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SUMMARY 

An acoustic transmission line system in which the echo returned 

from a resonator, having an arbitary spectrum of resonances has been 

analysed, The results show that the system, which is of practical 

importance because of the separation of the signal transducer and 

the resonator being studied, can be used for a variety of material 

measurements. The special case of a line resonator, which has an 

harmonic spectrum has been examined using Laplace transform technique, 

and the rigour of the solution is established by specific experimental 

tests. The approximations of classical accoustical theory which 

assumes a lumped rather than a distributed resonator and expresses 

material loss as a 'Q' factor have been reconciled to this exact theory. 

Contour vibrations of disk resonators were investigated and the 

results are compared with recent numerical solutions from theory. A 

variety of specimens in disk form were used to determine elastic 

constants and their temperature coefficients with high precision. 

The extension of the disk theory to cover anisotropic materials has 

been considered. 

The disk theory has been extended to include a second boundary - 

a concentric hole - and numerical solutions obtained. Results are 

in agreement with the well-established thin ring spectrum for large 

holes and disk theory for small holes, Experiments on the full range 

of hole sizes verify the results to the limit of experimental error. 

The theory for the line resonator was extended to show that it 

is a convenient resonator form for Internal Friction measurement. The 

material Q of a pure copper rod was measured over a wide temperature
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range and the results are in agreement with those of other workers. 

The electronic equipment developed for the various measurements 

is described briefly and the possible methods of automation are 

discussed,
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1. GENERAL INTRODUCTION 

In radar and sonar systems the characteristics of an 

echo returned from an object depend on the transmitted signal 

and the object parameters, such as size, shape, and natural 

resonances near the transmitted frequency. A resonant object 

known as an echo box, is often used for tuning and performance 

checks on these systems. An equivalent mechanical or acoustic 

system could consist of a wire line carrying a burst of 

longitudinal plane waves of strain. This signal would echo 

up and down the line with diminishing amplitude due to 

attenuation. 

The case of such a line terminated by a resonator 

(Bell 1968) has been analysed and compared with experiment. 

The general solution obtained can be used to give the transient 

response of a resonator, having internal energy losses, and an 

arbitary spectrum of resonances, for any transmitted frequency. 

The feature which gives the system its practical importance 

is the separation of the active electrical parts of the system 

from the resonator. Thus, for example, the launcher can be 

in the cool region of a high-temperature furnace, while the 

resonator being studied is inside it.
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2. THE ECHO TECHNIQUE 

2.1 Introduction 

Fig. 2.1.1 shows the experimental arrangement for this 

investigation. The short length of magnetostrictive line 

acts as a launcher and receiver of the mechanical oscillations. 

It is matched to the line which must be sufficiently long to 

avoid overlap between the forward signal and the echo return. 

The resonator shown takes the form of a lengthof large diameter 

line, which will resonate giving antinodes at the ends. In all 

applications only the first reflection of the transmitted 

signal is looked at in detail. This will be called the "echo". 

A typical echo, shown in Fig, 2.1.2 consists essentially 

of two components; the echo-signal, and the echo-decrement. 

The echo signal is the direct return of the waves incident on 

the object, and is at the transmitted frequency. The echo 

decrement which follows, is the exponential re-radiation of the 

energy stored, and is always at the natural frequency or 

frequencies of the resonator. 

The mathematical analysis is given here in the form in 

which it was published. A more explanatory account is contained 

in Appendix A.2.2 of this thesis. 

2.2 Mathematical analysis 

Fig. 2.2.1 shows the transmission line and line resonator 

in diagrammatic form. The fact that the first reflection is of 

primary interest has been used to simplify this analysis and a 

solution for the echo alone is obtained.
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The impedance z is defined 

z = Force (F)/Displacement Velocity (U) 

This is convenient as both F and U are continuous at the 

boundary between line and resonator. 

The characteristic equation of motion for plane 

longitudinal vibrations in a rod is, 

  

Ae 2 3 
poo areas Gey 8 Done k 

2 2 2 
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This is the one dimensional form of Stokes' (Stokes 1845) 

general equation (U=U(x,t)) and is valid for small values of 

strain. The term involving H allows for losses due to 

Internal Friction in the material. The general solution of 

equation 2.2.1 in its Laplacean Transformation is, 

U(x,p) = A(p)exp(-¥x)+B(p) exp (yx) 2.252 

where y7=p?/(Hp+c2) and A(p) and B(p) are functions of p 

dependent on boundary conditions. 

In the resonator region (Lys X<1,+1,) equation 2.2.1 is 

valid. This can be expressed in the form of two coupled partial- 

differential equations. 

(Hypte,) 2 U,(x,p) 
ENGR) = So) errr mare 2.23 

13 Fy (xp) 
PA, P a x 

| U, (xp) =



The characteristic impedance is, 

A 2% 2,(p) = pA, (Hyptc,) 2.2.5 

The boundary conditions for the region (1)<x<1,+1,) are, 

F, (1,41, »p)=05 F, (1, p)=F, (1, »p)3U, (1, »p)=U (1) 5p) 

These boundary conditions and equations 2.2.2/3/4 can be 

combined, eliminating A, (p) and By (p), to give, 

Fj (1, ,p)/0, (1, 5p) = Z,(p)tanh(¥51.) 2,246 

Jean 2 2 
where y) = Pp /(Hyp + 3) 262.7 

In the line region the general solution equation 2.2.2 

becomes, 

U, (xp) = A, (p) exp (~¥,x)+B, (p) exp ( 4x) 252.8 

Suppose that at time r=0 a forcing function u, (oO, dea sing .t 

is applied at point x=0, and so, 

U,(0,p) = By eras) 2.2.9 
1 S 8 

Equations 2.2.6 and 2.2.9 are used as boundary conditions for 

equation 2.2.8. The expression for the first reflection obtained 

in this way is, 

Z,(p)-Z,(p)tanh(y,1,) aw. 
4 2 $5 expy,(x-21,) 2.2.10 

2, (p)+2,(p)tanh( y,1,) pata R(x,p) = 

Yy and Z have expressions of similar form to those for 

Yo and 25° 

In equation 2.2.10 the term expy,(x-21 ) contributes a branch point Py 1 
: 2 at point p =-Cj/H,. In general Cade, is a very large number,



and thus the branch point gives two significant effects 

when the Laplacean Inversion of R(x,p) is undertaken, 

(For more detail see Appendix A.2.2), First, an attenuation 

of the whole echo. Secondly, a time delay of-(x-21,)/C, for 

the whole echo. The time delay can be seen simply in the case 

of a lossless line by putting H,=0 into equation 2.2.10. 

Neither of these effects are relevant in the practical case, 

and a new function R' is therefore defined, 

ogee 
rE 2 plas +u, 

s is the new Laplacean operator for t and T-t=21)/C). The 

echo signal begins at t=0. This completely general expression 

can be reduced to that obtained by the conventional analysis 

of a line terminated by a lumped-parameter resonator, if only 

one dominant pole is considered. It will be noted that in 

equation 2.2.11 the observation point for the echo has been 

taken at x=0 

The positions of the poles and zeros of R'(s) will be found 

enabling it to be represented in the s-plane. The function 

R'(0,s) splits conveniently into two parts; the transfer function 

of the system, and the forcing function applied to it. The 

transfer function [z,(s)-2,(s)tanh(y,1,)| / [2,(s)42,(s)tanh(y1,)] 

has poles at points where Z,(s)+2Z,(s)tanh(y,1,)=0. 

This condition leads to the result, 

2y1, = 1 (r) Je2el2



where r=(Z,(s)-2,(s))/(2,(s)+2,(s)) 

rt is the reflection coefficient due to the junction mismatch 

at x=1,- 

2 2 * 
However, HE<Cy3 H)<<Cy, and in general, 

=(p)C)Ay- 0,C,A,)/@ @phgte yy) 2.2.13 

So letting ln(r)= -k+j@ gives, 

O-<2nx where n-0, £1, +2, ete. and k=In(1/z). 

The subsequent solutions for poles in the s-plane resulting 

from equation 2.2.12 are 

2 a 
s= -n anprine, 2.2.14 

2 2 ES 2 ee 
where a=(H)™)/(215)3 B =(kC))/(21,)3 @)=(C,™)/1, 

Similarly, solutions for the zeros are given by, 

= er a+Bp + jno, 2.2.15 

A typical s-plane diagram is shown in Fig. 2.2.2. 

The imaginary (or frequency) ordinates of s, n), give 

the resonant mode frequencies of the resonator. The real 

ordinates are combinations of a and ®. It will be shown later 

that, g is related to the Q value for coupling between line 

and resonator, and q is related to the Q of the resonator 

material. 

The Laplacean inversion of equation 2.2.11 can now be 

undertaken by contour integration in the s-plane, to give a 

function R'(0,t). However in practice a short burst of 

oscillations is transmitted and so the forcing function ‘becomes 

2 25 4te ai F = wee ayw/(s ws) [i exp( st)| 2,246 

where T=2RP y/o and Py is the number of oscillations in the



burst. In this case the solution of equation 2.2.11 gives 

the Echo, 

E=R'(0,t) = h(t-T)R'(0,t-T) Ve2s17 

A eyeical echo, where the transmitted frequency is a 

resonant frequency is shown in Fig. 2.4.1(a). 

Some approximations have been made to obtain this solution. 

However the present practical applicationslie within the 

following limits: 

(1) Oscillations to crossover, Py greater than 5. 

(2) Natural resonant frequency, fie greater than IkHz. 

The experimental techniques below this value have not yet 

been developed. 

(3) Material losses within the condition 5g> me a 

These restrictions can be used to examine the approximations 

made so far. The worst possible error would occur with the 

resonator tightly coupled at a low resonant frequency with high 

material losses. In this case the error would effect vectors 

in the s-plane diagram by approximately 1:10° in their modulus 

and 0.005 degrees of arc in their angle. For any practical 

system these approximations are entirely negligible. The dominant 

pole approximation referred to in section 2.3 has an effect which 

is a factor of 10° greater. 

2.3 Dominant pole approximation 

An approximation of this kind is possible because of the 

distribution of poles along the imaginary axis. Consider the 

s-plane diagram shown in Fig. 2.3.1. m will be used to 

indicate a general resonant mode (e.g. for fundamental m=1). 

In this case equation 2.2.11 becomes



aR 

aw, (s-gtm@atj ya) (set aj a) 
  R'(0,s) = ee ; Dade 
(stja,)(s-jo,) (stetmatjo,) (stgtm”o-jo,) 

This expression is inverted by summing the residues from 

the poles. For example, the residue from the pole at 

24 ; 
s = -8-m atje, is, 

2a BW (B-j y,) (exp(-g-m” a)t) (expj®,t) 
  

ja (84m? oe j (w +0_)) (gtm@ 9-5 (w_-@,)) ss 
J°n oJ m s sigs m os 

The residues from the four poles are summed to give, 

R'(0,t) =a   

rina 6 Dewan] ve3. 3 

where ©, = 0 +0, -90, - 0; 3 5 2 43 oe + 0,- 9. 
2 3) 1 

Oe -1 v,=(@402)? ; 0 stan (o/s) 

[arma +o, +0,)?] 4 ; estan |, to,)/ 4m a) |   

2 

V3= {Kc Bin’a)?+(0, -0.)7] 5 ; @,-tan [@,- 0) Het )] 

va [6 -m?q)?4(0, 40,)7]* 5 @,-tan™* (w,40,)/(8-m ) J 
Ve= [« g-m-a) co 0, )7| * ; @.=tan” [(o,-9,)/@ ant )] 

The function has been expressed in this form because aspects 

of its structure can be visualised by examination of individual 

terms. However, the combined effect is illustrated here by 

computer plots of the echo traces. Useful expressions can be 

derived for oscillations to crossover, and steady state echo 

signal amplitude, at resonance (i.e. @ =.) 

The crossover point is defined when the amplitude=0. 

Let this occur at t=t..



Then t, = [a/( atmo) ] 1n(2 @/(g-m7q)) 2.3.4 

by neglecting Bim? q compared with 20, + So oscillations to 

crossover=frequency x t.. 

Therefore P,, =o, /2™ atm” ajjin(2p/( gem”, )) 253.5 

Also at resonance (a,=0,) the amplitude of the envelope 

of the echo-signal is given by, 

E= [a/( atm”a)] [=a4m”agt2 gexp (-g-m’, )t] 2.3.6 

The initial amplitude at t=0 is, EQ=a- This checks with the 

physical situation, because the resonator initially represents 

a clamped termination (high impedance). 

As t approaches infinity the echo-signal approaches its 

steady-state amplitude E. = -a(g-m%)/(g+m% ), the minus sign 

indicating the reverse phase occurring at the crossover. 

Hence E/E, = = (gm? 4)/(g4m",) 2s3e7 

It is convenient to relate the Q notation of simple theory 

to the terms % and 8. In most textbooks (Kolsky,1963) the 

following definition is observed 

Q = (Energy Stored)/(Energy lost per radian) 2.3.8 

Three Q values are related to the resonator. 

orn is coupling Q for mode m 

via is material Q for mode m 

nm is total Q for modem 

Using equation 2.3.8., the following expression results, with 

the normal approximation implicit in the use of Q. 

Greet wf 2¢B+ a 2.3.9



a1 = 

In the lossless case when & = 0, Qaim is due only to reradiation 

back down the line, so Quen =O 
Cm” 

Therefore, Coes wo /2 8 253.10 

Q. = 4 /2mn 2,311 
‘Mm m’ ae 

2.4 Comparison with experiment 

Fig.2.4.1(b) shows an oscilloscope trace for the fundamental 

mode of an aluminium line resonator. The standard techniques of 

the magnetostrictive delay line were used. The transmission line 

was 10 metres of 18 gauge piano-wire. The magnetostrictive 

material used was permandurewhich was brazed onto the end of 

the line. The short coil was 500 turns of thin copper wire, 

wound on a thin former. Table 2.4.2 shows the calculation of 

data for the plot of Fig.2.4.1(a). 

The envelope of the echo-signal component is exponential 

having the same time constant as the envelope of the echo-decrement. 

The phase of the echo-signal component reverses as it goes through 

the null value and the amplitude rises to steady-state unity, when 

all the incident signal is reflected, and the junction of resonator 

and line is an antinode. The initial amplitude is determined by 

the reflection coefficient,r. The effect of detuning (see Fig. 

2.4.3) is an initial loss of the null and a subsequent fall in the 

energy stored, resulting in a decrease of the echo-decrement 

amplitude. With still further detuning the echo-decrement 

disappears, and the echo becomes an image of the incident signal.
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2.5 The line resonator 

The line resonator has a harmonic spectrum of resonances, so 

that om For a higher order mode (say m=3) a stepped 

envelope to the echo is observed as predicted by the theory of 

section 2.2. An oscilloscope trace for the aluminium resonator 

is shown in Fig. 2.5.1. The amplitude steps at every third 

oscillation, as this is the transit time for a return signal 

in the resonator, which is now 3(/2) long. 

However the dominant pole approximation of section 2.3 

removes this feature from the theory, as does normal acoustic 

analysis, making the envelope a pure exponential. This has 

little significance for most applications, but it illustrates 

the precision of the theory derived in section 2.2. 

A computer program was written to compute the echo-signal 

for mode m=3 but to include residues from poles up to 

n= tho; that is to include poles up to Fhow, on the j-axis 

of the s-plane. The resultant computed echo-signal was an 

exact replica, showing the stepped form obtained in practice. 

The fundamental, of course, is also stepped having a step 

each cycle. For the first cycle the amplitude is constant 

being ra. The dominant pole approximation gives an amplitude 

starting at, a, and dropping to ra over the first cycle. 

The computer program referred to above is a good critical 

test of the general validity of the theory. However, for many 

applications the dominant pole approximation is adequate. 

The line resonator is frequently used in experiments. Wha 

establishing an experiment, parameters such as line diameter
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and frequency are chosen to give the desired coupling. 

Fig. 2.5.2 gives a graph relating these paramters for 

easy reference. Bell, Noble, Seth 1973 also published a 

chart of acoustic data to be used for selecting suitable 

materials for particular applications. 

2.6 Resonators with anharmonic spectra 

In general, an arbitarily shaped resonator will have an 

anharmonic spectrum of resonances. For some modes the dominant 

pole approximation may not be applicable if these modes occur 

close to each other in frequency. Any number of interacting 

modes can be analysed by considering the appropriate s-plane 

diagram. However for practical applications a knowledge of 

the result of two interacting lossless resonances is sufficient. 

The s-plane diagram of Fig. 2.6.1 represents this situation. 

Again a computer was used to evaluate the residues so that for 

particular input data the echo could be plotted. A typical 

result is shown in Fig. 2.6.2. See also section 3.3. 

If the relation between stored energy in the resonator and 

amplitude of vibration at the coupling point is known, the 

coupling Q's can be calculated. Successive computer plots of 

a particular situation allows the exact resonant frequencies 

to be determined. 

2.7 Experimental apparatus 

A schematic diagram of the experimental apparatus is shown 

in Fig. 2.1.1. In general the coil is positioned so that’ the 

backwards travelling signal is reflected to reinforce the signal 

travelling towards the resonator.
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The acoustic bandwidth is determined by considering the 

situation in Fig. 2.7.1(a). There is a phase reversal at the 

free end, so the reflected wave will lag the forward wave by 

an angle (x+26) where @=2n1/),=2nlf/c. The waves reinforce 

when this angle is 2nm; (n=1,2,3,etc) i.e.@ =n/2, 3n/2, 5x/2 etc. 

