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SUMMARY

An acoustic transmission line system in which the echo returned
from a resonator, having an arbitary spectrum of resonances has been
analysed, The results show that the system, which is of practical
importance because of the separation of the signal transducer and
the resonator being studied, can be used for a variety of material
measurements. The special case of a line resonator, which has an
harmonic spectrum has been examined using Laplace transform technique,
and the rigour of the solution is established by specific experimental
tests. The approximations of classical accoustical theory which
assumes a lumped rather than a distributed resonator and expresses

material loss as a 'Q' factor have been reconciled to this exact theory.

Contour vibrations of disk resonators were investigated and the
results are compared with recent numerical solutions from theory. A
variety of specimens in disk form were used to determine elastic
constants and their temperature coefficients with high precision.
The extension of the disk theory to cover anisotropic materials has

been considered,

The disk theory has been extended to include a second boundary -
a concentric hole - and numerical solutions obtained,. Results are
in agreement with the well-established thin ring spectrum for large
holes and disk theory for small holes. Experiments on the full range

of hole sizes verify the results to the limit of experimental error.

The theory for the line resonator was extended to show that it
is a convenient resonator form for Internal Friction measurement. The

material Q of a pure copper rod was measured over a wide temperature



(iii)

range and the results are in agreement with those of other workers,

The electronic equipment developed for the various measurements
is described briefly and the possible methods of automation are

discussed,
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1. GENERAL INTRODUCTION

In radar and sonar systems the characteristics of an
echo returned from an object depend on the transmitted signal
and the object parameters, such as size, shape, and natural
resonances near the transmitted frequency. A resonant object
known as an echo box, is often used for tuning and performance
checks on these systems. An equivalent mechanical or acoustic
system could consist of a wire line carrying a burst of
longitudinal plane waves of strain. This signal would echo
up and down the line with diminishing amplitude due to
attenuation.

The case of such a line terminated by a resonator
(Bell 1968) has been analysed and compared with experiment.
The general solution obtained can be used to give the transient
response of a resonator, having internal energy losses, and an
arbitary spectrum of resonances, for any transmitted frequency.

The feature which gives the system its practical importance
is the separation of the active electrical parts of the system
from the resonator. Thus, for example, the launcher can be
in the cool region of a high-temperature furnace, while the

resonator being studied is inside it.



2, THE ECHO TECHNIQUE

2.1 Introduction

Fig. 2.1.1 shows the experimental arrangement for this
investigation. The short length of magnetostrictive line
acts as a launcher and receiver of the mechanical oscillations.
It is matched to the line which must be sufficiently long to
avoid overlap between the forward signal and the echo return.
The resonator shown takes the form of a lengthof large diameter
line, which will resonate giving antinodes at the ends. In all
applications only the first reflection of the transmitted
signal is looked at in detail. This will be called the "echo".

A typical echo, shown in Fig. 2.1.2 consists essentially
of two components; the echo-signal, and the echo-decrement.
The echo signal is the direct return of the waves incident on
the object, and is at the transmitted frequency. The echo
decrement which follows, is the exponential re-radiation of the
energy stored, and is always at the natural frequency or
frequencies of the resonator.

The mathematical analysis is given here in the form in
which it was published. A more explanatory account is contained
in Appendix A.2.2 of this thesis.

2.2 Mathematical analysis

Pig. 2.2.1 shows the transmission line and line resonator
in diagrammatic form. The fact that the first reflection is of
primary interest has been used to simplify this analysis and a

solution for the echo alone is obtained.



The impedance z is defined

z = Force (F)/Displacement Velocity (U)
This is convenient as both F and U are continuous at the
boundary between line and resonator.
The characteristic equation of motion for plane

longitudinal vibrations in a rod is,

4 2 3

st ]
2 2 2

ot ax X 9t

This is the one dimensional form of Stokes' (Stokes 1845)
general equation (U=U(x,t)) and is valid for small values of
strain. The term involving H allows for losses due to
Internal Friction in the material. The general solution of

equation 2.2.1 in its Laplacean Transformation is,
U(x,p) = A(p)exp(-Yx)+B(p)exp(yx) 2:2:2

where Y2=p2/(Hp+C2) and A(p) and B(p) are functions of p
dependent on boundary conditionms.

