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SUMMARY 

A highly sensitive acoustic line pulse-echo system was 

developed to measure and classify the spectra of a range of isotropic 

solids having cylindrical geometry. In a number of cases, these have 

been compared with exact theoretical solutions and in others they 

have been used to test the extent to which approximate solutions are 

valid. 

A theory for contour vibrations in thick disks was developed 

and numerical solutions obtained for a wide range of disk thickness— 

to-diameter ratios. These numerical eigenvalues and the resonant 

spectra of the specimen, which is in the form of a disk resonator 

(with no restriction on its thickness), have been used to determine 

the elastic constants of the specimen material. 

The in plane vibrations of annular rings, which is the 

general case of the disk at one extreme and the narrow ring at the 

other, have been analysed. Six series of resonances were identified, 

in which every disk mode progresses to a particular ring mode as 

the hole diameter is increased. 

The thick disk theory has been extended to the thick anmular 

disk and numerical eigenvalues evaluated for a full range of hole 

sizes, Poisson's ratio and disk thicknesses upto one radius. The 

correspondence of the resonances in thick disks to those in 

cylindrical shells was examined. The six series of resonances 

observed in annular rings were present and in addition, there is 

one series each of pure radial (compressional), finite frequency 

and asymptotic (compressional) modes. 

Several limiting cases obtained by simplifying the thick 

annular disk frequency equation, using various approximations,
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were investigated. Of these, the most important one is the frequency 

equation which yields the cut-off frequencies (plane strain) of an 

infinite hollow cylinder. These features agree exactly with those of 

other eee It is shown that a material modulus transformation 

yields the plane stress (annular ring) results from the plane strain 

results. 

The interaction of a thin layer of gas on a vibrating body 

was investigated by constructing a series of tuning forks with 

various narrow gaps between the tines. An electronic system was 

constructed for this investigation which enabled the fork to be 

driven into resonance and the subsequent decrement received from the 

fork was analysed to give the decrement parameters. A reactive 

component changing the frequency and a lossy component changing the 

logarithmic decrement were found by changing the gas pressure. 

Finally, the solution of non—axisymmetric vibrations in a 

disk-shaft combination has been considered. Resonant spectra were 

obtained for disk-shafts of various disk and shaft dimensions and 

the way in which their various modes of vibration were coupled 

together, was examined.
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CHAPTER 1 

GENERAL INTRODUCTION 

The acoustic spectra of solid bodies has been the subject of 

investigation for many years. Exact solutions of simple geometries are 

readily available and their resonant spectra give an insight into the 

behaviour of various phenomena, when they are used as sensors. Although, 

the application of thin disk numerical values for the determination of 

material constants, using a pulse-echo technique originally developed by 

Bel', has been successful, problems were encountered due to finite 

thickness of the disk’. These problems have now been overcome by the 

theory developed for contour vibrations of thick disks(Chapter 2 of this 

thesis). The numerical solutions of this theory and the resonant spectra 

of the disk can be used to determine the elastic constants of the disk 

material with high accuracy. The fabrication problems encountered, when 

disk shaped resonators are used as sensors, can also be avoided with 

the use of this analysis. 

The acoustic spectra of solids can be obtained by the pulse—echo 

technique using an acoustic resonance detector. The investigations 

were limited to solid resonators having cylindrical geometry. The 

technique, basically consists of the specimen (resonator) coupled to 

one end of a magnetostrictive line (transducer). The other end of the 

line is connected to the coil which is fed by burst of oscillations 

from the transmitter, to excite resonances in the specimen. Thus, the 

electrical part of the system is remote from the specimen under 

investigation, which gives a practical importance to the system. The 

echos received from the resonator are then analysed to yield the 

resonant spectra of the specimen. Some of the properties of the 

specimen such as elastic constants and internal friction can also be 

deduced from the echo signal.
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Further, with this method, it was possible to excite higher 

resonant modes using various drive techniques described in Appendix 

A.2.2. A determination of these higher modes affords the oppourtunity 

of studying, in detail, several interesting phenomena. Firstly, from 

the frequencies of higher modes, one can determine phase velocity 

dispersion over a wide frequency range. Secondly, to the extent that 

one can develop confidence in the theoretical solutions for the phase 

velocity, one can use the measured frequencies to give an indication 

of any possible frequency dependence of the elastic constants>. Finally, 

the measurement of frequencies of higher modes helps in classifying 

various resonances as the resonator progresses from one form to another. 

The various applications of this pulse-echo method have resulted 

in: 

(1) Measurement of elastic constants of thin disk materials* and thick 

disk materials (chapter 2 of this thesis), 

(2) Measurement of intemal friction in solids’, 

5 (3) Measurement of high temperature~ and fluid properties such as 

density, viscosity and pereeares (also, chapter 6 of this thesis). 

(4) Investigation of vibration spectra in various solids having 

cylindrical geometzy (chapters 3,4,5 and 7 of this thesis). 

The electronic system used to measure the acoustic spectra of 

solids is described in Appendix A.2.2.
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CHAPTER 2 

ELASTIC CONSTANT MEASUREMENT FROM THE SPECTRA OF THICK DISK RESONATORS 

2.1 Introduction 

The contour extensional vibrations of thin disks, which involve no 

transverse displacement, were solved by Love® -« Due to the complexity of 

the resulting equations and the lack of a ready method for exciting these 

modes, they seemed to him "not to be of sufficient physical importance". 

However, with the advent of high speed digital computers and the develop- 

ment of the piezoelectric vibrators, these equations have become important 

9 and Holland '°, and have been solved by Onoe 

In practice, all disks have a finite thickness-to-diameter ratio. 

Resonant-frequency equations for vibrations in thick disks that are 

available in the Titerstine 1292"? are valid only for radial modes. 

Further, they are in the form of correction factors, which are limited to 

a fairly small thickness-to-diameter ratios. Mosley has obtained a thick- 

ness correction to the radial mode frequencies of an isotropic disk by a 

method similar to the Pochhammer-Chree approximate frequency equation for 

the longitudinal resonances of the rod. But, this correction factor is 

valid only for disks with thickness-to-diameter ratios less than 0.125. 

Lucey, however, defined a boundary between a thick disk and a thick rod and 

derived equations for the resonant frequency in terms of the planar and 

axial frequency constants, but, these equations are valid only for the 

fundamental mode of radial vibration. Rasbana 14 has recently given a solu- 

tion for non-axisymmetric vibrations of a free cylinder or a disk, by 

satisfying, partially, the boundary conditions on the cylindrical and flat 

surfaces, but the resulting frequency equations are so complex that their 

numerical solution becomes very expensive. Moreover, the solution is not 

unique and requires different frequency equations to be used for different 

modes of vibration. Furthermore, the theoretical results were not veri- 

fied experimentally.



In this chapter, the frequency equations for axisymmetric and non- 

axisymmetric vibrations of a disk, with any thickness-to-diameter ratio, 

are derived by reducing the three dimensional equations of motion to the 

ei velent two dimensional equations. The distribution of the displacement 

along the thickness direction is taken as sinusoidal, without any loss of 

generality, to reduce the complexity of the problem and to enable the 

numerical solution of the frequency equations, to be obtained at a reasona- 

ble cost in computer time. The frequency equations will also predict the 

effect of thickness on the resonant frequencies of fundamental as well as 

higher modes of vibration, The theoretical frequency values are compared 

with the experimental spectrum, which is measured by means of a Pulse echo 

technique. A marked agreement is observed between the two results over a 

wide range of disk thickness-to-diameter ratios. These results are also 

compared with those of Moseley and Lucey, A method is also proposed, by 

which, the elastic constants of thick disk material can be determined 

precisely, using the experimental resonant spectrum and the numerical 

eigen values. 

2.2 Contour Vibrations in Thick Disks 

The contour vibrations in thick disks consist of two families of 

modes of circumferential order zero; one is the radial modes characterised 

by the absence of rotation and the other is the tangential modes characte- 

rised by the absence of dilatation; but, for each circumferential order 

greater than zero, there is only one family of compound modes, the vib- 

rations being compounded of both dilatational and rotational strains. 

The derivation of the dilatation, rotation and their associated 

displacement functions in thick disks, whose radius is 'a' and thickness 

h, is given in Appendix A.2.1. In this section, the frequency equation 

for the compound modes of vibration is derived and then the radial mode 

frequency equation is obtained as a special case of the compound mode 

frequency equation.



2.2.1 Compound Modes 

For compound modes of vibration, n>O and the radial, tangential and 

axial components of displacement, given by egns.(A.2.13),(A.2.15), are 

ad (ar) aI. (gr) nc 
, ={4, = +28, ae + — J, (vz)t cos n@ 

nA, nB, as (vr) 
Eo aot 0 (Or) i+ et (Bx) C, ae ein 2° (2.2.1) 

ee CA, 9,5, (x) - Bb, 1,,(6r) } cos n@ 

The boundary conditions, for free motion at r = a, are 

tT #0 atrewa 
rr 

Tp=0 atra=a (2.2.2) 

and ae = 0 atrza 

where the stress resultants Tl T,. and a given by eqns.(A.2.3), can be 
8 

rewritten as 
0g oe hE re: 9 20 

Thr * "(i49) (1-29) tle c) e the i aco ye h_ &,} 

me °Se. be . | 88, 
The 7 B(isg) (Se et Ede a5 

nee 36, 
Be ER grep! 
rz (140) or 

Substitution of eqns.(2.2. 1) and (2.2.3) into eqn.(2.2.2 ) yields the 

frequency equation, formed by the determinant of the coefficients Ays By 

and Cas as given below: 

F(K) = 1X5 j-o, i,j = 1 to 3 (2.2.4) 

where i and j identify the row and the column of the 3 x 3 determinant, 

respectively, and the elements of the determinant are given by 

K 9° X45 J (8)(m,(8) - n(n+1) + ae 

T0.6) 2 
ior ge) = et) eo } 

  

  

Xs =n J (Ko) { (KO) - (n+1)}



een 

Xyq = (6) {1 (5) - (n41)} 

  

nI( 46) 
X59 * ye OS) - (n+1)} a Sed; 

Xpg = (KO), (KO) - n(n+t) + we} 

X= 9,(6) 04,8) - 2 HGs= ke /2) 

Xzo 7 ~ og Ab) = 0} (028 4 K?/c) 

45 = 0 

where K is a dimensionless eigen value defined as 

K = ua oe (2.2.6) 

Dy eedee we(eo 
9 jaca? Cisara yi? 

M(x) and N(x) are defined as, M(x) = nae ; a oa =x ao. 

vespectively, and 6 and Aé are the wavenumbers given by 

6 saa = a ie 

(2.2.7) 

and Aé =Ba = ait SVE) fy 

where G and ) are given by 

Gs (Gat i 

nts) (2.2.8) 

G 2 (3-40) e(3 - 40) 

and n = a » is the diameter-to-thickness ratio of the disk. 

For a given n, the ma solution of eqn. (2.2.4) is designated by 

Kin’ where n is the number of nodal diameters and (m-1) is the number of 

nodal circles. Thus, Kn refers to all of the antisymmetric extensional 

modes of vibration, The resonant frequency of the mode associated with the 

eigenvalue Kon is similarly designated by fan* Thus, the first solution 

of the first antisymmetric compound mode is designated by Ky and so on.



The Case when XS is Imaginary 

It may be noted, from eqns.(2.2.7), that the wavenumber 6 is 

always real whereas 4 is real if >1 and is imaginary if <1. This 

corresponds to the condition thatAS is real if K/¥e<mn/2 and is 

imaginary if K/ vo >mn/2. Hence, for dS imaginary, the elements of the 

determinant become 

  

  

5,(%8 ) ; 
Kyo = Peg (46) - (net) + = } 

m5 (36) 8 
Xp 7 {aC 26) - (n41)} (2.2. 9) 

5,(48) « 
hg a Ox & - (0 (Xe) -n} 

where 322 = -2%5? ana the remaining elements of the determinant are 

given by eqn.(2.2.5). ‘he frequency equation(2.2. 4), then, gives the 

relation between the dimensionless eigenvalue Kon and the dimensionless 

parameters 0, the Poisson's ratio and n, the diameter-to-thickness ratio. 

Since, the solutions to eqn.(2.2. 4) exists for all integer values of n21 

and since there is an infinite number of solutions for each value of n, 

namely, m = 1,2,3,-.%,etc., the symbol Kin represent infinite number of 

modes of propagation, which are solutions of eqn.(2.2.4). 

The thin disk frequency equation for the compound modes may be 

obtained, from eqn.(2.2.4), as a limiting case, For instance, when 1/n>0, 

: iT b> KE, Aso NLC A6)>@ and ee Thus, eqns.(2.2.5) reduce to 

ma) ° 
CM, com ) = n(n41) + . ’   

1 

m1, X45 = nlit, (KG, 0) - (net) } 
12 

24 a(t (Kr) es (n+1)} ’ X50 me Ting ; Gi (2.2.10) 

Xp = (Kin) n(n+1) Sao ye   

=0, X,,21, and X,, 20. 
31 32 2D



oe 

The thin disk frequency equation, then, becomes 

F(T) = (Xs X54 - X14 Ms) =O (2.2.11) 

where 
Ke ae (xt Ne ee 

F(K.,) = at, (Kz) -n(n+1) + i} (1 (K7 0) - n(n+1) + 2 } 

(2.2.42) 

= n’ (,(K) - (nt) }{ mH (KE0 yim) 5 

which is same as the compound mode frequency equation in the theory of 

generalised plane piresa °, and en denotes compound modes of thin disk. 

The numerical solution of the frequency equations (2.2.4 ) and (2.2.11) is 

given in section 2.3. 

2.2.2 Radial Modes 

The radial modes of vibration, with circumferential order n equal 

to zero, are characterised by the absence of rotation. Consequently, 

G = 0, b = 0 and g. and a are independent of 6. Hence, the radial 

mode frequency equation can be obtained, as a special case, by setting 

n = 0 in eqn.(2.2.4). ‘Then, ean.(2.2.4) reduces to 

Y. ry 
1 12 

x| Yp3| = 0 (2.2.13) 
Y. x, 

31 32 

where the elements of the above determinants can be obtained by setting 

n= 0 in eqn.(2.2.5). ‘hen, the radial mode frequency equation 

is given by 

7) = =0 (242.4) 

where K Ke 2 Q 
F(Kjyp) = 6%( 62- SE ) (BB (a8) +07573   

2—2 202 na Ken? 2 HAP SE (ANS ‘Coag) Ganoay M, (6) - 67} (2.2.15) 

and Kir is the designated radial mode, which is given by the me solution
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of eqn.(2.2.14), where (m-1) represents the number of nodal circles. ‘hus, 

the first (or lowest) branch of the symmetric radial mode is designated 

E by Kip and so on. For A6 imaginary, the corresponding frequency 

equation is given by 

2 20 2 2 2h. 

67(62- may, <BRO M, (X6 )- Re HIS *GS~ “aay “i m,(6) -&} = 0 
(2.2.16) 

where 1767= -A76%50 that X16 is real. The numerical solution of the 

frequency equation is described in section 2.3. 

The thin disk frequency equation for radial modes may be obtained 

as a special case of eaqn.(2.2.14). For example, when 1/n> 0, n,( AS) FAS 

and A767>> Reales Thus, eqn. (2.2.15) can be rewritten in the form, as 

  

  

Reve? (62 x2 /c) Kae 
{ = ut, (6) -1) = es Ss 4} (2.2.17) 

Further, as 1/n>0, ek, and (46> ; substituting these in the above 

equation, yields 

2 a yee eS 22.18 M, (Kip) 32 (1-9) ei (2.2.18) 

which is a well known radial mode frequency equation in the theory of 

2,8 © 
generalised plane stress and KR is the eigenvalue for the radial 

modes of vibration in thin disk. 

2.3 Numerical Solution Of The Frequency Zquation: 

Each of the frequency equations(2.2.4), (2.2.11) and (2.2.14) relates 

the eigenvalue K with n ando. For a given n, n ando , the frequency eqn. 

reduces to a transcedental equation in K only. Two methods based on itera- 

tive procedures are described to compute the roots Ky M =1,2,3,00.,@tCe, OF 

the frequency equation, and their merits and demerits, with respect to the 

computer time, are discussed. 

For a desired value of n,n ando, the value of F(K) is computed for 

an assumed value of K using an 'Interval-division iteration technique’, 

and the result is desigmated by 'Error'. ‘Thereafter, the computation is
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carried out at a specified value of AK till the error becomes less than a 

specified value of 'Error 1'. During the computation, if the magnitude of 

the error becomes less than one-tenth of error 1, then the interval AK is 

set to one-tenth of its previous value and the computation is carried out 

using this interval. This process is repeated until a change of sign of 

the error occurs in any interval, which gives an indication of a root in 

that interval. If a change of sign occurs, then the interval of AK is set 

to one-tenth of its previous value and the direction of scanning is reversed. 

This process is repeated until a root with the error less than an allowable 

"Relative error'(i.e., the error divided by the root) of, say, 1 in 10°, 

is obtained. 

In the second method, for a chosen value of n, N and 0, the error 

is computed for an assumed value of K. If the magnitude of this error is 

not less than a specified value, then the value of K for the successive 

iteration is determined, using Newton-Raphson method, as 

F(K a 
°F G } (2.3.1) 

where F'(K) is the derivative of F(K) with respect to K and Kay and Ky 

are the values of K at Cay end iterations, respectively. The value 

of the error is computed again for this value of K and so on, until the K 

value, for which the magnitude of the error is less than an allowable 

"Relative error’, is obtained. 

The major demerits of the first method are: (a) the number of itera~ 

tions required for yielding a root with an acceptable accuracy are, indeed, 

very large. (b) Secondly, the possible chances of the computation sticking 

between two successive iterations without yielding the required result, 

are high. (c) Finally, this method requires a prior knowledge of the ap- 

proximate value of the root, otherwise it may require about one hundred 

iterations to take the value of the root from an assumed value to an ap- 

proximate value, which is rather expensive. ‘The merits of Newton-Raphson 

method, on the otherhand, are: (a) It does not require prior knowledge of
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the approximate value of the root. (b) It convergs very rapidly to the 

exact value of the root with in, say, two or three iterations. 

The only difficulty in Newton-Raphson method is in obtaining the 

derivative of the complicated frequency equation. But, this difficulty 

can be overcome by determining the value of F(K) on either side of the 

root and then evaluating the derivative by the formula, provided that dK 

is small, given below: 

aF(K,) F(K,) = (KT 

aK K, - Ky 

  

(273.2) 

and hence eqn.(2.3.1) now becomes, 

pct = Sa (2.3.3) i+1 i” THK) = F(K,_,)} ce 

where Ky is the eigenvalue at the ae iteration. 

The Newton-Raphson method was found to be 20 to 25 times faster 

than the interval-division method and hence results in an enormous saving 

of computer time. ‘The use of eqn.(2.3.3) in place of eqn.(2.3.1) results 

in further reduction of computer time. The ICL 1905E computer has been 

used for all the computations of eigen values. 

The computations were carried out for 12 modes for Poisson's ratio 

6O from 0.0 to 0.5 in the interval of 0.01 and the tables of K values, for 

thickness-to-diameter ratios from 0.0 to 0.5, are available from the author. 

However, the variation of K values of all the modes with the Poisson's 

ratio is show in Figs.2.1 to 2.6, for various n's. The computations were 

restricted to a few specific modes only, because these are the only modes 

basically required for the measurement of elastic constant of the disk 

material, by a method proposed here. Further, these are, mainly, the modes 

of resonances which can be excited experimentally by pulse-echo techniane 's
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The differing trends of the K values for radial and compound 

modes are the basis for the measurement of Poisson's ratio. 
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2.4 Comparison of Experimental and Theoretical Results 

The experimental apparatus used to measure the spectra of thick 

disk resonators is described in Appendix A.2.2. ‘The method of measuring 

the resonant frequency of a mode is also described in Appendix A.2.2. 

Measurements were carried out on steel and aluminium disks of various 

thickness-to-diameter ratios and the results are given in Tables 2.1 and 

2.2, respectively, together with the theoretical values of frequency which 

have been calculated, from the corresponding K values, using eqn.(2.2.6). 

The theoretical and experimental results agree within the limit of experi- 

mental accuracy. The physical properties of the disks are as given below: 

Steel Disk Aluminium Disk 

Diameter(2a) 5 cms. 5 cms. 

Thickness(h) 2.5 cms. 2.5 cms. 

Density(p) 7.8 x 10° ke/m? 2.7 x 10° ke/m? 

he 11 2 11 2 
Young's Modulus(E) 2.12 x10 N/m 0.71 x10 N/m 

Poisson's Ratio(c) 0.28 0.33 

The disks of various thickness-to-diameter ratios were obtained by 

first choosing a disk with a thickness of 2.5 ems. and then gradually 

grinding the thickness away until only a thin disk remained, 

2.5 Elastic Constant Measurement 

A method is proposed here by which the Poisson's ratio o and the 

Young's modulus E of the material of thick disks can be determined with 

good sensitivity by measuring the natural frequencies of extensional vib- 

ration. Other methods for the determination of o are available in the 

literature, but they either use the ratio of a pair of flexural peeonenoe 

or are applicable to piezoelectric materials 16117 only. 

The method proposed here, however, uses the type of excitation 

described in Appendix A.2.2, which is equally applicable to all materials 

and also to disks of all thickness-to-diameter ratios. In section 2085 

the theory of radial and compound modes of vibration of thick disk has
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been given and the combination of the families of these resonances enable 

the elastic constants to be determined with a greater accuracy. The 

compound modes having nodal diameters, all decrease with Poisson's ratio 

whereas the pure radial modes Kup and Kop and the compound mode Koy which 

has a nodal circle and a nodal diameter, have a completely different depen- 

dence on 0, for each N, and hence, the comparison of these modes with the 

adjacent compound modes yields Poisson's ratio with good sensitivity. 

The theoretical K values (or frequency values) corresponding to the 

Nof the disk under investigation, are compared with the measured spectrum 

of resonances(Table 2.1 for steel and 2.2 for aluminium) and the lowest 

resonance is at once identified to be fans Since the value of Ky is ap- 

proximately twice the value of Kyo» fig mode can also be easily identified. 

From the K values, shown in Figs.2.1 to 2.6, corresponding to the n of the 

disk, an approximate value of 9, for which the £/K ratios of these two 

modes are equal, is determined. With the help of the other K values 

corresponding to this N and Oo, the mode numbers of the rest of the 

resonances can be identified. 

The relation between K and f is given by the equation K = cf, where 

c= (27@/C,) is a constant for a given disk, C being the plate velocity. 

The Kip mode is compared with Ky3) Koy with Ks and Kop with Kig and Kigt 

f,.- £ f,,- f. f= = 

— 13) x 400, ¢ a 15) x 100, (72#—¥) x 100 ana 
13 15 2R 

Thus, the ratios ( 

£..- £ 
(2B) x 100 can be calculated from measured resonant frequency. ‘he 

aR 

+&, where R is the frequency ratio mentioned sensitivity is defined as 

above. ‘The value of Poisson's ratio 9 for each ratio and for the n con- 

cerned can then be determined from the Figs.2.7 to 2.12, corresponding to 

the N of the disk under investigation. Although, the o values obtained 

independently from the four ratios may result in an ambiguity, there are 

certain advantages in doing so. For certain materials, for example, in 

thin aluminium disk, the resonances fir and ts are so close to each other
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Fig.2.8 Graph of R versus o for thickness—to-—diameter ratio =0.25.
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Fig.2.9 Plot of R versus o for thickness—to-diameter ratio =0.125.
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that they may not be easily detected and hence the sensitivity of the ratio 

(f4p7 f43)/%45 is very poor that it may not yield the correct value of o. 

One has to, then, go in for other ratios for determining the o of the disk. 

Further, the value of o obtained from one ratio can be checked with the 

value obtained from other ratio, which indicates the correct value of o. 

The value of the Young's modulus E of the material under test can 

be computed from the formula 

B= 4 1a” p(1- 0°)(£/K)* (2.5.1) 

where f and K refer to any particular mode and p is the mass density per 

unit volume. 

The experiments were conducted on disks of various materials and 

thicknesses. ‘The agreement between theory and experiment is excellent, as 

can be seen from Tables 2.1 and 2.2. Tables 2.3 and 2.4 show the values 

of 0, obtained independently from each ratio, for steel and aluminium, 

respectively over a wide range of thickness-to-diameter ratios. 

This method of determining 0 was first developed by the author for 

the measurement of variation of 0 with the magnetic field@ and was later 

used to measure the variation of 0, of thin disk material, with the 

temperature d C 

2.6 Discussion 

The results of the present thick disk theory are now compared with 

those of the existing theories and the experiment, in order to show the 

validity and the applicability of the present theory to disks of larger 

thickness-to-diameter ratios. Moseley's thickness correction'! to the 

natural frequencies of the disk radial modes is given by 

2 2 

Re Kop [; -¢l ae | (2.6.1) 

Iucey's thickness correction '@ to the fundamental radial mode of vibration 

in a thick disk is given by
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Yn | Mp | 243 ay ° Ax |) 15 (25 6 
. xioo 3 x100 19 

0.500 | 66.065 | 73. 828) -10.515| 0.2844] 98.995] 117-012] -15.400] - 

0.250 | 69.333 | 73-890 | — 6.168 | 0.2858] 118.111] 116.839] 1.103 | 0.2887 

0.167 | 69.715 | 73-874 | - 5.630] 0.2850 | 120.148] 116.886] 2.791 | 0.2875 

0.125 | 69.890 | 73.986 | — 5.536] 0.2840 | 120.863] 117.156] 3.164 | 0.2857 

0.100 | 70.070 | 74.111 | — 5.453 | 0.2842| 121.220] 117.273] 3.366] 0.2866 

0.000 | 70.524. | 74.425 | - 5.242] 0.2848] 121.417] 117.594] 3-251] 0.2791 

Yn | top fig sy g for Pig e 
x100 

0.500 | 116.80 | 180.27 | 54.340 | 0.2735 | 116.80 | 197.12] -68-770 | 0.2850 

0.250 | 173.40 | 178.16 | - 2.750 | 0.2750 | 173.40 | 197.62] -13.950 | 0.2834 

0.167 | 182.00 | 178.41] 1.980 | 0.2820 | 182.00 | 198.51] - 9.070] 0.2761 

0.125 | 184.48 | 178.65| 3.160 | 0.2830 | 184.48 | 197.77] — 7-210] 0.2874 

0.100 | 184.84 | 178.74] 3.310] 0.2780 | 184.84] 196.48] - 6.299] 0.2794 

0.000 | 185.47 |177-64| 4.219 | 0.2811 | 185.47] 196.90] - 6.166] 0.2830 

Table 2.3 The table gives the values of g derived, independently, 

from four frequency ratios, for steel disk, over a 

wide range of thickness—to-diameter ratios. 
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Vn | tip 3 4) 6 fo4 f45 a g 
100 100 

0.500} 64.895] 71.125} -8.750 | 0.3265] 100.856 | 113.895] -11.450 = 

0.334 | 69.190 | 71.500 ] -3.231 | 0.3360] 112.220] 112.760] - 0.481 | 0.3351 

0.250 | 70.158 | 71.734] 2.197 | 0.3334] 117-102] 113.315] 3.342 | 0.3397 

0.200 | 70.573 | 71.005 | -0.608 | 0.3330] 118.129] 113.045] 4.2487] 0.3366 

0.125 | 71-179 71.813 0.883 0.3340 119.948 113.126 6.030 | 0.3374 

0.080 | 71.346 | 71.935 -0.819 0.3325 121.180 113.840 6.450 | 0.3375 

0.000 | 71.405 | 71.995 0.820 0.3319 121.739 113.592 7.172 | 0.3441 

Yn for F138 ae s for fig = g 
x100 x100 

0.500 | 118.493 | 172.682| ~45.730| 0.3380] 118.493 | 192.475 | -62.440 | 0.3370 

0.334 | 150.261 | 170.523] -13.500] 0.3380] 150.261 | 190.100 | -26.170 | 0.3350 

0.250} 169.000 | 172.540] -— 2.100 0.3310] 169.000 | 191.415} -13.310 0.3390 

0.200 | 175.231 | 171.559 2.100] 0.3325] 175-237] 190.321] — 8.600 0.3377 

0.125| 181.217] 171.667| 5.270] 0.3250] 181.217] 190.200] - 4.960 | 0.3310 

0.080 | 185.183} 171.740 7-220] 0.3370 185.183 | 190.600] — 2.925 0.3425 

0.000} 186.227} 172.001 7.639] 0.3356] 186.227] 191.293] - 2.720 0.3331                 
  

Table 2.4 This table shows the values of oO derived from four 

ratios, independently, over a wide range of 

thickness—to—diameter ratios of aluminium disk. 
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Ds 2 3 
1 2K 

odes | eer a (2.6.2) 

where the superscripts M, L and T refer to Moseley, Iucey and the thin 

disk (generalised plane stress) theories, respectively. 

The frequency values of the fundamental radial resonance for 

aluminium disk, as predicted by eqns.(2.6.1), (2.6.2) and eqn.(2.2.14), 

are shown in Fig.2.13(a), together with the experimental results. The 

second radial mode frequencies for aluminium are shown in Fig.2.13(»). 

The corresponding results for steel are shown in Fig.2.14(a) and (b), res- 

pectively. It may be noted from the figures that the results of the 

present theory closely agree with the experimental results over a wide 

range of thickness-to-diameter ratios. 

Fig.2.15 shows the variation of theoretical frequencies of the 

first two compound modes, for n=1, with thickness-to-diameter ratio and 

these results closely agree with the experimental values, as may be seen 

from Table 2.2. The figure also shows that the variation for the second 

mode is larger than that for the first mode. This remarkable feature is 

held by the higher modes, for all n and is dealt with in greater detail 

in Chapters 4 and 5. 

The graphs of normalised K values of first and second radial modes 

are show in Fig.2.16(a) and (b), respectively, as a function of o and 

1/n . They predict the departure from the respective thin disk radial 

mode frequencies, as a function of thickness-to-diameter ratio and can be 

readily used to obtain the necessary frequency correction for a disk with 

a@ given thickness-to-diameter ratio. Alternatively, the exact K values 

for the radial modes may be computed from the frequency equation(2.2.14), 

for the desired 9 andn. 

It may be noted, from Figs.2.1 to 2.6, that the modes Kop and Ky 

have an entirely different dependence on 0, for different N's. For 

example, Kor decreases with 0 for 2 <n<8, but almost remains constant,
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They predict the departure from the thin disk frequencies 
and can be readily used for any frequency correction.
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for N>8. However, for n=2, it has a completely different dependence on 

0, as can be seen from Fig.2.1. The mode Kays on the other hand, decreases 

with o for n<4, but has a different dependence ono for n34. Thus, for 

N=2, the use of the ratio (K47-Ky5)/Ky5 may not yield the correct value of 

o, for the material under consideration (see Tables 2.3 and 2.4), because 

the variation of Ks with o is same as that of Koy » as shown in Fig.2.1. 

Since Kor has a different dependence ono, for n =2, it is appropriate to 

compare Kon with Kis or Koy . For this reason, the graphs of the percen- 

tage ratios (Kyp- Ky5)/Ky5 and (Kpp- Ko 4)/Ko4 versus o have been show in 

Fig.2.7(a), which may be used in place of the percentage ratio 

(K4- Kis )/Kys for n =2.0. 

Tables 2.3 and 2.4 show the Poisson's ratio of steel and aluminium, 

respectively, derived from the measurement of pairs of neighbouring reso- 

nances, over a wide range of thickness-to-diameter ratios. There is an 

excellant agreement between the values of the Poisson's ratio obtained 

independently from the four ratios. The method described in this chapter, 

for the measurement of elastic constants, is preferable and advantageous 

over the method proposed by Martincek!>, which uses a pair of flexural 

resonances, because the latter method requires different arrangements to 

excite two neighbouring flexural resonances, whereas in the method proposed 

here, all the resonances could be excited by means of a single arrangement 

described in Appendix A.2.2.
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CHAPTER 3 

CONTOUR VIBRATIONS OF ANNULAR RINGS 

3.1 Introduction 

The vibrations of solid bodies have been solved for only a few 

simple geometries and modes. Exact solutions of the wave equations of 

thin narrow rings vibrating in flexure or extentions eo and of thin 

dieke’*? vibrating only radially or only tangentially are readily obtained. 

The theory due to Backens*! for rings, although takes into account the 

shear stresses, is not valid when the thickness of the ring is large. ‘The 

numerical solution of compound modes of disks required the use of digital 

computers. A study of this mores indicated that the vibration problem of 

an annular ring, introducing a second boundary, would be soluble at a 

reasonable computational cost. ‘The frequency equations thus obtained are 

valid for the whole range of ring thicknesses. ‘The results obtained from 

the solution of these frequency equations would then identify the disk 

counterparts of the ring modes and vice versa. 

The disk resonances consist of two series of pure radial and pure 

tangential modes, in the absence of nodal diameters and a series of 

compound modes which have both radial and tangential components of dis- 

placement. ‘There are six series of narrow ring counterparts of these disk 

resonances, each disk mode moving to a particular ring mode as the dia- 

meter of the central hole is increased. Flexural modes approach zero 

frequency, the extensional series have finite frequencies and there is one 

series each of compound shear and compound plate modes, both of which 

approach infinite frequency as do the two pure torsional and radial modes. 

Typically, the finite frequency extensional ring mode series mast 

go to a disk series of which the pure radial mode is the first, but the 

counterparts of the higher modes are not self evident. Practically, 

useful data on the effect of a small hole in a disk or on a finite width 

ring, has hitherto been only available as approximations. ‘The eigen- 

values, in the form of a dimensionless frequency constant, have been



evaluated for steps of hole size from the disk case to that of an inde- 

finitely narrow ring and for a wide range of values of Poisson's ratio. 

The theoretical results are compared with the measurements of the spectra 

of a range of annulae and by exploring the pattern of vibrations with a 

probe pick-up. 

Table 3.1 shows a classification of disk modes defined by (m,n) 

where m is the number of nodal circles- a centre nodal point being in- 

cluded - and n, the number of nodal diameters. There are two series with 

no nodal diameters, the tangential modes where the first (1,7) has one 

nodal circle and the movement is purely rotational and the radial modes 

where the first (1,8) has a node at the centre and the movement is purely 

radial. Thus (1,7) and (2,R) are equivalents, there being no tangential 

equivalent to (1,R). 

In thin rings and disks it can be assumed that no stresses are 

acting along the thickness direction. The frequency is thus independent 

of thickness and consequently the radius is normally taken as the dimen- 

sion. In the case of annular rings, by taking the width as the dimension, 

the modes which move to infinite narrow ring frequency, approach a cons- 

tant K value. Similarly, for the modes which move to zero frequency the 

simplest presentation of results is obtained by taking (mean radius)*/width. 

