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SUKYARY

This theéis describes the research that was carricd out
with a series of engineering models based on the Central lLervous Systcm.
The modelling process ﬁcgan with simple Fardwarc simulations of single
neurons and their associated synapses, progressed to networks cowposed
of these elemental units, and concluded with a pomputer gimulation of
a 1arée, structured neural system. +t each stage in this process
the current model was criticzlly excmined, and both the advantages and
disadvantages were assessed in order to specify the direction in which
further work was to proceed.

The object of the regsearch is twofold: firstly to construct
- pragmatic engineering systems by modelling the cybernetic phenomena
of self organisation that are ubiquitous in the natural world and yet
almost completely absent from the field of engineering, and secondly
to use engineering techhiques to aid in the task of understanding these
phenomena of self organisation, especially with respect to the brain.
The concluding model which has resulted frox this research is, therefore
not only a useful engineering system which can generalise, select,
associate and reproduce a range of sequences, but is also of relevance
to the organisation of the brain and could possibly assist the
physiologist in his task of interpreting the complex structure of the
nervous system.

The thesis hegin; with two introductory chapters, one to
clarify the meaning of Cybernetics, and the other to describe the
initial considerations which form the basis of the present cyb?rnetic
study. The next four chapters describe the models that were built,

and the conclusions are drasn in chapter 7.



ACKNOWLEDGELUEHTS

The work described in this thesis was supervised by Mr. J F Young,
whom the author would like to thank for his continuous support and
encouragement, and for the many stimulating discussions which played

a critical role in directing the course of the research.

Thanks are also due to lLir. R Easterby who acted as advisor for his
help and advice, to Bill Davy for his assistence with the programminz,
to Martin Smith for his comments and suggestions, and to the icnuxeracle

other people with whom the work has been discussed.



CONTENTS

Chapter 1
1.1
1.2
153
1.4

1.5

Chapter 2
2.1
2.2
&3
2.4
2.5

2.6

Chapter 3
3.1
3.2
3.3
3.4
3.5

THE MEANING OF CYBERNETICS 1
Introduction ‘ ‘ 2
Specialist and Interdisciplinary Science 3
Cybernetics 4
Cybernetics and Intelligénce 5
Conclusion 6
: SOME PRELIMINARY CONSIDERATIORS T
Introduction 8
The Construction of Models 9
Levels of Analysis 12
Modelling Environments 14
The Use of Threshold 15
Neuron Models and Threshold Units 16

(a) Development of Neuron Models 19
Nomenclature 20
The Decade Counter as a Neuron lodel 21
The Brain as an Assembly of Threshold Elements e
Summary 23
: PLASTICITY : %24
Introduction ) ) 25
Structural Change and Plastic Change 26
Internal and External Control of Plastic Change 29
Models of Plastic Change N
The Use of the Plastic Model in Simple Networks 34
3.5.1 The Location of the Plastic Element 34
3.5.2 Association ) 35
3.5.3 A Model of the Visual C.N.S. 37
3.5.4 Learning and Nemory 44

veo7o2 assessment of Simple Neural Ketworks 45



3.6

Chapter 4
4.1
4.2
4.3
4.4
4.5
4.6

4.7

4.8

4.9

4.10

Chapter 5
5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

Conclusion

: HOMEOéTﬁSIS

Introduction

Instability in a Small Net of 'N-5' Elements
Homeostasis in Fhysiology and Engineering
Homeostasis in Previous Cybernetic Systems
The Homeostatic Principle

Implementation of a Plastic N-S liodel for a

Homeostatic System

A small Net with Plasticity and Homeostasis
Properties of the Net

4.8.1 Simple Experiments

4.8.2 Experiments with a Richly Interconnected Net
Assegsment of the Work on the Net

Summary

: THE BLOCK : STRUCTURE AND BASIC MECHANISMS
Introduction

Design Requirements for a Large Cybernetic System
The Block as an Intermediate Level Building Brick
Columns of Neurons as Functional Units

Input and Output Configurations

Properties of the Columns

The Learning Theorem

The Modelling Environment for the Block

The Non-Learning Behaviour of the Simulation Program

illustration of Basic Behaviour

Example of the Learning Process
Generalisation

Generalisation uéing Two Input Patterns

Association

PDirectional Association

48

50
51
52
53
54
55

56
59
60
60
61
65
68

69
70
71
72
73
75
78
79
80
81
83
84
85
87

88

92



5.16
5.16
5.17

5.18

Chapter 6
6.1

6.2

6.3
6.4

6.6

Chapter 7
T
T.2

7.3

Reproduction of Sequences
(a) Effect of Errors in Sequence Training
Spurious Outputs

Conclusion

: SEQUENTI.L PROPERTIES OF THE BLOCK
Introduction
Sequences with Non~Repetitive Elements
6.2.1 Single Spatial Inputs
6.2.2 Complex Spatial Inputs
(2) Non-overlapping Input Elements
(b) Overlapping Input Elements
6.2.3 Summary )
Sequences with Repetitive Elements
Simultaneous Retention of Sequence Information
6.4.1 Non-overlapping Sequences
6.4.2 Overlapping Sequences
Discussion
6.5.1 Range of Sequences
6.5.2 Maximum Length of Sequence

6.5.3 Introduction of Long Term Forgetting

Conclusion

: CONCLUSIONS

Introduction

Summary of Systems Described in the Thesis
Properties of the Elements

T+«3.17 Input Stimulation and Threshold
7.3.2 Input Summation Processes

(a) Spatial Summation

(b) Temporal-Summation

703.3 Tlring

93
97
98
99

100
101
102
102
108
108
112
17
118
121
121
122
123
123
123
124
126

127
128
129
130
130
131
131
132

132



7.4

7.5
7.6

7.3.4 Learning Processes
(a) Hardware Learning
(b) Learning in the Block
(¢) Learning and Memory
Properties of the COverall System
T.4.1 Homeostasis
T.4.2 Interconnection Pattern
The Ifodelling Environment

Summary of Conclusions

Postscript : A SPECULATIVE MANY-BLOCK SYSTEM

P.1

P.2

P.3
P.4
P.5
P.6
Pt

P.8

PeS

P.10

APPENDICES
Appen
Appen

Appen

REFERENCES

Introduction
Proposed Structure of Four-Block System
P.2.1 Response to Input Stimulation

Proposed Structure of Nine-Block System

Nature of the Proposed Pattern of Activation

Memory Processes

Behaviour of the Proposed Nine-Block System

The Many-Block System and Cell Assemblies

The Many-Block System, Holograms, and

Matrix lLearning Systems
Simulation of the Many-Block System

Summary

dix 1 : The Plastic N-S llodels

dix 2 : Control System to laintain Homeostasis

dix 3 : Simulation Program

133
133
134
135
136
136
137
139

140

154
155
Tad

159
173

175

180



CHAPTER 1

THE MEANING OF CYBERNLETICS.



THE MEANING OF CYBERKRETICS

1.1 Introduction.

The purpose¢ of this introductory chapter is to specify clearly
the mcaning of Cybernetics. It was deemed necessary because the author
has been unable to find a satisfactory definition of Cybernetics znywhere
in the existing literature. wWeiner's original definition, " The
science of control and comrunication in the animal and machine " seens
to. embrace the whole of science and is probably responsible for the
emergence of pseudo-cybernetic subjects such as 'Fsycho-cybternetics',
'Cybernetic Art' and 'Human Cybernetics'. .There are more specific
definitions such as " The science of the application to engineering of
devices and techniques derived from biology " (.Ref R.1.2 ) which
state that author's particular interests, but which fail to convey the
essence of Cybernetics.

In ofder to convey this essence, the chapter begins by looking
briefly at the historical perspective of Cybernetics and then develops
the suthor's inevitably subjective understanding of its meaning. The
chapter concludes by d%scussing the relationship of bybernetics to the
study of intelligence, as this seems to be one of the tentral problems

for the cybernetician.



1.2 Specialist and Interdisciplinary Science.

In 1959 a catalogue was‘published listing the csciences then in
existence. It contained 1,150 entries . ( Ref R.1.35. ) This process
of progressive specialisation seems to be an inevitable consequence of
the rapid expansion of Science, but it means that the horizons of the
specialict must become closer and closer. - As this happens, communication
between the different experts tecomes more and more difficult: the
_speciaiist has dug an intellectual moat around himself.

By the 1930's it had become obviocus that the analysis of the
universe into discrete, isolated bits of krnowledge was an exiremely
unsatisfactory state of affairs, and the more enlightened scientists
began to consider interdisciplinary studies. This involved a complete
change in attitude vwhereby knowledge began to spread throughout the
various discipliﬁes: the natureal scientists began to adopt mathematical
methods of analysis and the engineer turned to living systems for
1nspiratioh. Generally, it'began to be appreciated that all the various
branches of science can complement each other in a truly symbiotic way.

One of the values of interdisciplinary study is that it produces
general theories that are widely appliczble; science is plagued with
highly specialised ideas that work well within their own'restricted
reference frame, but are of little value elsewhere. Interdisciplinary
science was conceived in order to discover the bridges between the
artificially created categories.

To achieve this end, it is essential for the scientist to keep
his horizons as broad as possible, for all knowledge is valid and
progress is most likely to be made through coherent systems of knowledge

which unite rather than fragzment.
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1.3 Cybernetics.

The emergence of Cybernetics was one of the most important
products of the interdisciplinary attitudes that were prevalent during
the 1930's and 40's. Advances in control systems and computers were
producing behaviour that was sufficiently complex to be interesting to
behavioural scientists, and at the same time, physiologisté such as
McCulloch, Rosenbluth and Walter weré beginning to study their subject
with techniques taken from engineering. The meeting of these developments
came to fruition in two books that were published at the end of the 1940's:
Weiner's 'Cybernetics' ( Ref R.1.20 ) , and Shannon and %eaver's
'Mathematical Theory of Communication' ( Ref R.1.22 P This marked the
beginning of the Cybernetic era.

Cybernetics is taken from the Greek 'steersman' and it seems to
the present author that the essence of Cybernetics is the study of systems

that steer themselves. In alternative language, Cybernetics is the

study of self—regulation;”problemnéolving. planning and the attainment
of goals. Another definition involves self-orzznising-systems, but this

is just znother way of expressing the basic interecst in steersmanshivp.

Thus, the task of the cybernetician is to understand tﬁe principles
which enable a system to manage its own behaviour. and he will be
concerned with the processes of control and communication which are part
of this self-organisation. The cyberneticizn obviously has much to learn
from physiology and biology ﬁs both can provide exzmples of cybernetic
systems that are partially understood. =Zngineering is 2lso of assistance
;s disciplines such as control theory and information theory can furnish
the cyﬁefnetician with the tools that he needs for his a2nalysis.

And the converse is obviously true: Cybernetics can help to solve
some of the problems that concern the physiologist in his search for
understanding, and can suggest to the engineer ways in which his machines
can be improved so 2s to incorporate the cybernetic properties which ceem

to have beecn previously negleéted.

_r—-—————tha—cﬁmhngis forms the basis of Cybernetics.
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1.4 Cybernetics and Intelligence.

As much of the work in Cybernetics is called either 'kachine
Intelligence' or 'Artificial Intelligence', it would seem essential to
understand the relationship between Cybernetics and intelligence. However,
explicit definitions of intelligence are extremely hard to find, and
the meaning of intelligence must inevitably be a matter of opinion.

The relationship between Cybernetics and intelligence can be
clarified by regarding them with respect to . human behaviour. All
humans can solve problems and learn from their experience in order to
attain their goals. This behaviour is obviously cybernetic, “and’ the
human's capacity to exhibit this behaviour is obviously intelligence.

A man's intelligence determines how well he can organise himself and
.adapt to new situations. Thus in the context of the human, Cybernetics
is the study of those factors which enable a man to exhibit intelligence.

If this relationship is generally accepted, then it must also be
accepted that all cybernetic sysfems are also intelligent. In fact,
on closer examination, both Cybernetics and intelligence seem to be
refering to the same phenomena. Thus, Cybernetics Qay be regarded as
the study of.generalised inteiligence, and intelligence as the property

peculiar to cybernetic systems.



1.5 Conclusion.

In the aforegoing sections, Cybernetics has been described
as the study of systems that organise, or steer, themselves in order
to attain goals. This steersmanship is the essence of Cybernetics
and the job of the cybernetician is to understand the principles that
enable a system to manage its own behaviour.

The relationship between Cybernetics and intelligence has
been discussed briefly, and it follows that one of the possible
methods of investigating the principles that underly the cybernetic,
intelligent behaviour of animals could begin with the mechanism that
produces this behaviour - the Central Nervous System ( C.N.S. ).

The C.N.S. is the product of two billion years of evolution, and is

the most highly organised functional unit available for the cybernetician
to study. Thus the search for an understanding of cybernetic

systems leads to a study of the structure and behaviour of the C.NK.S.,
for any information which originates from the C.K.S. is likely to

provide invaluable assistance to the cybernetician in his task of
discovering the principles which underly self organising systems.

It is this approach which is adopted in the present work.



CHAPTER 2

SONE PRELIMINARY CONSIDERATIOKS.



SOME PRELININARY CONSIDERATICKS

2.1 Introduction.

This thesis describes a research program that is concerned
with the construction of engineering models related to the structure
and behaviour of the brain. Chapter 1 has explained why Cybernetics
is interested in the brain, and the purpose of the present chapter
is to clarify the kind of cybernetic study which has been undertaken.

There is a multitude of methods that are available; each
has its merits, and the problem is to select the one that is of most
relevance. Throughout this chapter the various approaches are described
and discussed, and the reasons for the alternative used in this thesis
are presented.

The chapter begins by explaining why the modelling
technique has been adopted, and discusses the various ways in which
models of the brain may be implemented. Neuron models are then
discussed and threshold is introduced. The nomenclature zdopted in
the thesis is defined, and the chapter ends with a simple neuron
model and a preliminary representation of the brain as an assembly of

threshold elements.



2.2 The Construction of Nodels.

A model may be defined as a convenient means of describing
those features of a system under investigation which are of most
interest to the investigator. A model may be a small scale solid
representation, a mathematical equaticn describing a system, or
a computer program.

The widespread use of models is an important method of
studying the environment and of communicating the resulting under-
gtanding to others. Models are of use in all branches of science, but
their greatest use is in interdisciplinary science, where a model can
express ideag taken from several disciplines in a single parsimonious
form.

A great deal has been written previously on the subject of
model meking ( Refs R.1.3., R.1.5., R.1.8., R.1.32., R.T4.1. )

and a synopsis of the salient points follows.

1) The construction of a model is a test or demonstration of the
designer's understanding of his theory:

"History suggests that a man can create anything he can visualise
clearly. The creation of a model is proof of the clarity of the
vision. If you understand how a thing works well enough to build your
own, then your understanding must be nearly perfect." (Ref R.1.33)

In the author's experience the modelling process inevitably reveals
flaws in the original theory. These must be corrected before the

model can be completed.

2) Once a nodel has been constructed, it can be used in a wide range
of experiments. This generates an invaluable understanding concerning
the possible functions that the model can exhibit, and consequently
about the subject that was fhe source of the model. In this case, the

model acts as a thinking tool which enables the research worker to
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design his future experiments. It is unlikely that this understanding

could be gleaned in any other way.

3) One of the most useful aspects of model making involves the
understanding of complex systems. When a system under analysis

becomes too complex for a theoretical study to provide aclear under-
standing, it is possible to build a model of that system, and the
construction of and experimentation with the model helps to clarify

the structure and behaviour of the original system.

In the work that is to follow, systems are described consisting of
interconnected brain cells. Physiology provides no blue-prints, but
it does give suggestions and guide lines. When these have been
exhausted, the cybernetician has to make his assumptions concerning

the structure of these systems and the functions that théy may be
expected to perform. Generally a theoretical analysis of such a

system quickly becomes extremely complex, and it is at this point that
the construction of a2 model becomes of use, since the behaviour of the
model provides useful data concerning the structure and functions of

the assumed system.

Thus in model making, synthesis and analysis go hand in
hand in a symbiotic interaction. When analysis reaches a useful limit,
it can be used in the construction of a ﬁodel. This both tests the
existing analysis and helps to define the direction of further work.
This method of successive approximations is used throughout the thesis,
beginning with an extremely simple model of a single brain cell and

concluding with relatively complex plans for an assembly of such cells.
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4) DMNodels that are based on an engineering modelling environment
occasionally lead to engineering systems of pragmatic value. An

example is the artificial kidney machine.

In summary, the usefulness of the modelling technique may be

expressed by the following factors:

1) Parsimonious expression of complex data.

2) Test and demonstratation of the designer's understanding.

3) An aid to the understanding of systems which are too complex to
be easily understood by a theoretical study.

4) Use as a conceptual, thinking tool.

5) Synthesis of pragmatic hardware.

From this rapid survey it can be seen that there are two
broad reasons for the construction of models: the first is the use of

models in the process of understanding, and the second is the

construction of useful engineering systems. These two go hand in

hand, and their interaction is an indication of the importance of

the modelling technique.



2.3 Levels of Analysis.

During the laét thirty years, there have been innumerable attempts
to produce an engineering model which can reproduce intelligent behaviour.
These can all be categorised into one of three sections, corresponding to

the level of analysis used by the research worker.

Level 1 : The first level is concerned with wodels of behaviour, and
usually involves the use of a large digital computer. It is concerned

with the reproduction of intellicent behaviour, without regard for the

natural system that exhibits the original behaviour. Level 1 is not
interested in physiological structures.

Examples of level 1 models are given in the categorised referenées under
R.5 Computer Programs that Reproduce Intelligent Behaviour. They include
the General Problem Solver ( Ref R.5.5 ), a chess playing program ( Ref
R.5.3 ), and Natural Lanzuage programs ( Ref R.5.2 ). An excellent

review of this level is given by Michie ( Ref R.5.7 ).

Level 2 : The second level begins with well known bidlogical phenomena
such.as association or h;meostasis, and involves the construction of models
based on these phenomena.

Examples of level 2 models are Associating Machines ( Refs R.13.17, R.8.15,
R.8.16, R.8.18, R.8.19, R.13.24 , R.13.6, R.13.8, R.13.9 ), and Ashby's

Homeostat ( Ref R.11.6 ).

Level'z : At the third level of analysis, the Cybernetician focusses his
attention on the structure of the brain, and produces models that are
based on the elements from which the brain is composed. %his apprcach 1s
reductionist in that it assumes that the behaviour of the brain is a
consequence of its components, Jjust as the behaviour of & computer is a

consequence of the logic blocks that compose it. Level 3 1s concerned
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with the explanation of the mechanisms that are responsible fcr the

Cybernetic properties of the brain.

Examples of level 3 models include the majority of hardware neuron
models ( Refs R.7, R.8,.R.9, R.10, R.11, R.12 ), the work on neural nets
both mathematical ( R.14 ), and simulated by digitel computer ( 2.6 ),

and many of the large hardware cybernetic systems listed in R.13.

‘All of the experimentsl work that is to be described in this
thesis 1is concerned with level 3 : it begins with a model of the brain's
elementary component and builds up networks based on this component. The
reasons for this approach are as follows :

1) Level 3 is the only one that is concerned with the machinery of the
brain. As the brain is the product of several million years of evolution,
it seems rezsonable to assume that the engineer has a great dezl to learn
from its structure.

2) It seems much more sensible to-study the brain, which is known to

work, rather than to adopt a comﬁetely new approach ( such as coxputer
programreing ) which may be inherently unsuitable.

3) By beginning at the most basic level, it should be possible to discover
the principles that underlq the orgenisetion of simple systems, and 1o

extrapolate these principles in order to gain insight into the behaviour

of more complex systems.
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2.4 Nodellinz Environments.

The Cybernetician is faced with a multitude of modelling environ-
ments which fall naturally into two categories : hardware and softvare.
Thus each of the three levels mentioned in the previous section may be
modelled in two environments. The present work involves both hardware
and software models, but the majority of the ‘thesis evolves around
hardware simulation. The reasons for this are as follows:

_1) A hardware model is an extremely flexible unit : it can quickly be
patched into circuits that zive an immediate representation of the system
under analysis. This flexibility helps the experimenter to develop a
working knowledge of the functions which his model can exhibit.

2) Hérdware models work in real time and usually with simple spatial
mappings. Thus, the analysis can proceed without complex interpretation of
results.

3) The highly perallel nature of the nervous system has proved to be
difficult to simulate on a digitzl computer, which is a serial machine.

4) A hardware model may be directly applicable to an engineering process.
Recent advances in Integr=ted circuits suggest that en& digital electronic
piece of ha?dware can be made'extremely small and relatively inexpensive.
Conséquently. there is a probability that a hardaare cybernetic machine

could quickly become an economically viable proposition.

Despite the strength of these arguments, the last model that was
produced involved a software simulation. This was found necessary because
the system to be modelled was extremely large, and the construction of a
hardware simulation would have been an arduous and extremely costly process.
In cases such as this, the Cybernetican has no choice but to turn to the
computer which, despite its drawbacks, is capable of hanéling very larce

systews with relative ease.
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2.5 The Use of Threshold.

In any inter-disciplinary subject such as Cybernetics, it is
impossible to advance without the assistance of certain concepts that can
be applied to the various disciplines that are the basis of the subject.

Iﬁ relation to the study of the brain, an analysis must be made in terms

of universal concepts that can then be used in the construction of a

model. Thus the concept enables the cybernetician to perform an analysis
il physiology and psychology, and then apply this to electrical engineering.
The present analysis begins with the concept of threshold, which is

universally applicable to any system involving flow.

Threshold is defined as the magnitude that a stimulus must exceed
in order to produce an effect. The threshold concept is well known to
the electrical engineer aé it is the basis of the Schmitt trigger: the
input voltage has to exceed a threshold before an output can be procduced.
The power of the threshold concept lies in its generality. It may be
applied to Quantum blechanics by regarding the quantum jumps in the electron
orbitals as the result of a threshold somewhere within the afom. In
logic, an AND gate may be thought of as an 'N' input threshoid element
with a threshold of 'N'.’ Similarly, ean CR gate is a threshold element with
a threshold of one. As the threshold varies between one and °'N', the
element exhibits the complete range of majority.logic phenomena. Even
mundane situations-can be interpreted in terms of threshold: to open a
door the stimulus (pushing the door) must overcome a threshold (friction

and inertia) before the effect (open door) is produced.

These examples indicate the power of the threshold concept. Any
analysis that is produced in terms of this concept enables the cybernetician
to construct a model in any system that itself exhibits a threshold, and
this may be electrical, mechanical, chemical, or whatsoever is the riost

convenient modelling environment.
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2.6 Neuron llodels and Threshold Units.

This section introduces neuron modelling and must begin with

definitions of neuron and synspse.

NEURON : The structural unit of the nervous system. The neuron &s a
single living cell which is composed of a cell body, and a long, thin
'‘axon' as shown in Fig 1. There is great vafiety in the size and shape
of different neurons, but they are all btasiczlly composed of a cell body

and its attached axon.

Pig 1.
cell ||
body s
_ “ ' )1 /
axon
SYNAPSE : The region where two neurons come into close contiguity and a

signal passes from one to the other.

Fig 2 illustrates three neurons and their synaptic interconnections.

neuron 1

neuron 3

This may be reduced to a block diagram as shown in Fig 3.

NEURCH 1

- SYNAFSE

el
SYNAY3E —+“J_—

NEURGN 3 |[—/—>

Y

NEURCH 2

Fig 3.
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As can be scen, the neuron and synapse are regarded as separate functiona
units. Throughout the thesis, the term "neuron-synapse' or "L-5" is

used to refer to a single neuron and the synapses at its inputs. Thus,
in Fig 3, neuron 3 and the two synepses at its inputs comprise a single
N-S element. In this way the properties of the neuron and synapse can

be defined withcut confusion.

Rigorous mathematical analysis of a single N-S has shown that an
8th order non-lipear différential equation is required for a complete
description of its properties ( Ref R.1.18., p631. ). This kind of
analysis is invaluable in providing the cybernetician with a specification
for his models, which is most usefully represented as a list of functional

properties as follows:

1) There is a threshold of activation. If the inputs to the N-S cause
the excitation level to exceed this threshold, then the neuron will fire,

and produce an output of constant size and duration.

2) There are two distinct type of signal produced by the nervous system:
excitatory and inhibitory. The former causes the level of excitation in

the neuron to increase, +the latter causes it to decrease.

-

3)' All the inputs to the neuron are integrated spatially. Thus the effect
of the inputs is determined by the difference between the net excitation

and the net inhibition.

4) All the inputs are integrated temporally. Thus, a single sub-threshold
excitatory input stimulus may be capable of firing the neuron, provided

that it is repeatedly presented at a high frequency.

5) There is a refactory period. Once fired, there is & subsequent period
during which the neuron cannot fire again, no matter how large the input

stimulus may be.
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6) The outputs from a neuron can either be all excitatory or all inhibitory,
There are no known examples of neurcns which produce both excitatory and

inhibitory output signals.

