Aston University

Some pages of this thesis may have been removed for copyright restrictions.

If you have discovered material in AURA which is unlawful e.g. breaches copyright, (either
yours or that of a third party) or any other law, including but not limited to those relating to
patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please
read our Takedown Policy and contact the service immediately




A STUDY OF MAGNETIC NON--LINEARITY AND FINITE
LENGTH EFFECTS IN SOLID IRON SUBJECTED TO A

TRAVELLING MMF WAVE

by

ALAN LESLIE BOWDEN

Submitted for the Degree of Doctor of Philosophy
at

The University of Aston in Birmingham -

June 1973



CONTAINS

PULLOUTS



SUMMARY

This thesis describes an experimental and analytic study of the
effects of magnetic non-linearity and finite length on the loss and

field distribution in solid iron due to a travelling mmf wave,

lIn the first half of the thesis, a two-dimensional solution is
developed which accounts for the effects of both magnetic non-linearity
and eddy-current reaction; this solution is extended, in the second
half, to a three-dimensional model.

In the two-dimensional solution, new equations for loss and flux/
pole are given; these equations contain the primary excitation, the
machine parameters and factors describing the shape of the normal
B-H curve., The solution applies to machines of any air-gap length,
The conditions for maximum loss are defined, and generalised torque/
frequency curves are obtained. A relationship between the peripheral

component of magnetic field on the surface of the iron and the primary

excitation is given.

The effects of magnetic non~linearity and finite lengéh are
combined analytically by introducing an equivalent constant permeability
into a linear three-dimensional analysis, The equivalent constant
permeability is defined from the non-linear solution for the two-
dimensional magnetic field at the axial centre of the machine to avoid
iterative solutions, In the linear three-dimensional analysis, the
primafy excitation in the passive end-regions of the machine is set

equal to zero and the secondary end faces are developed onto the air=-
gap surface,

The analyses, and the assumptions on which they are based, were
verified on an experimental machine which consists of a three-phase

rotor and alternative solid iron stators, onc with copper end rings,

and one without copper end rings; the main dimensions of the two
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stators are identical. Measurements of torque, flux/pole, surface
current density and radial power flow were obtained for both stators
over a range of frequencies and excitations, Comparison of the
measurements on the two stators enabled the individual effects of
finite length and saturation to be identified, and the definition

of constant equivalent permeability to be verified, The penetration
of the peripheral flux into the stator with copper end rings was

measured and compared with theoretical penetration curves,

Agreement between measured and theoretical results was generally

good.
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LLST OF SYMPOLS

MKSA units are used,
Many of the Equations referred to here may be found in

a List of Important Equations at the end of the thesie.

A

Constants used in the functional representation of the
a

normal B-II curve,
b
B Flux density (T)
Bs Saturation flux density (T)
¢, O h Quantities including the primary permeability.

L (Chapters 2 and 9 respectively),
c Equation 4.56
D Stator bore (m)
D , D h Quantities describing the effect of the secondary iron
8 2 and eddy-currents. (Chapters 2 and 9 respectively),
. . ' (L ~-L)
d A non-dimensional quantity equal to A" (Chapter 9);
2L
A

a constant in the Frohlich equation (Equation 4,53).
E Electric field strength (V/m)
F MMF (A); force (N)
T Frequency (Hz)
g Air-gap length (m)
H Magnetic field strength (A/m)
h Harmonic order
I RMS current (A)
J Current density (A/mz)
K Current loading (primary current sheet) (A/mz)
Kb A function of b, Equations 4,24 and 4,25,
Kp Normalised power loss, Equation 4,49,
Ks Equation 6.16
k Equals (B+ jY),in Chapter 2

. _Y
ky, Equals (Bh + ] h),in Chapter 9
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Developed length of stator (Fig. 9.6),
Active length
Axial length of stator,

Quantities in linear field analysis (Chapters 2 and 9
respectively).

,joTrpO/_p‘ (Appendix II)

Power (W/mz)

Power, Agarwal's theory

Power, limiting non-linear theory.
Instantaneous power (W/mz), pairs of poles,

Ratio of wave impedances at surface of secondary iron,
Chapters 2 and 6 respectively, (non-dimensional).

YEID

Resistance (Q)

Radius of bar, radial distance tm)
Finite length factor, Equation 9.35

Ratio of the peripheral and radial components of the
magnetic field strength at the surface of the secondary.

Equation 9.7,
Torque (N-m)

Time (s)

a quantity defining the shape of the waveform of
magnetic field strength (Section 4.7)

Voltage (V)

Velocity (m/s), instantaneous voltage (v)
Hysteresis energy loss (J/m3)

n/L

hw

Space co-ordinates

Wave impedance (Q)

~1

1/8 (m )

15, ™Y
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attenuation coefficient, Chapters 2 and 9 respectively
-1

(m™ ")

attenuation coefficient, Chapter 4 (non-dimensional)

phase change coecffients, Chapters 2 and 9 respectively
(rad/m)

phase change coefficient, Chapter 4 (non-dimensional)
functions of Q and Qn respectively

depth of penetration, J§E75E;E; (m)

limiting depth of penetration (m)

limiting depth of penetration, Agarwal's theory
limiting depth of penetration, limiting non-linear theory
phase change with depth (rad)

qa /pg

angle between primary nmf{ and radial flux density
hysteresis angle

wavelength in the peripheral direction (m)

permeability of vacuum (4n x 10-7 E/m)

relative permeability (non-dimensional)

constant equivalent permeability (non-dimensional)
permeability of the surface of the secondary iron (H/m)
primary relative permeability

secondary relative permeability

wavefront depth (m), Section 3,5.1.1

de , Appendix III
dy

resistivity (Sm)
time constant (s)
Flux (Wb)

power factor angle

angular frequency (rad/s)



SUBSCRIPTS

a - air-gap region

av mean value

c applied field, centre of the stator (Chapter 10)

e eddy current

g field components at the surface of the secondary (y = g)

h quantities obtained by éhe three~-dimensional analysis
(Chapter 9)

m quantities at maximum torque or loss

max maxiﬁum value

n present non-linear theory

o surface value (y = o)

D primary

T reaction field

s secondary

t total

%, Y5 Z peripheral, radial and axial directions

SUPERSCRIPTS

. complex quantities

~ complex conjugate

A peak value of an alternating quantity.

ABBREVIATION
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CHAPTER 1

INTRODUCTION

1.1 BACKCROUND TO THIS THESIS

In recent years, there has been renewed interest in the nature
and calculation of eddy-current losses in solid-iron members of
electrical machines; this has been due partly to the‘increase in
losses due to a substantial increase in the specific. loading of
electrical machinésl and to advances in numerical methods, computer

technology and experimental techniques.

The determination of the electromagnetic fields within machines
is, in most instances, an essential prerequisite to the calculation of
eddy~current losses, and may be achieved either by calculation, using

"analytic or numerical methods, or by experimental investigation, or

by a combination of the two.

Where the design objective is to obtain either the minimum or
the maximum possible loss in the iron, a method of calculation is
required whi;h shows the relationship between the loss and the machine
parameters; this can be achieved by using analytic methods. Analytic
solutions for the electromagnetic fields in solid-iron regions of
simple geometry are readily obtained if the permeability and resistivity
of the iron are assumed constant, but not if these parameters are
functions of space and time, Simplifying assumptions must therefore
be made at the outset if solutions are to be obtained. A considerable

number of approximate solutions have been published, yet few comparative

studies of them have been made,

Numerical methods, although more suitable for the solution of
non-linear differential equations, are cumbersome, and give particular

rather than general solutions, They may, however, provide a standard
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by which approximate analytic solutions may be judged.

In some rccently published solutions of eddy-current losses
in solid iron, a compromise has been sought between analytic and
numerical methods, either by developing detailed equivalent circuits
; ¢ 2,3 ;
which may then be solved by digital computers’ , or by producing

: ; ; 4
normalised loss charts by numerical technlquESf

The quest for more detailed information on field distributions,
either to verify or define the simplifying assumptions made in
calculations has led to innovations in experimental technique and
instrumentation. Although numerous investigations of the flux
distribution in the air-gap regions of machines by means of search‘
coils or semi-conductor devices have been reported, relatively few
méasurEments of the flux distribution within solid iron regions

5,6
or surface eddy currents have been attempted.

To obtain analytic solutions for the finite and complex
geometries of rotating electrical machines, further simplifying

assumptions must be made and idealised mathematical models developed,

An idealised model of a rotating machine, which has a solid-iron
secondary member, an air gap and a laminated-iron primary member, is
shown in Fig. 1.1, overleaf. If currents are assumed to flow in the axial
direction only, the magnetic field in the model is two-dimensional.

This model has recently received much attention since it is applicable
to studies, albeit introductory, of mmf, tooth ripple and negative-

sequence losses in the solid poles of large synchronous machines.

Linear analytic solutions for the field distribution in the
air-gap region and the solid-iron secondary of this model have been
produced in which the primary excitation is represented by a current

sheet, either on the surface, or within the body of the primary member.



solid-iron secondary member

current sheet

ir ga
alr gap (primary excitation)

laminated=iron primary member

FIG. 1.1 An Idealised Model of a Rotating Machine

Published analytic solutions for this model, which consider
the secondary iron to be magnetically non-linear, either contain
expressions or values derived by the linear analysis, or assume that
the air-gap length is small; no solution, it is believed, both
accounts successfully for magnetic non-linearity and gives expressions.
for power loss and flux/pole which include the primary excitation and

air-gap length,

The determination of the loss in solid-iron secondary members of
finite length has been attempted by many authors, either by the intro-
duction of empirical or theoretically derived factors into solutions
for the two-dimensional model (Fig. 1.1), or by the development of
three-dimensional analyses; in all cases, the magnetic permeability

of the secondary iron is assumed constant,

The effects of magnetic non-linearity on the loss in machines of
finite length are not fully understood, Methods of extending two-

dimensional non-linear theories to three-dimensional models have been

suggested, but little theoretical or experimental justification for
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them has been given, A brief review of publications on finite-length

effects is given in Chapter 9,

142 OUTLINE OF THIS THESIS

This thesis may be divided into two distinct, though related,

parts;

(1) the derivation and verification of a non-linear analytic
solution for the field distribution, and loss, in rotating
electrical machines that may be represented by the idecalised

model of Fig. 1.1, and

(ii) a theoretical and experimental study of the combined effects
of magnetic non-linearity and finite length on the loss in

the solid ironm.

It is believed that the analyses given in this thesis are an
advance on theories previously published. Emphasis is placed on
the experimental verification of the analyses; many of the experimental
techniques introduced by Daviess for the measurement of electromagnetic
fields in eddy-current couplings have been further developed for this
investigation, Values obtained by the analytic solution are also

compared with those obtained by numerical methods,

1.2,1 The Non=linear Solution

A preliminary theoretical investigation of the two-dimensional
linear analysis of the multiregion model is made in Chapter 2, Although
this analysis is well=known, certain aspects are extended to provide
a better understanding of the nature of the problem and a basis for the

development of the non-linear theory,

The variation in the value of the magnetic field strength at the
surface of the secondary, the eddy-current reaction mmf, and the

peripheral flux leakage in the air gap, are investigated for a range of



frequencies, ratios of pole-pitch to air-gap length, and permeabilities
of both primary and secondary members, A study of the space-distribution
of the magnetic field quantities in the air-gap region and the secondary

iron leads to a physical interpretation of the field distribution in the

model,

The relationship between the dimensions, frequency and physical
constants of the model for maximum power loss in the secondary iron is
defined; this relationship is also expressed both in terms of radial

flux densities at the surface of the iron and the impedances of the

model,

The non-linear theory for the multiregion model is developed,

in two parts:
(1) Maxwell's equations, embodied in the diffusion equation, are

solved for the solid-iron region, (Chapter 4), and

(i1) the electromagnetic field quantities on the surface of the

‘secondary member are related to the primary excitation, (Chapter 6).

In the non-linear analysis for the solid-iron region the normal

b
B-H curve is represented by the function B = aH , This function,
previously used by Davies in his theoretical treatment of the eddy-
current coupling, is inserted into the solution of the diffusion

equation for the magnetic field at an initial stage, Since the solution

is for fundamental sinusoids only, the loss equation is modified to
account for the loss due to saturation harmonics of flux density and

magnetic field strength. The solution for the loss is expressed as a

function of the surface components of the magnetic field; these
quantities are related to the primary excitation by means of a solution

for the air-gap region of the model,  Equations for the loss and

torque are thus derived as functions of the excitation, frequency, and
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the parameters of the model. Equations are similarly derived for
flux/pole and surface current density. The solutions apply to a

machine with uniform air gap of any length,

Using the definition of maximum power loss in the secondary
iron, obtained in terms of the impedances of the model (Chapter 2),
expressions for peak torque and the frequency at peak torque are
derived; generalised torque=~frequency characteristics are given

in terms of these quantities.

The theoretical results for the two-dimensional multiregion
model are compared with measurements obtained from a specially
designed experimental machine, This machine, described in detail
in Chapter 7, consists of a polyphase‘rotor surrounded by a diametrically
split solid-iron stator, which is fitted with copper end-rings* to
reduce end-region effects and to enable the eddy~currents to pass

across the split,

The amplitude of the circumferential component of flux density
throughout the depth of the iron was investigated using search coils
placed in grooves machined in one of the split surfaces, Measurements
of torque, flux/pole surface current density and power flow across
the air gap were also made over a frequency range of 2-100 Hz and
for pfimary excitations up to 20000 A/m, The radial flux density
in the air gap and current density at the surface of the secondary,
were measured along the axial length of the machine to determine the

effectiveness of the. copper end-rings.

The non~linear theory for the solid iron region was also verified

by two additional investigations.

Firstly, measurements of loss and surface current density were

~

made on a round bar through which an alternating current of known value

* TFor simplicity, this stator will be referred to throughout the
thesis as 'the end-ring stator’,
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was passed, (It is shown that the loss in this bar differs from that
in a semi~infinite slab by less than 4% for surface magnetic field
strengths up to 15000 A/m). The values of current density, being
related to a known value of surface magnetic field strength, provided

a cross-check with measured values on the experimental machine. The
measured values of loss are compared with those predicted by the present

non-linear theory and other analytic solutions.

Secondly, the diffusion equation was solved by numerical techniques
to obtain the loss and the harmonic content of both the flux density
and magnetic field strength waveforms at various depths into the iron.
This was undertaken to evaluate the contribution of the saturation
harmonics to the loss, and to provide'flux density waveforms which

could be compared with those measured within the depth of the iron,

1,2,2 Combined Effects of Non=-linearity and Finite Length

To obtain an anlytical solution for machines with a solid-iron
secondary member of finite length, a mathematical model is used in
which an infinite number of identical machines are arranged end to
end with alternate polarity. The permeability of the iron is
assumed constant. Solutions for the field distribution throughout
the model, the flux/pole and the loss, are developed in Chapter 9;
they ;re applicable to machines whose active length is less than,
or equal to, their overall length, A.finite length factor, RL’
is defined which relates the loss or torque, for the model of

finite length, to that for the linear two-dimensional model,

The loss in a solid-iron secondary which is both magnetically
non=-linear and of finite length is obtained by using the non-linear
two-dimensional solution (Chapter 6) and RL; this is made possible
by equating the lincar and non=linear two dimensional solutions, thereby

deriving an equivalent constant permeability for the iron with which
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R’ may be calculated. In this method of loss calculation, it is
assumed that the equivalent constant permeability applies at all
points on the surface of the stator; the validity of this assumption

is discussed in Chapters 9 and 10,

An experimental investigation was carried out on the experimentai
machine for a continuous stator without copper end-rings*. Measurements,
similar to those on the copper end-ring stator, were made of surface
current density and radial flux density, with particular regard to

their variation over the axial length of the machine, The torque

and flux/pole were also measured.

The finite length factor was obtained experimentally by compgring
measured torques for the end-ring and the continuous stator, at the
same frequency and excitation, Considerable care was taken to
ensure that the parameters of both stators were the same, The
measured values of torque and finite length factor agree well with
calculated values, and the variation of the finite length factor,

flux/pole and surface current density with frequency and excitation

is clearly demonstrated,

* For simplicity, this stator will be referred to throughout the
thesis as 'the continuous stator',



CHAPTER 2

THE TWO-DIMENSIONAL LINEAR ANALYSIS

2.1 INTRODUCTION

The two-dimensional linear analysis for the idealised model of
a rotating machine (Fig. 1,1) is discussed in this chapter, The
permeabilities of both the primary and secondary iron are finite and
the primary excitation is considered to be equivalent to an infinitely

thin current sheet at the surface of the primary.

Equations for the field distribution in the solid iron secondary
and the air-gap region are given, and the variation in the magnitude
of the field quantities with the value of permeability of the primary

iron is discussed,

The reaction field of the eddy-currents at the surface of the
secondary is discussed, and relationships between its radial and
peripheral components and those of the applied and resultant fields

are derived.