The theoretical results usually appear in terms of plate or shear velo- 

cities. By choosing an appropriate velocity, the K value can be made 

independent of Poisson's ratio for a particular series of modes as the 

thin ring condition is approached. Rod, plate and shear velocities are 

appropriate for extensional, radial and tangential modes, respectively. 

fables 3.2 and 3.3 summarise the main features of disk and narrow 

ring modes and include the corresponding frequency equations. Where the 

motion is predominantly radial, a radial drive is used and tangential 

vibrations require an angled or a tangential drive. The drive point 

normally becomes an antinode for the drive direction. Nodal lines refer
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fable 3.2 Characteristics of disk resonances 

  

Mode Series Typical nodal patterns Remarks 
Source of frequency 

term 

  

The dynamic balance 
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cist erie eet, pene Weegee Nao") Formal solution by 

Love. 

Mode (1,T) 

The dynamic balance Solution of equation 
condition does not KJ (K_)/J,(K_) = 1-0 
require a nodal circle.) P° P 1D 
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" ; a (3.4.1), where 

This series consists 
of (1,1) and higher K, = wale, 

Compound’ order modes. > 7 va/C 
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as 

to radial or tangential movements. In general, a node for one component 

of motion is an antinode for its orthogonal counterpart. The phase of 

the various regions is indicated by arrows or polarity signs. 

This chapter is a continuation of the work of Sharp, who obtained 

theoretical and experimental results for the flexural series of resonances 

in an annular ring. ‘The lower order ragiaics and Poretenai modes were 

already well known. ‘The author's contribution was to develop the experi- 

mental techniques by using tangential and angular drives and also a double 

wire drive. The former enabled the finite frequency series of resonances 

to be identified and the latter was particularly useful in exciting the 

weak higher order modes. The theoretical results for the finite frequency 

and higher order modes were also obtained. 

It is shown in chapter 4 that the frequency equation (3.2.1) used 

by the author, for obtaining the numerical eigenvalues, can be derived as 

a limiting case, from the thick annular disk frequency equation(4.2.3), 

by equating the thickness-to-diameter ratio to zero. Several limiting 

cases obtained, by simplifying the frequency determinant (3.2.1) using 

various approximations, were also investigated. This resulted in the 

elucidation of the finite frequency mode series and the higher order 

shear and plate mode series and the resolution of the inner boundary node 

paradox, The completed work has been published jointly’. 

3.2 Spectra of In plane Vibrations 

A general solution to the wave equations of motion may be obtained 

by first establishing the differential equations for various wave motions 

in the appropriate coordinates, cylindrical in this case. The boundary 

conditions for the system, in this case that the radial and tangential 

stresses must vanish at the inner and outer perimeters, are then used to 

obtain the frequency equation for compound modes of vibration. The 

frequency equations for radial and tangential modes of vibration are then 

obtained by setting n=0, in the compound mode frequency equation, These
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will consist of simultaneous algebraic equations containing amplitude 

constants and the eigenvalue (K) giving the frequency in terms of the 

dimensions of the resonator and a wave velocity. There will be an infinite 

number of numerical solutions, each corresponding to a mode of vibration. 

If required, the amplitude constants can also be evaluated to obtain the 

eigen function of the mode expressing the components of stress or strain 

throughout the resonator. 

3.2.1 Frequency Equation for Compound Modes 

In Appendix A.3.1, the procedure for obtaining the frequency equa- 

tion is outlined for compound modes. The frequency equation is then : 

obtained as: 

a a a a ad 9242) 943) 9944 

7 Boy Sag Ses Say 
R(K’) = =0 G2.) 

a. a. a. a. 
31 32 33 34 

a a a a At Neh 7430 244 

where eee J,.(K7) 04, (K") = n(n+1) + (x7 0)?/2} ; 

ap ¥, (7 ){4, (K") = n(ne1) + (2 0)?/2} , 

ai37 8 J,( KO) {Mm (KT9) - (m1), 

ayy 7 7 Y,(kTe) (Ke) - (n41)} 
a= a Jy) 4, (K") - (n+1)} 5 

ayn 2-0 YR L () ea(net) ae 

aps = I, (Keyan, (x70) ~ n(nst) + (K'0)°/2} , 

254° YC @)(1, (K"9) ~ n(n4t) + (eee, 

» " ' 5177 (KIO (KY) = n(nst) + (RT 0)*/23 

a ¥ OP YE (aM) -n(ntt) + (XTy0)2/2} , 

J,(K'y0) (Kyo) - (ne1)} » " 5 

33 

© a s o ¥, (KYO tb, (K70 ) = (avt)}
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ayy ICKY) OLY) = Ge 

B45 =-n ¥ (Ky L,(K"y) (n+1)}, 
(3.2.2) 

n(nit) + (KTyq )*/2} , 1 ays = J,(K yo )EM,(K" yo) 

2447 ¥ (KYO ){L (Ky 6) - n(n+1) + (KT Yq )?/2} 

It may be recognised that eqn.(3.2.1) is the frequency equation for the 

compound modes of vibration in a thin disk with a central Hole? 138 This 

equation has an infinite number of numerical solutions for each n, designa- 

ted by isda » each representing a mode of vibration. 

3.2.2 Frequency Equations for Radial and Tangential Modes 

The frequency equations for pure radial and pure torsional modes, 

for which the displacements are independent of 6 and n=0, can be derived, 

as a limiting case, from eqn.(3.2.1). Putting n=0 in eqn.(3.2.1), the 

frequency equation degenerates into 

  

    

Dy. D, = 0 (a253) 

where ep ren, 
D, - eee ana Dara eae (3.2.4) 

3, P50 3 Pa 

where . . 

by = I (EGE) == gS G 

by YC Ly(K) - (1 - Fg 

dy, = J,(KTY) OW (Ky) - (1-0 
7 m - 

by = (Ky) (Ky) - A -o)} (3.2.5) 

bys = J4(K'O){M, (XQ) - 2} 

boy = ¥,(Ko)L,(K'@) - 2 

by3 > 5, (Ky 0) 04,( yo) - 2} 

byt ¥4 (KY 9) {4 (Ky 0) - 2} 

Then, the frequency equations for the radial and tangential modes will be 

D,=0 (3.2.6)



and D =0 , (3.2.7) 

respectively. Thus, eqn. (3.2.3) indicates that the extensional and shear 

modes of vibration can exist uncoupled in the case of axially symmetric 

motion. 

The numerical solutions are obtained by evaluating frequency eqns. 

(3.2.1), (3.2.6) and (3.2.7) for fixed values of n,y and g with successive 

steps of K, This method was used to identify and follow the frequency 

variation of various modes as y and g values are changed. Fig.3.1 

illustrates the frequency variation of compound modes, for n = ts yy? 0.9 

and o = 0.3. Solutions are obtained for values of 0 from 0.0 to 0.5 in 

steps of 0.05 and for y values from 0.0 to 0.9 in steps of 0.2 and are 

given in Appendix A.3.2. he precise values shown in the various tables 

in Appendix A,3.2 were obtained by interpolating between positive and 

negative values about the zero value of F(K) by the Newton-Raphson method, 

@escribed in Chapter 2, If required, the amplitude constants can also be 

evaluated to obtain the eigen function of the mode expressing the compo- 

nents of stress or strain throughout the resonator. 

3.3 Comparison with Experimental Results 

Six resonators progressing in form from a disk to a narrow ring 

were cut from steel and aluminium rods of diameter 7.6 cms. and 5.0 cms., 

respectively. By driving them at an angle and radially, as described in 

Appendix A,2.2, all the lower order resonances and few higher order 

resonances can be measured. The degree of coupling to a particular 

resonance depends on the direction of vibration at the point of drive. 

A radial drive gives good coupling, if the radial component of the parti- 

cular mode is large, while an angular drive enables the excitation of 

torsional modes, for which the shear component is large. When two 

frequencies are close together, a double drive at different points can, 

by phasing, suppresses one mode in favour of the other. Employing a 

probe of fine wire as a receiver, the various resonances could be easily
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identified. The detailed vibration pattern across the face of a resonator 

can also be explored with this probe. As a node is traversed, the ampli- 

tude falls to zero and then rises with reverse phase. 

The data obtained from the experiments on steel and aluminium 

disks, are tabulated in Tables 3.4 and 3.5, respectively, together with 

the theoretical x values taken from the tables given in Appendix A.3.2. 

The frequencies shown in the tables are as observed in spectral order. 

Poisson's ratio and the plate velocity were calculated from the (1,3) 

and (1,R) disk modes, using the results given in Reference 2 and the 

method described in Chapter 2. This enabled the ce values to be obtained 

from the tables. Then, the constancy of the value of S calculated for 

every mode shows the agreement between theory and experiment. The theory 

is for an indefinitely thin specimen whereas the diameter-to-thickness 

ratio of the disks used was about 12. Certain modes such as the (1,R), 

(2,R) and all lower and higher order compound modes are sensitive to 

thickness while the flexural series of modes (1,2),(1,3) etc., are not 

(see Chapters 2 and 4). It may also be seen that these tables completely 

confirm the close agreement between the theoretical and experimental 

results for the flexural and finite frequency extensional modes, over 

the whole range of hole size, but the higher order resonances follow the 

theoretical values only over a sufficient range of hole size. In éffect, 

the result is a validation of the method of measuring frequency and lends 

confidence to calculated xr values beyond the range of direct observation. 

3.4 Li 

  

iting Cases 

The two limiting cases of the annular ring are a thin disk and a 

thin ring. ‘The frequency equations for these cases can be derived from 

eqn.(3.2.1), by making suitable approximations. This is helpful in 

classifying the various disk and ring resonances.
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3.4.1 Thin Disk Frequency Equations 

The limiting case obtained when y is equated to zero, corresponds 

to a thin disk. For this case, as y>0, ¥, (Ky) >© and x (0) eco 

Thus, oy dividing the elements a,, , i= 1 to 4, by Y (KY) and the ele- 

ments a j= 1 to 4, by ¥ (Kye), the frequency equation (3.2.1) 
43” 

simplifies to 

= 0 (3.4.1) 

  

  

oo § 23 

where the elements of the determinant are given in ean.(3.2.1), andn21. 

The above equation represents the frequency equation of compound modes of 

?, Holland'© end Anbati-. vibration in thin disks, as given by Tove’, Onoe 

The frequency equations for the axisymmetric vibrations(i.e., pure 

radial and pure torsional), whose displacements are independent of 6, can 

be obtained by equating n, in eqn.(3.4.1), to zero. Then, eqn.(3.4.1), 

reduces to 

biz + bp = 0 (3.4.2) 

where the elements Day and by are given in eqn.(3.2.5). 
3 

The frequency equations for the pure radial and torsional modes 

are, therefore, given by 

uu M, (K )= (1 -o) (3.4.3) 

and M,(K"6) = 2 

respectively, where the wave velocities associated with these modes are 

the plate and the shear velocities, respectively. Equations (3.4.1) and 

(3.4.3) can be identified to be same as those derived from the theory of 

generalised plane stress’??? '9, 

3.4.2 Vibrations of a Thin Circular Ring 

The frequency equations for the vibrations of a thin ring, which 

can approach zero, finite or infinite frequency, can be derived, as a 

special case when y+1, from eqn. (3.2.1). For a thin ring, Y can be



written as 

y= (1 - @y) (3.4.4) 

where dy is small such that dy+0, as y>1. Then, using the Taylor series 

expansion for the Bessel functions, we obtain 

2,4 (1x) = (1 - (n-1) dy} Zz, (x) + x dy 2 (x) 
(3.4.5) 

ZC) = (1+ ay) 2x) ~ x ay 2, 4(x) 
where Z = J,Y and x= am K9 and it should be noted that the second-order 

terms in dy are neglected, since dy<<1. Thus, those of the elements of 

the determinant in eqn.(3.2.1), which involve y, become 

7.2 T 2 
ag, = (Kk )[(1+ n dy) fant) - GEO 34 ar(140 

- (1+ €Y,) Wey] 

2 z(K"6) [n(4+ 4@y) W (Ke) - {n(n41) + av} ] eas 

aye Z(K) [tn(n4t) + a¥,}- n(14 €y) wey] 

7 \2 
2457 Z,(K" 9) [(1+ ay,) W,(K"9) - (44 n @Y){n(n1) - cory 

where Z= J for i=1, j =3 

= Y for i=2, j =4 

and Z, (x) Ke 2 
-1 2 (xo 

re) Ze) Teh ORES rely 0 (3.4.7) 

ay, = n dy{n(ntt) - Gear ay, =n dy{n(n+1) - (x 6)?3 

Substituting eqns.(3.4.6) and (3.4.7) into eqn.(3.2.1) and simplifying, 

yields the frequency equation, for dy ~ O (i.e.,Y=1), as 

(x)? - A(1=y)? n2(n2-1)2(1-0) ody 4(n?41) (1-02) 
3(149)4 (n°41) (sy)? 

C0 yy, 4g (R)- Jyg (EYE) } 
ui 7. 1 {I (K oY, (K'8) - JK o)¥, (« 0) } =0 (3.4.8) 

24 
Using the following Gray and Mathews theorem for Bessel functions
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(In(x)¥,_4(2) ~ Jpg (2Y, (2) } = 2 

ean.(3.4.8) becomes 

22,2 ..2,, 2 
ee 

3(14y)4(n°41) 
deesy 2 2 Be} ate ation fast ae 

(1+Y) 3(n“41) 

2 2 oIeA. ae 0 pee olen a2 2 or [« eae O05 feeey KT @ Gory V(n41)(1-0") 

(3.4.10) 

It may be ascertained that equations (3.4.9) and (3.4.10) are the 

frequency equations of the low frequency in plane flexural and the finite 

frequency extensional vibrations, respectively, of the thin rings But, 

eans.(3.4.9) and (3.4.10) do not predict the high frequency extensional 

vibrations of the ring which tend to infinity, as y+1. However, the 

frequency equation for high frequency vibrations can be obtained by 

assuming that eh asy+1. Then, using this condition in ean. (3.2.1), 

yields the product of two 2 x 2 determinants, as 

- = 0 (3.4.11) 

41 42 55 56 

T T. ue 
where Y,, = J.(K ne Yyo = YK oF Yyy 7 IK, Y4o * ¥(« /) 

~ Y 

T v dy T Yps = Sq(K™ Oy og = q(K"O)s Yog = Jn(KYO)s Yop = Ya CK Ss 
3.4.12 

Substituting eans.(3.4.12) and the following asymptotic expansions, 

valid for high argument values of Bessel functions, 

J) Se [cos (x - a) + sin(x - ua ; ee 

1 ; nt nt 
¥,(*) Slee sin(x - 2 ) - cos(x - ao i, 

in ean.(3.4.11) and simplifying, yields the frequency equation for the 

high frequency modes of the ring, as 

sin KT(1-y), sin K'Q(1-Y) = 0 , (3.4.14)



which leads to, 

sin K'(1-y) = 0, d.e,3 K(1-y) = pt, p= 142,30. (3.4.15a) 

or sin K 1-7) =0, i.e; KO (1-7) =a 4 @ = 1,2; 35000 (3.4.15b) 

Eans.(3.4.15a) and (3.4.15b) show that the high frequency compound vib- 

rations are effectively of pure plate or pure shear waves, respectively. 

This can be appreciated as for large x values, the nodal circles are 

indefinitely closer together than the nodal radii, 

Similarly, it can be shown that the first radial mode of the 

annular ring, predicted by eqn.(3.2.6), tends, as y* 1, to the ring 

frequency given by 

T 2 /- 2 
= -¢O 

a C+) : 

which is same as eqn.(3.4.10), when n=O, The second and higher radial 

: (3.4.16) 

modes in the disk progress to high frequency ring modes, given by eqn. 

(3.4.15a) and all the disk torsional modes tend to the ring high frequen- 

cies given by the eqn.(3.4.15b). 

3.5 Discussion of Results 

A complete picture, summarised in Table 3.6 is now available of 

the ways in which disk and ring resonances constitute the limiting cases 

of annular ring resonances. The pure radial and pure torsional modes are 

solutions of eqns.(3.2.6) and (3.2.7), respectively, where the associated 

velocities are those of plate and shear waves, The frequency increases 

rapidly with hole size, the nodal circles are crowded together, and the 

energy arising from the curvature becomes less and less, As a result, 

the edges of the ring become antinodes and the width of the ring, a(1-y), 

becomes an integral number of half wavelengths, the integer being the 

number of nodal circles. Putting a(1-y) = pr/2 , gives the ratio of 

phase velocity C. » to plate velocity 0 for radial modes, as 
phase 

uy 
c K (1-y) 
aphese te (3.5.1) 

C pT 
P
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Table 3.6 Correspondence of disk and ring modes 

  

  

  

  

  
  

  

  

    

Torsion Radial 
(Shear) (Plate) 

piek 1, 24%) 3,0 oes. Ask 35h . WSR 

Ring ioe! 2 3 PF x f 2 

Flexural Pcie 

aoe Te Ome 3 la ee Wek yd 252 aces) we 

Ring nae 3 4 am EB 2 2 

Compound Shear 

Disk Byes. OSes 4,1 5,2 5,3 -- 

Ring gett a= 2 

Compound Plate 

Disk Se eau eh eine cre 5,1 6,2 6,3 

Ring Pees z saint’      
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and the ratio of a to the shear velocity Cr » for the torsional 
hase 

modes, as 

7 
Coes 7 K'0(1-7) 

shear 
a (3.5.2) 

The modes (1,7) and (2,R) each having one nodal circle are the lowest 

modes of their series. Figs.3.2 and 3.3, which gives C. /C , where C 
phase’ 

is either c, or cS » Show the ways in which the shear and plate velocities 

are approached as y increases, 

It may be seen that in both cases, /C goes to unity for all 
phase 

modes, establishing that the waves travel with the velocities appropriate 

to the wave equations and are not dispersive. The curves are not of a 

particularly regular form and the plateau which occurs in Fig 3.2 is a 

feature of a similar perturbations in other modes, In the case of the 

velocity ratios, for torsional modes, there is no dependence ono, but 

this is not true for radial modes, as can be noted from Tables 3.7 and 

A.3.2. 

The compound modes of disks which have nodal diameters but no 

nodal circles, (1,n) are the direct counterparts of the flexural modes 

of rings, being the solutions of eqn.(3.4.9). Fig.3.4 shows the progre- 

ssion, for steel, from the finite frequency disk resonances to zero 

frequency resonances of the thin ring. Table A.3.3 gives the KS values, 

where x 
0 

of 0 andy. As the narrow ring region is approached, the frequency 

= wa/Cy - GG being the longitudinal velocity, for the full range 

becomes less dependent on Poisson's ratio and the slope finally follows 

the Hoppe equation@? of Table 3.3. 

The finite frequency ring modes and their disk counterparts are of 

particular interest, It is reasonably evident that the 1,R disk mode 

becomes the n=0 ring-extensional mode, but, the disk counterparts of the 

higher n value ring modes are not self evident. In early experiments 

using radial drive, the transformations from n=0 to (1,R) and n=1 to (1,1)



  

1.6 

1.4 
c 
phase    (1,7); p=1    

   

      

Cohear 

1.2 

1.0) 

0.8 ! ! ! : 0.2 0.4 0.6 0.8 1.0 
Se oe 

Fig.3.2 In pure torsional modes, the wave velocity approaches that of 
shear waves for the narrow ring. This velocity has no depend- 
ance on oO other than as a shear velocity. 

  

1.6) 

1.4 

Cohase    (2,R); pat 

      

Slate 

1.2 

1.0 

! \ 1 1 
0.0 02 le 0 0.4 vi > 0.6 0.8 1.0 

Fig.3.3 The first two pure radial modes for steel (ox 0.3), p=1 and 2, respectively. The velocity has a small dependence on g outside the plate velocity term.
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modes were readily followed, Higher modes required drives with a tangen- 

tial component. This extensional character of the strain results in large 

hoop stresses whereas in the distortion modes the stress is mainly 

flexural, ‘The eigen functions of the ring (Rayleien'?) show n to be the 

ratio of tangential to radial displacement and in disks a similar feature 

appears. The experiments established that the n = 2,3,...,n, ring modes, 

as given by ean.(3.4.10), have the disk counterparts of (2,2), (2,3),..+5 

(2,n) modes, For disks, there is one nodal circle but, as the hole size 

increases it remains in the same position. Consequently, as the inner 

boundary pierces the node, the vibrational amplitude goes to zero, 

reverses in phase and the inner and outer boundary amplitudes finally 

becomes equal as the extensional ring condition is reached. The results 

for steel are shown in Fig 3.5 and the complete data is given in Table 

A.3.4. With the exception of (1,R), the curves have similar undulations 

which are thought to arise from the nodal circle effect described above, 

The (1,R) disk frequency is greater than that of the (1,1) mode and the 

curves cross at a low Y value as the frequencies move to the 6 = 1 and 

iS = /2 ring values, respectively. The crossover occurs for all values 

ofa, the position being y= 0.372 and 0.143 for o =0.5 and 0.0, respec- 

tively. The final rise in frequency as the narrow ring condition is 

reached becomes more prominent at higher modes, 

There remains those compound modes which, like pure torsional and 

plate modes, approach infinite frequency as Y>1, the asymptotic values 

being the solutions of equation (3.4.15a) for plate waves and equation 

(3.4.15b) for shear waves, where p and q are the number of nodal circles. 

The way in which the limit is approached is show for two plate modes - 

(3,1) and (4,2) - and for two shear modes (2,1) and (3,2) - in Fig.3.6. 

Values of 5 were obtained by solving eqn.(3.2.1) for g = 0.25 for all 

: = K', For the two 

plate modes, the asymptotic value of Kw is wT and for the shear modes, it 

four modes and a -y) is plotted against Y, where K
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Fig.3.4 The flexural modes for steel (o = 0.3), showing that they 
approach to zero frequency for narrow rings. 

have no nodal circles. 
These modes 
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Fig.3.5 In the finite frequency modes, the dependence of frequency on 
Poisson's ratio falls to zero in the narrow ring condition, the 
values being in the ratio's 1:/2:/5:/10. The movement is 
purely radial for the first mode and becomes increasingly 
tangential for higher modes.
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o = 0.25 
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3.0 

2.0       | ! 1 1 
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Y> 

ues for the (3,1) and (4,2) plate modes and the 

  

Fig.3.6 The Ki(1-y) vs 

(2,1) ana (3,2 
asymptotic values reached are n and no,/C, , establishing the 

   

      des plotted as a function of y. The 

compound plete and sheer mode series, respectively.
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is equal to 17/1.633. The ratio of C/c, is 1.633 for o = 0.25 giving a 

Kr(1-y) value of 7 , where x = x9 and p, the mumber of nodal circles, 

is therefore unity for all four modes. The eigen values for these four 

modes are given in Table 3.8, for y = 0.9. 

Other modes were investigated for y = 0.99, 0 = 0.25 and the 

results are summarised in Table 3.9 which gives the Conasel” values of 

eqn.(3.4.15). The original disk modes are identified by the (m,n) values. 

The lowest mode is the (2,1) which heads the series (2,1),(3,2),(3,3),0.- 

and higher series are (3,1),(4,2),(4,3),-.. and so on, The prefix letter 

gives the wave type and the suffix number the p value. Thus, the (5,1) 

disk mode with four nodal circles becomes the p = 2 narrow ring mode, 

two circles having been lost. The departure of the wave velocity ratio 

from unity is very small. It changes slightly with the number of nodal 

diameters and was found to have a similar small dependence on Poisson's 

ratio. Table 3.10 shows the actual progression of GC - yY) solutions 

of eqn.(3.2.1). The disk solutions are in the sequence (2,1),(3,1),(4,1), 

eee, but, because of the difference between shear and plate wave velo- 

cities, the sequence is different for narrow rings. For example, the 

(5,1), a plate mode has a higher frequency than the (6,1), a shear mode. 

The disappearance of nodal circles as the hole is developed in 

the disk occurs in the cases of the (2,1) and higher finite frequency 

modes and the higher compound modes. The phenomenon was observed in 

detail for the (2,1) mode by using rings of increasing hole size and 

investigating the phase and amplitude at the ring boundaries with a pick- 

up probe. The nodal circle did not change position significantly with 

hole size and disappeared as already described earlier in this section. 

This is an apparent paradox, as for a particular hole size, the inner 

boundary can be a node, meaning in this case that there is no radial 

movement (& re? 0). In terms of the boundary condition 1... given by 

eqn.(A.3.6), the radial stress associated with the (9& /2r) term is
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For all o's 
  

  

  

Y 

Mode 0.00 0.10 0.30 0.50 0.70 0.90 1.0 

Kyp | 5+1356 | 5.1424 | 5.4703 | 4.8138 | 10.720 | 31.482 | Infinity 

Kop | 8-4173 | 8.4574 | 9,6003 | 12.856 | 21.070 | 62.865 | infinity                 

Table 3.7 The (1,1) and (2,T) pure torsional modes, K, = wa/C.,- 

Note that they are independent of o. 

  

  

  

  

  

Mode K'0 (1-1) x’ (1-¥) 

S 6 Bo Rt bie 

0.0 3.1531 3.1678 3.1440 3.1421 

0.1 3.1534 3.1690 3.1435 3.1409 

0.2 321537 3.1701 3.1428 321393 

0.3 3.1540 3.1712 3.1419 3.1367 

0.4 3-1543 3.1723 3.1398 3.1301 

0.5 3.1545 3.1828 3.1103 3.0790           
  

Table 3.8 The limiting values approached, for (2,1), (352) shear modes 

and (3,1),(4,2) plate modes, for y=0. 90. 
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2 3 4 5 
n 

$1.000003(1) PO.999998(1) $1.00000007(2) P1.000004 (2) 

L \ \S 
Finite i $1.000051(1) ) PO.999984(1) s ans 

frequency $1.000159(1) PO.999970(1) s (2) 

modes $1.000275(1) PO.999939(1) 3 (2)   
        

Table 3.9 Wave velocity ratios for a narrow ring, (y= 0.99). 

  

  

      

Nodal circles 

(2) : 2 ‘ 

Plate 3-14(3,1) 6.28(5,1) 9-42(7,1) 12.57(9,1) 

Shear 1.92(2,1) 3.85(4,1) 5-77(641) 7-70(8,1) 

Table 3.10 Narrow ring m-9 values, y = 0.99.
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cancelled out by the ( = Ss ) term which produces the hoop stress. 

There is thus no net radial force and therefore no radial movement. 

To summarise, every disk mode has been followed to its narrow ring 

counterpart which can approach zero, finite or infinite frequency. The 

general solution of the annulus given in equation (3.2.1) contains the 

25 Rayleigh’? and Hoppe ~ ring resonances and the FPoisson-°, Love and Holland 

disk resonances, Five figure Tables of frequency eigen values for a full 

range of annulus geometry and Poisson's ratio are available with the 

author, 

A feature of the change from disk to thin ring is the disappearance 

of one or more nodal circles in certain cases. Typically, all modes with 

one nodal circle and two or more nodal diameters loose the nodal circle to 

become the finite frequency extensional ring series. ‘The m = 2,4,..., 

compound mode series of disks will move to shear ring modes having gq = 1, 

2,0, Circles and the m = 3,5,... series become p = 1,2,..., plate ring 

modes. This creates the apparent paradox that the inner free boundary of 

an annulus can be a node, In fact, the force at the edge arising from a 

radial strain is balanced by the hoop stress arising from a tangential 

strain,
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CHAPTER 

SPECTRA OF THICK ANNULAR DISKS 
  

4.1 Introduction 

In the previous chapter, the analysis of contour vibrations in @ 

thin disk with a central hole was considered. In this chapter, the 

theory developed in chapter 2 is extended to deal with the in plane 

vibrations of a thick annular disk and the numerical results compared 

with the experimental frequency measurements carried out on disks of 

various thicknesses and hole sizes. 

The exact and approximate solutions of the wave equations of thin 

23,26,27,28,29, 30 cylindrical shells vibrating in flexure or extension and 

of solid cylinders 4931932953 vibrating only longitudinally or only 

tangentially, can be readily obtained. Rasband'4 has recently given a 

solution for axisymmetric and nonaxisymmetric vibrations of a free 

cylinder or a disk, but the resulting frequency equations are very comp- 

licated and neither the numerical nor the experimental results were given. 

Shaw?4 had provided experimental data(resonance frequencies) for radial 

and edge modes of vibration in barium titanate disks, for thickness-to- 

diameter ratios in the range 0.15 to 0.80, tut these results are not 

valid for materials other than barium titanate or for disks with 

thickness-to-diameter ratios less than 0.15. These results are also not 

of mch use for other modes of vibration such as compound or torsional 

vibrations. Further, in these papers, the case of nonaxisymmetric 

vibrations of a thick disk with a central hole, was not considered. 

The solutions for nonaxisymmetric vibration of thick disks is 

given in chapter 2, which takes into account the coupling between contour 

and thickness modes of vibration. A study of this work indicated that 

the general case of a thick disk with a central hole, introducing a 

second boundary while increasing the number of elements in the frequency 

determinant from nine to thirty six, can be solved at a reasonable cost 

in computer time. ‘These results would then identify the thick disk
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counterparts of the shell modes and vice versa, 

The resonances in a thick disk consist of one series each of 

radial, tangential and compound modes, The radial modes have radial and 

axial components of displacement, the tangential modes have the tangential 

component and the compound modes have all three components of displacement. 

There are nine series of shell counterparts of these thick disk resonances, 

each thick disk mode moving to a particular shell mode as the hole 

diameter is increased, There are two series of pure radial modes (radial 

plate or shear and radial compressional), one series of pure torsional 

modes, as in the case of a ring, both approaching infinite frequency, one 

series of flexural modes which approach zero frequency, two series of 

extensional modes which have finite frequencies and one series each of 

compound plate, compound shear and compound compressional modes,all 

approaching infinite frequency as do the pure radial and torsional modes, 

for y>1. This classification of thick disk/shell modes is shown in 

Table 4.1, in which the modes are defined by (m,n), where (m-1) is the 

number of nodal circles and n, the number of nodal diameters. The two 

series with no nodal diameters are the tangential modes where the first 

mode (1,1), with purely rotational movement, has one nodal circle and the 

radial modes where the first mode (1,R), with radial and axial movement, 

has a node at the centre. 4 

Various limiting cases that can be obtained from the frequency 

equations of thick annular disk are shown in Fig.4.1, together with the 

corresponding velocities and wave-numbers. 

4.2 Compound Modes 

The three dimensional equations of motion and the choice of the 

components of displacement are given in Appendix A.2.1. A general 

solution to these wave equations of motion may be obtained by reducing 

them to an equivalent two dimensional equations of motion, also described 

in Appendix A,2.1. The boundary conditions on the cylindrical surface
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Fig.4.1 Cylindrically symmetrical resonators showing the various 
limiting forms.
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of the system, in this case that the radial, axial and tangential stresses 

must vanish at the inner and outer surfaces, are then used to obtain the 

frequency equation for compound modes of vibration, This will consist 

of simultaneous algebraic equations containing amplitude constants and 

the eigen value(K) giving the frequency in terms of the dimensions of the 

resonator and a wave velocity, There will be an infinite number of 

numerical solutions, each corresponding to a mode of vibration, If 

required the amplitude constants can also be evaluated to obtain the 

eigen function of the mode expressing the components of stress or strain 

throughout the resonator. 

The derivation of the wave equations of motion in terms of the 

dilatation A and the rotation @ is given in Appendix A.2.1. The 

solutions of these equations are given by eqns.(A.2.10). Then, following 

the same procedure as given in Appendix A.2.1, the radial, tangential 

and axial components of the displacement can be derived, respectively,as 

  

Bb E ag, (ar), hy ay, (ar) | 3, an (8x) | 2, ak ( 8) 

dr dr dr dr 

+ rg (vz) + ee cos n@ 
a r 

2S 

Ea =| Soe + M2 ¥,(a r) + al 1,(8 2) + M2 (62) 

(4.2.4) 

+C are 2) +C ay 2) sin n@ 
ee a 
dr dr 

E,={4, 9, JC ar) + A, ¢, ¥,(0 2) - 8, $5 1,(8r) - Bd KC Br)}cos no 

where ¢, and $5 are given by eqns.(A.2.16), a, 8, ¥ are given by 

eqns.(A.2.9), n is the circumferential order, J and Y are the Bessel 

functions, I and K are the modified Bessel functions, of first and 

second kind, respectively, and Aus Ags By Boy Cys and C5 are the ampli- 

tude constants. In the above equations, the time factor exp(jwt) has
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been omitted for convenience. 

The boundary conditions for a disk with radius 'a', thickness 'h' 

and a concentric hole of radius 'b', are 

Ty =o at re=a, ro =o at rab 

T.g= 0 atr=a, Tg2 0 atr=b (4.2.2) 

rato. at ra=aa, Deno atre=b 

where the stress resultants 1, T., and T_ given by eqns. (A.2.3), have 
rd 

been expressed in terms of the displacements. The frequency equation 

for compound modes of vibration Sen then be obtained by satisfying the 

boundary conditions given in eqns.(4.2.2). Thus, substitution of eqns. 

