result of the nonlinear effects of quantization.

As a summary of the use of dither signals, the mean
times for stabilization corresponding to different filters
with different dither signals are also shown in Table 6.
In each case, an initial state on the largest amplitude
limit cycle was used. The simulation was repeated 1000
times, enabling an accurate estimation of the mean time
for stabilization to be made. The standard errors of the
mean times (the definition of this term will be given
later) are also shown in the table together with the

mean times.

The mean of a sample is a point estimate of the mean

of the parent population. As mentioned earlier, the
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distribution of transition time to the origin is approximately
normal. But we know neither the mean value, u, nor the

standard deviation of the parent population, o. From the

theory of the sampling and estimation in statistics(43),

we know that for large samples (e.g.,n330) the standard
deviation of the sample, s, may be used as an approximation
to the standard deviation of the population o. The
sampling distribution of means of samples of size n from
a population which is N(u,oz} is N(u,c;) where cg = %5
called the standard error of the mean. In our estimations,
the mean of the time for stabilization X and the standard
deviation of the sample s could be obtained by calculating
from the transition time distributiﬁn. The sample size,
n, was equal to 1000. Hence it is accurate enough to use
the standard deviation of the sample, s, as an approximation
to the standard deviation of the population, o, i.e.,the
standard error oi= %E = 7% can be obtained. As well
known for a normal distribution, the probabilities that
a sample mean will lie between the limits p-1.960_ and
M+l.960_ or p-2.570_ and u+2,.570_ are 0.95 or O.9§ respectively.
In othe? words, we ?an be 95 or gg percent certain that a
sample mean will not differ from the population mean by
more than 1.960_ or 2.57¢0_. If the mean value of a sample,
X, lies within i:{he limitsxu—l.960_ and u+l.960_ (or
u-2.570§ and p+2.5?ciJ the mean vilue of the pgpulation, U,
must lie within the limits X -1.9602 and X % 1.960_ (or

X

2—2.570_ and i+2.5?0_), (see Fig. 63). Therefore, we can
X X
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X=1. 9602 }-{ X+3.. 9602
L r 1
- = H =
u l.960x u+l.960x

Fig. 63 If X lies within the limits u-1.960% and p+l.960%
then p must lie within the limits i—l.%ci and §+1.960>-{ :

=225~



be 95 (or 99) percent sure that the mean value of the
population, p, lies within the limits i—l.960_ and
X+1.960_ (or X-2.570_ and X+2.570_). As can ge seen from
Table 6? the standarg errors are ﬁuch smaller than the

mean X, i.e., the estimations are accurate.

To provide a comparison for the transition time to
the origin, the table also shows the time for the response
of a filter without quantization to decay below the

amplitude % from the same initial state.

The results in this table show clearly that the
binary random dither and the bandstop dither result in
more rapid stabilization than uniform dither. The mean
times for the binary random dither and the bandstop dither
to effect stabilization are comparable with the decay time

for the strictly linear filter.
7.6 SUMMARY

In order to verify the proposed methods for limit
cycle suppression extensive simulations have been carried
out. The main results of the simulations have been

presented in this chapter.

Three types of dither signal: uniform random dither,
binary random dither and bandstop dither have been
obtained by the simulations. The use of these dither
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signals for limit cycle suppression in a variety of filter

sections have been studied experimentally.

When dither is used to stabilize a digital filter,
two specifications are of particular interest. One of
these is the length of time taken for the filter, with
zero input, to reach the state plane origin from a limit
cycle. The other specification of interest is the increase
in the output noise from the filter abo¥e the quantization
noise which is present when nonzero input signals are

applied without dither.

Several different methods to measure the time for
stabilization by the use of dither have been used: the
average transition time from each initial state within
the amplitude bound zone of the limit cycle in the state
plane to the origin; the median and mean of the transition
time from same initial state to the origin in 1000 times
simulations. The time for the response of the linear
version of the digital filter section (without quantization)
to decay below the threshold of % from the same initial
state has been used as a reference time in the comparison
of the transition time to the origin. As far as this
transition time is concerned, in the three types of dither,
the order of preference is the binary random dither,
bandstop dither and uniform random dither signals. The
mean times for the former two types of dither to affect

stabilization are comparable with the decay time for the
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strictly linear filter.

To determine the effect of dither on the output
noise, the filter was simulated with a sinusoidal input
at a frequency close to its resonance and with an output
amplitude corresponding to full use of a ten-bit wordlength,
The power spectrum of the output from the filter was
estimated by use of the FFT, with a Hamming Window. The
points on the spectrum corresponding to the frequency of
the sinusoid were used to measure the signal power. The
other points on the spectrum were used to provide an
estimate of the mean square value of the noise. The
guantization noise with the same signal but without
dither is used as a reference of the noise output. The
increase in output noise above the quantization noise is

interesting.

As far as the increase in output noise is concerned
in the three types of dither, the order of preference is
the bandstop dither, the uniform random dither and the

binary random dither.

The main conclusions about this research will be

discussed in the next chapter.
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CHAPTER 8

CONCLUSIONS AND SUGGESTIONS

FOR FUTHER RESEARCH

The purpose of this research has been to contribute
methods of limit cycle oscillation suppression in the
second-order filter sections by the use of somewhat
different dither signals which have no disadvantages of

the methods proposed before.

Despite the fact that these limit cycles can be made
arbitrarily small by increasing the number of significant
digits of the data, in practice, this increase is not
desirable because it increases the cost and complexity

of the filter.

When input signal is zero, only limit cycle
oscillation exists., Because limit cycles are correlated
noise it is more harmful than normal noise. Especially,
when these integrated circuits need to be used for
applications where limit cycles are not tolerable, an

effective method to suppress limit cycle is very necessary.

The major contributions of this research are now
summarized. In Chapter 3, two new existence conditions of
constant and alternating limit cycles in the second-order
filter section with one rounding quantizer have been derived

on the experimental basis. In Chapter 4, the mechanism of
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the limit cycle suppression by the injection of dither
haslbeen explained qualitatively. From the statistical
average point of view, the injection of dither tends to
linearize the nonlinear characteristic of rounding quantizer.
In Chapter 5, the necessity of the limit cycle suppression
in the second-order filter sections has been proved partly
on the experimental basis. It has been shown that for any
particular second-order digital filter -section, i.e., one
with specified coefficient values of A and B, it is straight-
forward to determine rigorously whether or not dither will
suppress all limit cycles. By the transition matrix, the
maxXimum transition time needed for transition from any

limit cycle to the origin state on.the state plane can

be calculated. In Chapter 6, by checking the characteristic
of the equivalent quantizer, the principal considerations

of the dither signal design have been described. Three
types of dither signal have been proposed. All the limit
cycles in the second-order filter sections can be suppressed
by the use of any one of the three dithers. Once the zero-
input limit cycle has been suppressed, the output from

the filter remains zero, i.e., no remaining noise left at
all, Extensive simulations have been done. In none of

the filter sections examined has dither, of the forms
described here, failed to suppress limit cycles. The

limit cycle suppression by the injection of the three

dither signals were verified. The experimental results

have been presented in Chapter 7. These results show

=230~



clearly that binary random dither results in more rapid
stabilization than uniform and bandstop dither signals.
The mean times for binary random dither and bandstop
dither to affect stabilization are comparable with the
decay time for the strictly linear filter. The increase
in output noise varies from case to case, but binary
random dither consistently results in an increase in noise,
nearly 3 dB more than the increase with uniform random
dither. This is expected by the fact that the variance

of binary dither is three times bigger than that of
uniform dither. The results with bandstop dither are
encouraging. From the experimental results, it is apparent
that bandstop dither has combined the advantages of binary
dither and uniform dither. The stabilization times with
bandstop dither are similar to those with binary dither
which, as mentioned above, are themselves similar to the
decay times of the filter without quantizer. The increase
by the bandstop dither in output noise is, in each case,
(l~1.5) dB smaller than the increase by uniform dither.
Two types of bandstop dither have been used. By the
injection of bandstop dither 1, the time needed for the
stabilization of filter section can be reduced further

but it will cause a bit more increase in output noise than
that caused by bandstop dither 2. The increase in output
noise due to bandstop dither 2 is smallest, but the time
for the stabilization of filter section is longer than

that when bandstop dither 1 is used. The difference between

=231~



two increases in output noise is less than 1 dB. The
significance is that if the nonlinear function %erf(CYl)

is used where C is a positive constant, C can be used as

a control coefficient. By changing the value of C, the
trade-off between transition time and output noise increase
is possible. It can be expected when C is much greater
than 1 the dither would have a similar performance with
binary dither, and when C is less than 7% the transition

time would be long though the output noise increase might

be slightly smaller.