The depth of penetration for maximum power transfer to the
secoﬁdary is defined, and found to occur when the modulus of the input
impedance to the secondary irom is equal to the modulus of the impedance

of the eddy-current field at the surface of the secondary.

Equations for the mmfs acting on the air-gap region are obtained,
and the conditions governing the magnitude of the peripheral flux in

the airgap are investigated,
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252 THE MATHEMATICAL MODEL,

The model chosen for analysis, and its co-ordinate system are

shown in Fig., 2.1,

ps] finite,

solid-iron secondary member P constant
Yy
g air gap current sheet, K,
/. (primary excitation)
X
) o . finite,
z laminated-iron primary member p, constant

e—*no

FIG. 2,1

The cylindrical geometry of the rotating machine has been
developed so that the air-gap region is bounded by flat surfaces;

y is measured in-the radial direction from the surface of

the primary member,

x 1s measured in the peripheral direction, and

z is measured along the axis of the machine.

The development of a rectilinear model is desirable as analytic
solutions for the field distribution will therefore contain hyperbolic
rather than Bessel functions and is permissible where the curvature
of the cylindrical machine has little effect on the field distribution,
Wood and Concordiag have compared the results of analyses for a
rectilinear model and two and four-pole cylindrical models of the same
rotor diameter, These solutions are presented in equivalent impedance
form and,although obtained for a rotor iron permeability of IOO’are
applicable to any value of permeability provided the pole pitch_ >>
depth of penetration ( §) (see Section 2,3). It may be concluded
from their study that there is negligible error in assuming a
rectilincar model if the ratio of the fundamental pole pitch to depth
of penetration is greater than 15, and the ratio of fundamental pole

pitch to air-gap length is greater than 12, The dimensions of most
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machines, including turbogenerators, comply with these criteria. The
complexity of the solution for the cylindrical model prevents more
detailed comparisons, and the assumption of a rectilinear model may
best be justified by correlating theoretical and experimental results,

particularly if saturation of the iron is to be considered,

2.2 The Primary Member,

The primary iron is assumed to be composed of infinitely thin,
insulated, laminations so that its resistivity in the axial direction
is infinite, The primary excitation is represented by an infinitely
thin current sheet in which the current varies sinusoidally in both
space and time, It may be described by the expression:

A
K =K cos (wt - gx)

z
Re (Ke-jqx ejmt) 2.1

where Kz is the line density of current in amperes per metre, w is

the angular frequency in radians per second, and 2x/q is the wavelength
of the spatial current variation in the x direction. Equation 2,1
represents a sinusoidally-distributed wave travelling in the + x

direction at a uniform velocity, v = w/q m/s.

Only the axial (z) component of current is assumed to flow within
the boundaries of the model., Reference is made to a current sheet
rather than a primary mmf since it provides a simple boundary condition
for solutions of the magnetic-field distribution; mmfs may be obtained
by integrating the solutions between required limits, Saliency,slotting
or other discontinuities are not included in the model, the surfaces of
both primary and secondary being flat, smooth, and parallel to the

z axis,

A more realistic representation of finite conductors in an
axially-slotted structure may be obtained by placing the current sheet

at a depth d 1into the primary iron rather than on its surface?
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While this clearly affects the leakage reactance of the current sheet,
it has little effect on the field in the air gap and solid-iron

regions of the model, (See Section 2.3).

202,52 The Secondary Member,

The secondary member is assumed to be composed of an isotropic,
homogeneous ferromagnetic material whose electrical resistivity and
magnetic permeability aré constant,

Only currents in the axial (z) direction are considered to flow
in the secondary member, The magnetic field throughout the model
will therefo;e be two-dimensional having components iﬁ the x and y
directions, In addition, it is assumed that crosspole, or peripheral
currents, and radial currents exist only at z = + ® so that they |
have negligible effect on the magnetic-field distribution in the
model.

The depth of the secondary member in the radial direction 1is
assumed to be very great compared to the depth of penetration of the
electromagnetic field, Finite length and finite depth effects are
considered in Chapters 9 'and 10,

2.3 SOLUTION FOR THE ELECTROMAGNETIC-FIELD COMPONENTS.

The specific assumptions made in Section 2,2 with regard to the
configuration of Fig. 2,1 are:
(i) The permeabilities of both the primary (poup) and

secondary members (pous) are constant in time and space.

(1i) The restivity of the primary member is infinite in the
axial direction, while that of the secondarﬁ member 1is

finite and constant, ( p)

(iii) The surfaces of the primary and secondary members are

smooth, flat, and parallel to the z axis.
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(iv) Only the axial component of current exists in the
current sheet and secondary member,
Both primary and secondary members are assumed stationary so
that the field moves at the same velocity relative to either member.
The frequency, f, at which variat-ions occur in all regions of the

model is therefore,

Maxwell's equations for electromagnetic fields in linear

conducting media are:

curlH =J 2.2
_- 38
curl E = ot 2.3
together with
div B =0 2.4
div J =0 2.9
B =pd 2.6
3 = 1,8 2.7
P
From these ecquations and the assumptions (i) and (ii) in Section 2,2,,
v # H =0 Primary iron
9 and
v E =0 Air gap 2.8
2 [TRY 9 H
v = =
aud i 2.2, t Secondary
P 9 iron 2.9
vZg =HHg 3E
p "ot

As the current sheet varies sinuoidally in space and time, and
the permeabilities and resistivities in all regions are constant, all

field quantities will vary sinusoidally and may be described by,

H =Re}'lejmt 2.10
E =Rek e 2.11

where H and E are complex field vectors.

Equations 2,8 and 2.9 may thus be written :
v £ i =0 Primary iron 2,12
2 A and
VTE =0 Air gap
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vzﬁ - a(l+j)H=0 Secondary
y . i 2,13
v2% - a(l+ ) E=0 wEOR
where
%
TR
a = ——————— 2.14
20 |

The general solution of equations 2,12 and 2.13 has the form

5 = (ae i 4 g el 2,15
u u u

where k = (q2 +'2j az) for the secondary iron, 2,16
k = q for the primary iron and air gap, 2,17

S refers to any one of the field components ﬁx’ ﬁy or éz

and the suffix u refers to any one of the three regions, so that

u = s for the secondary iron
u = a for the air gap
and u = p for the primary iron.

The boundary conditions to be satisfied by the field

components are:

b ap omlgx
(i) Hxa pr K.e
at the primary current sheet (y = o)
(ii) ﬁx is continuous at y = g,
(iii) B is continuous at y=oandy =g
v :

(iv) B -0 asy >+
The coefficients Au and Gu for each of the three regions may

be found from the six boundary conditions,

The most important results are the field components in the

air gap and solid-iron secondary., They are:

H = % [e-qy - e~98 9(y-8) ]E-qu 2,18
xa s
P
H = ] x [e-qy +D o798 eq(y-g) e-jqx 2,19
ya Cp s
H =-2_ﬁ [ k e -k(y - &) e 98 ] o Jax 2,20
Xxs Cp
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B o= i 2K q e-k (y - g)e-qg }e-jqx 2.21
ys J Cp qps + k
j = ok 4K “2 e _k(y = 8) ,=ag T ~jqx .99
zs JE; gu + k < & '
. g _
where D = [ 3 & 2,22
s [qps + k
d z =B =4 -2
an C ptl |y . 2=l,p ., o-%as 2.24
P pp pp +1 s ‘

If the current sheet had been placed at a depth d into the
primary iron rather than on its surface, it may be shown that the term

e—qd would appear in the numerator of equations 2,18 to 2.22,

Equations 2.18 to 2.22 describe the distribution of the
sinusoidal components of the electromagnetic field in the radial and
peripheral directions, To arrange them into a more convenient form
for analysis, let

k= B+ 3jvY 2,25

where, from equation 2,16

lffz"i(qz‘ + (2 az)z)% £g° : 2.26

g =
= l/ﬁ[(qa + (2 l:Iz):z)ig - % 2.27
Since B, Y, aand q have dimensions of (m_l), equations 2,26 and
2.27 may be expressed in the following non-dimensional form:
g a = [(1 + q4/4a4);§ + q2/2a 2 ];5 2,28
Ya o= [(1 + et o %2’ ]’5 2,29
Equations 2.28 and 2.29 show that
B+y > a
and k = a(1+ 1), 1f (d%/2a %) <<1 2,30

i.e. if the depth of penetration ( § = 1! a) is much less than the pole
pitch (x/q). B/ a and y/a are plotted against (q2/2a2), in figure

2.2, which shows that for a 5% error in the equality, B = Y=a

]

a2l 24 ) = 0. 10,
.

Since g =Cp6ps » equation 2,30 may not be valid for small
2p '
values of frequency and peameability,
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2,4 EFFECT OF THE PRIMARY IRON

In equations 2,15 to 2.19 the permeability of the primary iron
is contained only in the coefficient ép (Equation 2,24) which

therefore represents the contribution of the primary iron,

The second term within the square brackets of Equation 2,24
represents a current sheet positioned at a depth of 2g into the
primary iron, which is the image of the combined effects of the

secondary iron and eddy-current field,

o= 1 1o
The term [;E_:H_T']is recognized as the image factor.
P

Limiting values for 6p occur when pp = 1 and pp > .,

When p =1,

. By = LY
¢ =¢ . =2, |[B—s1 =0, 2.31
P pl pp + 1
signifying that the image current-sheet disappears,
When p >=

P Ty =1
€ =¢  =(L-De298 ) l—P——-—-— > 1, 2,32
P pe s iy + 1

signifying complete reflection.

Due to the number of variables contained in equation 2,24,
ép is difficult to present in graphical form for values of p
~between 1.0 and <, Simplification of Equation 2.24 is possible
if B= Y= a, i,e, if the pole pitch >> depth of penetration,

when the expression for bs may be written in the non-dimensional

form,
b, = n=-Q+ 3 2.33
n+ (1 + j)
_ By _ [ 2x. By 2.34
Where B A e S S

Thus only three non-~dimensional quantities exist in the expression
for C_ -

P

the primary relative permeability; pp 5

the coefficient n,
the ratio of air-gap length to pole pitch; (qg).
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Fig. 2.3 shows the variation of the ratio ]Cr_sml with
C
primary permecability, B for a range of values ofP n and

(qg). The difference between [Cp and[épuJ is significant only
for permeabilities less than 500, and is greatest where both the
air gap is small (qg small) and the eddy-current field is weak
(n large). Since “p for practical machines is normally greater
than 500, it will be assumed in all following discussions and
derivations that B, + ® _  Where pp { 500 the ampl?tudES of the
field quantities must be multiplied by the appropriate value of
I‘;_Eﬂ.
®p | 2,13

: 1
Most previous authors’ '’

set pp-+ * at the beginning of
their analyses without qualification. Mukherji;4 included pp

in his analysis but did not isclate or evaluate its effect on the
field quantities, Lawrensonq calculated the value of the radial
flux density (ﬁy) at the surface of the secondary for My = 1000 and
found there was little change inlﬁ; for values of Hy > 500, He

did not obtain a gecneral expression for the effect of the primary

iron on the field distribution.

2,5 THE FIELD DISTRIBUTION IN THE SECONDARY MEMBER.

The electromagnetic-field components in the secondary member
are described by Equations 2,20, 2,21 and 2,22, Substituting for
k from Equation 2.30, (i.e, assuming B = y = a ) and for C
from Equation 2,32, (i.e. assuming pp'* » ), these equations may

be written,

, 5 -a(l+3j) (y-g), - jqx

i o= -1 e € 2.35

XS M

. ¢ ~a (1 + §)y - 8)  -Jax.

Bo= ;X4 . 2.36

ys aM o

0 _— R S B (1 + j)()"g)e"‘jqx 5. a3

zs M .
where M = coshqg n .tan h qg + 1 + j ] 2,38

The attenuation and phase shift of the sinusoids with depth, y,
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are described by the terms e and e-jay respectively, These
terms also describe the penetration of a plane electromagnetic wave
consisting only of the field components Hx and Jz. The assumption
that 8 = Y =& thus implies that the radial component of the
magnetic field has negligible effect on the penetration of flux
and current density into the iron, This conclusion has great

importance in considerations of power loss in the secondary,

particularly if the iron is magnetically non-linear,

2.5.1 The Field Components on the Surface of the Secondary Member,

The amplitudes of the field components on the surface of the
secondary (y = g) and their phase angles with respect to the primary

current sheet may be obtained from Equations 2,35 to 2,38 as,

H =-2R /i e~ JI¥ 2,39
Xg o Xg
M|
RS SN 140
y8 o M ye
§oo= 2aR /i enlx 2,41
% Ty Ve
where |M| = coshgg [(qtanhqg + 1)2 +1 ]% 242
. - - - =1 |n tanh
ﬁ{xg (90 = (6 +8) ) = tan [———ﬂg——ntaﬂhqg +2] 2.43 .
. ~ _ o
and “yg = (90 ~ 8) tan {‘qtanhqg +1 ] 2.44

The phase angles 8 and ¢ are shown in Fig, 2.4 below

measured from the axis of the applied mmf (or primary pole axis),

secondary

air gap

\\\\g primary

Fig. 2.4
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At: x = d Peak primary current density
y =0
x = a Peak primary mmf
x = ¢ Peak ﬁyg and jz
) y=8
x = b Peak H
xg
From Equations 2.39 and 2,40,
e . _{Ta 9. 2,45
H q
yg
where tan ¢ = 1, so § = 45°, 2.46

and thus 0 < @xg “450

o o
45 < /H <90
Note also that]ﬂi > [ﬁl since /2 a>q,
g yg .

The variations of the anglesZExg and ﬁyg with the none

dimensional parameters n and (qg) are given in Fig, 2.5, showing the

separate effects of change in the strength of the eddy-current field

( qlfrﬂ and machine dimensions (qg). Change in the air=-gap length
has little effect on the phase angles if the eddy-current field is

strong ( n small) but considerable effect if it is weak ( n large),

If B# vy # a, but pﬁ* ® . then from Equations 2,21, 2,22,

2,23 and 2,24,

tan § = i 2,47
a
: & 3 Jz
and from Fig. 2.5, 6 > 45 , becoming 90 when Yy }'* 0, so that
o

Hy occurs at x = a and Hx at x = o in Fig. 2,4 (on previous page),

2,5,2 Resultant Magnetic Field Strength in the Secondary

The resultant H is obtained by combining ﬁx and ﬁy,given by
Equations 2,35 and 2.36 respectively,and may be described by lines
of constant ]ﬁj as shown in Fig, 2.6 for the conditionyZa > q.
The line cc’ is the spatial locus of the current-density maxima
throughout the deﬁth of the iron, cc’ and all lines parallel to it
are therefore isophasals, The variation of H at any point may be

obtained by considering this field pattern to travel in the x
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: i . ; W
direction with a velocity of v = — .,

L

2.6 POWER AND TORQUE.

The mean power flow per unit surface area is given by the complex
Poynting vector, P,
where P = % Re(ExH )
( ~denotes complex conjugate),
The mean power flow into the solid iron secondary, i.e. in the radial

or y direction, at any depth (y - g) is thus

giving, from Equations 2,35 and 2,37
2

p = Ka.p o~2a (y - g) 16(V 7 a> 2.48
y 2 { 3
M p—l-uu
Note that the index of the exponential term e-Z.a(y - g)’ is twice

as great as that for the magnetic or electric field, so that in fact
only 14% of the total power into the iron penetrates beyond the depth

of penetration § .