Fig. 2.7.1(b) shows a phase angle diagram. The 3db points for 

the first reinforcement (n=l) are at 9=%/4 and 9=3n/4, giving 

a bandwidth of frequency ratio 3. Similarly the second 

reinforcement (n=2) gives a frequency ratio of only 1.4. 

Reinforcements with higher values of n give correspondingly 

narrower bandwidths. In practice the coil is positioned for the 

first reinforcement to take advantage of the high bandwidth. In 

many experiments subsequent re-adjustment of the coil is 

unnecessary. 

The electrical pick-up system is of high bandwidth (low Q) 

and is tuned by means of the decade capacitor. Johnson 1971 

investigated the response, showing that there is negligible 

effect on the phase and frequency properties of the echo. 

Permandure was found to be a most efficient magnetostrictive 

material. For further information on this topic see Bozorth 1951. 

Figs. 2.7.2/3 show photographs of the experimental apparatus 

used by the author. 

2.8 Application 

This echo technique was initially applied to temperature 

measurement (Bell 1968). Probes have been designed and used to 

measure temperatures in nuclear reactors, liquid metals, and gas 

flames (Seth 1974).



muique 

More recently the method has been applied to: 

(1) the measurement of elastic constants (Section 3.4 of this 

thesis) 

(2) the measurement of internal friction in solids (Pelmore 1974) 

(3) the investigation of resonant modes in many structures 

(4) the investigation of fluid properties; in particular, density, 

viscosity and pressure
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Fig.2.1.1 The bias produced by the magnet is necessary because 

of the quadratic nature of the magnetostrictive effect. 
The line must be long enough to accommodate the 

oscillation burst without producing standing waves. 
Particular forms of resonator are chosen for particular 
applications. 

RESONATOR 
REGION (2) 

LINE REGION (1)   

  

    

Fig.2.2.1 The analysis is accomplished by considering the line 
region (0< x <1,) and the resonator region 
(1< x <l, + 1, ) as boundary value problems. 
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————- ECHO SIGNAL ><— ECHO DECREMENT —————————_>- 

    

  

Rig. 25152 

The two components of the echo are shown; the echo 

signal which has the same duration as the transmitted 
burst, and the echo decrement which is the re-radiation 
of the energy stored.



Fig.2.2.2 

Fig.2.3.1 
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This diagram has unequal scale factors. In general 

the imaginary ordinate of a pole will be greater than 
fifty times the real ordinate. A ratio of fifty 
will be shown later to give about five oscillations 
to the crossover point. All s-plane diagrams in 
this thesis are shown with unequal scales for clarity. 

  

In this diagram for the dominant pole approximation, 
other poles of the system are neglected. The 
typical error produced is 1% because of the small 
distance separating the poles of the system and the 

poles of the forcing function.
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Fig. 2.4.1(a) 

Resultant computer plot for the aluminium line resonator 
using the data calculated in Table 2.4.2. 

A aa 

  

Fig.2.4.1(b) 

Oscilloscope trace of the actual aluminium line resonator 
in its lowest mode. 

The resonator is lossless, consequently the steady-state 

echo-signal is equal to the initial signal, and the decrement 
begins at twice this value. The equality of the exponential 

rise and fall is apparent. The stepped nature of the echo 
appears with the higher order resonances (see Fig.2.5.1).
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Line/resonator measured A,/A, = 0.0128 
cross-sectional 
area ratio 

a ee known data 01 Sy! 0 99 ~2-88 
pc resonator 

Longitudinal 

velocity in known data e * 5240 m/s 
resonator 

Resonator length measured 1, +59. 9 em 

Fundamental natural a 
resonant frequency oe con/1, a = 2x 26500 s 

“Pye Ay 
ae 

ere 
Reflection coefficient: | = ————— — £50.93 

0c, A 
1 tele 

e cy A en 

Factor k k= log.r k = 0.076 

Ordinate g B= ike,/2U, 8 = 20008" 

aoe 2-1 
Loss coefficient known data Hy =O ms 

Ordinate a a= 4/21," a=os7           

Fig.2.4.2 This table shows the calculation process from first 
principles for the aluminium line resonator using 
the basic acoustical data. The resulting values for 
a, B , and w, were used to obtain the computer plot 

of Fig.2.4.1(a)



- 20 - 

    
  
  

The echo is shown with successive amounts of detuning 
which cause a rapid fall in the energy stored, shown 

by the fall in the decrement amplitude. The -modulation 

of the echo signal indicates the beat frequency difference 

between the transmitted signal frequency and the resonant 

frequency.
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Fig. 225-1 

Oscilloscope photograph showing the stepped nature of 
the echo for mode m =3 of the aluminium line resonator. 
The steps correspond to the transit time for a return 

signal in the resonator.
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pc line 
pe resonator Pag. Pee aL 5: 

    20 
diameter resonator 

Figs 22502 ~-diameter line 

This graph is useful for choosing a line size 
in order to give a desirable coupling Q for a 

particular experiment. P, is the number of 
oscillations to crossover for the fundamental 
(m= 1). For overtones P_ = mPy so long as the 
material is lossless.
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Fig. 2.6.1 

This is the diagram for a coupled resonance 
involving two lossless resonant modes.



  

Fig.2.6.2 
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Echo return showing the effect of two coupled 
resonant modes as in Fig.2.6.1. The frequency 
separation of the modes is 5% and the coupling 
is the same for both, The transmitted frequency 
is tuned to one of the modes.
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Fig.2.7.1(a) 

The total forward travelling wave is the sum 
of the reflected and forward waves shown here. 

OdB 
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Fig.2.7.1(b) 

This vector diagram shows the relation between @ 

and the 3 dB points and hence defines the bandwidth.
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Fig.2.7.2 

This photograph shows the burst generator, the 
tuning capacitor and the frequency meter used 
in the laboratory.



 



Fig.2.7.3 
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A typical launching coil and bias magnet are shown 
here. A range of coils of various lengths allows 
optimum performance to be achieved at the frequencies 
being used. To achieve maximum electroacoustic 
coupling the coil must be close to the magnetostrictive 
material, so a range of various diameter coils was 

available.
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3. DISK RESONATORS 

3.1 Introduction 

The complex pattern of vibrations in disks and plates has 

been known and studied for about two centuries. Their analysis 

has been attempted by many mathematicians, and while the differential 

equations are readily derived, the boundary conditions can make 

certain solutions extremely difficult. 

Here, thin disks with planar isotropy in particular are 

considered. There are two basic types of vibration, flexural 

(Chladni 1787, Ravenhall 1973), and contour extensional (in plane) 

modes. The latter, until comparatively recently have not been 

seriously considered for two principal reasons. First, the solution 

of the frequency equations without the help of a digital computer 

would have been a formidable task. Secondly there was no convenient 

method to excite these modes. In fact Love 1927 concluded, "these 

modes of vibration seem not to be of sufficient physical importance 

to make it worth while to attempt to calculate the roots numerically". 

With the general availability of highly active ferroelectric ceramics, 

the latter difficulty was removed and Onoe 1956 derived solutions 

for certain cases. Holland 1966, making extensive use of digital 

computers, completed the solutions for the difficult compound modes. 

The contour extensional modes themselves subdivide into 

three groups:- 

(1) Radial Modes characterised by the absence of rotation. In 

these modes §, vanishes and is independent of 6. 

(2) Tangential Modes characterised by the absence of areal 

dilatation. In these modes & .vanishes and £, is independent 

of 8,



m= 29S 

(3) Compound modesin which neither nor ee vanish. 

Frequency equations for these three groups of vibrational 

modes are given by Love 1927. The essence of Love's derivation 

of these equations is given in Appendix A.3.1. The equations 

can be rewritten in the following form. 

(1) Radial modes frequency equation 

M (Kip) = l-o Se 

(2) Tangential modes frequency equation 

M (Kp) =2 3.1.2 

(3) Compound modes. The frequency equation is formed by 

eliminating A/B. 

F Ty ( Kan) n(M_@K, a7 (atl) 
cia “ aus 

n* m,n 45( Ka yn) on(ntl)4M, (Ki, ) 

2 
A ql J, OK, n) 2M OK, ntl K, nD -2n(n+1) rat 

B J, jn) an(M (Kg) (ntL)) 

K is a normalised dilatational wave number, 

ee) K = ha = @a(p (1-9° )/E) Beled) 

Sis the ratio of shear and dilatational wave numbers. 

9 =k/h = (2/(1-9))% 3.1.6 

and M(A) = AJ, (1)/J,@) Bale? 

A brief explanation of the subscripts of K is in order 

here. For radial modes the integer mis the number of nodal 

circles associated with any particular mode. The centre point is 

always a node (i.e. a circle with zero radius). For tangential 

modes m is the number of nodal circles but now the centre is 

never a node.
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The compound modes are described by two integers m and n. 

m is again the number of nodal circles. n is the number of 

nodal diameters. The centre is always a nodal point except when 

n=1. 

From the tabulated values of K, resonant frequencies can 

be found from the equation, K = w ap (1-07) x] *. 

Onoe 1956 solved the lower order modes publishing his 

results in the form of a small graph. Hollari 1966 published 

tabulated values of Noe for many modes extending to higher 

orders. He produced these for poissons ratio between 0.25 and 

0.50 in intervals of 0.05. For much of the current work this 

documentation is not comprehensive enough, so Ambati 1973 produced 

K values for poissons ratio from 0.00 to 0.50 in intervals of 0.01. 

All modes that are easily excited by the delay-line method of 

section 2 were included. These tables have been extended to 

Poisson's Ratio values up to 1.00 and are available from the author. 

3.2 Comparison with experiment 

The apparatus for all disk experiments was as described in 

section 2.7; in this case the resonator was a disk. To excite the 

contour extensional modes the transmission line was coupled radially 

into the disk. Thermally setting epoxy resin proved an adequate 

adhesive for this purpose. The electrical drive was provided by 

the burst generator of section 6.3. 

Tests were carried out on a variety of disks and the results 

are shown in Table 3.2.1. The agreement between measured .and 

calculated frequencies is extremely good. Thickness to diameter 

ratios were kept to about 20, and the close agreement establishes 

that any thickness correction is unnecessary. The results would 

indicate that manual tuning gives a frequency, accurate to 0.05



per cent. 

The ability to drive disks of any material is an important 

feature of this method and it enables very precise measurements 

of elastic constants, of a variety of materials, over a wide 

temperature range to be determined. Disks need only be isotropic 

in-plane so this allows measurements on orthotropic materials. 

Making Q high improves the sensitivity of adjusting to 

resonance and still further reduces the effect of the selectivity 

of the transducer. These high values of ae and hence Pw require 

the use of long lines, sometimes up to 20 metres in length. 

Typical oscilloscope traces are shown in Fig. 3.2.2. 

3.3 Multiple Resonances 

The case of two interacting resonances was considered in 

section 2.6. This sometimes occurs with disks, in particular 

with modes (1,R) and (1,3) in Aluminium or Steel. Figs. 3.3.1 

and 3.3.2 show photographs and corresponding computer plots for 

Aluminium and Steel disks. Computer plotting would allow the 

true resonant frequencies to be inferred. However for the 

measurements made in this report other more convenient modes were 

available so a detailed investigation of these coupled modes 

was not pursued. 

3.4 Measurement of Elastic Constants 

Traditionally elastic constants are measured by observing 

longitudinal and shear wave velocities in a specimen (Love 1927, 

Tzannes 1966), normally using a pulse technique. A consideration 

of disk resonators has led to alternative methods for piezoelectric 

materials (McMahon 1963, Meitzler 1973).
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The method described here has greater accuracy than a 

pulse technique, and uses the phase technique described in 

section 3.2. Employing the system of excitation described, the 

method becomes applicable to all materials rather than 

piezoelectrics hitherto. 

For the tests carried out, Poissons Ratio was measured 

at room temperature and above. A photograph of the furnace 

assembly is shown in Fig. 3.4.1. The gas supplied to the furnace 

tube was argon, flowing into the bottom at a slow rate. A 

Chromel-Alumel thermocouple was situated close to the disk for 

temperature measurement. The furnace itself could be raised and 

lowered over the tube. The disk was attached to the line with a 

high-temperature adhesive, "Autostick". 

The compound modes having nodal diameters all have similar 

dependence on Poissons Ratio (see Fig. 3.4.2). The pure radial 

modes (1,R) and (2,R) and the mode (2,1) which has only one nodal 

diameter have a completely different dependence and comparison of 

these modes with the adjacent compound modes gives Poisson's Ratio 

with good sensitivity. In practice mode (1,R) is compared with 

(1,3),7(2,1) with (1,5) and (2,R) with (1,8) or (1,9). For this 

reason Ambati 1973 tabulated 

Riatsia Sous) Soni is Kor *i9 
> ’ » and 

ig Kis Kor 2R 

all against Poisson's Ratio. Table 3.4.3 gives these results which 

are also shown graphically in Fig. 3.4.4. 

Comprehensive tests were carried out on two specimen disks. 

One was high-conductivity copper, cut from sheet, with a 99.98% 

purity. The other was E1C aluminium sliced from bar with the 

following composition:~-



AL Cu Mg Si Fe Mn 

99.0 O11 - DesenO. 7, 0.1 

Both disks were made 35 mm in diameter. This meant that modes 

(2,1) and (1,5) were the most convenient because (1,8), (1,9) 

and (2,R) would have been rather high in frequency. 

Two temperature runs were performed on each specimen, so 

that any annealing effects would take place on the first run. The 

furnace was set to a constant power and values of fs > fo and 

thermocouple millivolts were taken at equal intervals of time. Each 

experiment was terminated when W became equal to > for after this 

point manual tuning becomes less accurate. The raw data from these 

four experiments is plotted out in Figs. 3.4.5/6/7/8. After these 

heating runs a further calibration run was performed for both 

specimens. For this calibration, a furnace controller was used so 

that isothermal conditions could be established. 

Readings of fv a and thermocouple mV were taken so that 

the disk could be regarded as its own thermometer for the previous 

experiments (Bell 1968, Seth 1973). 

In processing this raw data, computer least-squares curve 

fitting is extensively used. (see Appendix A.3.4.) 

Polynomials are fitted directly to the observed values of 

fo SiG and mV, time being the independent variable. Where 

apparent singularities appear the curve is split into sections for 

the curve fitting process. The resultant polynomials are then used 

f.,)/£,. and mV at selected intervals:of time. The 
Zi 15-15 

temperature readings are cross checked by using the disk as its own 

to calculate (f 

thermometer via the calibration curves. To find Poisson's Ratio a 

polynomial is fitted locally to the data from Table 3.4.3; in this



Sh 

case for o from 0.32 to 0.39 (a cubic curve gave a perfect fit). 

Hence pairs of values for Poisson's Ratio and temperature are 

obtained. 

Th ived = e derived curves of (f,, £15)/fi5 

Figs. 3.4.9/10/11/12, together with the resultant curves for 

are shown in 

Poisson's Ratio against temperature. 

3.5 Discussion of results 

Assuming an overall accuracy of frequency measurement of 

0.05% (that is ts0tz for the 35 mm disks) gives Poisson's Ratio 

to an accuracy of 0.0015. However for a particular specimen the 

frequency tuning sensitivity is about thonz so changes in 

Poisson's Ratio of 0.0003 can be detected (with larger disks 

giving 75 around 50KHz a frequency sensitivity of tine can be 

obtained). 

After the initial annealing runs on each specimen, the second 

runs can be used to give the temperature coefficient of Poisson's 

Ratio. The change in Poisson's Ratio for the aluminium disk 

was largeand the curve permits the curvature to be detected. 

3.6 Possible extension to anisotropic disks 

The effect of anisotropy is to split one of the disk modes of 

section 3.1 into two or more. A simulated anisotropic disk was made by 

machining the faces of a steel disk to be non-parallel. On this specimen 

the mode splitting was clearly observed by coupling at a series of 

different positions on the circumference. A mathematical investigation 

of anisotropic disks would require the derivation of new equations of 

motion from first principals. It would facilitate an important 

extension of the work in that anisotropic elastic constants and 

elastic anisotropy could be investigated. The method would then be 

applicable to disks cut at various angles from single crystals and



also to disks constructed from laminated carbon fibres. 

At the present time this work has not been pursued.
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Frequencies in KHz 

RESONANT Mild Steel Disk Aluminium Disk 
MODE 7.5 emdia, o =0.29] 7.5 cmdia. 9 = 0.34 

measured calculated measured calculated 

ir 71.30 71.3 67.18 67.1 

1,R 46.27 46.3 47.35 47.1 

251 80.14 9.7 79.66 79.7 

Tiel. 36.71 36.6 36.24 36.0 

1s 31.83 31.3 30.54 30.6 

53 48.65 48.1 47.35 47.0 

1,4 63.41 62.6 61.39 6173) 

135 11.35 76.2 74.33 74.8 

1,6 90.98 89.5 87.72 87.6 

Ld 103.27 102.5 100.62 100.3 

1,8 116.25 HE5 22 112.94 LI2—8 

159) 129.46 127.2 124.55 WSs 2. 