7) The response of a neuron habituates. After regular use its output
frequency (which i1s normally determined by the spatial and temporal sum
of its inputs) begins to fall, and it becomes progressively more difficult

to produce an output.

These are the essential functional properties of the N-S system,
the most basic of which is its threshold. Any attempt to produce a model
of the N-S must begin by choosing the type of threshold that is to form
the basis of the model. In the past an immense number of N-S models
has been produced which involve the use of voltage thresholds, magnetic
thresholds, mechanical thresholds, logical thresholds, and various forms
of mathematical threshold. These models have used modelling
environments that range from electr;cal and mechanical engireering to
such fields as opto-electronics and superconductivity. If more
information is required, the reader is referred to the categorised
references that are given at the end of the thesis, or to one of the
revieﬁs that are available *( Refs R.1.1., R.1.3., R.1.19., R.14.1. ).

A comprehensive review of the field of neuron modelling is not given
here, as the main result of the author's personal literature search was
to re-inforce the hypothesis that threshold is an extremely important

parameter in the construction of an K-S model.

.In most of the models that were studied the existence of a threshold
is self evident, but in others it is not immediately obvious. The
SLAM system ( Ref R.7.6. ) is a digital N-S model in which the connecticns

between the input and output can either be open or closed. This
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is an extreme case of the threshold phenomenon: an open pathway has
a negligble threshold, a closed pathway has an infinite threshold.
The vast majority of the N-5 models which have been studied have
thresholds that lie between these two extremes: pathways are neither
fully open nor fully closed, gnd varying levels of input stimulation
are capable of overcoming the threshold and thus propagating the

information.

2.6 (a) Development of Neuron Vodels.

. While threshold is a necessary property of any N-S system,
it may not be assumed that it is sufficient. The N-S is an extremely
complex, highly specialised biological system, and the assumption
that it may be modelled by a single threshold element involves a
gross oversimplification. Nevertheless, it is with this assumption
that the present work begins. The author believes that the most

effective modelling philosophy involves initially simple models.

As the first approximations prove to be inadequate, further sophist-
ication . can be introduced to obviate these inadequacies,
Throughout this process of progressively more complex
models, the author regularly turned to the C.N.S. for assistance,
for if the models are to have any relevance to the physiology of the
nervous system, then this biological knowledge must be fully exploited
in the search for a solution to problems which emerge with the models.
This method involves a methodical series of successive
approximations, and is of great value in that it involves a gradual

aquisition of knowledge.
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2.7 Nomenclature.

A3 the work described in this thesis is interdisciplinary,
it is inevitable that the discussion will move rapidly between the
various disciplines. It is, therefore, essential to define unambig-
uously all of the terms which relate to a single discipline., For
instance the term "neuron" refers to a biological system and must be
distinguished from the electronic models that were constructed to

gimulate their biological counterparts.

In order to do this as simply as possible, the following convention

has been adopted:

neuron : biological neuron.
synapse : biological synapse.
N-S : biological system consisting of a single neuron and the

synapses at its input from other neurons.

The engineering systems which were built to simulate the behaviour of

these blological elements are referred to as follows:

neuron model TOR ‘neuron'
synapse model OR 'synapse’
N-S model OR 'N-S!

Thus, from this point onwards, whenever neuron, synapse or
N-S appear within single inverted commas ( 'neuron', ‘'synapse', 'l=S' )
it may be assumed that the term refers to an engineering model of

a biological system.
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2.8 The Decade Counter as a Neuron !‘odel.

The models that are described in this thesis all evolve around the

concept of a number threshold. The experimental work began with the

oversimplification that any system that exhibits a nuxber threshold can
be approximated to a neuron model. The most obvious example of this is
a decade counter.

. Consider the system illustrated in Fig 4:

input pulses —w— DECADE COUNTER |———= output pulses

Fig 4.
Ten input pulses must be presented to the system before an output

pulse is produced. This behaviour will repeat itself, as shown in Fig 5:

' output _
voltage _ & Fig 5.

1 | N e

0 10 20 30 40 50 input pulses.

An output pulse is produced every ten imputs, and this is of a
constant size. Consequently'it may be regarded as having a threshold
equivalent to ten input pulses. As the output is produced by a succession
of single input pulses, the model also exhibits temporal summation .
Furtﬁer, an output causes the counter to be reset and this means that it
possesses a refractory period.

The model does not exhibit spatial summation or habituation, end it
ig obviously inadequate as an exact N~S model. It does, however, provide

a first approximation which is both simple and accessible and thus of

pragmatic value.
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2.9 The Brain as an /ssembly of Threshold Elements.

By assuming that the fundamental property of a N-S is its threshold,
the_brain may be conceptualised as a system consisting of 1010 interconn-
ected threchold elements. Again this is an oversimplification, but it
does provide insight into one of the basit properties of any brain-like
system : the way that the information flow is determined by the relative
threshold values. Fig 6 represents an interconnected system of threshold
elements. The value of tﬁe threshold ( H ) is indicated by the number in

each of the boxes.

Fig 6. g 1
—{ 6 e - 12 >
input s R
- 3 2
— Pt ——— — 1 =
~N e T
— 8

Y

outputs

If an input is presented to the system, the information will flow
along the path indicated by the arrows, as it will always flow along the
branch vhich contains the lowest threshold. This is a universal property
o; threshold systems and hés previously bee: described by Farley and
Clérk ( Ref R.6.1 ) as follows:

"When ﬁhe average threshold in an area is raised, activity tends

to avoid it, and when the average is lowered, activity tends to be

attracted into the area.”

Considerations such as this lead to the hypothesis that the brain
may be approximated by a network of threshold elements in which the flow
of information is determined by two factors: (a) the pattern of inter-

connections and (b) the relative threzhold values of the elements.
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2+10 Summary .

This chapter has described the preliminary considerations
upon which the rest of the thesis is based. They are as follows:

1) Model making is an extremely powerful approach to the study of
the environment. ‘

2) There are three levels of analysis open to the cybernetician who
wishes to study the brain. The present work is involved with the
third level: N-S modelling and the systems that result from these
models.

3) It is assumed that the behaviour of the brain has its basis in
neuronal events, and can be explained in terms of signals which
by synaptic operation fire neurons.

4) The modelling technique can use either hardware or software
modelling environments. Hardware appears to be the more powerful,
and thus the present work begins with hardware models.

5) Threshold is a powerful interdisciplinary concept which is of use
in modelling the nervous system.

6) The N-S may be modelled by a threshold element, and the decade
counter presents a simple, accessible implementation., It also
introduces the concept of number threshold.

7) The brain may be approximated as an assembly of threshold elements,

in which the information flow is determined by the structure and

the relative threshold values of the elements.
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PLASTICITY.

24



PLASTICITY

3.1 Introdnction.

The main purpose of the experimental work undertaken in this
research program is to provide an understanding of the processes that
underly such phenomene as learning, memory and perception. The author
has assumed that these phenomena are the result of neural circuitry, and
_that by experimentation with models of neuron-like elements, engineering
systems may be constructed which produce similar phenomena.

In section 2.6, the fundamental properties of the N-3 were defined,
but no capacity for chznge was provided. As all intelligent behavicur
involves changes in the behaviour of the organism, it seems safe to assume
that somewhere in the machinery that produces this behaviour,changes must
also occur. Chapter 3 concerns these changes. It begins by introducing
and discussing the two possible types of change that may occur - structural
end plastic ~ and explains why the latter is the more plausible alternative.
Previous cybernetic machines that exhibit plastic change are discussed
and categorised, and the author's electronic models of plastic chanze in
the N-5 are introduced and described. Finally, the author's initizl

experiments with plasti6 N-S models are outlined with respect to the
N

explenation of lesrning, memory, association and simple perceptual

phenomena.
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3.2 Structursl Ch-nze and Plastic Change.

All intellijzent behaviour involves changes in the behaviour of an
organism, and this must be produced by some change in the machinery of
that organism which produces the behaviour. It may be of two typés:

1) Structural Change: the change in behaviour mey be the result of the
growth of a new neural circuit, or the sevcrﬁng of an existing cne. In
engineering terms, structural change involves the re-wiring of a circuit,
- or the addition of new components.

2) Plastic Change: the behavioural change may be the result of changes in

the strength or effectiveness of components within the existing system.

To clarify this dichotomy, consider the system of threshold elements
illustrated in Fig 6. A change in the behaviour of this system may have
been produced by a structural change, such as the addition of a new
threshold element or the reconnection of some of the existing elements;
elternatively a plastic change may have occured, such as the alteration of
the value of threshold ( H ) in one of the elements. Thus, if the
behaviour changes so as to give an oupuf from output 1, then this may be
the result of the addition of high H components in all the other channels
( étructural change ), or of the lowering of the value of threshold from

T to 2 in that channel ( plastic change ).

Throughout this thesis it is assumed that plastic change is the
mechanism that underlies the Qeaningful changes in the behaviour of the
brain. Physiologists are now reasonably sure that, after the age of about
five yeers, the structure of the human brain is unchanged

"Nerve impulses are transmitted over definite, restripted paths in
the sensory and motor nerves, and in the central nervous system from cell

to cell through definite intercellular connections™ ( Ref R.2.20 )

As structural change seems to be out of the question, we are

forced to turn to plasticity. Direct evidence of plastic changes in the
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N-S has been accumulating during the last few years, and there is now

a considerable body of knowledge in suzjport of the plasticity hypathesis
( Refs R.3 'Evidence-of Plasticity' ). The review of Kandel and Spencer
( Ref R.3.1 ) contains the evidence fcr plastic change that was available
in 1968. It contains 367 references, znd leaves the author in no doubt
that, within the nervous system of humezns and animels, plastic changes

do occur, and that this is the mechanisz that underlies intelligent

~behaviour.

Long before plasticity had bteen demonstated experimentally, it
had been the basis of several theoreticzl works attempting to show how
cellular mechanisms can result in intelligent behaviour. The most famous
of these is Hebb's 'Organisation of Behavipur', in which the plasticity
hypothesis is clearly stated as follows:

"When an axon of cell A is nezr enough to gxcite a cell B and
repeatedly or persistently takes part in firing if, some growth process
or metabolic change takes place in one or both cells such that A's

efficiency, as one of the cells firing B, is increased.' ( Ref R.2.1 )

The references listed in R.4 'Theories based oh the Plasticity
Hypofhesis', all begin ;ith Hebb's basic assumption and then use it to
account for the behaviour of parts of the brain. Although these theories
develop along very different lines, they exemplify the power of the
plasticity hypothesis in showing how cellular changes can account for

the behaviour of an intelligent organism.

The case for plastic change is considerable from both the
physiologist and the psychologist's point of view, and it is'therefore
not surprising that the vast majority of engineering learning systens
has exhibited plasticity in one form or another. There have been several

computer simulations that change the threshold of the input charnels to
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cach'N-S' elenient ( Refs R.6.5., R.6.6., R.6.7., R.6.10., R.6.11,, R.6.12,,
R.6.20. ).

Hardware learning systems have involved plastic changes of several
different forms. These include changes in the stzte of oscilleting circuits
( Ref R.8.15 ),in probabilities ( Ref R.13.12 ),in magnetic fluxes ( Ref
R.13.9 ), in statistical switches ( Ref R.13.3 ), in bits on a magnetic
tape ( Ref R.13.17 ) in motor driven potentiometers ( Refs R.13.14.,
R.11.2 ) and even in such parameters as the resistance of chemicelly
coated cotton wires ( R.10.4 ) and the state of iron balls in an acid
solution ( Ref R.10.3 ). Probably the most practical plastic element is
Widrow's memistor ( Ref R.10.13 ), a solid state system which changes its

resistance as the result of a control signal.

This very rapid survey of plasticity in physiology, psychology
and engineering learning machines should suffice to illustrate the
importance of plastic change. The rest of the thesis is concernéd with
the way in which plastic changes at the cellular level can result in
intelligent, behavioural changes. -

At £he end of ChapterIZ, the brain was approximated to an assembly
of threshold elements in which the information flow is determined by the
relative threshold values. This model can now be extended to embrace the
plasticity hypothesis: if the behaviour of the system is determined by
the value of the threshold of its components, then the plastic chznging
of these values produces the intelligent behaviour of that system.

In other words, the study of intellizsent behaviour is the study of the

way in which plastic chanzes are controlled.
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3.3 Internal z2nd Externzl Control of Plastic Chan-e.

During the 1950's and 1960's, a large number of lcarning rzchines
were developed which use plastic changes that are controlled externally.

They may be described generally by Fig 7.
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The operation of these machines is dominated by the 'controller', which
is an all-knowing system capable of changing the plastic parameters of
the 'processor' so as to give the required system performance. Eventually
the processor 'learns' to exhibit the type of behaviour that is demanded
by the controller. y

An enormous amount of energy has been exﬁ?nded on this type éf
system; the most famous example is.the Perceptron ( Ref R.1.8 ), but there
are many others ( Ref R.1.34 ). Generally, they =sre called "Trainable
Pattern Classifying Systems". It is the opinion of the author that this
type of system leaves much to be desired as a brain model. The existence
of  an all-knowledgeable part of the brain can be dismissed, and thus there
is no parallel with the structure of the brain. Further the 'learning'
process is better described as 'setting up', and the system is only
capable of mimicking. These céiticisms do not mean that the Perceptron
is of no value: it is an engineering system which was designed to
recognise patterns and in this it is successful. It cannot, however,
offer ;ny“assistance in the cybernetic problem that is centr?l to the

present research - how does the mechanism of the brain produce intelligent

behaviour ?

The alternztive to the Perceptron type of system involves plastic

changes that are controlled internslly. This entails plastic chaznges in
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the 'N-5' that are determined automatically by the information ét the inputs
and output of the M-S\ This is exactly the type of plastic change that |
has been found by the physiologist, ( Refs R.3 ), and that forms the

basis of the psychological theories mentioned in the previous section

( Refs R.4 ). Hebb's hypothesis gives the Cybernetician a description

of the type of internally controlled plastic'change that is of importance

in the synthesis of a brain model.

Due to the influence of the Perceptron program on Cybernetics,
most plastic changes have been externally controlled. There are, however,
a few exceptions to this. The work of Taylor ( Refs R.6.20., R.8.17.,
Re11.2., R.13.13 ) has involved both hardware and software models based
on the internally controlled plasticity idea. He states:

"It has been demonstrated that an increase of transmission with
use 1s a sufficient condition for the learning of visual pattern
clagsification ." ( Ref R.8.21., p 166 ) ’

Other examples of hardware internally-controlled plastic systems
can be found in the work of Steinbuch ( Ref R.13.9 ), Young ( Ref R.13.17 ),
and Uttley ( Ref R.13.12 ). All of these change the strength of their
component parameters when certain relationships between input and output

are fulfilled.
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3.4 DlNodels of Plastic Change.

In order to Znvestigate the behaviour of a hardware sgsystem of
internally controllei plastic elements, it was necessary to design and
build a model of plzctic change which is cepable of exhibiting the
features described ir Hebb's hypothesis, without being excessively
expensive.

‘Previous moZzls of plastic change were reviewed, and all were
found to be unsatisfzctory. Three alternatives ére arparent. The
first involves the chrzrge on a capacitor which represents the threshold
of a system componernt. As that component is used regularly, the charge
is changed and thus the threshold is lowered. This approach has been used
by Taylor ( Ref R.8.21 ), Uttley ( Ref R.13.12 ) and Wilkins ( Ref R.8.19 ),
and is unsatisfactory because the capacitors inevitably leak, and thus all_
the plastic changes zradually fade away. As the average human is capeble
of remembering data for several years, a permanent storage of plastic
change becomes an essentizl design feature.

The second zpproach is to use motor driven potentiometers to
store the tpresﬁold values. This alternative has been ;sed by Taylor
( Ref R.11.2 ) and in the Peréeptron prozgram ( Ref R.13.14 ). Although
its functional properties are ideal, the motor driven potentiometer is
bulky, expensive and slow. As the author was planning to build systems
involving thousands of plastic units, thi; was obviously out of the
question.

The only other possibility was the Memistor ( Ref R.10.12 ), which

is jideal in terms of its properties and size, but also very expemsive

and thus outside the budget of a PhD program.

As all thece alternatives proved to be unsuitatle, the first
priority became the design and construction of a small, inexpensive,
internally-controlled, plastic element. During the first year's research,

several plastic elcrents were constructed, all of which used digital



( and thus integrateable ) components. In order to explain thE behzviour
of these models, it is necessary to describe only one of them, as they

" all evolve around the same bssic principles. Details of the six plastic
models that were developed, and the reasons for their increasing

complexity may be found at the end of the' thesis in Appendix 1. (page 159)

Fig 8 illustrates plastic model 4 ( PM4 ), and is shown below:

A
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. input
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feedback
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C1 and C2 are two binary counters ( O to 15 ) which iritielly both hold

Fig 8.

zero. As inputs are presented to the system, C1 counts up, andlwhen it
holds 15 ( binary 1111 ), an output pulse is produced by the XCKC. This
is" the basic number threshold described in section 2.7.

The output from the YCNO sets the 'load' input on C1 to zero volts,
causing the contents of C2 to be read into C1. Initially C2 contezins
zero, and thus 16 input pulse; are agein required to count up C1 and to
fire the NMCNO.

NAND gates 4,5 and 6 ensure that the contents of C2 is increrented
only when there is a co-incidence tetween the input and output pulses.
Practically this means that C2 is incremented when input pulses are
presented at a frequency greater than 3¢ 5 Hz., This frejuency is degperndent

on the characteristics of the output pulse from the )CNO, and is not

of parsmount importance in the design.
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Thus, when the input frequency is greater than 3-5 Hz, 16 input
pulses are needed to fire the cell, and then C2 is incremented. The
'1' in C2 is then reéd into C1 due to the 'load' signal, and thus only
15 pulses are required to produce an output pulse. Thus, the number
threshold of the system has decreased.

The process of incrementing C2 continues progressively ( thus
diminishing the number of input pulses needed to fire the cell ) until
C2 containsgs 15. At this point NAND gates 2 and 3 prevent further input
to C2, and thus it cannot recirculate. Thus when the cell is used
repeatedly or persistantly, its threshold decreases progressively until
one input pulse is able to fire the system. This behaviour is illustrated
in Pig 9.

Threshold

16 Fig 9. Change of Threshold

with time for input frecguency

greater than 3.5 Hz.

Time.

The development of this system occupied several months work.
The most severe practical problem that had to be overcome was the
construction of a digital system which only changed its behaviour for
high frequency input signals. Digital equipment is ideal for the long
term retention of data, but inherently unsuitable for the modelling of
short term phenomena that must be forgotten within a few seconds. The
design of PM4 1is unique in that slow input pulses have no effect on its
basic properity, and yet regular and persistant input pulses'lead to
progressive threshold lowering, ie to internelly controlled plastic

change, which is retained for as long as is necessary.



3.5 The Use of the Plastic liodel in Simple Networks.

Having completed the design and construction of a
satisfactory plastic model, a series of experiments was initiated in
order to study its properties both singly and in combination. This

gection describes the first, simple éxperimcnts that wers performed.

3.5.1 The lLocation of the Plagtic Element in the 'N-S'.

The model PH4, illustrated in Fig 8, is ; single input,
single output device, and may therefore be considered as a plastic
N-S model with a single input. As the N-S has many inputs, the first
undertaking was to design a plastic system with three inputs. The

first approximation is shown below in Fig 10.

a
inputs b OR —=—1 PNi4 =— output
5 TS,

feedback

Fig 10.

As soon as the experiments began, it became obvious that this
arrangement was unsatisfactory as there was no way of distingulshing
the inputs. For example, a regular input to input b caused the
threshold of the plastic element to fall as required so that input b
produced an output with a single input pulse. However, a single input
to either input a or input ¢ also fired the model, and in order to
distinguish all the inputs, the plastic element had to be relocated

as shown in Fig 11.

-
«——4 feedback to
-<——¢ 8ll plastic
—s—1  PM4 elements
inputs —»— FH4 ——  output

—— T4 '—————'_

Fig 11.
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In all cases, the feedback which controls the plastic changes 1is

taken from the output of the 'N-S' system. Thus in Fig 11 a PN4

element will change its behaviour if it is presented with a pulse train
with a frequency greater than 3.5 Hz., and the other two plastic
elements will be unaffected since there can be no co-incidence between
input and output. Fig 11 is, therefore, a model of a N-S with three
inputs in which regular and persistant signals into any one of its input
channels cause plastic changes to occur relative to that channel only.
Fig 11 describes the organisation of the plastic 'N-S' systems which

are the elemental hardware units used in the experiments described in
this chapter. The location of the plastic unit at the input means
that the model is in agreement with the aforementioned works on
physiology and psychology which generally locate the learning phenomena
in the N-S at the synapse. In order to be consistant with these works,
the lowering of threshold at the synapse will hereafter be considered

as an increase in synaptic weighting, and is given the symbol "W",

3.5.2 Association.

To many of the early psychologists, it seemed likely that
the phenomenon of association was the basis of the whole of the brain's
behaviour, and this view is still prevalent among cyberneticians today.
The present author does not hold with this opinion, but the importance
of association as an inherent property of neural networks cannot be
denied. During the early experiments with plastic N-S models, a
possible explanation of this was found: in any single plastic N-S
model association is an inherent property. Consider a simple model
consisting of two plastic elements ( 'synaptic' weights W1'and w2 )

arranged as illustrated in Fig 12.
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l_ —eaf-
input 1 ——— PM4 (W1)

—»— Output

input 2 ———— PM4 (W2)
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Let us assume that input 1 has been used regularly so that a plastic

Fig 12

change has occured in that input channel such that every input pulse
into input 1 causes the system to fire. For the purposes of this
experiment, input 1 is considered as the "specific stimulus"™ and the
output from the 'N-S' as the "specific effect". Input 2 produces an
output only after 16 input pulses and this is considered as the "neutral
stimulus".

Now, let us suppose that the neutral stimulus is unable to
produce a plastic change in the system due to insufficient excitation
frequency. Nothing will happen unless the two inputs are presented

co-incidentally. If this occurs, then the input to the plastic

element in channel 2 will co-incide with the output from the 'N-S'
caused by input 1, and consequently #2 will begin to rise. After
15 co-incidences W2 will be at its upper limit, and a single pulse
into channel 2 will fire the system.

Thus, when the specific stimulus and the neutral stimulus
are presented co-incidentally, the system learns to associate so that
the neutral stimulus eventually produces the specific effect. The
way in which plastic change-.is controlled ( which depends upon a
co-incidence between the input to, and the output from the 'N-S' )
ensures that all the inputs to a plastic N-S model can associate with

each other.
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3.5.3 A l'odel of the Visual C.K.S.

The plastic models were then used in a series of experiments
based on the structure and function of the visual nervous system. The
work was inspired by the experimental evidence of Hubel and Weisel
( Refs R.2.24., and R.2.25. ) which gives the cybernetician a sound
behavioural basis on which to begin. Their work shows conclusively
that there are cells in the brain that respond to very specific kinds
of visual input stimuli, and to nothing else. The experiments that

follow were designed to synthesise a system that teaches itself to

exhiblt these phenomena from the information that is presented to it.
There are no external controllers: any input stimulus modifies the syst-
em so that it is more sensitive to further input of that stimulus.

This means that the system will only "see" those inputs which have

been presented to it regularly, a phenomenen recently reported by

Blakemoor and Cooper ( Ref R.3.16. ).

The first experiment was designed to simulate a system
which produces the "gpot response" reported by Hubel and Weisel. They
found that stimulation of the retina by a small round spot of light
in a specific location produced an excitatory response ( called the "ON
response" ) in one specific cell, and that stimulation with the light
spot around the ON response location produced an ihhibitory response
( OFF response ) in the same cell. This is illustrated below in

Fig 13.

ON region
Receptive field for

Fig 13: ON centre

spot response. OFF region.
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A model exhibiting this behaviour was constructed, and is
illustrated in Fié 14, It consists of five receptors ( R1 to RS ),
and eight plastic elements with velghtings #1 to %8 grouped in three
'N-S' systems each with a single output.

As in the previous models, learning occurs when there is
a co-incidence between the input to, and oﬁtput from the 'N-S'. Thus,
if R1 and R2 are both activated at frequenciecs above 3.5 Hz, AND
gate X will produce an output pulse and consequently W1 and W2 will
change plastically. Eventually both W1 and W2 will reach their
maximum weighting values, and ANKD gate X will respond every time
that a stimulus is presented to both R1 and R2. In a typical
experiment, the input frequencies were set at about 5 Hz., and the
learning process was completed in a little more than seven minutes.

AND gates Y and Z may be taught in a similar manner: the
former learns to respond to au‘input from R2, R3 and R4, the latter
to R3, R4 and RS.