Each dither signal has its own advantages and
disadvantages. We believe that each dither signal can
find its own application. For uniformly distributed dither,
it is easy to be generated and has smaller noise increase
in the output but it needs a long time to stabilize the
filter sections. Binary random dither can stabilize the
filter section quickly, and it is still easy to be
generated, but has a larger noise increase in the output.
For bandstop dither, it can suppress the limit cycles
quickly and has very small noise increase in the output
but it is complicated to be obtained. However, bandstop dither
can be applied to the system where many identical digital
filters have been included already. 1In this case, the

extra complexity need not be significant.

There remain several unanswered problems which have

arisen as a result of this research and should be noted for
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further investigation. Among them are the following:

(1) It is not clear whether there would be any
advantage in achieving lower spectral levels within the
stop band than those which have been used here. The
results given, show that the forms of bandstop dither used
in the experiments already result in only a small increase in
output noise and the limit cycles disappear about as quickly
as the normal resonant decay of a linear filter without

quantization.

(2) Simpler methods for generating bandstop dither
than described in this paper may exist. For example,
Steiglitz's Markov process scheme for generating signals

(44)

with a required spectrum might be applicable. It
could be possible to use bandstop dither signals which have
been synthesised by computer and stored in ROM (read only

memory) .

(3) It would be interesting to find a method by which
a binary dither signal with an approximate bandstop spectrum

could be generated.
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APPENDIX 1

Program used with Computer PET to display the

procedure of limit cycle suppression on

the state plane
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B e g e s TP L e T T
(A ARERAARAARHIAD F LA AR LS AL S SRR A S 4R 2 2 -
AARERRAFDE SRR AR AR AR E L
Fi A * * R
t+ Pdn 7 2499-11ML TERM :
: 1INAL: &8 - e e | W

¢ 3443 A 20 JUL 82 21:24
a-:i-‘}'lﬁ'*'ﬁ'ﬂ'-ﬁv-.}-fa* ER e R R e R ST I G e S A A G ISR U VPR VUG SRV SRR e o
Pop A HBR G AT G AT AT AL A DRI AL A IR B AR A A AR AN AL AR RS R AR A S F IO A AR A R A AR R A IS F R RAE S

|0 C=1.0

20 A=-1. 74

30 B=0. 95833

10 PRINI" *

50 IKPUT"X1"; X1

50 INPUT"X2"; X2

70 REM

30 REM PLOT SPOTS..............

?0 REM

110 FOR I=1 TO 24

20 PRINEY. . .. Sy . R s n
 SORGEXTY BNy My o 5 NOLR Al S ETRER-A e N
30 REM

|50 REM PLOT LINES

160 RE!N

170 FOR I=1 TO 25

150 POKE(327&B+4C*1+20), &6

190 NEXT I

°00 FOR 1=0 TO 3%

210 POKE(327&5+4380+1), 45

220 NEXT I

230 FOR K=1 TO 10000:REM PLOT 1CC00 FOINTS.
240 RXX=RND(2)-0. 5

250 RX=SGN(RXX)30. 499

260 REM
70 REM COHMPUTE NEXT STATE........

520 Yi=-A#X1—F#X2+C<4RX %
290 Y=SCH(Y1)#INI (ARS(Y1)+0. 5)

300 X2=X1

310 X1=Y

315 PRINI™ "

320 PRINT"X1: "5 X1

330 PRINT"X2: ', X2

340 PRINI“K: "; K

350 REM

350 REM PLOT STATE PLANE POINT. ... . ..
375 REM

3

3

MO O OO0 OO i B e e s v 1 e B N Y 8 i

52 LOC=3274B+(13-X1)#40+(X2-20}
0 FOR =1 T0O 2
ACD FOR La=1 TO 10: POKELOC, 160: NEXT
pl FOR LAa=1 TO 10:POKELCT, 32: NEXT
20 NEXT L
20 POKELGCC, 42
40 MEXT K
152 END
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APPENDIX 2

The existence conditions of limit cycles in the

second-order basic filter section with

one rounding quantizer

1. The existence condition of constant limit cycles

Suppose that a constant limit cycle with magnitude

c exists. Then Egn (58) becomes

O
I

[ -ac-Bc]

C(-A-B)- ¢ (a2.1)

where |8|<0.5, § is the quantization error.

According to the linear stable condition, Egn (38), we

know that
-A-B<1
Let =-A-B = 1=8 (A2.2)

where 8> 0.

Hence, Egqn (A2.1l) can be written as

C = C(1-B)-¢
or
§ =-CB = =C(1+A+B) (A2.3)
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Egqn (A2.3) shows that ¢ has the opposite sign as that of
C because R>0 and |§| increases with |C| proportionally.

The minimum of |[C| satisfies

(i S
min

And the maximum of [§| satisfies

151max=o.5 ;

Therefore, the ratio of & /C

max’ Cmin +8 negative and

satisfies

max _

c_ .
min

=0.5

From Egn (A2.3) the existence condition of the constant

limit cycles can be obtained as

-4
1+A+B < Cmax = 0.5
min
or
A+B+0.5 € O (A2.4)
The equation
A+B+0.5 = 0O (A2.5)

describes the boundary line GN in Fig. 19.

In Egn (A2.3), the constant C must be integer and the
maximum of § is 0.5, therefore, the amplitude bound of
constant limit cycles can be derived as
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W d O
B, = c|max = INT (1357g! (A2.6)

Egqn (A2.6) is in unit of the quantization step, qg.

It is clear from Egn (A2.3) that because Cmax satisfies

Cmax(l+A+B) <0015 (pA2.7)

all integers of C whose absolute values are less than Cmax

also satisfy
CLI+A+R) £ 0.5 (A2.8)

No integer which is greater than Cha satisfies Eqn (A2.8).

x
In other words, all constant limit cycles in the second-

order filter section are successive in magnitude, i.e., they
must be 2l L 200 4300 .. icmax'

2. The existence condition of alternating limit cycles

Along the same way as above, it is readily
verified that the existence condition of alternating limit

cycles is

~A+B+0.5 < O (A2.9)
The equation

-A+B+0.5 = 0O (A2.10)
describes the boundary line HM in Fig. 19.

The amplitude bound of alternating limit cycles can
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be written as

0.5
l-A+B1 (A2.11)

B = B[
a

3. The existence condition of periodic limit cycles

Claasen et al('371 have proved that the second-order
digital filters with coefficient B for which |B|>0.5 will
élways exist limit cycles. Therefore, the existence

condition of periodic limit cycles can be written as

|B|20.5 (A2.12)

The equations
B= 0.5 (a2.13)

describe the boundary lines IL and RS in Fig. 19.
From the amplitude bound of periodic limit cycles proposed

by Jacksontg}

- 0.5
B, = INT(If)

the existence condition, Egqn (A2.12) can be also obtained

because
Bplmin =l

4. Two extra boundary lines

It is possible that in some regions on the parameter
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plane both constant (or alternating) and periodic limit
cycles exist simultaneously. Let the amplitude bound of
constant limit cycle be equal to that of periodic limit

cycle we obtain

Q83 (8 P40
INT (FZg) = INT (_ml (A2.14)
Let the amplitude bound of alternating limit cycle be

equal to that of periodic limit cycle we obtain

Qo Q.5

From Eqn (A2.14), a new boundary line can be derived.

1-B = 1+A+B
or

A = -2B (A2.16)
Similarly, from Egqn (A2.15) we obtain

1-B = 1-A+B
or

A = 2B (A2,17)

Egqn (A2.16) and Eqn (A2,17) define the two boundary

lines DJ and KE in Fig, 19, respectively.

In the regions DIJ and KLE on the parameter plane
of Fig. 19, the amplitude bounds of periodic limit cycles
are less than that of constant and alternating limit cycles

respectively. The experiments found that for the filter
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with only one rounding quantizer, the periodic limit
cycie trajectories on the state plane surround all the
constant or alternating limit cycles. In other words,
the amplitude bound of periodic limit cycle is always
greater than that of the constant or alternating limit
cycle. This observation asserts that in the regions DIJ

and KLE the periodic limit cycle do not exist.
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APPENDIX 3

When the coefficient walue B of the second-order

filter section satisfies 1>|B|>0.5, the origin

state (0,0) on the state plane becomes

a branch point by the use of dither

Refer to Fig. 14. Three cases can be defined.