Quartz Disk Glass Disk 
5 cmdia. o = 0.16 9 em dia _o = 0.25 

measured calculated measured calculated i 

I3t 124.8 124.7 | asses 60.8 

isk T3253: 73.4 39.82 39.0 

Zak 131.96 128.3 69.579 69.5 

ty 63.15 63.3 32.61 S259 

Le 56.48 55.9 28.40 28.5 

135 86.78 86.6 43.45 43.6 

1,4 112.09 112.0 56.51 56.7 

15 135.40 135.9 68.75 68.8 

136 159.80 160.2 80.59 80.7 

Lf 183.0 182.5 92.20 92.3 

1,8 200.9 204.8 103.68 103.6 

1,9 | ----= 227d 115.06 aa S 1 

Table.37221 

This table shows the close agreement between calculated 
and experimentally measured frequencies. _ The values 
of o used in the calculations are recognised values 
for these materials (Kaye/Laby 1958).
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Fig.3.2.2(a) The 
echo for mode (1,1) 
of a 1.5 inch 
diameter aluminium 
disk shown here is 
a typical echo as 
described in Section 
2.4. 

Fig.3.2.2(b) The echo 
for mode (1,4) of the 
same disk shows a 
stepped envelope 
suggesting that the 
wave travels 
circumferentially 
in the disk (see 
Section 2.5). 

Fig.3.2.2(c) The echo 
for mode (1,5) of the 
same disk.
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Fig.3.3.2 

The oscilloscope trace was from a mild steel disk for the 
modes (1,3) and (1,R). The computer plot was obtained 
with a 10% frequency separation between the two resonant 
modes. The signal frequency was equal to that of one mode 
with Q = 210. The other mode had Q. = 1a5e



Fig.3.4.1 

This furnace rig was constructed by J.M. Pelmore. 

The element moves up over the silica tube and is 
capable of 1000° C maximum temperature. The 
transmission line fits through a rubber bung at the 
top, and small brackets keep the line and resonator 
in place inside the tube. A thermocouple outside 
the tube but 
a signal for 
thermocouple 
the specimen 
argon can be 

inside the heater was used to supply 
the furnace controller. A second 
inside the tube was used to measure 
temperature. The pipes supplying the 

clearly seen in the photograph.
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These are graphs of the data from Ambati 

1973. The differing trends of the K 
parameters for radial and distortional modes 
are the basis for a measurment of Poissons 

Ratio. 
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Poiss-|100(K,, - Ky) |100(Ky, ~ K,,) |100(K,, - K,,) |100(K,, - Ky 
ons 

Peto 3 Kis Kor Kor 
0.00 =26.552 -9.568 9.705 21.601 
0.01 -25.933 -9.197 9.328 201.213 
0.02 -25.309 8.876 -8.950 -20.798 

0.03 224674 8.545 8.556 20.361 
0.04 24.032 -8.203 8.147 -19.906 

0.05 23.382 -7.851 -7.728 -19.450 
0.06 =22.,726 -7.486 Byatt. -18.995 
0.07 -22.057 -7.110 6.879 18.522 
0.08 21.383 6.724 M6433 -18.015 
0.09 20.699 6.325 -5.975 17.505 
0.10 20.003 -5.916 25.516 -16.995 
0.11 19.305 -5.496 5.051 16.484 

0.12 -18.596 5.065 4.575 -15.968 
0.13 -17.877 4.622 4.083 15.459 
0.14 +17.146 4.169 -3.589 14.922 
0.15 -16.400 -3.706 3.086 +14 .365 
0.16 -15.650 23 230 -2,583 -13.784 
0.17 -14..888 -2.744 2.064 -13.202 
0.18 “14.115 2.246 ei.531 -12.621 
0.19 Fis aa1 21,737 -0.998 -12.033 
0.20 217 5531 21,218 Boas -11.440 
0.21 244,722 0.687 40.096 -10.834 
0.22 -10.901 -0.148 40.652 10.247 
0.23 10.067 0.401 1.218 - 9.633 
0.24 - 9.219 0.962 1.788 - 9.003 
0.25 - 8.357 Get 2.364 £76. 356 
0.26 - 7.481 2.109 2.952 - 7.689 
0.27 2r6 592 2.695 3.550 ~ 7.033 
0.28 - 5.688 3.288 4.154 = 6.368 
0.29 ia 765 3.888 4.762 - 5.700 
0.30 - 3.824 4.492 5.378 ~ 5.032 
0.31 - 2.868 5.100 6.004 0353 
0.32 - 1.895 5.710 6.636 - 3.645 

0.33 - 0.903 6.319 7.281 - 2.938 
0.34 0.108 6.924 7.925 21225 
0.35 1.137 7.523 8.578 - 1.508 
0.36 2.188 8.111 91242 BroT74 
0.37 3.261 8.686 9.918 - 0.023 
0.38 4.357 9.243 10.598 0.726 

0.39 5.470 9.778 11.278 a7 
0.40 6.615 10.285 11.973 2.240 
0.41 7.784 10.762 12.680 3.036 
0.42 8.979 11.141 13.391 3.830 
0.43 10.201 11.612 14.110 4.622 
0.44 11.451 11.981 14.833 5.417 

0.45 12.733 12.314 15.566 6.221 
0.46 14.048 12.610 16.313 7.064 

0.47 15.393 12.872 17.069 7.897 
0.48 16.773 13.103 17.832 8.740 
0.49 18.190 13.304 18.599 9.583 
0.50 19.644 13.480 19.375 10.434 

TABLE 3.4.3 
By considering these ratios the constant of proportionality between 
K and frequency cancels and Poissons Ratio can be determined by 
experimentally measuring two frequencies. (See Fig. 3.4.4).
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These graphs indicate the sensitivity of the three 

methods. If R is the ratio of two frequencies then 

  
a measure of the sensitivity is |1 dR]. Using 

R do 
this criterion the sensitivities for Kip/ki3> Kyy/Ky5> 

Ky g/Kops and Kig/Kop respectively are 1.0, 0.6, 0.65, 

and 0.65 for o= 0.3. i
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Fig. 3.4.9 

Resultant curves from first test on copper. A curve of 

Youngs Modulus can be derived by measuring the diameter 

and density of the disk and using equation 3.1.5.
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Fig.3.4.10 

Resultant curves from second test on copper. 
Defining the temperature coefficient as do/dT 5 
(where T is temperature) gives dg/dT = 5.6 x 10°/°c 
over the range 250° C to 500° c.
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Fig.3.4.11 

Resultant curves from first test on aluminiym, 
Temperature coefficient d o/dT = 11.0 x 107°/°c.
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Fig.3.4.12 

Resultant curves from second test on aluminium. 
Temperature coefficient, dg/dT = 11.5 x 10-5/%c. 
The temperature coefficient given is an average 

over the range of the graph. However the data 

was good enough here to allow the curvature to be 

taken from this graph. d o/dT varies from 
7.5 x 107?/°C to 15.5 x 1079/°C over the range 
150 °C £0) 250°C.



4. DISK/RING RESONATORS 

4.1 Introduction 

The vibrations of thin rings, both in the plane of the ring 

and perpendicular to it are readily analysible and have been 

studied by many authors (Love 1927, Timoshenko 1959). This 

work deals with the inplane vibrations. Buckens (1950) takes 

into account shear stresses but the resulting theory is difficult 

to apply, and approximations in the theory become invalid when 

the relative radial thickness is large. 

A study of Hollands analysis (Appendix A,.3.1) of disks 

indicated that the general case of the ring, though of greatly 

increased complexity as it involves a second boundary, was 

soluable within the limits of algebraic effort, and computational 

cost, The resulting theoretical values are applicable to rings 

with rectangular cross-section where the ratio of out-of-plane 

thickness to wavelength is small. 

4.2 Existing Theory 

The frequency equations for the thin ring are easily 

derived by considering an elemental portion. Here it is 

sufficient to quote the results obtained by Love 1927. The 

frequency equation for the simple radial mode is, 

en Ee Goan 
p 

where ay is the mean radius of the ring. 

The frequency equation for other modes of vibration in the plane 

of the ring is,



=53 = 

2. 5 oe none) 
p 4 

wo = 
ay n?41 

where K is the radius of gyration of the cross-sectional area, 

and n = 2,3,4 etc. 

The modes will be referred to by the notation used for 

disks so that the simple radial mode (equation 4.2.1) is (1,R) 

and the modes of equation 4.2.2 are (1,2), (1,3), (1,4) etc. 

Clearly all disk modes of type (2,n), (3,n) etc. and of type 

(1,T), (2,T) etc. which have nodal circules, approach infinite 

frequency for the thin ring. Fig. 4.2.1 shows calculated 

frequencies for a steel ring. 

4.2 Analysis of Disk with Central Hole 

The derivation from first principles is given in Appendix 

A.3.1 obtaining the general solutions, A.3.1.28 and A,3.1.29 

repeated here. 

A= [AjJ,, (he) + AgY,, (hr) ] cosnécosat ae 

[Ag3,, (kr) + Aya, (kr)] sin ndcoswt 4.3.2 

However the boundary conditions for a disk of radius a, 

with a central hole radius b, are now as follows 

He Gv atr=a 4.3.3 

To ies 0 at r=b 4.3.4 
tt 

T =0 tres 4.3.5 = a a 

Toes at r=b 4.3.6 

The equations for the stress resultants (A.3.1.18, A.3.1.19) 

repeated here are,



  

  

  Peper SE. [2 Fe Egan 2 ke ors 
Po (e282 9 = 280 ce 

and the equations of motion (A.3.1.30, A.3.1.31) are, 

a 2 YA oe urine a) ee) 
aE (1-0) Zag oe arate) ee 4.3.9 

2 
—) amy be 2 pu? Oro) sg ia : Eo 4.3.10 

Substituting into 4.3.9 and 4.3.10 with the general solutions 

4.3.1 and 4.3.2 gives the form for the solutions of Ey and a 

aJ_ (hr) J_(kr) 
e n n bE. E + nA     

or 14 4 

  

  

  

3 ¥ (hr) Y (kr) 
+ Als nice oP nAL 6 cosngcosyt 423.11 

J_(hr) aJ_ (kr) 
So3 es A EQ [ess eo) Ole) ge 

y, (hr) dy, (kr) | 
eS i 6 oh nA) = + AG ae sin n@ cosot 4.3.12 

For radial modes E, vanishes and = is independent ofg. This 

occurs when n=0. Equation 4.3.7 and boundary conditions 4.3.3 and 

4.3.4 give, 

o& é. a 
ee 
a4 Zo arg rs 

Bh be 21 8g 
ee a 

r=b 

i o 4.3.13 

and 

I ° 4.3.14



a5 = 

Substituting into 4.3.13 and 4.3.14 with 4.3.11 yields, 

  

  

    

    

A [a2y. (ha) 4y.(ha) | [a2s, (ha) dJ, (ha) 
3 0 G20. 0 G0 mo ete / ae ae 4.3.15 
15 Lda da 

and 

A [a2y, (nb) ay, (hb) ] [425, (nb) a3, (hb) 13 0 - 0 0 o°*0 Eee Fees —1/ capa onae 4.3.16 
15 L db db db 

Equation 4.3.15 becomes, 

Aas fay, (ha) a atj(ha) | 
ina td ar at Y, (ha) vf aR Te J, (ha) Cece ln 

and equation 4.3.16 becomes 

A [ay, (hb) dJ, (hb) 13) i t L o Xs = lade a +000] [a +5 J (nd) 4.3.18 

The radial modes frequency equation is formed by eliminating 

Ay3/Ays: 

Now letting K=ha, L=hb, 9 = k/h and also defining, 

Mi(A) = AJ, (A)/S_(A) and, Ni(A) = AY, (,)/Y,(A) 5 equations, 

4.3.17 and 4.3.18 become, 

Ay KY (K)= (1g DY, (K) 
SUS ee oe ee ee 
Bs RigtK)=-C=o)3, (8) ae? 

A LY, (L)=(1-0) ¥, (L) Tio 0) L 
Ky Wytt)-U-o)s, 0) o23220 

Now if @ =b/a then L=9K, and equations 4.3.19 and 4.3.20 form a 

single frequency equation, giving solutions in K for particular 

values of o, and o: 

The frequency equation for compound modes becomes cumbersome, 

so matrix equations will be used to simplify the presentation.



Boundary conditions 4.3.5 and 4.3.6 with equation 4.3.8 give, 

ag g ae 
—P. 4 ie Hi Ae 3e21 
or zs 8 

ir=a 

4.3.22 

2) 
© 

5 
| o

m lo 1 

a
l
m
 

a 
Al
e 

a 
2 

e
l
y
 

u ° 

Now substituting into equations 4.3.13, 4.3.14, 4.3.21 and 4.3.22 

with the results 4.3.11 and 4.3.12 gives four equations which 

can be written. 

  

mre “12 e13 a14 e 

eo er 993 924 Q 
= ha 

Boe eso ng 3a Ue G ° 

841 342 943 344 g 

where, 

ay, = ~3_68) [oko 92/2 = acmer se, (x) | [2/02 | 

ay, = J,(Ke Yn fy, (kK 0)-(n1) | era? é| 

ay5 = Y_Ck) [CK 07/2 - a(ati)4n, (®) |[2/2” 07] 

214 = Yak m[n,(K 0)= (tt) [2/7 é| 

apy = ~Jq(L) [CL 0)? /2-n¢nt1 y+, (L) | [2/07 é | 

pene J (L On|, (1 0)-(m+1) | [2/07 é| 

ay3 = -¥, (1) [(20 7 /2-n(nt1 HN, (1) | [2/v? ?| 

ay 7 Yqt On|, (L 0)=(m+1)| [2/07 oF] 

© i 

» u
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a -J,,(K)2n[, (K)~(n+1) | [u?] 

ayy = Jq(K 0)[2M, (Ko )+(Ko )?-2n(m41) | [1/27 | 

ayy = ~Yg(K2n fN (K)=Cot1) | fae” ] 

ayy = YaCk ©) [2N, (Ko )+(K0 )2-2n(nt1) | [ava? | 

ayy = Sg (E)2n[M, (L)-(att)] [/?] 

ayy = Iq ©) [2¥,(L0 )#(L0 )7-2n¢ne) | [a? | 

i -¥, (1) 2n[N,,(L)-(n1) | [ue? | 

¥,(L ©) [2n,(L0 )+ (te)? - 2n(n + 1)] [2/07] > W 

Eliminating the arbitary constants Ay3? Aly Als and Aye the 

frequency equation is formed thus, 

Silene ies els 

a a a a 
wl 22 23 24 

= 0 4.3.24 

a a a 
Sz 33 34 

a a a at *yg) 43 “an 

It will be noticed that as the last factor in each of the ay (q=1,2,3,4) is 
q 

2/a" 0 z this can be taken from row one as a common factor. 

Similarly the other three rows also have a common factor. 

The frequency equations for radial and compound modes have 

been solved. Tabulations of K values for? from 0.00 to 1.00 and 

Poissons Ratio from 0.00 to 1.00 are available. Values are 

tabulated to four decimal places so that local curve fitting can 

be used to obtain intermediate points. A condensed form of these 

tables is given in Appendix A.4.3 of this thesis. 

As stated in section 3, Poissons Ratio is given for values 

above 0.5 to facilitate the investigation of orthotropic materials.



4.4 Comparison with Experiment 

The specimen was a mild steel disk with a diameter of 

three inches. The central hole was machined in steps 

until a radially-thin ring was formed. At each step the family 

of resonances was investigated by the Echo Method of section 2. 

The raw data from the experiment is given in table 4.4.1. 

Theoretical values of frequency have been calculated using the 

tabulated values of K and the formula, 

w - «| afoa-Are | 4.4.1 

The physical properties of the specimen were taken to be, 

a = 1.5 inch = 0.0381 m 

3 3 
p = 7.9 g/ml = 7.9 x 10° kg/m 

g =7:0230 

peg!) dyne/em? = 2.1 x 10) N/m 

The calculated curves are shown in Fig. 4.4.2. The experimental 

curves obtained from Table 4.4.1 coincide precisely with these. 

4.5 Discussion 

The radial mode (1,R) is an important one for the thin ring 

because the stress is uniform over the whole of the ring, and is used 

to investigate amplitude sensitive effects. Fig.4.4.2 shows that the 

thin ring approximate frequency equation 4.2.1 is still quite 

accurate as 9 decreases. The radial mode equation 4.2.1 can be 

rewritten, 

Coated ee 4.5.1 
ring a (1+) Rs 

where V, = ¥(E/p ) and a is the outside radius. The actual 

frequency, # can be found using equation 4.4.1; rewritten here, 

V. 
yp eee 

a Giese (2 pm Sse



= 59 - 

K is obtained from the tables of Appendix A.4.3, and is a function 

of Sand? . Now dividing equation 4.5.2 by equation 4.5.1, 

1/2 ole say = FRA +6 VO - 07) 4.5.3 
“ring 

Equation 4.5.3 was used to investigate the departure from the thin 

ring radial mode frequency equation as a function of g and » , and 

the resultant curves are shown in Fig.4.5.1. An interesting point 

is that for a Poisson's Ratio of 0.18 a disk fits the thin ring 

frequency equation perfectly. Fig.4.5.2 shows a direct plot of 

As 6 increases the curves approach 

2 2 yi/ 

the radial mode K values, Kip: 

a curve due to the function (1 - 9 . This verifies that w is 

independent of o for very thin rings, as assumed by the simple 

equation 4.5.1. 