In the resonator region (1I<x<11+12) equation 2.2.1 is
valid. This can be expressed in the form of two coupled partial-

differential equations.

(H,p+C2) 3 T, (x,p)

Fz(x,p) = -pzAz > e 25243
3 F,(x,p)

- v 1= 1%

U,(x,p) = ok P 3 x 2.2.4



The characteristic impedance is,

2.5
2) 9.2.5

The boundary conditions for the region (115x<11+12) are,

F,(1,+1,,p)=0; F,(L,,p)=F, (1,,p);U,(1,,p)=U;(1,,p)
These boundary conditions and equations 2.2.2/3/4 can be

combined, eliminating Az(p) and Bz(p), to give,

Fl(ll,p)/ﬁ1(11,p) = ZZ(P)tanh(Yzlz) 2.2.6

where 73 = pZ/(Hzp + C%) 2:2.7

In the line region the general solution equation 2.2.2

becomes,
fl(x,p) = A, (p)exp(-Y,x)+B, (p)exp(y;x) 9,2.8

Suppose that at time t=0 a forcing function Ul(O,'ﬂ=a sing T

is applied at point x=0, and so,
U,(0,p) = aau/(?2+w2) 2.2.9
l ) g 'S P A

Equations 2.2.6 and 2.2.9 are used as boundary conditions for
equation 2.2.8. The expression for the first reflection obtained
in this way is,

Zl(p)-zz(p)tanh(yzlz) aw

expy, (x-21.)
Zl(p)+22(p)tanh(‘512) p2+w§ 1 1

R(x,p) = 2.2.10

Y, and Z, have expressions of similar form to those for

72 and 22.

In equation 2.2.10 the term expy,(x-2l,) contributes a branch point
PYy 1

; 2 2 y
at point p =-01/H1. In general 01/H1 is a very large number,
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and thus the branch point gives two significant effects

when = the Laplacean Inversion of R(x,p) is undertaken.

(For more detail see Appendix A.2.2). First, an attenuation

of the whole echo. Secondly, a time delay of-(x-le)/Cl for
the whole echo. The time delay can be seen simply in the case
of a lossless line by putting H1=O into equation 2.2.10.
Neither of these effects are relevant in the practical case,
and a new function R' is therefore defined,

Zl(s)—zz(s)tanh(Yzlz) aw,
Zl(s)+22(s)tanh(Y212) 52+u§

R'(0,s) = B
s is the new Laplacean operator for t and T-t=211/C1. The
echo signal begins at t=0. This completely general expression
can be reduced to that obtained by the conventional analysis
of a line terminated by a lumped-parameter resonator, if only
one dominant pole is considered. It will be noted that in
equation 2.2.11 the observation point for the echo has been
taken at x=0

The positions of the poles and zeros of R'(s) will be found
enabling it to be represented in the s-plane. The function
R'(0,s) splits conveniently into two parts; the transfer function
of the system, and the forcing function applied to it. The
transfer function [?1(5)-22(s)tanh(]é125] fl?l(s)+22(s)tanh(yzlzi]
has poles at points where Zl(s)+22(s)tanh(yzlz)=0.

This condition leads to the result,

2L, =) 2:2.12



where r=(22(s)-Zl(s))/(Zz(s)+Zl(S))

r is the reflection coefficient due to the junction mismatch

at x=11.
2 2 :
However, Hf‘tcl, H2<<C2, and in general,
r=(p,Coh,- p;C A /G 2C2A2+plClAl) 202,13

So letting ln(r)= -k+j@ gives,

©-=2nnt where n=0, tl, tZ, etc. and k=1n(1l/1).