In case 1, the second-order filter section has one
rounding quantizer one dither as shown in Fig. 14(a). The

following equation is satisfied

¥(nl ~[=aC@~1)"~ BY(R-2)4 D] (A3.1)

In case 2, the section has two rounding quantizers
and two dither signals. The difference equation can be

written as
Y(n) = [-AY(n-1) + D_]R + [-BY (n-2) + Dlg (A3.2)
In case 3, the section has two rounding quantizers

and one dither signal added at the front of coefficient

B product quantizer. The difference equation is

Y (n) [»—A*}(n-l)]R + [ -BY (n-2) + D] » (A3.3)

Il

Apparently, for any cases above, if §(n—l)=Y(n—2)=O then
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Y(n)=0. Hence, the origin state (0,0) is a stationary
poiht, one of its predecessors is (0,0) itself. For the
origin state (0,0) to be a branch point, there must be

at least another predecessor (0,K), where the integer K#O.

Suppose the filter section is at the state (Y(n-1),

¥(n-2))=(0,K).

For case 1, the difference equation is

Il

Y(n) = [-AY(n-1) - BY(n-2) + Dl 4

[-Bk + D], (A3.4)

For case 2,

g(n)

[—Ag(n—l) # D] +[-B§(n-2) ;) 5

[0 & + [-BR:® D]

[-BK + D] (A2.5)

For case 3,

I

¥(n) = [-a¥(n-1)]; + [-BY(n-2) + D],

[-BK + DjR (A3.6)

As can be seen, above three cases lead to the same
expression. Since the dither D is distributed in the open
range (- %, %) when 1>|B|>0.5, and K=t1, the probability
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of satisfying the equation

v (n) [_—BK+DjR

sl (A3.7)

is nonzero. In other words, when the random dither which
distributes in the open range (- %, %J is used the states
{§(n—l), g(n—2)) = (0,%1) may be the predecessors of the
origin state (0,0), i.e., the origin state becomes a branch

point

In case 4, the filter section has two quantizers but
the dither is added at the front of the coefficient A
product quantizer, Its difference equation can be written

as

§(_n) = [-Ay(n—1)+DJR+[-B§(n—2)]R (A3.8)

At state (0,K), the Egn. (A3.8) becomes

Q(n)

LDJ R it L_BK_] R

[-BK] (A3.9)
Apparently, when 1>|B|30.5 and K is a nonzero integer
¥(n) = [-BK]
# O (A3.10)

In this case, the origin state is not a branch state. In
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other words, the limit cycles cannot be suppressed by the
use of the random dither when the dither is added at the
front of A ccefficient product quantizer. The simulation

has verified this conclusion.
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APPENDIX 4

The uniformly distributed random dither tends to

linearize the roundoff gquantization characteristic

From the probability density function of uniform
dither, its cumulative probability distribution can be

readily obtained as shown in Fig. A4.1(a).

Suppose that the input signal of a rounding quantizer

without dither is
=AY (n-1)-BY(n-2) = Y(n)+§ (A4.1)

where the quantization error |§|<0.5 and Y(n) = [—Ag(n—l)~
B%(n—ZJ]R. After adding dither, the composite signal &§+D
has a cumulative probability distribution as shown in

Fig., A4.1(b). It is clear from this figure that when

6>0 the probability of the composite signal g(n)+D+6 being
less than g{n)+0.5 is (1-3) or the probability of the
composite signal §(n)+D+6 being equal or greater than
g(n)+0.5 is 6, when 6< O the probability of the composite
signal g(n)+D+6 being less than §(n)-0.5 is |6| or the
probability of §(n)+D+6 being equal or greater than

Y(n)-0.5 is 1-|¢

Now both the dither adder and the rounding gquantizer
itself can be treated as an equivalent quantizer. Its

-~

input signal is Y(n)+§ and the output signal is
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P (x)

- 1.0 P (x)=D+0. 5
0.5
| D
~0.5 0 0.5
(a)
P (x') (P(x')zD-I-O.S
= Pd
1.0 Z{//"/ (x')=D+0.5-5 (5>0)
1-8 & —opr —

P(x')=D+0.5-8
(6<0)

D+o=x"

/
-0.

Q
=
w

I
A
1 |

+ 0

T_,___
O

(b)
Fig. A4.1(a) Cumulative probability distribution of the uniform dither.

(b) Cumulative probability distribution of the camposite sighal
(dither and quantization error).
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(¥ (n)+6+D]., as shown in Fig. A4.2 .

R
When 6>0, there are two possibilities.
(1) If the composite signal Y(nl+8+4D 3z Y(n)+0.54i.e.,

§+D20.5 the equivalent quantizer Q. outputs Y(n)+1

and the corresponding probability is §.

(2) If the composite signal Y(n)+d+D<Y¥ (n)+0.5, i.e.,
6+D<0.5 the equivalent guantizer Qe outputs Y (n) and

the corresponding probability is 1-6.

The mean value of the output is

M

[§(n)+1]5+§(n) (1-6)

§(n)+6 (nd.2)

Il

Similarly, when 6<0, the mean value of the output is

M

[‘;’(n)—l] |8] + ¥ (n) (1-]6])

¥Y(n)-|5]

Q(n}+ 6 (24.3)
It is clear from Egn (A4.2) and Egn (A4.3) that when
the uniform dither is used, the mean value of the equivalent
quantizer output is varied linearly with the input of the
equivalent quantizer, §(n)+5. Fig. A4.3(b) shows the
statistical characteristic (mean value output versus input)
of the equivalent quantizer. For comparing, Fig. A4.3(a)
shows the characteristic with roundoff and possibie output

values after adding dither and rounding operation.
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Fig. 24.2 Equivalent quantizer.
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Fig. A4.3 (a) Roundoff characteristic with dither

(b) Statistical characteristic of the equivalent guantizer.
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APPENDIX 5

Program used for the generation of the

uniformly distributed random dither
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GO05 — Random Number Generators

GOSCAF

13. Example

Program (contd)

C GOSCAF EXAMPLE PROGRAM TEXT : =
C MARK 6 RELEASE MNAG COPYRIGHT 1977
C .+ LOCAL SCALARS ..
REAL X
INTEGER I, NOUT
C .. FUNCTION REFERENCES ..

REAL GOSCAF

C «+ SUBROUTINE REFERENCES ..
C GOSCEF ,
C ..

DATA NOUT /6/
WRITE (NOUT,99999)
CALL GOSCBF(0)
10 20 I=1,5
X = GOSCAF(X)
WRITE (NOUT,99998) X
20 CONTINUE
STGP '
99999 FORMAT (4(1X/), 31H GOSCAF EXAMPLE PROGRAM PESULTS/1X)
99993 FORMAT (1Xs F10.4)
END

Results

GO5CAT EXAMPLE PROGRAM RESULTS

0.7851
0.2257
0.3713
0.2250
0.3787

NAGFLIB:1443/0:Mk6:May77

Page 3 (last)
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APPENDIX 6

Program used with Computer PET to display the

limit cycles on the state plane
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10 DIM ZC10)2W(10)
20 C=0

30 A=-1.74

40 E=0,925833

50 FRINT®"

40 FOR 'I=1 TO 10
e i N B R R R S
80 INPUT ZCE)

%0 PRINTRWCN pIyta?
10 100 INFUT W(I)

1Ll T OMNEX Josl

12 120 REN

13 130 REM FPLOT SEOTS e viss o v snevion
14 140 REM

L5l UERENT

14 160 FOR I=1 TO 24

s v o B e o R S B O B

17 170 FIRINT"'|'0|'0!600t.."..ill‘i'.‘.”"!"*’.“ﬁ'*.
18 180 NEXT I

19 190 REM ’

20 200 REM FLOT LINES

21 210 REM

22 220 FOR I=0 TO 25

23 230 FORE(327681+40%I+20) 166

24 240 NEXT I

25 250 FOR I=0 10 372

26 260 FOKE(32768+480+1) 45

27 270 NEXT I

28 280 FOR M=1 T0 10

292 2920 X1=Z(M)

20 300 X2=W(M)

31-310 FOR K=1 TO 30:iREM FLOT 30 FPOINTS
32 320 RXX=RND(2)-0.,5

33 230 RX=5GN(RXX)*0,499

34 340 REM

33 330 REM COMFUTE NEXT STATE++es s a0
36 360 Y1l=-A%X1-EXX2+CxRX

37 370 Y=GGN(YL)XINT(ABS(Y1)>4+0.5)

38 380 X2=X1

39 3920 X1=Y

40 400 PRINT?® o

41 410 PRINT"X1:"5X
432 420 PRINT"X28°2X
43 430 PRINT"K: "3
44 440 REM

45 430 REM FPLOT STATE FLANE POINTsevs w4
46 460 REM

47 470 LOC=32768+(13-X1)%40+(X2-20)

48 480 FOR L=1 TO 2

49 490 FOR LA=1 TO 10:FOKELOCs»160:NEXT
30 500 FOR LA=1 TO 10:!FOKELOC,32:NEXT

adi B0 REXTL

92 520 FORELOC,M+47

a3 930 NEXT K

o4 540 NEXT M

33 600 END

EQF +»

EOT..