The in-plane flexural modes are examined in an exactly similar 

way. Equation 4.2.2 becomes, 

V. 
eels Hea ees O32) 1/2 

Orie & B os - (£(n)) 4.5.4 

where 

f(n) = 02 (n? - 1)*/(n? + 1) 

Dividing equation 4.5.2 by equation 4.5.4 

2 K are)” -1/2 
SCT aaa 2. =e 

ee 4.5.5 

Curves resulting from equation 4.5.5 are shown in Figs. 4.5.3 and 

4.5.4. The error produced by using the simple equation 4.2.2 is 

generally much larger than for the case of the radial mode. 

Approximate methods are available for the determination of 

resonant frequencies, such as that due to Rayleigh and Ritz (see 

Bishop/Gladwell/Michaelson 1965). However, and advantage of the 

high accuracy frequency equation solved in Section 4.3 is that the 

effect on frequency of small changes in any parameter can be determined.
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The digital computer gives the possibility of solving many 

associated boundary value problems. However obtaining a set of 

solutions is as much a matter of economics as of mathematical 

skill. On the I.C.L. 1900E computer, a disk program was using 

5p worth of time per K value found. Solutions for ten modes with 

Poisson's Ratio from 0.00 to 1.00 in 0.05 steps therefore cost £10. 

The program to find K values for the disk with a central hole, used 

10p worth of time per K value. For © from 0.00 to 1.00 in 0.1 

steps and Poisson's Ratio as for disks, the resultant cost for ten 

modes was £200. Introducing damped or pinned edges to the disk 

with the hole would produce problems with the same order of complexity 

which could also be solved for 10p per K value. 

Problems of greater complexity could also be solved. Consider, 

for example, accounting for ring thickness. The cost per value with 

the increased complexity would be about 20p per value. However the 

cost of a comprehensive set of results would be greatly elevated by 

the requirement for a number of steps in the new thickness parameter. 

In this case it would probably be necessary to limit the results to 

a small set applicable to a particular specimen being studied. Further 

results would then be obtained as the need arose. 

To summarise, from the experience gained in dealing with the ring, 

it is feasible to obtain a rough estimate of the effort and cost of 

solving a number of associated problems.
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Fig.4.2.1 

A typical family of mode frequencies calculated from 

the classical thin ring theory. © is the ratio of 

internal to external diameters. Notice that for the 

infinitely thin ring ( ® = 1.0) the in-plane flexural 

modes have zero frequency but the radial mode shown 

has finite frequency.



  

  

  

  

  

              
  

% INCH HOLH INCH HOLE] % INCH HOLE] 1 INCH HOLE 

MODE | NO HOLE | 4 -0.0833 | e= 0.1667] @ =0.2500 |  =0.3333 

1,R 45.81 44.83 41.84 38.19 34.84 
EL 36.67 36.90 37.25 38.19 38.10 
a 79.98 81.79 85.33 | ----- | ----- 

1,2 31.55 30.22 26.64 22.39 18.76 
153 48.09 48.14 47.71 44.93 40.74 
1,4 63.21 63.24 63.13 62.43 59.86 

1,5 77.24 77.25 77.26 T7127 771.31 
1,6 89.07 89.06 89.82 89.97 89.77 
1,7 103.02 102.96 102.83 102.95 102.99 

1,8 115.95 115.63 115.43 115.71 115.84 
1.9 128.19 128.12 127.91 128.27 128.25 

1% INCH HOLE] 1% INCH HOLH 1% INCHHOLE|2 INCH HOLE |2% INCH HOLE 
MODE 

6=0.4167 @=0.5000 @ =0.5833 | © = 0.6667 | =0.7500 

CER 82°23) 29.86 27.88 26.21 24.78 
Ig 38.11 37.70 36.80 35.64 34.37 
2,1 fo wwwe= fener fee nee wee 
152 15.68 12.68 9.97 7.46 5.25 
3 35.64 30.09 24.53 19.30 14.10 

1,4 55.15 48.53 41,24 33.40 25.32 
He 72.94 66.78 58.24 48.64 38.15 
1,6 88.48 84.47 75.85 64.64 51.90 

1,7 102.51 99.59 91.90 81.12 66.48 
1,8 115.61 113.98 108.08 96.75 81.57 
1,9 128.15 127.41 123.28 112.53 96.38 

2 3/8 INCH 29/16 INCH] 2 5/8 INCH 
none HOLE 2% INCH HOLE] HOLE HOLE 2% INCH HOLE 

6 =0.7917 ® =0.8333 ® =0.8540 | % =0.8750 ® =0.9167 

1,R 24.15 23.55 23.33 23.05 22.53 
Ted 33.67 32.99 32.68 32.35 31.70 
21 | seee- fo wawwes | wwee- ff wee-- == e+ 

is?’ 4.20 2.98 2.56 217 2.0 
1,3 11.48 8.93 7.80 6.46 5.1 
1,4 20.98 16.59 14.51 12.23 7.81 
1,5 32.10 25.86 22.76 19.40 12.71 

1,6 44.60 36.46 32.38 27.73 18.41 
L,7 57.67 47.99 43.01 37.14 25.03 

1,8 71.63 60.36 54.32 47.32 32.46 
1,9 86.22 73.41 66.52 58.40 40.76 

TABLE 4.4.1 

The observed data from the mild steel ring is shown. 

can be compared with the curves of Fig.4.4.2. The agr 
the limit of experimental accuracy. 
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1.3 

  

os ring       
mode (1,R) 

dad 

deed 

1.0   

  
Fig. 4.5.1 

This shows the deviation of the frequency 
predicted by the simple thin ring theory 

for the radial mode (1,R) over a range of 
@ and @',
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0.0 . 
0.0 0.5 1.0 

oO 

Fig.4.5.2 

These graphs of K,, values, show how the 
frequency becomes independent of Poissons 
Ratio for an infinitely thin ring. A graph 

of (1 - Gin cagatnse o is shown dotted. 

Notice that K = 0 when o = 1.0 and the plate 
modulus is infinite.
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o.. 
ring 

  

  0.4L 

Fig.4.5.3 

The variation of the thin ring frequency equation 

for mode (1,2) is shown. All modes of type (1,n) with 
nS 2 will have similar dependence ono and 6
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mode (1,2) 

mode (1,8) 

  0.4 

Fig.4.5.4 

The variation of the thin ring frequency equation 

is shown. For the higher order modes the radial thickness 

to wavelength ratio becomes larger, and hence the error 

produced is larger.
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5. INTERNAL FRICTION 

5.1 Introduction 

The attenuation of acoustic waves was first treated by 

Stokes 1845 who considered the effect of viscosity on the 

transmission of sound through gases. Navier added the second 

transport phenomenon term, thermal conductivity, which resulted 

in the classical Navier-Stokes equation (section 2.2, equation eos 

An enormous number of other loss mechanisms occur, particularly in 

solids, and these are studied for the information they give of 

molecular effects in liquids and gases and lattice and grain 

boundary effects in solids, where they are classified under the 

general heading of Internal Friction (see Fig. 5.1.1). The H term 

in equation 2.2.1 expresses the total internal friction. This is 

a volume effect and is therefore independent of the shape of the 

material being studied. In general the internal friction varies 

strongly with temperature and to a much smaller extent with 

frequency. Considerable success has been achieved in identifying 

the sources, particularly by Bordoni 1947, Snoek 1941, Granato 1956 

and Powers 1959. 

The measurement of internal friction over a wide range of 

temperature and frequency is of current importance and a number of 

methods are available, typically the torsional pendulum (Ké 1947) 

and the single pulse echo system used by Bell 1957 and Lynworth 1967. 

This single pulse traverses a fixed length of specimen, held at a 

fixed uniform temperature. From the attenuation of this pulse, the 

internal friction shown by the specimen material can be evaluated, for 

that temperature.
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The method described here is a resonance method based on an 

acoustic transmission line. An advantage of this system is that 

the resonator which terminates the line can, for example, be a 

tuning fork, where only a physically small specimen is necessary. 

The excitation and return signals are as described in section 2.4. 

The echo decrement exponential is evaluated by measuring amplitude 

at two points on its envelope. From this information Q can be 

determined and then if Qo is known Qu (a measure of internal frction) 

can be derived (Gr Leg Hog). In this way Qu can be determined 

as a function of temperature and for several frequencies (if the 

resonator has several resonant modes of vibration). See Fig.5.1.2. 

A problem common to all transmission line methods considered 

so far is the evaluation of Qe This is often done by assuming 

the low temperature material loss to be negligible, and Qe then 

becomes Qy- While this is a reasonable assumption for most cases it 

is to some extent unsatisfactory and the multimode method described 

allows G to be evaluated with certainty. This is an important 

feature of the method of measurement and is described in detail. 

5.2 Multimode Method of Measuring Q& and Qe 
ee 

A set of resonant modes for any resonator can be utilised to 

greater advantage if the coupling Q factor, Q% can be calculated 

for each mode. This is the case for the line resonator the 

equations of which were derived in section 2.3. They are used here 

to determine Qu for a range of frequencies and temperatures. For 

many materials Qu alters little for, say, a factor of five change 

in frequency. In this case the multimode method is advantageous in 

that it increases redundancy in the readings taken.
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The equations for the line resonator from section Leos 

repeated here are as follows:- 

Relative steady-state echo signal amplitude, 

E,/Ey =. -(B - ma)/( p+ ma) $201 

Oscillations to crossover point, 

Py = [Wq/2n( 8+ ma )in(28 /( 8 - m”a)) 520 

Q relationships, 

Qe = 0/28 5.2.3 

Qig = Sy 20-0 5.2.4 

Opin = %n/26 B+ ma) 5.2.5 

Using the Q relationships E /E9 and Pa can be expressed in terms 
Ey 

of Com and Cm 

E/E = ~ (1-69! Spm / Eon! 4mm) 5.2.6 

p= ach 102/105!) 5.2.7 
m~ KCLQG, Gg) s Qe! Sot Oe 

Let P' = P /m ; then, 
m m 

pi = =. Sees In (2/(1-Q../Q,_)) 5.2.8 
m T(14Q6 in! 4a? Cm’ “Mm a 

because Qu, = @,/28 = mo, /2 B= mQ, 

From the echo observations B./Egs Pia and Qt can be determined 

directly for any particular mode. 

E/E is in general not used numerically because Eo 

cannot be observed very accurately. This occurs because the echo 

signal has maximum rate of change of envelope amplitude at the 

beginning of the echo, and because of the finite bandwidth of the 

magnetostrictive launcher, the true envelope amplitude takes one 

or two oscillations to be established.



However E/E does serve as a direct qualitative indication 

of Qy (see Fig. 5.2.1). Ome accurate value can be obtained when 

E/E9 = 0 (i.e. Qom= Ain? because E =0 at this point and Ey need 

not be measured. 

Another measure of Qu observed from the echo is Be the 

number of oscillations to the crossover point for mode m. The 

form of equation 5.2.8 immediately suggests a useful approach. If 

m=0 then from equation 5.2.4, Quin =, Equation 5.2.8 then 

becomes, 

Pi (Q,,/#) 1n2 «2-9 

m=0 (where a5 would be zero) is not a physically realisable 

condition but it can be deduced by extrapolation. If a graph is 

plotted from experimental Pa values for m=1,2,3 etc., this graph 

can then be extrapolated tom=0 to give a value Po from which 

Qo can be directly calculated. 

Let Qe, 0y a= hi 3; then equation 5.2.8 becomes, 

pe ngenaey)) 5.2.10 
m (th) m _ 

therefore 

1 1In(2/(1-h,)) 
DSU a aeh cone iat ae we om Pr/Pg Ch) Ind 5.2510 

Table 5.2.2 gives pairs of values of pr/Po and his Figs, 5¢2-3 

shows a graph of pr/eo against h_. In practice a graph of Be 

against m can be extrapolated to give a value PO and then a 

subsequent graph of PnP against m can be plotted. (Fig. 5.2.4 

shows a typical graph obtained from an experiment of section 5.3.) 

Values of Pj/P) are taken from the graph and then with table 5.2.2
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(or Fig. 5.2.3); bs can be found. From P* is found from 0? Sc1 

equation 5.2.9 then, 

Quin = mQ,,/h,, 5.2.12 

gives the value of Quen 

If the dependance of Qu on frequency is known (or determined 

empirically), a suitable function can be chosen and plotted against 

m to give a straight line graph. 

The last measure of Qu? which can be observed from the 

echo, is a direct evaluation of Qn” This can be accomplished by 

observing two amplitudes in the echo-decrement and noting their 

separation interval, from which on can be directly calculated. 

Summarising, for the line resonator three methods to 

determine Qo (Qo p=™%61) have been established:- 

1. By direct calculation from acoustical data. 

=n m/1n((p,C,A,t,C,A,)/(0, p,C,A,)) Se2s13 
Som aeora rere! P2eote Moi ey 

The graph of Fig. 2.5.2 (section 2.5) is based on the same 

equation and gives PL against the diameter ratio of resonator 

i e and line for values of 9 C,/ 12)" 

2. By extrapolation of the Ee against m graph as previously 

described. 

3. By elimination between the two equations containing P_ and 
m 

Qyy: Using Quam = Sr @om!/ 6 Sem” Prin? to substitute in equation 

5.2.7 gives 

Qon = 2% ~2exP (AP, / Op, ) 5.2.14 

When the coupling has been determined by one or more of these 

three methods, Q,, can be found from observed values of P_ and 
m 

Qo (and E,/E9 at certain points).



5.3 Experimental Work 

An experiment was required that would test the multimode 

method in practice. An ideal material would be one which 

showed no variation of Qu with frequency, and an absence of any 

internal friction peaks over the temperature range used. The 

QW of copper is reported (Wegel 1935) to be independent of 

frequency and while having the normal fall of Qu with temperature 

does not have any relaxation peaks. A 99.999% pure copper rod 

(supplied by Johnson Matthey Metals Ltd.) was first annealed at 

a high temperature. Observations were then carried out over a 

moderate temperature range. 

The choice of transmission line diameter is important. A 

thin wire gives a high value of Pe and determines Qu more accurately 

than a low value for two reasons. First, Pa can be observed more 

accurately. Secondly, Qa has a greater effect on Qaim? and hence 

a greater effect on P,. However the disadvantage of a high initial 

; ; & =° 
value of P, is that the temperature point where Que Q%, and P 

mM 

is soon reached. Hence a given line size gives the optimum 

experiment at particular values of Que The graph of Fig. 2.5.2 

(section 2.5) aids choosing a line diameter. For the experiment 

here an initial PY (B, for mode m=1) of 15 was convenient. The 

specimen of copper was 7 mm in diameter, so a line 1 mm in diameter 

was used. The specimen was cut to 63 mm long to give a fundamental 

frequency of about 30KHz. 

The furnace constructed by J.M. Pelmore and referred to in 

section 3.4 of this thesis was again used for this experiment. The 

specimen was gradually heated and observations were taken using the 

first five modes of the resonator. The raw data from the experiment 

is given in table 5.3.1.
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5.4. Discussion of Results 

At room temperature Pa against m gives the straight line 

graph of Fig. 5.4.1. A value of Po=16.5 has been taken to 

perform all subsequent calculations. The values of y have 

then been calculated for each mode in turn. The calculation 

process for mode m=2 is given here as an example. 

Equation 5.2.9 can be written, 

Qo = xPo/1n2 5.4.1 

Then Qo 2nPjy/1n2 5.4.2 

Equation 5.2.12 becomes, 

an q 
Qu9 hln2/(2"P) 5.4.3 

So using Pp=l6.5, 

<1 
Qua = ha x 0.00668 5.4.4 

The values of es are then found as shown in table 5.4.2. 

The complete results from all five modes are shown in 

Fig. 5.4.3 

The higher order modes tend to give greater accuracy, because 

of the division by m in evaluating Pa The lower order modes 

however, are useful up to higher temperatures. To extend the 

temperature range (lower values of Quy) the line diameter would have 

to be increased so that Q., (and hence Po) is reduced. 

The results are completely consistent with the theory and 

give values for copper similar to those obtained by other workers. 

Further work by Pelmore 1974 in the comparison of various. methods 

of measurement, has confirmed the convenience and accuracy of the 

multimode technique.
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Fig.5.1.1 

This shows a family tree of the terminology 
of energy loss effects.
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Fig.5.1.2(a) 

This displacement of the poles and zeros is due to material 
losses. The echo corresponding to this diagram is shown below. 