The possibility of learning any particular pattern is

dependent on the built-in structure of the network, but the pattern

which 1is actually learnt depends on the experience of the machine,

The three AND gates X', Y', and Z' and their inter-

connecting circuitry are a digital imolementation of the lateral
inhibitory structures whieh are found throughout the nervous system.
In the early experiments the inhibitory system was connected between
AND gates X, Y, and 2, but this involved 4-input NAND gates which
were found to be unreliable. Consequently the system was built using
extra circuitry, as shown in Fig 14.

The inhibitory system ensures that each output responds to

a stimulus at the centre of its receptive field, and is inhibited by
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feedback to W1 and W2
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feedback to w5, W7 and W8

Fig 14: Plastic model which learns to exhibit "spot response"

behaviour.

: Output 2 is fedback to W3, W4 and V6.
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stimuli around the periphery. Further, it explains how the various
receptive fields may overlap: an input due to the stimulation of R3
may either be part of an ON stimulus for AND gate Y ( if R2 and R4

are also stimulated ) or an OFF stimulus for AND gate Y ( if R4 and

RS are stimulated ).

Hubel and Vieisel also found cells which exhibit the reverse
response, which are called "OFF centre cells". The receptive field
of an OFF centre cell is illustrated in Fig 15

ON region
Fig 15: Receptive field of

an OFF centre cell.
OFF region

OFF centre cells are inhibited by a stimulus at the centre
of their receptive fields and excited by stimulation at the
periphery. A system to simulate this behaviour could easily have
been constructed by connecting three invertors: the first between
X and X', the second between Y and Y', and the third between Z
gnd Z'. Thus stimulation of R2, R3 and R4 would inhibit output 2
and stimulation of R1 and R2 would inhibit output 1 , and thus
excite output 2.

It is interestiﬁg to note that the system illustrated in
Fig 14 exhibits both ON centre and OFF centre characteristics. The
AND gates X, Y, and Z exhibit ON centre properties, as has just been
described. ' NAND gate 1 is inhibited when R2, R3 .,and R4 are
stimulated and activated when either R1 and R2, or R4 and RS are

stimulated. It is, therefore, an OFF centre cell.
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\then cells in the visual cortex are examined, some of
them are found to respond to a bar of light in the same way that
the cells in the retina respond to spots. The bar response has
been assumed to be a consequence of the spot response, and may be

modelled as shown below in Fig 16.

z : P4
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feedback to
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L elements.
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As the output ffom the spot response model illustrated in
Fig 14 allows only one output in three to be active at any one time,
a kind of majority logic is needed. Fig 16 illustrates an
implementation of this which involves digital components. Each of
the three OR gates ( 1,2 and 3 ) has three inputs from a single spot
response system.

‘When a bar is presented to the receptors, a number of
spot respoﬂse AND gates will be activated, and these will activate
AND gate B. The relevant plastic elements will learn if the
stimulus is presented regularly =nd persistantly, and eventusally
the system learns to respond to that particular bar.

The bar response cells show similar ON/OFF feceptive
fields to the spot response cells.. and the present model has
assumed that the former is a direct éonsequence of the latter. ror

example, consider ninc receptors arranged as shown in Fig 17.
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The lateral inhibition system ensures that every cell at the spot response
level inhibits its inmediate neightours. Thus, if line 2 is activated
then the inhibition at the spot response level will ensure that lines 1
and 3 are inhibited.

The model shows that the spot response may be regarded as a

functional element which ensures that every bar, no matter what its

orientation, will exhibit the necessary on/off behaviour without the

~

-

addition of further neural circuitry. e

The last effect to be modelled was the moving bar response. Certain
cells in the cortex respond to a bar of light moving in ore direction, tut
not in the opposite direction. A model exhititing this behaviour is

illustrated in Fig 18.
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A bar moving in the direction indicated will produce an output from B1
followed by an output from B2. If the time difference between these
signals is similar to the delay in the system, then the two signals will
co-incide, the two'synapses' illustrated will change plastically, and the
gate M recponds to the moving bar.

The experimental system built to illustrate this effect took
several minutes to complete the learning process, and it had tc be assumed
that the output from B1 and B2 was in the form of a short burst of pulses.
At the completion of the process of teaching the system, the gate M
responded to a bar moving in the downward direction, but not to a bar
moving in the upwards direction. The system had learnt, therefore, to

be direction sensgitive.

All of these experiments illustrate how an input stimulus.can
itself teach the visual system to learn to respond preferentially to that
stimulus in the future. It is likely that a large system could be built
from these prototypes, and that given a comprehensive classification

system, its behaviour would be non trivial.
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3.5.4 learning nond lemory.

Learning and memory are both terms that are closely connected to
the concept of plastic change. Intelligence involves changes in
behaviour, and this is assumed to be the result of controlled plaétic
changes. Learning, the process by which intelligent behaviour is attained,
may be regarded as the process by which plastic changes are produced.
Similarly, memory becomes the enduraﬁce of the plastic changes that are
produced as the result of the learning process.

The Cybernetician is in an invaluable position es his leanguage is
limited neither to physiology nor psychology. Thus, learning and memory
(two psychological terms) may be re-thought in purely physiological
concepts , in order to gain a greater understanding. From this point of
view, the model of plastic éhange is an extremely useful eaid to analysis:
it shows that learning and memory are two properties that are inherent in
any plastic system. The former refers to the way in which plastic cﬁangea

occur, the latter to their endurance.



3.5.5 Assessment of the vork on Simpvle leura) Networks.

The work described in this section involved the construction
of networks of neuron and synapse models, which were designed in order
to do a particular job. In the case of the visual system, the function
of the system was defined, and then fhe model was constructed using the
neural elements. In this way it is very easy to‘construct a simple
simulation of basic properties of the C.N.S. This work was not
radically different from that of Uttley ( Ref R.1.18., p 123 ) and
others, although it did begin from a different perspective.

The difficulty with this kind of approach becomes apparent
when an attempt is made to extend the scope of the model to perform
non-trivial learning or classification tasks. It quickly becomes
apparent that as the power of the system rises arithmetically, the
amount of necessary apparatus increases geometrically. In the case of
Uttley's systems mentioned above, the relationship between the number
of inputs ( i ) and the number of 'neurons' ( N ) is given by

N =2t

This is obviously an absurd situation, for if all the brain's 1010 cells
are used, then for complete classification only 33 inputs are permissable.
In order to resolve this problem, it must be realised that
the behaviour of any cybernetic system is determined by the interaction
of two factors: |
(a) The hardwired,. inherited structure , ie the built-in
interconnection pattern and the basic properties of the
elements.
(b) The chznges that occur in the properties of these elements
as a result of the learning process. )
All learning machines are affected by both these factors, and the

difficulty arises in the choice of balance. The systems described in

3.5, and the early work of Uttley, Taylor and others are all dominated
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by the first factor: their structure. These 'structure-doninant-systems!
( $.D.S ) exhibit properties that are largely determined by the
interconnection pattern of the elements, and the effect of the learning
process - the second factor - is generally to select the relevant
sub-systems from the alternatives presented. This is certainly true

of the work described in this section, as reference to 3.5.3 will
clarify.

The main drawback to the S.D.S is the extension of simple
networks to large, powerful, cybernetic machines. Another serious
problem involves reliability: as the behaviour of the system is
dominated by the built in interconnection pattern, any change in this
pattefn ( due to, say, the death of one of the neurons ) will interfere
with, and possibly eradicate, one of the essential properties of the
system, It is possible that the learning process will be able to ftind
another identical circuit which performs the same function, but this
requires a great deal of 'back-up' in order to ensure that the system
can withstand damage. It is possible that S.D.Ss do exist in the
peripheral areas of the C.N.S., for the severing of nerve fibres in the
visual regién of animals does lead to the loss of specific functions,
and these can only be re-learnt with great difficulty. But the majority
of the brain, especially the cerebral cortex, shows an astonishing
resistance to damage and decay, and it must therefore be concluded
that the in-built structure is of secondry importance. Somehow, the
interconncection pattern provides a foundation which, although otviously
involved in the resulting behaviour of the system, allows the learning
process to play a significant or even a dominant role.

In order to discover the way in which this kind of system
is orgzanised, it is necessary to atandon all intentions of designing
a system with a specific structure which is to do a specific job. The

most obvious alternative is a system with random interconnections, for



if the built in structure is random, then the learning process

must perform the self-organisation and thus dominate the properties

of the system.
It wes at this point that the work with plastic elements

changed its emphasis from structure dominant systems, and began

to experiment with randomly interconnected networks.
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3.6 Conclusion.

In this chapter, internally controlled plastic change
has been introduced as the cellular mechanism most likely to
underly the cybernetic behaviour of the brain. The physiological
and psychological evidence for this assuﬁption has been discussed
briefly, and previous attempts to construct hardware m.dels of
plastic change have been mentioned. The author's digital
implementations of the internally controlled plastic phenomenon
have been described, and used in a series of experiments that show
the following:
1) In the model the plastic element is most suitably located at
the inputs to the 'N-S' system. This corresponds to the physiological
evidence that learning involves some sort of change in synaptic
efficiency. ( See Refs R.3 "Evidence of Plasticity" , page 188 )
2) Association is inherent in a plsstic N-S model with two or
more inputs which is organised so that the plastic changes are
determined by a co-incidence between input and output signals.
3) The plastic models may be used to construct a learning machine
which exhibits several prOpérties analagous to phenomena observed in
the visual nervous system of animals.

4) Learning and memory are inherent in any plastic system.

These experiments also acted as a proving ground for the
models: their reliability was tested and found to be highly
gsatisfactory. During the two ;onths of the experimental period,
very little time was lost in the repair and adjuatment.of the models.
They were plugged in and used immediately.

The models of plastic change are, consequently, useful

from three points of view: to the engineer they are simple, relicble
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and relatively inexpensive, to the physiolc. ist they are suitable
for the modelling of biological systems, and to the psychologist
they suggest explanations of psychological phenomena.

At the theoretical level, ;his cheapter has reduced the
study of the brain to the study of internally controlled plastic
change at the cellular level, and has found that although structure
dominant systems are satisfactory in the production of small systems
of 'neurons' and 'synapses', they are completely  impractical where
large, non-trivial N-S5 models are concerned.

The work that follows is, therefore, based upon the
plasticity hypothesis, but progresses from structure dominant systems

to randomly interconnected networks.



CHAPTER 4

HOMEOSTASIS.

w
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HOMEOSTASTS

4.1 Introduction.

In 1948, an erticle appeared in the journal 'Electronic Engineering'
called 'Design for a Brain'. ( Ref R.11.6 ) It described a system
called the Homeostat, which was presepted as the basig for a complete
model of the brain : "The making of a synthetic brain requires now little
more than time and labour. " Today, Ashby's claims look outrageous, for
the Homecostat was nothing more than a system with several negative feedback
paths that was, not surprisingly, extremely stable. To Ashby, this

negative feedback scemed to endow his Homeostat with life-like properties.

The deficiency of the queostat is that it is completely non-plastic
and thus incapable of any kind of learning or memory. It has subsequently
been described as a ‘'floundering machine', and todays Cyberneticians
seem to have totally abandoned the Homeostat as a model of the brain,
Nevertheless, it is still true that homeostasis ( or complete stability )
is & very necessary property of any brain-like system, and thie is one of
the central themes of the thesis.

The need for homeostasis emerged as the'N—S'systems under
in@estigation progressed féom the simple,structured circuits described in

3.5 to nets with a high dezree of interconnectivity. The initial

experiments showed that in richly interconnected nets of 'N-S' elements
instability arises, and the introduction of homeostasis beczme an essential
undertaking. As the experiments proceeded, it became apparent that
homeostasis not only overcomes the problems of saturation and instability,
but that it 21lso plays é large part in the information prbcessing
properties of the net.

The various stages of this experimental process are described

in this chapter.
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4.2 Insgtability in a Smnall Net of 'K-S' Elements.

Y¥ith the conclusion of the work on structure dominent systems
described in the previous chapter, work began on simple, randomly
connected networks of plastic 'N-S' elements. The construction of
the first few systems showed that even simple models tended to be

inherently unstable. Consider the following system:

Fig 19

Each circle represents a 'N-S' of the kind descfibed in the previous
chapter. Thus N1 consists of an CR gate with two Fii4 models at its
inputs; the feedback which controls the plastic changes is similar
to that defined in Fig 11.

If an input is presented to N3 at a frequency greater than 3.5
Hz., plastic changes will occur in the F¥4 models between N3 and N5
and between N3 and N6. As fhis process continues, every plestic
element in the net is &£fected, and eventually they all reach their
upper limit. This means that an input to N3 ( or to any other'N-S')
will cause all the 'N-S' elements in the net to be activated, and this
activity will recirculate 'in several lbops within the network. The
net has, consequently, become completely saturated and it cannot
possess any information processing qualities whatsoever.

This problem does not arise in structure dominaqt systems, since
the flow of information is resticted by the structure of the system.

As soon as a network of neuron-like elements becomes richly irter-

connccted, loops are created and the éystem becomes potentielly

unstable.



53

4.3 Homeostasis in Physiology and Engineering Science.

As the essence of this thesis is the simulation of the C.IN.S.,
it must be accepted that any problem has a solution somewhere within the
the original system that is to be modelled : the brain ‘works' and so
contains all the answers to the problems arising in the model.

The difference between the net illustrated in Fig 19 and the C.l.S.
is that the net contains excitatory connections only, while in the C.N.S.
they are both excitatory and inhibitory. These two influences interact,
and the result is homeostasis : "If it were not for inhibition, it is
likely that excitation would spread in a uncontrollable manner through
the complex network of interconnecting neurons composing the nervous
system. As a result, the organism would be in a state of convulsive
activity. " ( Ref R.2.7., p23 )

Thus, it becomes obvious that the solution to the instability
problem involves the introduction of some influence that opposes the
spread of aétivity. From the physioloéist's point of view, the net is

unstable as it lacks inhibition.

The engineering solu£ion to the problem of instability is the
introduction of some sort of negative feedback. As the activity in the
net increases, it is measured, and then fed back so as to decrease this
activity. Since the invention of Watt's mechanical speed regulator ,
negative feedback hes providéd the engineer with the means of introducing
homeostasis, and there is no reason to prevent this principle from

being applied to the net.

Essentially, the physiological and engineering methods of making
the net homeostatic are the same. As activity spreads, it must be limited
in some way, and this mey bte regarded as 'inhibition' or 'negative

feedback' depending on the language of the discipline.
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4.4 Homcostasis in Previous Cybernetic Systems.

The m=jority of cybernetic systewms that have simulated neural
networks have involved highly structured systems of the type described
in 2.5. In these, the total amount of equipment may bLe active at'onc
time without forcing the system to become unstable. These highly structured
systems may be regarded as interesting cyberﬁetically, but they bear no
relationship to any part of the brain which is rich in neuron to neuron
interconnections.

As soon as the level of complexity approaches that found in the
brain, instability arises and the networks can only be full-on, or
full-off. Much of the early work described by Beurle ( Ref R.6.3 )
Farley and Clarke ( Ref R.6.1 ) and Ashby.( Ref R.14.18 ) found
exactly this phenomencn, bdbut offered no solution. All these involved
large, richly interconnected nets of 'neurons'which contained excitatory

'synapees'

only.

Furfher mathematical analysis.}evealed that a large net containing
both excitatory and inhibitory 'synapses' could be stablp ( Griffiths,
Ref R.14.11 ), 2and Smith and Davidson have demonstrated that a computer
simulation of a large, random network of neuron-like elements can exhibit
homeostasis, when both excitatory and inhibitory 'synapsest are used. ( Ref
Re.6.2 ). More recent mathematical analysis by Amari shows that a
similar arrangement of 'neurons'and 'synapses'can not only be mono-stable,
bi-stable or tri-stable but also astable with a stable oscillation ( Ref
R.14.12 ). Thus, the introduction of inhibitory'synapses'has been
shown to cure the instability problem.

However, other methods of introducing homeostasis are available.
In the work of Rochester et al ( Ref R.6.5 ) , homeostasis was mezintained
by limiting the value of the sum of the 'synaptic'weightings to a fixed

maximum. When this value was reached, any new learning that took place



resulted in specific changes in 'synaptic' weightings ( due to the learning
process ) at the expense of other, previously taught weightings.’ This
kind of parasitic leérning is also to be found in the work of Von der
Malsburg ( Ref R.6.11 ); his program uses internally controlled plesstic
change, similar to the type used in the present author's models , bdut

the sum of the'synaptic' weights at any one 'neuron' cannot exceed a fixed
maximum,

" This last step could correspond to the idea that the total
synaptic strength converging on one neuron is limited by the dendritic
surface available. It means that some weightings are increased at the
expense of others., "

Both Rochester and Von der lMalsburg found that the parasitic
learning theoram produced a homeostatic system. The third method of
introducing stability is illustrated by Uttley's mathematical 'Informon'
( Ref R.14.9 ) which uses negative feedback. This is implemented by
the introduction of a negative constant in the equation for the strength

of neuron to neuron interconnections.

4.5 The Homeostatic Princivle.

| In the last two!sections, homeostasis has been considered from the
physiological viewpoint, as an engineering problem, and it has been
discussed in the light of previous models that have involved richly inter-
connected nets of ‘neurons'. From these considefations the principle of
homeostasis may be extracted. It is as follows:

"As activity spreads within a richly interconnected net of'neurons)

some antagornistic influence must oppose this activity in such a way that

the number of 'neurons active at any one time cannot exceed a fixed maximum."

This definition gives the Cybernetician a further design fezture

which must be incorporated into any model which attempts to simulate the

workings of the brain.
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4.6 Implementation of a Plastic N-S Mocel for a Homeostatic System.

In order to introduce homeostasis into the net, a N-S5 model
had to be designed which was susceptible to both excitatory and
inhibitory influences. The most obvious method of achieving this
is to construct a model which emulates the neuron more exactly, in
that excitatory and 1nhibitory.inputs summate spatially. A model
of this kind was constructed ( see PK6 in Appendix 1 ), but it was .
found to be complicated, expensive and impractical in that it needed
much time to adjust the operating conditions.

Because of the highly satisfactory performance of the digitzl
models used in the previous experiments, the author decided to continue
with number thresholds and to exploit the count up/count down
facility that is available in some of the more sophisticated binary
counters. It was assumed that the excitatory influence ( count up )
could be opposed by an inhibitory influence (count down ) in order
to maintain homeostasis. This concept resulted in PM5, illustrated
in Fig 20.

The model is basically similar to PM4, in that input pulses
count up C1 ( Texas SN74193 up/down binary counter:) and fire the
MONO when C1 holds a count of 15. The SNT74193 counters have a
"max/min" output pin which is activated when the counter holds either
15 in the count up mode, or zero in the count down mode. This
simplified the design, as PM4 had to include additional gating to
perform this function. Plastic change occurs in the same manner
ags in PM4 : when there is a co-incidence between the input and the
output from the 'neuron' the contents of C2 is incremented and the
weighting of the model increases. The 'neuron' refe;ed to in Fig 20
is an OR gate. The division of the 'N-S' into a plastic 'synapse'
and a '"neuron' is in keeping with the definitions of neuron, synapse

and N-S given in section 2.6. ( page 16 )
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The "count down" signal activates two monostables ( M2 and M3 )
so that while the up/down control is held at 5 volts (count down)
a pulse is fed into C2 thus decrementing its contents. This count
down signal overides the other influences, so that the "inhibition"
can prevent the system from becoming unstable, no matter how strong

the excitation may be.

The development of PM5 was a purely engineering process that
resulted from the need to construct a plastic element which is
susceptible to two opposing influences. Two methods of opposing the
spread of activation were apparent: the first involved counting down
C1, the second counting down C2. A series of experiments was
initiated to test these alternatives and it was found that the former
required regular pulses of approximately 10 Hz. to maintain homeostasis
whereas the latter required the input of a single pulse whenever
activation exceeded an acceptable level. PlM5 was, therefore,
constructed using the second alternative, as the lower frequency
made it simpler to use in the experiments.

If the model is interpreted in physiological terms, it can be
seen that the count down pulse is akin to "forgetting™ since C2 contains
the record of the permanent plastic changes ( or "memory" ) of the
model. Homeostasis is therefore maintained by the balance between
the forces that spread activation ( inputs and plasticity ) and
those that oppose it ( forgetting ). Physiologically this is very
unlikely as it suggests that the activity of the brain brings about
its own forgetting processes. It does however bear some correspond-

ance to the parasitic type of learning mentioned in section 4.4.
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4,7 A Small Net with Plasticitv and Hcmeostasis.

The completion of FE.5 enabled the author to construct a small
homeostatic net consisting of nine 'neurons' (4-input OR gates) and the
necssary plastic 'synapses'

As the work was concerned with the principles of operation of
a plestic,homeostatic system it did not seem necessary to begin with a
large system and consequently the net was designed as a 3 by 3 matrix.
Twelve PN5 clements were constructed and added to the system as'neuron'
to 'neuron' interconnections were made, Small indicator bulbs were used
to monitor the activity of the 'neurons'

Homeostasis was introduced in accordance with the principle
derivéd in 4.5: excitation was allowed to spread freely until four 'neurons'
were active - once this level of activation was exceeded, count-down
pulses were sent to every'synapse' thus keeping the number of active
'neurons' at four. A control system for producing this behaviour was
developed (see Appendix 2) , but it was found to be unnecessary: the
number of count-down pulses required to maintain homeostasis was so small
that it was found to be perfectly adequate to introducé them by hand.

In this way the net was constructed with plasticity, the property
of the synapse that leads to learning, memory and all meaningful changes

in the behaviour of an intelligent system, and homeostasis which is

essential in the obviation of saturation and instability.
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4.8 Properties of the Ket.

In this section the behaviour of the net is described and, where
applicable, it is interpreted in psychological language. In order to
simplify the description, the diagrams only show the positions of the
'neurons' and their interconnections: it should be assumed that every

L . . .
neuron' to 'neuron' interconnection is made via a plastic 'synapse'.

4.8.1 Simple Experiments with'Neural Psthways.

If connections are made as shown in

Fig 21, an input into N7 will give an
output after 16 pulses, and so on along
the pathway. Thus 164 pulses into K7
will be required to get an output from

N6. However, if the input is of a high

frequency, all the'synapses' in the chain

wili '‘learn' until one pulse into N7
will cause a signal to travel the length of the chain and fire all the
'neurons' that compose it. This illustrates the way that pathways can

become established by regular use.

If two pathways are connected

as shown in Fig 22, the ‘ @ @ @

system can explain how Fig 22.

an 'N-S' network can change

its behaviour as the result

of the signals at its input.
Let us assume that initially inputs are presented to K7 and K5. The path-
way N7-14-N5-N6 will establish itself, and 2s this involves four 'neurons'

the other pathway ( N7-N8-N6 ) will be suppressed by the homeostasis of

the nct.

However, if the input changes so thati L7 alone is active, the
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system begins to change its behaviour. As soon as N8 is activated by N7 the
homeostasis of the net causes a count-down pulse to be sent to all the
'synapses' in the net. This means that the'synaptic'weights in the chain
N7-N4-N5-16 are reduced from 1 to ¥, and thus a small ammont of time is
taken for this pathway to re-establish itself. During this time, the
'synapse'between N7 and N8 can change its plastic parameter fractionally,

and as the experiment continues , it becomes apparent that the shorter

pathway is establishing itself at the expense of the original lonzer one.

This illustrates the self-maximising property of the system, whereby
the most efficient way of conducting information is established, and the

old, inefficient ways are lost.

4.8.2 Experiments with a Richly Intercqnnected Net.

In all the experiments that follow, the net is wired up in such
a manncr that excitation can spread throughout the net in an unimpeded
manner. The actual connections that were used are shown in Fig 23, but
this is not critical: any pattern of interconnections would produce

similar results as long as the information can flow with relative ease.

Fig 23.

Inputs were presented to N1, N2, X4, and N5. The 'synapses'
connecting these 'neurons' all changed their weightings until a signal
could reverberate in the loop connecting the four 'meurons' This process

.may be regarded as the establishment of a memory trace, and the
activation of any part of the loop will cause the original stimulus ( 51,

N2, N4 and K5 ) to be repeated or 'recalled' or 'remembered'.
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If a large stimulus is presented to this system ( for example
an input to every'neuron') , then homeostasis causes count-down pulses to
affect the system until only four 'neurons' are active. The 'neurons'that
actually stay active are those which are the most susceptible to aétivity,
that is, those.'neurons' that have been activated most regularly in the
past ( N1, N2, N4, and N5 ). This illustrates the principle described
in 2.8 : activation is attracted to the area with the highest 'synaptic’
weighting, or lowest threshold.

Thus, the combination of a plastic N-S model with a homeostatic
gystem means that a limited number of'ncurons'can be active at one time,
and that activation area is determined by the previous inputs , or
'experience' of the system. This type of behaviour is selection: of the
nine input signals, only four are sensed by the machine. It is a possible
explanation of why the human organism only retains a tiny proportion of

the incident information that is presented to it.