(4.2.1) and (A.2.3) into eqns.(4.2.2) yields the compound mode frequency 

equation, formed by the determinant of the coefficients of the amplitude 

constants A. Bas Cas ADS By and Coy as follows: 
yy 2 

F(K) =1%5! =0 3; i,j = 1%06 (4.2.3) 

where, X. 41 =~ Tq(8)LK,(6) - n(net) + x707/2} , 

Xyp = — ¥,(6){1,(6) - n(n+t) + K°o/2} , 

Ky = - 7,(A8 EN, (A8) - n(net) + K°0*/2 }, 

Xyq 7 Ky(A8) (48) + n(net) - K°0°/2} , 

Xs =n J, (KO) fi (Ke) = (nt+1)} ; 

Xieun ¥,, (Ke) {1 (Ke) = (nt+1)} , 

Xo, =~ 2 J, (8){M (5) - (mH1)} 

Xoo = - n ¥,(S){1,(6) - (n+1)}, 

X53 = 

Xo, BK n6 {PCs ) + (net) 3 

n 1,6 ){N,0.46) - (net) } 

ie J,(KO){M, (KO) - n(net) + K767/2} 

Xx. 26 ¥ (Ko) 1 (Ke) - n(n+1) + K0°/2} ’
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2 X5q = Jq(8)(H(8) - 23 (67 - K*/c) , 

Kop = Yq(6E,(6) - 2} (67 ~ K/c) , 
(4.2.4) 

Ky = - T(A8 Mm, ( 08) - nh (0282+ K/o), 

Ky = KC ASB (AS) + nk (02624 W/o), 

pie 36 me 

and the remaining eighteen elements can be obtained from the corresponding 

elements given above by replacing 6, X6 and K by y6, yAé and YK, 

respectively, where K is the required eigenvalue, which can be obtained 

from the solution of the frequency equation, 6 and AS are the wave- 

numbers given by eqns.(2.2.7), n= 2a/h , is the diameter-to-thickness 

ratio, Y= v/a ,» is the ratio of the inner radius to the outer radius of 

the disk, KO= va and 

M(x) = x J,_4(x)/J,(*) , 

L(x) = x Y_,@)/¥,(*) » 

(4.2.5) N(x) = x 14(0)/T,(2) » 

P(x) = x K_4(x)/K (x) « 

The case when 6 is imaginary: 

When 4767<0, the elements of the determinant which involve \6, 

become 

X3 =o J (X6 ){M(X6 ) = n(n+1) + K°0°/2} : 

Kyo Yy(XS M4,(HS) ~ n(nat) + 70%/2}, 

Xox =-n I, ){a, (X6 ) - (n#1)} , 

Xp. ¥0%6 {2X8 ) - (n+1)} , 

X55 ~ J_(K6 )int,( 8) - n}(X262- W/o) + 

Xyq = Yq( TS Mt, N6) - m}(N262- K'/e) 

Xq3 Uy YAS) OH (YRS )= n(nat) + yk 67/2) ,
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os
 u ag 77 Yq 76 UE, (yXS) = n(m4t) + y*K07/2} 

Ko, =m TL (yXS AM, (yXS) - (oH) (4.2.6) 
oy 2-2 ¥(yX6 ){B, (78) - (n41)} 

Xgy = Ty VSM (YRS ) = ad W262 w/e), 
Key = YC YN EL, (yNS ) - n} (X75? - e/o) 

where 1767 = — 476? and the remaining elements of the frequency 

equation are given by eqns.(4.2.4). Then, equation (4.2.3) gives natural 

frequencies of vibration in terms of the dimensions (thickness and 

diameter) of the disk resonator and the wave velocity. The numerical 

solutions of the frequency equation, for desired values of n, n, y and 

0, can be obtained on similar lines as described in section 2.3. There 

will be an infinite number of numerical solutions, each corresponding to 

a mode of vibration. 

Comprehensive tables of K values for y from 0.0 to 1.0, Poisson's 

ratio from 0.0 to 0.5 and for disk thickness—to-diameter ratios from 0.0 

to 0.5, are given in Appendix A.4. However, the extensive tables of K 

values are available from the author. For thickness—to-—diameter ratios 

greater than 0.5, the thick annular disk transforms to a hollow pyladces« 

and a change in the vibration spectra is expected. Thus, the numerical 

results obtained from this theory for thickness—to-—diameter ratios 

greater than 0.5 may not accurately represent the true results. However, 

the theoretical results for the vibration spectra of hollow cylinders can 

be found in the Wiveramre te! The validity of the present theory for 

infinite hollow cylinders is shown in chapter 5 and its applicability to 

semi-infinite hollow cylinders is suggested, in chapter 8, for further 

work.



4.3 Axisymmetric Vibrations 

Axisymmetric vibrations may consist of purely radial or purely 

torsional vibrations in which cases the motions are independent of the 

angular coordinate 6 and n=0. Thus, setting n=0, the frequency equation 

(4.2.3) degenerates into the product of two sub-determinants, as 

D; Dy = 0 (4.3.1) 

where Yay Yio Yy3 Yq 

Ye SS 
D; ob 31 93233 34 (4.3.2) 

Yar Yao a3 Taq 

%61 Yeo %63 %64 

x a, 

vA | Pe I (4.3.3) 
%55 56 

and 

Yy4 7 3, (SE ur, ¢ (6) - 8}, y.=%, ones L,(6) - 87} 

Tet 100 W,(A8) #2767}, Ty, = K sn P,(A6 )= A264 

2 2 Ke Ys = 63, (8)(6 Se ; Ya, = A76?0,( 48) (A762 + = ) 

4.364 
Typ * &r,(0(8 -E ; yy = -A26%,(08 (252 + & 

2 

Yyy = ave M, (vs) - 6 ae Ya = rr N,( yA8) + 4267} 

e 

Yyo = 7, oS L(y) - 8°}, Yyq = K (ns) oO P,(-yA6) - 4767} 

Yg, = 6°s,(y8) (6° - x ey Yo = A762 T,( yd) (26? += ) 

Yeo = 8°, (8) (6 = ge Des Yeq = ~ AP K (yas )( A787 + x 

and 

Yo5 = KO J, (Ke)tM, (Ke) - 2} , Yog = KO ¥, (xo) L, (KO) - 2} 

Yo5 = KYO I, (KyO) {il (Ky) - 2}, Yaog = KyOY, (Kye){L, (Kya) - 2} 
(4.3.5) 

Then, the frequency equations



D. a ° : (4.3.6) 

and Dy = 0 (4.3.7) 

correspond to the radial and tangential modes of vibration, respectively. 

It may be noted that these two types of vibration are wcoupled when the 

motion is independent of the angular coordinate 6, whereas they are 

coupled for a nonzero n, when the motion is axially asymmetric. For a 

given value of n, y ando, there are infinite number of values of K 

satisfying the frequency equation. Numerical solutions obtained by 

evaluating eqs.(4.3.6) and (4.3.7), for a desired value of n, y and o, 

are designated by Kur and Kio » which refer to the radial and tangential 

modes, respectively. Tables of K values for the first few radial modes 

are given in Appendix A.4. 

It may be noted that the tangential mode frequency equation (453"7) 

in thick annular disks is same as the corresponding annular ring equation 

(3.2.7) derived in chapter 3, the rotational velocity being the same as in 

16 
the theory of generalised plane stress 

4.4 Comparison with Experiment 

The resonators used, for the measurement of the spectra, were 

aluminium disks with diameter of 5 cms. and thickness—to—diameter ratios 

of 0.5, 0.25 and 0.125, respectively. For each disk, a concentric hole 

of diameter 1.5 cms. corresponding to y =0.3, was machined and the 

resonant spectrum was measured using the method described in Appendix 

A.2.2. Then, the hole diameter of each disk was increased in steps of 

1 om. and at each step the family of resonances were measured. This 

procedure was repeated until each disk approximated to a shell. 

The radial, angular and double drive techniques were employed to 

measure the resonant spectrum of the specimens. The radial drive excites 

lower order resonances including the second finite frequency modes and a 

few of higher order resonances (asymptotic modes) which tend for y>1, to
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plate or axial shear modes as n> ~or 0, respectively. The modes 

excited by the angular and tangential drives include torsional and first 

finite frequency modes and a few of high frequency asymptotic modes which 

approach shear frequencies as y+1.0. The double drive at different 

points was useful, in particular, when two frequencies are close together, 

as it can, by phasing, suppress one mode in favour of the other. The 

coupling in radial drive was strong to those modes which have large radial 

component, while the angular drive gave a good coupling to those modes 

having large tangential component. 

The theoretical frequency values of the modes were calculated from 

the corresponding K values, using eqn.(2.2.6). The calculated and the 

measured results are given in Tables 4.2 to 4.4. The frequencies are 

given in spectral order of thick disks. The Poisson's ratio of the 

specimen material was calculated from the (1,R) and (1,3) thick disk 

modes, using the method described in Chapter 2. This enabled the K 

values for the theoretical results, to be obtained from the tables given 

in Appendix A.4. Then, tables 4.2 to 4.4 confirm the close agreement 

between the theoretical and experimental frequency values, for in plane 

flexural and two finite frequency series of resonances, over the whole 

range of hole sizes and disk thicknesses. But, the higher order resonances 

follow the theoretical results over a sufficient range of hole sizes for 

a wide range of disk thickness—to-diameter ratios, thus establishing the 

validity of the present theory beyond the range of direct measurement. 

4.5 Limiting Cases 

The validity of the present theory for in plane vibrations of 

thick annular disks, can be further demonstrated by studying a number 

of limiting cases.
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4.5.1 Thick Disk Resonators 

For thick disks, the imer radius b+0O and hence y+0O. Thus, 

equating y to zero, the frequency equation (4.2.3) simplifies to 

Ri, 3 5 
X54 Xp5 X55 =0ry (4.5.1) 

% 53 955 
which is the frequency equation (22221) ) derived in chapter 2 for the 

compound modes of vibration in thick isotropic disks; where the elements 

of the determinant are given in eqn.(4.2.4). 

The frequency equations for the axisymmetric vibrations (i.e., 

pure radial and pure torsional modes) can be derived, as special cases, 

by equating n to zero, in equation (4.5.1). Equation (4.5.1), then, 

simplifies to 

Xx. x. 
11 13 x 

t [x51 = 0 (4-5-2) 
    x 

31 33) 

where the elements of the above equation are given in eqns.(4.3.4) and 

(4.3.5). Thus, the frequency equation 

te ia =0 (4-5-3) 
xX 33 ' 3 

corresponds to the radial modes of vibration??, and the frequency 

equation 

|Xp5| = 0 (4.5.4) 

corresponds to the tangential modes of vibration in thick disks, which 

may be identified to be same as the frequency equation of torsional 

vibrations in thin coat The frequencies of the tangential modes!” 

are the same for a thick disk as for a thin disk, which has been 

experimentally verified(see Tables 4.2 to 4.4).



4.5.2 Vibrations of a Shell 
    

For this case, n is finite and the hole size is large such that 

y>1. For higher compound modes, such as (3yn), (4,n),(5,n),.--,etc., it 

is observed that the values of K and Ky become large and tend to 

infinity as the value of Y approaches unity. The Bessel functions can, 

therefore, be approximated by the first term of their asymptotic 

expansions, as 

I(x) = Zee cos(x - 34) + sin(x -34)3, 

¥, (x) = Fa (sin(x = =) ~ cos(x - Bot ; 

es (4-5-5) 
Ti) -L@)- me, 

Kt (x) = K(x) = Ve SmaPilcc 

Further, since K+» , as y+1, the wavenumbers 6 and Aé given in eqns. 

(2.2.7), reduce to 

/ 22 [22 
Sen eas amd 6 = oe (4.5.6) 

92 ea 
  

Then, by using the approximation that the terms in K are large compared 

to other terms in eqn.(4.2.3), the frequency equation reduces to the 

product of three 2 x 2 determinants, as 

Tae (8) 2 a(S) ells (x0) ee e(xe) [Pe lan (ns eK CxS) 
x x a0 

Te alys) Y_y(v) 1 [a (kve)  ¥(Kye)} TEC yas) (yA) 

(4-5-7) 

Substituting the asymptotic approximations of eqns.(4.5.5), valid for 

high argument values of Bessel functions, in eqm.(4.5.7) and simplifying 

yields the following equation 

sin 6(1 - y) . sin KO(1 - y) . sin X6(1-y) =0 (4.5.8) 

This leads to



~85= 

sin 6(1-y)= 0 , ices, S(1-y)= pm , DP =1,2,3,000, (4.5.9a) 

or sin KO(1-y)= 0, i.e., KO(1-Y)= qn , q =1,2,3ye00, (4.5.9b) 

or sin X§ (1-y)= 0, i-e-, NO (1-y)= rm , rv =1,2,3;.005 (4.5.9c) 

where p, q, r are integers, \6 = jkO and XSs7 = ze , is real. 

  

c o2 

Among axisymmetric vibrations, all pure (except 1,R and 2,R) radial 

modes such as K. etc., and all torsional modes of vibration such as 
3r? “ar 

Kin 1 Kom etc., tend to infinite frequency values for y?>1. Using this 

assumption, the radial mode frequency equation (4.3.6) reduces to 

3,(8) — -¥,(8) 

T,(v8) —-¥4 (78) 

I) (A8) K(A8) 

Ty YA8) KC v8) = a0)       

Using the asymptotic approximations, from eqns.(4.5.5), for n=0,the 

frequency equation (4.5.10) reduces to 

siné(1-y) sin 16(1-y) =0 (4.5.11) 

which, then, gives 

sin 6(1-y) = 0 , i.e.,6 (1-Y)= pn , p =1,2,3)00 (4.5.12a) 

or sin X6(1-y) = 0, ives, TS(1-¥) = rm , F =1,2,3,006 (4.5.12b) 

Similarly, using the assumption that K>~ as y>1 and the asymptotic 

approximations for Bessel functions, in the tangential mode frequency 

equation (4.357); leads to 

sin KO(1-y) = 0 , i.e-, KO(1-¥) = qn, q =1,2,3,-+- (4.5.13) 

It is clear that eqn.(4.5.13) corresponds to shear modes. It may be 

noted from Table 4.1 that ook for n> and tends to mt for nO and 

hence eqns.(4.5.12a) and (4.5.12b) represent, depending on n, plate or 

axial shear and compressional modes, respectively. The velocities 

corresponding to the wavenumbers KO, 6 and X16 will be shear, plate (or 

axial shear) and compressional, respectively, where the compressional 

velocity ce is given by
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C_(1-0) 

eS V(1=26. (4.5.14) 

Table 4.5(a) shows how the high frequency axisymmetric and nonaxi- 

symmetric modes in thick disks progress to corresponding shear, plate 

and compressional modes in cylindrical shells. However, eqns. (4.5.12a) 

and (4.5.12b) do not describe the lowest two finite frequency modes of 

the shell (i.e., 1,R and 2,R disk radial modes), for which the 

assumption that K+ as y+1 is not valid. 

As Y*1, these two modes approach finite frequency values. For 

a shell, Y can be written asy = (1 - dy), where dy*0 as y>1. Thus, 

using the Taylor series expansion for the Bessel fumctions, and neglect— 

ing the second and higher-order terms in dy, we obtain 

Z(yx) = Zo(x) + x ay Z,(x) » 2,(yx) = (144v)2, (x) - x ay Zy(x), 

Ip(vx) = Ip(x) - x dy T(x) , Ty(yx) = (14ay)1,() - x ay Iy(x), 

Ky(yx) = Ky(x) + x dy K(x) , K, (yx) = (140y)K, (x) + x dy K(x), 

(4.5.15) 

where Z = J,Y and x =6,A6é. Then, the elements of the determinant in 

ean.(4.3.2), which involve y, become 

2 ne 

Hy = (0) [ EE - ay.) w,() + lay-)] , 
2,2 

Ky 5 = (26) [es - ay, ) W,(08) - 2, 0°67 (av, = »] ‘ 

2 (4.5.16) Dee aK 
Xe, = 6 (8 - =) 2,06) 0 (1 + ay) - ay w,(6)] , 

2 OL One ook and X= VOD 6 a) 2,(08) [4,1 + dy) - dy W,(A8 )] ; 

where i= 1,23 j = 3,4 3 

Z=eJ, W=M, fori=1, a,=1,forZ=I1, 

any es =L, fori=2, =-1, forZ=K, 

eI, =N, for j = 3, 

=K, =P, for j=4,
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Korn : 
and Gi ygueegrr (Gas ~s)4 ays = Yi (Soe) 

200 501 
ay, = ay (> + 767) (4-3-17) 

Bapertentiae eqs.(4.5.16) and (4.5.17) into eq.(4.3.2) and simplify- 

ing, yields the frequency equation for y*1, as 

2,2 
tee ty Sy, EMS) os 6) 08) 

Gaye 8 Gay) 
- 5,(8) ¥,(8)}{2,(46 )K(A8 ) + To 8 )K,(A6 )} = 0 (4.5.18) 

Waing the follonine identities? oo 

J, (x)¥,(x) = Jn(x)¥,(x) = 1/x and 
we oar i (4.5.19) 

I,(x)Ky(x) + Ip(x)K,@) =1/x 

eqn.(4.5.18) reduces to 

2 
KK Pit, at 5, Sa 2] - 0 ; (4.5.20) 

(y= 4 (ay)? 
which is the frequency equation for the lowest two vibrations of 

8,38 
cylindrical shells. The two positive real roots of eqn.(4.5.20) 

for annular disks (i.e., N32), can be obtained, using the binomial 

expansion, as 

& 2 1 nerpo" Tey: e é (4.5.21) 
= Ti+) bs edecla 

B ay, [ {16 = nn aa 

ma ©. = 20 ‘|? (4.5.21») 
eo? f (16 = wn? (14y)3 

where the superscript s refers to the shell. These two equations 

represent the shell counterparts of the first two radial vibrations of 

thick disk, respectively. Table 4.5(b) shows the experimental 

frequencies of first two radial modes of an aluminium shell with y =0.9 

and diameter 5 cms., and the theoretical frequencies calculated from 

eqns.(4.5.21), for n=2,4 and 8. There is a good agreement between the 

theory and the experiment.
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a/n 0.50 0.25 0.125 
  

woad | KO1=1) | 8(1=1) | X86 (41) [KO(1—1) 6 (1-¥) | X8(1-y) }KO(1=7) | 6 (1-¥) | X6 (1-7) 
  

  

3,R 4 341471 3+1457 341440 

4,R|- 3.1421 3.1410 3.1435 

3,1 | 3.1539 3.1540 3.1540 

4,1 3.1463 3.1446 3.1429 

5,1 3.1374 3.1366 3.1498 

4,2 | 3.1963 3.1711 3.1712 

5,2 3.1485 3.1452 3-1403 

6,2 3.1248 3.1246 3.1384 

4,3 32139 3.1988 3.1995 

513 3.1498 31425 341357 

6,3 3.1071 3.1076 3.1222 

4,4 3.2084. 342356 3.2382 

544 3.1511 3+1396 3.1238 

6,4 3.0867 3.0880 3.1034                   
  

fable 4.5(a) This table shows the progression of high frequency thick disk modes 

to shear, plate(or axial shear) and compressional modes of the 

shell. Y=0.90, o = 0.30. 

  

  

  

Mode Kir KR 

fn Calculated Measured Calculated Measured 

0.50 33.977 34.101 109.006 109.124 

0.25 34.182 34.165 216.185 215.409 

0.125 34.228 34.235, 432.885 -             
  

_ Table 4.5(b) The theoretical and experimental frequencies of the first two 

radial modes of an aluminium shell. g = 0.33, Y = 0.9, 2a = 5 cms. 

 



4.523 Vibrations of an Amular Ring 

The frequency equation for the compound modes of vibration of 

annular rings can be obtained, as a limiting case, from the correspond- 

ing frequency equation (4.2.3), by equating the thickness—to-diameter 

ratio to zero. Therefore, for a thin disk, as ne, 6+ me Adee and 

hence W (6) > (K"), 1,(8)> 1, (K') W,(48) +8 and K(A8)> 0. 

Substituting these in eqn.(4.2.3), dividing the elements X35) Xo 53 j=1 to 

6, by 6, and elements X37 a i=1 to 6 by 4762 and simplifying yields 

Xi, %i2 15 M46 
Sere ee ae Hee |e gee, 2a eR ee (een) 
Lo koe kee x 
41 42 45 “46 

Stir 52 755 | 56 Fel
 

which is the frequency equation (3.2.1) derived, independently, in 

chapter 3 for compound modes of an annular ring, where the elements of 

the above determinant are given by eqns.(4.2.4), by replacing 6 by ee 

4.6 Discussion 

Table 4.6 summarises the thick disk and shell resonances, which 

constitute the limiting cases of the corresponding resonances of the 

thick annular disk. In contrast to only one series of finite frequency 

modes in the case of a thin ring, there are two series of finite 

frequency modes in a cylindrical shell. There are two series of 

asymptotic modes for radial resonances of a shell whereas there is only 

one for pure radial modes of a ring. For compound modes of vibration, 

there are three series of asymptotic modes in a cylindrical shell as 

opposed to only two series in a thin ring, as shown in Tables 4.6 and 

3.6, respectively. However, the pure torsional modes remain the same 

in both cases. 

The pure radial modes are solutions of eqn.(4.3.6). The frequency 

increases rapidly with hole size, for all modes except the two lowest
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Torsion Radial 

Thick Disk (147) (2,7) (34D) seee (BiB) (SR) vee (458) (6sR) yee 

= 1 2 ee 
Sheik r : p= 1 2 ass 2 less 

Flemral Finite Frequency 

Thick Disk |  (1,2),(1,3)s(144) +++ (44R) (141) (242) (243) (24) wee 
(2yR) (251) (552) (353) (Bs) vee 

Shell Be 2) 13) 4" ees | n=O 1 2 3 she wre 

Compound Shear 

Thick Disk 351) (452) 3 sd) bene. (651) 6(752)s(753)s 006 

Shell ce 1 = 2 

Compound Plate (or axial shear) 

Thick Disk (451) (592) 5593) see (141) s(842)s(853) 20008 

Shell p= 1 2 

Compound Compressional 

Tick Disk (541) 5 (652) s(613) see (851) 1(942)s(913) 200+ 

Shell rm 1 se 2 é   
  

Table 4.6 Correspondence of thick disk and cylindrical shell resonances. 
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modes given by eqn.(4.5.20), making the width of the shell, a(1—y), to be 

an integral number of half wavelengths, the integer being the number of 

nodal circles. The ratio of the phase velocity C nase to the plate velo- 

city oS ‘or compressional velocity ce can be obtained, for radial modes, 

from eqns.(4.5.12a & b), as 

Chase okey) ek (4.6.1) 

plate TE aes a 

c K (1-y) K 

gue (4.6.3 
c 

where K = K/ve 1 a(1-y) = pi2 in eq.(4.6.1) and a(1—y) = ri2 in eqn. 

(4.6.2). The modes (3,R) and (4,R) are the lowest modes of these series, 

respectively. Figs.4.2 show the variation of C » with Y, 
eiaae Criets 

for modes (3,R) and (5,R), for thickness—to-diameter ratios 0.5, 0.25 

and 0.125, respectively. The figures show that as Y approaches unity, 

the ratio C approaches the value K/6. The figures also 
chase! Splate 

show that, for y~1, as the thickness—to-diameter ratio approaches zero, 

the velocity ratio approaches unity, indicating that, ultimately, this 

mode propagates with plate velocity as in the thin ring. Figs.4.3 show 

the ways in which the ratio oon [Cg where o is the compressional 
as: 

velocity, approaches unity as y>1. 

The compound modes of thick disks which have nodal diameters but 

no nodal circles, (1,n) are the direct counterparts of the flexural modes 

of shells. Fig.4.4 shows the progression from finite frequency disk 

resonances to zero frequency resonances of the thin shell, for the first 

four flexural modes, for n = 2, 0 = 0.3. Table A.4.1 gives K values for 

these modes, for a full range of o,yand n~ As Y approaches the shell 

region, the frequency (i-e., K, =wa/C,, value) becomes independent of 

Oo, as in the case of a thin ring. 

It is of particular interest to study the finite frequency modes 

of the cylindrical shell and their thick disk counterparts. There are
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Fig.4.2 The first two radial (axial ohear or plate) modes, whose velocities tend, asymptotically, 
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Y om 

  
  

Fig.4.4 The first four flexural (Compound) modes for n = 2.0, 

which go to zero frequency as y approaches the shell 

region. For y*1, these modes become less dependent 

on O-«



two sets of finite frequency modes in cylindrical shells. Figs .4.5 

show the variation of K, values of first set of finite frequency modes, 

namely, (1,R),(1,1),(2,2) and (2,3), with y, for o=0.3 and for various 

nts. These modes are less dependent on Poisson's ratio in the shell 

region. 

The lowest mode in this series is (1,R), as given by em.(4.5.21a) 

for the shell, and this can be easily excited by a radial drive, while 

all the other modes of this first set require a tangential or an angular 

drive. The experiments confirmed that the first set of n=0,1,2,3,++4, 

shell modes have the thick disk counterparts of (448) (151) (22) (213) 

+.+,etc., modes, respectively. The (1,R) disk radial mode frequency is 

greater than that of the (1,1) mode and the curves cross at a low y 

value as the frequencies move to the corresponding shell values. The 

crossover occurs for all values of o , the position, for o =0.3, being 

vy =0-259,0.275, and 0.266 for n =2,4 and 8, respectively. 

The variation of the second set of finite frequency shell modes, 

with y, is illustrated in Figs.4.6, for different thickness—to— 

diameter ratios. These modes have different dependence on n and vary 

enormously with y and n. The lowest mode of this second set, for 

yr1, is again a radial mode (2,R), for n =2.0, as given by eqn.(4.5.21b). 

All these modes can be observed experimentally by radial drive alone. 

The second set of n=0,1,2,3,--+,etc., shell modes have their thick disk 

counterparts as (2yR) (241) (392) (393) ree 0 setees modes, respectively. 

The slow transformation of these modes, for y>1, from finite frequen- 

cies to asymptotic (infinite) frequencies, as n*@, is evident from 

Fig.4.6(c), vin which all the modes are gradually moving to infinite 

frequency values as y>1. This indicates that the second set of finite 

frequency modes of a cylindrical shell move to the corresponding asymp- 

totic modes of a thin ring. 

It may be interesting to study the extensional vibrations of thin
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ianeter mtiow. Notice that the finite frequency modes tend to auymptotic modes, for pews



~98- 

cylindrical shells, given by eq.(4.5.20). The two roots of this 

equation, as given by eqns.(4.5.21a) and (4.5.21b), are the Kip and 

Kop modes of the shell, respectively. The K values for the corresponding 

radial modes of a thick amular disk can be obtained from the frequency 

eqn.(4.3.6). Then, the following ratios of K values can be obtained 

from eqns. (4.5.21): 

K K, ,(1+y) 
18 (a (4.6.3) 

Kip a Z oe cage 
(16 - nn? (14y)} 

K, 2K, 
ee (4.6.4) 3 e 

Kor mm j-— ES ‘ 
{16 = nn? (14y) 4 

The above equations were used to investigate the departure from the 

corresponding radial mode frequencies of the shell as a function of 0 , 

y and n , and the resulting curves for various N's are plotted in 

Figs.4.7(a) and (b), respectively. 

The higher compound modes, like pure radial and tangential modes, 

approach infinite frequency as y>1, for each nN, the asymptotic values 

being the solutions of eqns.(4.5.9a), (4.5.9b) and (4.5.9c) for plate, 

shear and compressional waves, respectively, where p, q and r are the 

number of nodal circles. The ways in which the limit values are 

approached, as y+1, are shown in Figs.4.8 for the two 6(plate) modes 

(4,1), (532), Figs.4.9 for the two shear modes (3,1),(4,2) and Figs.4.10 

for the two A6é(compressional) modes, all for various thickness—to— 

diameter ratios. The asymptotic values, for y=1, are equal to Kn/6 

for 6 modes, nx for shear modes and KW/r6 for compressional modes, 

where the integers p,q and r are, therefore, equal to wnity. It may be 

interesting to note that, for y~1, as n is increasing, the asymptotic 

values corresponding to the thin ring are approached, namely, n for 

6 (plate) and shear modes and 2n for the compressional modes.
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Pig.4.10 The plot of K(1-y) values versus Y, for (5,1) and (6,2) compressional modes.
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The variation of first finite frequency modes, (1,R),(1,1),(2,2) 

and (2,3), with n is shown in Pigs.(4.11) for Y =0.0,0.5 and 0.9. It 

may be noted that the frequency variation with n for the lowest modes 

1,8 and 1,1 is more significant for smaller values of y than that for 

y =0.9, whereas the variation for the (2,2) and (2,3) modes are the 

same for all y's. It will be noted that the K values of these modes 

show in Fig.4.11(a), for y =0.0 and 1/n =0.0, correspond to those of 

the thin disk modes and the K values of the modes shown in Fig.4.11(c), 

for y =0.9 and 1/n =0.0, correspond to those of the ring finite 

frequency modes. 

Fig.4.12 shows the progression of shell radial modes to ring 

radial modes. The designation of the modes are thus different for the 

shell and the ring. It may be noted from the figure that the Kop and 

Kp shell modes progress to a single mode oe which is a thin ring 

plate mode with p=1. Similarly, K,, and K R of the shell merge to the 
‘4R 5 

mode GR , which is also a plate mode of the ring, for p=2. 

In Figs.4.13 and 4.14, the second finite frequency modes and the 

+wo asymptotic modes of the shell are show for n=1 and 2, respectively. 

It may be noted from the figures that the modes Koy and K,, and the 
41 

modes Kyo and Koo of the shell progress and merge to the thin ring 

plate modes G1 and Kye » respectively. It may also be noted that the 

shear modes Ks and Kio of the shell remain same as the corresponding 

shear modes ca and m, of the ring, respectively. 

Other higher compound modes of the shell were investigated for 

y=0.9, o =0.3 and the results are tabulated in Table 4.7, for n =2.0, 

4.0 and 8.0, which predicts the wave velocities Chase Cp? for 6(plate) 

modes, Case! 3? for shear modes and Case! Cg? for compressional modes. 

The lowest mode is the (3,1) which heads the shear mode series (BA) 5 

(4,2) (4,3) (4,4) ee * ,etc., and the higher modes are the 6(plate) mode 

series (451) (542) (543) (514) 200 eee, and the compressional mode
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This illustrates that the shell modes (2,1) and (4,1) 
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(3,1) remains the same and becomes the ey ring mode.
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modes $1.02993(1) | 70.63070(1) | co.98293(1)| 8 (2) | P (2) | s(3) 

(b) Thickness-to-diameter ratio = 0.25. 

2 3 4 ») 6 Wy 8 9 

Finite | $1.00395(1) | Fo.71246(1) | c1.00261(1) | s (2) P (2)] s (3) | P(3) 
Ns a AS L oe XK — = > = > 

$1.00944(1) | 7O.71345(1) | co.99897(1) | Ss (2) | PB (2) | s(3) 
frequency 

$1.01844(1) | FO.71506(1) | co.99382(1) | Ss (2) | P (2) | s(3) 

modes $1.03075(1) | P0.71738(1) | co.9e786(1) | Ss (2) | P (2) | s(3)                 

(c) Thickness-to-dianeter ratio = 0.125. 

Table 4.7 Wave velocities for a cylindrical shell. y= 0.90, g¢ = 0.30.
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series (5,1),(6,2),(6,3),(6,4),---,etc. The prefix letter gives the 

wave type and the suffix number, the number of nodal circles. Thus, the 

(75) thick disk mode with six nodal circles becomes the q=2 shell plate 

(6) mode, four circles having been lost. The variation of the wave 

velocity ratios from unity is small for shear and compressional modes. 

This indicates that the velocity of the shear waves in a shell is almost 

the same as that in a thin ring. It also changes slightly with n, the 

number of nodal diameters and with the Poisson's ratio. It may be noted 

that the departure of the plate velocity ratio from unity is very large. 

This is because, the velocity ratio for 6(plate) modes is equal to K/6 

for a cylindrical shell and the ratio approaches wmnity for a thin ring, 

since 6°K as 1/n*0.0. For example, the (7,1) shell mode progresses to 

Guie ring plate mode as n increases and the velocity ratio thus 

increases to unity.
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CHAPTER _5 

VIBRATION SPECTRA OF HOLLOW CYLINDERS 

5.1 Introduction 

In chapters 3 and 4, the in plane vibrations of annular rings and 

thick annular disks were investigated. This chapter is concerned with 

the study of free vibrations in hollow cylinders and rods, as special 

cases of the theory developed in chapter 4 for a thick disk with a 

central hole. 

The free vibrations of an isotropic infinite solid cylinder have 

39 40 been investigated by Pochhammer-~ and Chree” , on the basis of the 

linear theory of elasticity. The corresponding vibrations of hollow 

cylinders have been analysed by means of various approximate shell 

theories, starting from Love's first BOproxtmions and including the 

contributions of Lin and Morgen*", Naghdi and Cooper 

43,44 

and Mirsky and 

Hermann » which take into account the shear deformation and rotatory 

inertia on the frequencies of thick shells. All these theories are 

limited to first few modes only. Further, these theories do not provide 

accurate results for hollow cylinders of large wall—thickness. The 

accuracy and the validity of the shell theories to the hollow cylinders 

can be largely extended, only by comparison with an exact solution of 

three dimensional eigenvalue problem. Such solutions for axisymmetric 

and asymmetric modes of vibration have been given by Bassett’, 

46 23 

28 

McFadden” , Hermann and Mirsky“, Gazis and McNiven, Shah and 

Sackmann™” . Redwood and Tania have given a detailed account of 

compressional wave propagation in isotropic elastic solid cylinders. 

In this chapter, the vibrations of an infinite hollow cylinder 

are investigated as a special case of a thick annular disk, when n= 0. 

The frequency equations for the axisymmetric and asymmetric modes are 

derived from the corresponding frequency equation (4.2.3) of chapter 4
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and are shown to be identical to those derived by Gazie?2?2° from the 

linear theory of elasticity. The vibrations of various special cases, 

such as thin rods and cylindrical shells, are also investigated. It is 

shom that, when n=0, eqn.(4.2.3) breaks down into a product of two 

determinants, one for the nonaxisymmetric (plane strain) vibrations and 

the other for the longitudinal shear vibrations of an infinite hollow 

cylinder. These two vibrations exist as uncoupled modes when n=0. The 

eigenvalues obtained from the solution of the frequency equations are 

designated by ie where the superscript I denotes ‘infinite rod' case 

and this notation is used in order to differentiate between the rod and 

thick disk modes. One-to-one correspondence is also established between 

the infinite solid cylinder modes and the thin cylindrical shell modes. 

It is also shown that a simple transformation of the material modulus 

yields the plane stress results of an annular ring from the plane strain 

results of an infinite hollow cylinder. 

Table 5.1 shows the classification of various infinite hollow 

cylinder modes, where the superscripts I and LI refer to plane strain 

and longitudinal shear vibrations. There is one series each of pure 

torsional, pure radial and pure axial(longitudinal) shear modes, for n=0. 

In addition, there is one series of flexural modes, which approach zero 

frequency, one series of finite frequency modes and one series each of 

compound shear and compound compressional modes which approach infinite 

frequency as y>+1, all belonging to plane strain vibrations. The modes 

belonging to longitudinal shear vibrations consist of one series each of 

finite frequency modes and asymptotic modes. 

5-2 Spectra of Rods 

There has been considerable interest shown in the study of free 

31,33,49 vibrations of rods In this section, the theory developed in 

chapter 2 is applied to the vibrations of rods and the numerical results 

thus obtained are compared with those of the theories due to Rayleigh"? |
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= 1 2 3 4 5 6 

1,7 2,T ae0 4,7 5,7 6,7 

Pure torsional modes 

4,0 2,0 3,0 4,0 5,0 6,0 

Pure longitudinal shear modes 

4,R 2,R 3,R 4,R 5,R 6,R 
2 Pure radial modes 
F : 

Cho As Gaye ee | Gane | ese 
—\— te XK 

Op) Oe Em | Car Ger || ae 

5 an i > ig Ee 
B(1,3)> |®(2,3)2= (3,3)? fe¢4,3)"7 fa(5,3)7 48(6,3)7 Ie 

Hp 2s ct a Ba 

one oer [a trodes ore Ieee cae |e 
(4,4)"  18(2,4) (314) [BC4,4)" 1B(5,4) (6,4) 5B 

3 by by i 8 
5 
ta         

I —> Plane strain vibrations; LI —» Longitudinal shear vibrations. 

Table 5.1. Classification of Infinite hollow cylinder modes,
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PochhammerChree??14°, Lucey '@ and with the experiment. The agreement 

between the theoretical and the experimental results is remarkably good 

over a wide range of length-to-diameter ratios of the rods. 