    

Fig.5.1.2(b) 

This shows the effect of material losses in a resonator 
with Q, = 60, Q, = 40, Q, = 24. The steady-state power 
dissipation by fhe internal friction losses leads to a 
reduction of the steady-state signal and echo-decrement 
amplitudes. The echo with no material loss but with 
the same coupling (i.e. Q, == , Q, = 40) is shown in 

in M Cc 
Fig: 2.1.2.
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This gives Ew/E for seven modes of the 

line resonator. Positive values of E 1 

indicate that there is no crossover point 

(i.e. no phase reversal). Each curve is 

for a constant value of Qu indicated at the 

right.
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es the 39 e760 1-736 

a 1.145 Be770 1.763 

le , 
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16165 

1eiT2 

1.179 

1.186 

1.194 

1.29 

1.2 

        
1-943 
1.9    

i     
            1-217 

1.224 
e399 0233 

Me4AG 1.241 BING 

e410 1.249 29109 

e420 le 3 20419 

%eABD 1.267 20596 

O.AAG 1.275 2-608 
BASH 1.285 20729 

GAB 2294 “2.880 

ATA 1.393 3BeN75 

Aye 163 3-356 
Beh OK ie ( 2ehAl       
  

TABLE 5.2.2 

This gives values for equation 5.2.11.P' /P' is observed 
experimentally and then h_ can be found. The ‘material Q 
is then calculated from the relationship Q, = Q, /h 
These tabulated values are shown graphically in a 

Fig.5.2.3
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This graph is useful for quick reference while 

performing an experiment (see Fig. cee 
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Fig.5.2.4 

A spot set of values enable Q, to be found by 
extrapolation to zero frequency. Then the 
absolute values of Qu can be determined.
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TABLE 5.3.1 

  

  

  

  

  

  

  

  

  

  

  

Mode Temperature] Frequency P P /m 
(mv) (kHz) bs a 

1 0.00 29.30 16.5 16.5 

ae 0.00 58.49 34.0 17.0 

3 0.00 87.26 49.5 1625 

4 0.00 115.50 64.0 16.0 

5 0.00 142.88 80.0 16.0 

5: 2.16 142.32 82.0 1622 
4 2.24 114.97 63.0 15.7 

3 2529 86,83 40.5 16.5 

2 2.34 58.16 34.5 703 

iF 2:37 29.14 17.0 17.0 

1 4.73 28.82 17.0 17.0 

2 4.73 Sfe52 34.5 Ehss 

S} 4.73 85.82 49.5 16.5 

4 4.73 113.54 68.0 17.0 
5 4.73 140.45 81.0 16.2 

5 6.74 139.98 81.0 16.2 

4 6.74 113/12 68.5 Tet 

3 6.74 85.48 51.0 E70 

2 6.73 57.29 35.0 17.5 

¥ 6.73 28.71 17.0 17.0 

1 7.58 28.61 LESS 17.5 

2 7.58 5710 36.0 18.0 

3 deoe 85.17 5255 17.5 

4 7.51 112.78 70.5 17.8 

5 ESE 139.42 87.0 17.4 

5 8.76 138.87 101.0 20.2 

4 8.79 £12521 76.0 19.0 

3 8.82 84.74 55.0 18.3 

2 8.84 56.79 37.0 18.5 
1 8.86 28.43 sy ie: ae 

a! Dida. 27.74 1735 yee) 

a 9522: 5555 39.0 19.5 

3 9.23 82.53 59.5 19.8 

4 S23. 109.14 85.0 21.2 

5 E25, 134.87 115.0 23.0 

5 10.12 134.88 0 Gi 

4 10.10 109.21 118.5 29.6 

3 10.09 82.70 76.0 25.3 

2 10.10 55.46 47.5 eos 8 

1 10.10 27.80 18.5 18.5 

1 10.64 28.30 2255 2205 

2 10.64 56.52 70.0 35.0 

1 Uy a 28.31 24.5 24.5               
This shows the observed data from the experiment on pure copper. 

Any problems with low thickness to wavelength ratios can be 

detected by observing f/m.
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The P' values at room temperature indicate 
that Q, = » and the extrapolation process 
can be performed with a straight line. 

P Temperature Pt /P" h Q Ee x 10° 
2 2 ° m M2 

(mv) 

measured measured =P',/16.5 Table 5.2.2 Equation 
5.4.4 

17.0 0.00 1.03 0.06 0.4 

L723 2.34 1.05 0.11 0.7 

L753 4.73 1.05 o.11 Oni; 

LED 6.73 1.06 0.12 0.8 

18.0 458: 1.09 0.18 1.2 

18.5 8.84 Lie 0.23 LES 
1955 922 1.18 0.32 Zak 

23.8 10.10 1.44 0.59 B58 
35,0 10.64 2.12 0.87 Ose. 

TABLE 5.4.2 

ma 
Values of h 
be calculated from equation 5.4.4. 

are found from Table 5.2.2, and hence Ce can 
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Fig.5.4.3 
The complete results from the copper experiment 

give good agreement between the five modes.
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6. THE ELECTRONIC SYSTEMS 

6.1 Introduction 

The electronic systems will not be described in detail. 

However the circuit diagrams of two simple transmitters, constructed 

by the author, are given. (Figs.6.3.1 and 6.3.3). 

6.2 Oscillators 

Comprehensive studies were carried out on oscillators suitable 

for the present electronic burst generators. The two main 

requirements for these oscillators were that they should have a 

T.T.L. compatible output and an adequate frequency stability for 

their application. Two such free-running oscillators are shown 

in Figs.6.2.1 and 6.2.2. The result of these oscillator 

investigations has been published - Bell/Sharp/Wong, 1974. 

The Telequipment oscilloscope type D53A gives a mains locked 

output which is a convenient drive for a mains locked oscillator. 

Such an oscillator is shown in Fig.6.2.3. 

6.3 Burst generators 

Two burst generators were constructed by the author. The 

first, a simple portable model, was used mainly for demonstrations 

and is shown in Figs.6.3.1 and 6.3.2. The second burst generator 

(Figs.6.3.3 and 2.7.2) featured thumbwheel switches for selecting 

the number of burst oscillations. This is very helpful for measuring 

La (see chapter 5). Also a more stable burst frequency oscillator 

was used in order to reduce long term frequency drift. The output 

stage used in both generators is shown in Fig.6.3.4. 

6.4 Automatic systems 

For some applications, particularly temperature measurement 

it is desirable to use an electronic system which tracks the



frequency being studied. Two types of automatic system have been 

built to date. 

(1) The first produces its error signal by examining phase in 

the echo-signal (Pelmore 1971). 

(2) The second derives its error by measuring the frequency 

of the echo-decrement, and comparing with the burst 

frequency oscillator. 

The analysis in chapter 2 of this thesis provides formulae which 

completely describe the echo. Computer programs were written to 

plot the phase of the echo. Figs.6.4.1 to 6.4.5 show plots for 

various cases. Fig.6.4.6 relates steady-state phase of the 

echo signal to the acoustic parameters.
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Dee 
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MONOSTABLE MONO STABLE 

eae Q |+——_-» 
OUTPUT 

  
    

  A Q A Q         
  

  

      

Fig.6.2.1 

The two monostable multivibrators are cross-coupled to 
form a free-running oscillator. Point B can be used 
to stop and start the oscillator; it is shown here 
connected to a simple circuit to ensure the oscillator 
starting when the supply is switched on. The components 
C and R are changed to vary the frequency of the oscillator. 
(Integrated circuit numbers were Texas Instruments SN74121). 

  

         
    

          

+5V 
vv 

IM 
470 

WV 
VOLTAGE 220 
FOLLOWER 

L see 

OUTPUT   
Fig.6.2.2 

The oscillator shown here has a better frequency stability 
than that of the oscillator of Fig.6.2.1. However its 
frequency range is smaller, and so it is followed by a 
variable dividing circuit using standard digital techniques 

in order to obtain the required frequency range. (The 

voltage follower and comparator were National Semiconductor 
LM310 and LM306).
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Circuit (a) 

From oscilloscope 

From dividing chain 

ae 
= 4710; 

To eight input gate 

From wafer switch 

Circuit (b) 

Fig.6.2.3 

For some applications it is desirable to have an 
oscillator with its period locked to a fixed 

multiple of the mains supply period. The 
Telequipment D53A oscilloscope used by the author 
gives a OV to -2V square wave output derived from 

the 50 Hz mains supply. This was used as the 

driving voltage for the circuit (a) above. The 
output of the Schmitt Trigger was fed into dividing 
chains constructed using J-K flip flops. These gave 
frequency division factorsof 1,2,3,4,6,8,12 and 16. 
Each of these divided outputs was supplied to one 
input of a two input Nand gate as shown in circuit (b) 
above. The desired frequency was selected by switching 

+5 volts on to the appropriate Nand gate using an 8 way 
wafer switch. The outputs from the eight..dual input 
Nand gates were supplied to an eight input Nand gate, 

which provided a single output from the mains locked 
oscillator. (Components were supplied by Texas 
Instruments).
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flop q     
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     r switch for 
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output 

        

  

Output 2 

utput 1 

Fig.6.3.1 

Oscillator 1 determines the transmitted frequency; the J-K 
flip flop ensures a unity mark-space ratio for the output. 
Oscillator 2 is of lower frequency and determines the repetition 
rate of the transmitted burst of oscillations. The D type 
flip flop ensures that a whole number of oscillations are 
transmitted. By using the K switch oscillator 1 can be 
changed from continuous running to running only during the 
burst length. Qutputs 1 and 2 supply the output circuit of 

Fig.6.3.4. (All integrated circuits were supplied by Texas 

Instruments).
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Fig.6.3.2 

This portable burst generator was built for 

demonstration purposes. The transducer 
tuning capacitor was included inside the box.



 



- 90 - 
Fig.6.3.3 

The main feature of this burst generator was the 
decade thumb-wheel switches which were used to 
select the number of oscillations in the burst. 
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x 
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710 : 10(5 Watt) 

1K 
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Tagurel 30(5 Watt) 

1K     
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2N2218 

  

Input 2   Se eV, (HLS Volts) 

Fig.6.3.4 

The output circuit for both burst generators is shown. 
The inputs 1 and 2 are taken from outputs 1 and 2 of 
Figs.6.3.1 and 6.3.2. The supply voltage + V_ can be 
varied, but in this case it was fixed at + 15V- 
(Transistors were supplied by Texas Instruments).
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The steady-state phase of the echo-signal is 
shown as a function of frequency detuning for 
Qy/Qq = & > 5.00, 2.50, 1.65, and 1.25.
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LIST OF SYMBOLS 

Subscripts may be used with these symbols to refer to a particular 

solution or region. A bar over a symbol indicates that its Laplace 

Transformation has been taken. 

a amplitude of transmitted oscillations 

a outside radius 

ay mean radius 

A cross-sectional area 

A arbitrary constant 

A(p),B(p) general functions of p 

B arbitrary constant 

b inside radius 

c velocity of propagation 

E dynamic Young's Modulus 

E echo return 

Fg force 

£ frequency 

H material loss coefficient 

h dilatational wave number 

h heavyside step function 

el a om! Oatm? 

k (- 1/2) ) 

k shear wave number 

K radius of gyration 

K frequency parameter 

L frequency parameter 

i length 

MN, combinations of Bessel functions as defined in the text 

Py number of oscillations in transmitted burst 

P number of oscillations to the crossover point



el
 

Soe 

Laplacean operator for t 

coupling Q factor 

material Q factor 

total Q factor 

reflected signal 

modified reflected signal 

reflection coefficient from boundary of transmission 

and, resonator 

radius direction (polar co-ordinates) 

strain 

Laplacean operator for t 

duration of oscillation burst 

stress 

time 

velocity 

amplitude component 

( =/(E/ » )) longitudinal rod velocity 

direction (Cartesian co-ordinates) 

acoustic impedance 

defined in chapter 2 

transmission constant 

angle 

ratio of shear and dilatational wave numbers 

density 

dynamic Poissons Ratio 

time 

displacement 

transmitted angular frequency 

resonant angular frequency 

dilatation 

rotation



Ambati, G. : 

Bell, J.F.W. 

Bell, J.F.Wi; ¢ 

Bell, J.F.W., 

Noble, A.E., 

Seth, T.N. 

Bell, J.F Ws 

Sharp, J.G.K., 

Wong, Y. : 

Bishop, R.E.D., 

Gladwell, G.M.L., 

Michaelson, S. ;: 

Bordoni, P.G. 3 

Bozorth, R.M. 

Buckens, F. : 

Chladni, E.E.F. : 

Granato, A., 

Lucke, K. 

- 100 - 

REFERENCES 

Experimental and Numerical Studies of Radial and 

Contour Extensional modes in elastic Disks. 

M.Sc. Thesis. University of Aston, 1973. 

The velocity of sound in metals at high 

temperatures, Phil.Mag. Vol.2, p.1113-1120 (1957). 

A solid acoustic thermometer. Ultrasonics, 

Vol.6, p.11-14 (1968). 

Graphical displays of acoustic properties of 

solids. Ultrasonics, p.178-181 (1973). 

Digital Oscillators. Int.J. Electronics, 

(accepted January 1973). 

The matrix analysis of vibration. Camb. U.P., 

(1965). 

Nuovo Cimento, Vol.4, p.177 (1947). 

Ferromagnetism. Van Nostrand (1951). 

Influence of the relative radial thickness 

of a ring on its natural frequencies. J.A.S.A., 

Vol.22, p.437-443 (1950). 

Entdeckungen uber der theorie des klanges. 

Leipzig (1787). 

Theory of mechanical damping due to dislocations. 

J. Appl.Phys., Vol.27, p.583-593. (1956).



Granato, A., 

Lucke, K. 

Hawgood, J. 

Hearmon, R.F.S.: 

Holland, R. 

Johnson, A.C.J. 

Kaye, G.W.C., 

Laby, T.H. 

Ke, T.S. 

Kolsky, H. 

Love, A.E.H. 

Lynworth, L.C. 

Meitzler, A.H., 

O'Bryan, H.M., 

Tiersten, H.F. 

Mc Mahon, G.W. 

- 101 - 

Application of dislocation theory to Internal 

Friction Phenomena at high frequencies. J. Appl. 

Phys. Vol.27, p.789 - 805 (1956). 

Numerical methods in Algol. Mc Graw-Hill (1965). 

The elastic constants of anisotropic materials. 

Rev. Mod. Phys. Vol.18, (1946). 

Numerical studies of elastic disk contour modes 

lacking axial symmetry. J.A.S.A. Vol.40, 

p-1051 - 1057 (1966). 

An apparatus for ultrasonic measurement. 

M.Sc. Thesis, University of Aston (1971). 

Tables of physical and chemical constants. 

Longmans (1958). 

Experimental evidence of the viscous behaviour 

of grain boundaries in metals. Phys. Rev., 

Vol.71, p.533 - 546 (1947). 

Stress waves in solids. Dover (1963). 

The Mathematical theory of elasticity. 

Cambridge (1927). 

N.A.S.A. report No. CR-72395 (1967). 

Definition and measurement of radial mode coupling 

factors in piezoelectric ceramic materials with 

large variations in Poissons Ratio. IEEE Trans. 

on Sonics and Ultrasonics, Vol. SU-20, p.233 - 239 

(1973). 

Measurement of Poissons Ratio in poledferroelectric 

ceramic Disks. IEEE Trans. Ultrasonic Engineering, 

p.102 - 103 (1963).



Onoe, M. 

Pelmore, J.M. 

Pelmore, J.M. 

Powers, R.W., 3: 

Doyle, M.V.. 

Ravenhall, F.W. 

Salvadori, M.G.,: 

Baron, M.L. 

Seth, T.N. : 

Snoek, J.Ly 

Stephens, R.W.B.: 

Bate, A.E. 

Stokes, Sir George 

Timoshenko, S.P. 

Timoshenko, S.P. 

Tzannes, N.S. : 

- 102 - 

Contour vibrations of isotropic circular plates, 

J.A.S.A.,Vol. 28 , p.1158 - 1162 (1956). 

An instrument to measure Young's Modulus at 

high temperatures. M.Sc. Thesis, University 

of Aston (1971). 

Internal Friction and high temperature measurement 

of refractory materials. Ph.D. Thesis, University 

of Aston. (1974). 

Diffusion of interstitial solutes in group V 

transition metals. J.Appl. Phys.,Vol.30, 

p.514 - 524 (1959). 

Some recent observations on Chladni's figures. 

Acoustica, Vol.29, p.14 - 21, (1973). 

Numerical methods in Engineering. 

Longmans (1955). 

Ultrasonic pyrometer for industrial applications. 

Ph.D. Thesis, University of Aston (1974). 

Effect of small quantities of carbon and nitrogen 

on the elastic and plastic properties of iron. 

Physica, Vol.8, p.711 - 733 (1941). 

Edward Arnold Acoustics and vibrational physics. 

(1966). 

Cambridge Mathematical Transactions (1845) 

Theory of plates and shells. Mc Graw-Hill (1959). 

Theory of Elasticity. Mc calle en), 

Joule and Wiédermann effects - The simultaneous 

generation of Longitudinal and Torsional stress 

pulses in magnetostrictive materials. IEEE Trans.



= 103 - 

Sonics and Ultrasonics, Vol.SU-13, p.33 - 41 (1966) 

Wegel, R.L., . Internal dissipation in solids for small cyclic 

Walther, H. strains. Physics, Vol.6, p.141 - 157 (1935). 

Zepler, E.Es, 2 Transients in electronic engineering. Chapman 

Nichols, K.G. and Hall (1971).



- 104 - 

APPENDIX A.2.2 

MATHEMATICAL ANALYSIS OF TRANSMISSION LINE AND LINE RESONATOR 

Fig.2.2.1 shows the line and resonator in diagrammatic form. 

The solution obtained here is for the first reflection (echo) only. 

(For a similar electrical case see Zepler 1971, page 287). 

It is convenient to define, 

Impedance (Z) = Fore (F)/Displacement Velocity (U) 

where 

a 
ox 

The one dimensional general equation of Stokes 1845 can be 

written in the form 

2 2 3 
$e? 2h +n a A221 
at ox x 3T 

where Ul UGee et) 

See also Stephens 1966. 

It is also convenient to write equation A.2.2.1 in the form 

of two coupled partial differential equations. They are written 

here in their Laplace transformation. 