If the system is then presented with a small stimulus - for
example an input to N1 and N2 - then activity spreads within the net
until four'neurons' are active. Again these will be N1, §2, N4 and N5

as these have previously occured most regularly. This is elaboration

the system has taken a small input sign2l and extended it, in the same

way that the bLrain can elaborate an 5’ to an 8 .

At this point, it can be seen that the homeostatic nature of the
system ( which keeps the number of active 'neurons'at a fixed meximum ) is
respoﬁsible for both selection and elaboration: if the input stimulus is
smaller than this maximum it is elaborated, if it is larger some of it

is inhibited and thus selection occurs.
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All the'synaptic'weights were then reset to their original level
( ie the net was made to 'forget' everything it had learnt ) . It was
then re-trained with the pattern shown in Fig 24. The relevant 'synaptic’

weights changed, and this became the dominant pattern on the net.

Fig
24

This pattern can be elaborated and selected in the same way as
the pattern in the previous example, and if the net is presented with
an input as shown in Fig 25, then the high'synaptic' weights will attract
the activation, and the net gives as an outéut the pattern shown in Fig 24.
Any input pattern thet is similar to the training pattern cauces the system
to process this information and to-respond with the training pattern.
Thus the training or ‘'experience' of the net determines the way in which
it processes information: it can only 'see' in terms of the previous
sensory inputs.

To the psychologist tgis type of behaviour is known as generalis-
ggigg. Fig 24 is basically an 'L' pattern, and all the test patterns
variations of the L. Thus all these inputs were 'generalised' by the

net.

If the testing of the net with an input as shown in Fig 25 is
continued for & long period, then the plastic nature of the net causes
the'syﬁaﬁfic'weighting pattern to re-organise itself so‘that the test
pattern ( Fig 25 ) becomes the dominant feature on the net. ihen this
happens, all the various 'L' inputs cause the system to respond with an
output identical to Fig 25. Thus the net is continuously up-dating its

structure to respond to that stimulus which has occured most regularly in

its immediate history.



The previous experiments have all involved one training
pattern that has become dominant on the 'neural' network. In order
to study the behaviour of the system when trained with two different
patterns, the 'synaptic' weights were reset and the net was presented

first with pattern 1 ( illustrated in Fig 26 ) and secondly with
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As each pattern consgists of four active'neurons', and the patterns
do not overlap, it is possible to train the system to retain both
patterns. Incoming information is interpreted, therecfore, as either
one or the other, but not as both due to the homecostasis of the net.
This phenomenon may have some bearing on the psychological problem
of ambiguous figures such as Wittgensteins's rabbit-duck figure shown
in Fig 27. If it is assumed that the rabbit is represented by one
assembly of active neurons and that the duck is represented by a
gsecond, separate assembly, then a mechanism similar to that illust-
rated above may operate in the brain. The slight variations in
the input stimulus are probably due to shifts in attention as the
figure is scanned, and the variation could lead to either the
activation of the neural assembly representing the duck or the
activation of the neural assembly representing the rabbit but not to
both if it is assumed that the homeostasis of the brain limits the

number of neurons which can be active at any one time,

Fig 27



4.9 Assessment of the Work on the Net.

In all the experiments that have just been described, the
phenomena that have been exhibited are the result of a randomly
interconnected system of neuron and synapse models which exhibits
both plasticity and homeostasis. In this respect, the work with
the net has been of great value for it has shown that a relatively
simple system can produce interesting behaviour when organised in
the manner described.

The most obvious limitation is that of size, .and a study
was subsequently carried out in order to investigate the possibility of
..extending the physical size of the net . It was hoped that a larger
net, organised along similar principles to the 3 by 3 matrix, would
be able to exhibit some of the more interesting properties of a
brain model, such as the reproduction of sequences. Unfortunately
this is not possible without a great deal of new circuitry and
extensive re-organisation.

The main problem is that the net can only sustain a pattern
of activity when all the PM5 elements involved in that pattern are
at their highest weighting value. As soon as the count down signals
begin to influende the net, all activity ceases. In the experiments
that were performed this is of little importance as the input signals
quickly re-establish the weighting values, thus allowing the trace to
re-appear. This factor becomes critically important in the
implementation of sequential behaviour: for one pattern to follow
another it must be assumed that many patterns are potentially stable,
so that activity may pass from one to the next in an associated series.
The net, in its present form, is completely unable to do this because
it has no spatial summation ( except of a probabilistic nature ) which
would allow several inputs through low veighting 'synapses' to fire
the 'neuron', and thus maintain the activity. This problem is

exacerbated by the large change in 'synaptic!' weighting from 1 to %
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which is caused by the count down signal. Although this has been
useful in the net in limiting the spread of activation, it makes it
extremely difficult to maintain activity with weightings of less than
the maximum. Further, the 'N-S' elements have no fatigue so
that any established pattern of activity will continue to dominate
the net until new input stimuli are presented.

The other major flaw in the design of the net concerns its
structure. At the initiation of the experiments with random nets,
it had become necessary to progress from the structure dominant
systems described in Chapter 3, and the random interconnection
pattern was the most obvious alternative. However, as the work
began on the extension of the net, the inadequacies of a random
system began to emerge. It was found that structure had to be
introduced in order to ensure that every input stimuls produced an
effect on a large number of 'N-S' elements, and that information
was able to flow freely throughout the system.

It became essential, therefore,to find an interconnection
pattern which avoids the inadequacies of a structure dominant system
without being completely random. Somehow it had to order the flow
of information through the system without becoming rigid and
inflexible. The learning behaviour had to exert the dominant
influence, and yet the structure had to provide a foundation to
direct this influence. These considerations led to a more detailed
study of the brain in an attempt to discover the kind of structure
that it uses, and eventually to the Block organisation described in
the following chapter.

With these considerations in mind, thé net appears to be an

extremely inadequeate approximation of a non structure dominant
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cybernetic system. The elemental units suffer from a) absence
of spatial summation b) an unsatisfactory relationship between
changes in 'synaptic' weighting values and c) absence of fatigue,
and the interconnection pattern needs 1o incorporate some degree of
order 80 as to direct the flow of information more precisely.
However, the net has provided the author with invaluable
experience in experimentation with a plastic, homeostatic system
and the criticism which has emerged i1s useful in tkat it defines
the direction in which the work can proceed. The net has shown
that plasticity and homeostasis are able to play a major part in
cybernetic processes, but that they must be complemented by more
accurate simulation of the properties of the N-S, and by an
interconnection pattern which is organised and yet non structure

dominent.
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4.10 Summary.

The concept of homeostasis has been introduced, and has been
shown to be an essential property of any richly interconnected systenm
of neuron-like elements. Homeostasis is necessary in order to prevent
saturation and instability. '

A small plastic, homeostatic network has been described which is
organised by the information that is presented to it. The net exhibits
such phenomena as elaboration, selection and generalisation due to the
way in which incoming information is processed in terms of the informzation
that has been previously presented to tﬁe net., A1l of these properties
are the result of two factors:

(a) Plasticity at the'synapse'which creates areas of low threshold
correseponding to persistently activated input stimuli.

(b) Homeostasis , which ensures that no more than a certain number of

'neurons can be active at any one time. Homeostasis was introduced to
overcome the saturation problem, and has been shown to play an essential

role in the processing of informztion.

The inability of the net to produce more ccmplex phenomena such
as the reproduction of sequences and a distridbuted memory trace are
the result of three deficiences: the elemental units are capable of
neither spatial summation nor fatigue, and the structure bears no

resemblance to the structure of the train.

The net has demonstrated the importance of plasticity and

homeostasis, and has pointed the direction for further work.
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THE BLCCX.

5.1 Introduction.

The work that has been described in the preceeding chapters is
important in that it has derived certain'principles that have a significent
effect on the synthesis of a brain-like system. Chapter 3 has discussed
the importance of plasticity and Chapter 4 has explained why homeostesis
is necessary. These two éhapters are stages in the study of cybernetic,
intelligent phenomena that eventually culminated in the Block system.

The design of the Block system resulted from a growing conviction
that the concept of the brain as a randomly interconnected system , which
organises itself as the result of its experience is wrong. The vast
majority of physiological research seems to suggest fbat the structure of
the brain is highly organised before the learning process bezins to
effect it:

" At no stage in development are the neurons of the brain
connected together as a random network., " ( Ref R.2.4.5 plAT. )

This conviction called for a ccmplete revision of the zuthor's
structural design parameters for a braln-like system, in order to incorp-
orate this very specific organisation. The result was the Block: a
plastic, homeostatic system which is based on the neural circuitry which
is evident in the brain. The Block.was able to draw together several
problems that had emerged during the course of the work, and to open new
arcas of research that had previously been outside the scope of the

Ph.D program.
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5.2 Desipgn Requirements for a Larpe Cybernetic System.,

The work on the small net left the esuthor with a firm conviction
that the construction of a large cybernetic system is a feasible
proposition, and that the way to echieve this is to look more clésely
at the structure of the brain. Plastickty and homeostasgsis have been
shown to be essential features, and the deficiencies of the het have
pointed the direction for further work. Consequently, it is possible
to list the design requirements that are needed by a large cybernetic
system.

1) It should be composed of internally-controlled plastic synapse models.
The learning principie, which specifies the way in which the plastic

change is‘'controlled, must be found experimentally.

2) The system must be homeostatic: no more than a fixed number of 'neurons’
may be active at any one time.

3) The 'N-S' elements must have all the properties described in section

2.5. This extends the models used in fhe net by the addition of fatigue
and spatial integration.

4) The strgcture of the system must be more closely related to the
structure of the brain, The.construction of random nets of'neurons'ignores
a wealth of information that shows that a high degree of organisation may |
be found in both the cerebellum and the cerebrun.

5) The system should exhibit a distributed memory trace. The net hes

a localised memory trace, and'can therefore offer the cyberneticizn no
explanation as to the function of a distributed trace. The zuthor's
respect for the efficiency of the brazin's machinery led him to believe

that a distibuted memory trace would not be found unless there is a

sound, functional reason.



5.3 The Block as an Intermediate Level Building 3rick.

The design requirements specified in the previous section acted
as a springboard for the work on the Block that is described in this
chepter. In the preliminary stzges, it beceme apparent that the task
of building an ertificial brain from artificial neurons is unrealistically
ambitious. The situation is analagous to the construction of a
computer directly from transistors without any prior knowledge of electronic
logic, counting circuits ér shift registers. fihat seems to be needed

is some system which acts as an intermediary between the neuron model

and the sysfem representing the brain: a model of the neuro-physiological
equivalent of,say, a shift register.

The Block is such an intermediary. It is composed of plastic -
elements of the type used throughout this thesis, and its structure is
homeostatic and based upon the organisation of the brain. It is not,
however, a complete brain model, but a 'building brick' from which such
a model could be constructed.

As the Elock is itself a component part , it was nbt expected
to exhibit any remarkable phenomena, but to provide a concéptual tool
which could help to explain one possible way in which the brain‘might
be. organised. It was only after the Block had been simulated, that
it became apparent that a single Block was capable of performing a
wide range of tasks which are generally associated with intelligence:
in particular, it could 1earn; remember and reproduce a number of

temporal sequences.



73

5.4 Columns of Nevrons as Functional Units.

The structure of the Block is based on the essumption that columns
of neurons exist in the cortex, arranged orthogonally to its surface es

shown in Fig 28.

There is a wealth of information in support of this assumption,
and a brief description follows.

The earliest account of a columnar organisation was given by
Lorente de No ( Ref R.2.23 ). His diagrems revezl a complex vertical
organisation which is eséentially the same ag Fig 28. Since that time,
several othér physiological studies of“the cortex have drawn attenticn to
its columnar oganisation; the work of Scholl ( R.2.15‘),-Szen£agothai
( Rs15.2 ), .Bailey and Bonin ( R.15.3 ), Schriebel and Schriebel ( R.15.16 )
and Ariens Kappers ( R.15.4 ) is particularly relevant.

In 1957, Mountcastle published a paper describing the effect of
various tactile stimuli on the somatic sensory cortex of the cat ( R.15.5 ).
In a rigorous éaries of experiments he found that the neurons within a
vertical column all respond to the same tactile input stimulus. He
concluded "The neurcons which lie in narrow vertical columns... make up
an elementary unit of organisation.” ’

The work of Hubel and #deisel ( R.2.24., R.2.25 ) provides the
visual equivalent of Lountcastle's work. In the visual cortex, neurons
are arranged in columns, and within one column all the neurons respond

to one specific type of visual stimulus.

The same phenomenon can be found in the auditory cortex. Columns
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of neurons having the same 'best frequencies' (those for which the response
threshold is lowest) have been noted by Hind et al ( R.15.6 ), Parker
( R.15.7 ), Gerstein énd Kiang ( R.15.8 ), Oonishi znd Katsuki ( R.15.9 )
and Abeles and Goldstein ( R.15.10 ). The work of Evans ( R.15.11 )
draws attention to the fact that in the guditory cortex, the function of
the columns is not as clear cut as in the somato sensory and visual cortex,
'Experiments on the motor cortex by Landgren et al ( R.15.12 ),
Weldt et al ( R.15.13 ) and Asanuma (.R.15.15 ) reveal that the columnar
structure is also an intgral part of the structure of the motor cortex.
The stimulation of any one of the cells within a column of the motor
cortex leads to the activation of one particular muscle. These columns
may be mapped in exactly the same way as those within the sensory cortex.
The existence of columns was also noted by Sperry ( R.15.14 ).
His investigations show that the horizontal spread of activity through the
cortex is unnecessary for very fine pattern discrimination, and also for
normal motor éctivity. He concluded: "It follows that rather small vertical

columns of the cortex are capable of integrated activity of a high order ".

As a result of this information, the author has been led to assume
that columns of neurons exist in the sensory and motor cortex, and that
each column acts as & single functionel unit. Iv is with this assumption

that the Block model begins.



5.5 Input and Cutput Tenfigurations.

The Block was designed to be a fairly general r.odel of a
Slitly part of the brain, and in choosing the input and output configur -
ati“ﬂs, a study of both the cerebrum and the cerebellum was made.

The 1egult is shown below in Fig 29:
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O - plastic 'synapse’

F L] L
® - hon-plastic 'synapse'.

The vertical lines represent the columns discussed in the
Preévious section. The inputs are arranged in a matrix, a form which is
Suf:cgted very definitely by the parallel fibtres in the ceretellum,
and also by the large dendritic trees on the afferent nerve fibres in
the verebrum.

Each column has inputs of two distinct types: the general,
ass.iviatory inputs which pass through a plastic'synapse , and one
Spevific ipput which passes throuzh a non-plastic %ynapsé. This
kind of arrangement can be found in the cerebellum where each Purkinje
celtl j§g excited bty both the mossy fibres ( multiple, general inputs )
and {he climbing fibre which synapses onto one particul~r Purkinje cell

and yyprovides a specific input.
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The outputs are arfanged as shown in Fig 29, and to ensure
that the work is consistant with the physiology pf the C.N.S. , and the
conclusions of Chapter 4, only one output can be active at one time.
This feature was included in order to account for the powerful systeus
of lateral inhibition which exist in the cortex due to the basket-type
stellate inter-neurons, -and in the cerebellum due to the basket and
- Golgi cells. In both cases the effect is the same:

"It is a general principle of operation of the nervous system
that, when groups of cells are activated, they try to sharpen their
effectiveness by inhibiting the other groups in the surround. But of
course these other groups are doing the same. Thus there is reciprocal

inhibition with a continual fight for dominance. " Ref R.2.4., p 114.

Having describedlthe input anda output configurations, it seems
essential to examine the structure of other cybternetic machines
compardtively. The most obvious parallel is between the Block aﬁd the
previous matrix learning systems described bty Steinbuch, Young and
Longuet-Higzins ( Refs R.13.9., R.13.17., R.1.26. ). Although these
have both specific and general inputs, a plastic learning element at
every cross point in the matrix, and similar output structure, there
is an essential difference: in the 2lock only one output can be active
at one time.. Previous systems have allowed many outputs to be active
at one time, thus ignoring ghe homeostasis of the brain. There is
also a difference in conception: the Block is escentially a model of
a physiological system whereas the previous matrix systems were designed
in order to reproduce certain behaviour patterns. Thus they belong to
different classes of Cybernetic systems as defined in 2.3.

There are also parallels with the work of A.K.Taylor. His
systems ( Refs R.1.36., R.8.17., R.11.2., R.13.13. ) use a matrix-like
input configuration which c;ntains specific and general inputs, and

involved a divisions into colunns. Further, the outputs passed throu.:n
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a 'maximum amplitude filter', so that only one output could be active

at one time.

several basic

1)

2)

3)

4)

5)

Apart from small differences in the matrix, there are
differences between the present work and Taylor's machine:
Taylor's columns involve a rigidly defined structure, with
specific feed=-back pafhs which are essential for the
learning process. The Block does not involve such
assumptions about structure and iearning paths.

Taylor's matrix is involved in the input region only: it
contains no learning elements. The Block contains a learning
element at every cross point in the matrix.

There is only one plastic learning element in each of Taylor%
columns. Most of the'synapseé must be non-plastic as they
are involved in perfoming specific functions. The Block
does not assume the'synapse§ are divided in this way.
Taylor's model uses 'good' and 'bad' information in its
training phase. The Block is not concerned with good/bvad
training : it remembers all the information which is
presented to it in the éame way.

Taylor's theories involve both a maximum amplitude filter
and a large number of inhibitory %ynapsesﬂ Recent physicl-
ogical evidence suggests that the function of the inhibitory
synapses is actually to perform the functions of a maximum
amplitude filter and that it is incorrect to assume that
there are surplus inzbitory neurons available for other

information processing tasks.

In conclusion, the Block can be seen to contain elements of

several previous cybernetic systems, but the way in which these elements

are combined is believed to be unique. It is this combination that

gives the Elock the range of properties that are described in the

following pages.



78

5.6 Propertics of the Columns.

Each Block is composed of a number of columns, each of which
processes information in exactly the same way. The properties of the
columns are assumed to be the same as the neurons that compose them.

They are as follcws:

1) Spatial summation:. the output from a column is affected by the spatial
sum of its inputs. The more inputs that are active, the more likely it
is for an output to be produced.

2) Temporal summation: the output from a column is also affected by the
temporal sum of its inputs. The more regularly an input occurs, the more
likely it is to produce an output. |

3) Threshold: for an output to be produced, the spatial and temporal sum
of its inputs must exceed the threshold of the column.

4) Habituation: no column can produce an output indefinately. It will
tire, habituate, or adapt. This habituation gradually decreases as the
column recovers.

5) Input weighting: the effect that an input can produce is determined
by a weighting factor. If the weighting is large, the effect is large

if the weighting is small, the effect is small. Fhysiologically, this

wéighting is produced by the synapse.

In the practical work to be described, a 3Block is assumed to
be composed of ten such columns. This number was chosen arbitrarily

in order to begin the experimental work.
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5.7 The Jearning Theorem.

Having defined the stiructure of the Block; and the properties of
the columns that compose it, it remains to specify the type of internally
controlled plastic change that is to prodgce the learning behaviour.

As in the previous models, learning iz assumed to occur at the
'synaps@. At the beginning of the experimental period, the author used
a learning theorem similar to that used in the hardware models, but this
was found to be unsatisfactory. A number of alternatives was considered,
until it became clear that the long lasting changes in'synaptic'weighting

must occur as defined by the following learning theorem:

" PLASTIC CHANGE TAKES PLACE AT A'SYNAPSE' IF TwO CONDITIONS ARE
BOTH SATISFISD: FIRSTLY THE COLUI:N ON WHICHE THE'SYNAFSE' IS LOCATED .UST
BE PRODUCING AN OUTPUT SIGHAL, AND SECONDLY THE INFUT TO THAT'SYNairsz'

MUST HAVE BEEN RECENTLY ACTIVATED. "

This learning theorem is a more general case of that used in the
hardware models. In the Block, plastic changes occur as in the small net
but also for the case in which the 'neurons' fire and an input has been

recently activated.

In physiological terms, the learning theorem requires that the
release of transmitter substance acroas the synaptic gap leaves the
post synaptic membrane in an excited state for a short time, and that
if a column fires while the membrane is in this state, +then it becomes
more éensitive to further input of transmitter sutstance.

The learning theorem used by the Block system is believed to

be unique, and is, therefore, another factor in cozparing the Block #ith

other cybernetic cystems.
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5.8 The I'odelline Pnvironment for_ the Bloclk.

In order to construct a Block system, the author first designed
and built a hardware plastic K-S mbdel which was capable of performing
all of the functions specified in section 5.6. The resulting circuit
( PM6, see Appendix 1 ) was so complex that it became imperative to find
some other modelling environment for the Block. Not only did the
complexity of the hardware models make the construction of a Block an
extremely arduous task, but it also made the system prohibitively
expensive since each 'synapse'would have cost over £5 in components alone,
and a hundred of these were needed for a single Block.

Hardware modelling was therefore abandoned, and the author's
attention turned to the digital computer. As the structure of the Block
is rigidly defined, the softiware simulation proved to be a relatively
simple task: the program was written in Fortran and is included in Appendizx
3. Essentially, the program runs down each column and performs the
calculations necessary to evaluate .the total spatial and temporal sum of
all its inputs. It then compares these values and gives an output from
the column whose spatial and temporal sum is the greatest value, assuming
it is above the threshold of the column. As only one column can produce
an output, the program sutomatically introduces homeostasis: only 10% of
th; total number of 'neurons' can be active at any one time.  The program '
then retraces its steps and up-dates the values of 'synaptic' weighting
that are spécified by the learning theorem. Thus internally controlled
plastic change is introduced. Finally the program checks how often the
active column has fired in the immediate past and, if this is above a
certain value, the threshold of that column is raised in order to make it
more difficult to fire. This implements the fatigue phenomenon.

The software modelling environment is suitable in the case of the
simulation of a single Block tecause unit to unit interconnections are rot

needed. This means that the problems with flexibility mentioned in section

2.4 are not relevant.
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5.9 The Non learning Bechaviour of the Simulation Program.

The simulated Block consists of ten columns each with
ten inputs: the system has 100 'synapses' arranged in a ten by ten
matrix. In order to implement the input configuration described in
gection 5.5 , the initial state of the 'synaptic' weightings is that
shown in Fig 30. As the threshold of each column is initially set
at 20, any input will result in an output from the appropriate

column.

20 1 1 1 1 1 1 1 1 1

Fig 30.

Héreafter, figures such as this will be referred to as a "W matrix".
All the processing within the Block is performed numerically.
Temporal summation is achieved by introducing a factor called "STW"
( short term weighting ). - Every time that a 'synapse' is activated,
its value of STW , which is initially set at zero, increases
exponentially towards 20. When the 'synapse' is inactive, STW
falls exponentially back to zero. Thus as a 'synapse' 1is used
repeatedly, 1its short term effectiveness increases.
The inputs to the Block are presented via the teletype,

and can be either on or off. On is represented by a 1 : off by



a 0. An input of 1111111111 indicates that all the input lines
are active, as shown in Fig 31(a). An input of of 1100000011
indicates that the first and last two input lines are active, as

shown in Fig 31(b).

' BLOCK. BLOCK

—5=
" —t

Fig 31(a) - Fig 31(b)
Input represented by 1111111111 Input represented by 1100000011

(An arrow represents an active input stimulus.)

The program includes én option to print out the W matrix.
Each iteration of the program begins with the cperater typing in
either 1 or 77. 1 indicates that the W matrix is not required and
that the following line will contain the information regarding the
inputs to the Block. 77 indicates that the W matrix is required :
the computer then prints out the W matrix and then waits for the

information concerning the next input to the Block.

The computer indicates an output .in the form:
6, 24
This means that column 6 has fired, and that the spatial and temparal
gsum of its input is 24 units above the threshold of the column.

This figure of 24 is called DIFF.
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5.10 Illustration ~f Basie ! hoviour.

Fig 32 shovz the volucg of DIFF for tests with one, two, three,

four and five spatizl inputlu to column 5. These are plotted in Fig 32(a)

Number of };1ue of LIFF
spatial i/ps. for sucurngive temporal inputs.
1 52 19 16 16 16 11 6
2 Z5 32 35 36 37 33 29
8 49
3 3 54 56. 58 55 52 Pig 32.
4 51 66 73 76 79 71 15
5 64 83 92 96 100 99 98

100
5 spatial inputs
90 | |
80
4 spatial inputs
70
Fig 32.
60 4 Fa?
50 - 3 spatial inputs
40 -
30 2 spatial inputs
20
10 - 1 spatizl input
} ; L b No. of successive i/ps.
0 5 6 7

As can be seen, the column cxhibits both spatial and temporal summation
of an exponential nature. The column begins to tire after five firings.