The subsequent solutions for poles in the s-plane resulting

from equation 2.2.12 are
2 -
s= -n G—gﬂnml 2.2.14
2 2
= It 4 = . =
where Gm(H, )/ (21 )3 B =(kCp}/(21,)5. 8 =(C, ML,

Similarly, solutions for the zeros are given by,
= --n2 a+B + jnw1 242415

A typical s-plane diagram is shown in Fig. 2:2.2,

The imaginary (or frequency) ordinates of s, nml, give
the resonant mode frequencies of the resonator. The real
ordinates are combinations of a and 8. It will be shown later
that, g is related to the Q value for coupling between line
and resonator, and o is related to the Q of the resonator
material.

The Laplacean inversion of equation 2.2.11 can now be
undertaken by contour integration in the s-plane, to give a

function R'(0,t). However in practice a short burst of

oscillations is transmitted and so the forcing function becomes
e T
E ” w2y
latqf(s +w5)]|} exp( sTﬂ 25216

where T=2nPNﬁuS and PN is the number of oscillations in the



burst. In this case the solution of equation 2.2.11 gives
the Echo,
E=R'(0,t) = h(t-T)R'(0,t-T) 22517

A typicai echo, where the transmitted frequency is a
resonant frequency is shown in Fig. 2.4.1(a).

Some approximations have been made to obtain this solution.
However the present practical applicationslie within the
following limits:

(1) Oscillations to crossover, P, greater than 5.

(2) Natural resonant frequency, fm, greater than lkHz.
The experimental techniques below this value have not yet
been developed.

(3) Material losses within the condition 58> m2 o

These restrictions can be used to examine the approximations
made so far. The worst possible error would occur with the
resonator tightly coupled at a low resonant frequency with high
material losses. In this case the error would effect vectors
in the s-plane diagram by approximately 1:108 in their modulus
and 0.005 degrees of arc in their angle. For any practical
system these approximations are entirely negligible. The dominant
pole approximation referred to in section 2.3 has an effect which
is a factor of 105 greater.

2.3 Dominant pole approximation

An approximation of this kind is possible because of the
distribution of poles along the imaginary axis. Consider the
s-plane diagram shown in Fig. 2.3.1. m will be used to
indicate a general resonant mode (e.g. for fundamental m=1).

In this case equation 2.2.11 becomes



Ll

Ay (S-B+m2&£jqn)(5-5+m2a—jHm)

R'(0,s) = 231

(stjo ) (s-ju ) (5+B+m2a+jmm) (s+5+m20t'j°’m)

This expression is inverted by summing the residues from
the poles. For example, the residue from the pole at

2 i
s = -B-Hla*jﬁh is,

2a B%(a-jL%)(exp(-g-mza)t)(expjwmt)

5 3 2.3.2
Jag (B’ o (@ +0)) (g o= (-0 ))
The residues from the four poles are summed to give,
vavs W 2 Vl
R'(0,t) = a vV sin(mst+96) + 2 — Vﬁv—
2°3 w33
sin(w t+0_)exp(- -m2 )2 2803
VS SERgrit g =T

[ = o = . - il
where ©, 93 + 6, 92 94, 6, 92 + 93 91

2 -1
V1=(Bz+wm)15 ; @ =tan (wm/s)

V2= |:( B-i-mzu )2+(wm+ws)2;| E ; 0 2=tan-l Igwm-l-ws)/'(g-l-mz OtJ-_l

V3= E( B\+«rn2a)2+(mm-ws)2:] e ; 93=tan~ . [(wm- “’S)/(B*T“Za )]

v [e - 0?0007 5 0 mtan” [(wgro,)/(8-n'a) ]

Vo= [(pmla) 28 007 * 5 0 =tan™! [(0 -0}/ G -uf )]

The function has been expressed in this form because aspects
of its structure can be visualised by examination of individual
terms. However, the combined effect is illustrated here by
computer plots of the echo traces. Useful expressions can be
derived for oscillations to crossover, and steady state echo
signal amplitude, at resonance (i.e.tnm=ws).