It may be interesting to derive the classical formula for the longi- 

tudinal vibration of a rod from the frequency equation(2.2.16), derived 

in Chapter 2, for the thick disk radial modes. When the diameter of the 

rod is much smaller than its length, i.e., when n<< 1, the wavenumbers 

6<<1 and XS << 1. For x <<1, we have M, (x) = 2. Substituting this 

in eqn.(2.2.16) and simplifying, yields 

2 

(8° - 5262) | 0° (& ~ (6° +0254) + °(x67)] =O (5201) 

Since, (6° = 5- 9) # 0, this equation simplifies to 

2o2) Ke epee 2 Ke { = - (8° + 4262) } = - 6°( 262) (5-2-2) 

Substituting for 6 and A6, from eqns.(2.2.7) and simplifying, the above 

equation reduces to 

Ko= BLYi-o*) , (5.2.3) 

which is the first longitudinal mode of vibration of a thin aalt and the 

superscript c refers to the classical formula. The above equation 

can be rewritten in the form 

£2), (= 'Cy (5.2.4) 
, 

which is the classical formula for the longitudinal vibrations of a thin 

rod, where Co is the longitudinal velocity, f is the frequency of longi- 

tudinal vibration and A is the wavelength given by A = 2i/p , where 

1 and p are the length and the number of half wavelengths of the rod, 

respectively. 

The Rayleights”” correction formula for the frequencies of 

longitudinal vibration of isotropic rods is given by



A= 

rere [: cs (== 4] ; (5-2-5) 

where the superscript R refers to the Rayleigh's formula. The above 

equation .can be rewritten, as 

2 
k 

fa = co[ 1 -2 | (5.2.6) 

where k, = 70 and d = 2a, is the diameter of the rod. 4 

Imcey ta correction formula for the fundamental frequency of the 

longitudinal resonance of an elastic rod is given by 

2 z 1-090 2 ce = Ke tee ( zn) (5-2-7) 
12 ce 

where the superscript L and T refer to Lucey and thin disk theories, 

respectively. The above equation can also be written in the form 

(5.2.8) 

where ky = and 2 is the corresponding thin disk radial mode 

  

frequency. 

Pochhammer-Chree?” 140 have given exact solution for the natural 

frequencies of longitudinal resonance in elastic rods. The frequency 

equation is repeated here 

O22 2 ‘ 

[jee 5 (xo)? | M,(v,) +0,2p?x® n? w(v,) - 2(v,kP@)? = 0 
2 

(5.2.9) 

where 2 
vy, YS - (BR)? vi aK Ke - FEAY®, (5.210) 

DP 
and KP = Bia , is the solution of the above equation, and the 

Q 

Pp 

superscript p refers to PochhammerChree theory. 

Fig.5.1 shows the plot of fA versus a> » aS obtained from 

various theories given by eqns.(5.2.3) to (5.2.9), for the longitudinal 

resonance of an aluminium rod with diameter of 1.9 cms and various
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5250 

c 

Diameter = 1.9 cms., o = 0.33 

Beer: ° Experimental 

A Present theory 

c Classical theory 

R Rayleigh 

4150 ~T P _ Pochhammer-Chree 

L Lucey 

4500 ~- 

fa, 

m/sec. | 

| 
4250 + 1 

1 

1 
| 

4000 ~- | 

| 
| 

R 
| 
I 

3150 = | 
\ 
\ A 

1 

| Dae 

3500 + ! 
| 

| L 
lear 
Ws = 0.5 

3250 3 + ty + 
0.00 0.18 0.36 Do 0.54 0.72 0.90 

afro + 

Fig.5.1 The graph of fA versus d2/n° for the longitudinal vibration 

of an aluminium rod. A fair agreement between the present 

theory and the experiment could be noticed. ‘The point 

(asa) = 0.5, corresponds to the transition from the rod 

to thick disk,
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lengths. These results are also compared with those of the present 

theory given by eqn.(2.2.16) and the experiment. It may be noted from 

the figure that the theoretical frequencies of longitudinal vibrations 

of a rod, as obtained from the present theory, closely agree with those 

predicted by the exact theory due to PochhammerChree and the experiment, 

over a range of rod lengths. However, the deviation of the Pochhammer— 

Chree, Lucey and Rayleigh's results from the experimental frequencies is 

significant when the diameter of the rod becomes comparable with its 

length i.e., when the transition from rod to thick disk takes place at 

(a/ a e = 0.5. This is evident from Fig.5.1, which shows that, for 

(a/r yo 0.5, the frequencies predicted by Rayleigh's and Pochhammer— 

Chree theories differ considerably from the experimental results. 

The spectrum as found experimentally for the aluminium rod of 

diameter 1.9 coms, when excited radially, consisted of various non— 

axisymmetric vibrations as well as the first two radial vibrations 

observed in the thick aluminium disk. The plot of the experimental 

frequency values versus thickness—to-diameter ratio is given in Fig.5.2, 

for the first two radial vibrations (1,R) and (2,R) and the first eight 

nonaxisymmetric vibrations (1,1) to (1,8). ‘These results are in close 

agreement with MoMetien?s Ovosul tee who gave the experimental data for an 

aluminium rod for lower order modes (viz, (1,R),(1,1),(1,2) ana (1,3)) 

only. 

5-3 Plane Strain Vibrations of Infinite Hollow Cylinders 

For infinite hollow cylinders, n=0 and y is finite, and hence 

the wavenumbers 6 and 6 of eqms.(2.2.7) reduce to 

é=K'0 and WS = Ko (5.361) 
where 2X6 is real, 1762 =— 762 and the superscript I refers to the 

infinite rod case. Then, the elements X of the Xx 33? F347 Keg ond Koy 
frequency equation (4.2.3), of thick annular disk reduce to



—117- 

  

{ 300 - 

Frequency 

Wiz 250-4 

225- 

200+ 
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= 1.9 cms. 

(1,6) 
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      1,2) 
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Fig.5.2 The plot of measured frequencies versus thiclness-to-diameter 
ratio for various modes of an aluminium rod. Notice that the 
frequencies of the nodes (1,1), (1,R), and (2,R) vary quite 
considerably over the range shown.
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63 0 

(5.3.2) 

and 

Substituting eqms.(5.3.1) and (5.3.2) into eqn.(4.2.3) and simplifying, 

yields 

where 

where x, 3 

X44 

Xs 

X16 

Xo 

Koy 

X55 

56 

X43 

X44 

X45 

Xy6 

X53 

Xo4 

    

5 = 0 (5-3-3) 

Seats 6 
Xx, x Xx. 

as ee (5-3-4) 
X3 %yq X45 go 

X53 X54 55 X56 
x x 

= eel ee (5-3-5) 
XG *60 

= J, (K2) {ll (KL)= n(n41)+ ¢x'0)?/2} 

= ¥,(K,)(,(K2)= n(n) (K70)?/2} 

lpn J,,(K7e){m, (K'8) = (an)} 

=n ¥,(K'@){1,(K'8) - (nt1)} 

=n J (K){M (KL) - (n#1)} 
(5.3.6) 

n ¥(K){L,(K,) - (@oH)} u 

J,,(K7@) £14, (0) = n(nvt) + (K7@)*/2} 

¥, (R70), (K7e) ~ n(att) + (K"0)*/2} " 

J CVKS) OH, (VEG) = n(net) + y7(K70)7/2} a 

¥,(rKa){L, (yk) = n(nit) + °(K10)*/2} 

=n J,(K"y6){i,(K'yO) — (a4t)} 

=n ¥(KyO){L,(K yO) - (a+1)} 

on J, (rK2) 04, (KE) - (n+1)} 

=n ¥,,(7K2) Cy (YK) - (n+1)}
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Kee = I ( OM, (KT yO) ~n(n+1) + ¥2(K10)°/2} 

Xog = ¥, (7 yoy 1,0 yO) ~n(nt1) + y°(x10)?/2} 

Saale) ee (xZey(m (x0) -n}, x,, = ¥. (Ke7O{1 (x40) — n} 
31 n n : 32 n n are 

Key = 5, (xt yeytan, (xo ye)— nl, X= x (KETO) (1, (K’tY0)- n} 

where ke = w/c = wa/C, » and Cis the compressional (bulk) velocity. 

Then, the frequency equation 

Ds = 0 (5.3.8) 

corresponds to the nonaxisymmetric vibrations of an infinite hollow 

cylinder. A frequency equation equivalent to eqn.(5.3.8) has been given 

by Gazis@> for an infinite hollow cylinder, who also derived simplified 

equations for thin cylindrical shells and infinite rods. I+ may be 

noted that a transformation of the material modulus from bulk to plate 

reduces eqn.(5.3.8)of plane strain vibrations to eqn.(3.2.1) of plane 

stress vibrations of an annular ring. That is, if x is replaced by ke 

eqn.(5.3.8) reduces to eqn.(3.2.1). 

The case 

D, = 0 (5-3-9) 

corresponds to ‘longitudinal shear vibrations’, which will be considered 

in the next section. 

For axisymmetric vibrations of an infinite hollow cylinder, n is 

set to zero and eqn.(5.3.8) breaks down into the following product 

am tay |te5e (26 
=0 (5.3.10) 

%3 Tag! M55 T56 
where 

yy = Jy (KE) (KE) - 2/007}, X44 = 14 (KG) CL, (KE) - 2/c0°}, 
(5.3.11) 

ee J, (7K), (vKE)= 2/06, ta 1, (YK2) (1, (YKL)= 2/06°}
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Z I it Toe J, (KO) {m, (K")- 23, Yog = Y4(K OLL,(K'@)- 2}, 

(5.3.12) 

Yog = 1y(K YOM, (KT YO)= 2hy Yop = ¥4(K" YOM L, (KYO )~ 2) 

Eqn.(5.3.10) is satisfied if and only if 

        

Tey 
ee tie 0 (5.3. 132) 

M3 “aq 

or YY x 

25° 26) (5.3.13) 

%55  '56 
It may be noted that eqns.(5.3.13a) and (5.3.13b) correspond to the 

axisymmetric extensional and shear (torsional) vibrations, respectively, 

and they are essentially uncoupled. For a given n, Gand Y, the numerical 

computation of the roots of the frequency equations (5.3.8) and (5.3.13) 

is carried out using the procedure described in Chapter 2 (section 223) 

The cut off freqencies of some of the symmetric and antisymmetric modes 

are given in Appendix A.5, for o=0.3 and n =0,1 and 2. These values 

can also be found in reference 51. 

5-3-1 Infinite Rods 

For an infinite rod, n=0 and Y=0. As Y*O, ¥, (YK2) 40) ona 

Y (x YO) +=, Thus, dividing the elements Xiy > i =1,2,4,5, by % Crk) 

and the elements Xs, » J =3,4,5,6, by ¥, (Kyo ys ee sadder ays oct Ge 

(5.3.8) reduces to 

3 X15, 

x 
2 (5.3.14) 

    

23 X55 

which is the frequency equation for nonaxisymmetric vibrations of an 

infinite solid Gicdenl) where the elements of the above determinant 

are given by eqns{5.3.6). Putting n=0 in eqn.(5.3.14) yields 

X13 + X55 = 0 (5.3.15) 

which is satisfied, if
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Xi ={M,(K2) E2/ce ha10 (5.3.16) 

or Xp =(M,(K'0) - 2}=0 (5.3-17) 

where eqns.(5.3.16) and (5.3.17) are the frequency equations for the 

33439 radial and Rotetane is modes of vibration, respectively. It may be 

noted that eqns.(5.3.14), (5.3.16) and (5.3.17) are identical in form to 

those obtained by Onoe? and Hollena!? for a thin disk (see section 3.4), 

except that K is replaced by ke » where ie = Ke /ve - Eq.(5.3.16) is a 

well known Pochhammer-Chree equation for longitudinal vibrations in an 

infinite rod, which can be derived from eqn.(5.2.9 ) by setting n=0. 

Further, it is interesting to note that the frequencies of the torsional 

modes are the same for an infinite rod as for a thin eee since eqn. 

(5.3.17) is same as the thin disk torsional mode frequency cane 

53.2 Thin Cylindrical Shells 

The physical parameters for a thin cylindrical shell are n=0 

and Y*1. It is observed that as y>1, Ki+c , and using this assumption 

in eqn.(5.3.4), the frequency equation for nonaxisymmetric vibrations 

becomes 

5, (Ke le a (Ke) els, (ere) (te) 

1 ° 

ave) x (vK4) a(xtye) x(x! yo) eee 
ao D0 n n 

Substituting the asymptotic expansions of eqns.(4.5.5), ed for 

large argument values of Bessel functions, in eqns.(5.3.18) and simplify- 

ing yields the frequency equation for high frequency modes of an infinite 

cylindrical shell, as 

sin Ke(1-y). sin me (1-7) = 0 (5.3.19) 

which is satisfied if 

sin K'Q(1-y)= 0, ies, K'O(1-y)= pe, p =1,2)3;000 (5.3-20a) 

or sin KX(1Y= 0, isery K(1my)= an yg =1,2)3,006 (5.3.20) 

These equations show that the high frequency nonaxisymmetric vibrations
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of a thin cylindrical shell are effectively of pure shear or pure 

compressional waves, respectively. 

Similarly, it can be show that the frequency equation for the 

high eee axisymmetric extensional vibrations of the thin cylindrical 

23) shell can be obtained@’ from eqn.(5.3.13a), as 

{sin K t(1=y) eS (iet5o) (1, cos K~ -y)}= 0 (5.3221) 
‘ 8yKL (1-9) 

whose solution is given by 

(1-150) 1-y)? 2 
a Coy | id =1y2)3y--4etCe), (6.3.22) 

ae wy ee 9) 

and the frequency equation for the higher order axisymmetric shear 

vibrations can be obtained from eqn.(5.3.13b), as 

{ain Ho(1-y)- OSD cos xle(1-y) } = 0 (5.3.23) 
8x y © 

whose solution is given by 

2 
ci aa 2 Sage D aii2 ss eepetoas (523-24) 

Tt 

It may be noted that eqns.(5.3.21) and (5.3.23) do not predict the 

lowest flexural and extensional modes of the infinite cylindrical shell, 

for which the assumption, that Ki +0 as Y71, is not valid. However, 

eqns.(5.3-21) to (5.3.24) describe all the higher axisymmetric 

extensional and shear vibrations which tend, for Y>1, to the simple 

thickness—stretch and thickness-shear modes, respectively, of an infinite 

cylindrical shell, whose frequencies are given by 

Ki = aay? (5-3.25a) 

and Ko = = (5.3.25b) 

The flexural modes tend to zero frequency and the extensional 

modes tend to finite frequencies, as Y*1. For an infinite shell, Y can 

be written as Y= (1-dY) such that dY*0 as Y*1. Then, using this



-123- 

value of Yand the truncated Taylor series expansion of Bessel functions 

involving Y, in the elements of the frequency equation (5.3.8) and 

simplifying, yields, for Y>1 

4 1-7 = “ = a + (KDy, (Ke) 

3(147)4 (221) al Eo) fant Ke 

Kobe ee i )}{o, ca ®)¥, a Gan ne @)y, (xh 0)} = 

(5-3. = 

Then, using the Gray and Mathew's theorem for Bessel functions, the 

above equation reduces to 

2 2,.2 2 (ea 
eye sO ag, See, ce 

[I scene (a2) a Cen? Va(meny 7" 
(5.3.27) 

or 

[ee Se =O, ises, tee avi n°#1) (53-28) 
+ 

It may be ascertained that eqns.(5.3.27) and (5.3.28) are the 

frequency equations of the flexural and extensional modes of an infinite 

cylindrical shell, respectively. 

The frequency equation for the lowest two radial vibrations of a 

cylindrical shell was derived in Chapter 4 and the two modes are given 

by the roots of eqn.(4.5.20). For a thin cylindrical shell, when +0, 

the two roots of the eq.(4.5.20) are given by 

and K = TT (5-329) 

  

an 
a 2 

For an infinite cylindrical shell, n =0 and hence the first root given 

by the above equation will be equal to zero. Hence, the lowest radial 

mode for an infinite cylindrical shell, for Y+1, is given by 

I 2 
Kin = Tey (5-3-30) 

It may be noted that the above equation can also be derived from eqn. 

(5.3.13a) for Y*1 and from eqn.(5.3.28) by setting n=0. Thus, the
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second and higher radial modes progress to high frequency compressional 

modes given by eqn.(5.3.25a) and all the tangential modes of the infinite 

cylindrical shell tend to high frequency shear modes given by eqn. 

(5.3-25b) 

5-4 Longitudinal Shear Vibrations 

It was pointed out in the previous section that the frequency 

equation 

Dy = = 0 (5-4-1) 

corresponds to the longitudinal shear vibrations of an infinite hollow 

cylinder, where the elements of the above determinant are given by eqns. 

(5.3.7). These are the vibrations for which the particle displacement 

is purely axial. It may be noted, from eqn.(5.3.3), that the plane 

strain and the longitudinal shear vibrations in an infinite hollow 

cylinder are uncoupled and the frequencies of these vibrations are the 

cut-off frequencies. The modes of propagation, of a infinite 

hollow cylinder, associated with these cut-off frequencies, for n=0, 

are the 'radial shear’ and taxial shear' modes, respectively. Further, 

when n=0, eqn.(5.4.1) reduces to 

{3,(K"76) 4, (K™¥e) - x, (K™70) J,("7Y9)} =0 (5.4.2) 

and the modes predicted by the above equation are uncoupled with the 

axisymmetric extensional vibrations given by eqn.(5.3.13a)- 

The displacement functions for the longitudinal shear vibrations 

governed by the frequency equation (5.4.1), are given by 

t u. ae 0, Ug=0, and 

u, 
Z 

a k{A, J,(kr) + B, Y¥,(kr)} cos n@ sin wt (5.4.3) 

where k = o/C,. The eigenvalues obtained from the solution of eqn. 

a3 LI 
(5-4-1) are designated by a. Thus, one of the lowest longitudinal
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shear mode (Kit » m=n=1) corresponds, essentially, to a shearing of the 

cylinder across its eee and the higher longitudinal shear modes, 

which involve a number of nodal circles and nodal diameters, correspond 

essentially to a shearing of the hollow cylinder across its thickness. 

5-4-1 Thin Rods 

For thin rods, Y*O and hence ¥, (KT) +0 - Then, using these 

conditions in eqn.(5.4.1), yields the frequency equation for the 

longitudinal shear vibrations of an infinite solid cylinder, as 

{at (x""6)— n} = 0 (5.4.4) 

When n=0, this equation becomes 

J,(K'7@) = 0 (5-4-5) 

The frequencies corresponding to eqns.(5.4.4) and (5.4.5) are the cut-off 

frequencies and are independent of 9, the Poisson's ratio. 

5.4.2 Thin Cylindrical Shells 

For a thin cylindrical shell, Y+1 and it is observed for few 

modes that KI9 7*as Y>1. Using this condition and the asymptotic 

expansions of Bessel functions, in eqn.(5.4.1), oe can obtain the 

frequency equation for the longitudinal shear vibrations of a thin 

cylindrical shell, as 

i (4n°43) (1-1) I 
[in Ke e(1-y)- pa SY cos x a1-y)] =0 (5.4.6) 

KYO 

whose frequencies are given by 

2 2 cae (4n*43) 1-y) eon ety [1 eM | | gatzstee Gan 
The above equations are valid for asymptotic modes, whose frequencies 

tend to infinity as Y>+1, but, they do not predict the lowest mode, for 

which Ko is finite. However, when Y*=1, all second and higher modes 

tend to the simple thickness-shear modes, whose frequencies are given by
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Eo Geni 1 a Hye, Byres (5.4.8) 

The lowest longitudinal shear mode, for n31, tends to finite 

frequency, as Y*1. For this case, Y can be written as y = (1- ay). 

Substituting this value of Y and the corresponding truncated Taylor's 

series expansion of Bessel functions involving y, in the elements of the 

frequency equation (5.4.1) and simplifying, yields the frequency of the 

lowest longitudinal shear vibration, as 

1s 2n 
Ke = cry » n2i (5.4.9) 

The frequencies of the first and second modes, given by eqns.(5.4.9) and 

(5.4.8) for y=0.9 and o=0.3 are shown in Figs.5.8 and 5.9, respectively, 

for n =1 and 2. 

5.5 Discussion 

The plot of Ki (1-9) versus y is shown in Fig.5.3 for the first 

two asymptotic modes ie and Ee given by eqn.(5.3.13a), for two 

different values of Poisson's ratio, in order to illustrate the effect 

of O on the nature of the transition from infinite cylindrical shell 

frequencies to the infinite rod frequencies. The ratio of the phase 

velocity to the compressional velocity of these waves is given by 

  

I c K(1-y) ph c = P12 yeee (5-5-1) 

From Fig.5.3, it may be seen that the limiting values approached for 

Y=1, are a and 2n for Or and Re » respectively, which establishes 

that the waves travel with the compressional velocity, as given by eqn. 

(5-5-1), and are not dispersive. 

Fig.5.3 also indicates that the frequency of these asymptotic 

modes, given by eqn.(5.3.22) for an infinite cylindrical shell of 

thickness (a=d) , deviates, but little, from the corresponding frequency 

of a thin ring of the same thickness, even for large values of Y. This 

can be noticed from Figs.3.3 and 5.3. Also, it may be noted that this
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deviation is less pronounced for the higher modes than for the lower 

modes. However, these remarks do not apply to the lowest extensional 

mode Sa » whose frequency remains finite for y+1. 

The lowest mode of the radial mode series in a shell is (1,R), as 

given by eqn.(4.5.20) , but, for an infinite cylindrical shell, the 

frequency of this mode tends to zero, for n =0, as given by eqn. (5.3+29), 

for all y's. Fig.5.4(a) shows the variation of Kp over a wide range of 

thickness—to-diameter ratios, for different y's. The frequency of the 

second radial mode (2,R) is given by eqm.(4.5.20) for the cylindrical 

shell, but this transforms itself to the first mode, ie of the radial 

mode series, for an infinite cylindrical shell, as given by eq.(5.3-30). 

Fig.5.4(b) illustrates the variation of K, ~Y) with thickness—to— ont" 
diameter ratio, for various y's. It may be noted that, for Y =0.9, 

the frequency of the (2,R) mode, which has an asymptotic value given by 

eqn.(3.4.15a) for a thin ring, progresses to a finite frequency value, 

given by eqn.(5.3.30), for a thin cylindrical shell. 

For an infinite hollow cylinder, there is only one series of 

finite frequencies in plane strain vibrations, as in the case of an 

annular ring. The lowest mode in this series, for Y*+1, is again 

(4,R)2. The frequency of this mode is greater than that of (2,1)7 mode 

for lower values of Y, but these two progress, respectively, to K=1 and 

K=v2 thin cylindrical shell values, as given by eqn.(5.3.28), crossing 

each other. This crossover occurs at a specific value, which is 

dependent on 0. Fig.5.5 illustrates the variation of the frequencies 

of the first three finite frequency modes (4,8)7, (2,1)7 and (3,2)7, 

with Y. The undulations in the curves, similar to that observed in the 

plot of Ky values with y in Fig.3.5 for finite frequency modes of 

amular rings, can be noticed here for all the modes except (1,R)7 mode. 

For modes with larger n, the increase in frequency values, for Y>+1, is 

rather significant. It may be noted, from eqns.(3.4.10) and (5.3.28),
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that, in thin rings, x 0 is independent of Poisson's ratio whereas in the 

case of infinite shells, xt is independent of g. This implies that the 

finite frequency modes in thin rings propagate with rod velocity and in 

infinite’ shells, they propagate with plate velocity. 

However, eqn. (5.3.28) does not describe the flexural modes, 

similar to those found in a thin ring. The lowest mode for n=1 is the 

flexural mode which degenerates to a zero frequency, as n>+0, for all 

y's, as in the case of a thin ring. But, this is not true forn>1, as 

for the case n=2, the frequency of the lowest flexural mode decreases 

monotonically with increasing y, from a finite Pochhammer frequency for 

y=0 to a zero frequency for Y=1. 

The nonaxisymmetric (plane strain) modes of a thin cylindrical 

shell, which, like pure extensional and shear modes, tend to infinite 

frequency as Y~>1, the asymptotic values are being the solutions of 

eqns.(5.3.20a) and (5.3.20b), for shear and compressional waves, 

respectively. Fig.5.6 shows the plot of x9(1-7) versus Y, for (4,1) 

and (5,2) shear modes. It may be noted from the figure that the 

limiting values approached as Y>1, for both the modes is n, showing 

that these modes travel with shear velocity. Similarly, the 

compressional modes (5,1)2 and (62) ereatess to an asymptotic value a, 

for Y>1, as show in Fig.5.7. Thus, these two modes propagate with 

the compressional velocity, as Y*1. 

The longitudinal shear vibrations, which exist as uncoupled with 

the plane strain (nonaxisymmetric) vibrations for an infinite hollow 

cylinder, classify into two types of modes for n>0O, as the frequencies 

transform from those of an infinite rod to those of a thin cylindrical 

shell. Forn>0, the first set of modes remain as finite frequency 

modes as Y+1, while the second set of modes tend to infinite shear 

frequencies. Fig.5.8 shows the variation of the frequencies of the 

finite frequency modes «4,1 and 2,2)", with Y, in which
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the limiting value attained as Y+1 is given by em.(5.4.9). Those modes 

Gaye and (4,2)"7, which tend to infinite frequencies, as given by 

eqn.(5.4.8) for Y+1, is show in Fig.5.9. However, for n=0, all the 

modes inéluding the lowest will tend to infinite frequency as show 

in Fig.5.9. 

The correspondence between the thin ring modes and the infinite 

shell modes, is shown in Fig.5.10 for the symmetric modes and Fig.5.11 

for the antisymmetric modes, for o=0.3. It may be noticed from Fig.5.10, 

that the (2,R) and (3,R) shell modes progress to (2,R)" for a thin ring 

and to (1,z)7 and. (1,0) 47 modes, respectively, for the infinite cylindri- 

cal shell. Similar feature is observed for the (4,R) and (5,R) shell 

modes. Fig.5.11 shows the finite frequency and high frequency shell 

modes and their thin ring and infinite shell counterparts. 

To summarise, this chapter describes the transition from the 

vibrations of an infinite cylindrical shell to the Pochhammer vibrations 

of an infinite solid cylinder and the following results may be of 

particular interest: 

(a) The plane strain extensional and shear modes of an infinite hollow 

cylinder exist as uncoupled in the case of axisymmetric motion. 

All the shear modes progress to the corresponding infinite frequency 

modes of a thin shell, for Y+1, as in the case of a thin ring and 

they tend asymptotically to the Pochhammer modes as Y*O. Among the 

radial modes, all the modes except the lowest one have similar 

properties with Y, as the shear modes. For all these modes, this 

amounts to a rise in frequency as Y increases from 0.0 to 1.0. The 

lowest extensional mode tends to a finite frequency mode for Y+1 

and to the corresponding Pochhammer mode for Y+0. In any case, the 

frequency of a cylindrical shell mode, for a given Y, differs, but 

little, from that of the corresponding mode of an annular ring of 

same Y, even for the values of Y's of the order of 0.5.
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The extensional and shear modes are always coupled in the case of 

non-axisymmetric motion. Also, for n =0, these non-axisymmetric 

(plane strain) modes are uncoupled with the longitudinal shear 

modes. The two lowest modes of plane strain vibrations forn>1, 

progress to a flexural and a finite frequency mode series, 

respectively, as Y*+1. However, for n=1, the flexural mode always 

has a zero frequency for all Y's and hence the lowest modes tends to 

finite frequency as Y>1. All the higher modes, will tend, for Y>1, 

to either pure extensional (Compressional) or shear mode series. 

The longitudinal shear vibrations, which are uncoupled with the 

plane strain vibrations, are the vibrations which involve only 

axial displacements. Among the longitudinal shear vibrations, for 

n>0O, the lowest mode tends to a finite frequency mode series, as 

Y+1. All the higher modes tend to shear frequencies as y+1. 

However, for n=0, all the modes progress to pure shear modes as Y 

increases.



-138- 

CHAPTER 6 
PERFORMANCE OF TUNING FORK RESONATOR IN 

VARIOUS GAS ENVIRONMENTS 

6.1 Introduction 

A remote acoustic resonator, in the form of solid thermometer 

(integral probe), has been succesfully ercloyeds 19 in the measurement of 

temperature. It is a specially designed tuning fork on the end of a 

long line and operates at high frequencies. The principal object here 

is to develop a compact version of such a system, employing a tuning 

fork, whose lowest natural frequency of flexural vibration is used for 

the measurement of gas parameters. The system used is an aluminium 

tuning fork, show in Fig.6.1, made from a "x "x nw block, aluminium 

being chosen for its low density and low internal friction. The fork is 

sufficiently large to enable good machining accuracy, particularly of 

the gap between the tines, to be obtained. The resonant frequency of 

the lowest flexural mode of vibration, is of the order of 8 kHz. The 

internal friction of aluminium at this frequency is of the order of 104 

and the losses measured can, therefore, be attributed to the gas. 

The method of determining the resonant frequency and the losses 

in the resonator is similar to that employed in the measurement of 

Remperature <: An electronic system (transmitter) is constructed, which 

generates bursts of oscillations and these oscillations are applied to 

the transducer to excite the lowest resonance in the tuning fork. The 

decrement signal received from the resonator is, in its nature, at the 

natural resonant frequency. Direct measurements of this frequency and 

the losses, were made. Thus, the drive frequency need only be 

sufficiently close to the resonant frequency for a good decrement to be 

produced. The decrement sigmal is converted into square pulses in the 

receiver in order to measure the period of the gate, of ten decrement 

pulses, generated once in every transmitted burst. This provides an
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accurate measurement of the frequency variation with the gas pressure. 

The performance of the tuning fork resonator in various gas environments 

and under various pressures are also investigated for different slot 

widths between the tines of the fork. 

6.2 Frequency and Q factor of the Resonator 

The tuning fork resonator shown in Fig.6.1 may be regarded as a 

rectangular bar clamped at one end. The natural frequencies of resonance 

53 are given by 

I B,)? fas al ia cy (6.2.1) 

where L = length of fork, < = the radius of gyration which is n/V12 for 

a bar of rectangular cross-section, & = V5] 9 , the rod velocity (velocity 

of sound in material), 8 = factor determining the overtones, whose 

values are given by 8, = 0.597, 8 = 1.494, B, = 2.50 etc. It may be 
3 

noted that, for large n, 8 = (n-3). Thus, the ratio of the frequencies 

of overtones to the fundamental resonant frequency is given by 

£ 8.)° 
7 = z 7 n>1 (6.2.2) 

which shows that the fundamental frequency is well isolated from the 

overtones. 

For the aluminium tuning fork used in the measurements (Pig.6.1), 

the dimensions are h = 1.27 cms., & = 5100 n/sec., L = 3.81 cms. The 

calculated fundamental frequency of the resonator is 7.211 kHz. The 

measured frequency of the fundamental resonance is 7.9 kHz. 

In the analysis of the tuning fork resonator where the effect of 

gas vibrations in the narrow gap between the tines is to be studied, a 

simple model which can be readily analysed is shown in Fig.6.2. The 

vibration is idealised to the two masses oscillating without rotation 

increasing and decreasing the air gap. All the mass is considered to be 

in the masses and all the stiffmess in the spring. Any stiffness
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arising from the gas in the gap will add to the stiffness of the spring 

which increases the frequency, because the relation between the 

stiffness and the frequency is given by?? 

ioce) 8/a (6.2.3) 

where S and m are the stiffness and the mass of the spring, respectively. 

Treating m as constant, the relation between the added stiffess 6S due 

to the gas pressure between the tines, and the change in the frequency 

6f can be obtained, by differentiating eqn.(6.2.1), as 

( 6#/£) = % ( 68/8) (6.2.4) 

The added stiffness due to the gas in the gap is calculated in Appendix 

A.6.1, by regarding the tuning fork as a lumped impedance model. Thus, 

eqn.(6.2.4) predicts that 1% change in the stiffness changes the 

frequency by h. 

The 'Q' factor of the resonator is given by 

Q= 2n¢ x Mergy stored in the fork (6.2.5) 
zs Power dissipated from the fork 

where f is the resonator frequency. The stored energy is lost at a rate 

proportional to itself. Then, the amplitude of the Eee pulse of the 

exponential echo decrement is given by 

AL = Ap exp (-nr/a) , (6.2.6) 

where Ay and AL are the amplitudes of two decrement oscillations n 

periods apart and Q is the 'Q' factor of the resonator. Then, Q can be 

determined by measuring Ay and AL and it may be noted from eqn.(6.2.6) 

that Q =n, when the decrement amplitude (4) falls to 1/23 of the 

initial value, Ao: 

It is now shown that the Q factor of the resonator is proportional 

to the half slot—width "tj between the tines of the tuning fork show in 

Fig.6.1. The piston vibration of the tines pumps the gas in and out of 

the gap between the tines of the fork. Then, the inertia effect of the 

gas between tines of the fork yields



Energy stored = $m c? , 

(6.2.7) 
1 16aW n, 2 

Power dissipated = 3 a Cc ; 

where m is the mass of the tine, C is the velocity, a, W and - are the 

dimensions of the tine and ny is the viscosity of the gas. Then, 

substituting eqns.(6.2.7) into eq.(6.2.5), yields 

(6.2.8) 

  

where kK, and ky are constants of proportionality. Thus, the 'Q' factor 

is inversely proportional to the viscosity of the gas and directly 

proportional to the gap between the tines of the fork. 

6.3 Electronic System 

This section describes the electronic system developed for the 

measurement of pressure. The functions of the electronic system are: 

(a) To generate a burst of oscillations, from a variable frequency 

oscillator, which drives the mechanical resonator (twing fork) through 

a magnetostrictive transducer and (b) to measure the frequency of the 

decrement of the signal received from the resonator through the same 

transducer. 

The block diagram of the experimental arrangement used to measure 

the pressure is show in Fig.6.3. In this section, the transmitter 

which generates the burst of oscillations and the receiver which 

measures the frequency of the decrement of the resonator, are described. 