The power into the iron is dissipated as heat so that the total
loss in the iron per unit area is given by,

P

E ]y n g ™ ERe (B )

EZ

. ap 2.49
32
14

]

Since both the primary and secondary members are considered to be
stationary, the total loss must equal the total power transferred across
the air gap so that, in rotating machine terms, P = mmeT, where T
is the torque per unit area, and 0 is the mechanical angular

velocity of the rotating electromagnetic fields relative to primary

_w
or secondary meTger (o, =5 ).
Thus T = X_%RB 2.50
IMf.w

2,6.1 Maximum Loss and Torque

Substitution of Equation 2.42 into Equation 2,50 gives
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~2
T = K i 1

2cosh2qg quzs tanl12 qg + 2o + qustanhqg 2551

a

The term within the square bracket shows that
vhen a»> 0, T >0,
and when a»« , T=>0,
so that between these limits there must be a maximum torque,
Differentiating Equation 2,51 with respect to @ and equating the

resultant expression to zero, the maximum torque is found to occur
qp

“hEE o - s tanhqg 2.+528
n 2
and § = é- 2,52b
m
m

where the suffix m denotes‘the value of any quantity at
maximum torque, § “ being the required depth of penetration for
maximum power transfer to the secondary, The maximum torque
per unit surface area,Tm,is found by substituting Equation 2,52a
into Equation 2,51:

T = P“oﬁz 1

i ' 2,53
q sinhqg coshqg 7 J2 (24 )

and the maximum loss in the secondary at the angular frequency 'w'

is P =T 2,54
m m

P
Note that Tm and PIn are independent of the secondary parameters

Mg and p , being dependent only on the parameters and dimensions
of the air-gap region. The equation for torque (Equation 2.53)
can be considerably simplified by expressing it in terms of the non-

dimensional quantities T/T and @ / ap so that from Equations 2,51,
m

2.52 and 2.53, the normalised torque,or normalised loss at constant

frequency is,

L ok = 2_+ 42 2.55
T P a
m m a + mo 4 f2

. T
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a
Writing Q = < s 2,56
m

Equation 2,55 becomes

£ o P 2 + 2 9 .87
OB gug 4T

Q may be defined in terms of the machine parameters by substituting

Equations 2.14 and 2.52a in 2.56, :
Boow\%E
Q = ! 4 ( > ) 2.58
q tanhqg P g

Equation 2.57 was obtained by Davies? in developing a general

theory for eddy=-current couplings, although his expression for Q differs
from Equation 2,58 since it contains terms describing the magnetic

non-linearity of the secondary iron,

Since Q = 1 for maximum torque (or loss) the angular frequency at

maximum torque, ® s may be obtained from Equation 2,58 as
2
q K P
w = —— ta‘ﬂhzqg 2.59

il
I.tO

The torque, T, may be described in terms of Q by substituting

Equation 2,53 into 2.57, so that,

P Ho K2 .
T = - A 2,60

2J§Q coshqg sinhqg:

where A = 2 2,61

Q+ Q7+ /7

2.7 THE FIELD IN THE AIR-GAP REGION

2.7.1 General .

The analysis of machines whose secondary members contain discrete
conductors is usually concerned only with the air-gap region, where the
fields may be superposed, Two initial assumptions are normally made;
firstly, that the permeability of the primary and secondary are much

greater than unity, and secondly, that there is negligible peripheral
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[lux leakage in the air gap. It is thus possible to counsider the
interaction of the mmf's due to the primary and secondary currents
in the air-gap region only., A primary aim of this section is to
investigate the possibility of such an analysis for the configuration

of Elgs 2.1,

2.2 Eddy-Current Reaction

The magnetic field quantities defined in the ﬁnalysis so far
are resultant quantities, i,e. they represent the combined effects
of the applied field of the primary current sheet and the reaction
field of the eddy-currents, Thus at any point in the model of
Fig. 2.1,

H=H +H | 2,62
c r
where, H is the resultant field.

ﬁc is the applied field of the current sheet

ﬁr is the reaction field of the eddy-currents,

In magnetically linear media this equation may be applied

to the peripheral (x) or radial (y) field components.

The peripheral and radial components of the magnetic field
in the air-gap region, are described by Equations 2,18 and 2,19
respectively, They contain two terms, the first describes the
field of the primary excitation if no secondary iron were present,
and the second, containing the coefficient ﬁs’ defines the
contribution of the eddy currents plus the secondary iron, The
contribution of the second term to the field in the air gap is
equivalent to replacing the secondary by a current sheet of value
bs positioned a distance g into the secondary irom,  Stoll and
Hammondls examined the field of this equivalent current sheet for

a model without primary iron (pp =1, and 6P = 2), but did not

separate the contributions of secondary iron and eddy currents,
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Only Rﬁdenberg!é to the author's knowledge, has solved
Maxwells equations for the secondary iron making the initial
assumption that the resultant field is equal to the applied plus
the reaction fields, These fields may be derived more simply
however, from the expressions fﬁr the resultant field and

Equation 2,62.

2.7.2,1 The Peripheral Field Componentg

The resultant peripheral magnetic field on the surface

of the secondary(y = g) is obtained from Equation 2.35 as,

H. = a R (1 + 3) e_jqx .[ifffa >q 2.63
Xg coshqg  ( ntanhqg + 1 + j)|and By e *
When p*®, « 'f 0, and from Equation 2.22, jzs + 0
Thus from Equation 2.16
k =+ q 1if there is no eddy current field, 2.64

Substituting Equation 2,64 into 2,18, 2,23 and 2,24, the applied field

is obtained,

P k. emdax
xgc coshqg (ps.taﬂhqg + 1)

2,65

The reaction field on the surface, ﬁxgr’ may be obtained by
substitution of Equations 2,63 and 2,65 in Equation 2,62, The
resultant expression is complicated and, for simplicity, only three
specific cases are noted;

(i) If, in Equation 2.65, Py - tanhqg >> 1

and in Equation 2,63, n.tanhqg <<1, i.e, the eddy-
current-field is strong, then,

>> H , and so H___+ H
xg Xxgc xgr Xg

(i1) If in Equation 2,65, B, tanhqg <x 1
and in Equation 2,63, n tanhqg <<1, i,e. the eddy=
current field is strong,then,

f{ -+ e - e
xge ng’ and so ngr 0
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This condition represents complete reflection of the eddy-
current field in the primary iron, It would occur, for
example, in a short air-gap machine having a solid copper
secondary, (ps = 1)

(iii)If in Equation 2,65 Ky tanhqg = 1 ,
and in Equation 2.63, n tanhqg<< 1,

then H + | > H /2
Xgr xge xg

This condition may exist in a large air-gap machine having a

solid copper secondary. (ps = 1),

Case (i) clearly applies to machines having solid iron secondaries,
where Mg tanhqg >>1. (It should be noted that Hg in Equation 2.65
is the value of Fhe secondary=-iron pérmeability in the absence of
eddy currents,which,in all probability,will be much greater than thé

value of He in the equation for the resultant field (Equation 2.63))

2,7.2,2 The Radial Field Components

The resultant radial flux density at the surface of the secondary

(y = g) is given by Equations 2.36, 2,38 and 2.6 as

s s -jqk
g = In . tanhqg.pb.K ;e

ye

if ﬁa) q 2.66
sinhqg . ( n tanhqg + 1 + j)land T
P

(The radial flux density is considered here as it is continuous
across the air/iron boundary),
The flux density at the surface of secondary, ﬁygc’ due to the

applied field is found by substituting Equation 2,64 in Equation

2:21, .
. . R.e-jqx.pous
Bygc "~ cosh qg ( By tanh qg + 1)
: 3 uo.l’(‘e'jqx -
and Bygc = = Tahas - 5 Hg tan h qg >> 1 . 2.67

Thus, the flux_density at the surface of the secondary due to

the eddy currents,is from Equations 2.62, 2.6, 2,66, and 2,67,
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=4, €T -3 §) pof(.e—qu

sinhqg(ﬂ tanhqg + 1 + j)
shows that

B =
Y8
Pp*” andf?a § q
- 2.69

Comparison of Equation 2.68 with Equation 2.63 for H
m :
2 ng LE
Mg tanhqg >>1

Bygr - tanhqg
An equation of similar form may be obtained for the flux density at
0) in the absence of

q (Equation 2.64),

1]

the surface of the primary current sheet (y

eddy currents, From Equation 2,19 when k
p, R -+
0 if] P
By tanhqg >> 1 2.70

Byoc - J‘tanhqg
Thus the total effect of the eddy currents may be represented

by an equivalent current sheet on the surface of the secondary whose

line current density is equal to ﬁxg'

From Equations 2,66 and 2.68
2.7k
2.72

_ D tanhqg
(1 +3)

w*;m~
|

yer
1 (Equations 2.58 and 2.34)

B! o ntanhqg -
Q
273

and
1B I

yg
so that for peak torque or maximum power transfer, i.,e. when Q =1

|BI  =|B|
yg ygr
Also from Equations 2.67 and 2,63
2.74

|1 . )
\HJg tanhqg
is the radial field strength on the air-gap side of the

wherée H

ygc
surface of the secondary (y = g).
The vector diagram representing the relationship

may be constructed from Equations 2.69, 2.72,

B, =B __+8B
yg yer ygc
2.63, 2.67 and is shown in Fig. 2.7
Impedance Relationships

2.1+2.3
The input impedance to the secondary iron (at y = g) is
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defined as,

};_: 3
z ] =z = ?l—z—’-’z 2.75

or 2 =P2pa /45 2.76
g

The radial flux density at the surface of the secondary
due to the eddy currents, ﬁygr’ will induce an emf in the surface

of the secondary equal to

. He
zgr ] qtanhqg °

Xg 2.77

If pg tanhqg >l and Ntanhqg<«1 then ﬁxgrz ﬁxg,and the: ,

impedance of the eddy-current field at the surface of the secondary

is . E oW
7 = 28T o j— 2.18
ygr H qtanhqg
xg
The ratio of the moduli of Z _ and 2 is
yg yer
2]
20
4 ‘—"-J-_I—a—q-— tanhqg 2.79
|2 TR
ygr 0
substituting @ _ 2029 . (Equation 2.14))into Equation 2.78,
Hots
12|
SN . NtEnhgg o 1 2.80
1% e a ¢
Thus,maximum power is transferred when VA =zl i.e.
yg ygr
when the impedances are 'matched' - a familiar requirement in circuit

theory. ‘ZJgr is seen to be purely reactive (Equation 2.77), being

a function only of the air-gap permeance,since both By >>1 and pJ” 1,
and the impedance of the primary current sheet is equal to iygr if
pp>> 1 and ps>> 1,which may be seen by comparing Equations 2.69 and
2,70, Both impedances are therefore similarly related to the rate

at which energy is stored in the air-gap region. Maximum power is

transferred across the air gap when the rate of change of energy
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stored in the air gap is equal to the rate energy is transferred to
the secondary iron, a condition implied by Equation 2,80, Since it
is assumed that § = I , 1if the primary current circuit was
Xg Xgr
opened, the decay of the eddy-current field would be governed by
the same equality, i.e. that |Z| = [il , and the time constant
¥8 ygr

of the decay is therefore given by,

.3 2,81
s R
s
where, from Equation 2,78, L, = B | 2,82
q tanhqg
and from Equations 2,76 and 2,56, R, = pa 2.83
since Rs is the resistance of the iron when Q = 1,
Thus from Equations 2.82 and 2.83;
| p
T = - 2.84

° qzus R tanhzqg

2,7.3 Peripheral Flux Leakage.

In the absence of eddy currents, peripheral flux leakage in
the air gap occurs due to the sinusoidal distribution of the applied
mmf around the circumference of the machine and thuslﬁ;g < ‘é;o'
Eddy-current reaction affects the value of the peripheral flux
leakage and causes the radial flux density to be shifted from the
axis of the applied mmf by the spatial angle ¢ . In addition,due
to the exponential decay of both the eddy-current reaction (from the
surface of the secondary) and applied fields (from the surface of the
primary) across the air gap, the angle @ varies with radial distance
from the surface of the primary. The resultant curvature of constant

IB| lines in the air gap is shown in Fig. 2.6.

The effect of the eddy-current reaction on the magnetic field
in the air gap is shown in Fig., 2.8 and 2,9. In Fig. 2.8 the ratio

of the flux density at the surface of the secondary lﬁ;g to that at
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the surface of the primarle;O is plotted againsty for several
values of (qg). The curves were computed from Equation 2,19,
and clearly show that the peripheral flux leakage increases with
eddy-current reaction ( g l/n)’ particularly for large air
gaps. Where p > L0 the eddy-current field has negligible
effect on the peripheral flux leakage. Fig, 2.9 gives
Z§y0/ Zéyg against 1 for various values of (qg). At small
values of (qg) there is little difference betwecen the

angles,while at large values of (qg) there is considerable

difference if the eddy-current reaction is large, ( N small).

It should be remembered that the calculated value of '
peripheral flux-leakage is less for the equivalent rectilinear
model than for the cylindrical model having a solid iron rotor,.
Thus the calculated loss may be correspondingly greater in the
rectilinear model and significantly so if both the air gap and

armature reaction are large,

2,7.4 The MMF Diagram -

Consider the path aa' dd in Figure 2,6 which encloses
the primary current sheet but no secondary eddy currents. Applying

Amperes circuital law round this path,

[R,.ax = irg - fﬁxg.dx 2,85

where Fg is the resultant mmf acting on the air gap.
Let fc » f ﬁzéx, which is the mmf of the current sheet, 2,86
and ?r = f ﬁxgdx, which is the mmf of the eddv current 2.87
field , if Mg tanhqg *?1 and Ntanhqg<<1
(Section 2,7.2.1),
so that Equation 2.85 becomes,

F =F =-F : 2.88

Solving the integrals in Equations 2,86 and 2,87,
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H

Fo= j—= 2.89

E q

5 = w B

Fs = 43 2.90
so that from Equations 2,89, 2.90, Equation 2,88 may be written

Fo= 3/ [12 + H ] 2,91

g q X8

The modulus of %g is obtained in terms of Fr from Equations 2.35,
2.91 and 2.89 (after some manipulation) as,

IF)-=IF)

(1 tanhqg coshqg + (coshqg - 1)) 2 + (coshqg - 1)2 e 2.92
2

Thus, if the ratio of air-gap length to pole pitch is very
small, i.e., qg«1l, then, coshqg--1,
“and tanhqg-—-qg
|F|
so that =& = &  4fqg> 1, 2.93

IFll 2

and from Equation 2,72,

|Fl |8 ;

£ L& = L, if qg D 1. 2.94
|F! IB | Q

L Y&r

Also, from Equations 2,69 and 2.89, and 2.67 and 2.90,

B, a8 P 1
B = der X
ygL qg << 1
g £ { . 2.95
B = IJ.‘.'.)'I;‘C ¢
YBS g J2x > q

Thus, the vector diagram relating the flux densities at the
surface of the secondary, given in Fig. 2,7, may be converted to an

mmf diagram from Equation 2.95 and Equation 2.94 if qg << 1.

An expression for |FL in terms of ]?é may be obtained from

* Equation 2,39 using Equations 2,88 and 2,87 as,
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{2IF )

- .
coshqg [(ﬂ tanhqg + l)2 - 1] *

IF) =

which may be expressed in terms of Q from Equation 2.72 as

Ir-'g:.cz

|FL = 2,96
Y

g
[QZ + /2 +1 ]ﬁ coshqg
An approximate form of Equation 2.96 is obtained if it is assumed

that qg <<1.
o i

The non-dimensional quantity ﬁFT’ derived from Equation 2,96,
is shown plotted against N for a ran;e of (qg) values in Fig. 2.10. -
The error in the calculati&nof]%}ﬂFé, due to the use of the approximate
form of Equation 2.96 (qg <<1), is shown by comparison of the full,
and dotted curves plotted for qg = 1.0 and qg = 0.33. When the
eddy-current field is weak ( N large) there is little error for
all practical values of (qg). When the eddy-current field is strong,
( n small), there is considerable error for large values of (qg),

due to the greater effect of the coshqg terms in Equation 2.96

when n is small (or, the (coshqg - 1) terms in Equation 2.92),

The power loss or torque, may also be expressed in terms of
IFL. By substituting Equations 2.88, 2.96 and 2,42 into Equation

2.50,the torque is obtained as
.2
Fl'0 0. q?

T = I_.___-ﬁ-_ﬂ_-.P_ 2,97
2w '
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2.8 CONCLUSIONS

The linear two-dimensional solution of the electro-magnetic
field in the configuration of Fig. 2.1 has been discussed in this

chapter.

The permeability of the primary iron is contained in a single,
complex term ép' It has been shown (Section 2.4), that the values

of the field quantities do not change for 500 < pp‘ e

When /Ehb q, B=Y=a , and the field equations can be

JH o
simplified; this condition implies that —=>>—L  and|H|> |Hl,
ay 9x X ¥

so that the field distribution within the iron approximates to that

of a plane electro-magnetic wave,

In Sections 2.5 to 2,7 inclusive, it was assumed that both p§+m

and Y205 q.

An equation for the torque per unit area was obtained (Section
2,6), and differentiated to define the maximum torque per unit area,
T and the depth of penetration,étn(= 1/am), at which it occurs.
Both torque per unit area and a are normalisea to a base of Tm
and (lm respectively; the normalised value of o is given by Q,

so that maximum torque occurs when Q = 1,

Q is found to be equal to the ratio of the moduli of the input
impedance of the secondary iron, \i;g , and the impedance of the eddy-
current field at the surface of the secondary 1z§gr , provided
Mg tanhqg >°1 and ntanhqg <<l. Since éygr is a function of
frequency and the air-gap parameters only, this definition of Q may

be used when the secondary iron is considered magnefically non-linear.

When ntanhqg <<l or Q>> 1 (Equation 2.80), i.e. the eddy-current
field is strong,and pstanhqg>> 1, the peripheral components of the

resultant magnetic-field strength, ﬁxg’ and the magnetic-field strength
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due to the eddy-currents, ﬁxgr’ are approximately equal; if these

conditions cannot be stated, ﬁxgr# ﬁx“’ the difference between them
o

being due to the applied field of the primary current sheet, éxgc

(Equation 2.62).
In discussing the mmfs acting on the air-gap, it has been shown

(Section 2,7.4) that the ratio of]?% to\?é is equal to Q if qg<<1,

In Equation 2,97, the torque has been expressed in terms of{ﬁ%.
If]?g is calculated from the approximate form of Equation 2.96, which
is obtained by assuming qg<<1, the largest error in the calculations

will occur when the eddy-current effect is strong.