The crossover point is defined when the amplitude=0.

Let this occur at t=tc.
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Then t_ = [1/(Bm’a)] 1n(2¢/(g-m’a)) 2.3.4

by neglecting B+m2c;compared with st. So oscillations to

crossover=frequency x t.

Therefore P =E0mf23'f(8+m2 qﬂln(ZB/( B-mza)) 2.3.5
Also at resonance (°E=m§) the amplitude of the envelope

of the echo-signal is given by,

E = [a/( Bi*mza)] [—3+m%+2 Bexp(-s-mza)t] 2.3.6

The initial amplitude at t=0 is, E0=a. This checks with the

physical situation, because the resonator initially represents

a clamped termination (high impedance).

As t approaches infinity the echo-signal approaches its

steady-state amplitude E_ -a(B-m%x)/(5+m%x), the minus sign
indicating the reverse phase occurring at the crossover.
Hence E /E; = -(B-mzd}/(3+m2a) 2:3:7
It is convenient to relate the Q notation of simple theory
to the terms @ and B. In most textbooks (Kolsky,1963) the
following definition is observed
Q = (Energy Stored)/(Energy lost per radian) 2.3.8
Three Q values are related to the resonator.
(km is coupling Q for mode m
OMm is material Q for mode m
Ql‘m is total Q for mode m
Using equation 2.3.8., the following expression results, with

the normal approximation implicit in the use of Q.

U = wn/2(3+ mza) 2.3%.9



N

In the lossless case when @ = 0, QTm is due only to reradiation

back down the line, so QTm =10

Cm”
Therefore, QCm = mm/2 B 2.3.10
Q =w/2m2u. 2:3.11
Mm m i

2.4 Comparison with experiment

Fig.2.4.1(b) shows an oscilloscope trace for the fundamental
mode of an aluminium line resonator. The standard techniques of
the magnetostrictive delay line were used. The transmission line

was 10 metres of 18 gauge piano-wire. The magnetostrictive

material used was permandurewhich was brazed onto the end of
the line. The short coil was 500 turns of thin copper wire,
wound on a thin former. Table 2.4.2 shows the calculation of

data for the plot of Fig.2.4.1(a).

The envelope of the echo-signal component is exponential
having the same time constant as the envelope of the echo-decrement.
The phase of the echo-signal component reverses as it goes through
the null value and the amplitude rises to steady-state unity, when
all the incident signal is reflected, and the junction of resonator
and line is an antinode. The initial amplitude is determined by
the reflection coefficient,r. The effect of detuning (see Fig.
2.4.3) is an initial loss of the null and a subsequent fall in the
energy stored, resulting in a decrease of the echo-decrement
amplitude. With still further detuning the echo-decrement

disappears, and the echo becomes an image of the incident  signal.
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2.5 The line resonator

The line resonator has a harmonic spectrum of resonances, so
that @ =m0,. For a higher order mode (say m=3) a stepped
envelope to the echo is observed as predicted by the theory of
section 2.2. An oscilloscope trace for the aluminium resonator
is shown in Fig. 2.5.1. The amplitude steps at every thixd
oscillation, as this is the transit time for a return signal
in the resonator, which is now 3 (1/2) long.

However the dominant pole approximation of section 2.3
removes this feature from the theory, as does normal acoustic
analysis, making the envelope a pure exponential. This has
little significance for most applications, but it illustrates
the precision of the theory derived in section 2.2.

A computer program was written to compute the echo-signal
for mode m=3 but to include residues from poles up to
n = TlO; that is to include poles up to f1owl on the j-axis
of the s-plane. The resultant computed echo-signal was an
exact replica, showing the stepped form obtained in practice.