6.3.1 Transmitter 

The function of the transmitter is to generate a burst of 

oscillations with sufficient duration to allow the tuning fork resonator 

to approach the maximum amplitude of oscillation and with a sufficient
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repetition interval to allow the amplitude of the resonator to fall to at 

least 4/237 of its maximum amplitude. The block diagram of the 

transmitter is show in Fig.6.4. The fundamental frequency of fork's 

flexural’ resonances has been used for all the measurements. It was 

found that this resonant frequency is about 8 kHz for the aluminium 

tuning fork used in the experiments. A variable frequency oscillator is 

used to produce the transmitted burst of oscillations at a frequency of 

8 kHz. The low frequency oscillations (p.r.f), which determines the 

number of transmitted bursts per second, is derived from the output of 

the variable frequency oscillator by an arrangement consisting of a 

Schmitt trigger, divide circuits and a D type flip-flop, as shown in 

Fig.6.4. This ensures that the p.r.f and drive frequencies are always 

in synchronism. The waveforms at various points of Fig.6.4 are shown in 

Fig.6.5. The waveforms at A and B which produce the low frequency 

oscillations and the high frequency oscillations at points C, are fed to 

a NAND gate. The output from the NAND gate will then be the required 

purst of oscillations as shown by waveform D. The power amplifier 

produces a burst of high voltage transmitter pulses of -15 V to +5 V 

amplitude, as shown by waveform E in Fig.6.5. These transmitter pulses 

are then used to drive the magnetostrictive transducer inserted in a 

coil, which in tum drives the tuning fork resonator connected to one 

end of the transducer, as shown in Fig.6.3. The circuit diagram of the 

power amplifier is show in Fig.A.6.1. Transistors qT, and T, are used 
2 

for power amplification and the transistor q is used to generate 

sufficient current in the coil to bias the magnetostrictive transducer. 

It may be noted from the figure that one end of the coil is connected 

to the output of the power amplifier, the other end of which is 

connected to the positive variable power supply line. Because of the 

short length of the transducer line used, this electromagnetic bias was 

more practical than the use of a magnet. In particular, final adjust-
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ment, when the unit was inside the pressure vessel, could be made. This 

arrangement gives a maximum amplitude of the signal received from the 

resonator. This method of obtaining the required burst of transmitter 

pulses, ‘gives very stable signals, even as the frequency is changed, as 

it is self synchronised. 

6.3.2 Receiver 

The block diagram of the receiver is shown in Fig.6.6. The 

function of the receiver is to amplify and process the received echo 

signal and to measure the frequency or in this case, the period of the 

decrement. This is carried out by using ten selected oscillations of 

the decrement to produce a gate of precisely ten periods duration. The 

echo pattern is shown by waveform EP in Fig.6.7, which consists of the 

transmitted burst followed by the transients and the decrement. Thus, 

processing of the echo signal involves generation of square pulses for 

TTL circuit operation and sampling of the echo decrement to provide 

pulses for the reset of the counter and to form a gate of ten pulses. 

The receiver basically consists of an open collector reed relay 

compatible with TTL circuits, monostables generating a control signal 

for the relay, decrement amplifier, variable gain amplifier with d.c. 

shift, zero-crossing detector, decrement sampling and divide circuits 

to generate a gate of ten decrement pulses. The circuit diagrams of 

some units are given in Appendix A.6 and the waveforms at various points 

of the receiver are show in Fig.6.7. 

Relay arrangement 

The signal on the transducer is comprised of the transmitted 

burst, the transients and the echo decrement. In order to limit the 

saturation of the amplifiers and the comparator (zero-crossing 

detector), a relay arrangement is employed to suppress the transmitted 

burst and the transients. The control signal for the relay is the 

output of M, shown by Mo in Fig.6.7. The control signal is derived
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from the signals A and B of the transmitter (show in Fig.6.5) using two 

monostables M, and M,. Both the monostables give a flexible arrangement 

to vary the width of their output pulses by means of a potentiometer, 

the fornier to suppress as many transient pulses as needed and the latter 

to select as many decrement pulses as required. The reed relay is a 

switch and operates direct from the TTL output as show in Fig.A.6.2. 

During the period of the transmitted burst and the transients, the input 

to relay is in '0' state and the relay is shorted thus suppressing the 

transmitted pulses and the transients. The output of the relay, then, 

consists of weak decrement pulses only, as show in Fig.6.7 by the 

waveform G. 

Decrement amplifier 

The output of the relay is then amplified to obtain a sufficient 

echo signal amplitude for the zero crossing comparator. The amplifica— 

tion is done in two stages with a first stage gain of 10, the second 

stage being a variable gain amplifier. The first stage also acts as a 

buffer between the relay output and the input of the second stage. The 

second stage has an additional facility to shift the d.c. level of the 

relay output before amplification, in order to drive the zero crossing 

comparator. This is required because the decrement was asymmetric 

about the zero level, which may be due to the asymmetry in the 

transmitted burst and the e.m.f induced by the demagnetisation of the 

line driving the resonator. The output of the second amplifier is show 

by waveform H. 

Zero crossing comparator 

The. zero crossing comparator (LM 306) is used to convert the 

amplified decrement signal into square pulses. It gives a TTL 

compatible digital output when the input signal amplitude goes through 

the zero level. The comparator has a strobe facility which can be used 

to activate the comparator, only for the required period. The output of



-151- 

the comparator is shown by the waveform J. 

Decrement sampling and counting 

The transmitted burst and the transients in the received signal 

were suppressed in order to obtain the true decrement. Since there is 

some delay in the relay operation, the output of mono M, is not in 
2 

synchronism with the output of comparator C The two outputs are then 1° 

synchronised in flip-flop D, , Such that the output of Dd, consists of an 

integral number of comparator output pulses. The comparator output is 

fed to a divide-by—ten counter which is reset to start counting only 

when the output of D, goes from the 0 to 1 state. The resetting of the 

counter is done by the output Pog of the preset/clear D flip-flop Dy 1 

as show in Fig.A.6.2. The output of the counter CO is shown by wave— 

form co, in Fig.6.7. The negative going edges of outputs DG and C05 

trigger monostables a and x, , respectively, whose outputs Me and Msg 

are shown in Fig.6.7. The outputs M and M,~ of these monostables 40 38 
are then used to preset/clear the D flip-flop Dor which generates a gate 

of ten pulses of the decrement. The output D,. is also show in Fig.6.7. 
2Q 

The duration of the gate is measured by the digital counter as show in 

Fig.A.6.2. This gives the frequency of the decrement and provides a 

better calibration against the pressure. 

6.4 Experimental Apparatus 
  

The apparatus, for the measurement of gas parameters such as 

pressure and viscosity, consists of (a) a probe which is fed by the 

transmitted burst of oscillations from the electronic system, (b) a 

pressure vessel into which the probe is located and a pressure gauge. 

6.4.1 Probe 

The probe consists of an isolator, a magnetostrictive transducer, 

a driving coil and the tuning fork resonator, as shown in Fig.6.3. The 

probe, as a whole, is to be located inside the pressure vessel which 

contains the gas whose effect on the natural frequency of the resonator,
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is to be investigated. In addition, a permanent magnet may be 

incorporated to polarise the magnetostrictive line which increases the 

decrement amplitude. 

The isolator, consisting of a two inch long steel cylinder of one 

inch diameter, can be regarded as a solid termination to the line. The 

standing waves will result in the overall system having a slightly 

different natural frequency from that of the fork alone. The driving 

line, assumed lossless will present a reactance, to the fork, of 

-j % cot 6 where Zy is the impedance of the line, 6 = 2nl/r , and 1 and 

A are the length of the line and the wavelength, respectively. Between 

1=0 and xa; the reactance will represent a stiffness, increasing the 

natural frequency of the fork, and between r/4 and 4/2, a mass, 

decreasing the frequency. The We value must be avoided as it, in 

effect, represents the whole of the isolator attached to the point of 

contact. In practice, the line length was chosen to be about r/4 

giving zero reactive load. 

The me enetoetsiciive transducer used is a short telcoseal line 

and a coil of about 2000 turns of fine wire is wound on this line. The 

length of the magnetostrictive line was chosen to be of quarter—wavelength 

(15.5 cms.) between the isolator and the resonator. The transmitter 

output, which is fed to the coil, produces a varying magnetic field. 

The magnetostrictive transducer converts this magnetic field into 

mechanical energy which drives the resonator. The same launcher coil 

acts as the receiver of the signal from the resonator. A permanent 

field in the coil, due to the current generated from the transistor t 

in Fig.A.6.1, polarises the transducer and sets up a bias condition on 

the transducer. Depending on the position of the coil, this bias 

condition either aids or opposes the magnetostrictive action. Maximum 

signal was obtained from the resonator when the coil was resting either 

on the isolator or on the tuning fork. Later, it was observed that the
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permanent magnet aided the magnetostrictive action and resulted in 

maximum signal. A decade switched capacitor is connected in parallel 

with the coil, to tune the resonance to the driving frequency. 

The resonator is basically an aluminium block which has a deep 

narrow slot cut as show in Fig.6.1. The dimensions of the tuning fork 

resonator are also shown in the figure. The tuning fork is driven by 

the magnetostrictive line which is recessed into the base or one of the 

tines of the fork and sealed with araldite to give a good acoustic joint. 

The coupling can be adjusted by changing the point at which the line 

joins the fork or by changing the diameter of the line. In all 

measurements, the fork was driven at right angles to the plane of the 

tines. 

The resonator vibrates upon receiving energy from the transducer 

and the stored energy in the resonator decays exponentially at its 

natural frequency. The resonant frequency of the tuning fork is 

proportional to the velocity of sound in the material (aluminium) and is 

also a function of the fork's shape and dimensions. For a given shape 

wa/C is a constant, which depends, to some extent, on Poisson's ratio 

depending on the particular type of velocity chosen for C, where ‘a’ is 

a scaling dimension. The measurements of the decrement amplitude enable 

the measurement of Q where q represents the losses in the resonator. 

When the tuning fork is in the presurre vessel, the smaller the width of 

the slot between the tines, the larger will be the inertia added to the 

system due to the gas pressure in the slot. The inertia also increases 

with the pressure of the gas between the tines. The resonant frequency 

of the fork, which is proportional to the inertia, thus increases as the 

pressure in the vessel is increased. 

6.4.2 The Pressure Vessel and the Gauge 

The pressure vessel was constructed to withstand pressures upto 

250 psi. It was made of brass to ensure that no magnetic interaction
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occurs between the vessel and the probe. The length of the vessel was 

made about 65 cms., to enable the measurement of gas parameters, to be 

carried out with a longer magnetostrictive line (transducer) between the 

pe cona tee and the isolator. The diameter of the vessel was made about 

10 cms. The cover (lid) for the vessel was designed to allow the maximum 

pressure of 250 psi to be reached when the probe is inside the vessel. 

To anchor the isolator of the probe into the lid, a vice type wooden 

clamp is provided. Provision is also made for locating the electrical 

terminals of the driving coil outside the cover. 

The pressure gauge used has a dial which has been calibrated upto 

250 psi and each division is 5 psi. The pressure vessel and the gauge 

can be seen in the photograph of the experimental set up (Fig.6.8). 

Further details about the probe and the pressure vessel are given in the 

undergraduate project report o4 . 

6.5 Measurements 

To investigate the effect of the gas parameters on the performance 

of the tuning fork, the experimental arrangement is set up, together 

with all the associated equipment, as shown in Fig.6.8. The digital 

counter is used to measure the duration of the gate of ten pulses, 

generated from the decrement pulses and an oscilloscope is used in order 

to display the decrement and to enable its resonance to be detected. At 

resonance, the decrement from the resonator will have a maximum amplitude 

and the decay will always be at the natural frequency of the resonator. 

For all measurements, the lowest flexural resonant mode was investigated, 

by driving the fork at right angles to the tines. Precaution was taken 

to suppress the standing waves in the pressure vessel. 

6.5.1 The Effect of Pressure on the Resonator Frequency 

The effect of the pressure on the performance of the tuning fork 

resonator can be investigated by measuring the resonator frequency for 

various gas pressures. To determine the natural frequency of the
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Fig.6.8 Photograph of the experimental arrangement used 

to measure the gas parameters.
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resonator, the duration of the gate of ten decrement pulses was measured 

on the digital counter shown in Fig.6.8, for various pressures in the 

vessel. 

The tuning fork resonator was excited, by the transmitter output, 

using the magnetostrictive transducer. The resonance of the fork was 

detected by observation, of the echo decrement signal received from the 

resonator, on the oscilloscope. The position of the coil on the 

transducer, the tuning capacitance and the driving frequency are adjusted 

to maximise the amplitude of the decrement. After these initial 

adjustments, the probe is placed inside the pressure vessel by clamping 

the isolator in the vice type clamp. The vessel was then pressurised at 

“ihe highest pressure available, namely 250 psi, and the effect of 

pressure on the decrement was observed. The period of the gate of ten 

pulses was measured on the digital counter, for pressures from 230 psi 

to O psi in steps of 10 psi, and the pressure was measured each time on 

the calibrated pressure gauge. The graph of this period is plotted as a 

function of pressure as shown in Fig.6.9. The two graphs in the figure 

represent the measurements taken on two different tuning forks of slot 

widths of 0.040 and 0.015 inches, respectively. 

6.5.2 Measurement of Losses 

The losses in the resonator, which change with pressure, occur in 

many ways, due to, (a) the internal friction in the resonator material, 

(b) the energy lost in the coupling of the magnetostrictive line to the 

resonator, (c) the acoustic radiatio, (d) the viscous losses and 

(e) the thermal Tenens The losses (a) and (b) can be calculated by 

measuring the appropriate Q factors; namely ‘material Q* in the former 

and the tcoupling Q' in the latter; designated by Qn and Qa 

respectively. For a given line, a, is constant and is independent of 

pressure. The Qn for aluminium resonator is very large and, therfore, 

the losses can be taken as negligible. The losses (vy can be
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calculated by noting the amplitudes A, and AL of two decrement pulses n 
0 

periods apart and using the formula 

a S inlto/4,) (6.5.1) 
- nt 

Equation (6.5.1), which can be derived from eqn.(6.2.6), gives the 

expression for One: the losses. The amplitudes Ay and Ay the number 

of pulses n and the pressure were measured at intervals of 10 psi from 

230 psi to O psi, as before. The plot of a! versus pressure is show 

in Fig.6.10. The two graphs correspond to the same two tuning forks 

considered in the previous section. 

6.6 Discussion 

It can be noticed from Fig.6.9 that the tuning fork with a 

smaller slot width between the tines, vibrates at a higher frequency 

than that of the fork with a larger gap between the tines. This is 

because, the smaller the width between the fork's tines, the larger will 

be the stiffness added to the system. This is explained by em.(A.6.11). 

Also, note that the two forks were made from identical aluminium blocks. 

The figure also shows that the resonant frequency of a given 

tuning fork increases with pressure. This is expected, because, 

the increase in pressure results in an increase in the stiffness which, 

in tum, produces an increase in the resonant frequency. This is 

explained by eqn.(6.2.4). 

The behaviour of energy losses in the resonator with the change 

in pressure can be explained by viscous losses, thermal losses, material 

losses, coupling losses and acoustic radiation. The coupling losses 

remain constant with pressure and the material losses are negligible. 

The thermal and viscous losses increase with pressure because of the 

increase of gas density with pressure. From Fig.6.10, it may be seen 

that the energy losses are large at higher pressure. In the figure, a 

peculiar change in the losses, may also be noticed at high pressures.



-159- 

  

0.012 + 

0.011 + © 9 

| 0.010 + ° 

0.009 T 

Losses 
-1 

) 
0.008 + 

0.007 ++ 

0.006 + 

0.005 + 

0.004 + ® 

0.003 +       0.002 t t t t 
0 50 100 150 200 250 

Pressure psi + 

Fig.6.10 Graph showing the variation of losses with pressure, 

© Tuning fork with small slot width 

® Tuning fork with large slot width.



- -160- 

This may be due to acoustic radiation. Reverberations in the chamber 

may be one of the factors causing this peculiar change in losses. The 

phenomena is so complex that further investigation was not pursued. 

However, the suggestions for further work in this area are given in 

Chapter 8.
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CHAPTER 

THE SPECTRA OF DISK-SHAFT RESONATORS 

7.1 Introduction 

The vibrations in disks and rods were investigated in previous 

Chapters. This chapter deals with the vibration spectra of disk-shaft 

system show in Fig.7.1. This structure resembles, to some extent, the 

turbine disk in turbomachinery and hence it is of interest to study the 

spectra of its in plane vibrations. 

The solution for the flexural vibrations of uniformly loaded 

circular and rectangular plates with various boundary conditions was 

given by Betper ae later, Berger's equations have been applied to obtain 

the frequency equations for flexural vibrations of clamped?! 158 and 

simply qapporte > circular plates with concentric rigid mass. The 

frequency equations for the critical speeds associated with backward 

and forward whirling modes of a rotating shaft—disk system were given by 

Eshleman and Eubanks?. Vogel and Seimner) have derived frequency 

determinants for various combinations of boundary conditions with the 

flexural (transverse) vibrations of uniform annular plates. Recently, 

the axisymmetric (flexural) vibrations of circular plates with a single 

circular step thickness has been analysed by ame, 

In this chapter, an attempt is made to obtain the solution for 

axisymmetric (radial and torsional) and non—axisymmetric (Compound) 

vibrations of the disk-shaft system show in Fig.7.1. Various theories 

are proposed to deal with the vibration problems associated with 

different shaft lengths. The resonant spectra were obtained for disk— 

shaft resonators of various disk and shaft dimensions. 

7.2 Proposed Theory 

In this section, three types of theory are proposed to deal with 

the problem of non-axisymmetric vibrations of a disk-shaft resonator, 

for varying shaft lengths and disk diameters. The disk-shaft system can
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Fig.7.1 Geometrical form of a Disk-shaft resonator.
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be treated as, either (a) a disk with a rigid centre or (b) a thick disk 

inside a thick amular disk for shaft lengths smaller than its diameter 

or (c) a shaft inside an amnular plate. 

7-2.1 Disk with a Concentric Rigidity 

In this section, the disk-shaft resonator shown in Fig.7.1 is 

regarded as an annular plate with a free edge at r=a and the edge at r=b 

being rigid (clamped). The frequency equations and their numerical 

solutions, for flexural vibrations of an annular plate clamped at centre, 

are given by Gontkeyich’= and Raju » respectively. The frequency 

equations for the non-axisymmetric (compound) and axisymmetric (radial 

and tangential) vibrations of this structure, are derived here, using the 

annular ring theory given in chapter 3. 

The radial and tangential displacements ee and Ey are given by 

eqns.(A.3.4) in Appendix A.3.1. The boundary conditions at the free 

edge r=a, are 

T  =0 at r=a 
= 

76251) 
T = 0 at rea 
re 

and at the clamped edge r=b, are 

£,= 0 at r=b 

(7202) 
9 = 0 at r=b ‘i 

The expressions for Ce and Tt, are also given in Appendix A.3.1, by 
8 

eqns.(A.3.6). Thus, substituting eqns.(A.3.4) and (A.3.6) into eqns. 

(7.2.1) and (7.2.2) and simplifying, yields the compound mode frequency 

equation, formed by the determinant of the amplitude constants, as 

laj;] = %% id= 1 t04, (7.2.3) 

where the elements in the first two rows of the above determinant are 

given by the first eight elements of eqns.(3.2.2), by replacing re by K 

and
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» 7 J,,(Ky) OL (Ky) =n}, 31 

as, = Y,(KYME (Ky) -n} 

as, = 2 J(Ky®) , 

as, = n¥(KYO) 4 
(7-2-4) 

ay = 0 T(KY) 

ayo = u¥(ky) ; 

243 7 J,(K YO) {M, (Ky 0) -n} , 

ayy 7 ¥,(KY0){L, (Ky) - n} 

Putting n=0 in eqn.(7.2.3) and simplifying yields the radial mode 

frequency equation, as 

11 12 

Sr Oe (7.2.5) 

b34 bso 

and the tangential mode frequency equation as 

Poa Poy 

= (0 , (7.2.6) 

P43 a4 
where 

by = 340K) (8, (0) - (1-0)3 

dy = ¥,(K) { £,(K) = (4-0)) i 

b3, = J,(Ky) ’ 

bs = ¥, (Ky) ‘ e257) 

boy = J, (Ko) { M, (Ke) - 2} , 

boy = ¥, (Ko) { L,(K@) - 2} ’ 

bs = J, (K Ye) ’ 

bya = ¥,(K YO) :
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7.2.2 Thick Disk inside a Thick Annular Plate 

The disk-shaft with shaft length smaller than its diameter, can 

be treated as a thick disk inside a thick annular plate. Thus, the thick 

disk tee of chapter 2 and the theory developed in chapter 4 for thick 

annular plates, could be used in order to obtain the compound mode 

frequency equation of this structure. Then, the boundary conditions at 

the free edge r=a, for this system, will be 

te = 0 ’ 
2 

ae 5 (7.2.8) 
2 

Toe Zoe 
2 

and the continuity conditions at r=b, will be 

ao, eer, : 
a 2 

a = 7 

a neo 
a = 7 
rZ, ry (7.2.86) 

ee ry Ea 

é = & 
8, ee 
é = & 24 25 

where the suffices 1 and 2 refer to the thick disk and the thick annular 

plate, respectively. The stress resulatants T 7 y and T for the 
vy r6, PZ, 

thick disk and "pre! 73a," and Tra, for the thick annular plate, are 

given by 

oe ag 
h, E T 8. 

a i go i 20 me Pg (9) ay tr (e+ 45, te   i 

i (140) (1-20) 

of zo cd .. =—_ - +- foo 
re, 2(149) or = r 00 ( 9) 
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noe 38%. 
1 1 

x 2 
134 n (140) Or 

    

where i=1,2 and hy = 1, for i=1, 

sh, for i=2. 

The displacement functions for the thick disk and the thick annular 

plate are given by 

  

  

  

ag, (ar) a(p,r) ne 
— = A, a + 8, a + = T(v47) cos n@ 

e ar dr 2 

nA, nB, ad (v,7) 
Ege = |= (a2): a ae tac, —t—— | sin no 

4 dr 

gs, = iy $, J, (a2) - B, 5 7,(8,2)] cos no 

(7.2216) 

ad (a,r) aY, (ar) at, (6,7) aK, (8,7) b, = [4,— +a Se nee 

2 ar 3 ar dr 3 ar 
nC, ne, 

Se J, (vr) eS ¥,6%%7)| cos n@ 

nA. nA nB nB. 
we a — 

bo, J ee Jy( a5") tS ao oes 1,(8 2°) — K, (8,7) 

ad, (vor) ay, Wy aaa 
+0, —————"+C sin n@ 

2 
dr 

Fan 7 Lhe $3 Fnlsat) +43 3 H(ap=) ~ By oy F,(8p2) 
- B, $y 56,2) | cos nO 

where “Tal i [et - xe] 5 

2.2 (1-9) Ky 
= pag Per +S ’ 

(7.2.11) 

fee i ile 
SB DEE]
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b 2a {Sony = N= a (7.2.12) 

and the wavenumbers are given by 

6, =%,0 , 448, = Bib» 8, = a8 + Apby = BoA 1 KO=Via, KYO= vid, 

  

  

(7.2.12b) 

where 
Pa mn, /6,( 0,41) 
see 4—0) ’ 

car. nn, / G, ( v,-1) 

Te © a2 1-0) 

(7.2.12c) 

a ql 

EE (3-40) 
LA Re ns (1-0) = | 

[: 4(6,+1) (1-0) sen 
={[1+ { }     

GF (3-40) © (3-40) 

where i=1,2 and Ki = KY, for i=1, 

=K , for i=2. 

Substituting eqs.(7.2.9) to (7.2.12) into eqns.(7.2.8) and simplifying, 

yields the frequency equation for compound modes of vibration, as 

Ix,;] = 0 4 apf = 1 t09 (7.2.13) 

where 

See? 
ae K°¢ 

Xi 2- J,(85) { mM, (6,) - n(n+1) + ae 

22 
n(n+1) +Eoy 5 

= St ¥,(65) € 1, (5) i 

Kyy20% 

Ko" 
X15 a oat A585) { ¥,( A585) =n(nt+1) + at ey 

Ke" yg = KC A568) (PC 56) + n(net) - =} ; 

X,,=0,
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n J, (KO) { M (Ko) - (n1)} , 18 

Xjg=2 ¥, (Ke) { 1, (xe) - (n+1)} 

Xo, 20, 

Xo, =-n J,(8,){M(6,) - @H)} , 

X53 =-n ¥,,(65) { L, (85) -(nH1)} , 

X= 0, 

Xo = - 7 T( A585) 0,046) - GH) I, 

Bog = KC A585) (PC A506) + met)}, 

X= 0, 

K°0* 
Xog = J, (KO) { M, (Ke) = n(n+1) + a) 3 

x oy Gali naa PES ’ 
29 n n 2 

Xj, =0, 

ep Ce ©) 5(6,){M(8,) =n} 320 92 = oo nee noe ’ 

2 2 £ X,, = (85 - ) ¥,(6,) ¢ 1,(68,) -n} 5 

X29, 

Kyo = = (2262 + ©) 2.(0,8,) O,(2,8,) - 2} 35° 22 7G n\ Apo 6 Apo) — 2 ’ 

2 
Bag = (4585 +2) K(258,) (2, (AQ8q) #0}, 

Xj, 20, 

jg =O, 

I,, 20,



-169- 

yo KYO a — HP HyC6)) Ofy(6,) ~ nb) Grey), Ky = 

2 

yp = Ty V8.) (C1 6,) ~ (net) ¢ EO, 

  

2 
yy = YC 8)f 4,07 8,) - arr) +E, 

yn 5 yg TE TCA 8)) OO 48)) ~ noe) +e), 
2 KYO 

Xy5 = 1,07 4,8) {4 (14,8,) - a(n) + ogy : 
2 

yg =~ Ky(VAg6,) £P,(1A 985) #n(aet) - Gy, 
n> 

Xyq = wee n J, (« Ye) {i (KY0) — (n+1)} ? 

Kyg = - 2 (Kk YO) { M, (kK Y0) - (n+1)} ; 

Xjg ann ¥,(K Yo) { L,(Ky@) - (n+) } ; 

Yn, } 
Xo, 57 a n J(6,) (,(8,) — (nt) ’ 

Keo =n J(¥ 6,){ M,(¥ 6,) - (n+1)} . 

Xe =n ¥,(16,){ L,(7 6,) - (n+1)} 7 

yn 
Bog =~ et Tal 48) E Hal 2484) -(aH1)} , 

Keo = L(y A585) (7 A585) - 41) I , 

Keg aon K (A585) { P(YA,8,) + (aHt)} ’ 

me Kyo)? Xe7 = we (Kk yo){ u(k YO) - n(n+1) + ao } 

2 

Keg = — J,(K YO) (M(x ~ n(net) + EVD y : 
2 

Koy =~ Y(K V0) (1, (KVQ ~ n(net) + cre} 2 

wae 2 
Key EY (6 - EE) a) Om ls) 
Ronen (o= Ke {m (76 } 
Sane TV NyR2 fic ) 3,(¥ 84) mC 2-8
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(7.2.14) 

Putting n=0, in eqn.(7.2.13), yields the radial mode frequency equation, 

as 

1 

31 

41 

1 

a 

91 

Yo %3 4 15 “a6 

32 ue 33m 3A re 35 ame ag 

Myo a 4a 45) 46| = 0 (7.2.15) 

Wag ya gs as 

E7OUNy X13 TA eset 416 

Too 95) “94a 55 ge
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and the tangential mode frequency equation as 

i, Y, 27 28COC 29 

Yor Yog Yeg = 0 (7.2.16) 

Ye, Yea Tag 

where the elements ay 3 i,j = 1 to 9, can be obtained by setting n=0 

in the corresponding elements given by eqns.(7.2.14). 

7.2.3 Shaft inside an Annular Plate 

When the shaft length is larger than its diameter, the disk-shaft 

resonator may be regarded as a shaft inside a thin annular plate. In 

this case, the disk thickness h is taken as small compared to its 

diameter 2a, so that the theory developed in chapter 3 for the amular 

rings could be used, along with the Gazis's-° three-dimensional theory 

applicable to solid cylinders, to obtain the compound mode frequency 

equation of this structure. 

The boundary conditions for this case, will be 

"24 = Oatr=ea , 

a = Oatrea , (Ree 17a) 
‘4, 

"P23 = Oatr=b , 

and the continuity conditions at r=b, will be 

Tor a Tor v 
3 4 

"78, ra "28, ul 

(7.2.17) 
* = *r ’ 

ty ss 
Ey Ghd ok 

where the suffices 3 and 4 refer to the shaft and the thin annular
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plate, respectively. 

The stress resultants for the solid cylinder and the annular 

plate are given by 

  

  

; ae, ae ag 
6 Z 

[= Bulk Modulus x ee E, +— 3) +73 — 
rr, ae * Ts) r 20 (1-0) 9s 

9g, Eo 

We Plate Noauinex| ——d & Soe, + Bey, 
~) ar ia ree 

8b bo 

Meee Gheav Moauine | oe =e = es (72-18) 
es or r F388 

aE ae, 
rE 6." Shear Modulus x easel eral + 2 eee 

ru or r r 98 

3g. 3g, 

o = Shear Modulus x = es 

725 az ar 

The displacement functions for the shaft and the annular plate are 

given by 

aJ_(a,r) 
= ee ees Fe, ={A, = +73, I a6 837) +00, J 44(837) } cos nO cos(wt+S z) 

aJ,, (8,7) 
  6, = {-5a, J, (47) +00, Jn (837) ~ 8, - } sin n@ cos(wt+ fz) 

4( 8,2) 
ca -|- cA, J, 1 6 by r) - Gc, { Sos fx) Juan (832)| cos n@ sin(wt+tz) 

3 

  

dr 

ag, (hr) ay, (nr) nB, 2 (7.2.19) 
E ={A, +A + J (kr) + x (kr) } cos ng 
ra dr 3 dr = 

nA nA ad_ (kr) ay (kr) 
So, =-{ = J, (hr) + = ¥, (hr) +B, aaa +R 3 eosin nd 

where eo. 2 eee ET Es 22 83 = BS» = (K°y0" - gb) , 

(7.2.20) 

C= = » D=1,2,3,+++ 3 is the longitudinal wavenumber, k = c and 

ha a » are the shear and plate wavenumbers, respectively. fet So = 

oo
]
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Then, substituting eqns.(7.2.18) to (7.2.20) into eqns.(7.2.17) and 

simplifying, yields the frequency equation for compound modes of 

vibration, as 

where 

11 

12 

13 

14 

15 

16 

17 

21 

22 

23 

24 

25 

26 

27 

31 

32 

33 

tl 
u 

a 
w 

a 

0 , 

Le 
ij 

0 i i,j=1 to 7, 

~ J (K) (M,(K) - n(ntt) + Go" 

~ ¥,(0) 4,08) = afar) + GD", 

0 

n J(KO) {M (Ko) - (n¥1)} 

n ¥, (KO) {L, (Ke) - (n+1)} 

0 ’ 

~n J(K){M(K) - (n¥1)} 

=n ¥, (4) { L,(k) - (n#1)} 

0 

J, (K6) { 1, (0) = (net) + OD"; 

¥,(K9) { L,(K0) - n(n) + Go)" 

0 

~ 25 %(u5) C4) WAC uy) - n(2a, - 1)3 

0 ’ 

(Ci22521)
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Z( uy) nus 2 20 
4355 [03 - 436330,( 7) -n(2y 

2 2.2 

3 4363) 

Ge ee) 
- 4 (44) Ca, WAC) - nna) + —— 

2 

5, (ky) {1 (xy) -n(n+1) + cya" 

¥, (Ky) (4, (Ky) ~ n(n) + erg)" 

nZ(u,)t4, WC uy) - (2nd, -n + 1) 

-n J (KYO) {M,(KY) - (n+1)} 

~n ¥ (KY) {L,(KY0) - (n+) } 

y 

’ 

3 Z(u,) 
= = oe a {(a#1) W,( uy) = 2n(n+1) + ( A383)° . 

u 
W 

4 

-a Z(u,) fa, WC H,) - (2nd, —n41)} 

n J (Ky) { M(Ky) - (a+1)} 

n ¥ (Ky) {L,(Ky) - (a+1)} 

ZC Wy) Cay WC u,) ~ a(n1428,) + oe 

~ 3,(€ 76) (H(i 19) = alas) + GAD" y 

~ ¥,(K ¥0) (4,(K ye) ~ n(n) + {cyay" } 

aa {(n41) WC u,) - an(n#t) + a 

2 ( u,)f W(u,) - a} 

(i222)
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Xo =- J, (Ky) i M(ky) -n} ’ 

Xe, = — H(ey)( 4, (Ky) - 2} ’ 

Key =” ZC uy) ' 

Xe = — 2 J,(KY0) ’ 

X66 =-n ¥(KY0) ’ 

Teg = Ys BE OC) = 20 ’ 

X,, =-n z( 43) 

X,, =n T(x) 

Rote 1 ¥, (KY) 

Koq = 7 SC Ug) CWC Hy) - ot , 

Kg = J(Ky0) {M (Kye) -n} 

Kg = ¥(k yo){ L(k ye) -n} F 

Z(u,) 
a a4 = i Mwy Oe le : 

2 2 2 
where ua = 83 or 3,, Wa A383 or 2353 1837-63 ’ (583) = 

2.2 
=) 4393, ’ 3 and 1353 are real, Z= J or I and W(x) =x 21 (=)/Z, (=) . 

The proper selection of Bessel rune ene: to be used, depending on 

whether the wavenumbers 8 and 393 » a8 given by eqns.(7.2.20), are 

real or imaginary, is shown in Table 7.1. In Table 7.1, the values of 

the parameters a, and a, are also given. These parameters are used to 

take into account the differences in the recursive and differentiation 

formulae between the different kinds of Bessel functions. 

If n is set equal to zero, eqn.(7.2.21) reduces to



477— 

  

  

  

  

Range of the Bessel functions used Values of constants 

magnitude of 

Z(u,) (uy) a a 
wavenumbers oe) rae i ° 

Ky v3 7 J, (65) J.C d 393) 4 1 

Ky. Eas Kyo 1, (33) J,( 4465) 4 1 

KY@ < v, 1, @;) 4,(458,) -1 =4         
  

Table 7.1 Selection of Bessel Functions. 
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Ta top 243 a7, 

ae oe al eo, 
= 0 (7.2.23) 

Wet ia Uy ei 

Moy Ga on 
or 

Yq 55 156 

Yoq Yon Yeg = 0 (102824) 

i iG 
where the elements a 3 i,j = 1 to 7, can be obtained from the 

elements of eqns.(7.2.22) by putting n=0. It may be noted that eqns. 

(7.2423) and (7.2.24) correspond to radial and torsional modes of 

vibration . 

7-3 Experimental Resonant Spectra 

The specimens of the resonator, in the form of disk-shafts with 

various disk thicknesses and shaft lengths, were cut from the same 

aluminium rod of diameter 7.6 cms. and length 10cms. The ratio Y of 

the shaft diameter 2b to the disk diameter 2a was varied by machining 

the disk (outer) diameter for most of the experiments. But, for the 

disk-shaft of a shorter shaft length of 1.27 ems., the ratio Y was. 

changed by machining the shaft diameter. For each disk-shaft, the 

frequencies of various resonances were noted by driving (a) radially 

into the disk, (b) longitudinally into the shaft and (c) tangentially 

(or angularly) to the disk. All the resonances were measured by the 

crossover method described in Appendix A.2.2. The resonant spectra 

obtained in various drives, for shaft lengths progressing from 10 cms. 

to 1 om. in intervals of 1 cm., has been tabulated in Tables Te2 to 

7.4 for three disk-shafts of different Y. Tables 7.5 to 7-7 provide 

the spectra of resonances obtained for various Y's for disk-shafts of
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Frequencies in kHz. 
  