- 34 =

CHAPTER 3

A LITERATURE SURVEY :

NON-LINEAR THEORIES AND PROPERTIES OF FERROMACNETIC MATERIALS

3.1 INTRODUCTION

The magnetic and electric characteristics of commercially
available ferromagnetic materials, excluding those used for
permanent magnets, are defined and discussed in the first two
sections of this chapter, Several observations are also made
which have an important bearing on experimental investigations '
of electromagnetic fields in solid ironm. The next section
details the effects that the characteristics of ferromagnetic
materials have on the electromagnetic fields described in Chapter 2;
these effects include the variation of permeability with depth,

hysteresis loss and saturation harmonics of the magnetic quantities.

The remainder of the Chapter contains a literature survey of
published solutions for the estimation of eddy-current loss that
include the effects of magnetic non=linearity. The majority of the
theories discussed are analytic, but a brief statement on finite
difference methods is included for completeness. This survey is
divided into two parts, the first concerns the penetration of plane
waves into solid iron, and the second the two dimensional fields
in solid iron due to a travelling mmf wave, By showing the
deficiencies in previously published work, this chapter indicates

the need for the work described in Chapters 4 to 8 in this thesis,



- 35 =

3.2 FERROMAGNETIC MATERIALS

The electric and magnetic characteristics of ferromagnetic
materials are described by the resistivity pof the material and
the non-linear relationship between the flux density, B, and the

magnetic field strength, H.

The two B=-H curves for magnetic materials are shown in
Fig. 3.1 below. A single valued curve QOA, which will be referred
to as the normal B-H curve, is obtained when an unmagnetized specimen
of the material is subjected to a slowly increasing magnetic field,
This curve is not revers4ble, for if on reaching a magnetic field

strength of H the field is cyclically varied between + H , 4
max , ~ ma

X

hysteresis loop is traced. A number of hysteresis loops is

obtained by selecting different values for By and the locus

of their maximum values - the B - H curve ~ is almost coincident
max max

with the normal B-H curve, Fig. 3.2 shows a number of hysteresis

loops for a sample of ENlA mild steel,

B
A

/"———__

(ii) /
\
(ii)
p i)
) H
Fig. 3,1 Upper half of B-H curves for magnetic materials

(Symmetrical about the H axis)

(i) normal B-H curve
(ii) hysteresis loop.
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Three regions of the normal B-H curve may be identified as -

(i) the initial magnetization, OP where hysteresis is

negligible so that the curve is approximately reversible,

(ii) the region of greatest slope, PX, which extends up to the
knee of the curve, In this region dB/dH>>B/Hand the

curve is irreversible.

(iii) the region beyond the knee of the curve, XA - here the

slope of the curve decreases as the iron becomes saturated,

The magnetic behaviour of the material is also described by its

permeability p which is given by the ratio B/H.

Both the magnetic and electric quantities of ferromagnetic
materials are dependent on chemical composition, crystal structure
and temperature. The effects of temperature are discussed separately

in Section 3,3.

At room temperature, the electrical resistivity of steel is very
sensitive to composition and structure and particularly to the amount
of carbon, The addition of carbon and other alloying elements to
iron increases its resistivity and useful data for estimating the
resistivity of low alloy steels is given by Woolman and Mottramf
The B-H relationship for steel is sensitive to changes in the chemical
composition, and to the processes of fabrication and heat treatment
at values of H at and below the knee of the curve, but is sensitive
to changes only in chemical composition at values of magnetic field
strength within the saturated region of the B-H curvgﬁtq’%?ffect of
change in the chemical composition on the magnetic properties of steel
is illustrated in Fig, 3,3 below; curve (a) is for mild steel (not

annealed) having 0.2% carbon and curve (b) is for iron containing

0.02% carbon and annealed at 90000. Since the carbon content which
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is specified for EN1A steel is 0.07 - 0.15%. , it is clearly necessary
to ensure that all specimens used in related experimental work must
originate from the same ingot. Variation in composition within the
steel, or heterogeneity, has an adverse effect on magnetic character-
istics by altering the composition of regions of the steel from the
preferred specification; it also has various second-order effects

and results, for example, in non-uniform flux distribution,

B a
(T) b
1 00 T
100 500 H(A/m)
Fig. 3.3 Effect of Change in Chemical Composition on the

Normal B-H curve (Bozorth '7 )

(a) 0.2% carbon
(b) 0.02% carbon

Strains in the material by fabrication cause magnetic anisotropy,
which may be removed by annealing. The final state of the crystal
structure of any ‘specimen depends on its history of manufacture and,
while no two specimens can be pointwise identical, overall differences

can be minimised by similar processes of machining and heat treatment.

Knowledge of the surface conditions of a steel specimen are of

particular importance in experimental studies of eddy-current losses,

I
but are extremely difficult to determine? The chemical composition
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and the crystal structure at the surface may differ from that within
the body of the specimen, and are determined by the processes of
production and manufacture, Specimens cannot always be bright

annealed after surface machining, and even if it is carried out it does
not guarantee magnetic homogeneity or isotropy of the surface layers.,
(Electro-chemical machininéymay however be used to remove surface layers
without inducing further strains,) It is therefore inadvisable to
attempt verification of any theory which is based on an overall B-H
relationship for the material by localised measurements, unless many

similar measurements of the field quantities are made over the surface

of the material,

It is also preferable, if possible, that measurements are made
at flux levels above the knee point of the B-H curve where the magnetic
characteristics are least sensitive to changes in the crystal structure

of the material,

3.3 EFFECT OF TEMPERATURE ON MAGNETIC AND ELECTRIC PROPERTIES

3.341 Magnetic Properties

The attenuation of the power loss density with depth into the
steel is described by Equation 2,48, If the electric and magnetic
properties of the material are functions of temperature, the temperature

distribution and the loss distribution must be interdependent.

The greatest effect of temperature on the magnetic characteristics
of the material occurs near the Curie point (about 770° ¢ for normal
mild steel) where the relative permeability at any value of magnetic
field strength rapidly drops to unity, Between 1000Q and 500°C there
is virtually no temperature coefficient of permeability for field
strengths above 250 A/m, but at smaller field strengths the temperature
coefficient of permeability may vary considerably and is dependent on

both the field strength and the temperature, Eddy-current losses are
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important when they raise the temperature excessively and, since it is
probable that the surface layers of the iron will be saturated to

cause losses sufficient to raise the temperature to 100 - SOOOC, the
temperature coefficient of permeability may be considered insignificant,
The probable variation of permeébility with temperature is indicated

by the normal B-H curves for iron shown in Fig. 3.4 below. At
temperatures between 2300 to 30000, the shape of the curve changes

only at magnetic field strengths at and below the knee point so that

the permeability increases.

B
(T) (i)
i1} o
1.0 | (i) 302" ¢
(1ii) 23% ¢
(141D (ii1) 751%
500 1000 H (A/m)
Fig. 3.4 Normal B-H curves of iron at different temperatures

(Bozorth '1)

3.3.2 Electrical Properties

The resistivity of steel increases when it is heated from room
temperature, and the-Cemperature coefficient of resistance is dependent
to a lesser degree on temperature. The non-uniform heating of the
steel due to eddy currents produces a temperature gradient which
varies throughout the heating time, At the start of the heating
process the temperatﬁre is greatest at the surface of the iron, whereas

during the total heating time the temperature distribution may become
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more uniform due to a decreasc in permeability at high values of H
and an increase in radiation loss from the surface, The variation
in resistivity during the heating process is therefore dependent on

many factors, some of which are extremely difficult to define.

Resistivity also changes with the applied magnetic field

7
strength, but the magnitude of the change is usually only a few

percent at temperatures much lower than the Curie temperature,

3.4 THE FORMULATION OF NON-LINEAR THEORIES

3.4.1 General

From the discussion in the previous Section (3.3), the following
characteristics of ferromagnetic materials should be included in a'

mathematical solution of iron losses:

(i) the non-linear B-H relationship,

(i1) the resistivity-temperature characteristic,

The inclusion of the resistivity-temperature characteristic
implies that the electromagentic and heat conduction equations should
be solved simultaneously; this solution would be complicated, and
as the heat conduction equation includes many ill-defined quantities
(Section 3.3,2),it is also impracticable, For this reason the
effects of temperature are negl;cted in this thesis, It is also

necessary to assume that the material is homogeneous and isotropic

to obtainatheory that is generally applicable.

3.4.2 The Non-Linear B-H Relationship

The linear theory (constant permeability), described in Chapter 2,
shows that the electromagnetic quantities vary periodically in time at
any spatlal point, their amplitudes varying with depth throughout the
medium, There is therefore, a unique hysteresis loop at every depth

throughout the medium, The derivation of a mathematical solution that
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accounts for an infinite number of hysteresis loops is clearly an
impossibility and approximations and assumptions must be made at
the outset. In considering the initial approximations that may be
made it is useful to note the significant differences which the

inclusion of non-linearity will make to the linear solution,

3.4,2.1 The Distribution of the Electromagnetic Quantities

The flux density, current and loss densities will no longer
attenuate with depth into the medium as defined by the linear theory
since any change of amplitude of the magnetic field strength results
in a change in permeability,as defined by the normal p-H curve, The
change of phase with depth of the electromagnetic quantities can no
longer be constant due to the change in permeability with depth., If
the value of the magnetic field strength at the surface of the iron
(Ho) is greater than the value at the knee point of the B=H curve (Hk)’
then the permeability will increase with depth into the iron, so that
the attenuation and phase change with depth will increase but the
velocity of the penetrating wave will decrease; the opposite of these

effects will occur if H < Hk'
o

As the main object of this work is to provide a means of
calculating the total loss in the iron, a solution for the spatial
distribution of the electromagnetic quantities is of secondary importance.
It is however important to the designe? that a concept of depth of
penetration be retained and, as the definition of this quantity by the
linear theory is no longer valid, an attempt must be made to define an
equivalent quantity under non-linear conditions, In the linear theory,
the depth of penetration & applies to both the distribution of flux
density and current density, whereas the loss distribution has a
penetration depth of-§/2; in the non-linear theory it is probable

that the penetration depth will be different for each of the three
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quantities, The problem is therefore to find a basis for defining a

single equivalent depth of penetration,

3.4,2,2 SATURATION HARMONICS

Saturation harmonics of flux density and magnetic field strength must
be generated in the medium due to the non~linear relationship between
them, It is unlikely that either the magnetic field strength or flux
density will be sinusoidal except at the surface of the medium where
these quantities are functions primarily of the primary excitation or
voltage if the air-gap is small. If a sinusoidal magnetic field
strength was considered to exist at every point in the medium, the flux
density and induced emf waveforms would be non-sinusoidal. Since the
resultant magnetic field strength at any point is obtained by combination
of the applied field and the reaction field due to the eddy currents, it

too must be non-sinusoidal,

The loss due to the saturation harmonic of the field quantities
must therefore be included in the theory; this may be implicit in the

development of the theory or may have to be added as a separate factor.

3.4.2.3 Hysteresis Loss

The total loss in the iron includes both hysteresis and eddy
current losses,

The overall magnetization characteristic of a ferromagnetic
specimen,when determined at power frequencies,is a B-H loop which is
referred to as the dynamic hysteresis loop; the area of this loop is
proportional to tﬁe total loss (eddy-current and hysteresis), The
deformation of the normal hysteresis loop (Fig. 3.1) to the dynamic
hysteresis loop is due to eddy-current reaction, The normal rather
than the dynamic hysteresis loop must therefore be included in analyses

to obtain solutions for the eddy-current density within the iron.

Whilst functions representing the hysteresis loop have been
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reported ; the hysteresis loss may be simply accounted for by an

equivalent elliptical B-H representation which allows an estimation
22,23
of the effects of hysteresis to be made. The relationship between

B and H for the equivalent loop is

- 6
p He h

/H

max max

B

where p
6}, is termed the hysteresis angle and is taken to be the value which
makes the area of the equivalent ellipse equal to the normal hysteresis

loop for the same maximum values of B and H, Hence if wh is the area

of the normal hysteresis loop per unit volume per cycle, then

Ww,=¢dHdB=xH B sin®

max max h

and ‘ Oh =aqresin wh

nH B
max max

Typical values of § for values of H ,  are shown in Fig. 3.5.

%
30}
20 ¢
10"}
500 1000 1500 2000 max L
Fig, 3.5 Variation of Hysteresis Angle, 9h’ with Hmax

for EN1A steel,

The total eddy current and hysteresis loss Pt’ the power factor
angle @, which the angle between the sinusoidsof B and H for the
dynamic hysteresis loop, and the power factor in a semi-infinite

23
slab have been shown by Pohl to be:



i il

Pt =PJ1 + sintal_l
¢ =n/4 - q1/2

cos § = 0,707 J1 + sineh

and the eddy current loss alone is
P =P/ V1l + sine
e h

where 2

ap

HO
P = —‘i— 311

and o is given by Equation 2,14,

P is equal to the eddy current loss in the absence of hysteresis,

i,e. when 8 = 0.

Thus the effects of hysteresis on the power loss obtained by this
analysis are,
(i) the increase of the total loss by the factor /1 + sin @

and (ii) the decrease of the eddy current loss by the factor
1/ /1 + sin@p

The penetration of magnetic field strength is also obtained by
Pohl as

- i -F0/ - i
h = Re, Ho ejmtce 1+ Slngh'y P - J L Slngh‘y 3.2

where y is the depth into the slab,

Equation 3.2 indicates that the effect of hysteresis is to
increase the attenuation but to decrease the phase shift with depth
from the surface compared with the values obtained for a magnetically

linear material,

A survey of the literature reveals a definite reluctance by most

authors to determine the effects of hysteresis on the field distribution

or total loss either theoretically or experimentally. The reason for
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this is that, not only is it difficult to achieve, but the contribution
of the hysteresis loss appears to be small at value of H0 )“k' In
addition, theories not including the effects of hysteresis have
produced results which agree well with measured values even when

Hoach. This is discussed furfher in Section 3.6,

3.5 NON-LINEAR ONE-DIMENSIONAL ANALYSES

This section contains a brief review of non~linear analytical

methods of calculating the loss in solid iron.

Most analyses may be classified as either using a straight line
representation or a functional representation for the normal B-H
curve, Those analyses that fall outside this classification are
the graphical method and the assumed permeability distribution
with depth into the iron. Examples of all these solutions are

given in the following sections.

3,5.1 Straight-Line Representation

Four straight-~line approximations of the normal B-H curve are
shown in Fig. 3.6 overleaf, The method of analysis is to solve Maxwell's

equations subject to the assumed B=H relationships.

Solutions for mmf and voltage impact excitation only have been

_ 24,25 26
obtained for the characteristics in Fig. 3.6c and Fig. 3.6d. The
field distribution for each of these characteristics is described by
two separate differential equations and in the case of Fig, 3,6d one
of the differential equations is non-linear., The difficulty in
obtaining solutions for these characteristics for H >HS (see Fig. 3.6)

is in deﬁermining the point in the space-time plane at which transition

takes place from one differential equation to the other.

Solutions for alternating field excitations have been obtained

27,283
for the limiting non-linear characteristic (Fig. 3.6a) and the
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o of SRR,
=~
=
=

Fig. 3.6 Straight line representations of the Normal B-H curve

a limiting non-linear curve, References 27 and 28
b : modified limiting non-linear curve, Reference 29
¢ : References 24 and 25
d Reference 26

modified limiting non-linear characteristicz? (Fig. 3.6b) which
describe only two states of magnetisation, The linear and limiting
non-linear characteristics are extreme representations of the B-H
curve;j the true solution for the loss in iron must therefore lie
somewhere between solutions which are obtained using these
characteristics, The limiting non=linear theory will be briefly
reviewed here for reference; solutions for both sinusoidal flux
and mmf are given and compared in the literatungoﬁlbut only the

solutions for sinusoidal mmf is relevant here.
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3.5.1.1 The Limiting Non-Linear Theory

As the sinusoidal magnetic field intensity at the surface of the
steel increases from zero to a positive maximum and decreases again
to zero, a constant, saturated wave front of flux density -+ BS
propagates into the steel. At the end of the half cycle, the

wavefront has penetrated to a depth § During the following

L.
negative half cycle, a constant wavefront of flux density - BS
propagates into the steel demagnetizing the density + BS as it
progresses, The flux changes only between the surface and the

wavefront (see Fig. 3.7 below), and hence eddy currents are only

induced in this region,

+ Bs
wavefront
3
» depth, y
= S
s
]
]
E, J :
; — ¥
"
[}
I
1
|
]
I
h '
. I
1
]
|
I
1
y

Fig. 3.7 Illustrating the limiting non-linear theory,
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5 e, - ) = -
Thus J T B, (g~y) =B (GA 5)}
- 2 dg
* Bs g 'Y ¢ &
=0 y >§

The current density is therefore uniform up to the wavefront,
and the magnetic field intensity, H, must increase uniformly from

zero at the wavefront to the surface value at any instant of time;

that is,
= 1 =2. g.—E
h H  sinwt 5 Eeqt Bs
B
s d 2
= ——, —— E
LS. (B
Hence HOZ
£ = <
NBS . sin ot (0< t <n/w)

The maximum value of &, § L? occurs when t = nt/w, so

H
i.e §_ =f2f 0 3.3

L J wB
s
The power dissipated in the steel is given by,
P /o
B %= [ 3 Eae

L b1 P
and hence
4
= - )
PL 3n @ Bs L Ho
2
- H “p
or PL = 1.7 o & 3.4
24

Substituting for SL in Equation 3.4 from Equation 3,3

B w
» P 1.5
PL =1,7 g HO 5

These final expressions for power loss can be compared with

that obtained by the linear theory (Equation 3.1).