This graph m2y be rcgarded ss the set of 'characteristic curves' for

a column.
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5.11 Example of learning Process.

The Block was presented with three successive inputs of 1111 (
an input to the first four input-lines ) and three outputs from column 4
were produced. The computer print-out recording this process and the

resulting W matrix are shown in Fig 33.

1
Y11
4,51
1
1111 Fig 33.
4,66
1
T
4,73
77
201 9 4 1 A A4 1 A 4
1.20 1 i 94 5% 9 % 1
1 1 20 ¥ 1 1 1 1 1
1.1 120 ¥ ¥ 4 1 4 1
T 1 1 120 1 1 1 1 1.
T 1 1 1 120 1 1 1 1
1°1% 19 9% & 120 1 1 1
T 1T 1 1 11 120 1 1
T 1 1 1 1 1 1 120 1
T 1T 1 1 1t 1 1 1 120

'Synaptié welght updating occurs when a column gives an output,
and when an input to that column is in a state of activation. Thus, in
the present case, the first four 'synapses'on column 4 are updated by one
unit three times. The fourth 'synapse'was initially set to 20 and as this
is the maximum permitted by the program, the learning process can have no

effect on it.



5.12 Gencralisation.

The Block was trained with an input of 1111, which produces an
output from column.4, If the Block has the ability to generalise, then
it must produce the same output ( ie from column 4 ) for inputs similar to
the training pattern. Fig 34 shows the training , the resulting W

matrix, and the testing of the Block.

1111 4, 51
1111 4, 66
1111 4, 713
1914 4, 719 Fig 34. The first column
1 4, 82 represents the input to the
1111 4, 80
1111 4, 718 program : the second the
2001 1.9 1 1 1 1 1 1 oupuL;
1720 1 9 1 1 1 1 1 1
1 2209 1 1 1T 1 131 A
1 1 120 1 1 1 1 1 1
1T 9 17T 120 T 73 T 1 i
T 1 1 1 120 1 1 1 1
1T 1 1 1 1 120 1 1 1
T 1 1 1 1 1 120 1 1
1T 1 1 1 1 1 1 120 1
1 3% % 1 9 1 9 1 %20
111 4, 42
0111 4, 70 3
00111 4, 70
1011 4, 82
0011 4, 64
1010 3, 50

As can be seen the ¥ matrix is up-dated as a result of the learning
theorem in the same way as in, the previous example. After the training ,
the Block wes given an input of zero for a short time to ensure that all the
short term effects ( habituation and temporal summation ) ha& returned
to their base level. The Block wes then tested, and czn be seen to
generalige: the first five inputs vere similar to the training pattern
and were generalised to give an output from column 4. The sixth test

pattern was not sufficiently similar and was not generalised.



8 6

The way in which this behaviour is produced may be understood
by looking at the spatial summation of the inputs.on the ten columns.
FPor instance when an input of 111 1is presented to a Block described

by the VW matrix shown in Fig 34, the. ten spatial sums are as follows:

22, 22, 22, 27, 34 3 3y 3, 3, 3.

The program selects the column which has the greatest spatial
and temporal sum relative to the column's threshold, and as the
spatial summation is the dominant factor in the present example, it
gives an output from column 4.

It is obvious from this discussion that the more often the
training pattern is presented, the greater the probability that the
system will generalise , and give an output from column 4. Thus after
twelve presentations the input 101 will create a spatial sum of 24,
and will be generalised as a 1111,

With the program in its present form there is a serious
drawback to this situation, for after a long training period with
one input, the relevant W values will reach their maximum value of 20,
and an input to any of the first input lines will produce an output from
column 4. To overcome this, it would be necessary to intrcduce a
long term forgetting factor which causes W to ebb away exponentially.
This factor has not been included in the.program as. the purpase of
the work is to study the effect of various leerning processes, and
problems such as long term saturation may be obviated by a balanced

input program.
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5.13 GCeneralisation Using Two Different Input Patterns.

The Block was trained with two different input patterns ( 1111
and 110011 ) in an attempt to ascertain how the system would react when
presented with 11, the common part of the two patterns. Fig 35 showus

part of the print-out concerned with this experiment.

11 6, 41
1111 4, 98
1111 4,106
1111 4,110
11 4, 66
20 2 116 114 1 1 1 4
120 116 114 1 1 1 4
1 12016 1 4 1 1 1 2
"1 1 120 1 2 1 1 1 2 -
1t 4 4+ 12013 1 % 1 3 Fig 35.
111 1 120 1 1 1 3
1 1 1 19 1 220 1 ¥ 1
Y 1 4 9 1 13 192 1 1
1 4 14 1 1 ¥ 4 1.20 1
+* 1T 1T 1T 1 T 1 1T 1820
110011 6, 112
110011 6, 117
110011 6, 117
1 6, 72

As can be seen, the Block initially generalised 11 to be an input
of 110011 and gave an output from column 6. After further input of 1111
the Block changes this behaviour and an input of 11 causes an output from
coluomn 4. Further input of 110011 causes the Block to revert to its
original behaviour, and 11 is genéralised to give an output from column 6.

This illustrates the way in which the Block is continuously
up-dating its behaviour in order to select that input that has occured

most regularly in its immediate history.
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5.14 Association.

Due to the way in which the'synaptic'weights change, the Block
may be looked upon as exhibiting association. For exémple, if the system
is presented with an input pattern of 101, then the first 'synapse' on
column 3 will be up-dated. vhen the value of W for this'synapse'reaches
20, then an input of 100 will cause an output from column 3, insteed of
from column 1 as is usually the case. In psychological terms the
experiment may be interpreted as follows: input 001 is the specific
stimulus which produces an output from column 3, the specific effect.

The input 100 is the neutral stimulus.Co-incidental presentation of these
two stimuli ( in the 101 pattern ) causes the neutral stimulus 100

to produce the specific effect - output from column 3. Thus the two
patterns have become associated.

This type of association, which is only another way of interpreting
the generalisation experiments, is of interest but it begs the central
problem. The importance of association is in the linking together of two
in;ut stimuli that follow each other closely in time. For example,
let us suppose that the Block is presented with an ipnput of 1111 and then
an input of 0000001111. Further, let us assume that these two stimuli
represent the sight of a book and the sound of the word 'book', respectively
In the experience of the system, these two stimuli are going to occur
together regularly, and the Block must bercapable of learning to link
them together. The following experiment shows how this result was
achieved. |

1111 and 0000001111 were presented sequentially as shown in Fig 36.

1111 4, 5

0000001111 10, 83
1111 4, 94
0000001111 10,102 Fig 36
1111 4,105
0000001111 10,105
1111 4,108

0000001111 10,108
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Training proceeded in this manner; the resulting W metrix is

shown in Fig 37.

region 1 region 3
20 1 191281 1 11 1;"1'5'5/
120 1:120 1 1 1 1 1311
“1 1203120 1 1 1 1 1
11 1:200 1 1 1 1 111 :
t 1 1 120 1 1 1 1773 BIE T
t 1 9.1 920 1 ¥ 1.9
1T 1 13100 1 120 1 1712
1 1 1100 1 1 120 1i12;
1 1 11100 1 1 1 120312
11 131001 1 11 15205\\\
region 4 region 2

Four distinct regions of 'synaptid facilitation are apparent.
Regions 1 and 2 are caused by the basic learning behaviour in exactly
the same way as that described in the generalisation experiments. But
what of regions 3 and 4 ? How do they occur and what is their function ?
Let us begin with region 3. ‘When 1111 is presented to the Block, it
leaves a short term memory effect on the first four 'synapses' of all ten
columns. Column 4 then fires and the Wé in region 1 are up-dated. The
input then éhanges to 0000G01111 and this causes column 10 to fire. Now,
when column 10 fires, the system interrogates the 'synapses'within this
column and up-dates those which have been recantli activated. This
means the last four ( region 2 ) and also the first four since they are
still in an excited state due: to the previous input of 1111.

Thus, the combination of the short term memory trace left behind
by the 1111 input, together with the firing of column 10 by the 0000001111
input, causes the 'synapses'in region 3 to be up-dated. Similarly, the
high ¥ values in region 4 are produced by the short term trace left by the
0000001111 input and the firing of column 4 by an input of 1111.

The function of these two regions is to create a connection

between the two input patterns. To illustrate this connection, the



90

system is presented with successive inputs of 1111, as shown in Pig 38.

1111 4, 84

1111 4, 99

1111 4,106

1111 4,109

1111 4,112 .
1111 4,110

1111 4,108 FAE 2B
1111 4,106

1111 4,104

1111 4,102

1111 4, 99

1111 4, 94

1111 4, 89

1111 4, 84

1111 4, 19

1111 4, 714

1111 10, 73

As can be seen, the 1111 input causes an output from column 4
as expected. After five such inputs, column 4 begins to tire and a short
time leter this tiring reaches such a high level that column 4 becomes
very difficﬁlt to fire. At this point: the system changes its behaviour
and responds to the 1111 input with an output from colgmnl10. It is
column 10 that is chosen because of the high ¥ values in region 3. Thus
region 3 acts as a connection between the two inputs.

In terms of the previous analogy, the system perceives the image
of the book, holds it for a short time and then shifts its activation
to the sound 'book'. Thus, the sight and sound have become associated
due to their near co-incident&l presentation.

This experiment illustrates how a temporal pattern can be mapped
as a spatial pattern on an array of learning elements. It also explains
how the spatial pattern can be referenced in order to retrieve the original

temporal pattern.
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For the Block to associate in the manner just described, there
must be at least one feed-back path, so that the output can activate its
own inputs. During the experimental period with the digital computer,
this feed-back was performed by the computer operator vho typed back
the input 1111 whenever column 4 gave an output.

Fig 39 illustrates the minimum internal feedback needed by the

Block in order to exhibit the association phenomena Jjust described.

=—=r— BLOCK.
R —
column 4 column 10
.—.—_—\J—-—-———d——-—-—-
Fig 39.
e}

Physiological studies of the brain suggest that feedback paths
such as this are common:

" Measurement of dendritic ard axon terminal fields sugzest that
there are innumereble possibilities for closed feedback paths involving

cortical neurons. Even more such loops must be possible if thalamic and

other neurons participate. " ( Ref R.2.16 )

The structure of the Block, in conjiunction with this feedback

system, thus explains how two patterns may tecome associated.
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5.15 Direction2) Association.

During the work on the association experiﬁents, it became apperent
that each association was directional. If an input A is follovied by 2zn
input B, then an association is set up from A to B but not in th;
reverse direction. For the association to move in the reverse direction
( ie from B to A ) the reverse sequence rust be shown to the Block.

To test this, the Block was trained with a set of inputs as shown in

Fig 4Q. The resulting ¥ matrix is also shown

1111 4, 5
0000001111 10, 83
00 10, 72
00 10, 65 Fig 40
1111 4, 57
0000001111 10, 94
200 1 192 1 1 1 1 A% .
120 112 1 1 1 1 1ar region 3
1T 12012 1 1 1 1 1 4
11 120 1 1 1 1 141
1T 9 1 120 1 1 3 179
1 1 1 1 120 1 1 1 1
11 1 1 1 120 1 111
11 1 1 1 1 120 111
1 1T 1 3 T 1 1 1%04
1 4 1 % T 1 1T 1 %20

As can be seen, region 3 has been formed, thus allowing the
system to associate 0000GC1111 with 1111f but as rezion 4 has not been
formed, it cannot associate 1111 with 0000C01111,

Most simple associations are bi-directional as the training

proceeds A,B,A,B,... allowing both regions to be formed.
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5.16 Reproduction of Seguences.

In his classic paper to the Hixon Symposium in 1951, Lashley
stressed the importance of serial order in behaviour:

"Reproductive memory appears, almost invariably, as a temporal
sequence, either as a succession of words or acts." ( Ref R.2.21. )
All important behaviour involves time sequences, the most otvious
example being language. Even visual perception of static objects cseems
to involve the integration of sequences of visual features ( Ref R.2.17 ).
Thoughts follow one another in sequences: actions are performed by
a sequence of control signals from the motor cortex.

Early approaches to sequence recognition and reproduction by
Uttley and Taylor ( Refs R.1.18., p123. and R.1.36. ) used circuits
which fall into the 'structure dominant' class discussed in section 3.5.5.
Uttley's system used delays, and was capable of recognising any sequence
involving two inputs. To do this, 16 'neural elements were needed and to
increase the power of the system, this figure must rise geometrically.
For example , if Uttley's theories were used to recognise any sequence
of 16 inputs, then 1010 neural elements - the entire human brain - would
be needed. -

Work with the Block program has shown that the 10 by 10 matrix
is capable of learning any sequence of up to eight elements. These
elements may either be single inputs or combinations of inputs. Generally
the sequence must contain non<repetitive elements, although later
experiments have shown that the Block can learn a class of sequences in
which the same elements appear twice.

The power of the Block is due to the fact that its behaviour
is not dominated by its structure: it was not designed specifically
to remember sequences, but to simulate the mzchinery of the C.N.S. The
properties of the Block which emerzed during the experimental period are

all the result of a generalised structure and the changes due to the
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learning theorem . The range of properties which have resulted from
these faclors gives the author an indication that the premises on which
the simulation is based may be similar to the basic organisation of the

nervous system.

The following example illustrates the Block's capacity to
learn, remember and reproduce a sequence.
The simplest sequence to be presented involved four input

stimuli as shown in Fig 41:

0001 4, 12
000001 6, 20
00000001 8, 25 Fig 41s
0000000001 10, 29

This sequence was presented to the Block several times. The W matrix

that resulted is shown in Fig 42:

2001 1 1 1 1 1 1 1 1
120 1 1 1 1 1 1 1 1
1 120 1 1 1 1 1 1 1
11 120 1 5 1 1 1 1
11 1 120 1 1 1 1 1 Fig 42.
11 1 1 120 1 5 1 1
11 1 1 1 120 1 1 1
11 1 1 1 1 12 1 5
11 1 1 1 1 1 1 20 1
11 1 5 1 1 1 1 1 20

As can be seen, the séquence has caused four'synapses' to up-date their
long term weighting values. The mechanics of this are identical to
that described in the association section: when two inputs follow
each other, the learning theorem causes a'synaptic' weight increase to

occur on specific regions defined by the inputs.



In order to reproduce the sequence, the same type of feed-back is
required as that showh in Fig 39. As each input.pattern consicts of
only one active input line, this would involve each output from ?he
Block being fed back to its corresponding input. Thus column 1 would
activate input line 1, and so on. In practice this was again performed
by the computer operator, who typed the input to the program which
corresponded to the previous output. The results from this test are

shown in Fig 43.

0001 4, 28
0001 4, 25
0001 4, 22
0001 4, 20
0001 4y 13
0001 4, T
0001 6, 1
000001 6, 23
000001 6, 23
000001 6, 21
000001 .6, 20
000001 6, 13
000001 6, 1T Fig 43.
000001 8, 2
00000001 8, 23
0000001 s 23
00000001 8, 21
00000001 8, 13
00000001 8, T
C0000001 A0, 2
000000C001 10, 23
0000000007 10, 23
0000000001 10, 21
0000000001 10, 20
0000000001 19, 13
0000000001 10, T
0000000CC1 10, 2
000000C001 4, 1
0001 4, 23
0001 A .23
0001 4, 21

As can be seen, the entire sequence is reproduced. The first input

causes column 4 to fire; this tires and the output shifts to coluamn 6
because of the plastic change that occured at tne fourth 'synapse' on ccluzn
6. This changes the input to 000001, maintaining an output from coluzn 6
until it too tires. An output from column 8 recsults, then coluzn 10,

and finally back to colunmn 4.
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The sequence is composed of four directional associations:
column 4 to column 6, column 6 to column 8, column 8 to
column 10, and column 10 to column 4. The regions of 'syneptic'
facilitation corresponding to these directional associations are

clearly visible on the W matrix shown in Fig 42.

This example describes the basic mechanism whereby the Block
creates areas of 'synaptic' facilitation in specific locations on
the W matrix to represent a sequence, and how it is then able to
use the spatial pattern of facilitated 'synapses' in order fto

reproduce the original sequence.
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5.16(a) Effect of Errors in Sequence Training.

As the Block is able to generalise its inputs, it follows that
a large range of mistakes within a sequence will also be generalised,
and will not, therefore, dinterfere with the Block's capacity to
reproduce the basic temporal pattern that is being presented. Purther,
as the Block works with mz2jority logic, an occasional mistake in the
training sequence vwill have a negligible effect on its behaviour.

To demonstate the Block's behaviour when faced with imperfect

inputs, a simple training sequence was presented as follows:

0001 4, 12
000001 6, 20 Fig 44
00000001 8, 25

This was prégented regularly, and occasional errors were added.
For example 1001 was input instead of 0001, both of which produce an
output from column 4 and do not therefore interfere with the basic
sequence, One incorrect sequence.was presented ( 0001, 00001,
000001 ) causing the outputs to respond with 4, 5, 6,...

The resulting W matrix is shown below:

20 1 1 1 1. 2 1 1 % 1
t200 3 11 ¢ % 2 1 23
1120 1 1 2 1 1 1 1
11 120 211 1 1 1 1
T 11 120 ¢+ 1 1 1 1
¥ T 1 1 120 1.12 % 1A Fig 45
1 1 111 1-320 1 ¥ 1
T 1 912 3 1 120 1 1
1T 11T 1 1 1 1 120 1
¥ T %Y 1. % %Y 1T 1 120

The effect of the basicltraining pattern can be seen in the three W values
of 11, 12, and 12, as can the affect of the errors in the several ¥
values of 2. Obviously the ©behavior of the 2lock is going to be
dominated by the highest W values, and the subsequent tests on the
system demonstrated that the basic training sequence may be reproduced

without any noticeable interference from the erroneous inputs.
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217 Spurions Cutputs.

D“fing scveral of the tests on generalisation and association,
the Block «shibited an extremely interesting phenomenon: repeated_input
of a single¢ gtimulus eventually led to the production of totally
unrelated outputs. Pigdb illustrates this; the data was produced during

the experiments concerned with generalisation described in section 5.13.

1111 10, 78
1M1 10, 83
1111 10, 88
111 10, 93
1111 10, 91
1111 10, 89
1111 10, 83
1111 4, 80
1111 10, 79 Fig 46.
13431 4, 76
1111 ; 10, 75
1111 10, 71
11 4, 68
1111 10, 67
1111 3, 67
1111 3: 70
111 3, 13

As can be seen, outputs occur from columns 10 énd 4 as expected
until both of these become tired, when column 3 fires. At first this
phenomenon was a little disturbing, and the validity of the program was
questioned, bdut it became apparent that a similar result hes been
reported by Lilly during experiments with tape loops ( Ref R.2.29., p 72. )
If a subject is told to listeﬁ to a tape loop of a repeated word, his
initial perception of that word soon tires, and as many as thirty different
words may Ye heard at different times throughout the experiment. This
is Jjust tho type of behaviour that was encountered in the experiments

shown in Fig 46.

A more detailed description of this phenomenon may be found

in Ref. R...30.
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5.18 Conclusion.

The work presented in this chapter provides an intraoduction
to the Block organisation. Its origins have been described in
terms of the principles that have been derived from the afcorementioned
work on hardware cybernetic systems, énd the physiological data
on the cortex which has emerged during the last few years. The
Block structure has been described, and a qualitative description of
its properties has been given. It has been shown to be capable of
generalisation, association and of learning,remembering and reproducing
a sequence. All of these phenomena can be explained directly by
observing the changes in the 'synaptic' weights of the system, and
thus the Block provides an explanation of how a plastic system may
be modified by input stimuli and how these modifications in internal
organisation can result in behavioural changes.

The simplicity of the basic organisation, and the power of
the resulting behaviour suggest that the Block is of importance in the
gstudy of the way in which neurons and synapses interact so as to
produce systems which can exhibit the kind of phenomena that are
termed "intelligent". In order to pursue this line of study,

a thorough analysis was performed so as to produce more precise data
concerning the properties of the Block. This data is described in

the following chapter.
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CHAPTER 6

SEQUENTIAL PROPERTIES OF THE BLOCK
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SEQUENTIAL PRCPERTIES OF THE BLOCK

6.1 Introduction.

The previous chapter has described the structure and basic
behaviour of the Block. The present chapter describes the experiments
which were performed in order to give a more thorough evaluation of
the performance of the RBlock. The work is restricted to sequential
properties, since the ability to reproduce sequences is by far the
most interesting aspect of the performance of the Block.

The proceedure adopted in the experiments is identical to
that described in the previous chapter, but before the work is
described it seems essential to clarify two points:

a) The reproduction of a séquence depends on the experimenter for
feedback. He initiates tﬁe sequence by presenting the Block with

one of the elements of the sequence ( not necessarily the first
element of the "training set" ), and the Block responds with the
corresponding output. This informs the experimenter that he must
present the Block with an input corresponding to the previous output,
and as this process continues the sequence is reproduced. Thus, after
defining the point of entry into the sequence, the experimenter is
under the control of the RBlock in order to provide the necessary
feedback. It would te possible to introduce a feedback loop into
the program and thus enatle the Block to reproduce sequences without
help from the experimenter.' This has not been found necessary in the
experimental work, since the experiments generally must be performed
slowly and the information in the W matrix needs regular attention.

b) The mechanism which ensures that no column may fire for an
extended period of time involves raising the threshold of any column
which fires more than five times, thus making it progressively more
difficult to fire. Throughout-this chapter this phenomenon is
refered to as "tiring" o "habituation", and columns are referred

to as "tired" or "habituazed”.



6.2 Sequences with Non-renstitive =lements.

This section describes the work that was carried out with
sequences in which each element is used only once within a single
iteration. This class of sequence includes .A B C D, D E C a,
and E A D B C for example, but nqt A B A Cor D B B C A.

( Each capital letter represents one element of the sequence. )

6.2.1 Single Spatial Inputs.

The simplest class of sequence involves non-repetitive
elements in which each element is composed of a single spatial input

to one of the inputs to the Block. An example is given below:

0001 4, 12
0010 3, 20 Fig 47
1000 1, 25
0100 2, 29

The nature of the input stimulus enables a shorthand notation to be
adopted: the sequence illustrated in Fig 47 may be described
completely as a "4 3 1 2" sequence. This is only possible when all
the elements are composed of single spatial inputs: with more complex
sequences, both the inputs and outputs must be specified for a complete

description.

VMinimum Training Period. For a sequence of this type to be

reproduced, it must be presented to the:Block at least four times.
Experiments with only thrcc'presentations have shown that although the
Block isg able to make the relevant changes in weightings in the W matrix,
it is unable to reproduce the sequence, since there is insufficient
strength in the weightings to initiate the necessary directional
associations.

The mechanisms involved in sequence reproduction have been

fully described in the previous chapter. In the testing mode, a

single input is presented and is stable until it tires. As can be
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seen in Fig 43, an input of 0001 causes column 4 to fire and its
DIFF value falls progressively from 28. After six presentations the
activation shifts to column 6, as it has a greater DIFF value due to
the updatecd W values created in the training program. If the
sequence is presented only three times, the Block is unable to shift
the activation as the value of DIFF on all the columns falls to zero,
and there is, consequently, no information to enable the sequence to

be reproduced.

Maximum ILength of Sequence. During the experiments with single

spatial element sequences, it became apparent that although short
sequences could be reproduced easily, the longer ones were unable to
make any effect on the W matrix. A typical experiment involved ten
single spatial elements presented non-repetitively: the Block was
trained for an extended period of twenty ppesentations, and still there
was no change in the W matrix. In order to explain this phenomenon,
it became necessary to examine the STW values, =since it was obvious
that the columns were firing and thus the only other variable relevant
to the learning behaviour of the Block - STW - had to be examined.
Consequently, the program was modified to print out the value
of STW of the first input line. This was found to ‘be sufficient as

in sequential phenomena, the STW values all follow the same pattern.

Consider the data pertaining to the presentation of a four element

sequence:

Input : 1000 0100 0010 0001 1000 0100

OQutput : 1 2 3 4 1 2 Fig 48.
STW : 8.4 5.88 4.116 2.881 §.207 6.445

The STW value of the 'synapses' stimulated by channel 1
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rises to 8.4 when channel 1 is activated. It then decays exponent-
ially to 2.881 as the other inputs are presented and rises to 9.207
with the second input to channel 1. The second presentation of
0100 causes column 2 to fire, and at this critical time the ST of
the'synapses' at the top of each column is 6.445. Thus, the first
'synapse' on column 2 is updated as a) that column is active and
b) the STW value of 6.445 shows that its input has been recently
activated. The "recently activated" condition is defined by a
STW value of 6 and over.

The other'synapses' are updated in a similar manner.

In a sequence composed of eight elements the value of STW pertaining

to the 'synapses' on the top row of the W matrix change as follows:

Again at the critical time the value of STW is just above 6 ( 6.016 )
and thus the relevant'synapses' are updated and the sequence is

reproduced.