  

  

  

1 = 10 cms. 1 = 9 cms. 1 = 8 cms. l= 7 cms. 1 = 6 oms. 

R L z R L R L 2 R L i R L 

1655 | 25-56 1.47 9.12 | 26.75 wt.27 | 12.57 | 11-27 14.19 | 36.66 | 14.18 18.38 | 42.77 

30.57 | 26.50 | 21.58 35-33 | 28.49 41.02 | 32.18 | 25.78 47-47 | 69.25 | 28.51 53-98 | 79-28 

55-48 | 50.32 30.62 60.21 55-33 75-95 | 61.76 | 41.08 76.09 | 97-58 | 47-51 76.18 | 103.07 

75.92 | 74.37 | 48.16 | 75.90 | 81.51 | 86.09 | 69.94 | 58.78 }| 96.61 | 117.60 | 65.81 | 104.81 | 119.72 

92.13 | 93-95 | 55-85 77234 | 108.15 89.89 | 110.69 | 65.37 97-58 | 131.43 | 69-79 108.79 | 128.77 

404.13 | 105.15 | 71.08 | 81.69 | 121.39 | 104.07 | 111.86 | 76.01 | 104.34 | 160.03 | 76.31 | 115.04 | 143-58 

104.99 | 119.27 | 76-12 ]| 98.96 | 133.33 | 104.57 | 124.56 | 86.29 | 110.34 | 167.59 | 96.69 | 117.63 | 157-53 

409.37 | 124.23 | 76.48 | 104.00 | 143.07 | 111.75 | 144.01 | 89.91 | 114.85 | 185.18 | 97.61 | 128.32 | 158-54 

114.18 | 134.26 | 92-24 | 108.04 | 157.72 | 125.80 | 158.42 | 93.21 ] 117.63 | 194.70 |103.80 | 144.65 | 171.37 

414.62 | 151.51 | 103.48 | 114.66 | 162.29 | 128.32 | 159.83 | 104.92 | 128.88 | 201.21 |110.47 | 146.15 | 182.26 
  

124.33 | 157.05 | 104.41 | 116.32 | 168.73 | 143.80 | 173.10 | 111.81 | 135.71 | 212.95 [116.64 | 152.45 | 199.31 

428.47 | 159.95 | 114.31 | 120.91 | 169.03 | 147.77 | 181.15 | 115.52 | 137614 | 234.96 [117.45 | 162.43 | 205.76 

133.76 | 160.35 | 116.19 | 128.06 | 182.63 | 152.12 | 195.05 | 125.68 | 153.52 | 238.90 | 128.08 | 163.58 | 212.91 

136.56 | 173-36 | 128.03 133-19 | 190.03 156.12 | 201.50 | 128.13 154.74 | 248.70 [135.59 169.76 | 219.46 

138.80 | 180.02 | 133.31 | 141.16 | 204.82 | 167.22 | 207.23 | 131.90 | 159.51 | 259-99 137-23 | 177-40 | 228.61 

150.26 }| 192.17 | 136.63 | 152.63 | 213.82 | 172.05 | 220.34 | 147.95 | 165.87 | 281.13 ] 152.52 | 184.42 | 239.85 

151.66 | 196.91 | 159-50 | 162.16 | 217.97 | 177.25 | 233-96 | 152.38 | 170.09 | 289.55 [158-36 | 204.18 | 242.69 

155.38 | 202.19 | 160.79 | 162.45 | 225.02 | 180.78 | 244.53 | 158.09 | 180.47 165.90 | 205.43 | 258.02 

164.73 | 212.25 | 164.01 | 171.02 | 235.10 | 191.34 | 247.25 | 161.56 | 191.36 177-40 | 208.03 

173485 | 220.49 | 173-81 177629 197.01 }| 256.29 | 167-39 | 203.03 180.68 | 212.83 

176.20 | 231.22 | 177.62 | 179.94 202.39 | 274.69 | 172.20 | 207.97 202.86 | 216.05 

177.91 | 239.86 | 120.63 | 182.68 209.91 177-27 | 24.38 208.15 | 228.81 

181.89 | 241.52 | 201.26 186.47 227.96 180.91 238.36 213.95 237-43 

193.34 | 247.55 | 212.76 | 192.04 235-55 191.60 | 245.66 222.96 | 254.64 

196.87 | 262.22 | 226.71 | 196.10 242.44 196.63 | 248.46 227.14 | 254.64 

203.43 | 268.92 201.7 248.09 203.79 | 253.14 229.4 

213.45 207.56 216.18 | 261.97 234.40 

213.75 209.67 226.86 | 274.69 245.64                             
  

Table 7-3 Resonant epectra of aluminium disk 

  

aft ayatem ; Y= 0.5, 2a = 3.8 ems; 2b = 1.9 cma; h = 0.4 cm; d= 0.33.
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Frequencies in Hlz. 
  

  

  

                          
  

1= 5 ns. 1-4 ons. 1 = 3 ons. 1 = 2 cas. Letom 

R L e R L £ R L R L R L . 

24.25 | 27-20 | 24.35 | 33.87 | 27.65 | 34-26 | 48.20 | 28.41 | 61.23 | 29.78 | 67.64 | 32.18 | 68.20 

59.09 | 50.87 | 36.34 | 62.84 | 62.61 | 44.07 | 75.32 | 80.26 | 75.23 | 97-12 | 72-30 | 84.88 | 71.99 

75.58 | 91.20 | 59.67 | 75-43 | 105.20 | 66.84 | 0.41 | 114.27 | 97-11 | 117.42 | 102.06 | 101.48 | 101.09 

85.27 | 106.30 | 75.31 97-10 | 109.42 | 70.62 | 102.63 | 116.04 | 101.87 | 143.04 | 110.07 | 104.71 | 111.34 

104.50 | 120.98 85.79 102.98 | 125.4 95-72 102.93 | 143.59 125-29 | 159-96 125-95 | 163.89 | 125.29 

106.36 | 143-85 | 86.52 | 109.34 | 159.17 | 99.36 | 109.60 | 160.38 | 127.15 | 168.78 | 137-14 | 164.40 | 137.03 

115.31 | 159.54 | 102.76 | 127.41 | 160.75 | 107.16 | 115.46 | 161.51 | 142.87 | 184.31 | 151.17 | 204.35 | 137.43 

121.41 | 162.38 | 106.01 | 134.65 | 182.94 | 110.54 | 115.71 | 187.79 | 149.97 | 218.56 | 163.08 | 251.43 | 148.99 

127.07 | 189.10 | 110.13 | 146.20 | 164.50 | 111.13 | 127.15 | 217.30 | 156.72 | 267.07 | 169.70 | 272.89 | 153.57 

143.83 | 199.65 | 111.90 | 152.42 112.14 | 128.48 | 236.02 | 157-73 | 267.35 | 173-59 | 266.93 | 162.73 

152.39 | 203.67 | 116.63 | 157-24 115.57 | 143.56 167.80 991219 | 319-20 | 169.38 

154.85 | 209.56 | 121.31 | 164.23 125.03 | 147.53 117637 199.06 190.43 

178.50 | 221.64 } 127.55 | 169.63 135.01 | 150.09 193-47 204.29 193.57 

183.93 | 229-23 | 127.73 | 175-92 138.42 | 159-27 203.77 211.59 195.83 

188.73 | 237-74 | 137-60 | 190.22 156.40 | 161.61 207.41 216.12 212.24 

197.78 155-52 160.20 | 163.82 221.08 222.63 215.78 

202.54 157-98 164.91 | 175.74 226.86 246.71 227.80 

205.02 161.83 176.00 | 178.67 246.58 256.47 229.66 

222.97 176.06 182.61 247.08 262.23 247.11 

229.37 183.96 191.61 261.11 216.24 257.08 

240.39 186.88 194.91 274.13 287.93 258.22 

241.94 196.26 200.42 291.20 | 267-64 

247-24 217632 226.70 299.08 275.91 

2M.T2 287.91 

235-74 290.78 

244.21 

Table 7.3 (Contd.); Y= 0.5, 2a = 3.8 cmsy 2b= 1.9 cms; h = 0.4 cmj 0 = 0.33. 
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Frequencies in Wiz. 
  

  

  

  

                          
  

  

1 = 10 ons. = 9 cms. 1 = 8 ons. 1 = 6 cms. 1 = 5 ons. 

R L T R L R L se R L R L v 

7.86 | 25.53 | 7.91 9648 | 28.17 | 44.75 | 31-76 | 11.67 19.05 | 41.92 | 26.32 | 51.60 | 26.44 

32.58 | 48.26 | 28.25 37-92 | 30.84 80.63 | 58.94 | 34-33 63.97 | 73-42 17-74 | 83-33 | 49-63 

62.50 | 74.50 | 32-61 70.72 | 52.91 90.93 | 90.84 | 44.83 106.94 | 95-25 | 103-94 | 104.51 7-89 

14.76 | 100.19 | 56.88 | 81.79 | 81.61 | 103.70 | 116.07 | 69.17 | 110.37 | 113.60 | 113.59 | 129.38 | 103.83 

89.55 | 115.23 62.52 97.10 88.92 106.76 | 132.59 80.96 112.57 | 140.60 129.44 | 157.83 | 107.69 

107.21 | 132.69 85.77 106.98 | 106.73 112.87 | 151.48 90.97 128.74 | 151.37 143-54 | 159-45 | 113.59 

115.27 | 142.16 | 89.85 | 123.67 | 123-50 | 132.37 | 156.32 ] 103.93 | 145-84 | 158.48 | 152.47 | 162.49 | 127.02 

122.18 | 156.15 | 106.39 | 127-68 | 141.29 | 139.44 | 160.50 | 106.24 | 151.40 | 180.30 | 157-25 | 167.67 | 143.50 

125.48 | 157.72 | 106.54 | 129.66 | 149.09 | 149.89 | 179.52 | 113.30 | 155.64 | 184.57 | 167-88 | 192.43 | 151.36 

137.22 | 159.85 | 114.56 | 142.70 | 158.10 | 154.11 | 183.44 | 129.71 | 158.75 | 199.31 | 172.31 | 206.34 | 154.32 

142.17 | 160.39 | 122.30 | 149.19 | 171.74 | 160.35 | 196.12 | 131.43 | 161.90 | 211.37 | 180.90 | 210.10 | 156.29 

144.94 | 163-98 | 137-15 | 153.58 | 167.64 | 169.84 | 206.09 | 132.41 | 172.56 | 216.40 | 189.19 | 223.52 | 167.82 

15545 | 179.53 | 143.01 | 156.64 | 189.71 | 179.67 | 209.11 | 139.44 | 179.13 | 233.78 | 204.68 | 239.69 

162.64 | 182.23 | 144.69 | 168.37 | 189.09 | 191.32 | 214.21 | 149.47 | 184-02 | 237.77 | 210.07 | 242.70 

163-23 | 193.00 | 153.21 170.94 | 193-95 | 195-85 | 222.39 | 153-32 | 198-85 | 258.07 | 211.98 | 256.29 

168.71 | 195.74 | 162.65 | 171.07 | 194.10 | 195.94 | 231-83 | 162.53 | 201.82 | 242.44 | 222.80 | 266.92 

171435 | 202.16 | 164.66 171.58 | 199.60 204.61 | 240.46 | 169.32 207.24 | 249-86 231.58 | 269.27 | 210.50 

182.26 | 218.56 | 163.92 | 182.89 | 212.73 | 208.58 | 247.95 | 173.69 | 211.32 252.56 | 282.28 | 211.23 

194.69 | 220.35 [171.57 | 192.22 | 213.40 | 213.94 | 256.04 | 182.83 | 225-80 252.82 | 289.94 | 231.92 

195.73 | 223.72 | 182.23 | 199.47 | 216.42 | 229.34 | 270.90 | 189.62 | 231.89 260.54 | 323,44 | 239.64 

205.15 | 231.10 | 184-60 | 210.09 | 228.52 | 237-10 | 269.38 | 192.66 | 234.02 262.12 | 331.79 | 257-50 

209.11 | 239.47 | 194-84 | 212.29 | 233-35 | 245.82 | 280.44 | 202.93 | 241430 269.88 | 338.37 | 259.30 

221.50 | 249.11 | 195.02 | 216.17 | 235.95 | 247-71 | 303.37 | 205.21 | 246.08 271.25 261.60 

234.47 204.95 | 225.12 | 284.09 | 267.04 | 320.28 | 208.30 285.02 272.28 

241.84 209.13 | 228.34 | 247-57 | 269.05 214.04 290.57 291.82 

247.40 212.21 | 238.53] 251.19] 281.49 224.91 291.71 293.78 

254.36 223.96 | 239.69 | 253.67] 291.49 229.52 295.55 316.13 

261.03 229.19 | 249.61 | 260.82] 306.53 23548 296.22 317.03 

Table 7.4 The resonant frequencies of disk-chaft system; Y= 0.7, 2a = 2.71 cma; 2b = 1.9 cms; h = 0.4 cny 

o= 0.33. 
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Frequencies in Wiz. 
  

1=4 cms. = 3 ems. 1=2 cms. L=1 om 

  

  

R L fo R L T R L ? R L 
  

  

31-49 | 64.52 | 37.67 | 55.53 | 83-48] 56.30 | 87.93 | 93-58 | 88.83 | 99.20 | 84.38 

64.55 | 94-57 | 58.26 | 83.33 | 92-43] 74.73 | 104.04 | 112.23 | 101.37 | 102.58 | 119.16 

92.17 | 119.02 64.62 102.83 | 143.70 83.33 112.77 | 157-55 | 103.27 138.50 138.64 

99-42 | 140.94 | 92.40 | 116.31 | 160.95] 102.71 | 125.06 | 163.98 [112.61 | 150.24 | 161.87 

112.65 | 158.36 | 99.03 | 124.85 | 167.67] 106.46 | 149.50 | 184.69 | 125.64 | 153.13 | 188.64 

114.33 | 159.41 99.35 149.80 170.58 | 116.29 151.28 | 203.15 | 150.43 188.24 217.92 

136.12 | 180.16 113.07 151.67 | 201.81 124.91 164.16 | 220.16 165.53 199.99 | 218.38 

440.81 | 199.92 | 114.48 | 156.36 | 219.90] 151.87 | 169.14 | 221.70 | 178.61 | 207.82 | 236.98 

146.12 | 227.38 128.78 167.93 | 251.28 152.98 178.67 | 232.91 186.23 222.59 | 250.17 

152.29 | 235.25 [136.36 | 190.08 | 252.19] 156.19 | 188.64 | 235-37 | 190.98 | 237-31 | 251.39 

161611 250.52 | 140.43 201.53 | 264.55] 167.92 203.49 | 260.96 | 204.30 238.47 

171.59 | 293.62 145.30 208.46 | 265.50] 170.11 213.01 264.01 216.63 253-37 

183.46 | 300.30 | 152.48 | 216.39 | 291.28] 172.92 | 223-57 | 300.22 | 233.28 | 255.00 

184.04 | 323.73 161.29 222.25 | 296.91 186.37 226.27 | 321.32 | 234.76 270.37 

186.15 | 329.31 | 162.39 | 246.03 | 311.89] 187.78 | 233-54 | 338.77 | 251.38 | 280.90 

198.51 181.11 | 253.84 | 330.39] 201.31 | 234.98 | 344.44 | 252.61 | 286.82 

218.64 183.49 | 256.40 | 348.52] 202.65 | 252.08 264.71 | 294.56 

225.84 188.64 | 262.10 | 359.12] 208.83 | 256.70 267.97 | 320.27 

237.24 192.80 | 264.23 217.59 | 262.32 272.40 | 318.69 

239.78 198.47 | 272.10 222.59 | 264.69 286.31 | 351-35 

252.99 214.03 | 287.30 224.83 | 272-33 301.16 | 352.56 

258.49 217-84 | 305.40 230615 | 287-73 314.28 | 353-70 

264.96 219.42 316.53 252.48 301.20 318.19, 384.97 

285.89 227.05 | 320.42 254.97 | 322.02 313.89 

292.68 236.56 | 325-66 256.92 | 328.45 323.31 

300.32 326.32 264.78 | 348.64 344-43 

316.13, 328.10 272.91 350-99 350.96 

317.03 340.60 279.01 | 368.07                       
  

Table 7.4 (Contd.), Y= 0.7; 2a = 2.72 cms 2b = 1.9 cma; h = 0.4 cmyo = 0.33
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Frequencies in Kiz. 
  

2a =6.310ms, y =0.3 2a =4.76cms, Y =0.4 2a =3.150ms, y =0.6 
  

  

              
  

R L zi R L ue R 

20.75 8.51 16.54 22.98 16.44 22.99 25.63 

40.30 38.53 20.78 48.54 51.54 31.20 125.92 

50.72 50.65 28.56 51.50 69.94 48.16 138.45 

57-52 61.93 39.39 56.31 83.27 55-79 167.86 

61.96 85.93 40.22 75-63 94.57 15-54 187.94 

14-55 90.59 57.82 78.55 99.87 82.39 196.56 

90.71 93.90 61.93 83.40 | 140.59 92.33 196.87 

94.96 | 100.31 70.37 94.48 | 157.24 98.85 206.87 

106.36 | 102.72 14-46 99.55 | 158.07 | 107.33 209.80 

110.59 | 105.99 107.66 | 159.42 | 119.66 211.02 

118.00 | 110.58 120.59 | 163.79 | 124.22 

121.67 | 119.38 123.74 | 184.64 | 140.21 

122.41 121.48 141.06 | 201.41 145-10 

129.94 | 129.79 148.26 | 208.45 | 149.26 

137.32 | 134.79 161.68 | 208.82 | 158.52 

142.13 | 136.87 163.60 158.93 

152.15 145.27 181.91 160.66 

167.49 | 148.89 190.43 163.35 

156.64 192.43 1TT13, 

201.78 181.10 

222.04 186.05 

223.62 191.92 

200.92 

Table 7.5. The resonant spectra of a disk-shaft of length 5 cms, 

for different Y's. 2b = 1.9 cms; h =0.45 cms. 
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Frequencies in kHz 
  

  

  

  

2a=6.31 cms, Y =0.3 2a=4.76 oms, y =0.4 2a=3.16 cms, Y=0.6 

R L T R L v R L 2 

27.85 | 23-34 | 27.72 31.46 | 21.81 31.48 36.25 | 61.66 | 36.26 

39.63 | 47.06 | 36.87 54.72 | 62.98 | 39.63 64.51 | 64.54 | 50.48 

56.48 | 56.47 | 39.46 62.98 | 79.32 | 54.60 80.04 | 114.50 | 79.91 

57-42 | 70.15 | 44.62 77-75 | 85.73 | 55.09 86.64 | 127.47 | 86.7 

69-48 | 99.46 | 57.38 83.94 | 119.06 | 62.92 | 104.27 | 157.97 | 104.92 

70.07 | 120.72 | 69.25 99.16 | 158.31 | 77-44 | 113.54 | 165.18 | 119.26 

714.29 | 147-14 | 74.08 | 120.10 | 159.67 | 84.05 | 124.09 | 175.74 | 123.08 

90.37 | 159-97 | 84.32 | 124.75 | 162.12 | 85.70 | 127.47 | 188.36 | 127.39 

105.92 | 175.53 | 90.10 | 140.74 | 185.33 | 91.35 | 143.43 | 220.86 | 130.38 

109.70 | 185.40 } 93.51 143.91 | 204.08 | 91.93 | 148.23 | 226.64 | 143.16 

121.26 | 204.84 | 105.79 | 149.62 98.95 | 154.15 | 227.69 | 148.3 

422-27 109.57 | 158.87 100.99 | 172.49 | 238.96 | 154.29 

136.52 111.19 | 160.96 119.84 | 175.40 | 249.53 | 172.19 

138.18 112.28 | 181.52 122.98 | 184.31 183.69 

141.47 115.29 | 189.56 131.28 | 188.91 188.92 

147-03 118.35 | 194.12 140.66 | 192.49 196.63 

151.50 120.74 | 198.53 140.99 | 212.88 212.79 

167-20 122.12 | 201.74 143.81 226.94 226.99 

172.07 135.85 204.12 149.50 228.87 

175.04 138.03 | 220.80 157-44 | 242.23 

181.15 141.36 | 224.80 158.73 

185.93 150.81 160.60 

190.21 154.55 180.53 

196.60 166.50 185.43 

189.99 

194.12                 
  

Table 7.6 Resonant spectra of aluminium disk-shaft of shaft length 4 oms., 

h = 0.65 cm, 2b = 1.9 oms., o = 0.33. 
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Frequencies in Miz 
  

2b=2.28ems, ¥=0.3 2b=3.8cms, Y =0.5 2b=5.310ms, Y=0.7 2b=6.8ems, Y =0.9 
  

  

  

R L R L R L R L 

33.80 26.94 38.68 8.72 30.30 16.89 32.97 19.51 

47-93 62.09 53-12 38.46 38.05 35-93 38.62 59-79 

49.98 | 100.84 55.32 61.10 56.24 56.44 50.41 98.54 

58.49 | 125.66 64.88 } 106.91 57.84 83.26 50.96 | 122.43 

62.02 | 167.76 70.59 | 108.72 73.12 | 109.90 66.50 | 125.51 

15.13 | 172.60 76.88 | 136.12 78.39 | 140.86 81.24 | 142.39 

78.97 | 197-59 85.42 | 175.57 85.66 | 165.32 84.04 | 165.47 

88.22 | 205.88 89.09 | 183.74 94.19 | 166.67 94.68 | 167.58 

92.11 | 230.68 101.57 | 190.23 97.29 | 192.23 95.41 188.39 

101.17 | 263.72 106.89 | 211.05 98.15 | 204.19 103.53 | 197.61 

102.27 | 275.87 114.43 103.24 | 204.53 105.12 | 211.05 

113.89 115.01 108.24 | 218.19 109.40 | 223.60 

118.55 121.72 108.56 119.75 | 240.67 

120.42 126.57 117.01 122.35 | 248.41 

125.56 139.29 118.46 122.96 

126.20 142.27 121.55 136.69 

139-37 144.96 124.91 138.98 

142.85 148.77 125.60 141.60 

152.01 129.78 143.35 

161.36 135-51 

164.36 141.34 

166.90 150.54 

170.06 152.96 

176.81 153.41 

179-41 164-75 

189.23 171.42 

196.99 172.97 

199-34 176.75               
  

Table 7.7 The resonant spectrum of aluminium disk-shaft system of shaft 

length 1.27 oms., 2a=7.6 cms., h=0.4 cm., o = 0.33. 
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shaft lengths 5 cms., 4 oms., and 1.27 cms., respectively. 

A radial drive, by fixing the line radially into the disk of the 

disk-shaft, excited all the radial and compound modes of the disk-shaft, 

for ch the radial component is large. It was found that the radial 

drive also excites the longitudinal modes of the shaft. A longitudinal 

drive, by fixing the line into the shaft of the disk-shaft resonator, 

enabled the excitation of all the longitudinal modes of the shaft 

together with the radial modes of the disk-shaft system. A tangential 

or an angular drive, which can be obtained by driving the disk of the 

specimen at an angle, excited all the torsional and compound modes 

which, mainly, have shear component. A probe of fine wire was used as a 

receiver to identify the modes such as (1,2), (1,3) etc. 

7-4 Discussion 

The measured resonant frequencies for disk-shafts of various 

dimensions were tabulated in section 7.3. The frequencies which are 

common to both longitudinal and radial drives, may correspond to either 

radial modes or longitudinal modes. Of these, the frequencies which 

are tightly coupled in longitudinal drive and loosely coupled in radial 

drive were identified to be longitudinal modes. Those frequencies which 

are tightly coupled in radial drive and loosely coupled in the longi- 

tudinal drive were identified to be the radial modes of the disk—shaft 

resonator, while the nonaxisymmetric (compound) modes appear in both the 

angular and radial drives. These features can be noticed in Tables 7.2 

to 7-7 of section 7.3. 

The variation of the lowest radial mode frequency, with the shaft 

length has been studied in greater detail for different Y's of the disk— 

shaft system. The plot of (2a ae) versus shaft length is show in 

Fig.7-2, for different Y's. The frequency is found to increase as the 

shaft length is increased, initially, but, it starts decreasing after 

reaching a peak value. This might be due to the energy coupling from
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The graph of the measured frequency x 2a versus 1/d_ for the 

radial mode of a disk-shaft resonator of disk diameter 2a, 
shaft diameter d, and length 1, for y= 0.25, 0.5 and 0.7. 
Lines A, B and C’represent the values predicted by the theory 
for the disk with a rigid centre, for Y*0.25,0.5 and 0.7, respy.
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the disk into the shaft. It may be noted from the figure that this peak 

frequency value for higher y's is attained at larger shaft lengths. It 

may also be interesting to note that, for lower y's (i.e., when the disk 

diameter is large), the variation of shaft length has less effect on 

frequency. But, as the disk diameter is reduced, the effect of the 

shaft length on the frequency becomes very significant. The dotted 

lines A, B and C in the figure represent the frequencies predicted by 

the theory developed in section 7.2.1 for the amular plate with a 

rigid centre. The corresponding frequencies of an annular plate, with 

the immer boundary free, are very low. 

The numerical solution of the radial mode frequency equation 

(7.2.5) of a disk with a rigid centre, predicts that the frequency 

increases with Y, whereas, for an annular plate with a free inner 

boundary, the frequency of the lowest radial mode decreases as Y 

increases. This variation of frequency with Y is show in Figs.7.3(a) 

and 7-3(%); for the first two radial modes. Notice that the figure 

show the plot of K(1-Y) versus Y. 

The plot of (2af 25) versus Y is shown in Fig.7.4, for different 

shaft lengths, for the first radial mode together with the theoretical 

values given by eqn.(7.2.5) for a disk with a rigid centre. For lower 

values of Y, the theory represents the correct direction of frequency 

variation. For smaller shaft lengths, the deviation of the frequency 

from the rigid centre value is quite considerable, showing that the 

stiffness offered by the shaft is dependent on the length of the shaft. 

It is of particular interest to study the longitudinal resonances 

which appear in both the radial and longitudinal drives of the disk— 

shaft resonator. The plot of (1/£) versus shaft length, where f is the 

frequency of the first longitudinal mode, is show in Fig.7.5 for 

various y's. The intercept on the X axis for each Y represents the 

rigidity offered by the disk. The inverse of the frequency of the
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Fig.7.5 The plot of (1/£ 79) versus shaft length 1, for various 

y's, to illustrate the change in the longitudinal mode 

frequency due to the disk on the centre of the shaft. Notice 

that the slope of each curve gives the longitudinal 

velocity for the corresponding y. :
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longitudinal resonance, for each Y , may be proportional to the sum of 

the shaft length and the corresponding intercept on the X axis, the 

constant of proportionality (slope) being the longitudinal velocity. 

The corresponding results of the first longitudinal resonance of the 

rod, are also shown in the figure by circles. 

In the experiments carried out on the disk-shaft resonators, it 

was possible to identify the lower order non-axisymmetric (Compound) 

vibrations, using a probe of fine wire. Figs.7.6(a) and (b) show the 

plot of (2af) versus Y for modes (1,2) and (1,3), respectively. The 

frequency of these modes increases initially with Y, reaching a peak 

value, which is different for different modes, and then the frequency 

decreases with increasing Y. This maximum value of the frequency 

occurs at Y=0.6 and 0.7, for the modes (1,2) and (1,3), respectively. 

It may be seen from these figures that the variation of the frequencies 

of these modes is highly dependent on the length of the shaft and is of 

the same nature for both the modes. However, for smaller shaft lengths, 

the frequency variation with Y is very large. 

The suggestions for further work in this area are given in the 

next chapter.
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GHAPTER 8 
SUGGESTIONS FOR FURTHER WORK 

One of the limiting cases obtained by simplifying the thick 

amulaf disk compound mode frequency equation (4.2.3) is that of a 

hollow cylinder. For this case, Y is finite and n+0 and the wave— 

numbers 6 and }6 of eqns.(4.5.6) reduce to 

zo 22,2 
s=/Ko +20 ma jo-/S-F (8.1) 

6 ce ee 

It may be interesting to evaluate the numerical solutions of eqn. 

  

(4.2.3), using eqns.(8.1) given above, for several modes of vibration 

in hollow cylinders, for n<2.0 and Y between 0.0 to 1.0 and compare 

these results with the experiments and with those of other 

workere 20733164166 | It may be useful to establish one-to-one 

correspondence between the solid cylinder and cylindrical shell modes. 

The plane strain vibrations and the longitudinal shear vibrations, 

which were uncoupled in the case of an infinite hollow cylinder, exist 

as coupled modes in hollow cylinders. It may, therefore, be of more 

value to study the effect of this coupling on the frequencies of the 

hollow cylinder modes. The results for axisymmetric vibrations of 

hollow cylinders can be obtained by the numerical solution of eqns. 

(4.3.6) and (4.3.7), using eqn.(8.1), for N<2.0 and y in the 

range 0.0 to 1.0. 

Some further investigations into the performance of tuning 

forks in gas environments would be: 

(a) Investigation with tuning forks of various tine widths, 

(b) Study of the frequency variation of higher modes, with pressure, 

(c) Investigation with a wide range of gases and temperatures, and 

(a) Application to pressure measurement. 

Further work in disk-shaft resonators can be aimed at: 

(a) Obtaining numerical solutions of the frequency equations derived
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in chapter 7 for disk-shafts of various shaft lengths and compar— 

ing them with the experimental data given in section 7.3. 

(b) Identifying and classifying all the resonances observed in disk- 

shaft resonators of various disk and shaft dimensions, and 

(c) studying the variation of resonant frequencies of the disk-shaft 

resonator with various disk and shaft dimensions.
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APPENDIX A.2.1 

THEORY OF CONTOUR VIBRATIONS IN THICK DISKS 

The disks with planar isotropy, in particular, are considered 

here. There are two basic types of vibration: (a) Plerarai ae” ani d. 

(») contour extensional (in plane) modes. Here, the method to obtain 

the frequency equations for contour vibrations in thick disks, is 

described. Tncey '@ has defined a boundary between a thick disk and a 

thick rod. He classified the cylinder as a thick disk, if its length 

is smaller than its radius and as a thick rod, if its radius is smaller 

than its length. This classification has been used in this development. 

Consider a disk of diameter 2a and thickness h placed with its 

axis along the Z axis and with the centre of the disk at the origin, as 

shown in Fig.A.2. For contour vibrations in the disk, the components 

of displacement in cylindrical coordinates r,@, 2, may be taken as 

woe. (r,0,+) 

Ug= Eq (r18,+) (A.2.1) 

and au, = sin (pnz/h) g. (r,6,t) 

where Bu a bo represent the amplitudes of uniform distribution of radial 

and tangential displacements, across the thickness, a, is the amplitude 

of the sinusoidal distribution of axial displacement corresponding to 

thickness-stretch modes and p=1 represents coupling of contour vibrations 

with first thickness mode, p=2 represents the coupling with second 

thickness mode and so on. 

It may be noted that the radial and tangential components of 

displacement has been taken as uniformly distributed across the disk 

thickness direction, as in the case of generalised plane stress theory, 

whereas the distribution of the axial component over the thickness 

direction has been taken as sinusoidal, as in the rod theory. It is 

assumed that the sine distribution behaves as a linear distribution for 

disk thicknesses smaller than its diameter, which is normally the case
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r= Disk radius ; h = Disk thickness. 

Fig.A.2 A thick disk and its co-ordinate system.
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with thick disks, and hence this theory provides fairly accurate results 

over the disk range of thickness—to—diameter ratios. However, for the 

rod range of thickness—to-diameter ratios, this theory yields only 

approximate results, because, the distributions of u, and Ys over 

thickness direction will be sinusoidal in the case of cylinders, whereas 

they are assumed to be uniformly distributed in this theory. 

The stresses acting on the flat and cylindrical surfaces are 

30 defined as 

n/2 n/2 
Me if o,, dz Toone f o, dz 3 

-h/2 -h/2 

n/a n/2 
Tre f Sg 2 92% Tg® f[ 9, + 3 dz (A.2.2) 

-h/2 -h/2 

n/2 n/2 
That f Ong dz; and Le f Fg dz ’ 

-h/2 -h/2 

69,70 where ON a Cie G5 etc., are the usual components of stress . 

These are related to the displacements ew 5 and g. by 

8 a hx Bulk Modulus eee fee! Be + Fey OnE 
rr or 7-0) r*r 00 h(1-0) 72 

Eas, 284 
r 2 Gg r ag 7 DX Bulk Modulus 2 ae cae Sortie aaa 

(A.2.3) a nv pak woannse [4 6, +3 ee spay oF EE} rts} 

2 38, on? 4 
= xShear Modulus x , = => Shear Modulusx = ba 

2r ne or 20 ne 308 

8 u 

8 " 

  

bs 

8 i     

9& is a 
and | = hx Shear Modulus [= oe =| 

re or aT r 90 

Using the above equations and considering the case of p=1, without 

loss of generality, the three dimensional equations of motion: ie can be 

expressed in terms of dilatation A and rotation G as



r 00 bh 9r ie 
[o o) 3h _ (4-20) a, 20 =| ~~ eat (116) (1-20) 

  

~ 3 2 
[oa aA, (1-20) a8 4 29 ‘ =| _. be pene) a (A.2.4) 

r 9390 h 36 

and 5 
BG@S20) ee mes C=) 6) prw?(149) (1-20) 

2 Sy eae an feo B Ez 

where 2 2 
vee S+1h+sS =o (A.2.5) 

nan 182 Saag 

  

os > 1 88 1] 96 & ag = eee | Fae ine Oe 2a eee 
[= ut 56 | os oleae oe eryao (4-2-6) 

It may be noted that the coupling of the contour modes with only 

the first thickness mode has been taken in this case, which gives fairly 

accurate results, even for higher modes, for disk range of thickness—to— 

diameter ratios. But, for the rod range of thickness—to-—diameter 

ratios, this theory is approximately valid for low frequency modes only, 

due to the coupling of higher contour modes with higher thickness modes. 