Two observations can be made from this comparison:

(1) Consider Equation 3.4, 1f 6L is made equal to § at

all values of H then P, = 1,7P, and the exponent of Hy

L
in each case is 2.0. GL can only be made equal to § by
B .
varying Bs so that ﬁi for the non-linear theory equals

o
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(popr) for the linear theory.
(ii) Consider equation 3.5. If Bs is a constant, then the
exponent of Ho is 1.5, and the constant of proportionality

is 1.7 ;Bsm
8

The general equation for the power loss may be stated as,
B = sz where p and r are constants,
From the previous discussion both p and r are dependent on the

choice of the saturation flux density, Bs'

32
Extensive experimental work was carried out by Agarwal to

determine a suitable definition of BS; he concluded that Bs =0s75 Bm’

where Bm corresponds to HO on the magnetization curve for the material.

Thus at any value of Ho’ the loss may be calculated from the
" expression

3.6

where /@Eg;—q e Bl |
5A = wB
m

(The subscript A denotes Agarwal's solution.)

This empirical equation gives fairly good results (within 10%)

for a wide range of Ho for a variety of steels,

The difference between measured and calculated results however
is not constant, Measured losses are smaller at low Ho and larger
at high HD than those obtained by Agarwal's equation. Clearly the
single empirical factor of B, = 0,75 B does not give the true
exponent of H which should be between 1,5 and 2,0. . Experimental

33
evidence shows that r= 1.6, (Thornton:1.57) .

The results of Agarwal's investigations show that the linear

theory underestimates the loss,whereas the non~linear theory over=

34
estimates it. The reasons for this are discussed by Mc Connell,
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who concludes that the non-linear theory both over-estimates the
contribution of the saturation harmonics and the amplitude of the

penetrating waves at all depths beyond the surface of the material.

The expressions for the depth of penetration for the linear
and non-linear theories are similér, yet their physical interpretations
are different. The depth of penetration, 6, in the linear theory,
relates to the exponential decay of the field quantities as they
diffuse into the material, whereas %A for the limiting non=linear
theory defines the depth beyond which there is no penetration of
any field quantity. GA depends on the total flux while ¢ depends
on the material parameters and frequency of the applied field, Neither
theory can be expected to give the correct field distribution within

the solid iron although they may be useful in estimating the power

loss,

The magnetization process within the material described by
the limiting non=-linear theory differs from that described by the
linear theory. The modern theory of ferromagnetism is based on the
existence of domains which are considered to be small permanent magnets. -
In the unmagnetised state the orientation of the domains are such
thét the resultant magnetisation 1is zero, The process of magnetisation
due to an applied field consists of the orientation of domains towards
parallelism with the applied field, Eddy-current losses have been
determined by considering domain ﬁovement, particularly in attempts

35,36

to account for the anomalous loss in this steel laminations . 1f
the iron is considered to be progressively magnetised so that a line
of separation between the randomly orientated domains and the orientated
domains penetrates the i.ron36 , the magnetisation process resembles

that described by the limiting non-linear theory. There is however,

no evidence that such a process occurs in steel slabs whose dimensions
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are much greater than domain sizes,

3.5.2 Functional Representations

A rigorous solution for the electromagnetic field distribution
may be obtained if an analytic function representing the normal B-H
curve can be inserted into Maxwell's equations, The difficulty in
obtaining such a solution is not only in finding a function which
accurately represents the B-H curve, but in finding a function for

which a solution of Maxwell's equations may be obtained,

3
Fishcher and Moser £ have studied 15 functions that may represent
the normal B-H curve. Those that are applicable to the region above

the knee of the curve and into saturation, yet have a simple form, ‘are:

- H
B = exp PR T 3.8
_ H
B R 2
B = aHb 3.10
B= a-b/H 3,31

where a and b are constants,

Equation 3,9, the Frohlich equation,and Equation 3.1l are most
suitable for representing the region around the knee of the B-H curve
(typically 100-5000 A/m for mild steel). The parabola, Equation 3,10,
is most suitable for representing the saturated region of the curve
(typically 1500 = 30,000 A/m for mild steel), but can be used with
fair accuracy to represent the whole of the B-H curve except at very
low magnetic field strengths, It is interesting to note that, as the
temperature of the material increases from room temperatures, the B~=H
curve approaches a parabolic shape and may be more accurately
represented by Equation 3,10 (see Fig, 3.4).

DaviesTused the equation (p“o)% H = ka, which may be derived

from B = aHb (Equation 3.10) in developing an analytic theory for
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eddy-current couplings and brakes, and Pillai has also used Equation

3.10 in developing a theory for solid rotor induction machines. These
. 4 . . ,

are discussed in Section 3.7. Lim uses the Frohlich equation in

obtaining a finite difference solution for the loss in solid ironm;

this is discussed in Section 3.6.

The 'perturbation' method may be used to solve non=-linear partial
differential equations which have been obtained by using analytic
functions to represent the B-H curve, In the method ‘described by
Poritsky and Butleé%sthe B-H curve is represented by the cubic

equation

H=CB + DB3 3.12

where C and D are constants,

H and B are expanded in powers of a perturbation parameter A ,

_ 2
e.g. B =B + AB + 2B, -=-

Substituting these series for B and H into Equation 3.12 and then into

the equation

2
LH o L 2B
ayZ P ot
yields a sequence of partial differential equations for Bo’ Bl etc,,
by equating like powers of ) . These equations may be progressively

solved to obtain Bo, B, etc.

1
The number of terms required in a perturbation solution depends

on the degree of saturation, For values of H well into saturation,

convergence of the series for B and.H is slow, and the method has

little or no advantage over numerical methods of solution.

3.5.3 Functional Representation of the Permeability - Depth

Relationship

Several authors have solved Maxwell's equations using a function
which relates permeability to depth into the iron. This method of

solution therefore considers only sinusoids of B and H at any point
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in the iron since the variation of permeability with time is neglected,
As there is no theoretical or experimental information regarding the
variation of permeability with depth, this solution and the function
assumed for the (p - depth) characteristic can only be verified by

correlation of measured and calculated results.

A simple exponential function has been used by Ollendorff
so that
po=p oy 3.13
s .
where m 1s a constant and y is the depth,

40 .
Ne jman uses the substitution

- 1 _ ;
"1 - (b = ay)z 3-14

which contains two constants a and b.

In both cases a general solution is obtained in terms of the
constants a, b or m; the particular solution, and the evaluation
of the constants, is obtained by matching the general solutions for
p and H yith the p-H curve for the material., Nejman used the

analytical function given in Equation 3.10 for this purpose,

The simple exponential function has the advantage that a
two-dimensional magnetic field solution may be obtained, although
the solution for both one and two-dimensional magnetic fields is

given as Bessel functions,

3.5.4 The Graphical Method

An alternative to approximating the B-H curve to a series
of straight lines is to divide the ferromagnetic material iﬁto a
number of thin layers ( Ay), each of which is considered to have
a constant, yet different, permeability. Starting by defining Ho’
and therefore Bo aﬁd Eo at the surface (y = 0) the now linear

differential equation is solved for the first surface layer to
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determine the field quantities at (y + Ay). The value of the
maguetizing force at (y + Ay) determines the new permeability
for the next layer. A graphical solution of this step by step
method is given by Pohl23 and Kesavamurthy and Rajagopaia;il This solution
is less accurate than the piece wise linearisation of the normal
B-H curve for the same number of linear steps since the permeability
for each step is defined by the ratio B/H rather than the slope of
the B-H curve; it is also a lengthy technique and has since been

superceded by more accurate numerical methods.

3.6 FINITE DIFFERENCE SOLUTIONS

In finite difference methods the differential equations of
the problem are converted into a set of algeﬁraic equations by the
use of Taylor series approximations. These equations are solved
numerically at every point on a grid constructed to cover the
required space or space-time domain, The use of finite difference
techniques has grown rapidly in recent years due to the availability
of high speed computers. Problems of the convergence of the
numerical solution and its stability arise which are not encountered
in analytic solutions, Several authors have applied these techniques
to eddy current problems in saturated iron, either employing the

normal B-H curve or a nest of hysteresis loops,

The numerical studies made by Gillot and Calveré12 and Gillot
and Abrahmusa'3 are of particular interest, The former calculated
the loss in steel rods using the normal B=-H curve only, whilst the
latter calculate& the loss for the same steel rods using a nest of
hysteresis loops. The computed losses agreed,in both cases,with
measurements to within 10% over a wide range of magnetic field strength
(up to 4,850 A/m), although the agreement was better when the nest of
hysteresis loops were used, The eddy-current loss is less when

hysteresis 1s considered although the total calculated loss increases.
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From a short table of results in Ref.43 it is seen that the
hysteresis part of the total loss decreases with HO, and is less
than 10% for values just into saturation (!H)<SOOO A/m). At a
value of Ho below the knee point the hysteresis loss was 37% of the
total loss, although the difference between the total losses
calculated with and without hysteresis was only 5%; this shows
that calculations of eddy-current losses using the B-=H curve alone
must account for a considerable part of the hysteresis loss. The
numerical method of Gillot and Calvergn%sing the normal B-H curve

is discussed in greater detail in Section 5.6,

Numerical solutions have the major disadvantage that they
cannot be expressed by an equation in which the main variables
are represented, Lim4 and Hensmar;44 have recently published
solutions for the loss in solid iron which, although using numerical
techniques, overcome this disadvantage . This was achieved by presenting
the solution in the form of a universal loss chart from which the
power loss may be calculated for a range of surface magnetic field
strengths and for a variety of steels, The universal loss chart
is therefore equivalent to an analytic solution. A depth of

2
penetration GF is defined by the equation P = 2;_?, where P 1is

F
the computed loss., § F is therefore an equivalent linear depth

of penetration, and as such it has little physical significance;

it cannot give information on the flux level at a particular depth
as sor §, (Equation 3,7) can, unless it is related to the computed
values of the field quantities throughout the depth of the material,
Thus, although extensive computations are not required to obtain

the total loss in the material, they are still required for
determining the field distribution, A limitation of the theories
given by Lim and Hensman is the use of Frohlich's equation to

37,45
represent the B-~H curve?; this equation accurately represents the



region around the knee of the normal B-H curve and into saturation,
but increasingly diverges from the B-H curve with further increase

of magnetic field strength,

3.7 TWO-DIMENSTONAL SOLUTIONS FOR THE CONFIGURATION OF FIG, 1,1

In the analytic solutions so far discussed, and the loss charts
produced by finite difference solutions, it has been assumed that the
surface magnetic field strength Ho is knowm. In Chapter 2 however,
it has been shown that Ho cannot be equated directly to the primary
current sheet for the machine configuration given in Fig. 2.1, but is
dependent on the frequency, dimensions and physical constants of the
machine, It is reasonable to assume‘that thi; will also be true
for magnetically non~linear iron, so that it is not possible to

assume an air gap of negligible length.

To include the air-gap region in a numerical solution for the
loss in the iron would increase the length of the iterative process,
and it is preferable that even an approximate analytic solution be found
so that the dependence of the loss and eddy-current reaction on the

excitation and parameters of the machine may be directly seen,

Few authors have obtained an analytic solution for the two-
dimensional fields in non-linear iron produced by a travelling mmf,
and in some cases sweeping approximations are made to obtain solutions

of acceptable complexity,

Gonnen and Strickef46 obtained a two-dimensional solution in the
solid iron secondary of an eddy-current brake in terms of Bessel
functions on the basis that the permeability did not vary with time
but varied exponentially with depth into the iron. The permeability
is defined as p = psemy where Hg is 'the average permeability on the
rotor surface', and wgs found by 'measuring the pole flux as a function

of excitation'. m is chosen so that the solution for the peak values
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of B and H at any depth into the iron correspond as close as
possible to values from the B-H curve; an iterative solution

is therefore required, A comparison of calculated and measured
B-H curves given in Reference 46 shows that the permeability does
not vary exponentially with depth, although the error is not large;

the maximum deviation in B is estimated as 10%. Gonnen and Stricker
[N}

B then the

2
find that provided q2/2& g‘<<l where.u.g = (
tangential component of H in the iron is very much greater than the
radial component. The total analysis for the eddy-current brake

is simplified by assuming no airgap between stator and rotor so

that eddy~-current reaction and loss are incorrectly determined,

More recently, Pilla1:38 has given a solution of the two=-
dimensional magnetic field within solid iron on the assumption that
the relationship between the peripheral components of B and H is
represented by an expression of the form B = aHb, whilst the
relationship between the radial components of B and H is linear.
The relationship B = aHb relates the fundamental components of
B and H; although noe stated in his paper, it is therefore
assumed that the relationship applies for all possible waveforms
of B and H at any depth into the iron (see Section 3.4.2.2.). The
solution is applied approximately to an induction motor,with a solid
iron rotor having a coﬁstant applied voltage, Some measurements
of torque, primary current and power factor were taken on a solid
rotor induction motor without copper end rings and correlated with
calculated values; the end region effects were accounted for 'by

increasing the resistivity of the rotor material',

Pillai states that the choice of different functions relating
B and H in the radial and peripheral directions was based on

'calculations which show that even when the peripheral component of
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B is highly saturated, the radial component of B is well within the
linear range', This statement may be true, but it does not mean that
the permeabilities in the peripheral and radial directions may be
chosen independent of each other; the components of the flux density

are obtained from a resultant B which might be into saturation.

;o ; 47 . g ;
Dorairaj and Krishnamurthy have carried out a two-dimensional

23
graphical solution by extending the method given by Pohl , The

instantaneous values of the radial and peripheral components

of flux density at any layer, by and bx respectively, are dependent

on hy and hx (instantaneous values of Hy and Hx which are assumed
sinusoidal), but their actual values are determined by the resultant
magnetic field strength h, which is equal to hyz + hxz, in relation
to the normal B~H curve. A Fourier analysis of the instantaneous
.flux densities is carried out giving the fundamental components By and

Bx' For the remainder of the step-by-step construction, which is

carried out in accordance with Maxwell's field equations, the BI-H

curve is used where B1 is the peak fundamental flux density

corresponding to a peak fundamental magnetic field strength. Maxwell's
equations (Equations 2.2 to 2.7 ) for the two-dimensional field

are written as

anx {jBL
T2 T Thy T ox Jl13
oFE oB
—Z = X
ay at
and BBx 9B
—— + =
3% . 0

The authors state that,'extensive constructions made for the case of
solid rotor machines with different pole pitches and slip frequencies
show that no appreciable error occurs in neglecting the second term',

in Equation 3.15, so that

J = _X 3.16
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Thus the field distribution and loss may be determined by simply

considering the penetration of a plane wave into the iron.

Lasocinski assumes that the one dimensional solution
- . 40 : T

obtained by Nejman ~ may be applied to the solid iron rotor of an
induction machine, i.e, Equation 3.16 applies. The author considers

the field distribution in the air gap for magnetically linear and
non-linear iron and travelling mmfs, but investigates chiefly the
effects of variation of the permeability of the secondary iron on the
field distribution around the periphery of the rotor due to pulsating

fields,

Mc Connel and Sverdruﬁ4g calculate the torque in an induction
motor with solid iron rotor using the limiting non-linear theory to
account for magnetic non-linearity. They assume alsc that the two=-
dimensional magnetic fields may be reduced to a one-dimensional field
for the calculation of torque i,e. Equaticn 3,16 applies. The value
of the flux density across the air gap is assumed constant, The
value of the saturation flux density By used in the loss calculations is
taken from the normal B-H curve corresponding to the peak value of the
surface magnetic field strength., The theoretical values of torque
gi;en in Reference 48 , are much greater than the experimental values at
the saﬁe slip; and the reasons for this are evident from the results

22 .
of the later investigation by Agarwal (see Section 3.5.1.1.)