1
2

K
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APPENDIX 7

Program used to print out the limit cycles

on the state plane
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A AR E A A S A FHA AL A DA R R U A 303 3 3 333 30 36 38 6 36 336 36 3 30 33 35 3 36 S0 3496 3 H
ot AR AT B A DA A E R A HoR A S K 0k SE 3 30 3636 3 30 36 38 36 3 3630636 38 36 336 30 36 36 5536 36 36 3636 3 5
otk A

Pdn & 2453 -HML TERMINAL: 68 15 FEB 82 22: 16: 04
- A

P d A A 12 A A A A L FH AR A A S 30 36 3202 4 3036 304 636 3 306 3 36 3 3 36 33 36 3696 3 5
R R R R e e E R R b g A

, THIS PROCRAM DRAME THE PLOT OF THE LIMIT CYCLES IN DIGITAL FILTERS

3
.

INTESFR IL
X THE TOTAL NUMBER OF THE LIMIT CYCLES BEING PLDTTED
INTECFR ¥ {(1CO), X{100)
DIMENZICN GRAPHL70C, 70)
DIMENSICr: AK{10)
Y(I) HOLDS Tiiz DATA CF Y(N), I=THE MAXIMUM OF THE PERIOD OF THE LIMIT CYCL
X(I) HOLDS Tiir DATA OF Y(N-1)

r

C GRAPH(I,J! HOLDS THE WHOLE DATA IN Y(N)-Y(N-1) PLANE

C I,J ARE EQUS! T0DO DOUBLE OF THE MAXIMUM OF Y(N
INTECER L (10) .
INTECER 1A%

c L¢I) HCZLDS THE PERIOD OF EACH LIMIT CYCLE

c MAX IS THE MAXIMUM DF THE LIMIT CYCLES

PATA DOT/1H. /4, DBLANK/1H /
DATA AK(L)/1HL/, 8X(2)/1H2/, AK(3) /1H3/, AK(4) /1H4/, AK(5) /1H5/
DATA AK(&)/1HA/, AK(7) /1H7/, AK(B) /1HB/, AK(2)/1H9/, AK(10) /1HO/
C READ TL FRrROM THF FILE 14
READ(14, 30) TL, MAX
50 FORMAT(Z2I3)
C 8SKIP TO THE TGP OF THE PAGE
WRITE(1S5, &0)
&0 FORMMAT (1H1)
WRIEELLIS, 70) 1L, MAX
70 FORMAT(2Y, © THFE TOTAL NUMBER OF THE LIMIT CYCLES=‘, 15, ’ THE
1 MAXIMUM OF TEE LIMIT CYCLES=’, I15)
C CLEAR THE ARRAY THAT HOLDS THE GRAPH
DO 1CO I=1,70
DO 1C0 J=1,70
100 GRAFH(I., J)=BLANK
C PUT DOTE INTD THE SRAPH SO AS TO FORM X, Y AXES
DO 280 J=1,70C
200 GRAPHI3&, J)=D0OT
DO 2¢O 1=1,70
200 GRAPH(I, 263:=D0T
C READ THE DATA CF L{(I) FROM THE FILE 14
READ{ 14, 4CD) {L(I), I=1,TL)
300 FORMaT(LIDIS)
500 CONT INLE
C PUT THE DATA OF THC LIMIT CYCLES SUCCESSIVELY INTO Y(I) AND X(I),AND '’
C 'K’ REPRESENTS THE KTH LIMIT CYCLE.
C INPUT TH# DATA OF THE FIRST LIMIT CYCLE
DO 233 N-1,TL
G3d TQ (50235, 51C, 515, 520, 525, 530, 535, 535, 535, 535), N
905 READ(14, 605) (X{I),I=1,L01))
605 FORMAT(151I5)
GO TO &S0
910 READ{14, 610) (X(I), I=1,L(2))
610 FORMAT{13IS)
GO TG &80
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515 READ{14, 615) (X{I1),I=1,L(3))
615 FORMAT(I3IS)
GO TO 650
520 READ{14, 620Q) {X{(1),I=1,L(4))
620 FORMATI14IS)
G0 TO 650
23 READ{14, &23) {(X(1),I=1,L(5))
S FORMAT(1215)
G0 TO &ED
930 READ(14, 6Z0) (XN(1), I=1,L(&))
630 FORMAT{1415)
G0 TO &EQ
935 READ(14,63%5) (X(I),I=1,L(N))
635 FORMAT(IS)
&30 YALAMY)=X{1)
Mi=L{M)—-1
DO 7CO I=1,nM1
700 Y(I)=X(I+1)
C SET UP DO LCOP TO DEAL WITH THE KTH LIMIT CYCLE
DO 8C0 K=1,L (M)
CONVERT THE DATA INTO SUBSCRIPT VALUES
I=3%{MAX+1+Y{K))
JESFMAX+HL4+X(R))
CHECK THAT POINI LIES WITHIN GRAPH, AS EXPECTED, AND ENTER ‘K’ IF SO
800 IF (1.GE. 1 .AlD. I.LE. 70 . AND. J. GE. 1 . AND. J. LE. 70)
1 GRAPH{I, J)=aKi{tD)
CLEAR X(I}),Y(I) SO A5 TO PREPARE TO RECEIVE NEXT DATA OF LIMIT CYCLE
DO 850 I=1,L (M)
X(1)=0
Y{I)=0
850 CONTINLUE
900 CONTINUE
PRINT THE CRAPH
DO 930 1I=1,70
11=71~-1
910 WRIIE(15,920) (CRAPH(I1, J),J=1,70)
920 FORMAT(1H, 70A1)
730 CONTINUL
STOR
END

L]

Ll

L
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Fig. A7.1

An example of the print by the
use of the program shown in
Appendix 7.
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APPENDIX 8

Program used for the generation of a

normal (Gaussian) distribution sequence
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G05 - Random Number Generators

GOSDDF

1. Purpose

GOSDDF returns a pseudo-random real number taken from a normal (Gaussian)
distribution with mean A and standard deviation B.

IMPORTANT: before using this routine, read the appropriate machine
implementation document to check the interpretation of italicised
terms and other implementation-dependent details,

2. Specification (FORTRAN IV)

reql FUNCTION GOSDDF (A,B)
c regl A,B

3. Description >

The distribution has PDF (probability density function)

pix) = —— exp {
Y21 B

(x—A)z]
2

2B
The routine uses the method of Brent [5].
4, References

[1] xUTH, D.E.
The Art of Computer Programming, Vol. 2.
Addison-Wesley, 1969.

(2] BAMMERSLEY, J.M, and HANDSCOMB, D.C.
Monte-Carlo Methods.
Methuen, Published 1964, Reprinted 1967,

[3] xENDALL, M.G. and STUART, A.
The Advanced Theory of Statistics, Vol, 1.
Griffin 3rd Edition, 1969,

[4] nEAVE, H.
A Random Number Package,
Computer Applications in the Natural and Social Sciences, No. 14,
Department of Geography, University of Nottingham, 1972.

[5] BRENT, R.P,
Algorithm 488.
C.A.C.M., p. 704, 1974,
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GO0S5 - Random Nwnber Generators

GO5DDF

B

Parameters

A - real.
On entry, A specifies the parameter (mean) A of the
distribution.
Unchanged on exit.