= ort 7) 9 U(x, p) F (x,p) = ae ad Broa 

a -+ L aFbyp) U(x,p) pms rie A.2.2.3 

The general solution of equation A.2.2.1 is, 

U(x,p) = A(p) exp(-y x) + B(p) exp( yx) A.2.2.4 

where 
2 2 2 

y 7p /Gpee) 

From equations A.2.2.2, A.2.2.3, A.2.2.4 the characteristic 

impedance of an infinite line can be found,



2 1/2 

Z (p) = pACHp + c”) Ag2eze5 

A suffix will be used to refer the general equations A.2.2.1/2/3/4 

to either the transmission line region (1) or the resonator region (2). 

Region (2) will be considered first in order to determine the 

impedance presented as the termination of the transmission line (i.e. 

F,(1,,p)/U,(1),P)). The boundary conditions for region (2) where 

(1, <x < 1, + 1,) are, 

ae +15. 9) = 0 A.2.2.6 

rere) F,(1,.) Ae2.2.7 

U,(1, 5p) = U,(,>P) A.2.2.8 

Substituting equation A.2.2.4 into A.2.2.2 and A.2.2.3 gives the 

general solution for region(2), 

U,(x,p) = A,(p) exp(- 79x) + By(p) exp( ¥ 9x) A.2.2.9 

F,(x,p) = 2,(P) [Ay(p) exp(- vx) - By(P) expCy x) | 
A.2.2.10 

where 2,¢0) x 2 oAp (Hp a ey? 

and % = P'/ (yp + ©) 

Using boundary condition A.2.2.6 in equation A,2.2.10 gives, 

B,(p)/Ay(p) = exp(- 2 yo(1, + 1,)) Ao2 eid 

Using boundary condition A.2.2.7 in equation A.2.2.10 gives, 

F,(1,,P) = 25(p) [A,@) exp(- Ygh,) - B,(p) exp( 75) A.2.2.12 

and using A.2.2.8 in equation A.2.2.9 gives, 

UL Cp»p) = Ay) exp(- y91,) + By(P) expC yt) As2e2-10
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Combining equations A.2.2.11/12/13 yields, 

2,(1, 5p) = F (1, ,p)/U, (1) 5p) = 2,(p) tanh ( y o1,) A.2.2.14 

Now there is enough information to obtain a solution for region (1) 

where (0 < x <1). Suppose that at time t = 0 a forcing function 

u,0,t Jeza sin(w, t) is applied at the end of the line, x = 0 

and so a boundary condition is, 

= 2 2 
U,(0,p) = ao,/(P +o. ) Ac2s2e15 

The general solutions for region (1) are, 

0, (x,p) = A, @) exp(- yy) + BCp) exp( y ~ Wed 2. 16 

F,(x,p) = 2,(P) [Aj (p) exp(- 4x) - By (p) exp( ¥yx)]A-2.2.17 

U, (x,p) consists of two components, a forward travelling wave, Uiy and a 

reverse travelling wave, UL: 

U,,(x,p) = Ay (p) exp(- ,x)3  U,_(x,p) =B,(p) exp(y 1x) 

So at the junction (x = 1); 

0, (1, 5p) = F,(1,5p)/2, (1, 5p) A,2,2.18 

and by substituting with equations A.2.2.16/17 

Z,(p) ee 
Ue pe) Ure eR) = BCLs) ae ty? 0,4, ,P)] 

An? 2,19 

therefore, 

Upp) 2,(P) ~ ZAP) ee 
= poet w22s 

DLP) 2,0) + Zp) 

So the first reflection R(x,p) will have initial magnitude U,_(,p)- 

So substituting with equation A.2.2.14 for 2, (1, »P)s
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Z,(p) - Z,(p) tanh ( y,1,) 
1 2 za E U (1, 5p) exp Y (x2 1) ROoP) = 7 yt Zt) tanh Cyp1,) “+ 

A,2,2.21 

and now using boundary condition A.2,2.15 gives, 

2,@) - 2,(p) tanh (¥1,) aw 

Mas) * 7 (ey 2, (p) tank CY ,1,) 7. expy 1% - 21) 

(p + @,”) 
A.2.2.22 

Yy and a have similar expressions to those for v5 and Zo: 

By splitting the forward and reverse waves as has been done 

here, a solution (A.2.2.22) for the first reflection only is formed 

and hence it is of simpler form than a complete solution, 

Integrating around the contour shown in Fig.A.2.2.1 gives 

AB Be cD DE EF FA 

i al, ae J Hs! ef + f + f =(sum of residues), 

The positive square root is taken in the definition of 4 

and so Jordon's Lemma holds (i.e. R(x,p)+ 0 as p > © 
BC FA 

[mag a on the boundaries BC and FA). Therefore 

Now, 

Ips ii R (x,p) exp(pt)dp A.2.2.23 

Typically however Gr/a, >> 10° and so the term exp(pt) is extremely 
cD 

small over the range of the integral and so J = 0. 
DE EF 

Similarly f =0 and f =0, 

The Laplacean Inversion of R (x,p) can now be written, 

AB 

R(x,t) = f= (sum of residues) A.2.2.24
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The attenuation and time delay effects of the term exp YGe-21)) on 

these residues will be shown later. As these effects are not 

important in the practical case a new function R (0,s) is defined 

  

Z,(s) - Z,(s) tanh ( Y,1,) aw 
R (0,8) = ee Z ~ 7 A.2.2.25 

y 2,(s) + Z,(s) tanh ( gly) (so + o, > 

s is the Laplacean operator for t, where Tt - t = 21,/c,. t= 6 

defines the start of the echo signal. 

The expression A.2.2,25 splits into two parts; the 

transfer function of the system, and the forcing function 

applied to it. The poles of the transfer function are given 

when, 

2,(s) ae 2,(s) tanh CY 51) = 0 A.2.2.26 

Replacing tanh (Y,1,) by its exponential form 

¥ - - ¥, 4h -Y (exp( Y,1,) - exp( ghg)/Cexp( Y,1,) + exp( gto) ) 

gives, 

exp(2 ¥51,) = (Z,(s) - 2, (8))/(2,(s) + 2,(s)) Ae2.2,27, 

2 2 
However, H, << ey 5 Hy << o> and HL and Hy can be neglected 

in the right-hand side of equation A.2.2.27. This is because 

the effect of Hy and Hy on these vectors in the s-plane is 

extremely small, (See Section 2.2 on limits of practical 

applications), Equation A.2.2.27 becomes 

2y 51, = In(r) A.2.2.28
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where r = ( Pylohy - 9 404A, /¢ Poe oho ar 0 4°yA,)- 

Letting In(r) = - k + j@ gives 9 =0, + 2n, + 4n etc. and k is in 

general a small positive real number. Equation A.2.2.28 now 

becomes 

2 

ay —S— = kt jo)? 
Hs + cy 

so 2 i f. 

ee eee ek 8) oP erg A.2.2.29 
al, 2 21, 2 

This quadratic equation can be solved for s. 

  

2 
4 Ht oe eee. 

21 - 
ze 

A.2.2.30 

But Hy SS eo so, 

soe ih 4 
o-[Rte 2,1 ckte, A.2.2.31 

a1, 2 2 1, 2 

On expanding this expression further approximations can be made because 

k <<Cy and Hy <<fo° Thus equation A.2.2.31 becomes, 

s=-—S-5 +i ge 4.252132 

The approximations involved in obtaining equation A.2.2.32 from 

equation A.2.2.29 can be simply evaluated for a particular case. 

However, the practical applications give extremely small errors as 

stated in Section 2.2. 

Let a = (Hjx)/(215);  g = (key)/(21,)3 0 = (epx)/1,, then 

equation A.2.2.32 vecomes, 

1 ee eS jno, : A.2.2.33
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where n = 0, +1, + 2 ete. 

In an exactly similar way the zeros of the transfer function 

can be shown to occur at points where, 

s = =n @ +8 + jno, A.2.2.34 

The poles of the forcing function are at s = + jo,. These can be 

moved along the imaginary axis of the s-plane by altering the 

transmitted frequency. A typical s-plane diagram is shown in 

Fig.2.2.2 of Section2,2, and the subsequent derivation of the echo 

is clearly explained in that section. 

The effect on the residues of considering the term exp ¥ 1 (x-21,) 

will be determined for the simple dominant pole case ( See Fig.2.3.1 

of section 2.3 ). Now, 

=Oi.- atet. = 22 (21, -x)p (21,-*)p Desires ae 
exp Tees ET. ee eo Lo ol ee Seeeed) 

(Hyp + Cy ) Cy cy Cy 

4.2.2,35 

But 2 if 4 ss 10° so, 

“-(21,-x)p -(21,-x)p | (21, 70H p? | 
exp mae SLEAD Beate ca | oe aaa 

(Hy p+CZ) sito. CF ae 

A.2.2.36 

The term exp(~(21, -x)p/C, ) produces the well known time 

delay of the whole function by an amount (21,-x)/C,. The term 

exp [(21, 0H, p/(2¢3)] must be taken into the residues. For 

example the residue from pole p=-8 - ma + ie) becomes, 

V,V, 
ear bi es exp j(w ,t + @ - 0) exp (-8-m?a) Tt 
jum v,V Ue 

A222 537.
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in Does where V, = exp [-(21, x)H, w 27(203)] 

and 8 

© 
i = (21y-x)(8 + ma) u, H/C} 

and the other symbols were defined in section 2.3. Summing 

the four residues the complete solution becomes, 

V,V5V we 28V,V 
Rast) = 2 EES sin(w, Ret On) tia ole 

Pos On 23 

sin(w ,t + @7- Og) exp (-B- ma) t K.252238 

= [= 4 27(2¢3 where Vg = exp [- (21, x)H, & 2/(263) | 

Near resonance w Same ats and so Vg = Vo producing an 

attenuation of the whole echo. Typically 8, is much less than 

one degree of arc for normally used line materials, giving a 

negligable effect on the echo. However if a particularly lossy 

line material is used, its effect should be investigated. 

The effect of the branch point for more general cases 

than the dominant pole case, gives a similar attenuation.
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Fig.A.2.2.1 Diagram showing the branch point and some poles 

of R(x,p). See equation A.2.2.22.



DERIVATION OF FREQUENCY EQUATIONS FOR DISK 

See 

APPENDIX A.3.1 

In general at any point in an elastic medium, the matrix equation 

relates the strain vector S; and the stress vector T,. 

So= st 

In cartesian co-ordinates it becomes, 

Sh eal 

) 851 

eo lmal at 

a7 Pi: 

85 $51 

56 * 61. 

S, are engineering strains. 
i 

a 
s 
22 

£32 

£42 

#52 

862 

e138 

278 

a3 
8 
43 

s 
53) 

563 

S14 

824 

£34 
s 
44 

854 

564 

Sj> Ss 

strains in the x, y, and z directions. 

about the x, y, and z directions. 

stresses T.. sS.. 
= i] 

#15 

505 

535 

545 

655 

565 

S16 

526 

s 
36 

£46 

856 

566 

A.3.1 

qT A.3.1.2 

and S, are longitudinal 

Sys 
5 

and S6 are shear strains 

Similarly, for the engineering 

are the 26 elastic constants of the material. By a 

consideration of the Strain-Energy-Function Love 1927 shows that, 

S., 

ij 
S.. 
i 

Further for an isotropic medium the elastic constants must be 

unaltered by a change to a new cartesian co-ordinate system. A 

consideration of this reduces the number of independent elastic constants 

to only two, and so 

a) eri 

=> S12 

S53) 12 
a) 0 

Ss oO 

Ss 0 

a 

Le 

Lk 

22. 

12 

12 

il 

® 

uL. A.3-1.3
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where s eee ger Co 10? 

For a consideration of thin disks, any interaction with the 

thickness direction (z-direction) can be neglected so, 

1 LL 12 1 

Sy = 18i5 511 0 T, A.3.1.4 

S6 0 0 #66 Te) 

Love's result for interchangeability of axes in this case leads to, 

8 ) 4.3.1.5 ea m1 712 

Equation A.3.1.5 holds because an isotropic material is being 

considered. A cubic material would have had three elastic constants; 

in that case 544 *'8uq7 Seguts the third elastic constant, and equation 

A.3.1.5 becomes AS 66 = Asa) - 819)» where A is the elastic anistropy 

of the material. A good account of the equations relating to crystal 

structures is given by Hearmon 1946. 

Poisson's ratio is defined as > 

5) 
on aa when T, = Ty = 0 

Therefore 

go = -8y5/81) A.3.1.6 

Young's Modulus is defined, 

oD 
a when T, = Tg = 0 

ZL 

Therefore 

E= 1s, J A.3.1.7 

By Kramer's Rule from equations A.3.1.4
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oro en” 

Sore ee Er 572 

86 : 566 B ar E (S, + gS,) 
, * 2 ae 

l-o 

ee = rs avn 10 

SMe peo “12 Sy 
0 0 566 a 

Therefore 5 

12 5 see of] A.3.1.8 
(Ey a5 y 

Similarly 

to, [Aes oats] A.3.1.9 Gey Py ae 

and 
. : ; 

= 6 =f E OE x a&. 
ware ae egal E Biches A.3.1.10 

Now to derive the equations of motion consider the incremental 

element of the plate in Fig. A.3.1.1. 

In x direction, 

oT aT 2 
  

  

  

g 
(eS Sy 62 Po Oy 6x 6 2s x Sy 6z0— = 

ax ay 
at 

Therefore 2 

at, a, co 
Mes ape ee en A311 

Similarly in y direction. 

at, at, ae 
ox Se ay ? apa 2 £63 .2ake 

Equations A.3.1.8 to A.3.1.12 are those with which Love 1927 commences, 

(page 497). 

Substituting into equation A.3.1.11 for Ty and Ts; from equations 

A.3.1.8 and A.3.1.10 yields,
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2 2 2 2 
. 2 

a: Bigs ol. a & a a € y.,(1-0°) ? ex 
2 f 2; GL = o} 2 ao a (. 0). ox ay a LC oaeeeapie e217 ASSETS, 

ax ay t 

Similarly equation A.3.1.12 becomes, 

  

  

  

2 2 2 2 

g E E Rene ae 2 
Lay ie 3 za +0 yc oe ey. aeele 
Z 2 oxo y E 2 

3 Pa oy at 

oe ag. a 1 a& 
= gle oy: == a. Rca TEA ae 7 and @ 2 ( ea De 

then equations A,3.1.13 and A.3.1.14 can be rewritten, 

2 a 
a a € 

DA = Sree Og G =o") x =e a Cony e a cy A.3.1,15 

2. a” Oo a E 
BA 4 -g) 28- fe) __y A.3.1.16 
ay ox E 9 2 

In polar co-ordinates, 

a€ e 3 iS a xr mL eo = 1 = 
Some et © enue - 3 30 een 

  

and the stress resultants become, 

  

  

3 E 5 aoe 2 rcs ie} A.3.1.18 
TF Gino") 

~ E abq bo 1 38%] tg =e [tt - 8+ ES He314.19 
(1+ 06)2 or 

If equation A.3.1.15 is differentiated with respect to x and 

A.3.1.16 with respect to y, the resultant equations can be summed to 

  

give, 
2 92, 

ad Q 

v7 A =e a z A.3.1.20 
at 

Similarly, 

2 Ged 220 veo =29 Sto 28 Adele 2L 
E 9 t2 

In general for a normal mode a solution , = F(r) G(@) cost 

can be assumed, Putting this solution into equation A.3.1.20
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gives coswt as a common factor, and then the variables r and @ can 

be separated, The general solution resulting from this is, 

A= [a, J, (hr) + Ay Y, Car) | [a cosn® + A,sin Follicoaee 

A.3.1522 

where ne =p (1- pa) oo/E. 

It is convenient here to state the boundary conditions for 

the disk of radius a, 

Tt. = 0 atx = a A.3.1.23 bg 

T,=0 atr=a AO3.1.24 rO 

A, ®, &r and §& © are finite A. 351.25 

for all r< a 

Concentrating on the @ ordinate first, it will be shown that £0 

and &r are orthogonal as assumed by Love 1927, br, fe, A 

and © will all be of the form £(r) coswt (A, cosnd + A-sin n@). 

The © ordinate is chosen such that, 

fr = Uf) cos nO coswt A.3.1.26 

bo Vi @) (A,cos n@ + A, sin n@) cosat 
A&.3.1.27 

Equation A,3.1.26 and A,3.1.27 are used to substitute for §r and 

a) in equation A.3.1.18. Then applying boundary condition 

A,3.1.23 gives, 

2G) wk | 
COB TG ee aU (cA v2) 

- sin nO E 48 yi) [-oa esa. sont n 

Hence, au, (r) 2 os 

Rar rm oe Age Vt) 20 
and 

on 
ig V,, (ESO atr=a,



So A_ = 0, and the solutions for Ex and §& © are orthogonal. 