Daviess’7 extended and developed the design procedure
proposed by Gibbéqfof eddy-current couplings, into a generalised
theory which is completely analytic. Expressions for loss, torque
and flux/pole are given, A linear theory was used to develop an
equation for the loss in the secondary in terms of the peripheral
component of the surface magnetic field, and it was assumed that

Equation 3.16 applies. The value of permeability chosen for the
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iron corresponds to the peak value of the surface magnetic field
strength, H_, the p - H_ relationship being given as (pp)% H=KkH"
(which is equivalent to B = aHb) and may be derived directly from

the normal B-H curve. It was realised by Davies that once the

value of permeability was chosen it is assumed to apply at all

points in the iron for the whole sinusoidal excursion of the flux
density. Even so, the correlation between calculated and experimental
results for couplings was good, particularly with regard to the

variation of torque and flux with applied mmf; reasons for this are

given in Section 5.4.3.1,2.

Davies also calculated the resultant mmf and the eddy-current
reaction mmf acting on the air gap and related the reaction mmf to
the surface magnetic field strength. Both mmfs were also related
to the torque, so that by obtaining their phasor differences the
torque could be related to the applied mmf. The air gap was

assumed to be small, so that the flux density was constant along its

length.

By differentiating the expression for torque and equating
to zero, the peak torque and the frequency at peak torque is obtained.
Normalised expressions for torque were obtained in terms of a non-

dimensional quantity Q which was defined in terms of normalised

torque and frequency , Normalised torque/slip curves were also obtained.

The evaluation of the eddy-current reaction mmf and its
relation to the surface magnetic field strength, the development of
normalised torque/slip curves and, most important, the relationship
between torque and applied mmf, were not attempted by any of the

other authors whose published work is discussed in this Chapter.
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3.8 CONCLUSIONS

This Chapter has been concerned mainly with the effects of magnetic
non-linearity on the evaluation of the loss and field distribution in
solid iron and theories which have been proposed so far to account

for these effects.

Finite difference solutions have not been considered in any detail
as the object of this thesis is to produce solutions in which the
influence of individual parameters may Qe directly seen, Although
universal loss charts are equivalent to analytic solutions, they are
not applicable to multiregion models and, as their title indicates,

give information only on power loss.

Hysteresis has been omitted from most non-linear theories due to
the difficulties of including it, and the small errors that exist
between measured values and values calculated from theories that
neglect hysteresis - even for values of magnetic field strength below
the knee of the B=H curve, The finite difference studies of Gillot
and Calveri?gnd Gillot and Abraham;ﬁihow that the loss that is calculated t
considering only the normal B-H curve‘contains a major part of the
hysteresis loss, Hysteresis may therefore be excluded from loss
calculations. It should be noted that it is not known if hysteresis
may also be excluded from the calculation of power factor and eddy

current reaction,

There are many one-dimensional non-linear theories for solid iron
that are based on' the normal B-H curve,yet rarely are they compared
or their advantages and disadvantages shown by experimental work. The
form of the solution must be as simple as possible if the theory is to
be extended to a two-dimensional multiregion model., There is little
point therefore in choosing a perturbation method (Section 3.5.2) which

has little advantage over numerical solutions,
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Where the loss due to saturation harwmonics is implicit in the
theory, the solution is complicated if the normal B~H curve is
represented by functions other than the limiting non-linear B-H
curve, The limiting non-linear theory, however, over-estimates the
loss and the saturation flux density Bs, must be empirically defined;

32
the definition given by Agarwal, which was based on the results of
extensive experimental work, has been widely used, It would be
preferable if, either some factor dependent on the actual shape of
the normal B-H curve could be included in a non-linear theory, or

Bs could be defined analytically; it is likely that the first

solution would lead to the second.

To solve Maxwell's equations sub’ject to a representative function
of the normal B-H curve, and to obtain a solution of acceptable
complexity, it would appear necessary to ignore the saturation
harmonics of B and H and to consider only the variation of
permeability with depth into the iron, This implies that the wave-
forms of B and H at every depth in the iron are sinusoidal and only
their peak values relate to the normal B-H curve for the iron; these
are the assumptions made in the graphical method of solution (Section
3:5.:4); The effects of saturation harmonics are accounted for

approximately by considering the fundamental sinusoids of the actual

B and H waveforms,

If the solution is to be completely analytic, an analytic function
for the normal B-H curve must be included in the theory. The function
B = aHb is preferred for its simplicity and accuracy of representation

of the B-H curve, particularly at and above the knee point.

In considering the extension of the one-~dimensional non-linear
theory to the two-dimensional multiregion model it has been shown

that it is permissible to consider only the penetration of the
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periplheral component of the magnetic field strength into the iron

; 2 2 3 : ?
provided q"/2a <<] at the surface of the secondary. This assumption

6,48 | .
has been used by several authors in calculating the loss or
torque in solid rotor machines. Only DaviesT however has produced
a general expression for the torque in terms of the applied mmf which
includes the effects of non-linearity; the analytic function used
b :

to represent the normal B-H curve, (B = al ) was not however included

in the solution at an initial stage,

There is therefore a need for a theory of the multiregion model
which will enable the torque or loss, flux/pole, eddy-current reaction
and field distribution.to be calculated directly from the excitation
and parameters of the machine, and includes a solution of Maxwell's

equations subject to a representative function of the normal B-H curve;

such a theory is given in Chapters 4 and 6 of this thesis,

It is also necessary that experiments be devised so that all
aspects of the theories may be verified or its limitations discovered;
such experiments are described in Chapters 5, 7 and 8 of this thesis.
(Notes concerning the me;surement of electromagnetic field quantities

in ferromagnetic materials have been made in Section 3.2),
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CHAPTER 4

A NON-LINEAR THEORY FOR THE SOLID-IRON REGION

4.1

INTRODUCTION

In this chapter, a theory is developed for the solid-iron

secondary of the model configuration in Fig,., 1,1, taking into

account magnetic non-linearity.

(1)

(ii)

(iii)

The initial assumptions in the theory are,

that the secondary member is a homogeneous, semi-infinite

block of ferromagnetic material,

that the currents in the primary and secondary regions flow
only in the axial (z) direction, and the magnetic field

throughout the model is due only to the axial currents, and

that rectangular co-ordinates,rather than cylindrical co=-ordinates,

are used, the effects of curvature being neglected,

In the linear analysis of this model, the same form of general -

solution (Equation 2.15) is applicable to both the air-gap and the

solid-iron region, In the non-linear analysis,the differential

equations for the solid-iron region and the air-gap region are

different, and solutions for each region must be obtained independently

and combined by matching boundary conditions, A solution for the

solid-iron region is developed in this chapter, and combined with

the solution for the air-gap region in Chapter 6.

In the following analysis for the solid-iron region, it is

assumed that permeability varies with depth only and not with time,

so that Maxwell's equations, embodied in the diffusion equation,

are solved for fundamental sinusoids of the electro-magnetic
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quantities, It is also assumed in the analysis that at any depth in

the iron, the peripheral component of magnetic field strength Hx’
is very much greater than the radial component Hy' The values of

B and H at any depth are related,initially,by the normal B-H curve

for the material,(the effect of neglecting hysteresis has been discuésed
in Section 3.6). The normal B-H curve is represented in the

analysis by the function B = aHb. The effects of the saturation
harmonics of the magnetic quantities, that actually exist

at any point in the iron, are discussed at the end of the analysis

and the function B = aHb is suitably modified,

The final sections of this chapter include a comparison of the

]

theory developed here (the present theory), with the limiting non-

linear theory and other theories using functions of the form B = aHb
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4,2 THE MACNETIC FIELD DISTRIBUTION WITHIN THE SOLID-IRON REGION

4.2.1 General

In the linear analysis (Chapter 2), is was shown that H >> H
in the solid iron region if JE”N > q. This condition implies that only
the ﬁeripheral components of the magnetic field, “x’ need be considered
in determining the distribution of the eddy-current field and the loss
in the iron. The use of this approximation is especially desirable in
the present non-linear analyses of the two~dimensional model, where
the permeability is considered to vary with depth, and Hx and H caqnot
be considered independently. This complication is avoided if ﬁx>¢> ﬁy
in magnetically non~linear irom, Where p = fn ( f ), the permeability
will increase with depth into the iron, provided H at the surface is
greater than that at the maximum value of p (i.,e., at the knee of the
normal B-H curve). It is logical to assume, therefore, that if
JZa>q at the surface layer then this condition applies at any depth,
Both Dorairaj and Krishnamurth;¥gnd Gonnen and Strickef46(see Section
3.7.), have found this to be so, although no numerical values are given.
Since ﬁ?m»q in most practical cases, even for permeabilities <100,
it 1is assumed that Hx ) l-]_y in the following analysis, This
assumption appears to be valid from the results of the experimental
investigation. The electromagnetic field distribution in the secondary
iron is therefore assumed to be the same as that of a one-dimensional,
or plane, electromagnetic wave. The solution that is derived here is
latér modified (Chapter 6), to allow for the field distribution around

the periphery of the secondary.

4,2.2 Solution for The Magnetic Field Distribution

The co-ordinate system used in this analysis is given in Fig, 2.1,

Since it is assumed that,
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and J =J =0 _ 4.1
X y

then the magnetic field distribution within the solid iron is governed

by the Diffusion Equation, obtained from Equations 2.2, 2.3, and 2.7,

as,
2
8Hx= 1 B 4.2
3y2 e ot

The fundamental sinusoids of the magnetic field at the surface of

the solid iron region are given by:

~

H cos Wt
X8 Xg aE ¥ = g 4.3

B cos wt)- 4.4
Xg

H

B
Xg
~

(where ﬁ > 0 and B > 0)
Xg Xg

At any depth into the iron, i.e. at y'= (y - g), the fundamental
sinusoids of Bx and Hx will be shifted in phase with respect to the
surface quantities, As discussed in the previous section (Section
4:2.1); Hx and Bx are sinusoidal functions of time, and are in time
phase, since hysteresis is neglected, Thus,

~

Hx = Hx cos (wt + &) 4.5
A at y= (y - g)
B, cos (ot + ¢) 4.6

B
X

A A
where & represents the phase shift, and Hx Bx

and ¢ are all functions of y.

It is assumed that the amplitudes of the fundamental sinusoids, ﬁ
X

and ﬁx may be related by the normal B-H curve for the material,

Up to this point,the statement of the problem is similar to that

23,41
given in the graphical solution ; but in the following analysis

the function,

B.= a Hb 4,7

is used to represent the normal B-H curve,
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where a and b are constants. (See Section 3,5.2).

From Equation 4.6,

3B
X

—a-t- = W Bx sin (wt + e) 4.8

Substituting Equation 4.7 and 4.8 into the Diffusion equation (Equation

4,2), to obtain an equation in Hx only:

2
H
9 X _ w.a be sin (ot + &)

G 4.9

oy
From Equation 4,5,

aHx di A de
Tr; = cos (wt + g). —E— - HX.SLD (ut + &) . a; ’ r
and aZHx 26 2 dﬁx i
—— X - ——
. yz cos (wt + g) T & * & sin (wt + &)
n 2 A
- H .sin(wt + a)-'i—ﬁ - cos(wt + ). H . (§£3 4.10
X dy2 X \dy

Thus, equating the (cos) and (sin) terms on the right hand side

of Equations 4.10 and 4.9,

-Zdﬁ A 2
_X,9 H de_ @ q P
ek dyz 5 . (a.H_") 4,11
2A
d"H n 2
’z‘-u(%i) =0 4.12
dy x y

Eliminating & between Equations 4.1l and 4.12,

2 5N\
a s N e s 4.13

A solution of this differential equation was found by assuming the

A
following general form of solution for the attentuation of Hx with

depth into the iron:

= -3, (5) <1 4.14
X Xg 3 y 3 L

where m and f are constants,

Substitution of Equation 4.14 into Equation 4,13 gives
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~ L L i ~
i 82. m¥m - 1% (2m - 1).£2(1 gyt f T L wa g (D) ym(beD)

X p X8 4.15
Both sides of this equation are of the form K(l - fy'))c so that, for
Equation 4,14 to be a solution to Equation 4.13,
2m -
(1 - £y 2-q -fy')m(b+” 4,16
. 1 L ~ (b + 1)
and H 2. mf(m - 1) (7m = l)f2 =28 Xg 4,17
Xg p
From Equation 4.16,
(2m = 2) = m(b + 1) ,
so that ,
= 12
m —(l—b) ] 4.18
and from Equations 4,18 and 4,17, '
& 2 /2(1 + b) (3 + b) 'f2 - a2 4 b +1
Xg (1 =b)" (1 -b) o = Xg
wa » (b-D%| (1-05) 4,19
thus f=| —.H - *
ol & (3+b) (1+b)
. _ b -1
From Equation 4.7, p = a.H 3 4,20
so that, at the surface of the secondary, when y = g,
p=a.ﬁb‘l' 4,21
g Xg
Substituting Equation 4.21 into Equation 4,19,
s L2 X
¢ =ag 2.(1L - b) , 4.22
(3+h)(l+b)5

Wl
where “g = EBE 4.23

(f must bé positive for axg to decrease as y' increases),

Since futzg, and has dimensions of (m_l), it is preferable to

define,
a =f =K ,a , 4,24
n b" g
ey o2 ¥
where Kb uf 2 (1 b% 4.25
(3+b)(1+b)
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Also, since m (Equation 4,14) relates to the rate of attenuation of the

amplitude of H , which in the linear analysis is dependent on the
X

quantity B ,
let B = = 2 4,26
n B 1 -b -
Th i =1« D 4.27
USs X Xg =B .

The subscript n denotes the non-linear solution,
Equation 4.27 is an exact solution of the differential equation (Equation
4,13).

To obtain ¢ as a function of y', Equation 4,27 is substituted into

Equation 4,12. On integrating the resultant equation and resolving the
constant of integration from the boundary conditions, € = O when y' = o,
= oY L]
e =Y nln.(l @y ) 4,28
where Y =+ 21+ b) 4,29
n - 1 ~-b
Thus, from Equation 4.5, the complete solution for l—lx is
H =1 (1 - y,)Bn cos (wt +y .1n (1 -a y') ) 4.30
X Xg n - n n '
2 Bn+J"Yn jwt :
= = ]
of Hx Re. ng {1 @y ) . e 4,31

4.2,2.1 The Limiting Depth of Penetration

Since *ﬂn has the dimension of (m_l) the term (1 -¢ ny') is non=-
dimensional, and so from Equation 4.30,
H =0 when y' =6 = L 4,32

n o
n

6§ may be called the 'limiting depth of penetration', For Equation 4.32
n

to be possible, the permeability must become infinite when y' = Gn'

This result is due to the inclusion of the function B ='a Hb in the above

analysis. For this function to represent the normal B-H curve above

the knee point (Section 3,2 ), the exponent b < 1.

Therefore, from Equation 4,20,
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p T ® ,asHTO if b < 1,

A typical p/H curve and function p = a Hb " " for b<1 are compared

in Fig. 4.la .

2‘“” p=&Hb-1
\
H \
\Y
H
(a) ¢ i (b)
Fig. 4.1 Effect of Representing the Normal B-H Curve by B = aHb )

Thus Equation 4;30 ﬁust be inaccurate fof vélues of ﬁx below a value
H, (Section 5.5 ),as illustrated in Fig. 4.l1b, This inaccuracy of
representation has less effect on the range of application of the theory
than might at first be thought;

it is discussed in Section 5.6

&g il The Linear Case

It is interesting to consider the form of Equation 4,31 when the

permeability is assumed constant, i.e. b = 1,
When b = 1, Equations 4.7 and 4,20 bécome,
B=aH
and p = a; respectively,
Also from Equations 4,24, 4,25 and 4,32,

@ =0 and § ==
n n

Equation 4.31 can be written in the alternative form,

" (B 4+ 3Y ) In.(1L =& y")
H =ReH e * O LA 4.33
x Xg
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In (1 - a y') may be expressed as,
n

2 3
= = - t ok ! i ! i {,
In (1 any') @y 3 (&n y') 1/3 &xny ) 4.34

so that, from Equations 4.26 and 4,29,

1
2 . V2(14b) ST J—
- 1 : - T V| s ———
(Bn * an) In (1 4 ) 1 T - b+ J (1- b) L E 2

ag may be substituted for « i from Equations 4.24 and 4,25, so that,
when b =1,
s Y - 1 - 3 e
( Bn + ] n) In (1 @y ) - (L+ j)a " y

and Equation 4.33 becomes,

“ -0 y'  -jay' jot
H =Rel e &8 o & ¢
X Xg

4,3 THE CURRENT DENSITY DISTRIBUTION

From Equation 2.3, and the assumptions stated in Equation 4.1,
the current density, Jz is related to the magnetic field component

Hx by,
X 4,35

4,36

and the amplitude of the surface current density is

- =(B:1+ an)G“ H 4,37

xg

4,4 ALTERNATIVE DESCRIPTION OF THE DISTRIBUTION OF THE ELECTROMAGNETIC WAVE

The distributionof the magnetic and electric fields into the depth
of the iron have been described in Sections 4.2.2 and 4.3, By means of
the series expansion given in Equation 4,34, the distribution of the

electromagnetic quantities may be written as,

2 .
- B+ 'o=% (K + jy )
s eKbag(n an)y.e (bag)(an v )y e
x Xg
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2 2
K, a @ -1+ 37 Dy' =5 (R o )" @=1+ jy )y
E = Re E e b g"n n . & b. .8 n n e
Z zg

jut

The attenuation with depth of the electromagnetic field is dependent
on the quantities (Kb Bn) and © g’ and the change in phase with éepth is
dependent on (Kb’in) and Gg; both the attenuation and change in phase
are therefore dependent on b, i,e. the shape of the normal B-H curve,

and the surface magnetic field strength, which is included in the expression

for o , The variation of Kb,B andY with b is shown in Fig. 4.2,
£ n ‘n

If the permeability is constant (b = 1) and equal to pg, (Kb.ﬁ n)’
(Kb.Bn- 1), and (Kb.Y n) become equal to unity, while the remaining
terms become equal to zero, (Section 4.2.2.2). When b < 1, i.e. the
permeability increases with depth into the iron, KbB n> 1, so that the

attenuation with depth of hx is greater than that in the linear case,

while the attenuation of ﬁz is less than that in the linear case,

Qualitatively, the quantities Kb, B " and ‘Yn account for both the
change in permeability with depth and the shape of the normal B~H curve,

whilst the quantity ag accounts for the level of saturation in the iron,

4.5 POWER FACTOR ANGLE AND IMPEDANCE OF THE SOLID IRON

h H j o
The phase angle, ﬁn, between ng and ng, (or Ezg) may be called
the power factor angle (see Equation 4.44a).