The above equations of motion can be simplified into the form, 

2 [01-0 SEs BO. ye oe (140) (129) al- 

(7+ v)a= 0, (a.2.7) 

ms oa 1 i-a tee nigel ARTO a] =o 

-20) 4pn°(140)(1-20) 2 aph(140) (1 
E 2 

[ stra v oe +{o 

2 
where ve ee E a. - The above three dimensional equations of 

motion can be reduced to the equivalent two dimensional equations, by 

eliminating & between the first and the third of eqs.(A.2.7). Then, 

the Helmholtz equations which must be satisfied by the dilatation A and 

the rotation & , become 

(yo aC Ve = 8) = 0, (A.2.8a) 

Cava SOM (A.2.8b)
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where 2 

o = SS (14 y) ' 
n“(1-0) 

2 
2 mG = (W -1) 

rs n“(1-0) : 

aha 20." p( 140) (a.2.9) 
E 

Ve : z atse 0)" ¢, _ 2(G+1) (4-20) }" : 

G*(3-40) (1-0) (3-40) 

oC a a oe | 
The solutions of equations(A.2.8) in polar coordinates are given by 

A= (A, J,(a 2) + Ay ¥, (ar) + By 1,(8 2) + By K(8r)} cos n@ 

(A.2.10) 
and a -[e, Jv 2x) +, *(¥7) ] sin n6 

where Oy and YX, are the Bessel functions of the first and second kinds, 

respectively and i, and KX are the modified Bessel functions of the first 

and second kinds, respectively. In the absence of singularities at the 

origin, the coefficients Ags 3, and Cc, are taken as equal to zero. 

Hence, A and & are given by 

A ={A, T(ar) +B, 1 (6r)} cos né 
(a Nea (A.2.11) 

and j= ¢, J, (v 2) sinnO , 

where the coefficients A, and B, indicate the magnitude of the dilata- 
1 

tional components of the displacement and the coefficient Cc, indicates 

the magnitude of the shear component of the displacement. 

To determine the displacement functions ae and b6 associated 

with the dilatation and the rotation, let us consider eqn.(A.2.6) which 

defines A and @ in terms of Band &4- 

If we assume that ef. and 5 can be expressed in the form, 

using separation of variables, as
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ae = a cos n@ 

(A.2.12) 

and be = eon sinn@ , 

where Eo and Gon are functions of 'r' alone, then the substitution 

of this and the eqns.(A.2.11) for A and & into eqns.(A.2.6), leads to 

the following differential equations in on and Son’ 

[= ie om asa 
r dr r 

on , SF on? =| 
to 

a dr a 

  A, J,(a x) +B, r(8 r) Z 

  and cy J( vr) 3 

The above equations are solved for oe and bon , which when 

substituted into eqns.(A.2.12) leads to the following displacement 

  

functions 

as, ( ar) ar ( Br) nC, 
B= | A eorrerenes FB, +—JI(vr) cos n@ 
co 1 a foamed 

dr dr 
(42513) 

nA, nB, ag, (v zr) 

bg=- nn) 2 TCR 2) Cy ae sin n@ , 

where n is know as the angular index or the circumferential order. 

The above displacement functions can also be derived by noting 

that 

aA 1 96 
5.7 Gets te 

ee ~ (thay ines) 
bo" ‘230 7 Or 

The expression for gy can then be obtained from eqns.(A.2.7), (4.2.8), 

(A.2.11) and (A.2.14), as 

a. ={A, ¢, J,( ar) - By b5 1,(8 2) } cos ng (A.2.15) 

$ _ alt=o a? - we j+o) (1-20, 
te 20 E(1-0) ’ 

2 =o =2 a ¢, i Le ) B2 ae 1+0) (1-20 k 
E(1-0, 

where 

(A.2.16)
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APPENDIX A.2.2 

THE ACOUSTIC SPECTRUM ANALYSER 

An electronic acoustic spectrum analyser was designed and 

constructed, to measure the resonant spectrum of a solid specimen by the 

pulse-echo technique. Basically, the system generates a repetitive 

purst of high frequency oscillations with variable burst length to excite 

various resonances in the specimen. The block diagram and the circuit 

diagram of the system are shown in Figs.A.2.1 and A.2.2, respectively. 

The components of the system are: 

(a) A variable high frequency voltage controlled oscillator covering 

0.8 — 620 kHz in three ranges. 

(b) A repetition rate oscillator with the repetition rate of the burst 

variable from 10 m secs. to 0.26 secs. 

(c) A burst length controller with a facility to change the number of 

oscillations in the burst. 

(a) A gating circuitry to synchronise the high frequency and low 

frequency oscillations. 

(e) An output circuit to amplify the burst of oscillations to 30 V 

peak-to-peak. 

The high frequency and repetition rate oscillators, each consist 

of a pair of cross coupled monostable multivibrators, whose period can 

be controlled by means of a potentiometer and ganged capacitors. 

Another monostable with a potentiometer is used at the output of the 

repetition rate oscillator, to control the burst length. The synchro— 

nisation between the low frequency and high frequency oscillations is 

done through a D flip-flop to ensure that the start of high frequency 

oscillations coincides with the rising edge of the low frequency 

oscillator output. The complementary waveforms are derived using NAND 

gates as shown in Fig.A.2.2. The waveforms at various points are shown 

in Fig.A.2.3. The output circuit constructed is a push pull transistor
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arrangement to give an output of 30 V peak-to-peak. A digital frequency 

meter reads the oscillator frequency. 

A pulse-echo technique, originally developed by See for 

ultrasonic thermometry, has been used to measure the resonant spectrum 

of the specimen. The block diagram of the experimental arrangement used 

to measure the resonant spectrum is shown in Fig.A.2.4. A photograph of 

the equipment is given in Fig.A.2.5. Basically the resonant spectrum is 

obtained by driving the resonator with a long thin wire fixed radially 

or at an angle to the periphery of the disk resonator. A burst of 

longitudinal oscillations, from the output of the transmitter, is 

transmitted up the magnetostrictive line through a coil, which must 

introduce sufficient delay to separate the signal returmed from that 

transmitted. The line, in the coil, which acts as a transducer, converts 

the electrical pulses into mechanical energy to drive the resonator. If 

the line is lossless, the number of oscillations to crossover, from one 

resonator to another resonator of same shape, but different dimensions, 

will be in the same ratio from fundamental to overtones. The coil is 

matched to the transmitter by the decade capacitance box, which puts 

capacity in parallel with the coil. Under these conditions— the absence 

of standing waves— the wire presents a purely resistive load to the 

resonator, which, while limiting the sharpness of resonance, has no 

effect on the resonant frequencies. The structure of the signal 

returned from the resonator, due to periodical excitation by the 

acoustic signal sent, enables the resonant condition to be identified 

very precisely. At resonance, the transmitted frequency is equal to 

the decrement frequency, and a well defined crossover is obtained. The 

sensitivity of this crossover method renders very small changes in 

resonant frequency detectable. A typical picture of the echo returmed 

from the resonator is shown in Fig.A.2.6. 

The resonators considered here are solids having cylindrical



~216- 

Permanent magnet 

  

  

  

          

  

      

  

Coil Magnetostrictive Disk 

OT line 
oT Foe 

he -Tuning 
Condenser 

c 
Le 

> Oscilloscope 

¢ 

Resonant Digital 
| aaniaaIITITaEnTnanianieoasci Sania 

detector Frequency 

(Electrical Meter 

system)     

+15V OV -15V 

(Power Supply) 

      

Fig-A.2.4 Block Diagram of the Experimental Arrangement used 

to Measure the Resonant Spectrum of the Specimen.
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Fig.A.2.5 The photograph of the experimental arrangement 

used to measure the resonant spectra of the 

specimen.
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Fig-A.2.6 A typical picture of the echo signal 

received from the resonator.
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geometry. The degree of coupling to a particular resonance depends on 

the direction of vibration at the point of drive. There are, mainly, 

four types of drive techniques used for the measurement of the resonant 

spectra of resonators of various shapes. They are: 

(1) 

(2) 

(3) 

(4) 

Radial drive: The resonator is driven by fixing the line radially 

into the periphery. This drive gives a good coupling if the radial 

component is large. This drive was found to excite (a) radial and 

compound modes in disks, annular rings and thick annular disks. 

(b) transverse and longitudinal vibratims in rods, and (c) radial, 

compound and longitudinal resonances in disk-shaft system. In disk— 

shaft resonators, the radial resonances will be strongly coupled and 

the longitudinal resonances are loosely coupled in this drive. 

Tangential or angular drive: In this drive, the line is fixed at 

an angle to the periphery of the resonator, giving good coupling for 

shear modes. This drive excites (a) tangential and compound modes 

in disks and annular disks, (b) torsional modes in rods and (c) 

(c) tangential and compound modes in disk-shaft system. 

Longitudinal or axial drive: The line is fixed longitudinally into 

the resonator. This drive technique excites (a) longitudinal modes 

in rods, (») flexure modes in disks, and (c) longitudinal and radial 

modes in disk-shaft system. The longitudinal modes will be strongly 

coupled and the radial modes will be loosely coupled in the disk- 

shaft resonator. 

Double drive: The two ends of the line (through the coil) are fixed 

at diametrically opposite points of the resonator. This was found 

to excite higher modes in disk resonators, giving a greater degree 

of coupling. When two frequencies of a resonator are close 

together, this drive at different points can, by phasing, suppress 

one mode in favour of the other. 

The above drive techniques are illustrated in Fig.A.2.7.
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Fig.A.2.7 Illustration of various drive techniques.
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APPENDIX A.3.1 

DERIVATION OF FREQUENCY EQUATION FOR ANNULAR RINGS 

The differential equations for various wave motions of the 

resonant’ system are first established, in polar coordinates, for this 

case. A general solution of the equations of motion may be obtained by 

using the boundary conditions of the system, in this case, that the 

radial and tangential stresses must vanish at the inner and outer 

perimeters. The specific solutions obtained will, then, consist of 

simultaneous algebraic equations containing amplitude constants and the 

eigenvalue, which gives the frequency of the system in terms of the 

dimensions of the resonator and the wave velocity. 

The wave equations of motion of the resonant system in terms of 

the dilatation A and the rotation @, are given bye 

92 070 
- (A.3.1) 

at at 
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where or and Cc. are the plate and shear velocities, respectively. The 

solutions of these equations of motion are given by 

A fa, J, (hr) +A ¥, (hr) } cos n@ cos wt 
e (4.3.2) 

a {c, J (kr) +0, ¥, (kr)} sin n@ cos wt 

where h = ofc, »ke o/C, » n is the circumferential order, J and Y are 

the Bessel functions of first and second kind and Aus A Gy cy are the 2? 

amplitude constants. If required these amplitude constants can also be 

evaluated to obtain the eigen function of the mode expressing the 

components of strain or stress throughout the resonator. 

The dilatation A and the rotation @ are related to the radial 

and tangential displacements by the following equations 

  

  

ag 3 ae ated gest) 
g (a-3-3) 

0g 3€ 

oe s [Forde eae)
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Then, the radial and tangential displacements g. and be can be obtained, 

from eqs.(A.3.2) and (A.3.3) using the procedure described in Appendix 

A.2.1, as 

ag (hr) ay, (hr) nC, nc, 

Coe | Aen oe HA ae fae J, (xr) em ¥, (ier) cos n@ 

nA, nA, ad (kr) ay, (kr) 

Egon | ern te tate Slee to cee ee 
(4.3.4) 

The boundary conditions for an annular ring of external radius a 

and internal radius b, are that the radial and tangential stresses mst 

vanish at the inner and outer perimeters. That is, 

    

T =0 atr=a , PF e0 "at rep: 
or ry 

(A.3.5) 
ego at rea , oe at r=b 

where the stress resultants T| and T are given by 
rr ré 

ae g oe r oy eel 8 
= Plate Modulus pes + Co Sea ) 

A.3-6 Be 7 Sgt aes (4:36) 
Tig= Shear Modulus a ee oc 36 

The frequency equation for the compound modes of an annular ring can 

then be obtained from satisfying the boundary conditions given in eqn. 

(A.3.5). Thus, substituting eqns.(A.3.4) and (A,3,6) in eqn.(A.3.5), 

yields the compound mode frequency equation, formed by the determinant 

of the amplitude constants.
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APPENDIX A.3.2 

TABLES OF K VALUES FOR ANNULAR RINGS
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7 Kn 
  

o 0.00 0.10 0.30 0.50 0.70 0.90 
  

0.00 3.63142 | 3.63619 | 3.86805 | 4.81811 | 7.58028 | 22.26125 

0.05 | 3.53947 | 3.54413 | 3.77010 | 4.69615 | 7.38623 | 21.6978 

0.10 344509 3.44959 3.66955 4.57090 7219119 21211914. 

0.15 3.34802 | 3.35240 | 3.56616 | 4.44212 | 6.98860 | 20.52380 

0.20 3.24805 3.25231 3445968 4.30945 6.77995 19491100 

0.25 3.14492 | 3.14903 | 3.34983 | 4.17261 | 6.56468 | 19.27875 

0.30 3.03827 | 3.04225 | 3.23624 | 4.03112 | 6.34211 | 18.62504 

0.35 2.92776 | 2.93159 | 3.11852 | 3.88449 | 6.11144 | 1794754 

0.40 2.81290 | 2.81658 | 2.99618 | 3.73210 | 5.87173 | 17.24344 

0.45 2.69314 | 2.69667 | 2.86862 | 3.57321 | 5.62180 | 16.50933 

0.50 2.56781 2.57117 2.73512 3.40692 535994 15-74103           
  

  

  

  

Y Kon 

o 0.00 0.10 0.30 0.50 0.70 0.90 

0.00 5.95189 | 5.98029 | 6.78844 | 9.09026 | 14.89933 | 44.4523 

0.05 5.80119 | 5.82887 | 6.61654 | 8.86012 | 14.52207 | 43.32670 

0.10 5.64646 | 5.67340 | 6.44007 | 8.62381 14.13474 | 42.17112 

0.15 5.48737 551355 6.25863 8.38085 13273650 40.98300 

0.20 5.32353 | 5.34893 | 6.07176 | 8.13062 | 13.32636 | 39.7593 

0.25 5-15449 5-17908 5-87895 787245 12.90319 38-49679 

0.30 4.97971 5.00347 | 5.67961 760551 12.46567 | 37-19143 

0.35 4.79857 | 4.82146 | 5.47301 7-32886 12.01222 | 35.83856 

0.40 4.61032 | 4.63231 5.25629 | 7.04135 | 11.54097 | 34.43257 

0.45 4.41404 | 4.43510 | 5.03442 | 6.74158 | 11.04964 | 32.96668 

0.50 4.20862 | 4.22870 | 4.80012 | 6.42784 | 10.53541 31443249                 
  

Table A.3.1 Tables of K values for (1,7) and (2,2) pure torsional modes; K = 2, 

ce} 

When +1, K'O® qn 7 ael,2,;3p00- -
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Table A.3.4 Tables of KT values for the first five finite frequency modes of annular rings; KV =, 
o 

    

ODI as 

  

  

  

  

                          
  

  

  

  

  

Por ¥*1, K) = Hates 

( Dea 
o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.00 | 1.8412 | 1.8035 ] 1.7051 | 1.5821 | 1.4618 | 1.3547 | 1.2631 | 1.1824 | 1.1134 | 1.0531 

0.05 | 1.8813 | 1.8395 | 1.7072 | 1.5984 | 1.4636 | 1.3599 | 1.2648 | 1.1836 | 1.1138 | 1.0532 

0.10 | 1.9250 | 1.8785 | 1.7589 | 1.6155 | 1.4810 | 1.3652 | 1.2676 | 1.1848 | 1.1143 | 1.0533 

0.15 | 1.9729 | 1.9205 | 1.7883 | 1.6332 | 1.4910 | 1.3706 | 1.2703 | 1.1861 | 1.1147 | 1.0534 

0.20 | 2.0254 | 1.9665 | 1.8196 | 1.6516 | 1.5012 | 1.3760 | 1.2730 | 1.1874 | 1.1152 | 1.0535 

0.25 | 2.0834 | 1.9962 | 1.8529 | 1.6707 | 1.5116 | 1.3616 | 1.2758 | 1.1886 | 1.1156 | 1.0537 1 

0.30 | 2.1469 | 2.0720 | 1.8885 | 1.6905 | 1.4997 | 1.3872 | 1.2597 | 1.1899 | 1.0996 | 1.0537 

0.35 | 2.2200 | 2.1330 | 1.9265 | 1.7110 | 1.5332 | 1.3928 | 1.2814 | 1.1911 | 1.1166 | 1.0539 

0.40 | 2.3012 | 2.2008 | 1.9670 | 1.7326 | 1.5142 | 1.3986 | 1.2842 | 1.1925 | 1.1171 | 1.0539 

0.45 | 2.3940 | 2.2766 | 2.0105 | 1.7546 | 1.5555 | 1.4043 | 1.2871 | 1.1937 | 1.1176 | 1.0539 

0.50 ] 2.5010 | 2.3621 | 2.0571 | 1.7777 | 1.5670 | 1.4101 | 1.2899 | 1.1950 | 1.1180 | 1.0541 

" a1 
- 0.0 0.1 0.2 0.3 0.4 0.5 0.6 9.7 0.8 0.9 1.0 

0.00 | 1.7497 | 1.7555 | 1.7683 | 1.7770 | 1.7701 | 1.7411 | 1.6917 }| 1.6285 | 1.5583 | 1.4859 

0.05 | 1.7423 | 1.7491 | 1.7705 | 1.7749 | 1.7723 | 1.7420 | 1.6936 | 1.6291 | 1.5603 | 1.4860 

o.t0 | 1.7345 | 1.7418 | 1.7585 | 1.7722 | 1.7695 | 1.7426 | 1.6936 | 1.6336 | 1.5588 | 1.4860 

0.15 | 1.7256 | 1.7338 | 1.7525 | 1.7689 | 1.7686 | 1.7431 | 1.6943 | 1.6302 | 1.5590 | 1.4861 

0.20 | 1.7163 | 147251 167460 | 147651 | 147673 | 147433 | 146949 | 1.6308 11.5593 | 1.4861 

0.25 | 1.7062 | 1.7159 | 1.7387 | 1.7607 | 1.7657 | 1.7434 | 1.6955 | 1.6313 | 1.5595 | 1.4862 72 

0.30 | 1.6957 | 1.7061 | 1.7054 | 1.7558 | 1.7376 | 1.7630 | 1.6709 | 1.6317 ] 1.5367 | 1.4863 

0.35 | 1.6825 | 1.6958 | 1.7226 | 1.7503 | 1.7612 | 1.7427 | 1.6963 | 1.6320 [1.5600 | 1.4863 

0.40 | 1.6733 | 1.0851 | 1.7138 | 1.7445 | 1.7524 | 1.7445 | 1.6965 | 1.7421 [1.5602 | 1.4863 

0.45 1.6615 1.6740 1.7045 1.7399 167552 1.7412 1.6966 1.6326 1.5603 144864 

0.50 | 1.6195 | tece26 | 1.0749 | 1.7313 | 1.7516 | tetsor | 1.6966 | 1.632 145004 | 144864                       
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(20) NY 0.0 ot 0.2 0.3 ont 0.5 0.8 0.7 0.8 0.9 1.0 

0.00 2.6839 2.6581 2.6329 2.6408 2.6545 2.6508 2.6152 2.5463, 2-4533 2.472 

0.05 2.6789 2.6477 2.6160 2.6248 2-6433, 266449 2.6131 2.5450 264533 2.472 

0.10 2.6724 2.6360 2.5979 2.6073 246306 2.6379 2.6104, 2.5452 264532 2.3472 

0.15, 2.6645 2.6232 2.5790 2.5887 2.6166 2.6299 2.6070 265442 244530 2.3472 

0.20 2.6551 2.6093 2.5592 2.5691 2.6015, 2.6208 2.6030 2.5429 2.4527 2.7 

0.25 206445 265945, 2.5390 2.5488 2.5854 2.6108 2.5983 265413 2.4523 267 v5 

0.30 2.6324 2.5724 2.4812 2.5280 245305 2.5999 2.5548 2.5394 264156 2.3470 

0.35 | 2.6192 | 2.5623 | 2.4976 | 2.5068 | 2.5508 | 2.5883 | 2.5873 | 2.5373 | 24512 | 2.0469 

0.40 2.6049 2.5453 2.4767 2.4854 2.5326 265759 2.5810 2.5M8 2.4505 2.467 

0.45 | 2.5896 2.5278 2.4558 2.4639 2.5140 2.5630 2.5741 2.5321 244497 2.3466 

0.9 265735 2.5098. 244350 2.4424 264951 2.5495 2.5667 2.5290 2.4487 2-M65 

)23| IN 2 ont 0.2 0.3 0.4 05, 0.6 0.7 0.8 0.9 1.0 

0.00 | 3.7174 | 3.7164 | 37162 | 3.6907 | 3.7005 | 3.7034 | 3.6699 | 3.5879 | 3.4651 | 3.3186 
0.05 3+7042 327035 347028 3.6619 346740 346870 3.6627 345857 348647 33186 

0.10 3.6901 366882, 3.6881 346293, 366442, 3.6675 346534 3-5827 344640, 343184, 

0.15, 3.6747 3.6760 3-6722 365959 346120 3.6452 3.6421 345786 344630 343183, 

0.20 3.6577 366545 3.6546 32-5614, 3-578) 3.6206 366291 365736 364616 363181 

(0.25 346389 366407 36353 365268, 365429 345943, 3.6184 365676 344598 303178 410 

0.30 | 3.6784 | 3.6142 | 3.5608 | 3.4912 | 3.4553 | 3.5664 | 3.5449 | 3-608 | 3.4067 | 3.3174 

0.35 | 3.5916 | 3.5939 | 3-596 | 3.4561 | 3-711 | 3.5372 | 35805 | 3.5531 | 35st | 3.3170 

0.40 365724 365674 3-5675, 34212 3-430, 369073 345616 365486 344526 363165 

0.45 345475 3.5448 365421 363967 343992 364768 35416 345353, 344529 303159 

0.50 345214 365157 365158 303527 343637 364459, 345208 345253, 30462 363151 

Da, | I] 2-2 0.1 0,2 2.3 4 05 0.6 0.7 0.8 0.9 10 

0.00 4.7906 467305 4.7284 4.774 4.7679 4.7333 4.7577 4.6667 4.5148 4.3264 

0.05 | 4.7615 | 4.7641 | 4.7607 | 4.7335 | 4.7067 | 4.7479 | 4.7413 | s.c615 | 4.st38 | 4.3263 

0.10 4.7318 4.7377 4.7321 4.6912 | 4.6612 | 4.7060 447200 4.6539 4.5120 4.3261 

0.15 | 4.7098 4.7097 4.7020 4.6470 | 4.6036 4-659" 4.698) 4.6440 4.5094 4.3257 

0.20 4.678 4.6796 4.6699, 4.0013 | 4.5454 4.6091 4.6648 466319 4.5059 4.3251 

0.25 | 4.6476 | s.6473 | 4.6357 | 4.556 | 4.4875 | $5570 | 4.erc0 | a.er77 | s.sore | 4.3243 | 17 

0430 4.6133 4.6130 4.5314 4.9073 | 4.3650 4.5040 4.5288 4.6016 4.4301 4.326 

0.35 | 4.5769 445766 465612 444599 463747 4.4508 465593 4.5026 4.4907 4.3204 

0.40 4.5:87 4504 425215 He4t25 | 4.3003 4.3978 4.5204 465639 Aha 4.3211 

0.45 | 444991 teaged het O5, 4.3654 462675 4.56 4-AbO4 45428 4ATES 40397 

0.50 | anya att [| acaras | g.3raa | asore2 | 4.2042 | a.gs07 | aescoy | 4.ae8a | 4.3182         

                    
  

    

 



  

    

  

    

  

  

    

  

  

  

  

  

  

  

  

    

Table 4.3.5 Tables of K79 valuce for the five shonr modes of annular ringoy K%9 = 8° 

When vot, KTO(1=-7) = peg pat y2s3pree ‘i 

(Fo. | SW] 09 0.1 0.2 0.3 O64 065 0.6 0.7 0.8 0.9 1.0 

0.00 | 5.00323 | 5.13840 | 5.47108 | 5.91849 | 6.45188 | 7.21410 | 8.51500 | 10.9091 | 22.2929 | 31.5313 
0.05 | 5.13250 | 5.27114 | 5.coase | 6.03127 | 6.51996 | 7.24812 | 8.s3t21 | 10.9169 | 22-8627 | 31-5328 

0.10 | 5.27361 | 5.41661 | 5.75132 | 6.14961 | 6.58704 | 7.28081 | 8.51697 | 10.9246 | 23-4791 | 31.5342 

0.15 | 5.42741 | 5.57616 | 5.91200 | 6.27228 | 6.65258 | 7.31245 | 8.56294 | 10.9322 | 24.1489 [31.5357 | 3 

0.20 | 5.59446 | 5.75112 | 6.08838 | 6.39741 | 6.71613 | 7.34309 | 8.57732 | 10.9396 | 24-8796 | 31.5371 z 

0.25 | 5.77456 | 5.24259 | 6.28193 | 6.52089 | 8.77731 | 7.37292 | 8.59198 | to.9468 | 25-6206 | 31.5385 

0.30 | 5.96529 | 6.15039 | 6.49348 | 6.64210 | 6.83587 | 7.40191 | 8.60634 | 10.9540 | 26.5626 | 31.5399 
0.35 | 6.15875 | 6.36959 | 6.72008 | 6.75382 | 6.89168 | 7.42996 | 8.62051 | 10.9610 | 27-5371 | 31.5412 
0.0 | 6.33585 | 6.57671 | 6.93615 | 6.85103 | 6.94468 | 7.45720 | 8.63428 | 10.9680 | 28-6124 | 31.5426 

0.45 | 6.46970 | 6.71606 | 7.05650 | 6.94099 | 6.99498 | 7-48394 | 8.64763 | 10.9749 | 29-7620 | 31.5439 
0.50 | 6.55275 | 6.77904 | 7.09768 | 7.01526 | 7.04256 | 7.50986 | 8.66121 | 10.9816 | 30-8029 | 31.5453 

oa, |X 0.0. 0.1 0-2 9.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.00 | 6.78301 | 5.99802 | 5.75324 | 6.22520 | 7.08420 | 8.04912 | 2.26036 | 11.4401 | 22.2358 | 31.6780 

0.05 | 6.91678 | 6.15053 | 5.92318 | 6.40725 | 7.24256 | 8.19514 | 932952 | 11-4707 | 22.7937 | 31-6840 
0.10 | 7.05931 | 6.30670 } 6.09432 | 6.60062 | 7.45300 | 8.33860 | 9.38733 | 11-5001 | 23.3969 | 31.6901 

0.15 | 7.20852 | 6.16509 | 6.26969 1.69280 | 8.47510 | 9.44985 | 11-5285 | 24.0510 | 31.6951 | 5 
0.20 | 7.36001 | 6.62260 | 6.a46g1 7.3486) | 8.€0002 | 9.sor2a | 11.5561 | 24.7623 | 31.7010 5 

0.25 | t.s07e7 | 6.77584 | 6.62046 8.22754 | 8.71047 | 9.55366 | 11-5832 | 25.5379 | 31-7056 

0.30 | 7.64151 | 6.92050 | 6.78696 | 7.42621 | 8.53098 | 8.20973 | 9.60334 | 11.6090 | 26.3842 | 31.7121 
0.35. | 7.75545 | 7.05297 | 6.94092 | 7.60897 | 8.71110 | 8.28702 | 9.65049 | 11.6352 | 27-3036 | 31.7175 
0.49 | 7.84630 | 7.17021 | 7.02309 | 7.75592 | 8.72946 | 8.95650 | 9.69532 | 11.6601 | 28.2915 | 31.7230 

0.45 | 7.91629 | 7.27149 | 7.19596 | 7.87029 | 8.74654 3.73805 | 11.6249 | 29.3001 | 31.7282 
i 0.50 | 7.96981 | 7.35740 | t.29527 | 7.95501 | 8.76283 9.17885 | 11.7090 | 30.1958 | 31.3276 

o,, | Ni] 20 0. 0.2 03 4 0.5 0.6 0.7 0.8 0.9 1 

o.00 | e.szr2¢ | 2.r6361 | 2.24681 | 6.72573 | 7.32096 | austera | so.s47@ | 12.2271 | 22.1512 | 31.3203 | 
0.05 | 8.42328 | 8.29636 | 7.30483 | 6.97020 | 7.52642 | 3.74990 | 10-3241 | 12.2942 | 22.6913 | 31.9332 

. 0.10 | 8455330 | 8.42620 | r.u635s | 7.16129 | 7.75150 | 9.00760 | to.agr6 | 12.3581 | 23.2750 | 31.0459 | 
0.15 | 8.68370 | 8.55795 | 7.62115 | 7.35126 | 7.98070 | 7.28699 | 10.6433 | 12.4189 | 23.9072 | 31.9585 s 

0.20 | 8.er301 | 2.6252 | 7.77529 | r-5is00 | auconer | 9-sa5r2 | 10.7748 | 12.4768 | a4.5926 | 31.9709 |< 

0.25 | 8.93240 | 3.20623 7.73070 | 8.43500 | 9.89030 | 10.2857 | 12.5321 | 25.3359 | 31.7832 

0.30 | 9.04184 | 8.91585 | 3.06264 | 7.90085 | 8.6756 | 10.1561 | 10.9787 | 12.5850 | 26.1401 | 31.9953 
0.35 | 9.13617 | y.01240 | 8.1912 | 8.06987 | 8.8314 | 10.3956 | 11.0576 | 12.6357 | 27.0036 | 32.0074 
0.0 | 9.21632 | 7.0958 | 3.30798 | 3.21721 | 9.00526 | 10.3758 | 11.1258 | t2.ea6 | 27.9130 | 32,0193 

45 | 9.28356 8.4122 9.14059 | 10.4199] 11.1859 | 12.7318 | 28.8298 | 32.0310 
0.50 | 9.21000 8.50481 9.25149 | to.t5s3 | 11.2591] 12.7708 | 29.0691 | 52.0435       
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TABLES OF K VALUES FOR THICK ANNULAR DISKS
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Table A.4.1 Tables of K values for the first three flexural modes of thick 
annular disks ; Thickness—to-diameter ratio = 0.50. 