B = reacr.
On entry, B specifies the parameter (standard deviaticn)
B of the distribution. If B is negative, the distributicn of
the generated numbers - though not the actual sequence - is
the same as if the absolute value of B were used.
Unchanged on exit.

6. Error Indicators None.

7. Auxiliary Routines

This routine calls the NAG Library routine GOSCAF.

8. Timing

See appropriate implementation document.

9. Storage

10,

130

12.

13w

Page 2 (NéGF;IE:I&SI/@:HRf:H:y??

Storage required by internally declared arrays, including those of
auxiliary routines is 41 reaql elements.

Accuracy Not applicable.

Further Comments

This routine uses a labelled CUMMON block with the name BGCSCA.

Keywords

Gaussian Distribution, Random Numbers.
Normal Distribution, Random Numbers.
Random Numbers, Gaussian Distribution.
Random Numbers, Normally Distributed.

Example

The example program prints the first five pseudo-random real numbers
from a normal distribution with mean 1.0 and standard deviation 1.5,
generated by GOSDDF after initializatien by GOSCBF.
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G05 - Random Number Generators

13. Example (contd)

Program

GOSDDF

This single precision example program may require amendment

i) for use in a DOUBLE PRECISION implementation

ii) for use in either precision in certain implementations.

The results produced may differ slightly.

c GO0SDDF EXA4APLE P“C}ﬁm TEXT
c MARK 6 RELEASE NAG COPYRIGHT 1977
c sie LGCAL SCALARS -
REAL X
INTEGER 1, HOUT
C ++« FUNCTION REFERENCES ..
REAL GOSLIE
C «+ SUBROCTIHE REFERENCES .
C GOSCERE
C .o
LATA NQUT /5/
WRITE (NOUT,832203)
CALL GOSCBE(0)
0 20 I=1,5

X = GOSDDF(1.0,1+3)
WRITE (#0UT,99993) X
20 CCUTINUZ
STOP

99599 FORMAT (4(1X/)y 31H GOSLDDF EXAMPLE PROGRAM FESULTE/1Y)

20993 PCRMAT (1%, F1G.4)

END

Results

1.8045
2.9393
342701
0.9602
3.2751

NAGFLIB:1451/0: Lﬁ”'May?iJ
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APPENDIX 9

Program for the calculation of standard deviation

of output from bandstop filter when a Gaussian

random sequence N(O,lzl is input
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HAARRER LSS A A A S F AR A A F R R AR F AR LS F N A F AR R F AT 23 R AR AR R A TR
A ARER AR A AS RS A RA R R RS AR RS AR A AR R RF A AR A RR R LB HF RS 5 H A A R R H R AR RARA
S E ARSI S

#% Pdn 7 2499-HML TERMINAL: 70 20 JUL 82 14: 4C
HHARARHRAHS

HAARAAAR AR A S S A AR LA A S H B A AL LG R AR S AR AR R AR LA HF AR A AT AR R R A AR AR B AL S F AT
B EAAEA R AR R R A ARAR A FH A AL AR A SRR A AL IR A AL AR AR A RAF IR A FHFA AT H AR AR R RAFTH

1 C

2 ¢ THIS PROGRAM GIVzS TIiE SQUARE SUMMATION OF THE IMPULSE RESPONSE
o o

4 DIMENSICHN X(1020),Y¥(1000)

S HWoUT=15

& A=0Q, 9329358

7 B=0. 509526

2 Cc=1. 235048

= D=1. O

10 F=0D. 73474&28

11 NRITE(NCJT;SO) A. B, C

12 50 FORMAT (2X, 2HA=, F10. &, 2X, 2H8=, F10. &, 2X, 2HC=,F10. &)
13 WRITE(NGUT, &60) D. F -

14 60' FORMAT (2X, 2HD=, F10. &, 2X: 2HF=,F10. &)

15 DO 1CO I=1, 1CO0

15 X(I)=0.0

s 25 Y(I)=0.0

i8 100 COMTINU=

179 X(3)=1.0

=) Y(1)=0.0

21 Y(2)=

22 DO 200 N 3¢ 1003

=2 Y(MNI)=F&#(X(N)+C#X (N—-1)+D#*#X (N— 2))—A*Y(n 1)=B¥Y(N-2)
24 200 CCNTINUE -
25 DO 350 1I=3, 1003

25 Y(I)=Y(I)#42

27 350 CONTINUE=

28 DO 400 N=3, 1003

29 SIGMAR=SIGMAZ+Y ()

20 400 CONTINUZ

=3 SIGMA=SCGRT(SIGMAR)

32 WRITE(NSUT, 300) SIGMA

o9 S00 FORMAT(2X, 23HTHE STANDARD DEVIATION=, F13. 8)
25 STOP

55 END

26 VX

EOF. .

I AARAFR SRS AEA AR AR AR AR AR IR A S S A A RS A A S SRR AR AR AR % AT F AR AR R ATN
- SAARAARA AR TR R AR RE AR A AR FE AR R AA LA SRS A S YRR R AR R A A F X F R R A AN B AR AR AR
S RAREARAH

#%# Pdn 7 2499-HML TERMINAL: 70 20 JUL 82 14: 4
HAGHARFAFAS

A AFAL FAA A A A RSN A XA A S B A S S A S S A AL LA F R AL I AR A AR AR D TR F AR AR AR AR AR AR SRR IR
AR ARA A AR A AL AR X AR A F A LR A R RS A A A B AR AT F R HH 0L F S F K F AR AR R N AR R
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HAAHASAAFAAF N AL AR A AR AT R AR A A F AL A S AT A S LA S H R A FEAF 45 F 1500 St S5 4
HAGHFRFFFAAFRDA AR AR AR I AR AR A AL G AR A SR AR F S AR B FH A A I IS S I ARSI S A H ISR R AR FF S ST
AR E A R

## Pdn 7 2499-HML TERMINAL: 70 20 JUL 82 14: 4¢
# A REEEA RS

SRt ARAAFA IR T FI AR A ARSI A I E S LSS B ST L SR SR A A T FHUFAFHIF A AN AN AP
AAFRAFRAAFAIHAFIRIRZRAZ AL SRR AU H A I N AR RS LASH AR S SRR F T3 L F SRR ST 4 F 58 F 54

]
i

1 A= 0.932938 B= 0.509526 C= 1.236068
2 D= 1.000000 F= 0.754763
3 THE STANDARD DEVIATIGN= 1. 03888544

AEAR AR AR R AA N G AR AR AR AT AR T U RS RS H 0 SR AR SR F B R H R AT FF 33345 3533800 2% 5k 35 B
ArAREAR AR HARN A AN AR R AR LA R IR R SR R F LA F A B AR S A R L H RS AT F T2 A S AR 2 S HF AR50 b ok i
P L s T L
- it
## Pdn 7 24971 ML TERMINAL: 70 20 JUL 82 14: 47
SGS4GREGEERREF
ARARARFAARAAH AR T ANL R R LA AR IR AR NS AR L BN R L SN AR AR F I H A B A B H SN HFH EHT S5 H 54
HAARFERFARRALE AR LA R AR R LA A AR AR S AR R A A S AR E R Y S AR RS I I I LS IS S GBS R A FFHHHF A AR
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APPENDIX 10

Program for the calculation of time needed for

stabilization by the use of dither
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FHEAHEREF SRR A H R AR I AR AR R AR AR SR B LSS A SRR RS DB F RS R AR RS S F A AR E SRS SR FH B S E S S RBSS
e e e b e R R L D R R A A A A A A A
333 H NN

## Pdn 7 2499-HML TERMINAL: 54 26 JUL B2 9:4
HEHFEER R TR

B b b e R R R R R e L L L b T g A A e T
S b e e L Bl e b R R R R A A A R R A e 3

1 C THREE TYPES OF DITHER CAN BE USED.

2 C THEY ARE UNIFORM.Y DISTRIBUTED RANDCM DITHER, BINARY RANDOM DITHER AND
3 C BANDSTOP DITHER.

4 C THIS PROGRAM GIVeS THE MEAN VALUE AND STANDARD DEVIATION OF THE
5 C TRANSITION TIME FROM THE LARGEST LIMIT CYCLE TO THE ORIGIN
& C STATE ON THE STATE PLANE.