The fundamental, of course, is also stepped having a step
each cycle. For the first cycle the amplitude is constant
being ra. The dominant pole approximation gives an amplitude
starting at, a, and dropping to ra over the first cycle.

The computer program referred to above is a good critical
test of the general validity of the theory. However, for many
applications the dominant pole approximation is adequate..

The line resonator is frequently used in experiments. When

establishing an experiment, parameters such as line diameter
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and frequency are chosen to give the desired coupling.

Fig. 2.5.2 gives a graph relating these paramters for
easy reference. Bell, Noble, Seth 1973 also published a
chart of acoustic data to be used for selecting suitable
materials for particular applications.

2.6 Resonators with anharmonic spectra

In general, an arbitarily shaped resonator will have an
anharmonic spectrum of resonances. For some modes the dominant
pole approximation may not be applicable if these modes occur
close to each other in frequency. Any number of interacting
modes can be analysed by considering the appropriate s-plane
diagram. However for practical applications a knowledge of
the result of two interacting lossless resonances is sufficient.
The s-plane diagram of Fig. 2.6.1 represents this situation.
Again a computer was used to evaluate the residues so that for
particular input data the echo could be plotted. A typical
result is shown in Fig. 2.6.2. See also section 3.3.

If the relation between stored energy in the resonator and
amplitude of vibration at the coupling point is known, the
coupling Q's can be calculated. Successive computer plots of
a particular situation allows the exact resonant frequencies
to be determined.

2.7 Experimental apparatus

A schematic diagram of the experimental apparatus is shown
in Fig. 2.1.1. In general the coil is positioned so that the
backwards travelling signal is reflected to reinforce the signal

travelling towards the resonator.
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The acoustic bandwidth is determined by considering the
situation in Fig. 2.7.1l(a). There is a phase reversal at the
free end, so the reflected wave will lag the forward wave by

an angle (m+208) where ©=2nl/)=2xlf/c. The waves reinforce

when this angle is 2nn; (n=1,2,3,etc) i.e.® =xn/2, 3x/2, 5xn/2 etc.
Fig. 2.7.1(b) shows a phase angle diagram. The 3db points for
the first reinforcement (n=1) are at ©=x/4 and ©=37/4, giving

a bandwidth of frequency ratio 3. Similarly the second
reinforcement (n=2) gives a frequency ratio of only 1.4.
Reinforcements with higher values of n give correspondingly
narrower bandwidths. In practice the coil is positioned for the
first reinforcement to take advantage of the high bandwidth. In
many experiments subsequent re-adjustment of the coil is
unnecessary.

The electrical pick-up system is of high bandwidth (low Q)
and is tuned by means of the decade capacitor. Johmnson 1971
investigated the response, showing that there is negligible
effect on the phase and frequency properties of the echo.

Permandure was found to be a most efficient magnetostrictive
material. For further information on this topic see Bozorth 1951.

Figs. 2.7.2/3 show photographs of the experimental apparatus
used by the author.

2.8 Application

This echo technique was initially applied to temperature
measurement (Bell 1968). Probes have been designed and used to
measure temperatures in nuclear reactors, liquid metals, and gas

flames (Seth 1974).
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More recently the method has been applied to:
(1) the measurement of elastic constants (Section 3.4 of this
thesis)
(2) the measurement of internal friction in solids (Pelmore 1974)
(3) the investigation of resonant modes in many structures
(4) the investigation of fluid properties; in particular, density,

viscosity and pressure
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TRANSMISSION LINE
C 7% I RESONATOR
UVvuUuiuvv '1‘\
MAGNETOSTRICTIVE PORTION
TUNING
C M 0SCILLOSCOPE
DISPLAY

ELECTRONIC BURST
GENERATOR AND
FREQUENCY DISPLAY

Fig.2.1.1 The bias produced by the magnet is necessary because

of the quadratic nature of the magnetostrictive effect.
The line must be long enough to accommodate the
oscillation burst without producing standing waves.