In a sequence composed of nine elements, the following values of STW
were obtained:

8.4 5.88 4.116 2.881 2.017 1.412 0.988 0.692 0.484 8.536 5.975

As the value of STW is 5.975. at the critical time, the program
concludes that there are no inputs which have been "recently activated”

and, consequently, no long term learning results.

From these experiments it may be concluded that sequences of
eight or less elements of this type may be reproduced, whereas those
with nine or more elements are unable to affect the W matrix and are

therefore, incapable of being reproduced.
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Experiments with 4 element Sequences. In order to define the

range of sequences of this type which can be reproduced by the Block,
a2 series of experiments was undertaken. Each experiment began by
resetting the Block variables, so that its past experience did not
interfere with the new sequence. Thus we are concerned with the

range of possible sequences which can be reproduced by the Block, and

- not at present with its capacity for simultaneously remembering many
sequences.

The first set of experiments involved the first four input
channels only. There are 24 different combinations , but only
six different sequences since a 1 2 3 4 sequence which repeats
contains 2 3 4 1, 3 4 1 2, 4 1 2 3. The six sets are

illustrated below:

1234, 2341, 3412, 4123.
4327, 3214, 2143, 1423,
1342, 3421, 4213, 2134. Pig 49.
1243, 3421, 4213, 2134.
1324, 2431, 4312, 3124

1423, 4231, 2314, 3142.

The shorthand notation is the same as that defined with respect to Fig 47.
After four presentations - the minimum training period -
each of these sequences was reproduced by the Block, given any one

of its elements.

The next set of experiments was designed to test the inputs
which had bzen previously ignored. Thus four-element sequences were
presented as follows :

5678 1 8 3 6 2 6 4 9

9876 4 7T 1 10 10 1 9 2



36 409 619 4 9237
10 4 1 6 3218 1357
8642 186 10 9518

These sequences were chosen so as to ensure that all ten inputs were
used in at least one of the experiments. hAgain, after four or more

presentations, every one of these permutations was reproduced by

the Block.

Experiments with N-element Sequences. Further experiments were

undertaken in order to investigate sequences with more than four

elements. Examples are given below in Fig 50.

12345678

109876543

3859621

101739 #3g 20,
18426 10

91827365

As the experiments proceeded it became obvious that regardless of the
order in which any "N" single spatial inputs were combined into a
sequence, there would always be N 'synapses' to make the relevant
connections and thus, after four or more presentations, to enable
the sequence to be reproduéed. All sequences of this type, without
exception, were reproduced, provided they had less than nine elements.
It should be stressed that after each experiment, the Block
variables were reset, so that each sequence was presented to an

"uneducated" Block.
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Calculation for N-element Sequences. From the experiments which

have just been described, it may be assumed with a fair degree of
certainty that a single Block can reproduce all sequences which are
a) composed of single spatial-input elements, b) eight or less
elements in length, c¢) presented more than three times and d)
composed from non-repetitive elements.

For an "N" element.sequence and a ten input Block, the number
of possible sequences is given by:

10! 1
(10-N)! N

This equation gives the following results:

Length of Sequence Number Reproducible
2 elements - 45
3 " 240
4 " 1260
5 " 6048
6 n 25200
7 3 86400
8 2 226800

This calculation shows that theoretically the Blook can
reproduce a total of 345,993 different sequences of this type. This
figure is indicative of the range of sequences which are reproducible,
and has no relevance to the capacity of the Block to work with more
than one sequence at a time.

Although only a small proportion of these sequences have
actually been tested, a representitive sample has , as far as possible,
been used and on every occassion the sequence has been reproduced with

equal facility.
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6.2.2. Complex Spatial Inputn.
This section descrilnrg the experiments which were performed

with sequences composed of many-input elements.

6.2.2 (a) Non-overlapping Input Elements.

The followin;; sequence was presented to the Block:

1111 4, 51
000011 6, 57 Fig 51.
0000001111 10, 87

The first element involves the first four inputs, the second involves
the fifth and sixth inputs, and the third involves the last four.

Thus there is no overlap ( due to two or more of the elements using

the same inputs ) within the sequence. After several presentations,

the following W matrix resulted:

201 1 7 1 6 1t 1 1 1
120 1 7 1 6 ¥ 1 1 1
1 120 7 1 6 1 1 % 1
1 1 %20 T 6 % % & 1%
11 1% 120 7T 1+ 1 1 6 Fig 52.
1 1 3 1 T206' § % 4 6
1 1 1 5 1 120 1 1 17
11 1 5% 1 1 120 1 17
1 11 5 1 1 1 120 17
1 1 15 1 4 %\ T 120

The W values of 7 are the result of the static learning process
defined in section 5.11. The W values of 6 and 5 are the result

of the sequential presentation of the three elements of the sequence,
and provide the link between these elements. As can be seen, there
are groups of high W values to interconnect the sequence rather than a
single high W value, as in the previous section. This does not
affect the Block's ability to reproduce the sequence: a test on the
above sequence showed that arter tenlprescntations it could be

reproduced by the Block.
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Experiments were then carried out with further sequences of

this type.

T
000111
0000000111

1
0011
000011

0000001111,

Examples are given below:

1100110011
0011000000
0000001100

1100000011
00101
000101
00000011

10101

01010

0000011111

11 Fig 53
00011

00000111
0000000011

As the experiments continued, it became obvious that as long
as there is no overlap, a Block is capable of reproducing any sequence

of up to eight elements regardless of their spatial format, provided

that they are presented often enough.

Minimum Training Period. Complex spatial input element sequences

require a longer training period than the simple sequences described

in the previous section. Consider the following sequence:

11
0011
000011

Fig 54

After seven presentations to the Block, the following W matrix was

produced:

20 7 1 6 1 1 1 1 A

1720 1 6 1 1 1 1 1 1

1 120 7 1 6 1 1 1 1

11 120 1 6 1 1 1 1

1% 91 720 7T 1 1 % 1% FPig 55.
1 %5 1+ 1 120 1 1 1 1

t 4 1 % ¥ 4201 4 1

1 1 ¥ £ & 1 120 1 1

1 4 1 31 1 1-% 420 1

1 1+ 1 1 1 1 1 1 120
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Testing the system began with an input of 11 which activated

column 2. The feedback maintained the activity of column 2 until

it tired, at which point the activation shifted to whichever of the
other columns was most excited by the 11 input. This was not
column 4 as expected ( sum of ¥ values on first two input lines = 12 )
but column 1 ( sum of W values on first two input lines = 21 ).

The sequence was presented a further six times, so that the
relevant W values had increased to 12 and the sum of the ¥ values on
the first two inputs to column 4 had increased to 24. This meant that
the directional association from column 2 to column 4 was stronger
than that from column 2 to column 1 and the subsequent testing of the
Block showed that the original sequence was reproduced correctly.

Further experiments revealed the following results:

No. of Inputs Minimum Training Resulting Sum of
in Element. - Period. Relevant W values.

2 11 22

3 8 24

4 6 24

5 6 30

6 5 30

Fig 56.

The explanation of this is as follows: a complex spatial-
input element activates several input cﬂanncls, and will consequently
have a significaht effect on all those columns in which a non-plastic
‘synapse' ( W =20 ) is stimulated. Thus, the directional
associations which implement the reproduction of the sequence must be
correspondingly stronger, in order to attract the activation away from

these columns.
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Calculation for Two Zlement Sequence: Complex Spatial Inputs.

Consider a two-element sequence consisting of the first "N"
inputs to the Block followed by the last "10-N" inputs. The first
element may be permuted in 2N different ways, although one of these
may be ignored as it is composed from N'"O"signals , or no input.

Thus the number of different sequences of this type is given by:

(2N_1) (2(1O~N)_1)

This equation gives the following results:

=

Number of Different Sequences
511
765
889
945
961
945
889
765
511

W O~ O »n & W=

This calculation shows that 7,191 different sequences of this
type may be presented to the Block, and the experiments which have
been concerned with a small but representitive sample of these

suggest that they are all reproducible by the Block organisation.
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6.2.2 (b) Overlapping Input Elements.

This section describes sequences which are composed from

non-repetitive elements, in which the s=ame input stimulus is used in

two or more of the elements. An example is given below:
111 3, 38
11 2, 39 FPig 57
1 1y 33

After five presentations, the following W matrix was produced:

20 6 6 1 1 1 1 1 1 1
620 6 1 1 1 1 1 1 1
t 520 1 » & 1 1 4 1
1 1 920 1 ¥ 4 7 9 1
1 11 120 1 1 1 1 1 Fig 58
1T 1 1 1 120 1 1 1 1
111 1 1 120 1 1 1
11 1 1 1 1 120 1 1
1 1 11T %+t 1 120 1
.1 1 1 1 1 1 1 120

Testing the system began with an input of 111. Column 3' was
activated, and this remained stable for eight iterations. It then
tired, and the activity passed to column 2 as expected. This was
followed by column 1, but when this tired the activity moved not to
column 3 ( the beginning of the sequence ) but to column 2. As
can be seen from the W matrix an input of 1 stimulates column 1
most strongly, and then coiumn 2 and column 3 equally. Thus, the

critical factor in this situation is the tiring value corresponding

to each of these columns. In the present example, column 3 was

more tired than column 2, and thus the activity passed to column 2.
This example illustrates the kind of problem which emerges

when overlapping patterns are used as the elements in a sequence. It

cannot be obviated by longer training periods, since both the

directional associations ( from column 1 to column 2, and from

column 1 to column 3 ) will become stronger at the same rate.
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The game three elements were then used in the reverse order,

and the following results were obtained:

1 i 12
1 2, 28 Fig 53
111 2, 46

]

The third input does not produce an output from the third column, as
the Block "generalises", and gives an output from column 2. As the
system "seeg" the second and third inputs as the same, it is incapable
of combining then into a sequence. This situation will obviously be
true for many other sequences of this type: where there is a high
degree of overlap, the inputs will be sgimilar, and there is a high

probability that they will produce the same output.

The difficulties with this kind prompted a set of experiments

to test three-element sequences of this type. The results are shcwn
below:

Input W matrix OQutput
Sequence ( relevant 9 values ) Sequence
111 20 6 6

1" 6 20 6 3424142

1 1 5 20

1 20 6 1

01 720 17 1:2,3,2,

011 6 120

1 20 14 1

01 15 20 15 1,2,3,1,2,1,
011 14 1 20

1 20 11 12

01 10 20 12 3,1:2:341,2,3
111 9 2 20

101 20 8 9

01 8 20 1 15341

1 1 8 20

101 20 17 18

01 17 20 1 3:52,1,3,2,1,3
1 117 20

1 20 6 7

01 120 6 L

101 5 120
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1 20 T 17
11 6 20 7 153
011 5 120
011 20 1 8
01 10 20 10 1:3:2,3
1 1 9 20
Fig 60
001 20 9 9 '
11 8 20 1 3:2,1,2
1 2 8 20
1 20 8 8
11 120 7 1,3
001 6 120
11 20 4 5
01 520 5 342,1,3,2,1,3
1 1 4 20

As can be seen, the relevant'synapses' were updated in . all
cases, and yet the Block was only able to reproduce a fraction of the
permutations. The reasons behind this low success rate may be clarified
by closer examination of one of these experiments. Consider the

following sequence:

100 1,12
01 2,20 Fig 61
011 3,33

After seven presentations, the following W matrix resulted:

20 6 1 Fig 62 W matrix
720 7 ( relevant 9 values only )
6 1 20

On testing, the Block reprodpced the first three elements, but was
unable to make the connection from element three (011) back to the
beginning of the sequence (100). This is because the directional
association due to the second and third 'synapses' on column 2 (
combined value 21 ) is greater than the relevant 'synapses'on column
1 ( combined value 13 ).

This is analagous to the situation described in section
6.2.2 (a): the complex input pattern activates two input channels,

and thus has a significant effect on column 2, as its non-plastic
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'synapse' ( W = 20 ) is activated. In order to obviate this problemn,
a longer training set is required. Consequently, the training was
resumed until the relevant W values reached 14, and subsequent
testing showed that the Block is able to make the connection from
element 3 back to the beginning of the sequence. The test showed
that the pattern is reproduced correctly, but only for the first
five iterations. - A complete examination revealed the following
order of columnar outputs:

1924301:2:1:52535 124152535
It will be noted that confusion arises after column 2 tires. On the
first occasion' activation passes to column 3, on the sécond to column
1, the third to column 3 and the fourth to column 1. This may be
explained by examination of the W matrix. Column 2 is activated by
an input of 01. When it tires there are two equal directional
associations to influence the Block a) to column 1 and b) to column
3. These are determined by the high W values at the.second 'synapse '
on columns 1 and 3. As the directional associations are equal,
the effect of tiring is critical: if activation passes from column 2
to column 3 on the first occasion it will pass from column 2 to

column 1 on the next occasion since column 3 is more tired,

Thus, the mechanisms which enable the simple sequences
discussed in sections 6.2.1 and 6.2.2 {(a) to be reproduced are
insufficient for the reproduction of sequences composed of averlapping

input elements.
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Calculation for Three Element Sequence{ three inputs only ). Three

inputs to the Block may be combined in eight different permutations.
One of these ( 000 ) may be ignored. Thus there are Tx7xT
different three element sequences of this kind which may be presented
to the Block. ( 343 possible permutatidns. )

If those sequences which contain two or more identical inputs
are ignored ( eg 111, 111, Tl 25 then the total of 343
falls to294 ( 343 - 49 )s for non-repetitive elements.
Further, all those sequences may be ignored which contain elements
which the Block "generalises" to give the same output. For example
001, 011, 101, and 111 all give an output from column 3 and
cannot therefore be combined into a sequence. This lowers the number

of possible sequences to only sixteen. They are as follows:

1 001 1 001 1 011 1 011

01 01 11 11 01 01 1 1

001 1 001 1 011 1 011 1

1 101 1 101 1 11 1 111 Fig 63.
01 01 11 11 01 01 11 11

101 1 101 1 11 1 111 1

These sixteen permutations were all tested, and only five were found
to be reproducible by the Block. Thus out of a theoretical value

of 294 possible sequences only 5 can be reproduced by the Block.
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6.2.3 Summary.

The sequences which have been described in thic section
involve non-repetitive elements consisting of both siz-.e and complex -
input configurations. The experiments have all beer. Zesigned to
investigate the range of sequences which are reproducitlie by the Block
organication. Thus, each experiment began by resettirnz all the Block
variables to their original level, and the sequence was then presented
to an "uneducated" Block. In all the experiments the computer operator
provided the feedback needed to reproduce the sequence bty typing in the
input corresponding to the output given by the Block.

The first section involved single spatial inputs, and as far
as can be ascertained from the limited sample that was tested, the
Block is able to reproduce any sequence that is:

a) composed from single spatial-input elements,
b) eight or less elements in length,

c) composed from non-repetitive elements, and
d) presented four or more times.

The Block exhibited a similar capacity to reproduce complex,
but non;overlapping input element sequences, These were found to need
a longer minimum training period, but over an extensive experimental
period, the Block was able to reproduce every s=quence which was
presented to it regularly. Again, a small but representitive éample
suggests that the Block is able to reprcduce every sequence of this type.

A major problem was encountered with overlapping input element
sequences. A comprehensive experimental program checked every
permutation of triple-input three-element sequences and has shown that
only five out of a possible 294 sequences may be reproduced. The
reasons behind this failure have been discussed, and it may be
concluded that the Block is inherently unsuitable for reproducing

gequences composed of elements which exhibit a high de;ree of overlap.
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6.3 Sequences with Repetitive Elements.

This section involves sequences which use the same element

more than once in a single iteration. An example is shown below:
11 2, 25
00011 5, 41
11 2, 46 . Tig 64
0000011 Ts 5992

Ac can be seen, the 11 input is presented twice in a single
iteration of the sequence. After several presentations, the

following W matrix was produced:

2020 1 113 114 1 1 1%
120 1 113 114 1 1 1
1 120 © 7 1 1 % 4 7
173 1220 13 1 2 ¥ 1 A
114 1 120 1 2 1 1 1 Fig 65
192 1 T 9 20014 1 A1 9
1112 1 % 1 7120 % A 1
T 11T 11 1 120 11
Tt 11T 1 11 1 120 1
T 1 1% 1T 1 1 1 1 120

The difficulty with this sequence is that the learning process
produces two directional associations which both start from column 2.
Thﬁs when column 2 tires, the activation is directed towards column 5
and towards column 7. The test on the system was carried out in
the same way as in-the previous section: a single element was
presented to the Block and thereafter the computer operator provided

the feedback by typing the next input to the program which corresponded

to the previous output. The results are shown below:
1 2, 64
1 2, 65
1 2, 62
1 2, 51
1 5, 44 Fig 66.
00011 5, 68
0C011 5, 66
00011 5 B2

00011 5, 58
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00011 5, 51
00011 5, 44
00011 2, 42
11 2, 64
11 2, 65
1 2, 62
1 2, 60
e $: o Fig 66 ( contd.)
0000011 7, 68
0000011 7, 66
0000011 7, 62
0000011 7, 58
0000011 T5 5]
0000011 7, 44
0000011 2, 43
1 2, 64
11 2, 65

As can be seen the complete sequence is reproduced correctly.
The explanation of this is as follows: after column 5 has fired seven
times, the activity shifts to column 2, 1leaving column 5 habituated.
After column 2 tires, the activity is directed towards both column 5
and column 7, but as column 5 is still habituated the activity shifts
to column 7. Column 7 then fires seven times, becomes tired, and the
activty shifts back to column 2. Column 2 fires five times, tires,
and the activity moves to column 5, since column 7 is habituated.

In other words, the activity moves from column 2 to whichever

of column 5 or column 7 is the least habituated.

Further experiments were performed to find the range of

repetitive element sequences which are reproducible by the Block

organisation. Examples are illustrated below:

11 11 11
0011 00011 11

1 00011 00011
0011 111 00011
1 111 11
0011 00011 11
00001111 00011

00011

Pig 67.
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The three sequences illustrated in Fig 67 were each
presented to an "uneducated" Block and subsequent testing revealed
that in all cases the Block could not reproduce them. The experiments
have shown that the Block is able to repond to changes in input
stimulation, ©but has no mechanism to respond to a sequence of
identical input elements. For example, if the Block was presented
with AAAABBBBCCCC, it would only record the changes, and

the sequence would be reproduced as A B C.

The experiments have shown that in all but the simplest
examples the Block organisation is insufficient to reproduce sequences
which contain repetitive elements. The learning process is able
to record the changes in the elements of the sequence, and the more
often that a change occufs, the more strongly it is reccrded ( ie
the larger the value of W which represents that change ). However,
the actual reproduction is largely under the control of the relative
tiring values of the ten columns, and in the vast majority of examples
this has been found to be inadequate for the reproduction of sequences

with repetitive elements.



6.4 Simultaneous Retention of Sequence Information.

All of the work described in chapter 6 has involved the range
of sequences which can be reproduced by the Block. Consequently, each
experiment began by resetting all the Block variables so that the
sequence was presented to an"uneducated" Block. This section describes
the experiments which involved the simulataneous retention of sequence
information in the W matrix. Thus after the {irst sequence had been
trained and tested, the second was presented to the Block without

resetting the variables.

6.4.1 Non-overlapping Sequences.

Consider the following two seguences:

Sequence A : 1 Sequence B : 0000001
- 01 . 00000001 Fig 68.
001 000000001

Sequence A was trained and on testing, it was found to be easily
reproducible by the Block. Sequence B was then presented several
times and subsequent testing showed that it too could be reproduced.
Sequence A was then re-tested and reproduced. Sequence B was re-tested
and again it was reproduced.

As seduence A involves the first three input channels , all
relevant W updating occurs in the top left hand corner of the W matrix.
Similarly, the W updating relating to sequence B occurs in the bottom
right corner of the W matrix. As neither the input elements nor
the 'synapses' which link these elements co-incide, it is not
suprising that the two sequences may be learnt, remembered and
reproduced without interference.

Further experiments have confirmed. that the Block can reproduce

more than one sequence, as long as there is no overlap in the elements

of these sequences.



6.4.2 Overlapping Sequences.

Consider the following sequences:

Sequence A : 1 Sequence B : 001
01 0001 Fig 69.
001 00001

Sequence A was presented several times,land on testing was reproduced
by the Block. Sequence B was then presented several times; the

resulting W matrix looked as follows:

2015 1 1 1 1 1 1 1 1
12010 2 1 1 1 1 1 1

9 120 6 1 1 1 1t 1 1

11 t20 8 1 1 1 1 1

1 1 6 220 1 1 1 1 1

1 1 1 1 120 17 1 1 1 ,

1 1 1 1 1 120 1 1 1 Fig 70.
1 4+ ¢+ 1 4 1 22 1 1

1171 1 1 1 1 12 1

1171 1 1 1 1 1 120

The test on sequence B began with an input of 00001. This gave an
output from column 5 which continued until habituation caused the
activity to shift to column 3. When column 3 tired, the activity
moved to column 1 , and thereafter continued to reproduce sequence A.
Examination of the W matrix shows that sequence A had been presented
more often than sequence B and that when column 3 ( which is common
to both sequences ) habituates there is a stronger influence due to
sequence A than there is due to sequence B. Consequently, sequence B
cannot be reproduced at this time.

Further training with sequence B followed. After seven extra
presentations the Block was again tested and this time sequence B was
reproduced correctly, However, the Block was unable to reproduce
sequence A, since the directional association from column 3 to column
4 was stronger than that from column 3 to column 1.

It may be concluded that the Block is able to reproduce
either sequence A or sequence B, but that at any one time one of them
has to be dominant and, therefore, prevents the reproduction of the

other.
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6.5 Discussion.

6.5.1 Range of Sequences.

The experiments described in this chapter have demonstrated
that the Block is able to reproduce a huge range of simple sequences,
but that it is inherently unsuitable for the reproduction of sesquences
composed from input elements with a high degree of overlap. Two points
arise from this:

1) The Block is a small experimental system. Its limited size means
that overlap problems emerge quickly. Had the Block been composed of,
say, & 100 by 100 matrix, thnere would have been a considerable range
of input elements which could have been used in sequences before the
overlap problem emerged.
2) For a sequence to be feproduced, it must be assumed that there is
feedback from the output of each column back to those inputs which
constitute the element of the sequence which activaites that column.
Thus, if an input of 111111 is used to fire column 6, then it must be
assumed that there is feedback from the output of column 6 back to the
first six input channels of the Block. Sequences with a high degree
of overlap ahd complex spatial input elements would, therefore,
require a very specific and complex feedback network in order to be

reproduced by the Block.

6.5.2 Maximum Length of Sequence.

In section 6.2.1 it was explained how the learning theorem,
which depends on a co-incidence of an output signal with a recently
activated input ( defined by an STW of 6 ) restricts the length of
reproducible sequences to eight elements. From this it follows
that if the critical value of ST¥ is lowered, then longer sequences
can be remembered. However, this kind of change in basic

parameters has other effects on the performance of the EBlock.
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Congider, for example, lowering this critical value of STW from 6 to 4.
This would enable longer sequences to have an effect on the W matrix,
and consequently to be reproduced, but it would also lead to other
irrelevant changes in the % matrix. For example, consider the
sequence described in Fig 48. The third input ( 0010 ) causes
column 3 to fire, and at this instant the value of STW on the first
input line is 4.116. Thus the first 'synapse' on column 3 will be
updated, and this will result in a connection being made between
column 1 and column 3 which is obviously undesirable.

It would appear that this situation involves a "trade-off"
for the Block to maintain a degree of selectivity in its learning
behaviour, it must accept some limit in the length of sequence that

it can reproduce.

6.5.3 Introduction of Longz Term Forgettingz,

In section 6.4.2., the data from the experiments involving
the simultaneous retention of two sequences composed from overlapping
elements was presented. The performance of the Block was found to
be unsatisfactory as one sequence has to be dominant, and this can
prevent the reproduction of sequences which are presented to the Block
at a later date. In order to improve this situation, the program
was modified to introduce "long term forgetting" : all W values
were lowered by 10% once every twenty iterations. The maximum and
minimum values of 20 and 1 respectively were maintained. This
produced a significant improvement.

It was found that during the presentation of sequence B, the
strength of sequence A ( which had already been presented several times )
decayed so that the training period needed to establish sequence B was
significantly shorter. The long term forgetting ensured that all
sequences decayed with time, so that the presentation of new data did

not have to"fight'" for dominance with older sequences,
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From these initial experiments it is likely that a learning
system which is to reproduce many sequences must function in the
following manner:

a) The initial training period must produce large changes in the
relevant W values quickly. These high W values enable the sequence
to be reproduced, and are maintained by the reproduction of the
sequence until either the columns tire, or new information is
presented.

b) During the times that the sequence is not active in the system,
the high W values decay to a base level which is significantly higher
than the original, uneducated value of W, but well below the high
values which are needed to reproduce the sequence.