7 DIMENSICN Q(1000)

8 DIMENSION E(10)

= REAL MS, MEAN

10 REAL GOSCAF

i1 REAL GOSDDF

12 NOUT=15

13 C IF ARIT IS LESS THAN ZERO UNIFORM DITHER WILL BE USED.

14 C IF KRIT IS EQUAI TO ZERO BINARY DITHSR WILL BE USED.

15 C IF KRIT IS GREATER THAN ZERO BANDSTOP DITHER WILL BE USED.
16 ARIT=2

17 C DA AND OB ARE THE COEFFICIENT VALUES OF THE BASIC FILTER SECTION
18 DA==1. 452679

19 0B=0. 881619

20 IE CARTE LE. OF QO TE 111

21 C A)B,C,D,F, ZA, ZB, ZC AND ZD ARE THE COEFFICIENT VALUES OF

22 C THE BANDSTOP FILTER.

23 A=-2. 78770841

24 B=3. D54350670

23 C=-2. 31321908

26 D=0. 697549120

27 F=0. 645716253

28 ZA==2, 02390537/F

29 ZB=2. 88042372/F

20 ZC=ZA

31 ZD=1.0

32 C SIGMA SQUARE IS THE SQUARE SUMMATICN OF THE IMPULSE RESPONSE
33 C OF THE BANDSTOP FILTER. IT IS USED AS A SCALE FACTOR SO AS TO
34 C NORMALIZE THE STANDARD DEVIATION OF THE SEQUENCE AT THE

35 C NONLINEAR NETWORK INPUT.

3& SIGMA=0. 792647261

37 111 PI=4. O*DATAN(1. 0)

28 CALL GOSCBF(0)

39 DO 320 J=1,1000

40 C XX1 AND XX2 DEFINE A INITIAL STATE WHICH IS ON THE LARGEST
410 LINET CVOLE:

42 XX1=4.0

43 XX2=4.0

44 21=0. 0

45 Z2=0. 0

45 23=0.0

47 24=0. 0

48 X1=0.0

49 X2=0. 0

20 X3=0.0

S1 X4=0. 0

-267-



o2
93
54
55
Sé
27
S8
59
&0
&1
&2
&3
&4
&5
&6
&7
&8
&9
70
71

by

£

73
74
75
76
77
78
79
80
81
82
83
24
85
86
87
8e
89
50
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

GeLET

559

NOTE
THER
DEVI
PUT

NON-
NUME
DENS

QOGO O00g0

G XK A

a4

K1=0
DO 50 K=1, 100000
IF (KRIT.LE.O) GO TO 444
ZX=GOSDLF (0.0,1.0)
THE INPUl GAUSSIAMN DATA PASS A SPECIAL DIGITAL FILTER
=—A#71-BH*ZI2-C#I3-D#Z4+F# (ZX+ZA#*X1+IB#X2+ZC#X3+ZD#X4)
Z24=13
13=22
Z2=1721
Z1=12
X4=X3
X3=X2
2=X1
X1=ZX
Z=Z/51GMA
IF (ABS(Z).LT.3.0) GO TO 555
Z=SIGN(1.0,Z)%#3.0
CONT INU=Z
Z=Z#SQRT(1. O/2. 0)

THAT TH:= DEVIATION OF THE NUMBERS AT THE OUTPUT HAS BEEN CHANGEI
EFORE THz NUMBERS HAVE TO BE DEVIDED BY THE SIGMA, STANDARD

ATION.

THE GAUSSIAN RANCOM NUMBERS (AFTER BEING DEVIDED BY SIGMA) INTO ¢
LINEAR NETWORK S0 AS TO GENERATE A UNIFORM DISTRIBUTION RANDOM

ERS AND THE NON-LINEAR GIVES ONLY MINOR CHANGES IN THE POWER
ITY SPECTRUM.

Wi=1.0
E(2)=1.0
DO 26 JJ=1,32
FJ=FLOAT(JJ)
We=Wi#(—-1. 0)
ZIP1=W2# (Z#%JJ)
ZIP2=Z24#(JJ+1)
Wi=h2
E(1)=FJXE(2)
E(2)=E(1)
ZZ2=E(1)#(2. OxFJ+1. 0)
ZIP3=Z1IP2/112
Z2Z3=2ZP3%#7ZP1
ZZ4=224+113
CONTINUE
215=(ZZ4+Z)/SART(PI)
Z24=0.0
S THE BANDSTOP DITHER SEQUENCE.
XX=Z195
CONT INUE
IF (ARIT.LT. 0} GO TO 222
IF (KRIT.EQ.Q0) 60 TO 333
Y1i=—0DA#XX1-0B#XX2+XX
GD TO &éb6
XU=GOSCAF (X)
Yi=—0DA#XX1-0B#XX2+XU-0. 5
GO TO &&6
XU=GOSCAF(X)-0.5
RX=SIGN(1. 0, XU)*0. 499
Y1=-0A#XX1-0B#XX2+RX
Y=SIGN(1. 0, Y1)#AINT(ABS(Y1)+0. 5)
Ki=K1+1
XX2=4X1
XX1=Y
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112 J1=INT(XX1)

113 - J2=INT (XX2)

114 IF(J1. EQ. O) GO TO 45
115 GO TO 390

116 45 IF(J2.EQ.0) GO TO &0
p B SO0 CONTINUE

118 60 Q(J)=A1

119 AJ=FLOAT (J)

120 AJJ=AJ/1C0. O

121 IAJJ=INT (AJU)

122 FIA=FLDAT(IAJJ)

123 IF (AJ. EQ. 100. O%#FIA) GD TO 394
124 GO TO 320

125 294 WRITE(3, 376) AJJ
1286 396 FORMAT(2X, F8. 4)
127 320 CONTINUE

128 WRITE(NOUT, 392) A,B.C,D,F,SIGMA
129 392 FORMAT(2X, 6F12. 8)

130 SuUM=0. 0

131 DO 400 I=1,1000

132 SUM=8SUM+Q(I)

133 400 CONTINUE

134 MEAN=SUM/1000. 0

135 MS=0. 0

136 DO 450 I=1, 1000

137 ME=MS+(Q(I)-MEAN) #*#2

138 4S50 CONTINUE

139 SD=SART(MS/992. 0)

140 SDOM=SD/SQART(1000. 0)

141 WRITE(NOUT, S00) MEAN, SDOM

142 500 FORMAT (2X, "THE MEAN=",F12. &, "THE STANDARD DEVIATION=",F12. 6)
143 STOP

144 END

145 VX

EBRe.

AAF AR FEF LA AR A BH DI F AR A RAL B R R DU U FF AL B RS A F S A H S 33336 34 FH 2
AAFHFFAAFA N T HFARA R AR RS R AT R R LA A AR RS H S RS S F A A FFFF S E F U5 332 3345 34
NS

## Pdn 7 2499-HML TERMINAL: 54 26 JUL 82 9: 4(
4NN

FHAHAURAF AR U R IR AR RS E G AR SRR S AU LSS RS R AR RS H RS F S I RS AR RS S FFH AR FH R R FHHAHS
HAFHFAFFFHAAHA AU T AR AT ARR R R LI F A F A HF 0 H F HHF 00 F 35 305303 33 3336 330 3 3030 3 343038 365
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e st L L T LS R R L P e RS e L S I LR S T PR RS S L g
A H SR AR R A SRR A F LR AR A AU A H R H R E R R R H AR A H RS A F AR A AR FH R R AR AR ATR
-3 A HH R

L Pdn 7 2499-HML TERMINAL: 54 26 JUL B2 9:40:1
b3 333

SR RN N A R RN AN R A A AN AN AR RN A N RN F RS AREAHR
Ty T A L P L T E e e S e L R P R R e R T TR L L L

-2. 78770841 3. 55450670 -2. 31321908 0. 69754912 0.64571625 0.79647261
THE MEAN= 49. 540000THE STANDARD DEVIATION= 1. 145244

$ 4R A SRR AW EE N L A NN A AR NN E N H R AN E AR RN R RN R AR RRH
Fop AR E R H AR AR H R RN E R R A A H AN RS R R IR FH AR AR AR
TEE T L L

+ Pdn 5 2499-HML TERMINAL: 54 26 JUL 82 9:40:1
£33 3 3

€34 36 3 3 32 B 3 3 333 6 3 A I 22 23 S I 3 333 2 3 33 I
£ 24 36363 B H K U A EE KA RN H RN E N SRR R I R A R R YRR SRR RAIR
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APPENDIX 11