Particular forms of resonator are chosen for particular
applications.

RESONATOR

REGION (2)
LINE REGION (1)

Fig.2.2.1 The analysis is accomplished by considering the line

region (0< x <1.) and the resonator region
(11< x <1, + 12 ) as boundary value problems.
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Fig. 2.

the echo

signal which has the same duration as the transmitted

The two components of the echo are shown;

burst, and the echo decrement which is the re-radiation

of the energy stored.
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X ©
X ® s-plane
X O]
X
X @©@
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X
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Fig.202.2 This diagram has unequal scale factors. In general

the imaginary ordinate of a pole will be greater than
fifty times the real ordinate. A ratio of fifty
will be shown later to give about five oscillations
to the crossover point. All s-plane diagrams in
this thesis are shown with unequal scales for clarity.

D 4 N @ s-plane

Figi2.3.1 In this diagram for the dominant pole approximation,

other poles of the system are neglected. The
typical error produced is 1% because of the small

distance separating the poles of the system and the
poles of the forcing function.



Fig. 2.4.1(a)

s TR

Resultant computer plot for the aluminium line resonator
using the data calculated in Table 2.4.2.

Fig.2.4.1(b)

Oscilloscope trace of the actual aluminium line resonator
in its lowest mode.

The resonator is lossless, consequently the steady-state
echo-signal is equal to the initial signal, and the decrement
begins at twice this value. The equality of the exponential
rise and fall is apparent. The stepped nature of the echo
appears with the higher order resonances (see Fig.2.5.1).



- 19 -

Line/resonator measured A1/A2 = 0.0128
cross-sectional
area ratio
peting known data 01 €1/ ppc, =2.88
pc resonator
Longitudinal
velocity in known data €5 = 5240 m/s
resonator
Resonator length measured 12 =109 lcm
Fundamental natural 21
resonant frequency w, =c, /1 w, = 2;m 26500 s
1 2 2 3!
-chlAl
M e
A )
Reflection coefficient = —_— r =10.93
p.c.A
1 Ji=gd
2 c, A
Beay
Factor k k = 10ger k = 0.076
Ordinate B B = kc2/212 B = 20005-1
=~ 2 -1
Loss coefficient known data H2 = 0 ms
Ordinate o o= H§/2122 e

Fig.2.4.2

This table shows the calculation process from first

principles for the aluminium line resonator using
the basic acoustical data, The resulting values for
o, B, and w, were used to obtain the computer plot

of Fig.2.4.1(a)
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Fig.2.4.3

The -modulation

of the echo signal indicates the beat frequency difference

between the transmitted signal frequency and the resonant

The echo is shown with successive amounts of detuning
frequency.

which cause a rapid fall in the energy stored, shown

by the fall in the decrement amplitude.
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Pig. 2.5.1

Oscilloscope photograph showing the stepped nature of
the echo for mode m =3 of the aluminium line resonator.
The steps correspond to the transit time for a return
signal in the resonator.
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Fig,2.5.2 - diameter line

This graph is useful for choosing a line size

in order to give a desirable coupling Q for a

particular experiment. P, is the number of

oscillations to crossover for the fundamental

(m = 1). For overtones P = mP. so long as the
) m 1

material is lossless.



s-plane

Fig. 2.6.1

This is the diagram for a coupled resonance
involving two lossless resonant modes.
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Fig.2.6.2

Echo return showing the effect of two coupled

resonant modes as in Fig.2.6.1.

The frequency

separation of the modes is 5% and the coupling

The transmitted frequency

is tuned to one of the modes.

is the same for both.
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[ Cff )
J

I< : =1

Fig,2,7.1(a)

The total forward travelling wave is the sum
of the reflected and forward waves shown here.