Substituting these solutions into equation A.3.1.17 will show that 

A and @ are also orthogonal in 0, So using the solutions, 

A Fi (r) cos n@ coset 

o F(x) sin n@ cosat 

in equations A.3.1.20 and A.3.1.21 yields, 

Sas [473, (be) + ayy, (hr) | cos nO coswt A.3.1.28 

as [oda (kr) + Aio¥ Ck) | sin nO coswt A.3.1.29 

where 
te <0 1-92) ove, Ke = 20 48) W/E 

Boundary condition A.3.1.25 requires that Ag = Ayo = 10% 

Equations A.3.1.15 and A.3.1.16 when converted to their polar 

forms become 

= 2 aA iG - 20 -o) § 
Sauer eG -po = z A.3.1.30 

as eee 1g Oe) bo RSet a1 
BA ie ~ 90 ® E eas 

Substituting into A.3.1.30 and A.3.1.31 with the general solutions 

A.3.1.28 and A.3.1.29 gives the form for the solutions of aes and Eg: 

  

  

E dy (hr) ‘a 
a Aad serdar iz nA) cos nO coswt A.3.1.32 

& 2 J, Chr) J, (kr) 
oes nA, ae fs Alo ie | sin n@ coswt A,3.1.33 

For radial modes bo vanishes and c is independent of ©. This 

occurs when n = 0, Equation A.3.1.18 and.boundary condition A.3.1.23 

give, 

ease g dé | xr Ta Q a aS see aa ) ae 0 A.3.1.34 

So using solution A.3.1.32 in A.3.1.34 yields,



(ha) = 0 A.3.1.35 

as the radial modes frequency equation. 

The choice of the © ordinate is arbitary so rotating @ = o by 

n/2 and putting n = 0 yields tangential modes in which & : vanishes 

and & is independent of 0. The general solution A.3.1.33 is put 

into equation A.3.1.19 and applying boundary condition A.3.1.24 gives 

the frequency equation for tangential modes. 

dy, (ka) J, (ka) 
aa & = A.3.1.36   

The remaining solutions are those for which n > 0. Two 

equations are obtained by substituting A.3.1.32 and A.3.1.33 into 

A.3,1.18 and A,3.1.19 with their appropriate boundary conditions. 

  

  

i. 1 4d, (ka) l 
An a maa = 2 J, (ka) n(l -o ) 

roe A53.1.37 
12 dJ_(ha) 

Gio n 2) (aig) 2 | 
joes dagen ts 9 esa cha) 

a 

[, dd (ka) 2 
ee ee ae 28S) (Ea) A a da az n 

= = A.3.1.38 Aly 1 aJ,(ha) 
ey dee <3 J,(ha) | 2n 

The frequency equation for these compound modes is formed by eliminating 

/ between A.3.1.37 and A.3.1.38. “12 

Equations A.3,1.35 to A.3.1.38 are the frequency equations as 

given by Love 1927. The notation of Holland 1966 lends itself readily 

to numerical analysis, 

1/2 K = ha = wa ( p (1 - o°)/E) A.3.1.39
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o=k/n= [2/a-o )]¥? A.3.1.40 

Also the expressions are simplified by introducing a modified Bessel 

function 

= A MCA) AT y (A0/5,04) 

Using the relations A.3.1.39 and A.3.1.40 the frequency equations 

are converted to the following forms, 

Radial modes frequency equation, 

My (ip? sel = 9. A.3.1.41 

Tangential modes frequency equation, 

Mj (Kip CNR = 2 A.3.1.42 

Compound modes frequency equation; formed by eliminating Ayy/Ae 

  

  

in, 

A 
ll J, 6 OK a(M ( OK ne - (n+l) ) 

i 5 a ae ae Se ; 7 F : A.3.1.43 

i n * m,n HC OK, ) = n(n + 1)+ Ma 

2 

aT a J,6 ORG. our oot Co Lye = 2antl) A.3.1.44 
Als JC ae mM CK )-@ fat) 

The subscripts of K refer to particular solutions.



S12 

éy 

6x   
  

      

Fig.A.3.1.1 

An incremental element of a thin plate is 
shown. Notice the directions of T, on 
faces y = constant, and x = cone vant. 

These directions are verified by taking 
moments about the centre of the element. 
See Love 1927 (page 77).
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APPENDIX A.3.4 

CURVE FITTING 

A curve fitting program was available at the University 

computer centre. This used the method of least squares via 

orthogonal polynomials. The output gave coefficients of 

polynomials of degree up to and including the limit given. For 

each result the sum of the squared deviations was also given. 

The 

reference 

Salvadori 

The 

selection 

method is outlined very well in Hawgood 1965. A good 

for Cholesky's Scheme for solving determinants is 

1952. 

sum of the mean squares is printed out permitting the 

of a polynomial with sufficiently high degree.



TABLES OF K VALUES FOR RINGS 
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APPENDIX A.4.3 

  

  

  

Ky p Values 

¢ 
s 0.0 | 0.2 0.2 0.3 0.4 | 0.5 0.6 | 0.7 0.8 | 0.9 

0.00} 1.8412 }1,8035 | 1.7051 | 1.5821 |] 1.4618 | 1.3547 | 1.2621 | 1.1824 | 1.1134] 1.0531 

0.05 | 1.8789 }1.8372 | 1.7291 | 1.5964] 1.4695 | 1.3582 |1.2632 | 1.1821 | 1.1124] 1.0519 

0.10 |1.9154 }1.8689 ] 1.7501 | 1.6074] 1.4736 | 1.3584 |1.2612 | 1.1789 | 1.1087] 1.0480 

0.15 | 1.9506 |1,8988 | 1.7681 | 1.6147] 1.4741 | 1.3551 }1.2559 | 1.1727 | 1.1021] 1.0415 

0.20 | 1.9845 }1.9268 | 1.7828 | 1.6182] 1.4709 | 1.3482 |1.2473 | 1.1634] 1.0927] 1.0322 

0.25 | 2.0172 }1.9528 | 1.7941 | 1.6176 | 1.4636 | 1.3377 | 1.2353 | 1.1509 | 1.0802] 1.0202 

0.30 | 2.0490 ]1.9766 | 1.8015 | 1.6126 | 1.4521 | 1.3233 | 1.2197 | 1.1351 | 1.0647] 1.0052 

0.35 | 2.0796 |1.9981 | 1.8046 | 1.6028 | 1.4362 | 1.3047 | 1.2003 | 1.1158 | 1.0460} 0.9872 

0.40 | 2.1091 }2.0171 | 1.8028 | 1.5878 | 1.4153 | 1.2818] 1.1770 | 1.0929 | 1.0238] 0.9659 

0.45 | 2.1379 |2.0331 | 1.7954 | 1.5669 } 1.3891 | 1.2541 | 1.1494 | 1,0660 | 0.9980] 0.9412 

0.50 | 2.1659 |2.0456 | 1.7815 | 1.5395 ]1.3571 | 1.2212] 1.1171 | 1.0349 | 0.9682] 0.9129 

0.55 12.1930 }2.0539 1.7598 | 1.5045 ]1.3186 | 1.1826 | 1.0797 | 0.9991 | 0.9341 | 0.8804 

0,60 | 2.2192 }2.0566 | 1.7286 | 1.4608] 1.2726 | 1.1376 | 1.0365 | 0.9580 | 0.8952] 0.8434 

0.65 |2.2448 }2.0518 | 1.6857 | 1.4070 |1.2181 | 1.0851 ]0.9868 | 0.9110 | 0.8507 | 0.8013 

0.70 | 2.2696 }2.0367 | 1.6281 } 1.3410 }1.1535 | 1.0241 |o.9294 | 0.8571 | 0.7998] 0.7531 

0.75 | 2.2937 |2.0060 |1.5514 | 1.2598 }1.0767 | 0.9525 |0.8628 | 0.7947 | 0.7410 | 0.6975 

0,80 | 2,3171 |1.9505 |1.4493 | 1.1595 ]0.9843 | 0.8677 ]0.7844 | 0.7216 | 0.6725] 0.6328 

0.85 | 2.3399 |1.8524 |1.3114 | 1.0329 0.8709 | 0.7651 | 0.6902 | 0.6343 | 0.5907] 0.5556 

0,90 | 2.3621 |1.6734 |1.1190 | 0.8673 0.7263 | 0.6358 |0.5724 | 0.5254 | 0.4890 | 0.4598 

0.95 | 2.3836 |1.3177 |0.8268 | 0.6305 |0.5244 | 0.4574 |0.4110 | 0.3768 | 0.3504 | 0.3294                        
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K, |, Values 

; 0.0 | O21 Oa | 0.3) | OL8 0.5 | 0.6 0.7 | 0.8 | 0.9 

0.00 1.7497 [1.7555 | 1.7683] 1.7770] 1.7701 | 1.7411] 1.6917 | 1.6285] 1.5583 |1.4859 

0.05 1.7402 | 1.7469 | 1.7616 | 1.7727] 1.7678] 1.7398] 1.6906 | 1.6271] 1.5566 | 1.4841 

0.10 1.7258 [1.7331 | 1.7497 | 1.7633] 1.7606 | 1.7339] 1.6851 | 1.6216] 1.5510 |1.4786 

0.15 1.7061 | 1.7142 | 1.7327 | 1.7489] 1.7486 | 1.7234] 1.6751 | 1.6118] 1.5414 |1.4693 

0.20 1.6816 | 1.6903 | 1.7107 | 1.7294] 1.7316 | 1.7081] 1.6607 | 1.5979] 1.5278 |1.4561 

0.25 1.6520 | 1.6614 | 1.6835 | 1.7048] 1.7096 | 1.6880] 1.6417 | 1.5795] 1.5100 |1.4390 

0.30 1.6176 | 1.6275 | 1.6512 | 1.6749| 1.6824 | 1.6629] 1.6178 | 1.5565] 1.4879 |1.4178 

0.35 1.5781 | 1.5885 | 1.6136 | 1.6396] 1.6498 | 1.6325] 1.5890 | 1.5286] 1.4613 |1.3923 

0.40 1.5336 [1.5444 | 1.5707 | 1.5988] 1.6116 | 1.5966] 1.5549 | 1.4961] 1.4299 |1.3622 

0.45 1.4838 |1.4949 | 1.5222 | 1.5521] 1.5674 | 1.5549] 1.5151 | 1.4580] 1.3934 }1.3274 

0,50 1.4285 |1.4398 | 1.4678 | 1.4993] 1.5169 | 1.5069] 1.4693 | 1.4161] 1.3513 |1.2872 

0.55 1.3675 }1.3789 | 1.4072 | 1.4399] 1.4596 | 1.4521] 1.4168 | 1.3638] 1.3033 11.2414 

0.60 1.3001 }1.3114 | 1.3399 | 1.3733] 1,3948 | 1.3897] 1.3570 | 1.3065] 1.2485 }1.1892 

0.65 1.2256 ]1.2367 } 1.2649 }| 1.2986] 1.3215 | 1.3188] 1.2888 | 1.2411] 1.1860 |1.1296 

0.70 1.1629 [1.1537 } 1.1811 | 1.2145] 1.2384 | 1.2379] 1.2108 | 1.1664] 1.1146 |1.0616 

0.75 1.0504 ]1.0606 ] 1.0868 | 1.1194] 1.1436 | 1.1451] 1.1211 | 1.0802] 1.0324 |o.9832 

0.80 | 0.9454 |0.9549 | 0.9794 | 1.0103] 1.0341 | 1.0373] 1.0165 | 0.9799] 0.9365 Jo.8919 

0.85 | 0.8235 |0.8320 | 0.8542 | 0.8824 | 0.9050 | 0.9093 | 0.8921 | 0.8602 | 0.8222 0.7831 

0.90 | 0.6761 |o.6833 | 0.7020 | 0.7263 | 0.7463 | 0.7512 | 0.7378 | 0.7117} 0.6804 0.6480 

0.95 | 0.4806 Jo.4858 }0.4995 | 0.5175 |0.5327 | 0.5372 | 0.5282 | 0.5098 |0.4874 Jo.4642                         
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Ky 2. Values 

¢ 
is 0.0 Od | @.2) 0.3 0.4 | 0.5 0.6 0.7 | 0.8 | 0.9 

0.00 | 1.6518 [1.5250 | 1.2520 | 0.9942 | 0.7806 | 0.6003 {0.4439 | 0.3068 | 0.1875 j0.0851 

0.05 |1.6115 }1.4933 | 1.2345 | 0.9848] 0.7754 | 0.5974 |0.4424 | 0.3061 | 0.1872 [0.0851 

0.10 | 1.5697 |1.4596 ] 1.2145 | 0.9732] 0.7684 | 0.5931 ]0.4398 | 0.3046 10.1864 0.0844 

0.15 |1.5267 |1.4240 | 1.1920 | 0.9593 | 0.7595 | 0.5873 | 0.4361 | 0.3023 | 0.1851 Jo.0841 

0.20 }1.4819 }1.3863 } 1.1671 } 0.9432] 0.7487 | 0.5801 }0.4313 | 0.2993 |0,.1834 jo.0840 

0.25 | 1.4356 {1.3466 | 1.1398 | 0.9248] 0.7360 | 0.5713 | 0.4253 | 0.2954 | 0.1812 [0.0826 

0.30 | 1.3877 |1.3048 } 1.1100 | 0.9041 | 0.7214 | 0.5609 | 0.4181 | 0.2907 | 0.1784 jo.0811 

0.35 {1.3377 |1.2607 | 1.0776 | 0.8810 | 0.7047 | 0.5489 | 0.4097 | 0.2852 | 0.1751 |0.0792 

0.40 } 1.2858 |1.2143 | 1.0426 | 0.8555 | 0.6860 | 0.5353} 0.4001 | 0.2787 }0.1712 [0.0773 

0.45 | 1.2314 |1.1653 ] 1.0048 | 0.8274 | 0.6650 | 0.5198 | 0.3890 | 0.2712 | 0.1668 [0.0761 

0.50 ]1.1745 ]1.1135 ].0.9640 | 0.7964 ]0.6417 | 0.5024 | 0.3765 | 0.2628 |0.1616 [0.0741 

0.55 | 1.1145 |1.0585 ]0.9198 | 0.7625 | 0.6157 | 0.4829 | 0.3623 | 0.2531 ]0.1558 Jo.o711 

0.60 | 1.0510 |o.9999 } 0.8720 | 0.7251] 0.5869 | 0.4610 | 0.3463 | 0.2422 | 0.1492 [0.0680 

0.65 |0.9834 Jo.9369 ]0.8199 | 0.6839 | 0.5547 | 0.4365 | 0.3283 | 0.2298 |0.1416 [0.0642 

0.70 |0.9106 fo.8689 |0.7628 | 0.6382 |0.5188 | 0.4089 | 0.3079 | 0.2157 |0.1330 [0.0606 

0.75 |0.8315 }o.7944 0.6996 | 0.5869 ]0.4782 | 0.3774 |0.2846 | 0.1996 |0.1232 p.0564 

0.80 |o0.7438 }o.7116 }0.6285 | 0.5288 |0.4316 | 0.3413 [0.2576 | 0.1808 J0.1117  p.0510 

0.85 }0.6443 f.6171 |0.5466 } 0.4611 |0.3772 | 0.2987 |0.2257 | 0.1586 |0.0980 p.0451 

0.90 0.5261 p.5045 }o.4481 |0.3790 Jo.3106 | 0.2463 ]0.1864 | 0.1311 J0.0810 p.0373 

0.95 |0.3721 )p.3572 |o.3180 |0.2696 |o.2215 | 0.1759 [0.1333 | 0.0938 |0.0580 p.0262     
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Ky 3 Values 

* 
7 0.0 o.1 0.2 | 0.3 0.4 | 0.5 0.6 | 0.7 0.8 | 0.9 

0.00 {2.5069 | 2.5009 |2.4162 | 2.1557 ]1.8028 | 1.4537 }1.1251 | 0.8122 }0.5145 

0,05 [2.4523 | 2.4468 |2.3676 | 2.1215 }1.7818 | 1.4414 |1.1182 | 0.8088 |0.5132 

0.10 |2.3944 | 2.3892 |2.3152 | 2.0831 }1.7569 | 1.4257 |1.1087 | 0.8035 }0.5106 

0.15 |2.3332 | 2.3283 [2.2593 | 2.0407 ]1.7282 | 1.4066 |1.0964 | 0.7962 |0.5068 

0.20 |2.2688 | 2.2642 [2.2000 | 1.9944 |1.6955 | 1.3841 [1.0814 | 0.7868 }o.5015 

0.25 |2.2012 | 2.1970 |2.1370 | 1.9441 ]1.6590 | 1.3582 |1.0636 | 0.7753 |o.4950 

0.30 |2.1304 | 2.1264 |2.0707 | 1.8899 |1.6185 | 1.3288 |1.0430 | 0.7617 ]o.4870 

0.35 |2.0562 | 2.0525 |2.0008 | 1.8316 1.5741 | 1.2959 }1.0194 | 0.7459 0.4776 

0.40 {1.9783 | 1.9749 1.9270 | 1.7691 ]1.5255 | 1.2593 ]o.9928 | 0.7278 |0.4667 

0.45 |1.8965 | 1.8933 ]1.8490 | 1.7022 |1.4725 | 1.2188 |0.9629 | 0.7071 Jo.4542 

0.50 |1.8103 | 1.8074 |1.7666 | 1.6304 |1.4148 | 1.1740 ]0.9295 ] 0.6839 Jo.4398 

0.55 {1.7191 | 1.7165 }1.6790 } 1.5534 |1.3519 | 1.1247 [0.8923 | 0.6577 |o.4237 

0.60 |1.6223 | 1.6200 |1.5858 | 1.4704 1.2833 | 1.0703 0.8509 | 0.6283 o.4053 

0.65 |1.5189 | 1.5167 |1.4857 | 1.3806 ]1.2083 | 1.0100 |0.8046 | 0.5952 Jo.3845 

0.70 }1.4073 } 1.4054 ]1.3776 | 1.2827 ]1.1255 | 0.9431 }o.7528 |0.5578 [0.3609 

0.75 |1.2856 | 1.2839 }1.2593 } 1.1748 [1.0335 | 0.8679 |0.6941 ] 0.5152 fp.3338 

0.80 1.1507 } 1.1492 1.1278 | 1.0540 Jo.9295 | 0.7823 |0.6269 |.0.4661 P.3024 

0.85 0.9971 |0.9959 Jo.9778 |0.9155 Jo.8092 ] 0.6826 ]o.5480 | 0.4081 P.2651 

0.90 }0.8146 |0.8136 |o.7993 |0.7496 |o.6640 } 0.5613 0.4515 |0.3368 p.2190 

0.95 }0.5763 |0.5757 |0.5658 ]0.5314 Jo.4718 |0.3996 Jo.3220 | 0.2406 P.1569                     
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Ky g Values 