Kio | NY 0.0 0.1 0.3 0.5 0.7 0.9 1.0 

0.00 1.65192 | 1.52496 | 0.99417 | 0.60031 | 0.30001 

0.05 1.61159 | 1.49359 | 0.98537 | 0.59797 | 0.30605 

0.10 1.56988 1.46064 0.97529 0.59486 0.30593 

0.15 1.52674 | 1.42604 | 0.96382 | 0.59118 | 0.30558 g é ; 

0.20 1.48209 4.38970 0.95084. 0.58666 0.30445 iB 3 2 

0.25 1.43584 1.35149 0.93622 0.58129 0.30313, 5 ra i 

0.30 1.38786 1.31128 0.91978 0.57496 0.30124 : z 8 

0.35 1.33799 | 1.26891 | 0.90134 | 0.56752 | 0.29944 5 

0.40 1.28604 | 1.22418 | 0.88068 | 0.55880 | 0.29704 

0.45 1.23176 | 1.17682 | 0.85754 | 0.54861 | 0.29428 

0.50 1.17485 1.12653 0.83158 0.53671 0.29082 

m3 NX 0.0 0.1 0.3 0.5 0.7 0.9 1.0 

0.00 2.50682 2.50097 2.15573 1.45375, 0.81225 

0.05 2.45245 2.44691 2.12222 1444235 0.80957 

0.10 2.39473 2.38955 2.08576 1.42928 0.80647 z 3 

0.15 2.33379 2432902 2.04621 1641435 0.80276 : i Q 

20 | 2.26969 | 2.26532 | e001 | t.s97s7 | ovn9ess |g z 3 
0.25 2.20241 | 2.19843 | 1.95716 | 1.37813 | 0.79310 5 z 8 

a 
0.30 2.13186 | 2.12827 | 1.90725 | 1.35635 | 0.78693 $$ 

0.35 2.05788 2.05467 1.85341 1.33174 0.77967 8 

0.40 1.98024 | 1.97740 | 1.79533 } 1.30392 | 0.77112 

0.45 1.89863 | 1.89613 | 1.73262 | 1.27247, | 0.76102 

0.50 1.81262 1.81045 1.66481 1.23686 0.74906 

Big [oy 0.0 0.1 0.3 0.5 0.7 0.9 1.0 

0.00 3-23202 | 3.23184 | 3.12255 | 2.38210 | 1.43971 

“0.05 3.16922 | 3.16905 | 3.06608 | 2.35626 | 1.43251 

0.10 3.10103 | 3.10087 | 3.00469 | 2.32744 | 1.42420 is : 

0.15 3402770 3.02755 2.93844 2.29536 1.41463 g 3 3 

0.20 2.94939 2.94925 2.86733 2.25973 1.40362 2 2 2 

0.25 2.86617 | 2.86604 | 2.79130 | 2.22019 | 1.39098 F 5 

0.30 | 2.77801 | 2.77790 | 2.71021 | 2.17637 | 1.37644 5 z " 

0.35 2.68480 2.68469 2.62387 2.12781 1.35971 g 

0.40 2.58628 2.58619 2.53199 2.07400 1.34040 

0.45 2.48212 2.48204 2.43415, 2.01433 1.31806 

0.50 2.37179 2.37172 2.32984, 1.94807 1.29208                 
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Table A.4.2 Tables of K valucs for first set of finite frequency modes of thick annular disks, 

  

    

  

  

    

            
  

  

    

Kir 

n= 2.0 ° 0.0 0.1 0.3 0.5 0.7 0.9 

0.00 1.84118 1.8047 1.58207 1.35467 1.18236 1.05312 

0.05 1.87683 1.83528 1.59561 1.35782 1.18189 1.05175 

i 0.10 1.90570 1.86061 1.60389 1.35680 1617797 1.04738 

0.15 1.92610 1.87814 1.60659 1.35156 1.17059 1.04003, 

0.20 1.93640 1.88655 1.60342 1.34203 4.15971 1.02965 

0.25 1.93531 4.88480 1.59411 1.32813 1.14528 1.01621 

0.30 1.92217 1.87223 1.57845, 1.30978 1.12723 0.99962 

0.35 1.89694 1.84863, 1.55622 1.28688 1.10548 0.97979 

0.40 1.86007 1.81416 1.52724 1.25929 1.07991 0.95660 

0.45 1.81219 1.76918 1.49132 1.22684 1.05034 0.92989 

0.50 1.75390 1471405 1.44818 1.18926 1.01656 0.89944 

n= 4.0 > 0.0 0.1 0.3 0.5 0.7 0.9 

0.00 1.84117 1.80347 1.58207 1.35467 1.18236 1.05311 

0.05 1.87862 1.83683, 1.59630 1.35814 1.18208 1.05186 

0.10 1.91379 1.86753 1.60675 1.35809 1.17873 1.04788 

0.15 1.94642 1.89531 1.61324 1.35446 1.17229 4.04119 

0.20 1.97612 1.91978 1261553 1634713 1.16268 1.03165 

0.25 2.00234 1.94043 1.61333 1.33598 4.14983 1.01928 

0.30 2.02429 1.95656 1.60631 1.32085 1.13362 1.00393 

0.35 2.04090 1.96727 1659405 1.30151 1.11390 0.98551 

0.40 2.05077 1.97139 1.51607 1.27772 1.09049 0.96383 

0.45 2.05210 1.96746 1.55179 1.24915 1.06315 0.93871 

0.50 2.04271 1.96155 1.52051 1421539 1.03158 0.90987 

n= 8.0 = 0.0 0.3 0.5 0.7 0.9 

i 0.00 1.84119 1458207 1635467 1.18236 1.05312 

0.05 1.87890 1.59641 1635819 1618212 1.05189 

0.10 1.91503 1.60723 1.35832 1.17888 1.04800 

0.15 1.94959 1.61436 1.35496 1.17261 1.04142 

0.20 1.98254 1.61758 1.34801 1616324 1.03210 

0.25 2.01379 1.61663 1.337H 1.15068 1.01996 

0.30 2.04319 1.61119 1.32275 1.13481 1.00490 

0.35 2.07044 1.60086 1430404 1611546 0.98679 

0.40 2.09512 1.58516 1.26091 1.09244 0.96547 

0.45 2.11654 1.56348 1.25304 1.06549 0.94072 

0.0 2.13365 1453511 1.21999 1.03§428 0.91226             
  

 



  

  
Ne» 2.0 a 0.0 0.1 0.3 0.5 0.7 0.9 
  

0.00 1.74965 1.75553 1.77704 1.74112 1.62852 1.48589 

0.05 1.73997 1.74657 1.77219 1.73921 1.62660 1.48372 

. | 0-10 1.72457 1.73181 1.76130 1.73144 1.61948 1.47703 

0.15 1.70358 1.731139 | 1.74438 1.71776 1.60717 1.46580 

0.20 1.67716 1.68544 1.72151 1.69818 1.58945 1.44996 

0.25 1.64546 1.65413 1.69279 1.67270 1.56647 1.42948 

0.30 1.60861 1.61757 1.65831 1.64135 1.53816 1.40431 

0.35 1.56670 1.57585 1.61815 1.60415 1.50447 4.37435 

0.40 1.51976 1.52900 1.57233 1.56109 1.46534 1.33950 

0.45 1.46772 1.47696 1.52081 1.51209 1.42063 1.29960 

0.50 1.41044 1.41959 1.46344 1.45699 1.37015 1.25442 

  

  

  
N= 4.0 os 0.0 0.1 0.3 0.5 0.7 0.9 

  

0.00 1.74965 1.75553 4477704. 1.74112 1.62852 1.48589 

0.05 1.74020 1.74682 1.77260 1.73970 1.62702 1.48402 

0.10 1.72549 1473282 1.76292 1.73342 1.62144, 1447824 

0.15 1.70559 1.71361 1.74798 1.72224 1.61089 1.46851 

0.20 1.68060 1.68926 1.72777 1.70606 1.59607 1.45476 

0.25 1.65058 1.65981 1.70224 1.68479 1.57668 1.43690 

0.30 1.61556 1.62529 1.67134 1.65829 1.55255 1.41479 

0.35 | 1.57554 | 1.58568° | 1.63497 | 1.62638 | 1.52349 | 1.38825 
0.40 1.53046 1.54092 1.59299 1.58884 1.48926 1.35708 

0.45 1.48018 1.49086 1454394 1.54579 1.44958 1.32099 

0.50 1.42480 1443528 1.48789 1.49681 1.40404, 1.27961             
  

  

    
n= 8.0 | Xv 0.0 0.3 0.5 0.7 0.9 

0.00 1674965, 1477704 1674112 1.62852 1.48589 

0.05 1.74026 1.77268 1.73980 1.62710 1.48408 

0.10 1.72569 1.76324 1.73382 1.62148 1.47849 

0.15 1.70603 1.74871 1.72313 1.61162 1.46908 

0.20 1.68135 1.72905 1.70764 1.59743 1.45578 

0.25 1.65169 1.70419 1.68724 1.57879 1.43849 

0.30 1.61707 1.67405 1.66177 1455556 1441705 

0.35 1.57747 1.63851 1.63102 1.52752 1.39130 

0.40 1.53281 1.59740 1.59475 1.49443 1.36098 

0.45 1.48292 1.54989 4.55261 1.45594 1.32581 

0.50 1.42759 1.49594 1.50481 1.41164 1.28539                
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Xe 

N= 2.0 St 0.0 0.3 0.5 0.7 0.9 

0.00 2.68394 2.64329 2.65082 2.51630 2.34718 

0.05 2.67436 2.62137 2.64004 2.54070 2.34273 

0.10 2.65424 2.59126 2.61832 2452439 2232916 

ie 0.15 2.62355 2.55305 2.58595 2.49726 2.30637 

0.20 2.58264 2.50670 2.54351 2.45970 2.27449 

0.25 2.53206 2.45279 2.49173 2.41233, 2.23383 

0.30 2447243 2439175 2243131 2.35586 2.18479 

0.35 2.40429 2432369 2436285 2.29096 2.127TT 

0.40 2.32808 2.24935 2.28675 2.21812 2.06310 

0.45 2.24400 2.16809 2.20323 2.13767 1.99097 

0.50 2.15208 2.07988 2.11226 2.04967 1.91140 

n=4.0 | XT 0.0 0.3 0.5 0.7 0.9 

0.00 2.68394 2.64077 2.65084 2.54631 2.34717 

0.05 2.67529 2.62135 2.64137 2.54239 2.34399 

0.10 2.65810 2.59375 2.62365 2.53110 2.33431 

0.15, 2.63230 2.55837 2.59774 2.51234, 2.31805 

0.20 2.59792 2.51553 2.56371 2.48602 2.29509 

0.25 2.55500 2.46550 252163 2.45202 2.26527 

0.30 2.50361 2.40648 2.47152 2.41019 2.22843 

0.35 2444379 2644 2.41336 2.36034 2.18433 

0.40 2.37550 2427366 2.34706 2.30222 2.13268 

0.45 2.29864 2.19567 2.27243 2.23549 2.07309 

0.50 2421293 2.11024 2.18912 2.15969 2.00509 

n= 8.0 | ont 0.0 0.3 0.5 0.7 0.9 

0.00 2.68394 2.64077 + 2.65084 2.54631 2.34718 

0.05 2.67546 2.62145, 2.64157 2.54264 2.34420 

0.10 2.65880 2.59415 2.62448 2.53213, 2.33518 

0.15 2.63368 2.55920 2.59959 2.51471 2.32003 

0.20 2.60069 2.51688 2.56693 2.49027 2.29864 

0.25 2.55920 2.46742 2.52650 2.45864 2427085 

0.30 2.50940 2.41096 2.47824 2.41963 2.23644 

0.35 2.45124 2.4756 2.42204 2.37295 2.19512 

0.40 2.38461 2.27714 2.35774 2.31827 2.14653 

0.45 2.30930 2.19953 2.28505 2.25513 2.09021 

0.50 2.22500 2.11439 2.20355 2.18295 2.02557             
  

 



-237- 

  

    

  
  

  

  
  

    
  

  

  
  

Ky 

n= 2.0 =~ 0.0 0.3 0.5 0.7 0.9 

0.00 3671737 3-69074 370338 358778 331854 

0.05 3.69511 3.65377 3.67672 3.57168 3.30715 

0.10 3.65317 3.60087 3-62747 3.52661 3-27331 

‘ 0-15 3.59239 3.53440 3-55947 3.45875 3221874 

0.20 3+51559 3.45651 3447714 3-37499 3414846 

0.25 3.42588 3-36884 3-38387 3-28070 3.06611 

0.30 3.32567 | 3-27248 3-28178 3.17821 2.97455 

0.35 3.21652 3.16807 3.17206 3.06889 2.87530 

0.40 3.09927 305588 3.05520 2495318 2.76914 

0.45 2.97422 2.93577 2.93124 2.83109 2.65628 

0.50 2.84120 2.80755 2479985 2.70222 2.53654 

n= 4.0 o vi 0.0 0.3 0.5 0.7 0.9 

0.00 3.71737 3-69074 370338 3.58789 331857 

0.05 3.69897 3-65620 3.68173 3.58037 3-31362 

0.10 3.66920 3.60992 3.64672 3.56104 3.29862 

0.15 362765 3+55296 3-59904 3+52983 3-27338 

0.20 3-57424 3-48620 3.53941 3.48675 3+23776 

0.25 3450905 3-41023 3.46851 3443185 3.19162 

0.30 3243227 3-32545 3-38688 3-36521 313480 

0.35 3634410 3423201 3429491 3.28688 3.06715, 

0.40 3+24467 3.12985 3.19278 3.19683 2.98845 

0.45 313394 3.01870 3.08046 3.09491 2.89836 

0.50 3.01170 2.89691 2.95764 2.98077 2.79644 

n= 8.0 a 0.0 0.3 0.5 0.7 0.9 

0.00 3671737 3+69074 3-70338 3458789 3-31857 

0.05 3-69944 365647 3.68222 3.58107 3-31423 

0.10 3.67110 3-61087 3.64857 3-56391 3430113 

0.15 3+63193 3+55482 3.60295 353633 3+27915 

0.20 3.58167 3.48903 3454585 3249825 324812 

0.25 3+52017 3.41401 3.47771 3444952 320783 

0.30 3+44738 333006 339891 338996 3-15797 

0.35 3436324 3423730 3-30965 3431931 3.09816 

0.40 326766 3.13565 3.21000 3.23722 3.02792 

0.45 3.16043 3.02483 3.09985 3414321 2.94664 

0.50 3.04118 2.90435, 2.97882 3.03660 2.85352             
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Table A.4.3 Tables of K valucs of second set of finite frequency modes of thick annular disks. 

Kor 

  

n= 2.0 Y 0.0 0.1 0.3 0.5 0.7 0.9 

    
0.00 3614118 3414286 3-14287 3.14286 3+14287 3.14286 

0.05 3.15424 3-14836 3414465 3+14343 3414332 3-14333 

* 0.10 3.16983 3.16697 3.14981 3.14481 314459 3614473 

0.15 3421179 3.20186 3.15752 3-14629 3414639 3.14703 

0.20 3627724 3.25501 3.16614 3.14687 3614837 3.15017 

0.25 3-36156 3.32216 3.17280 3.14516 3-14998 3.15408 

0.30 3.42967 3.38022 3.17319 3413931 3415051 3.15866 

0.35 3.42502 3.38783 3.16189 3.12703 3.14897 3.16377 

0.40 3-3579T 3-33567 3+13340 3.10561 3-14397 3-16919 

0.45 3+25793 3.24472 3-08369 3.07206 3+13364 3417463 

0.50 3.13783 3.12988 3.01105, 3.02337 3.11550 3617963, 

  

  

n= 4.0 x 0.0 0.1 0.3 0.5 0.7 0.9 
    

0.00 5233144 5.13714 5.13740 6.28571 6.28571 6.28571 

0.05 5.33278 5.12011 «| 5.10399 6.23021 6.28254 6.28567 

0.10 5.31359 5.08824 5.05450 6.11023 6.27143 6.26540 

0.15 5.26980 5.03915 4.98769 5.96872 6.24972 6.28464 

0.20 5.20024 4.97156 4.90377 5.81637 6.21441 6.28308 

0.25 5.10626 4.88530 4.80378 5.65571 6.16246 6.28021 

0.30 4.99032 4.78089 4.68897 548720 6.09097 6.27538 

0.35 4.85490 4.65911 4.56036 5.31058 5.99751 6.26765 

0.40 4.70190 4.52066 4.41852 512516 5.88019 6.25568 

0.45 4.53250 4.36597 4.26356 4.92993 5+73763 6.23755 

0.50 4.34714, 4419504 4.09509 4.72357 556880 6.21043             
  

  

    
n= 8.0 ~ 0.0 0.3 0.5 0.7 0.9 

0.00 5-33144 5«13740 6.56494 10.5918 1265714 

0.05 5.34017 5.11008 6.54818 10.5589 12.5689 

0.10 5.34633 5.08010 6.52620 10.4693 12.5689 

0.15 5.34881 5.04682 6.49720 10.3246 12.5427 

0.20 5434613 5.00942 6.45594 10.1336 12.5140 

0.25 5.33632 4.96680 6.40875 990530 12.4704 

0.30 5+31690 4.91755, 6.34352 9.64647 12.4073 

0.35 5-28475 4.85984 6.25985, 9-36129 12.3192 

0.40 5.23613 4.79133 6.15419 9.05181 12.1992 

0.45 5.16679 4.70916 6.02300 8.71847 12.0396 

0.50 5.07208 4.60981 5.86290 8.36046 11.8315               
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21 

mn =2.0 | Jot 0.0 0.3 0.5 0.7 0.9 

0.00 3.40067 3-33492 3+28439 3425094 3.22859 

0.05 3435949 3.32188 3+27780 3-24660 3+22532 

7 0.10 3.28889 3-29921 3627124 3424418 3+22403 

0.15 3+20860 3+26415 3-26330 3424333 3+22469 

0.20 3412285 3621541 3.25216 3.24354 3.22723 

0.25 3.03263 3615325 3223556 3424409 323158 

0.30 2.93806 3.07931 3.21031 3.23923 3423175 

0.35 2.83896 2.99338 3617549 3.24189 3424476 

0.40 2.73498 2.89802 3.12680 3-23601 3+25310 

0.45 2.62562 2.79335 3.06270 3.22401 326209 

0.50 2.51022 2.67957 2.98162 3.20289 3-27110 

n= 4.0 | ¢ 0.0 0.3 0.5 0.7 0.9 

0.00 3253782 4.18501 5.10135 6.33857 6.32716 

0.05 3-53592 4.15449 4.99418 6.33259 6.32515 

0.10 3+53120 4.11578 4.87974 6.31836 6.32336 

0.15 3.52184 4.06719 4.75849 6.29274 6.32153 

0.20 3.50561 4.00730 4.63061 6.25210 6.31930 

0.25 3.48003 3.93512 4.49611 6.19240 6.31619 

0.30 3244248 385010 4.35481 6.11132 6.31043 

0.35 3439046 3.75199 4.20639 5-99624 6.30422 

0.40 3.32181 364075 4.05034 5-84598 6.29300 

0.45 3423495 3.51635 3.88600 5.65177 6.27581 

0.50 3.12895 3.37861 3671245 5.66288. 6.24975, 

n = 8.0 oa 0.0 0.3 0.5 0.7 0.9 

0.00 3.53782 4.18501 5.10135 7-71389 12.5684 

0.05 353706 4.15641 4.99528 7452393 12.5849 

0.10 353642 4.12376 4.88358 732827 12.5752 

0.15 3453508 4.08546 4.76603 1212652 12.5573 

0.20 3.53185 4.03952 4.64238 6.91817 12.5281 

0.25, 3.52489 3.98366 4.51231 6.70267 12.4842 

0.30 3.51122 3.91547 4.37542 6.47933, 12.4204 

0.35 3.48582 3.83281 4.23122 6.24735, 12.3325 

0.40 3.44046 3673410 4.07908 6.00574, 12.2123 

0-45 336503 3461854 3491824 5-T5334 12.0524 

0.50 325505 3.48592 3-74773 5.48866 11.8438             
  

 



-240- 

  

    

  

  

    

  

  

    

32 

n= 2.0 | OX 0.0 0.3 0.5 0.7 0.9 

0.00 367944 3+77831 3.66966 3455828 3-47660 

0.05 3657112 3674175 3-64616 3-54186 3.46367 

. 0.10 3.46209 3.68994 3.62277 3653175 3.45672 

0.15 3+35794 3-62407 3-59733 3452721 3445570 

0.20 3-25376 3-54631 3-56692 3.52691 3-46029 

0.25 3-15443 3245856 3.52831 3452899 3.46997 

0.30 3.05547 * 3.36113, 3.48369 3.48391 3.48595 

0.35 2.96992 3-25764 341671 3+53034 350124 

0.40 2.88411 3-14542 334044 352360 3452107 

0.45 2470474 3.02532 3+24930 3-50714 3+54232 

0.50 2452533 2.89691 3414284 3-47683 3.56374 

n=4.0 on 0.0 0.3 0.5 0.7 0.9 

0.00 4.79633 4.40232 5.69159 6.50153, 6.45728 

0.05 4.76364 4+41259 5+63792 6.48760 6.44957 

0.10 4.72071 4.41218 5-55671 6.46497 6.44347 

0.15 4.66435 4.39675 545250 6.42971 6.43869 

0.20 4.59292 4.36269 5+33001 6.37757 6.43485 

0.25 4.50320 4.30781 5.19266 6.30432 6.43136 

0.30 4.39727 4.23156 5.04254 6.20702 6.42526 

0.35 4.27514 4.13462 4.88073 6.08092 6.42193 

0.40 4.13770 4.01827 4.70762 5.92667 6.41326 

0.45 3.98568 3.88384, 4.452305 5+74322 6.39914 

0.50 3.81942 3473230 4.32641 553097 6.37628 

ne 8.0 ie 0.0 0.3 0.5 0.7 0.9 

0.00 4.79634 4.40232 5.69159 8.08961 12.6543 

0.05 4.76645 4.41546 5-64725 790537 12.6477 

0.10 4.73325 4.42517 5+59040 7-71353 12.6357 

0.15, 4.69389 4.42880 5.51808 7051382 12.6159 

0.20 4-64477 4.42290 5.42807 730582 12.5853 

0.25 4.58168 4440300 5.31932 7.08902 12.5402 

0.30 4.50028 4.36384 5-19199 6.86278 12.4753 

0.35 4.39760 4.30018 5.04692 6.62628 12.3865 

0.40 4.27276 4.20844 4.88505 6.37854 12.2652 

0.45 4.12690 4.08810 4.70706 6.11832 12.1039 

0.50 3.96176 3694115 4.51306 584409 11.8934,           
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3 

ne20 | OX 0.0 0.3 0.5 0.7 0.9 

0.00 4.27432 4.44519 4.20732 4.01314 3.85464 

0.05 4425375, 4.25869 4.16528 3-98063 3.83223 

0.10 4.23396 4.19217 4.12900 3.99074 3-82895 

k 0.15 4.20542 4.11931 4.09183 3.99548 3.84165 

0.20 4.16637 4.02914 4.04719 4.01251 3.86648 

0.25 4.11601 3-93446 3.99052 4.02888 3.89877 

0.30 4.05074 3.83162 3491608 4.03252 3.92770 

0.35 3+96511 3+72059 3-83277 4.03997 3.97363 

0.40 3.86204 3.60105 3.73068 4.02621 4.01223 

0.45 3.74098 3.47240 3.61326 3.99427 4.04967 

0.50 3.60258 3.33381 3.48059 3.94027 4.08422 

n=4.0 | XY 0.0 0.3 0.5 0.7 0.9 

0.00 586758 4.79823 6.01945 6.76335 6.66851 

0.05 5.79838 4.80194 6.01001 6.73734 6.65192 

0.10 5-70968 4.79246 595562 6.70272 6.63947 

0.15 5.60102 4.76526 5.85900 6.65472 6.63085 

0.20 547403 4.71738 5-73138 6.58859 6.62556 

0.25 5233101 4.64776 5.58214 6.50034 6.62285 

0.30 517392 4.55681 5-41677 6.38775, 6.61971 

0.35 5.00411 4.44576 5.23606 6.24822 6.62048 

0.40 4.82227 4.31602 5404722 6.08300 6.61725 

0.45 4.62851 4.16873 4.84446 5.89207 6.60909 

0.50 4.42242 4.00456 4.62930 5-67583 6.59198 

n= 8.0 | | 0.0 0.3 0.5 0.7 0.9 

0.00 5.86758 4.79823 6.01945 8.64581 12.7654 

0.05 5.80460 4.80403 6.02849 8.47243 12.7520 

0.10 5-757 4.80225 6.03469 8.28732 12.7360 

0.15 565445 4.78964 6.03435 8.09063 12.7131 

0.20 5.56111 4.76301 6.02848 788235 12.6802 

0.25 5-45187 4.71945 599170 7-66225 12.6333 

0.30 5.32498 4.65659 592920 7.42988 12.5668 

0.35 5-17976 4.57280 581500 7.18460 12.4766 

0.40 5.01626 4.46721 5+64353 6.92549 12.3535 

0.45, 4.83486 4.33954 5.43428 6.65136 12.1899 

0.50 4.63578 4.18984 5.20135 6.36065, 11.9762             
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fable A.4.4 Tables of K values for a pure radial(plate or axial shear) and compound shear modes. 

  

    

  

  

    

  
  

  

    

‘3R 

n= 2.0 2 a 0.0 0.3 0.5 0.7 0.9 

0.00 4414970 4-59359 5-50581 8.07677 22.4449 

f 0.05 4.10268 4.52159 5.41184 790336 21.8878 

0.10 4.05114 4.45211 5231546 7+72563 21.3160 

0.15 3.99725 4.38585 5.21656 7.54319 20.7283 

0.20 3.94806 4.32071 5.11498 7.35561 20.1232 

0.25 3.92518 4.25747 5.01056 7216240 19.4991 

0.30 3.99327 4.19789 4.90301 6.96295 18.8540 

0.35 4.26176 4.14297 4.79192 6.75651 18.1857 

0.40 4.63864 4.09211 4.67667 6.54220 17.4914 

0.45 4.52615 4.04230 4.55633 6.31886 16.1679 

0.50 4.35069 3.98804 4.42950 6.08505 16.0109 

n= 4.0 a x 0.0 0.3 0.5 0.7 0.9 

0.00 6.24653 T.11213 7-74251 8.87144 23-0956 

0.05 6.3019 7.06839 7267394 9.59567 22.5544 

0.10 6.35742 7.01281 7-59933 9-44676 21.9993 

0.15 6.43950 6.94232 7-51700 9.29251 21.4290 

0.20 6.52155 6.85563 142567 9213243 20.8423 

0.25 6.58043, 6.75461 731803, 8.96453 20.2375 

0.30 6.63916 6.60751 7219987 8.78828 19.6129 

0.35 6.50069 6.45588 706394 8.60155 18.9661 

0.40 6.29945 6.28154 6.90827 8.40203 18.29434 

. 0.45 6.06721 6.08479 6.73034 8.18681 17.5945 

0.50 5-81205, 5-86525 6.52751 1295224 16.8623 

n= 8.0 ol 0.0 0.3 0.5 0.7 0.9 

0.00 8.53627 930827 12270643 14.6080 25-5330 

0.05 8.53745 9.28370 12.5735 14-5033 25-0435 

0.10 8.52651 9.24106 12.3811 14.3751 24.5414 

0.15, 8.49831 9217484 12.1086 14.2186 24.0255 

0.20 8.44758 9.08002 11.8072 14.0302 23-4940 

0.25 8.36876 8.95281 11.4848 14.0466 22.9451 

0.30 8.25722 8.79104 11.1440 13.9581 22.3728 

0.35 8.10959 8.59404 10.7824 13.2342 21.7847 

0.40 7-92400 8.36213 10.4014, 12.8864 21.1664 

0645 7.69947 8.08585 9-99839 12.4945 20.5165 

0.50 7043643 1679550 9251097 12.0569 19.8288             
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Ky 

n= 2.0 S Y 0.0 0.3 0.5 0.7 0.9 

0.00 3.85329 4.18500 5.10135, 771389 22.2960 

0.05 3.78463 4.16526 4.99645 752400 21.7325 

i 0.10 3.71582 4.16018 4.88803 7-32852 21.1537 

0.15 3.66051 4.16382 4.77348 7.12701 20.5586 

0.20 352526 4.15638 4.65810 6.91897 19-9456 

0.25 3242684 4.11233 4.53508 6.70381 1923130 

0.30 3.32822 4.02800 4.40553 6.48085 18.6588 

0.35 3+25526 3-91573 4.26856 6.24927 47.9807 

0.40 3.18214 3.78514 4.12322 6.00811 17-2759 

0.45 3.01423 3.64068 3.96857 5.75618 16.5409 

0.50 2.84628 3448412 3.80354 5.49204 15.7717 

n= 4.0 eS 0.0 0.3 0.5 0.7 0.9 

0.00 4.76163 5+17401 6.35578 771389 22.2961 

0.05 4.64738 5.07764 6.27974 7-52427 21.7325 

0.10 4.53011 4.97504 6.14227 7.32971 21.1538 

0.15 4.40968 4.86575 599054 713001 20.5587 

0.20 4.28595 4.74928 5.83075 6492506 19.9458 

0.25 4.15872 4.62514 5.66386 6.71506 19.3133 

0.30 4.02775 4.49283 5.48957 6.50062 18.6592 

0.35 3.89269 4.35185 530794 6.28496 17.9812 

0.40 3+75306 4.20158 5+11756 6.07251 17-2765 

0-45 3.60812 4.04133 4.91758 5.86756 16.5417 

0.50 3.45670 3.87018 4.70667 5.66288 15-7726 

n=8.0 | > 0.0 0.3 0.5 0.7 0.9 

0.00 4.76163 5-17401 6.53205 10.5689 22.2960 

0.05 4.641749 5+07955 6.49635 10.5323 2147325 

0.10 4.53064, 4.98331 6.45677 10.4413 21.1538 

0.15 4.41121 4.88587 6.41129 10.2968 20.5588 

0.20 4.28952 4.78789 6.35739 10.1066 19.9458 

0.25 4.16625 4.68997 6.29219 9.87896 19.3194 

0.30 4.04293 4.59241 6.21238 9.62064 18.6593 

0.35 3.92269 4.49471 6.11440 9.33509 17.9814, 

0.40 3.81128 4.39517 5-99463, 9.02620 17.2768 

0.45 3671561 4.29063 5.85483 8.69267 16.5420 

0.50 3.63599 4.17662 5.69528 8.33438 15-7729             
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42 

n= 2.0 . 0.0 0.3 0.5 0.7 0.9 

0.00 4.85065 4.40231 5.69159 8.08961 22.3999 

0.05 4.77203 4.43130 5-64881 7290432 21.8365 

. 0.10 4.69335 4-48974 5+57992 T-70939 2142572 

0.15 451441 | 4.57182 5.47143 7.50498 20.6609 

0.20 403355 4.65891 534198 729138 20.0462 

0.25 4.22284 4.71023 5.19564 7-06863 19.4115 

0.30 4.11021 4.68166 5-04025 6.83971 18.7613 

0.35 3490905 4.56429 4.87456 6.59453 18.2444 

0.40 3.70780 4440501 4.69843 6.34187 17.5538 

0.45 3.56994 4.22893 4.51140 6.07745 16.8344, 

0.50 3443209 4.03996 4.31270 5-79984 16.0821 

n= 4.0 ° 0.0 0.3 0.5 0.7 0.9 

0.00 584356 5.88907 6.59924 8.08961 22.3999 

0.05 5-71372 5.76284 6.43392 7.90657 21.8367 

0.10 558387 5.63152 6.27386 7.71833 21.2581 

0.15 5.31763 5.49442 6.10779 1252464 20.6627 

0.20 5.05139 5.35083 5.93558 7232524 20.0492 

0.25 4.93198 5.20002 5.75687 7.11978 19.4157 

0.30 4.81257 5-04131 5.57100 6.90781 18.7604 

0.35 4677085 4.87402 5237739 6.68864 18.0808 

0.40 4.72913 4.69740 5-17517 6.46116 17-3741 

0.45 4.56158 4251058 4.96334 6.22372 16.6369 

0.50 4.39402 4.31251 4.74062 5-97397 15.8650 

n= 8.0 = 0.0 0.3 0.5 0.7 0.9 

0.00 586959 5.88908 6.59945, 10.51124 22.3999 

0.05 5+75665 5-76412 6.49751 10.4642 21.8367 

0.10 564139 563756 6.39804 10.3690 21.2582 

0.15 5651402 5+51039 6.30155 10222475 20.6630 

0.20 5438699 5.38404 6.20736 10.03655 20.0496 

0.25 5+27494 5.26044 6.11307 9.81125 19.4164 

0.30 5.17006 5-14175 6.01467 9455470 18.7613 

0.35 5.07130 5.02945, 5-90710 9.27083 18.0821 

0.40 4.97574 4.92262 5-78505 8.96179 17-375T 

0.45 4.87698 4.81661 5.64346 8.62827 16.6389 

0.50 4.76765 4.70354 547786 8.27735 15.8674             
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APPENDIX A. 

Y Dimensionless Eigenvalues 

Meas 0.0 0.3 0.5 0.7 0.9 

ae 2.26703 2.78506 3.78311 6.22506 18.59366 

Kr 2.35156 1.74485 1.41230 1.19290 1.05265 

Ee 4.15312 5.38803 7.46911 | 12.40608 | 37.17569 

Se 5.99198 5.39050 7.11992 11.65862 34.78854. 

ae 9.50405 | 10.12981 13.98832 | 23.21453 | 69.57125 

i 1.38716 0.92194 0.56885 0.32063 0.08583 

on 4.08704 0.93802 0.80171 0.69951 0.62174 

a 4.80645 1.75699 4.59841 1.39710 1.24419 

Ks, 1.66007 1.73403 1.73410 1.62484 1.48865 

= 2.59454 2.46947 2.56431 2.52842 2.35375 

Bt 3.17302 3.04033 3.88408 6.26551 | 18.60433 

ce 3496699 3.71160 4.19722 6.38866 | 18.63560 

“i 3.79673 4.08514 4.41915 6.49033 | 18.66062 

Ko 4.65828 4.62981 5.31924 6.90625 | 18.76864 

Ga 5.89198 4.88734 6.83295 1149253 3473523 

Ee 5.59369 5251969 6.57203 11.21673 34259274 

Ky 5.04904 5.50662 7251632 | 12.42607 | 37.18106 

: 5.89803 5.86714 7.66061 12.48662 | 37.19671               
  

Table A.5 Table of K values for Infinite hollow cylinder, o= 0.30.
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APPENDIX A.6.1 

LUMPED IMPEDANCE MODEL OF TUNING FORK RESONATOR 

A resonator can often be regarded as a lumped stiffness and a 

lumped ee The mass vibrating on a spring is a classical case. 

Acoustically, the lumped system such as the Helmholtz resonator can be 

analysed as two reactances, one positive (inertial) and the other 

negative (stiffness). The condition for resonance is that the sum of 

the reactances is zero. This zero reactance condition is applicable to 

distributed resonances. The phenomena are, therefore, being the cases 

of added stiffness and added mass. There are various ways of 

calculating the same. 

Impedance of a lumped mass 

Consider the mass-spring system show in Fig.6.2. If an 

alternating force is applied to the mass m, the ratio of force amplitude 

to velocity amplitude gives the impedance. This will be a pure reactance 

if they are in quadrature. Thus, if the force F is expressed as 

e (A.6.1) 

where F. is the peak amplitude and x is the displacement, then the 
0 

impedance is given by 

2, = Rr = jum ; (A.6.2) 

which is a pure reactance. 

Impedance of a long thin rod in tension 

The tuning fork can be considered as 

| a lumped mass-spring system and its 

+ impedance can be calculated by regarding the 

| resonator as a long thin rod under tension. 

‘ The force acting on the resonator under 

tension!" is given by 

F=Sx =F, eit (A.6.3)



m2AT~ 

where S is the stiffness constant given by 

S = EA/l (A.6.4) 

where E, A and 1 are the Young's modulus, area of cross-section and the 

length of the rod, respectively. Thus, the impedance is given by 

SiEeS dEN os DAC 
ae ol ~~ jol (4.6.5) 

where C is the velocity of sound in the rod material. 

A long thin rod can also be regarded as an acoustic transmission 

line. Then, the impedance of the line? is given by 

Z,= -jpCA cot (A.6.6) 

where @ = 2nl/r = wolfe. When 6 is small, cot@ = 1/6 and hence, 

eqn.(A.6.6) reduces to 

2 
Z,= ni (A.6.7) 

If a mass m (resonator) is placed at the end of the line, the 

resonant frequency can be obtained from the condition, 

Z+Z. = 0 (A.6.8) 

Thus, substituting eqns.(A.6.2) and (A.6.7) in the above equation and 

simplifying, yields the resonant frequency as 

2 Pee ley 0, = Se (A.6.9) 

Air gap as stiffness 

This requires the assumption that there is no lateral motion of 

the gas. It is therefore compressed and rarefied, thus increasing the 

restoring force on the masses and increasing the frequency. If the 

centre is a node (equivalent to an infinitely stiff termination), the 

impedance at the face of each mass will be 

oa 
Zz =- +2 (A.6.10) 

where ee = 1, is the half width of the air gap slot width of the tuning



—248— 

fork. The stiffmess can be derived from eqn.(A.6.4), as 

5 poe (4.6.11) 

In the actual design, the tuning fork was based on an aluminium 

block 4" x 1 x 1, as shown in Fig.6.1. The resonant frequency was 

about 8 kHz. If it is rather arbitrarily assumed that the mass of the 

resonator resides in two (tines) blocks of aluminium xt'x 3" and 

the stiffmess of the flexural spring is calculated to give an 8 kHz 

resonant frequency, then 2 soring = 20m Ke/sec., since Zn = Z, . 

For the tuning fork show in Fig.6.1, 

Pg, = 247 x 10° Ko/m, 9, = 163 Ke/m, C,5,, = 340 m/sec, 

4, 20.512 103m, A= 3.23x 104m, 

e 8 kHz. v=8.194x10° m, £ 

Therefore, 

Tine mass = p v = 22.123 x 10> Kee; 

Reactance of the mass = 2w m = 2224.04 Ke/sec.; 

The stiffness arising from air in the gap between the tines (masses) is 

2 
023.02... A 

Ppa “eee = 95.18 x 10° Ke/sec’. 
8



~249- 

APPENDIX A.6.2 

ELECTRONIC CIRCUITS FOR TUNING FORK RESONATOR 

A.6.2.1 “Power Amplifier 

The driving pulses of the transmitter are amplified sufficiently 

by using the power amplifier whose circuit diagram is shown in Fig.A.6.1. 

This circuit consists of two transistors T, and T, for power 
1 2 

amplification and the transistor T, generates sufficient current in the 

coil, which, acting as an electromagnet, produces a varying magnetic 

field from the transmitter output. The magnetostrictive transducer 

(line) converts the changing magnetic field into ultrasonic energy, 

which drives the resonator. 

A.6.2.2 Receiver 

The echo signal received from the resonator, on being driven by 

the transmitted burst of energy, is processed in a receiver. The 

complete circuit diagram of the receiver is shown in Fig.A.6.2. The 

transmitted burst and the transients in the signal received from the 

resonator are suppressed and the decrement signal converted into square 

pulses in the comparator, after sufficient amplification. The resonant 

frequency of tuning fork is determined by generating a gate of ten 

decrement pulses using the circuits shown in the figure and then by 

measuring the duration of this gate using the digital counter, also 

shown in the figure.
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Variable power 

supply(Positive)    
  

  
  

    
  

  

Fig-A.6.1 Circuit Diagram of the Power Amplifier.
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