0dB
P77 S = < o
s N
P4 N
\
Reflected
/ phase S~ ~ \
/ \
\ phase delay
[ n+ 20
d d
3 BT | A | 1-3 B
\ \ / /
A P
% o /
\ 2l /
A
N Forward #
~ phase o~
s — J s

Fig.2.7.1(b)

This vector diagram shows the relation between ©
and the 3 dB points and hence defines the bandwidth.
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Fig.2.7.2

This photograph shows the burst generator, the
tuning capacitor and the frequency meter used
in the laboratory.






Fig.2.7.3

- A

A typical launching coil and bias magnet are shown
here. A range of coils of various lengths allows
optimum performance to be achieved at the frequencies
being used. To achieve maximum electroacoustic
coupling the coil must be close to the magnetostrictive
material, so a range of various diameter coils was
available.
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3. DISK RESONATORS

3.1 Introduction

The complex pattern of vibrations in disks and plates has
been known and studied for about two centuries. Their analysis
has been attempted by many mathematicians, and while the differential
equations are readily derived, the boundary conditions can make
certain solutions extremely difficult.

Here, thin disks with planar isotropy in particular are
considered. There are two basic types of vibration, flexural
(Chladni 1787, Ravenhall 1973), and contour extensional (in plane)
modes. The latter, until comparatively recently have not been
seriously considered for two principal reasons. First, the solution
of the frequency equations without the help of a digital computer
would have been a formidable task. Secondly there was no convenient
method to excite these modes. In fact Love 1927 concluded, '"these
modes of vibration seem not to be of sufficient physical importance
to make it worth while to attempt to calculate the roots numerically".
With the general availability of highly active ferroelectric ceramics,
the latter difficulty was removed and Onoe 1956 derived solutions
for certain cases. Holland 1966, making extensive use of digital
computers, completed the solutions for the difficult compound modes.

The contour extensional modes themselves subdivide into
three groups:-

(1) Radial Modes characterised by the absence of rotation. In
these modes 59 vanishes and Eris independent of 6 .

(2) Tangential Modes characterised by the absence of areal
dilatation. In these modes Ervanishes and Ee is independent

of 6,



T

(3) Compound modesin which neither genor gr vanish,

Frequency equations for these three groups of vibrational
modes are given by Love 1927. The essence of Love's derivation
of these equations is given in Appendix A.3.1. The equations
can be rewritten in the following form.

(1) Radial modes frequency equation

Ml(KmR) =1-g¢ <1 B

(2) Tangential modes frequency equation

Ml(%ﬂra ) =2 3:1.2

(3) Compound modes. The frequency equation is formed by

eliminating A/B.

g Jn(GI(m,n) n(Mn(eKm,n)—-(rﬁl)) ol
IR T S i Z i
n' m,n 5( ﬁn,n) n(n+l)+Mn(Km,n)
2
e Jn(eKm,n) ZMn(eKm,n)-‘-(G{m,n) -2n(n+1) .0
B Jn(l(m,n) 2n(tnn(l<m’n)-(n+1))
K is a normalised dilatational wave number,
2 5 :
K = ha = wa(p (1-g )/E) e Y
@ is the ratio of shear and dilatational wave numbers.
0 =k/h = (2/(1-0))" 3.1.6
and MD(A) = AJn_l(n)/Jn(ﬁ) S ol L5

A brief explanation of the subscripts of K is in order
here. For radial modes the integer m. is the number of nodal
circles associated with any particular mode. The centre point is
always a node (i.e. a circle with zero radius). For tangential

modes m is the number of nodal circles but now the centre is

never a node.
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The compound modes are described by two integers m and n.
m is again the number of nodal circles. n is the number of
nodal diameters. The centre is always a nodal point except when
n=1.

From the tabulated values of K, resonant frequencies can
be found from the equation, K = wa[J (1-02)/}3]%.