Program for the calculation of the increase in output

noise from the basic filter section by the dither
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RS FHHBFHFF AR R AR R AN A AR R AU R AR AR AR R F AR B SRR AR H 25363 34 3433 3 536 #3243
FASFHRR LA AR R R A AR 3 3003 30 333 30 33 3303 363050 36 30 25 36 36 30 36 36 35 36 35 36 96 26 36 3 36 36 3 36 38 3
H AR RN H

## Pdn 74 2499-HML TERMINAL: &7 26 JUL 82 11: 1¢
3 H I HHIS

SRR AR E TR R M X R AU AL A X A H I H 30 3633 362 3636 56 3 23 3
e D T et s s e s

THIS PROGRAM GIVES THZ INCREASE IN THE OUTPUT NOISE (DB) FROM THE

e

2 C SECOND-ORDER FILTER SECTION DUE TO THE INJECTION OF DITHER.

3 C THIS PROGRAM ALSO GIVES THE STANDARD ERROR OF THE OUTPUT NOISE
4 C INCREASE. THE GUANTIZATION NOISE WITHOUT DITHER IS USED AS THE
5 C REFERENCE LEVEL. THE INITIAL STATE OF THE SECTION IS AT THE

& C CORIGIN OF THE STATE PLANE. A SINUSOIDAL SIGNAL IS INPUT TO THE
7 C SECOND-ORDER FILTER SECTION. THE OUTPUT FROM THE SECTION IS

8 C ANALYZED BY THE FFT.

? C HAMMING WINDCW IS USED AND N=2048

10 DIMENSIOCN E(10)

11 DIMENSION X(2048), W(2048), XREAL(2048)

12 DIMENSION XIMAG(2048),P(2048)

13 DIMENSION TPN(S50), TPS(50) s

14 ' REAL GOSCAF

15 REAL GOSDDF

16 € IF KRIT IS LESS THAN ZERD UNIFORM DITHER WILL BE USED.

17 € IF KRIT IS EQUAL TO ZERO BINARY DITHER WILL BE USED.

18 C IF ARIT IS GREATER THAN ZERO BAND STOP DITHER WILL BE USED.

1% ARIT=2

20 NOUT=15

21 C GN IS THE QUANTIZATION NOISE WITHOUT DITHER WHEN A SINE WAVE IS INPUT
22 QN=694. 2

23 C OA AND OB ARE THE COEFFICIENT VALUES OF THE BASIC FILTER SECTION.

24 DA==1. 452679

29 0B3=0. 881619

26 IFF (AR1IT: LE. Q) G0 TO 111

27 C A»B,C,D,F, ZA, ZB, ZC, AND ZD ARE THE COEFFICENTS OF THE BANDSTOP FILTER.
28 A=—2. 78770341

29 B=3. 554504670

30 C=-2. 31521908

21 D=0. 627549120

32 F=0. 64571&253

33 ZA=-2. 02590837/F

24 ZB=2. 88042372/F

39 iC=ZA

34 ZD=1.0

27 C SIGMA SGUARE IS THE SQUARE SUMMATION OF THE IMPULSE RESPONSE OF
38 C BANDSTOP FILTER. IT IS USED AS A SCALE FACTOR SO AS TOD NORMALIZE
29 C THE STANDARD DEVIATION OF THE SEQUENCE AT THE NONLINEAR

40 C NETWORK INPUT.

41 SIGMA=0. 794647261
42 111 PI=4. O#DATAN(1.0)
43 C HAMMING WINDOW FUNCTION, N=2048

a4 DO 2 I=1,2048

45 H=FLOAT(I-1024)

456 W(I)=0. 54+0. 46#C0OS(2. O*PI*H/2043. 0)
47 2 CONTINUE

48 C U=ENERGY IN HAMMING WINDOW

49 U=0.0

20 DO 4 I=1, 2048

o1 AE=W(I)=*x2
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52
53
54
55
56
57
58
59
&0
61
&2
&3
b4
65
bé
&7
&S
69
70
71
72
73
74
75
76
77
78
7%
80
81
82
83
B84
85
86
87
g8
89
90
91
92
93
?4
?3
?&
?7
?8
99
100
101
102
103
104
105
106
107
108
109
110
111

C
c

c

O0O0O0O000

U=U+AE
4 CONTINUE
DO 5 I=1,2048
S P(1)=0.0
CALL GOSCBF(0)
DO 50 J=1, 30
Z1=0.
22=0.
Z3=0.
24=0.
X1=0.
X2=0.
X3=0,.
X4=0.
XX1=0. 0
XX2=0.0
IN ORDER TO OBTAIN A STEADY-STATE SINUSOIDAL OUTPUT THE FIRST 3584
SAMPLES HAVE TO BE OMITTED.
DO & I=1, 55432
FI=FLOAT(I)—-1.0
IF (ARIT.LE.O) GO TO 444
ZX=G0SDDF (0.0,1.0)
LET THE INPU1 GAUSSIAN DATA PAES A SPECIAL DIGITAL FILTER
I=—A%7Z1-B#*I2-C*#Z3-D#Z4+F# (ZX+ZA%#X1+ZB#X2+ZC#X3+ZD*X4)
24=13
13=12
Z2=121
Z1=Z
X4=X3
X3=X2
X2=X1
X1=ZX
Z=Z/81IGMA
IF (ABS(Z).LT.3.0) GO TO 555
Z=SIGMN(1.0,2)%#3.0
555 CONTINUE
Z=7Z#SQRT(1. 0/2. O)
NOTE THAT THr DEVIATION OF THE NUMBERS AT THE OUTPUT HAS BEEN CHANGEL
THEREFORE THr NUMBERS HAVE TO BE DIVIDED BY THE SIGMA, STANDARD
DEVIATION.
PUT THE GAUSSIAN RANCOM NUMBERS (AFTER BEING DIVIDED BY SIGMA) INTO #
NCN-LINEAR NETWORK S0 AS TO GENERATE A UNIFORM DISTRIBUTION RANDOM C

NUMBERS AND THE NON-LINEAR GIVES ONLY MINOR CHANGES IN THE POWER
DENSITY SPECTRUM.

Wi=1.0

E(2)=1.0

DO 26 JJ=1, 32
FJ=FLOAT(JJ)
Wa2=W1#(-1. Q)
ZZP1=k2+ (Z#%JJ)
ZIP2=Z##(JJ+1)
Wi=W2

E(1)=FJ=*E(2)
E(2)=E(1)
ZZ2=E(1)%#(2. O*FJ+1. 0)
ZZP3=11IP2/112
ZZ3=172P3%*ZZP1
2Z24=7174+2123

26 CONTINUE

ZZ5=(ZZ4+Z)/SART(PI)

O0000000
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112 2Z24=0. 0

113 IF (ABS(ZZ5).LT.0.5) GO TO 30

114 Z5=8ICGN(1. 0, Z75)#0. 49%2

115 C XX IS THE BANDSTOP DITHER SEQUENCE. SZ IS THE SINUSOIDAL INPUT.
116 30 XX=Z1Z5

117 444 S7I=38. 49+«5SIN(2. O#PI#%#14. 0/128. 0*F1I)

118 IF (KRIT.LT.0) 60 TO 222

119 IF (KRIT.EQ.0) GO TO 333

120 Y1=-0A%#XX1-0B#XX2+SZ+XX

121 GO TO &s6

122 222 XU=GOSCAF(X)

123 Y1=-0A+XX1-0B#XX2+SZ+XU-0. 5
124 GD TO &56

125 333 XU=GOSCAF(X)-0.5

126 RX=SIGN(1. 0, XU)*0. 499

127 Y1=-0A#XX1-0B#XX2+SZ+RX

128 665 Y=SIGN(1.0, Y1)#AINT(ABS(Y1)+0. 5)
129 XX2=xX1

130 XX1=Y

131 IF (I.LE.3584) GO0 TO &

132 X(I1-3584)=Y >
133 & CONTINUE

134 DO 40 I=1,2048

135 XREAL (I)=X(I)#W(I)

126 XIMAC(I)=0.0

137 40 CONTINUE=

138 CALL FFT(XREAL, XIMAG, 2048, 11)
139 DO 42 I=1,2048

140 P(I)=P(I)+(XREAL(I)##2+XIMAG(I)#%2) /U
141 42 CONTINUE '
142 WRITE(3,44) J

143 44 FORMAT(2X, ‘J=',12)

144 TOTP1=0.0

145 DO 70 1=1,223

1454 70 TOTP1=TOTP1+P(I)