  

  

  

i 0.0 o.1 0.2 0.3 | 0.4 0.5 0.6 | 0.7 0.8 | 0.9 

o.oo | 3.2321 | 3.2318] 3.2210} 3.1225 | 2.8191 | 2.3821) 1.9163 | 1.4397 0.9484 

0.05 | 3.1689 | 3.1688] 3.1585 |3.0655 | 2.7769 | 2.3550] 1.9001 | 1.4313} 0.9450 

0.10 | 3.1001 | 3.1000} 3.0903 [3.0028 | 2.7290 | 2.3225] 1.8794 | 1.4193 0.9393, 

0.15 | 3.0261 | 3.0259] 3.0168 |2.9346 | 2.6755 | 2.2648) 1.8543 | 1.4039 0.9312 

0.20 | 2.9470 | 2.9468] 2.9382 |2.8613 | 2.6165 | 2.2420) 1.8247 | 1.3850 0.9207 

0.25 | 2.8629 | 2.8628] 2.8547 |2.7828 | 2.5521 | 2.1940) 1.7906 | 1.3624 0.9077 

0.30 | 2.7740 | 2.7739] 2.7664 |2.6993 | 2.4824 | 2.1409] 1.7520 ) 1.3364 0.8923, 

0.35. | 2-6801 | 2.6800} 2.6730 }2.6105 | 2.4070 | 2.0823} 1.7086 | 1.3064 0.8742 

0.20 | 2.5809 | 2.5808] 2.5743 | 2.5164 | 2.3260 | 2.0181] 1.6603 | 1.2725 0.8533 

0.45 | 2.4763 | 2.4762] 2.4701 |2.4164 | 2.2390 | 1.9482) 1.6068 | 1.2344 0.8296 

0.50 | 2.3655 | 2.3654] 2.3598 |2.3103 | 2.1454 | 1.8720) 1.5478 | 1.1918 0.8028 

0.55 | 2.2400 | 2.2078] 2.2427 |2.1972 | 2.0448 | 1.7889} 1.4828 | 1.1444 0.7724 

0.60 | 2.1227 | 2.1226| 2.1179 |2.0764 | 1.9362 | 1.6983) 1-4110 | 1.0914 0.7382 

0.65 | 1.9885 | 1.9883] 1.9841 [1.9464 | 1.8185 | 1-590] 1.3317 | 1.0323 0.6996 

0.70 | 1.8434 | 1.8432] 1.8394 1.8055 | 1.6900 | 1.4896) 1.2434 | 0.9660 0.6561 

0.75 | 1.6848 | 1.6847| 1.6813 |1.6512 | 1.5482 | 1.3678] 1.1443 | 0.8909 0.6063 

0.80 | 1.5086 | 1.5045] 1.5056 |1.4794 | 1.3894 | 1.2302) 1.0314 | 0.8047 05490 

0.85 | 1.3077 | 1.3077| 1.3053 |1.2833 | 1.2070 | 1.0710} 0.8999 | 0.7036 0.4800 

0.90 | 1.0688 | 1.0688| 1.0668 |1.0493 | 0.9884 | 0.8789] 0.7400 | 0.5797 0.3978 

0.95 } 0.7564 | 0.7564] 0.7551 0.7430 | 0.7008 } 0.6245 0.5268 | 0.4136 | 0.2819 
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5 Values 

° 
i 0.0 | 0.1 | 0.2 0.3 0.4 0.5 | 0.6 | 0.7 0.8 | 0.9 

0.00 }3.9094 | 3.9094 | 3.9084 [3.8847 | 3.7240 | 3.3107 }2,7569 | 2.1431 ]1.4654 

0.05 |3.8387 | 3.8386 |3.8376 }3.8150 | 3.6622 | 3.2660 }2.7283 | 2.1271 |1.4581 

0.10 |3.7601 | 3.7601 | 3.7591 |3.7376 | 3.5928 | 3.2141 |2.6934 | 2.1061 |1.4482 

0.15 }3.6744 | 3.6744 |3.6734 [3.6531 | 3.5164 | 3.1553 }2.6524 | 2.0799 ]1.4344 

0.20 |3.5819 | 3.5819 |3.5810 J3.5619 |3.4332 | 3.0897 |2.6052 | 2.0487 |1.4166 

0.25 }3.4828 | 3.4828 |3.4820 [3.4640 | 3.3432 | 3.0174 }2.5518 | 2.0123 |1.3952 

0.30 |3.3774 | 3.3774 |3.3766 |3.3598 3.2466 | 2.9384 }2.4922 | 1.9707 11.3701 

0.35 [3.2654 | 3.2654 |3.2606 3.2489 3.1432 | 2.8524 |2.4262 | 1.9237 |1.3410 

0.40 ]3.1466 | 3.1466 [3.1459 .1313 |2.0328 | 2.7593 ]2.3535 | 1.8710 |1.3078 

0.45 |3.0208 | 3.0208 }3.0201 fh.0066 |2.9151 | 2.6587 |2.2738 | 1.8124 |1.2701 

0.50 |2.8872 | 2.8871 |2.8865 p.8740 |2.7894 | 2.5501 |2.1867 | 1.7474 1.2279 

0.55 |2.7451 | 2.7450 |2.7444 p.7329 |2.6550 | 2.4327 |2.0913 | 1.6754 |1.1801 

0.60 [2.5932 | 2.5932 |2.5927 p.5e21 |2.s108 | 2.3055 |1.9869 | 1.5956 |1.1269 

0.65 |2.4302 | 2.4301 [2.4297 p.4201 |2.3553 | 2.1672 [1.8721 | 1.5071 |1.0680 

0.70 |2.2537 [2.2536 |2.2532 p.2446 |2.1863 | 2.0156 |1.7453 | 1.4083 Jo.9998 

0.75 |2.0605 | 2.0604 |2.0601 p.0524 |2.0006 | 1.848 |1.6037 | 1.2971 0.9237 

0.80 [1.8456 | 1.8456 |1.8452 ft.8386 ]1.7935 | 1.6596 [1.4434 | 1.1701 |o.8349 

0.85 |1.6004 | 1.6004 |1.6001 f.5945 ]1.5565 | 1.4427 [1.2575 | 1.0217 0.7308 

0.90 }1.3086 1.3083 1.3081 .3037 1.2734 1.1823 |1.0326 0.8008 fo.6107 

0.95 |0.9263 |0.9262 Jo.9260 .9228 Jo.9021 |0,8389 Jo.7341 ]0.5998                       
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K, 1g Values 

  

  

  

z ¥ 0.0 o.1 0.2 | 0.3 0.4 | 0.5 0.6 0.7 | 0.8 0.9 

0.00 4.5657 | 4.5656 [4.5655 | 4.5608 |4.4981 | 4.1954 |3.6143 | 2.8930 |2.0464 

0.05 [4.4870 | 4.4870 }4.4869 | 4.4823 |4.4223 | 4.1926 [3.5713 | 2.8675 ]2.0348 

0.10 [4.3988 | 4.3988 }4.3987 | 4.3942 |4.3371 | 4.0610 |3.5202 | 2.8351 [2.0182 

0.15 |4.3016 | 4.3016 }4.3015 | 4.2973 |4.2431 | 3.9809 ]3.4613 | 2.7961 |1.9966 

0.20 |4.1961 } 4.1961 }4.1960 | 4.1920 }4.1408 | 3.8925 |3.3946 | 2.7504 |1.9701 

0.25 |4.0826 | 4.0826 [4.0825 | 4.0787 |4.0305 | 3.7960 )3.3201 | 2.6980 |1.9385 

0.30 |3.9611 | 3.9611 }3.9610 | 3.9574 |3.9122 | 3.6914 |3.2378 | 2.6387 |1.9017 

0.35 |3,8316 | 3.8316 |3.8315 | 3.8283 |3.7859 | 3.5786 |3.1475 | 2.5724 11.8596 

0.40 |3.6939 | 3.6939 |3.6938 | 3.6907 }3.6513 | 3.4573 13.0490 | 2.4988 [1.8115 

0.45 |3.5476 | 3.5476 ]3.5475 | 3.5446 ]3.5079 | 3.3270 |2.9417 | 2.4175 |1.7577 

0.50 |3.3919 | 3.3919 ]3.3918 | 3.3892 |3.3552 | 3.1871 |2.8252 | 2.3279 |1.6971 

0.55 |3.2260 | 3.2260 |3.2259 | 3.2235 }3.1922 | 3.0368 |2.6984 | 2.2293 |1.6298 

0.60 }3.0486 | 3.0485 |3.0485 | 3.0462 |3.0176 | 2.8747 |2.5604 | 2.1206 |1.5544 

0.65 {2.8577 | 2.8577 |2.8576 | 2.8556 |2.8296 | 2.6992 |2.4095 | 2.0006 |1.4701 

0.70 |2.6509 | 2.6508 |2.6508 | 2.6489 |2.6255 | 2.5077 |2,2435 | 1.8673 |1.3779 

0.75 |2.4242 | 2.4242 ]2.4241 | 2.4225 |2.4017 | 2.2968 |2.0591 | 1.7179 |1.2693 

0.80 }2.1719 | 2.1718 }2.1718 }2.1703 2.1523 | 2.0606 |1.8511 | 1.5480 |1.1491 

0.85 |1,8838 | 1.8837 |1.8837 |1.8825 |1.8672 | 1.7897 |1.6109 | 1.3501 |1.0290 

0.90 |1.5403 | 1.5402 |1.sao2 1.5392 ]1.5271 ]1.4652 ]1.3214 | 1.1110 Jo.8426 

0.95 |1.0905 | 1.0904 |1.0904 |1.0899 }1.0815 | 1.0383 Jo.9369 | 0.8109                     
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Ky 7 Values 

e 
5 0.0 0.1 | 0.2 | 0.3 0.4 | 0.5 0.6 0.7 0.8 | 0.9 

0.00 |5.2106 | 5.2107 |5.2107 | 5.2098 [5.1889 | 5.0095 |4.4677 | 3.6706 |2.6755 

0.05 |5.1240 | 5.1240 |5.1239 | 5.1231 |5.1029 | 4.9308 |4.4091 | 3.6338 |2.6578 

0.10 {5.0259 | 5.0259 |5.0259 | 5.0251 }5.0057 | 4.8414 |4.3407 | 3.5886 |2.6337 

0.15 14.9174 14.9174 [4.9174 | 4.9166 }4.8981 | 4.7420 |4.2628 | 3.5350 |2.6030 

0.20 4.7990 | 4.7990 |4.7990 | 4.7982 4.7806 | 4.6328 |4.1756 | 3.4732 |2.5659 

0,25 4.6710 | 4.6710 |4.6710 | 4.6703 |4.6537 | 4.5142 |4.0791 | 3.4031 |2.5225 

0.30 |4.5337 | 4.5337 [4.5337 | 4.5330 4.5174 | 4.3862 |3.9734 | 3.3246 |2.4722 

0.35 [4.3870 | 4.3870 |4.3870 | 4.3864 4.3717 | 4.2487 | 3.8582 | 3.2375 |2.4152 

0.40 |4.2308 | 4.2307 |4.2307 | 4.2301 }4.2163 | 4.1014 |3.7332 | 3.1414 |2.3509 

0.45 [4.0643 | 4.0642 [4.0642 | 4.0637 14.0509 | 3.9438 | 3.5980 | 3.0359 |2.2788 

0.50 |3.8870 | 3.8869 [3.8869 | 3.8864 13.8745 | 3.7753 ]3.4517 | 2.9203 |2.1987 

0.55 |3.6977 | 3.6977 |3.6977 | 3.6972 |3.6862 | 3.5947 ]3.2935 | 2.7937 |2.1100 

0.60 {3.4951 | 3.4950 13,4950 | 3.4946 |3.4845 | 3.4005 ]3.1219 | 2.6549 |2.0110 

0.65 13.2769 | 3.2769 |3.2769 | 3.2765 |3.2673 | 3.1908 ]2.9350 | 2.5021 |1.9018 

0.70 {3.0403 [3.0403 |3.0403 | 3.0399 |3.0316 | 2.9627 |2.7302 | 2.3332 |1.7800 

0.75 |2.7809 | 2.7808 }2.7808 | 2.7805 |2.7732 | 2.7118 |2.5035 | 2.1444 |1.6427 

0.80 |2.4917 | 2.4918 |2.4918 | 2.4915 |2.4851 | 2.4316 |2.2486 | 1.9304 |1.4909 

0.85 |2.1615 | 2.1615 }2.1615 | 2.1613 |2.1559 | 2.1107 |1.9551 | 1.6820 

0.90 |1.7676 | 1.7676 |1.7676 } 1.7676 |1.7633 ] 1.7271 ]1.6029 | 1.3908                   
     



sy 

  

  

  

K, 1 Values 

@ 
0.0 o.1 | 0.2 | 0.3 | 0.4 0.5 | 0.6 0.7 0.8 0.9 

° 

0.00 | 5.8491 | 5.9491 |5.8491 | 5.8489 ]5.8425 | 5.7512 [5.3016 4.4632 |3.3411 

0.05 | 5.7541] 5.7541 [5.7541 | 5.7539 |5.7478 | 5.6596 [5.2272 | 4.4140 )3.3159 

0.10 | 5.6461 | 5.6461 |5.6461 | 5.6460 |5.6399 | 5.5554 |5.1412 } 4.3546 |3.2827 

0.15 | 5.5261 | 5.5261 [5.5261 | 5.5260 |5.5202 | 5.4396 [5.0441 [4.2854 [3.2418 

0.20 | 5.3948 | 5.3948 |5.3948 |5.3946 5.3691 |5.3126 |4.9362 | 4.2062 }3.1928 

0.25 | 5.2525 | 5.2525 |5.2525 |5.2524 ]5.2471 5.1747 [4.8176 [4.1173 |3.1357 

0.30 | 5.0995 | 5.0995 |5.0995 | 5.0993 |5.0943 | 5.0262 |4.6884 4.0184 |3.0708 

0.35 | 4.9357 ]4.9357 |4.9357 |4.9356 [4.9308 |4.8668 |4.5484 |3.9094 |2.9972 

0.40 | 4.7609 | 4.7609 |4.7609 ]4.7608 |4.7563 |4.6965 ]4.3972 |3.7898 [2.9146 

0.45 | 4.5745 14.5745 4.5745 [4.5744 [4.5703 14.5145 ]4.2342 | 3.6592 |2.8233 

0.50 | 4.3758 | 4.3758 |4.3758 ]4.3757 4.3718 [4.3201 |4.0587 [3.5167 [2.7221 

                    
  

  

 



= 132 - 

K, 9 Values 

  

0.0 | 0.2 0.2 | 0.3 | 0.4 0.5 0.6 o.7 | 0.8 | (0.9 

  

  

0.00 | 6.4832] 6.4832 | 6.4832 | 6.4831 | 6.4812 | 6.4390 | 6.1041 | 5.2623 | 4.0338 

0.05 | 6.3798] 6.3798 | 6.3798 | 6.3797 | 6.3780 | 6.3368 | 6.0143 | 5.1997 | 4.0000 

0.10 | 6.2618] 6.2618 | 6.2618 | 6.2618] 6.2600 | 6.2204 | 5.9113 | 5.1253 | 3.9568 

0.15 | 6.1303] 6.1303 | 6.1303 | 6.1302 | 6.1285 | 6.0905 | 5.7956 | 5.0394 | 3.9041 

0.20 | 5.9860] 5.9860 | 5.9860 | 5.9859 | 5.9842 | 5.9840 | 5.6676 | 4.9421 | 3.8421 

0.25 | 5.8293] 5.8293 | 5.8293 | 5.8293 | 5.8277 | 5.7933 | 5.5276 | 4.8335 | 3.7707 

0.30 | 5.6606] 5.6606 | 5.6606 | 5.6606 | 5.6591 | 5.6266 5.3756 | 4.7135 | 3.6893 

0.35 | 5.4798] 5.4798 | 5.4798 | 5.4798 | 5.4784 | 5.4478 | 5.2115 | 4.5819 | 3.5981 

0.40 | 5.2866] 5.2866 | 5.2866 | 5.2866 | 5.2852 | 5.2566 | 5.0349 | 4.4382 | 3.4966 

0.45 | 5.0805] 5.0805 | 5.0805 | 5.0804 | 5.0792 | 5.0524 | 4.8452 | 4.2818 | 3.3843 

0.50 | 4.8604] 4.8604 | 4.8604 | 4.8604 }4.8592 | 4.8344 |4.6415 | 4.1119 | 3.2590 

                      
  

Due to the Limited volume of computer time available, certain 
K values have been omitted from the tables. These have been restricted 
to what is considered the less useful extremes of the parameters o and 
@ . However the programs for obtaining these values do exist. 

 