¢) Restimulation of a sequence which has decayed to the base level
restores the W values to the operational level with a much shorter
training period than that initially needed in the primary training
period.

Thus, once a sequence has been presented regularly enough
( primary training ) the W values which maintain it will remain at
the base level so that the sequence is potentially reproducable with

only a very brief re-training.
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6.6 Conclusion.

The experiﬁental work described in this chapter has demon-
strated that the Block is able to reproduce a large range of sequences
provided that the elements of the sequence do not overlap, and that
each elcment is used only one in a singic iteration.

Severe problems have been encount;red in the reproduction
of chuences which involve ccmplex spatial input elements with a high
degree of overlap. The Block needs extremely complex feed-back systems
to enable the reproduction to take place, and even if all this feed-baci
is provided only a tiny proportion of the possible permutations can
be reproduced accurately.

The Block has also proved to be inadequate in the reproduction

of sequences with repetitive elements.
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CONCLUSIONS
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CONCLUSIONS

7.1 Introduction.

The objective of this research program 1is to use models
based on the organisation of the C.N.S. in order to synthesise
cybernetic systems, and thus to understand the mechanisms which
underly the behaviour of these systems especially those concerned
with self-organisation. The work has therefore involved simulations
of neurons and synapses, and the use of systems of these simulations
in a variety of interconnection patterns. Each system is defined
by a number of properties, and the experimental work has demonstrated
the behaviour which resulted from a particular set of properties.

In this final chapter, the conclusions from the various
experiments are gathered together to give a more rounded picture of
the way in which a system organises its own behaviour. The chapter
begins with a brief summary of the various models which were constructed,
and goes on to examine the properties of the 'neurons' and 'synapses'
in the light of the behaviour of the experimental systems. The
various interconnection patterns are then considered, and the chapter
ends by discussing the merits of the two modelling environments used

in the research,



Summary of Systems Described in the Thesis.

129

T.2
SYSTEM PROPERTIES OF LEARLING INTERCOLLZCTION
ELEMEILTS THEOCREN PATTERN

Single hardware Excitatory inputs W increased if

'neuron' with Temporal summation input to and
'plastic Number threshold output from

'synapses'. 'K-3°

coincide.

Hardware system Excitatory inputs Ordered.
of plastic Temporal summation As above.

'N~-S' models. Number threshold

Homeostatic Excitatory inputs

network of Inhibitory inputs 48 shove. Rasidioiiis
hardware plastic¢ | Temporal summation

'N-S' models. Number threshold.

Sof tware Excitatory inputs W increased if

homeostatic Inhibitory inputs column fires

system of Temporal summation and input has Ordered.
columns of Spatial summation been ( Matrix
plastic 'N-S' Number threshold recently configuration )
models. Tiring. activated.

The table illustrated above summarises the various systems

which have been described in this thesis.

.0f the elements became more complex,

more powerful,

structured system to a more complex random system,

matrix configuration.

As can be seen, the properties
the learning theorem became
and the interconnection pattern progressed from a simple

and finally to a
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7.3 Properties of the Zlements.

The models described in this thesis have been composed of
elemental units based on the properties of neurons and their synaptic
interconnections. This section is concerned with the properties of
these elemental units and the effect they have had on the behaviour of

the resulting systems.

7.3.1 Input Stimulation and Threshold.

The properties of every system described in this thesis are
the direct result of the way in which information is processed in the
elemental units which compose the various systems. Basically this
involves the production of an output signal if the sum of the input
stimulation exceeds the threshold of the 'neuron'. This is the basic
property on which all else ‘depends.

Throughout the experimental work this has been found both
flexible and powerful. As information can only flow once the threshold
of an element has been exceeded, the threshold values of the various
elements within a system determine the way in which information flows in
the system as a whole. Ultimately, all the properties of the overall
system must depend on either the threshold of the elements ( and in some
cases this may change, for example due to tiring ) or the efféct of
input stimulation ( which is summated both temporally and spatially in

some cases, and is dependent on the 'synaptic' weighting values ).
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7.3.2 Input Summation I'rocesses.

a) Spatial Summation.

Several inputs to a 'neuron' are more effective in overcoming
the threshold and producing an output signal than a single input. This
has been used throughout the experimental work, with the following results:
1) The simple structure-dominant models described in section 3.5.3.,
used a form of spatial summation. For example in Fig 14, the 'neurons'
will nof fire unless three inputs are presented co-incidentally. This
resulted in the output signal responding to one specific pattern of
input stimulation.

2) In the random net.ork described in chapter 4, it was found that to
introduce stability the excitatory influences had to be balanced by
inhibitory influences. Tﬂus the models had to be redesigned so that
these two influences could summate spatially, and consequently stabilise
the network. In this model spatiBl summation was found to be essential
for stable operation.

3) Although simple forms of spatial summation existed in the hardware
models, as described above, complete spatial summation can only be found
in the Block, where the signals form all ten inputs are summated. As

in the random network, the number of active 'neurons' at any one time is
limited to ensure stability ( in the case of the Block to one active
column ) and this pre-supposes a latersl inhibitory structure, and
spatial summation in order to balance the excitatory and inhibitory

influences.

4) In the Block,spatial summation is essential for the system to

exhibit "majority logic" : the various inputs are summated and only
the column which is most strongly activated produces an output signal.
5) The generalisation experiments described in section 5.13 are also

dependant on spatial summation, for the Block gives an output on the

basis of the most stimulated column.



132

b) Temporal Summation.

In all the models, regular inputs accumulate and eventually
cause the 'neuron' to fire. In the hardware models, this was a result
of the use of a counter in order to implement the required number
threshold for the 'N-S' system. The resulting properties are as
follows:

1) In the hardware models temporal summation is the major factor which
spreads excitation throughout the systems.

2) In the Block, temporal summation is achieved by the use of STW

( short term weighting ) : every input leaves its corresponding 'synapse'
in an excited state for a short time, thereby enabling several high-
frequency inputs to have a greater effect on the ‘heuron , due to the
accumulation of these levels of excitation. The ST. factor thus helps
to increase the level of excitation within the Block.

3) The STV value is of importance as it is used by the learning theorem
to tell when an input has been recently activated. Thus the mechanism
which produces temporal summation is essential in the learning behaviour

of the Block, and consequently in the reproduction of sequences.

7.3.3 Tiring.

Tiring was introduced into the Block by raising the threshold
of any column which fired more than five‘consecutive times. Tiring
was found to be eésential in the Block, for it ensured that activity
was unable to recirculate in closed feedback loops indefinitely. The

tiring of the columns is essential for the reproduction of sequences.
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T.3.4 Llearning Processes.

In the models which have been described, the behaviour of the
elemental units has been changed when certain qonditions between the
input to and the output from these units has- been fulfilled. In
every case, the change in behaviour resulted from an increase in the
'synaptic' weight of the elemental units. This means that the 'N-3!
i3 more sensitive to information presented to a 'synapse' with an
increased weighting value.

The location of the changes due to learning at the 'synapse'
has proved to be satisfactory, because a 'synapse' is a one input /
one output device and thus any changes in its properties only effect
one specific pathway. Had the learning changes been located in the
'‘neuron' ( a many input /_one output device ) then any change in

its properties would have had widespread effects on the system.

a) Hardware Learning.

The hardware models described in chapters 3 and 4 increased
their 'synaptic' weighting values whenever there was an exact co-incidence
between an input to the 'synapse' and an output from the ' neuron'.

This learning theorem produced the following results:

1) A single input to the 'N-S' resulted in an output pulse after a
short delay. Thus there was no co-incidence between input and output
and consequently no learning.

2) A slow series- of inputé ( frequency less than 3.5 Hz ) did not
result in any co-incidence of input and output, because the output from
the 'N-S' produced by the Nth input had ended by the time the N+1th
pulse was prcsented. There was, consequently, no learning.

3) A fast series of inputs ( frequency greater than 3.5 Hz ) resulted
in a co-incidence of input and output, because the output from the 'N-S'
due to the Nth input was still active at the time that the N+1th input

pulse was presented. Thus, only fast input pulses are able to
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have a learning effect on the 'N-S'. Throughout the work with hardware
models, this was found to be satisfactory for it enabiled the systems to
be selective in the kind of input information which caused permanent
changes in the properties of the 'synapse'. This kind of selection
is thought to be of crucial importance in digital systems Wwhere all
information is retained permanently in the counters.

4) Co-incidental presentation of more than one input facilitates the
learning process. This has been explained in section 3.5.2 and may
be looked upon as "association". The learning theorem used in the
hardware models ensures that every input to a 'N-S' mutually aids all
individual learning at every other input. In other words, it ensures
that every input can associate with every other input.

5) In the random network described in chapter 4, the learning process
enabled the model +to set up stable systems of interacting 'neurons’,
due to high W values in. the loops interconnecting the 'neurons'. Once
established, these stable systems of 'neurons' enabled the model to
exhibit generalisation, selection and elaboration. Thus, it has been
demonstrated that the learning process is capable of performing the
self-organisation necessary to enable a randomly interconnected system

to exhibit relatively complex properties.

b) Learning in the Block.

The Block used a learning theorem which increased the
'synaptic' weightings if a column was active and an input had been
recently activated. Thus the Block learns in the same manner as the
hardware models but also in the case of a recently activated input
co-inciding with the firing of a column. This extension of the hard-
ware learning theorem is the basis of the Block's ability to reproduce
sequences: a 'synapse' is updated if an input has been activated by
the Nth element of a sequence and a column is fired by the (N+¢1)th
element. This enables the Block to make the connections between the

elements of the sequence and subsequently to reproduce the sequence.,
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c) Learning nnd Nemory.

In nll the models which have been simulated, the learning
theorem causnei specific 'synapses' to be strengthened, thus making
particular re.-ions of the models more sensitive. In all cases this
means that the 'neurons' that have been stimulated regularly are more
likely to fire again. In the random network especially it was seen
" that once a stadble pattern of four 'neurons' had been fcrmed bty the
learning process, then this stable pattern was likely to be reactivated
by subsequent input stimulation., In this case, and more generally
in the other models, it may be concluded that the learning process
creates regiong of highly sensitive 'synapses' due to high W values,

and that theso regions constitute the "memory traces" of the models.
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7.4 Properties of the Overall System.

This section is concerned with the properties of the systems
which resulted from interconnecting the individual elements. Thus it

is concerned with "global" rather than "local" properties.

T.4.1 Homeostasis

The work with richly interconnected systems of 'neurons'
demonstrated that a network with only excitatory influences is bound
to tend towards instability. In order to ensure that the network was
stable at all times a " homeostatic principle" was introduced which
ensured that at any one time no more than a fixed number of 'meurons'
could be active. This principle was used in the Block program and
has been found of great importance throughout the experimental work.
a) In the random network, the homeostasis permitted activation to
spread throughout the system until it reached the predetermined limit.
Input stimuli are, therefore, represented on the network as patterns
of active 'neurons' of a fixed size, and the learning properties of the
system cause the pattern corresponding to a regularly presented input
stimulus to become congolidated.

b) As the random network represented its input stimuli as patterns of
active 'neurons' of a fixed size, a large input stimulus ( which
tended to activate more 'neurons' than the permitted maximum ) was
subjected to "selection", whereas a small input stimulus ( which
activated less 'neurons' than the permitted maximum ) was subjected

to "elaboration". Further, an input stimulus which activated a
pattern of 'neurons' similar to a well established pattern was
"generalised". These .properties are a direct result of the
homeostatic principle.

c) Homeostasis enables the Block to exhibit "majority logic" : only

one column may be active at one time, and the actual column to fire

is that column which received the greatest amount of input stimulation.
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d) In the Block, learning can only occur when a column is active. Thus
homeostasis ( which limits the activation to one active column at any
one time ) 1limits the learning process to one column at any one time.
This means that learning occurs in specific regions, and it is this
type of highly specific locationlof updated 'synapses' which enables
the Block to perform its more interesting properties such as the

reproduction of sequences.

In summary, the experimental work has shown that homeostasis,
which was originally introduced to obviate saturation and instability ,
plays an important role in the information processing properties of

both the random hardware network and the Block simulation program.

T.4.2 Interconnection Fattern.

From the summary given in section 7.2., it can be seen that
the initial models were highly structured, that the net was a randomly
interconnected system, and that the Block involved an organised matrix
structure. Thus the interconnection patterns used in the course of
the research have progressed from ordered to random and back to ordered.
The conclusions which may be drawn from this progression are as follows:
a) The work described in section 3.5 demonstrated that small structured
systems can be easily constructed to perform specific functions. The
drawbacks to this type of system arise when attempts are made to design
larger systems with more general capabilities. It was found that every
extra function which was required necessitated the addition of extra
citcuitry, and this rapidly became extremely complex. The inadequacies
of these structure dominant systems have been discussed in section 3.5.5.
b) The randomly interconnected network described in chapter 4 resulted
from the conclusion that structure dominant systems are an unsatisfactory
method of modelling cybernetic systems. As the structure of the network

is random, the learning behaviour had to perform the self-organisation
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needed to enable the network to exhibit interesting properties. The
interconnection pattern acted as a foundation on which the learning
properties of the system could build. The experiments showed that

as long as the structure permitted stable circuits of 'neurons' to
become established, then the network was able to function in the manner
described. The actual location of the 'neurons' in these stable
circuits, the number of 'neurons' involved, and the nature of the
feedback loops are all of secondary importance: these factors effect
the stability of the stable circuits, but would not prevent the system
from functioning in the manner described. Thus, the network
demonstrated that a random system could be self-organised by its learning
properties. However, it was found that a degree of organisation would
help the performance of the network: it would ensure that input stimuli
effect a large number of 'N-S' elements, and would enable information
to flow freely throughout the system.

c) The conclusions from the work on random networks together with a
study of the structures that are found in the cerebrum and the
cerebellum resulted in the organisation of the Block. The structure
is not dominant ( as in the systems described in chapter 3 ) but
provides the foundation for the self-organisation carried out by the
learning processes. The Block uses a matrix structure which performs
the following functions:_ it ensures that every input has an effect on
every column, and it defines one non-piastic reflex input for each
column. For the Block to function in the manner described in chapter
5, two further structured systems have to be assumed: firstly a system
of lateral inhibition to ensure than only one column can fire at any

one time, and secondly a feedback system to enable the outputs from

the columns to reactivate the corresponding inputs.
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7.5 The Modelling Environment.

The work described in this thesis has involved both hardware

and software models, and the conclusions are as follows:

a) The use of hardware in the initial stages has validated the
factors discussed in chapter 2: in the development of small systems
of 'neurons' and 'synapses', hardware simulation provides a flexible
system which enables the experimenter to patch up various inter-
connection patterns, and to alter them as the situation demands. The
hardware environment has helped to stimuliate ideas and has proved an

invaluable aid to the understanding of 'neural' systems.

b) The drawback to hardware modelling arises when the experimenter
wishes to change the properties of the 'neuron' models themselves. The
transition from FM4 to PM5 ( described in section 4.6 ) required

several weeks work. PM5 had to be designed, patched up, tested and
de~bugged. The design was then simplified and topolozically transformed
to minimise the amount of soldering needed. It was then used in the
construction of a prototype PN5 which could be used with a Checkerboard
patch board, and finally twelve of these prototypes were constructed.
Had the system involved hundreds of elements, this process would

have been extremely arduous and expensive.

¢) Software modelling does not suffer f;om this drawback. In the Block
simulation program it was found to be a simple task to alter the relative
values of threshoid, fatigue, and the effect of the learning processes.
Had the Block been modelled in hardware, each of these changes would

have required extensive reconstruction of the model. Further, the
simulation of the Block proved to be a relatively simple task, since its

structure is essentially regular.
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7.6 Summary of Conclusions.

The aforegoing considerations have shown that simple models
of neurons and synapses are capable of exhibiting cybernetic
properties. It has been demonstrated that any plastic system (
which changes its properties when certain conditions between input
and output information are fulfilled ) 1is capable of learning, memory
and , consequently, of self organisation. The various models
composed of these plastic elements have exhibited several self-organising
phenomena, and the models provide an explanation of how the changes
in the elements of a system can result in properties such as the ability
to learn, remember and reproduce a range of sequences.

The properties of the 'neurons' and 'synapses' have been
examined individually and in some cases it may be seen how a specific
property causes a specific behaviour to result ( for example how
'gynaptic' facilitation causes a 'neuron' to become more sensitive to
input stimulation ). However in the case of more complex behaviour,
the system may only be understood in terms of an interaction of all
the properties of the 'neuron' and 'synapse' together with the
influences of the interconnection pattern, and the homeostasis of
the overall system.

In summary, the work has shown how internally~controlled
plastic change can lead to learning, memory and self organisation at
the elemental level, and how this in c&njunction with a homeostatic
system of 'neurons' and 'synapses' enables such properties as
association, generalisation and sequence reproduction to be learnt by

the overall system.
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A SPECULATIVE MANY-BLOCK SYSTEN

P.1 Introduction.

The work involved in the Ph.D. program described in the
previous pages culminated with the Block simulation program and an
investigation of its propeties. During the period involved in
writing up this work, several new ideas emerged concerned with a
system consisting of several Blocks working together in parallel. as
there was no remaining time to build models of these ideas they remain
highly speculative, and consequently do not merit inclusion in the
main body of the research.

However the many-Block system is a direct result of the work
described in the thesis, and is discussed in this chapter for two
reasons: firstly the Block has been described as a "building brick"
for a large cybernetic.system, and it is in the context of this
albeit theoretical system that the Block organisation may be better
understood, and secdondly, the theoretical iumplications of a many
Block system suggest an explanation of the mechanics of a distributed
memory trace, and outlines the organisation and expected behaviour
of a large cybernetic system.

These speculative ideas were felt to be sufficiently interesting

to merit their inclusion as a postscript to the experimental work.
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P.2 Proposed Structure of Four-Block System.

Congider the four-Block system illustrated in Fig 71.
The outputs of Block 1 ( abbreviated to B1 ) connect with the inputs
of B2 only, the outputs of B2 connect with the inputs of B3 only, the
outputs of B3 connect with the inputs of B4 only, and the outputs of
B4 connect with the inputs of B1 only. In all cases output 1 connects
with input 1, ouvput 2 with input 2 and so on, until output 10
connects with input 10. This is the simplest level of inter-
connection to be considered: it consists of a loop from B1 to B2 to

B3 to B4 and back to Bi.

P.2.1 Response of Four-Block System to Input Stimulation.

Consider_an input ( whose source is external to the four-Block
system ) to the sixth input channel in B4. Column 6 in B4 ( abbreviated
to C6(B4) ) will be activated and output 6 in B4 will give an output
signal. This output signal connects with input 6 in B1, which
activates C6(B1). This in turn activates C6(B2) and C6(B3). The
loop is then completed as the output from C6(B3) activates input 6
in B4. _

Thus, the activity circulates in a loop from B4 to B1 to B2
to B3 and back to B4. The pattern of activity consists of C6(B1),
c6(B2), C6(B3) and C6(B4). It is likely that this pattern of

activity will be stable until either the columns habituate or further

inputs are presented.

Consider now an input consisting of a signal to input 4 in B1
and simultaneously input 8 in B3. Initially C4(B1) and C8(B3) will
be activated. The former leads to the activation of C4(B2), the
latter to the activation of C8(B4).

Subsequently both B1 and B3 are excited by two input signals:
B1 by input 4 ( due to the input stimulus ) and by input 8 ( due to

the output from C8(B4) ) and B3 by input 8 ( due to the input stimulus )
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Cutput 1 connects with input 1,
output 2 connects with input 2, etc.,
output 10 connects with input 10.
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and by input 4 ( due to the output from C4(B2) ).

It is proposed that the effect of the external stimulation is
stronger than the internal feedback, and that therefore the stimulus
in the precent example maintains the activity of C4(B1) and C8(B3).
This means that in B1, column 4 is active at the same time as input 8,
and that consequently the eighth 'synapse' on column 4 in Block 1
( abbreviated to W8,C4(B1) ) will update due to the learning theorem.
Similarly W4,C8(B3) will update since in B3 column 8 is active at
the same time as input 4.

As this process continues a stable pattern of activation will
be produced consisting of C4(B1), C4(B2), C8(B3) and C8(B4). The
connection between B4 and B1 is maintained by the updated'synapse!'

W8,C4(B1) : the connection between B2 and B3 by the updated 'synapse'
W4,C8(B3). Again, the recirculating activity will maintain this
pattern until either the columns habituate or further inputs are
presented. The pattern of activity, the relevant interconnections,

and the facilitated 'synapses' are illustrated below in Fig 72.

c4 c4
input ———of
° B1 B2
/ l ]
Ww8,C4(B1)
W4,C8(B3)
c8 \ c8
\,
B4
B3
- input —
)
L |

Fig 72.
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Let us now consider an input of four simultaneous signals:
input 1 in B1, dnput 3 in B2, input 5 in B3, and input 7 in B4. FProm
the aforegoing discussion it is likely that four columns will tbe
directly activated ( C1(B1), C€3(B2), C5(B3) and C7(B4) ) and
that as this pattern of activation is mgintaincd by the four input
signals,four'synapses'will be updated ( #7,C1(B1), W1,C3(B2),
w3,C5(B3) and %5,C7(B4) ).

This pattern of activity will be maintained by the signals

circulating in the loop created by the updated 'synapses',

From these considerations it is proposed that no matter what
the input stimulus, the four-Block system will always be able to
- respond with a pattern of activatiPn consisting of one active column
in each of the four Blocks, and that the learning theorem will update
the 'synapses' which are needed to maintain that pattern of activity

after the input stimulus has been withdrawn.
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P.3 TIroposed Structure of Nine-Block System.

The four-Block system discussed in the previous section has
helped to describe the organisation of a simple many-Block system, but
its small size and single feedback loop were felt to be inadequate for
a satisfactory discussion. The present section is concerned, therefore,
with a nine-Block system in which Block to Block connections are made
in a more random:manner as illustrated in Fig 73.

The actual interconnection pattern does not seem to be of
primary importance but it is essential that information can flow freely
throughout the nine-Block system, so that any input stimulus will
generate a pattern of activation consisting of one active column in
each Block.,

It is proposed that the presentation of an input stimulus
will result in the generation of a stable pattern of activation, due
to the learning process which updates the'synapses' which are needed
to maintain that pattern of activity. It is likely that this process
of stabilisation will only result from a persistant presentation of
the input stimulus.

The nature of the feedback paths which create the proposed
stable pattern of activation depends on the interconnection pattern:
in some cases the nine Blocks are linked by a single large loop, but
generally feedback is carried in several small, interacting loops.
These feedback loops define’ the informaéion pathways within the model
and specify, therefore, the type of feedback which was assumed for the

sequential experiments with a single Block.
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Fig 73: Proposed system consisting of nine interconnected Blocks.



P.4 DNature of the Froposed Pattern of Activation.

It has been proposed that an input to a ninc-Block system
generates a pattern of activity consisting of one active column
in each of the nine Blocks, and that this is stabilised by the
feedback paths which interconnect the Blocks.

If this assumption is accurate, then the nine-Block system

retains information as distributed patterns of activity. Changes in

the input stimulus would, therefore, cause changes in the whole pattern
of activity in the nine-Block system. It is interesting to compare
this situation with a comment made by Lashley:

"A new stimulus... does not excite an isolated reflex path,
but must produce widespread changes in the pattern of excitation

throughout a whole system of already interacting neurones? ( Ref R.2.9)

For the discussion to proceed, it must also be proposed that
the distributed pattern of activity which is generated by an input

stimulus 1is a representation of that input stimulus. Thus, each

input stimulus is recorded on the nine-Block system as a stable,
distributed pattern of nine active columns.

The mechanics of this process have been described in only
the most incomplete fashion, and until experimental verification
can be obtained the.operation of a nine-Block system must remain

a tentative discussion.



P.5 liemory Processes.

a) Short Term Vemory: The presentation of an input stimulus causes

the proposed nine-Block system to respond with a pattern of nine
active columns which are a representation of that stimulus. The
pattern of activity is stabilised by the signals that circulate in
the feedback loops which interconnect the nine Blocks. This
recirculating activity will only be able to maintain the pattern of
activity for a short time, as the columns will tire and the activity
will then move elsewhere.

The nature of the recirculating activity is to form a short
term memory, which allows the system to maintain a stable pattern of
activated columns characteristic of a particglar input stimulus for

a short time after that stimulus has been extinguished.

b) Long Term iemory: The stable patterns of activation which are

generated by the persistant presentation of an input stimulus are
stabilised by the facilitation of the 'synapses' which interconnect the
elements of the patterns. The system is only able to "remember" a
characteristic pattern of activity because of the updated 'synapses'
which allow information to circulate in the feedback loops which define
that pattern of activity.