From Equation 4,37,

i =R.oa .H fﬁ
zg n n Xg n_,

i 2 2
where R = q/ﬁn i M 4,38a
so that Rn = J6 + 2b/(1 - b) ' 4,38b
g X
and ¢ = tan — 4,39
n B
n
Thus, cos dn = Fh/Rn 4,40

and sin ¢n = Th/Rn 4,41
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The wave impedance of the solid iron is given by
E
. u =2
yn H

and from Equations 4.36 and 4.31

- -1
z,,~ PR, an[@_n_:(l ~a y') 4.42

(Note that the impedance increases with depth (Zn‘+ © as yt+ 38 n)

unlike the linear case where the impedance is constant.)

At the surface of the secondary, i.e, at y = g,
Coon ™ (oR_. “m)-f“’n 4,43

4.6 LOSS IN THE SOLID IRON

The mean power flow/unit area into the solid iron,at any depth,
is given by,

P =%Re.(E . H) 4.44a
y z X

substituting for Ez and Hx from Equations 4.36, and 4,31,
2

H
B -
Py=_§ﬁp‘3n-an- (1 —“nY‘)(zn = 4.44

The total power/unit area into the secondary at y = g is equal

to the power loss, Pn’ where,from Equation 4.44
i 2
p = 28 pﬁnu

n 2 ' 4-45

n

Fad

4.,6.1 True Exponent of ng in the Loss Equation

The true exponent of ﬁxg in Equation 4,45 is not 2, as @ & is a

function of ﬁxg' Thus, substituting Equation 4.21 for pg into Equation

4023,
(b - 1)

« =f 7 fae 4,46
8 X8 T

so that, from Equatioms 4.46, 4,45 and 4,24,

(b + 3) [~ '
P 2t — T Bnl(.bvaa 4.47
272

and the true cxjouent of . is (b + 3).
% Tz
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4,6.2 Normalised Power

If the permeability of the secondary iron is considered constant
and equal in value to the permeability at the surface, “g’ then b =1
and from Equations 4,25, 4.26 and 4.2&,(Bﬁa.Q = ag, so that Equation
4 .45 becomes

P =-—-—g-}2( . pa 4.48

TS =—————— (Kp 2 1) 4,49

where Pn is obtained from Equation 4.45.

Substituting for a from Equation 4.24 into Equation 4,49

= - 9
Kp Kb.Bn 4.49a

so that from Equation 4.25 and 4,26
[/ %

= 4.50
P {(3+b)(1+b)g
KP is plotted against the exponent b in Fig. 4,2 between the limiting

K

values of b = 0 and b = 1, The value b = 1 refers to the linear case

(Section 4.2,2,2) when P = Pn'

When b = 0, Kp has a maximum value of 1,375, and Equation 4.7
becomes,
B =a 4,51

which is the expression for the rectangular B-~H curve,

The limiting non-linear theory, based on the rectangular B-H curve

(see Section 3,.5,1.1), gives

PL = CL ¥
where 16
CL = EE,z 1.7 (Equation 3.4)

Kp is not equal to CL since the effect of saturation harmonics is
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implicit in the limiting non-linear theory. In fact, both the
saturation harmonics and the level of flux density throughout the depth
of the iron are over-stated in the limiting non-linecar theory, so that

32

Agarwal found it necessary to reduce C, from 1,7 to an empirical factor

L
of 1.47. This value is obtained by taking the value of BS = 0.75 Bx g

g
The advantages of the present theory over Agarwal's theory are that
both the variation of the flux density with depth into the iron,and the
dependence of this variation on the shape of the B-H curve and the value
of ﬁxg’ are accounted for, The disadvantage of the present theory is
that the effects of the saturation harmonics of the magnetic quantities
have not been included. From a comparison of experimental and theoretical

results, the contribution of saturation harmonics to the total loss is

not greater than 15%

4,7 SATURATION HARMONICS

In the analysis so far, it has been assumed that peak values of
the sinusoids of flux density and magnetic field strength at the surface
of the iron, ixg and ﬁxg’ have been related by the normal B-H curve for
the iron. If it is assumed that the waveform of the magnetic field
strength only is sinusoidal, then the actual waveform of flux density

will be of the form shown in Fig. 4.3 below.

FIG. 4.3

(a) waveform of Bxg’ derived
from the normal B-H curve

for sinusoidal H .
Xg

(b) Sinusoid of Bxg,assumed

in the analysis so far,

(¢) fundamental component of

waveform (a),
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Waveform (a) in Fig. 4.3 should describe the flux density on the
surface of the secondary of the model (Fig, l.1), if the primary current
sheet varies sinusoidally with time, and the pole pitch is very much
greater than the air-gap length; if this is the case, the power loss
in the iron will be given by the product of the fundamental sinusoids
of ng and the flux density (waveform (c), in Fig. 4.3), at the surface
of the secondary. If ng is sinusoidal, a B, ~H, curve* for the surface
of the iron may be obtained from the normal B-H curve, At any other
point in the depth of the iron, a different B,-H., curve may be obtained,

13

since both Hx and Bx contain varying percentages of harmonics (Section 3.4,2)

4.7.1 Analytic Derivation of 1~ M1 Curves ‘

Consider the general case where neither Bx nor Hx are sinusoidal.
The relationship between the amplitudes of the waveforms at any depth
in the iron is illustrated in Fig., 4.4 overleaf, The amplitudes of
the actual waveform of Bx (waveform (b) ) and Hx ( waveform (d)),
correspond at point P on the normal B-H curve for the iron, The
fundamental component of H.K ( waveform (e) ), corresponds to a value

of B ,, and the fundamental component of B_ ( waveform (f) ), is B

1.
The Bl - H1 curve may thus be obtained from the normal B-H curve by
multiplying Bhl by the ratio Rb’ where,
R=EL 4452
b Bhl

The ratio Ry is obtained by the following analysis. The normal
B-H curve is represented in this analysis by the Frohlich expression,

where

H

B =9+,

4.53

The Frohlich expression is preferred to the function B = aHb

* the subscript 1 denotes fundamental component,
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(b)

@

Fig. 4.4, Illustrating the Analytic Derivation of Bl:g1 Curves,

in this analysis since it is more accurate at, and below, the knee point
of the B-H curve where the ratio Rb has its greatest variation, The
Frohlich constants, d and k, for the sample of ENlA steel used in the
experimental investigation, are

d = 288

k

0.512 4,53a
The B=H curve given by Equation 4,53 is shown in Fig. 5.3 where it
may be compared both with the normal B~H curve and the curve given by
B = aHb.

The waveform of the magnetic field strength, Hx may be

represented by the expression,

Hsinwt 4,54

b (Wt) = S isinot
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The shape of the waveform is governed by the value of U, so that,

in Fig. 4.5

waveform (a) U<O0O
(b) U =0, h = Hsinwt

(¢c)U>0

Fig. 4.5

Thus, from Equations 4,53 and 4,54

; - H sinwt
bx(mt) kH - dU ¢ + sinwt 4.55
where ¢ ——-—-—--—(kH —TT))

The fundamental component of bx(mt), Bl’ is obtained by Fourier
analysis, so that,

for c2 <1

B = 2H 3w on T c.2 In |1-Y1 ~ c2 4,.57a
2
and for ¢ > 1,
2 + 1
2H c = 4,57b
By B semmmm—aos | )o@ £ e | = Q tad *
1~ n(kH - du) = LT Je2- 1
where the upper signs are for ¢ > 0.
and the lower signs are for ¢ < O,
Derivation of these expressions is given in Appendix I. H,, the

1

fundamental component ofhx(mt) may be obtained by a similar analysis of
Equation 4.54., The results of the computation of Rb for the normal

B-H curve for EN1lA steel are shown plotted against H, in Fig. 4.6. It

1
is seen in this figure that R is substantially constant for values

of Hl > 2500 A/m. If the Bl

function of the form Bl= AHlm, the exponent m will therefore be

approximately the same as b in the function B = aHb, and only the

- Hl curve is to be represented by a

constant A will vary,
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Thus, let B = AH 4,58a

where *aR 4.58b

It is also scen from Fig. 4.6, that there is little change in the value

of A for considerable change in the waveform of Hx; as most curves
lie within 1,2 < Rb < 1,3, for Hl > 5000 A/m, a reasonable approximation
for A is,
A =1,25a 4.59%
so that
B, = l.25aH B 4.59b
l - 1 -

and from Equation 4.59a and 4.21,

By = 1.25a ngb'l : 4.59¢

The inclusion in the theory of the fundamental components of the actual

waveforms of Bx and Hx, by means of the curve B1 = AHlb, may account

for the effects of saturation harmonics. No consideration is given
here to the effect of saturation harmonics on the distribution of B1 and
Hl in the depth of the iron, The use of the function Bl = AHlb must

therefore be judged by comparing calculations from the present theory

with the results of experimental and other theoretical work,

4.8 COMNPARISON OF THE PRESENT THEORY WITH THE LIMITING NON-LINEAR

THEORY

4,8,1 Power Loss and Power Factor Angle

Since the effects of saturation harmonics of the magnetic quantities
may now be accounted for in the present theory by the use of the function
B, = AHlb, the expression for the loss,Pn,(Equation 4,45) may be compared

with the loss given by the limiting non-linear theory,PL,(Equation 3.4).

In Table 4.1, the ratios Pn/P (Equation 4.49) and PL/P are compared,
where P is the power loss in the iron when the permeability is constant

and equal to Be (Section 4.5.2).
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The ratio Pn/P when By = AHlo'1L2 is approximately equal to PL/P

when Bs =075 Bxg’ which is the definition of BS proposed by

32 A
Agarwal ; both these ratios relate to mild steel for values of Hx

0,112
1

above the knee of the normal B-H curve. The function Bl = Al
applies specifically to EN1A mild steel for 2500 < ﬁxg‘< 20000 A/m
so that Pn/P should be constant for this range of ﬁxg' Agarwal found

there was good correlation between experimental and theoretical

results for a wide range of ﬁ it B = 075 B .o
Xg s Xg

Although there is agreement between the power loss calculated by
the present non-linear theory and Agarwal's limiting non~linear theory,
the calculated values of power factor angle én do not agree; for the
limiting non-linear theory ﬁn = 26,6° (a constant value), whereas for
the present non-linear theory and b = 0,112, én = 36,7° (Equation 4,40).
which is approximately constant for 2500 A/m < i < 20000 A/m,

Xg
4,8,2 A Definition of the Saturation Flux Dcnsigz_Bs

By equating the loss obtained by the present theory with that obtained
by the limiting non-linear theory, the saturation flux density, Bs’
may be defined in terms of b and A,
If P = P, for the same value of H 3
n L Xg
then from Equations 4,45 and 3.4

n°n  3n L

Substituting for (Bntln) from Equation 4.49

_ 16

Substituting for ﬂg and GI‘in Equation 4.60 from Equations 4,23 and

3.3 respectively, and putting pg " Rb. ﬁE& 5 where'ﬁxg corresponds to

Xg
fi on the normal B=H curve,
3n K £ .
By = 16 Rb°Bxg R0l

Since KP is a function of the exponent b only (Equation 4,49), and Ry is

a function of ﬁxg and the shape of the normal B-H curve (Equation 4.57),
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Bs may be defined in terms of ﬁxg from a knowledge of the normal B~Il

curve of the material,

For 2500 A/m < ﬁxg< 15000 A/m,

b =0.112 (Equation 5.
Kp= 1,31 (Fig. 4.5) ENLA Mild Steel
R, = 1.25

Substitution of these values into Equation 4,61 gives,

B = 0.75B .,
s Xg

4,9 COMPARISON OF THE PRESENT THEORY WITH OTHER THEQRIES USING

A FUNCTION OF THE FFORM B = aHb

The development of the present theory followed the work of
Davieé&?ras it was realised that the function B = aH® should be
inserted into the diffusion equation at the initial stage of its
solution.

It is however, interesting to compare this solution with others
which also use the function B = aﬂb; due to the nature of this
function, all such solutions should have a 'limiting depth of penetratiom',
since p—~o0 as H—=~0, This is so for both the solutions of Nejman4o
and Pillai33 ~

‘Nejman's solution differs from the present solution and, in the
opinion of the author, is less credible, since he defines arbitrarily
a function for permeability with depth which is introduced into the
diffusion equation. The solution of the resulting equation is 'matched'
with the function B = aHb to define the arbitrary constants, On
investigation, however, it is found that these constants are the
same as those obtained by the present solution. Ne jman does not, it
is believed, consider the power loss in the iron, its variation with

H, or introduce factors Kb and Kp.-

Pillai, more recently, gives a 'complete solution' for the two-
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dimensional fields in solid iron, but has not published his method of
analysis; the permeability on the radial axis is assumed constant,
: : : : b-1 —
while that on the peripheral axis varies as p = all” ~. Pillai's
solution is different from the present solution, and from the two=-
dimensional solution given in Chapter 6, but in its approximate form,

when Hx>> Hy, it is found to give the same form of anlytic results

(after some manipulation) as that by Nejman and the present theory.

The difference between the final solutions obtained by these
theories is in the method of accounting for saturation harmonics,
which not only affect the final equation for the loss, but also the

field distribution within the depth of the iron,

The author's analysis,which it is believed has not been previously
published, is verified in Chapter 5, although its verification has been
partly achieved by its comparison with the limiting non~linear theory
(Section 4.,8), It is felt that the nature of the factors accounting
for magnetic non-linearity can be identified more easily in the

present theory than in the theories of the other authors,

The theory developed in this chapter is later extended to two-
dimensional and three-dimensional cases to obtain solutions chiefly
for power loss and flux/pole; the theories by Nejman and Pillai have

not been extended in the manner described in this thesis.
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4,10 CONCI.USIONS

A non=-linear theory has been developed in this chapter for the
solid-iron sccondary of the model configuration given in Fig.2.1.
Although the formulation of the method of solution is similar to that
of the graphical solution23 , the diffusion equation (Equation 4.2) is
solved here for the magnetic field quantities subject to the function
B. = AH b, where A and b are constants for a stated range of ﬁxg' The

1 1

use of the quantities B, and H1 enables the loss due to saturation

1
harmonics to be accounted for (Section 3,4,2.2 and 4.7); this has

not been verified in this chapter, As the normal B-H curve is
represented by the function B = aHb, tﬁe inclusion in the theory of

the quantities B1 and H1 is embodied only in the constant A, The Bl—l-l1

curve is related approximately to the normal B-H curve by a theoretical

investigation (Section 4.7.1),

The distribution of the electromagnetic field in the depth of the
iron has been described in Section 4.,2.2, 4.3 and 4.4, where the
quantities Kb, @h and Th have been defined; these quantities account
for both the variation of permeability with depth into the iron and the

shape of the normal B-H curve,

If Pn is normalised by expressing it 'as a multiple, KP , of the
power loss, P, (Equation 4.48),

P
= n =
K Kb @n (Equation 4.49)

P P
For mild steels, Kp is approximately 1,47 for values of ﬁxg above the

knce of the normal B~H curve,

It has been shown that the loss equation for the present non-linear
theory is approximately equal to that obtained by Agarwal's theory for

similar steels and a similar range of surface magnetic field strengths.
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CHAPTER 5

COMPARISON OF THE NON-LINEAR ANALYTIC SOLUTION

with

(i) AN EXPERIMENTAL INVESTIGATION ON A ROUND FERROMAGNETIC BAR

(ii) FINITE DIFFERENCE SOLUTIONS.