147 TOTP2=0. 0

148 DO 80 1=224, 226

149 80 TOTP2=TOTP2+P(I)

150 TOTP3=0. 0

151 DO 90 1=227, 1823

152 90 TOTP23=TOTP3+P(I)

153 TOTP4=0. 0

154 DO 96 I=1824, 1826

155 96 TOTP4=TOTP4+P(I)

156 TOTPS5=0. 0

187 DO 98 I=1827,2048

158 98 TOTPS=TOTPS+P(I)

159 TPN(J)=TOTP1+TOTP3+TOTP5

160 TPS(J)=TOTP2+TOTP4

161 DO 801 I=1,2048

162 801 P(I)=0.0

163 S0 CONTINUE

164 DO 901 J=1, 30

165 TPN(J)I=10. O#ALOGIO(TPN(J) /GN)
166 901 CONTINUE

167 AMEAN=0. O

168 DO 902 J=1,30

169 AMEAN=AMEAN+TPN(J)

170 202 CONTINUE

171 AMEAN=AMEAN/30. O
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172
173
174
175
176
177
178
179
180
181
ig2
183
184
185
184
187
188
189
190
191
192
193
194
195
196
1R 7
198
199
200
201
202
203
204
205
204
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
2246
227
228
229
220
221

203

52
54

26

37

606
&67

707
778
148

o8
123
802
804
F05
706

207

102

STAD=0. O

DO 903 J=1, 30
STAD=STAD+(TPN(J)-AMEAN) #42
CONTINUE
STAD=SQRT(STAD/29. 0)
STAR=5TAD/SQRT(30. 0)
WRITE(NOUT, 52)

FORMAT(2X, * THE POWER SPECTRUM OF THE OUTPUT OF THE SECTION

WRITE(NOUT, 54)

FORMAT(2X, "THE INPUT OF THE SECTION IS AS FOLLOWS )
WRITE(NOUT, 56}

FORMAT (2X, "38. 49%#SIN(2. O#PI+*14.  0/128. O%*FI) ")

IF (ARIT.LT.O) GO TO &06

IF (ARIT.EQ. 0} GO TO 707

WRITE(MOUT, 57)

FORMAT (2X, * BANDSTOP DITHER ‘)

GO TO 148

WRITE(NOUT, 667)

FORMAT(2X, * UNIFORM DITHER )

GO TO 148

WRITE(NOUT, 778)

FORMAT(2X, * BINARY DITHER )

WRITE(NOUT, 58} 0A, OB

FORMAT (2X, ‘THF COEFFICIENTS DA=‘,F12.8, ‘OB=‘,F12. 8)
WRITE(NQUT, 123) GN

FORMAT(2X, * THE QUANTIZATION NOISE =‘,F14. 4)
WRITE(NOUT, 802)

FORMAT (2X, ‘“THE INCREASE OF NOISE IN EACH SIMULATION ‘)
WRITE(KKOUT, BO4) (TPN(J), J=1,30)

FORMAT(2X, F15. 6)

WRITE(NOQUT, 205) AMEAN

FORMAT (2X, ‘THE MEAN OF NOISE INCREASE=’,F10.6, ‘DB’)
WRITE(MQUT, 206) STAD

FORMAT (2X, "THE STANDARD DEVIATION=’,F10. &, ‘DB*)
WRITE(NQOUT, 207) STAR

FORMAT(2X, ‘'THE STANDARD ERROR=‘,F10. 6, ‘DB”’)

STOP

END

SUBROUTINE FFT(XREAL, XIMAG, N, NU)
DIMENSION XREAL(N), XIMAG(N)
N2=N/2

NU1=NU-1

K=0

DO 100 L=1,NU

DO 101 I=1,N2
P=IBITR(K/2%##NU1, NU)

ARG=6. =283185#P/FLDAT (N)
C=COS(ARG)

S=SIN(ARG)

Al=K+1

KiN2=K1+N2

TREAL=XREAL (K1N2)#C+XIMAG(KIN2) %5
TIMAG=XIMAG (KIN2)%#C—-XREAL(K1IN2) %S
XREAL (K1N2)=XREAL(K1)-TREAL
XIMAG(KIN2)=XIMAG(K1)-TIMAG

XREAL (K1)=XREAL(K1)+TREAL
XIMAG(K1)=XIMAG(K1)+TIMAG
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232 101 K=h+1

233 K=K +N2

234 IF (K.LT.MN)GD TO 102
235 K=0

235 NU1=NU1-1

237 100 N2=N2/2

238 DO 103 K=1,N

239 I=IBITR(K-1, NU)+1

240 IFC(I.LE. X) GO TO 103
241 TREAL=XREAL (K)

242 TIMAC=XIMAG (K)

243 XREAL (K)=XREAL(I)

244 XIMAG (K)=XIMAG(I)

245 XREAL ( I)=TREAL

244 XIMAG(I)=TIMASG

247 103 CONTINUE

248 RETURN

249 END

250 s
251 .

252 FUNCTION IBITR (J,NU)
253 Ji=yJ

254 IBITR=0

255 DO 200 I=1, WU

254 J2=J1/2

257 IBITR=IBITR#2+(J1-2%J2)
258 200 Ji=J2

259 RETUSRN

260 END

261 $VX

EOF. .

AAAFEARRAHAALH AL AN AL A AL A AR AAE I AL AR AN H MR F 543 535463628 3 34382
e b e B T T T T
FARFULEARARE
## Pdn 7 249F-HML TERMINAL: &7 26 JUL B2 11:1°
AR A AR

e b e e R S e DR R B e R A A T T T
FAFHAR XA AE IR XU R AR D IR R RA AR R R TR B S H BN 232 53 53304620 303 3 3 56 3 4542
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e r e e e el e b s PR e s e LIS E LI LR PR RS L LR et
HEA B F RS R F AR R AL ARA SRR E AR W RN SRR F R AR R H AR R FFHFFF AR F R U RRARS
534 3 S H

## Pdn 7 24937-HML TERMINAL: &7 26 JUL 82 11: 1E
34 R

sk b b T 3 N R B 3 3 2 3 3R 3 N U 330 38 0E X 36 3630 3 36 3 3 36 3 5 3 S N A FAR
AH AR RS F AR R UF R AR F R F A SRR H AN WS A SRS FH IR E AR F R SRR SRR H RS RH

i THE POWER SPECTRUM OF THE OQUTPUT OF THE SECTION
2 THE INPUT OF THE SECTION IS AS FOLLCWS
a3 38. 49#SIN(2, O#PI#14. 0/128. O%#F1)

4 BANDSTOP DITHER

S THE CODEFFICIENTS DA= -1. 452679000B= 0. 88161900
& THE QUANTIZATION NOISE = 694. 2000
7 THE INCREASE OF NOISE IN EACH SIMULATICN
8 &. 208308

9 &. 252003

10 5. 791453

41 5. 253524

{ s 4, 961397

13 5. 344134

14 5. 4774863

15 8. 93696

16 4, 760712

17 5. 667707

18 4, 9285836

19 9. 397100

20 5. 7935448

21 5. 243185

22 5. 715346

23 5. 0790&8

24 9. T2l 7T

295 &. 453139

2 5. 519688

27 5. 929192

28 5. 0372081

29 5. 644546

30 5. 6050356

21 5. 463432

22 S. 224590

23 4. 855541

34 v 291187

25 S. 113903

24 5. 434075

a7 5. 664541

38 THE MEAN OF NOISE INCREASE= 5. 4934180083
3% THE STANDARD DEVIATION= 0. 422882D3
40 THE STANDARD ERROR= 0. 077207DB

5 R RN 2 2 2 3 3 3 2 3 M 6 36 3 36 36 4 36 3630 38 3530 3 S 36 % 352 08 36 36 28 36 3528 3 30 303 3 33 R 2 R
FAEARHARERE L FHERR AN E R E I E 3 N N N 3 3 363 330 36 3 20 3E K 0 S 30 3 50 304 3K 03 A
H I NN

##% Pdn 7 2497-HML TERMINAL: &7 26 JUL B2 11: 1t
HHAEHFERRER

FH A H R R AR R N A 330 303 332 303 M3 3030 0 M 3E 36383 330 3 36 38 3 2 F S 33 0 O 3 W R A
HUAFFAFERAF R AR A AR A SRR F AL E R RS R LS A R FH A HHF 0 4 S F R RN RAH
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