The changes in the long term weighting values of these 'synabsss'
constitiute, therefore, t@c long term memory of the-prOposed system.
As the patterns of activati;n are distributed, it follows that the long
term memory traces will also be distributed throughout the system.
Again, Lashley's work is of interest, for his Law of lass Action ( Ref
R.2.21 ) states that the amount of memory loss in the brain is
proportional to the amount of brain-matter removed. For the proposed
nine-Block system to follow this law, it would have to te assumed that
each pattern of activation was composed of a huge number of small,
interactive feedback loops. However, the assumed structure with a

lesser number of loops is likely to be extremely resistant to dara.c.



P,6 Behaviour of the Propos~d hine-Block System.

The aforegoing sections have proposed a structure for a nine-
Block system, discussed the way in which information would flow through
it, and proposed a mechanism whereby an input stimulus would be
represented as a distributed pattern of activation and subsequently
remembered by the system. The present section is a brief discussion
of the expected behaviour of such a system.

a) Generalisation: A regularly presented input stimulus generates a

stable pattern of activity which is a representation of that pattern.
Consequently, an input pattern which is unfamiliar to the system and
which is similar in nature to the well-established input stimulus is
likely to trigger the pattern of activity which is representative of
the regularly presented input. Thus the systeh will "see" the second,
unfamiliar pattern as the same as the original, familiar pattern.
Generalisation has been demonstrated in a single Block, and it seems
likely that a many-Block system would exhibit a similar capacity.

b) Association: It has been demonstrated previously that in a single

Block, tvio input stimuli will become associated if they follow each
other regularly and persistantly. Thus, within a many-Block system it
seems safe to assume that the same mechanism will assocciate the
elements of the representations of two patterns which are presented
sequentially on a regular basis, and thus associate th? patterns
themselves. s

This process would probably occur in two stages: firstly the
many-Block system would create a representation of each of the input
stimuli, and secondly the two representations would be associated due
to the mechanics of the individual Blocks.

It is interesting to note that the distributed pattern of
activation ensures that every input is represented by one active column
in every Block, and that fﬁereforc all input stimuli ray be associated

regardless of their nature. If the system had used localised



chnracteriistic patterns of é?tivity, then it would be extremely
difficult to explain how all patterns distant from each other coulil
become associated: it would involve astronomical numbers of inter-
connecting fibres. Thus, the distributed pattern of activation not
only makes the system extremely stable and reliable, it also ensures

that any two input stimuli may be associated.

¢) Sequential Properties: A single Block has been shown to be capable

of reproducing a large number of sequences, as long as there is no
overlap. Examination of the proposed many-Block system revcals that
with the feedback as described in Fig 73, there is no overlap
whatsoever and that therefore the individual Blocks are likely to
operate in optimum conditions. It follows that, if the individual
Blocks are able to reproduce the elements of each input representation
of the sequence, then the system as a whole will be able to reproduce
the sequence.

The problem of overlapping inputs is obviated as the process
occurs in two stages: a) every input stimulus, no matter how complex,
is assumed to be represented as a pattern of one active column in

each Block, and b) it is then these representations which are

combined into a sequence, and with the assumed feedback structure
there will be no overlap. |

The question of the sequential properties of a many-Block
system is an extremely compiex one, an; until experimental verification
can be performed-thcse considerations must be regarded as highly

speculative.



P.7 The kany-Block vstem and Cell Assemblies.

The proposed many-Block system hes special relevance to the
theorctical cell assembly models, since the work of both Hebb and
¥ilner ( Refs R.2.1., R.2.2., R.2.16 ) has played a considerable part
in the development of the Block.

In the context of the many-Block system a "cell assembly"
consists of the pattern of active columns dis*ributed throughout the
system, which is a representation of a particular input stimulus.

If the proposed many-bBlock system organisation can be validated
experimentally, it may well help to define the cellular mechanism which
underly the formation of cell assemblies.. It is at this level that
the work of Hebb and liilner seems to be incompletely specified. Nilner
extended Hebb's original postulates to cover inhibition and a dominant
vertical organisation, b;t.was still forced into theories involving
“"fringe neurons" which the present author has found of little value in
the simulation of a learning system. The proposed many-Block system
would explain not only the formation of a "cell assembly" but also

the way in which "phase segquences™ - the sequential reproducticn

of associated cell assemblies - are organised.

If the connection can be made btetween the cell assembly theories
of neural organisation and the proposed many-Block system, not only
will the mechanistic basis of the cell assembly be clarified, but
also the theoretical work will provide a definite direction in which

the many-Block research work could proceed.
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P.8 The lizny Block System, Holograms, and Matrix Learning Systems.

In the last few years, the hologram has attracted a great
deal of attention as a model of the brain. Both its methad of
information storage and its vast capacity have parallels with the
brain, and these considerations have led to several papers that
suggest that memory is basically a holographic process ( Refs. R.1.24.
R.1.25., R.2.20 ).

However in a recent paper Willshaw et al ( Ref R.1.26 )
have demonstrated that a simple associatory net arranged in a matrix
configuration can mimick "actually improve on" the performance of
hologram as a model of associatory memory. Their conclusion
suggests an explanation for the widespread use of associatory matrix
learning systems, for example by Young ( Ref R.13.17 ) and Steinbuch
(Ref R.13.9 ) in the simulation of learning behaviour.

Both the model described by Willshaw, and those of Young and
Steinbuch wuse localised memory traces and are, therefore, unable to
have any relevance to the distributed storage of information which is
found both in the brain and the hologram. The many-Block system
may well provide the link between these models: it is basically an
associatory network which is similar enough to that described by
Willshaw to "mimick and actually improve on" the performance of the
hologram, and it retains its information as a distributed memory

trace.



P.9 Simulation of the Many-Block System.

The preliminary considerations concerning the simulation
of a many-Block system presented something of a dilemma. Two choices
were apparent:

1) Hardware simulation: The construction of a single hardware Block
was considered in chapter 5, and dismissed as too complex and costly.
Further, the changes that were made during the experimental period

with a single Block would have involved months of work had the Block
been constructed from hardware components. The work described in
chapter 4 has shown that hardware systems are extremely difficult to
modify, where the properties of the individual elements are concerned.
2) Software simulation: This proved to be an ideal environment in
which to model a single Block. However, the digital computer has been
shown to be unsuitable for the simulation of the parallel nature of the
C.N.S., and the prospect of simulating a many-Block system such as

that illustrated in Fig 73 does not appear attractive. It would also
be useful to have a flexible interconnection system which would enable
the experimenter to patch up different Block to Block interconnection
patterns as suggested by the experimental process.

Thus, both hardware and software simulations seemed to be
unsuitable for a many-Block simulation. There is, however, one
possible solution to this dilemma; it involves the use of several
micro-ﬁrocessors in parallei. In essence the idea is very simple:
if a single micrﬁ-processor with its memory and interface systems can
be used to simulate a single Block, then a many-Block system may be
implemented by hard-wiring several such micro-processors in parallel.
The expected advantages of such a system are as follows:

1) Each Block would be simulated by a programmable computer system.
The changes in the relative Block parameters ( which are bound to

occur during the experimental period ) could be easily implemented by

modifying the program which simulated the Block.



2) The use of several micro-processors would enable the system to
operate in a truly parallel manner, and thus obviate the problems
involved with serial sirulations.

3) The advantages of hardware models described in chapter 2 would all
apply, for the individual micro-processors would each constitute a
hardware unit which could be hardwired together at the control of the
experimenter. This kind of flexibility has been found to be
extremely valuable in hardware simulations, for it enables the system
to be quickly modified.

4) The teletype could be used to give a written record of the progress
of the various experiments. Thus, at each critical step the values
of long term weighting and other critical parameters would be

accessible to the experimenter.

In summary, the proposed system would exbiﬁit the most
valuable attributes of both hardware and software simulations without
any of the drawbacks. It would be flexible both in the simulation of
the individual Blocks and in their interconnection into iarge cybernetic
systems. It would also allow a complete study to be made of the
effect of the learning process on the 'synaptic' weights of the elements
and on the cﬁnsequent behaviour of the system.

A preliminary investigation of the Intel 8 bit micro-processor
that an 8 by 8 Block may be simulated without involving overcomplex
memory and interface systemé, and that many such micro-processors
could be run in parallel by using the same clocking circuitry for

each one.
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P.10 Summary.

If the assumptions and arguments proposed in this chapter
are correct, then a many-Block system would exhibit the following
characteristics:

a) It would represent input stimuli as a characteristic pattern of
active columns. This pattern would be  distributed throughout
the system, and would be resistant to local damage since it is
composed from many interactive feedback loops.

b) The long term memory trace for each of these characteristic
patterns would be distributed throughout the system.

¢) The system would be homeostatic: at any one time only 10% of
the total number of columns would be active.

d) The system would be able to generalise, associate, and reproduce
a lar;e range of sequences.

If the proposed system functions in the manner which has been
suggested in this chapter, +then it defines a theory which explains
how an assembly of neuron like elements can interact so as exhibit
association, generalisation, sequence reproduction and 2 distributed
memory trace.

A proposal has been made to simulate the many-Block syétem
using several micro-processors hardwired together in parallel.
Preliminary investigations of this scheme suggest that it would enable
a large system of 'neurons'. and 'synapses' to be constructed by
exploiting the most useful aspects of both hardware and software
simulation.

It is foreseeable that the outlines which have been presented
will prove to be both inaccurate and incomplete, and yet there apjcars
at present to be no reason to prevent the construction of a system
which functions in essentially the same manner as the many-Block system

hypothesised in this chapter.
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APPENDIX 1 : THE PLASTIC N-S MCDELS.

Appendix 1 contains details of the hardware models that
were constructed during the course of the research. The basic system
conception is described, and the following six pages are a reproduction

of a paper which describes the first three models to be built.
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APPENDIX 1 : THE PIASTIC N-5 MODELS

Basic System Conception.

Six models are described in Appendix 1, all of which
exhibit "plasticity" as defined in section 3.2, and have the same
basic system conception.

Basically, there is a threshold device which determines
the number of input pulses that are required to produce an output
signal. This threshold device is influenced by a binary counter
which is incremented whenever certain conditions between input and
output pulses are fulfilled.

In the simplest case ( illustrated below ), the binary

counter is incremented whenever the threshold device produces an output.

input ——-—o«w«— THRESHOLD DEVICE ge output
|

BINARY COUNTER

The contents of the counter affect the threshold device in such a way
that the larger the contents of the counter, the lower the number of
pulses required to produce an output,

Thus, initially several pulses are needed to produce an output.
Every output causes the counter to accumulate one count. Every count
accumulated lowers the numger of pulses needed to produce an output
by one.

In this way the regular use of the device causes the number
of input pulses needed to produce an output to fall progressively:

its threshold is lowered by use.

The details of the six models, and the reasons for their increasing

complexity, are described in the remainder of Appendix 1.
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Plastic Nodel 4.

PM4 is a more advanced version of Flli2. It works in essentially
the same way, but involves simpler circuitry due to the use of Texas

SN74193 binary counters. It is illustrated below:

input 104D output
- c1 - 3}——— 1OKC o
EETENECEEES, —— 4 b

G
! b
c2
3 (e =

5 1

The contents of C2 are fed into C1 when the 'LOAD' input to C1
is set to Ov. This obviates the need for the complex gating between C1
and C2 that was used in PNi2.

As the counters are capable of counting from O to 15, the'synaptic!
weighting of the model can vary between 1/16 and 1. This means it is
twice as sensitive as PNN2. '

Apart from these simplifications, the modelling philosophy is
identical to that used in PNM2. The construction of P4 was essential,
as the author intended to synthesise a system consisting of several plastic
elements. As PIX2 was rather complicated, it tecame imperative to build

a simpler, engineered version. The result was Fii4.
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Plastic Model 5

PN5 wus built in order to implement the need for a plastic model
which is susceptible to both excitatory and inhibitory influences. It

ig illustrated below:

——
-y

input - c1 > 3}-—- 1CHO

&—= 10 'neuron'

¥

T 11
ce -
MAX/ up/down
MIN //F#, control.
exclusive
OR

N2 < a3

A

count-down

frgm outpqt

of neuron.

PNM5 uses Texas SNT74191 counters, which enable the basic circuitry
to be simplified even further: they contain a 'MAX/NIN' output which gives
a pulse when the counter_holds 15 in the count up mode, and 0 in the count
down mode. This obviates the need for the 4-input NAND gates-used in FX¥4.
The 'MAX/NIN' output enables the 'synaptic' weighting of the model to vary
between 1/16 and 1 without danger of recirculation at either end.

The 'count-down' signél sets the count control on C2 to count-down
and sends a delayecd pulse ( via k2 and K3 ) which decrements the contents
of C2. Thus every PLS has two inputs from the 'count-down' system.

The exclusive-or gate is needed to stop interference between the
count-up pulses that occur during the learning phase, and the count-down
pulses that produce the inhibitory influence.

The model learns in exactly the same way as PLN2 and F.4, but

the behaviour of the model can be dominated by the external inhibition.
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PN6 was designed and built in order to construct a hardware Block.

It is the final plastic model to be constructed during the research, and

the most complex.

from .o - IB
o/p of
‘neuron'
: FORGET 1
Y

input

. 1 up/down

| C1

> @ ) ——
1 .
' - to
1 ]
neurcn.
reset -
up/down
c2 -
B
- a2 A
= PCRGET 2
N 4
FORGET CIRCUITRY.
B 1

i1

(3K74191X)

¥2 (ShT741G1NL)

39K,

1:0u®

39K, O-1uF
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The upper half of the diagram will be recognised as tﬂe'synapse'
module in PNM3. C1 therefore contains the 'synaptic'weight of the model
which may be raised by a co-incidence between input and output. The
FORGET 1 circuitry was added so that the model could forget : it decrements
the contents of C1.

The 'neuron' is modelled by an operational amplifier ( spatial
summation ) and a monostable. PFatigue is implemented by charging a diode
pump circuit from the outbut of the'neuron'and feeding this charge back
into the inverting input of the operational amplifier. Thus the more often

the 'neuron' fires, the more difficult it becomes to fire in the future.

The lower part of the diagram illustrates the short term component
of the model. Inputs count up C2, assuming that the input pulse frequency
is greater than the FORGET 2 frequency ( 1 Hz ). When C2 holds 15, the
output from the D - A converter fires the neuron. This output re-sets
C2 so that the inputs must re-accumulate in order to re-fire the'neurén:
This process is the equivalent of fhe de~polarisation of the biological
'neuron’.

If the N-S model is presented with repeated and persistgnt input
pulses, the content of C1 ( the'synaptic'weight ) increases in exactly
the same way as in all the ‘other models. This progressive increase
continues until C1 contains 15, when C1 is preventing from re-circulating

as before. At this point, one input pulse will fire the system.

As the heuron' model begins with an operational amplifier, there

is ample opportunity to construct an N-S model which has several'synapsesﬁ
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Y

v

\'KEURON'

output

P —
up
Spn COUKTER 1 D A
P e dowin
CLCCK 1 CLOCK 2

down
COUNTER 2 =D &

' §

up

v

C1 contains the long term memory of the model, and CLOCK 1, therefore,

determines the rate of long term forgetting.

C2 contains the short term memory: CLOCK 2 determines its decay.

Thus the behaviour of the model mey be described in terms of two

parameters, the state of the two counters.

COUNTER 1

long term effects

CCUNTER 2

short term effects

W facilitation. Excitation.
COUNT : =

Depends on co-incidence Every input pulse counts
UP of input and output. up counter 2.

Long term remembering. . Short term remembering.
COUNT Long term forgetting. Short term forgetting.
DOWN Slow pulses: 107° Hz. Faster pulses: 1 Ez.
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Graph AG1 illustrates the way in which the learning process happens. It
is a plot of the threshold of the "-S'against time, and applies to each

of the six plastic models Jjust described.

ﬁ“ | .

16 1

Graph AG1. Change in threshold with

time. Input frequency: 4 Hz.

T - T ] 1 o
10 20 . 30 40 secs.

Time.
(linear)

Graph AG2 illustrates the changes in voltage with'synaptic'weighting

that are produced by the 'synapse 'modules in PNx3 znd ZX6.

h V out
55 ) o
3

Graph. AG2.

3> w/16

-
-
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APPENDIX 2 :

CONTROL SYSTEM TO MAINTAIN HOMEOSTASIS.
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APPENDIX 2 : CONTROL SYSTEM TO FRODUCE HOMEOSTASIS.

The control system to be described waé designed to produce a
pulse train when more then a certain number of N-S models were active.
This pulse train could then be used to 'inhibit' the models and thus
introduce homeostasis.

It was found that the most satisfactory method of achievirng this
wvas to monitor the current drawn by the display, as this increased as the
activation spread. This current was converted into voltage, and used to

feed the following circuit:

5v
R1 R2 R1 : 1-8K
| I R2 : 1:8K
- _ N R3 : 100K
: ST R4 : 100K
—VWwip 2 RS : 1-0K
4 _
1 ) ' Transistors : BC 107.
Vin —
R5
Ov A

As the number of active units increases. Vin increases until it
reaches a threshold determined by Rs. The circuit then produces a pulse
train which feeds the 'count-down' inputs to the N-S models, and thus
decreases the number of active units.

The output frequency is directly prcportional to Vin: the amount
of inhibition is directly proportional to the degree of activity on the

N-S network.
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CCMPUTER PROGRAM

(FORTRAN)

SIKULATING THE BLOCK.
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C SIMULATION OF BLOCK OF NEURONS
INTEGER W(10,10),NIC18)5NO(10),EMAXsH(10),NUMC1B)>DIFF(10)

120
10

110

100

11

DIMENSION STW(1@0,18)

DO 7 1I=1,10

DO 7 J=1,10

V(I,J)=1

DO 12 N=1,10

H(N)=20

READC(C1,)M

IF(M«NE«77) GO TO 10
WRITE(2,120)C((W(I1,12),12=1,18),11=1,108)
FORMATC(IH ,1013)

READ(C1,1108)NI

FORMATC(10I1)

EMAX=0

DO 9 I=1,10

W(I,I1>=20

DO 1 N=1,10

DO 2 1=1,10
STWCISNI=STW(ILNI+NIC(II*(D«6%(20~STW(ILNI)I)
NOCNI=IFIX( WCILNIRNICI)+STWC(ILNI+NOCNY)
STWC(IsN)=STW(IsN)*Q@e7

CONTINUE

DIFF(N)=NO(N)~-H(N)
EMAX=MAXOC(EMAX,DIFF(N))
IF(EMAX.EQ«DIFF(N))INMAX=N
CONTINUE

WRITE(2,10808)>NMAX, EMAX
FORMATC(IH ,13,%,%,13)

DO 3 N=1,10

NUM(N)=NUM(N) =1
IF(NUM(N) e LE. @)NUM(N)Y=0
NO(N)=0

DO 6 1=1,19

IF(STUWCI sNMAX)« GE« BIWCILNMAX)=W(]I,NMAX)+1
IFCWCISNMAX) e GE2@)WC I »NMAX)=20
CONTINUE

NUM(NMAX) =NUM(NMAX) +2
IF(NUM(NMAX)«LE«S)GO TO 11
H(NMAX)=H(NMAX)+6

DO 8 N=1,10
IFCHC(N) « GT«20)H(N)=H(N) -1
CONTINUE

GO TO 5

STOP
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Explanation of Program.

In order to explain the program, it has been divided up into a

number of boxes ( see over ). BEach box performs a specific function

as described :

Box 1 : this sets up the preliminary & matrix as a 10 by 10 matrix

in which all values are 1.
Box 2 : Set up the ten threshold values. Initially they are all 20.

Box 3 : Read in from the teletype. If input is not 77, jump to box
5 which reads in from the teletype. If input is 77, go on
to box 4. '

Box 4 : Print out the W matrix.

Box 5 : Read in from teletype. This input is taken as the inputs to
the Block

Boxes 3, 4 and 5 -enable the inputs to the Block to be read into the -

computer, and give the option of printing out the W matrix.

Box 6 : EMAX set to zero. This is necessary as ENAX is used in the

calculations in box 8.

Box 7 : Set up diagonal of W equals 20 within the W matrix. This
dilagonal is maintained throughout the various experiments, and
the simplest way to achieve this was found to be to set it up

once every iteration.

Box 8 : Spatial and temporal integration of input information.
If an input line is active, then STW is increased exponentially
towards 20. This‘'value is then used to calculate the
excitation, for the first input line of the Block. The value
is rounded, and accumulates as the program moves down the
ten input lines._
STH¥ is then exponentially decayed.
The ten DIFF values are then calculated, and compared in

order to find the column with the maximum net excitation.

Box 9 : Print out NMAX ( the number of the column with the maximum

net excitation ) and EMAX ( the value of the maximum ret

excitation )
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Division of Progzram into Boxes to assist Explanation.

C SIMULATION OF BLOCK OF NEURONS
INTEGER W(10,18),NIC(18),NOC1@),EMAX,HC(10),NUMCIB)>DIFF(10)
DIMENSION STW(10,18)

DO 7 I=1,10
DO 7 J=1,10 1
7 WCIsJ)=1
DO 12 N=1,10 [,
12 H(N)=20
5 READC1,)0M
IFCM.NE.77) GO TO 18 3
WRITE(2,120)((WCI1,12),12=1,10),11=1,10)
120 FORMATCIH ,1013) 4
10 READCT, TTONT [
110 FORMAT(1011)
EMAX=0 [ &
DO 9 I=1,10 | ,
9 WCI,1)=20

DO 1 N=1,10
DO 2 1I=1,10
STWCILN)=STWCILN)+NICI)*(De6%x(20-STW(I5NII)
NOCNI=IFIX(C WCILND)*NICID)+STWC(ILN)+NOCN))
STWCI,NI=STW(IsN)*Be7

2 CONTINUE
DIFF(N)=NO(N)=-H(N)
EMAX=MAXO(EMAX,DIFF(N))
IFC(EMAX« EQ« DIFF(N) )NMAX=N

| CONTINUE
WRITE(2,10823NMAX, EMAX 9
100 FORMAT(IH »13,%,5,13)
DO 3 N=1,10
NUMCNI=NUM(N) -1 10
IF(NUM(N)«LE. 8)NUM(N)=0
3 NOC(N)Y=0
4 DO 6 1=1,10

IF(STWC(I>NMAX) « GE« BIWCI>NMAXI=W(INMAX)+ 1
IF(WCILNMAX) e GE20)W(I,NMAX) =20
6 CONTINUE

11

NUM(NMAX) =NUMINMAX) +2
IF(NUMC(NMAX)LE«S)GO TO 11 12
HNMAX)=H(NMAX) +6

11 DO 8 N=1,10
- IFCH(N)GT«2@)H(N)=H(N)~1 13
8 CONTINUE
GO TO 5

STOP



Box 10

Box 11

Box 12

Box 13

GO TO 5
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Decrement 21l values of NUL, keeping the minimum at 0.
Reset NO to zero for all columns. ( after a column fires,

its level of excitation falls to zero. )

Learning theorem. If a column is active ( ie the column
specified by KMAX ) and an input has been recently activated
( specified by ST# of 6 or more ) then increment the relevant

value of W.

Add two to the value of NUM for column NLAX. This -~ in
conjunction with Box 10 = increments I'UM for the column

that has fired and decrements LUll for the other nine columns.
If NUM is more than or equal to 5, the threshold of the
column is increased by 6 units.

Thus Box 12 implements the tiring factor by making any column

which has fired 5 or more times, more difficult to fire.

If NUM is less than 5, the program jumps the tiring sub-

routine and goes to Box 13.

Recovery from habituation. All threshold values greater
than 20 are decremented so that all habituated columns

gradually return to their original threshold level.

return to the start of the iteration.

LIST OF VARIABLES:

NO
NI
H

STW

DIFF
EMAX

NMAX

Output excitation

Input excitation

Threshold.

Short term weigh%ing.

Long term weighting.

Difference between output excitation and threshold.
Maximum value of DIFPF.

Number of column with maximum value of DIFF.



1890

REFERENCES



18

Introduction to References.

The nature of an interdisciplinary study makes it imperative
to undertake an immense amount of backzround reading. In the case of
the present research, the author found that apart from previous cyternetic
literature, he had. to study large areas of physiology, psychology and
engineering science, in order to maintain a balanced approach to the
synthesis of engineering models of natural systems.

In preparing the thesis it became obvious that the inclusion
of the majority of this background material would involve such a large
volume of written material that it could well detract from the main
argument which nas been presented. For this reason the reviews and
references included in the text have been kept to a minimum, and only
included when strictly relevant.

However, the gxtensive literature searches that were undertaken
in the various disciplines have enabled the author to compile a list of
references which have been found to be of assistance in the study of

\
cybernetics, especially with respect to the brain. The main objective
in presenting this list is to provide a source of information which
is both relevant and accessible. For this reason the references have
beén categorised into manageable groups, and it is hoped that they will

be of assistance to the research worker who is searching for material

concerned with the modelling .of the brain.
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