Dok INTRODUCTION

Experimental verification of the non-linear theory developed
in Chapter 4 (the present theory), is given in this chapter., An
experimental investigation of the loss and surface current density
in a round ferromagnetic bar is described, and the results obtained
are compared with the present analytic solution, This investigation

was additional to that on the experimental machine (Chapters 7 and 8).

The present analytic solution is also compared with finite
difference solutions. Firstly, a finite~difference solution of the
differential equation for the fundamental sinusoid only (Equation 4,13),
using the normal B-H curve, gives the distribution of the magnetic
field in the depth of the iron, Secondly, a finite difference
solution of the diffusion equation (Equation 4,2), using the
normal B-H curve, gives the magnetic field quantities in the iron,

their waveforms and the loss,

The experimental investigation was carried out on a round
bar of EN1A mild steel. The normal B=H curve for this steel was
used in calculations both for the present analytic solution and

the finite~difference solutions,



5.2, THE PARAMETFRS OF THE STEEL USED IN THE EXPERIMENTAL INVESTIGATION

The steel used in all experimental work (Chapters 5, 8, 10)
was ENIA Crade 4, Mild Steel (B.S.970) of chemical composition
c 0.11%, S 0,25%, Mn 1.15%. The two stators used with the experimental
machine (Chapter 7), were flame cut from the same billet and two short
bars and a ring specimen were machined from the remaining material;
these were annealed at 880° C. Where practicable, annealing was
carried out in an inert atmosphere after the final ﬁachining operations,
The normal B-H curve obtained for the ring specimen , and the

derived p-H curve, are given in Fig . 5.1,

The resistivity of the steel was measured on a cylindrical bar,.
The resistivity, p, at 33° ¢ was found to be:

o *1.9x 1077 ou,

5,3 THE CONSTANTS a AND b FOR THE STEEL

The constants a and b in the function B = aHb may be found
by plotting the normal B-H curve on log=-log paper. The equation
represented is,

log B = log a + b log H 5.1

so that b is equal to the slopeof the curve and a is then obtained
by inserting corresponding values of B and H into Equation 5.1,
Fig, 5.2 shows log B against log H for the sample of EN1A steel
(Section 5.2). Both a and b are approximately constant for values

of H greater than 2500 A/m but change below this value.

In Fig., 5.3, the normal B-H curve is compared with the
function B = aﬂb for,
a = 0.664

5.2
b =0,112

There is good agreement between the two curves for 15000> H >23500 A/m.



; b
For values of H < 2500 A/m, the function B = aH may represent
the normal B~H curve with a fair degree of accuracy over a smaller

range of H, In Fig. 5.3, the function B = aHb is compared with the

normal B-H curve for

a = 0,214

5.3

b = 0,258

There is close agreement between the curves over a range

500A/m <H< 2500A/m.

5.4 THE EXPERIMENTAL INVESTIGATION

The power loss and surface current density were measured on
a round bar of ENlA steel, which was obtained from the same billet
as the stators and ring specimen (Section 5.2). 50 Hz a.c,
current was passcd axially through the bar; this current produced
a magnefic field in the peripheral direction, The magnetic field
strength at the surface of the bar is given by,

. I
HR - ZxRa . 3.4

where Ra is the radius of the bar,

The resultant electric field strength along the axis of the

bar at any depth is related to the current density by,
5,5

The distribution of the electro-magnetic field in the bar is
governed by the diféusion equation, If the radius of the bar is
much greater than the depth of penetration then rectangular co-ordinates
may be used; if the radius of the bar is not greater than the depth
of penetration then the diffusion equation must be expressed in
cylindrical co—ordiﬁates. The diameter of the bar was chosen so

that rectangular co-ordinates could be used with negligible error

for all surfacc magnetic field strengths up to and including 15000 A/m.



The choice of bar diamecter was based on a comparison of the
solutions of the diffusion equation using rectangular and cylindrical
co-ordinates in which the permeability of the bar was assumed constant.
Mc Lachlaékiomparesthe two solutions, for values of the ratio of
depth of penetration to radius of the bar. Since the depth of
penetration is a function of the permeability, the radius of the
bar may be determined for any value of permeability and for any

specified difference between the two solutions, A brief description

of the comparison of the solutions is given in Appendix IT ,

In the non-linear analysis, the permeability of the bar

varies with depth from the surface, If the magnetic field strength
at the surface is greater than that.at the knee of the normal B~-H
curve, the permeability increases with depth into the iron, so that
the actual depth of penetration is less than that calculated by the
linear theory for a permeability equal to that at the surface. If,
thercfore, the value of permeability at the surface is chosen for a
comparison of the solutions, a'pessimistiﬁ value for the bar diameter
will be determined. For &R = 15000 A/m, the error in assuming
rectangular co-ordinates is found to be less than 4% for a nominally

?.6 cm diameter bar,

5.4.1 The Experimental Rig

The bar of EN1A steel, which was machine ground and bright
annealed, was connected across the secondary winding of a 10 V, 25 KVA
transformer whose primary winding was fed, via a regulator, from 2

lines of a 415 V, 3-phase supply.

To ensure that the current, and therefore the surface magnetic
field strength in the bar (HR),was sinusoidal three large air-cored
reactors werc connected in series with the bar, whose reactance was

greater than the impedance of the bar,



The ends of the bar were drilled and tapped and the bar was
bolted between two aluminium busbars, this is shown in Fig. 5.4.
To obtain good electrical contact between bar and busbars, the ends

of the bar were coppered,

] BC.L‘I"\ ] alominiom bosbar

[ |

—{2em. ‘\\

CUTTremts d_en.gi(-Y probe \o‘lu“‘i""um washer—

|~

Fig, 5.4 Round Bar of EN1A Steel used in the Experimental Investigation

5.4,2 Measurement Techniques

5,4,2.1 Current Density Probes

The surface current density was obtained by measurement of

the voltage drop along the surface of the bar,. If a voltage V is
measured between two points a distance LPapart on the bar, the
average value of current density over the length Lpis,
V.L
J = -:L 5.6

The probes used to measure the voltage drop consisted of two 0.0l mm
diameter nickel=copper wires spot-welded to the surface of the bar,

( Section 7,.3,3). The distance Lbbetween the welds was 2 cm (Fig.5.6).
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S5:.4.2.2 Measurcment of Power Loss

The loss in the bar is proportional to the product of the
voltage from the current-density probes and the total current
in the bar, A voltage pr0port§ona1 to the current in the bar was
obtained by integration of the output from a linear coupler placed
around the bar, This consisted of 1620 turns of copper wire wound
on a flexible former, The two ends of the former could be linked to

form a toroid around the bar,

5.4.2.3 Instrumentation

An electronic multiplier was used to obtain the product of the
voltage signals from the current-density probe and the linear coupler.
This instrument had a specified error of 0.1% at its full output of -
10 V (peak). It was found that, if both signals were less than 1V,
the error was greater than 1%, but, 1f one signal was maintained
near its maximum of 10 V, and the second signal was not lower than

0.5V (peak), the error was no greater than 1%,

To attain the voltage levels required, both signals were
amplified. The complete circuit used is shown in Fig, 5.5. Checks
werc made on the gain of the amplifiers, the phase shift through the
circuits, and the effect of the loading of the amplifiers on the
signal level, The mean power was obtained by connecting the output
from the multiplier to a d.c. digital voltmeter. The amplifiers
were adjusted for minimum drift and minimum d.c, bias at each gain
setting. The rate of change of the d,c, bias at the output
terminals of the integrator was significant at high amplifications,
and a decoupling capacitor of 0.1 pF was inserted between the integrator
and the preceding amplifier. A check on the resultant phase shift
and attenuation due to the capacitor was made and found to be negligible,

As a final check on the d.c, bias at the output of the multiplier, the



polarity of the mean power relative to that of the d,c. bias could be
reversed by interchanging the leads of the current density probe.
(Switch 8, Fig. 5.5). The d.c., bias could then be evaluated by taking

the difference in the readings.

S.4.2,4, Calibration for Power Loss Measurement

IE vy and v, are a.c, input voltages to the multiplier, the

output voltage is
v 57

vo ~ 10

Let the output voltage from the linear couplier be v

L then the input

to the multiplier is, from Fig, 5.5 and assuming VL to be sinusoidal,

v =m 5-8
1 WRC )
Let the voltage output from the current density probe be vE, then the
input to the multiplier is, from Fig. 5.5,
Vo = Vg Az 5.9
Thus from Equatioms 5.7, 5.8, 5,9,
¢ = oE L Ay 5.10
o . 10wRC
But the instantaneous power/mz, p is,
VE 'L 5,11

P T " Y2r R
P a
where Y is the output voltage of the linear coupler per ampere,

Substituting Equation 5.10 into Equation 5,11,

10 V_.wRC
o

P = 5.12
AI'AZ'AA'Lp'anaY

P is the mean power-loss/m2 if Vo is the d.c, voltage indicated by

the digital voltmeter.

5.4.2.5 Phase Angle Measurement

The angle ¢ between the sinusoids of Hy and J was measured by

obtaining oscillograms of VE and VL (Section 5.7.2.4) and analysing

the waveform of VE. This method of measuring phase angles was



calibrated using the variable phase supply of a signal generator;
the generator produced a d,c. level proportional to the phase

difference between the signals which enabled the phase to be set

0
to + .05, The method of phase angle measurement was found to

o
be accurate to + 1.

5.4.3. Discussion of Results

5.4,3.1 The Loss in the Bar

The measured and calculated values of loss are shown in Table
5.1 for peak values of the surface magnetic field strength,ﬁR Petween

2850 A/m and 15000 A/m, and are plotted in Fig. 5.6 for ﬁR < 3000 A/m,

In Table 5,1, there is good agreement between the measured
values and those calculated by the present theory based on the

function Bl = AHlb (Equations 4.59 and 5.2).

For ﬁR.< 2500 A/m (Fig. 5.8), the present theory gives values
of loss less than those measured, the deviation between them becoming
> 10% for ﬁR <1250 A/m, The value of A for this region of the
normal B-H curve was determined from Equation 4.58 and Fig. 4.6

for U = 0,

For correlation of measured and calculated loss at values of
ﬁR near the.- knee of the normal B-H curve it was essential that the
bar underwent the same annealing process as the ring specimen from
which the B=H curve was taken, Loss measurements on a non-annealed
bar of ENlA steel were made and found to be less than the calculated

values by up to 30%.

5.4,3.1.1 The Limiting Non-Linear Theory (Agarwal)

The loss was also calculated by the limiting non=linear theory

using Agarwal's empirical equation, BS =015 BR,(Table 5.1):



these calculations agree well with the measured values of loss,

which is not unexpected, as the empiricism in Agarwal's theory has been
justified by the present theory (Section 4.8). The loss calculated

by Agarwal's theory is less than the measured loss at large values

of ﬁR and is greater than the measured loss at values of ﬁR below

the knee of the normal B-H curve, (Fig. 5.6 and Table 5.1),

5.4,3.1,2 The Linear Theory and the Exponent of ﬁR

The measured loss is also compared with the loss calculated

from the linear theory (Table 5.1) for,
(i) relative permeabilities of 250 and 1000

(ii) permeabilities obtained from Fig. 5.2 which corresponds to

the magnetic field strength on the surface of the bar (ﬁR)

These will be discussed in turn,

For a relative permeability of 250, the measured and calculated
loss agree approximately at 14700 A/m, whereas the calculated value
is only 68% of the measured value at 2950 A/m, For a relative
permeability of 1000, the measured and calculated loss agree
approximately for ﬁR< 2950 A/m, whereas at 14700 A/m the calculated
loss is 82% greater than the measured loss, Since the loss calculated
by Ehe linear theory is proportional to ﬁRz, it is clear from these
calculations that the exponent of ﬁR.for the measured loss is less
than 2, Log~log plots in Fig; 5.7 of the measured loss against
HR show that the exponent of ﬁR (given by the gradient of the line)
is equal to 1.57. By the present theory (Equation 4.,47) the
exponent of ﬁR is ( E—%—l ), which is equal to 1.55 when b = 0,112

(Equation 5.2).

For values of permeability obtained from Fig, 5.2 corresponding

to ﬁR’ the calculated loss was considerably less than the measured
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loss, but from a log-log plot of calculated loss against

ﬁR’ the exponent of ﬁR is 1,59 . 1E£ pg, given by Equation 4,21,

is substituted into the linear loss equation (Equation 3,1), the

exponent of ﬁR is obtained as ( D ; 3),which is equal to that
obtained by the present theory; this substitution cannot however

account for the variation of permeability with depth into the iron,

5.,4,3.2 The Surface Current Density and Power Factor Angle

Measured and calculated values of surface current density are
tabulated against peak surface magnetic field strength, ﬁR’ in
Table 5.2, The calculated values (fundamental amplitudes) were
obtained by Equation 4,37, Two sets of measured values are giveﬁ,
one being the actual peak values of the surface current density and
the other the corresponding fundamental amplitudes, The correlation
betwecen calculated and measured fundamental amplitudes is good,over

the experimental range of excitation,

Plate 5,1 shows typical oscillograms of the voltages from the
current density probes (Section 5,4.,2.1), Computer analysis of these
oscillograms showed that the fundamental amplitudes were 0,92 to
0,96 of the actual peak values, The predominant harmonic components,
namely the 3rd, 5th and 7th, are tabulated in Table 5.3 for three
values of excitation; the third harmonic component is considerably

greater than other components, and increases with an increase in ﬁR'

Superimposed on the oscillograms of the voltages from the
Current-density.probes are voltages proportional to the bar current,
which were obtained by means of the linear coupler, The
bar current 1s proportional to the magnetic field strength ﬁR. The
power factor angle,@n,between the fundamental component of surface
current density and surface magnetic field strength was found

to be within the range 30.30 to 31.2° over the experimental range

of excitation. The calculated phase angle, ¢ (Equation 4.39) is



36,7° for EN1A mild steel for 2500 A/m < ﬁR < 20000 A/m,(b = 0.112.)
Although the measured values of ﬁn are lower than the calculated

o ; ' i
value of 36,7 , they are virtually constant over the experimental

range of excitation,

5.5 FINITE DIFFERENCE SOLUTION OF EQUATION 4,13

Finite-difference techniques (Section 3.6) were used to solve
Equation 4,13, which defines the penetration of the magnetic field

into the iron subject only to a change of permeability with depth,

Equations 4.11 and 4,12, from which Equation 4,13 is obtained,
were written in finite-difference form, Initial values of H were
obtained by assuming the region of the normal B-H curve between
H=0 and H = 250 A/m to be linear; these values of H were assumed
to occur at a depth y into the iron, The finite-difference equaticens
were progressively solved, subject to the normal B~H curve (Fig. 5.2),
for decreasing values of y, A brief description of the solution

is given in Appendix III,

The results of the computation for a frequency of 5 Hz are
shown in Fig. 5.8 , Ay was chosen as 0,02 mm in order to limit
oscillations of %gﬂm negligible proportions. Also plotted in Fig.
5.8 are the results of the analytic solution using the values of
b and a given in Equation 5,2, The solutions are almost coincident
for 2500 A/m < Il <15000 A/m, but diverge below about 2500 A/m,
Inaccuracies in the solution are thus due to the difference between
the function B = aHb and the normal B~-H curve rather than the form

of solution (Equation 4.30). The effect of these inaccuracies

on the loss calculation are discussed in the next section,



5.6 ANALYTIC SOLUTION FOR THE DISTRIBUTION OF THE ELECTROMACNETIC

FIELLD TN THE TRON

-

As the wave of magnetic field strength penetrates into the iron,
its amplitude decreases and the values of a and b will change (Fig.5.4).
Since the theory is based on the assumption that a and b are constants,
it is only strictly applicable to peak values of the surface magnetic
field strength, ﬁxg’ much greater than 2500 A/m, when-changes in a
and b occur only at considerable depth into the secdndary. For
values of ﬁxg near the wvalue at the knee of the normal B-H curve,
the range of ﬁx represented by any single function B = aHb is small.

If however, the power is dissipated within this range of ﬁx’ there
is little error in the loss calculation, The accuracy of the theory
may thus be judged by comparing the attentuation of ﬁx (Equation 4.27)

and the loss density, Py’ (Equation &4,44) with depth into the iron,

Fig. 5.9 shows the attenuation of the field quantities with
depth into the iron at 5 Hz for a surface field strength of 15000
A/m using the values of a and b given in Equation 5.2, It is seen
that ﬁx attenuates to 2500 A/m, 0,167 p.u. of the surface value,
at a depth of 9,2 mm, The loss density has reduced to 0.062 p.u,
of the total loss in the iron at this depth, and there is little
error in the loss calculation, Fig, 5.10 shows the attenuation
with depth at 5 Hz of the field quantities for a surface 