Onoe 1956 solved the lower order modes publishing his
results in the form of a small graph. Hollamd 1966 published
tabulated values of Km’n for many modes extending to higher
orders. He produced these for poissons ratio between 0.25 and
0.50 in intervals of 0.05. For much of the current work this
documentation is not compfehensive enough, so Ambati 1973 produced
K values for poissons ratio from 0.00 to 0.50 in intervals of 0.01.
All modes that are easily excited by the delay-line method of
section 2 were included. These tables have been extended to
Poisson's Ratio values up to 1.00 and are available from the author.

3.2 Comparison with experiment

The apparatus for all disk experiments was as described in
section 2.7; in this case the resonator was a disk. To excite the
contour extensional modes the transmission line was coupled radially
into the disk. Thermally setting epoxy resin proved an adequate
adhesive for this purpose. The electrical drive was provided by
the burst generator of section 6.3.

Tests were carried out on a variety of disks and the results
are shown in Table 3.2.1. The agreement between measured .and
calculated frequencies is extremely good. Thickness to diameter
ratios were kept to about 20, and the close agreement establishes

that any thickness correction is unnecessary. The results would

indicate that manual tuning gives a frequency, accurate to 0.05



per cent,

The ability to drive disks of any material is an important
feature of this method and it enables very precise measurements
of elastic constants, of a variety of materials, over a wide
temperature range to be determined. Disks need only be isotropic
in-plane so this allows measurements on orthotropic materials.

Making Qc high improves the sensitivity of adjusting to
resonance and still further reduces the effect of the selectivity
of the transducer. These high values of Qc and hence Pm’ require
the use of long lines, sometimes up to 20 metres in length.

Typical oscilloscope traces are shown in Fig. 3.2.2.

3.3 Multiple Resonances

The case of two interacting resonances was considered in
section 2.6. This sometimes occurs with disks, in particular
with modes (1,R) and (1,3) in Aluminium or Steel. Figs. 3.3.1
and 3.3.2 show photographs and corresponding computer plots for
Aluminium and Steel disks. Computer plotting would allow the
true resonant frequencies to be inferred. However for the
measurements made in this report other more convenient modes were
available so a detailed investigation of these coupled modes
was not pursued.

3.4 Measurement of Elastic Constants

Traditionally elastic constants are measured by observing
longitudinal and shear wave velocities in a specimen (Lov¢_192?,
Tzannes 1966), normally using a pulse technique. A consideration
of disk resonators has led to alternative methods for piezoelectric

materials (McMahon 1963, Meitzler 1973).
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The method described here has greater accuracy than a
pulse technique, and uses the phase technique described in
section 3.2. Employing the system of excitation described, the
method becomes applicable to all materials rather than
piezoelectrics hitherto.

For the tests carried out, Poissons Ratio was measured
at room temperature and above. A photograph of the furnace
assembly is shown in Fig. 3.4.1. The gas supplied to the furnace
tube was argon, flowing into the bottom at a slow rate. A
Chromel-Alumel thermocouple was situated close to the disk for
temperature measurement. The furnace itself could be raised and
lowered over the tube. The disk was attached to the line with a
high-temperature adhesive, "Autostick'.

The compound modes having nodal diameters all have similar
dependence on Poissons Ratio (see Fig. 3.4.2). The pure radial
modes (1,R) and (2,R) and the mode (2,1) which has only one nodal
diameter have a completely different dependence and comparison of
these modes with the adjacent compound modes gives Poisson's Ratio
with good sensitivity. In practice mode (1,R) is compared with
(1,3),-(2,1) with (1,5) and (2,R) with (1,8) or (1,9). For this

reason Ambati 1973 tabulated

Kir'Kis KaKis KrKyg Kr 7Ky
K + T R S
13 15 2R 2R

all against Poisson's Ratio. Table 3.4.3 gives these results which
are also shown graphically in Fig. 3.4.4.

Comprehensive tests were carried out on two specimen disks.
One was high-conductivity copper, cut from sheet, with a 99.98%
purity. The other was ELC aluminium sliced from bar with the

following composition:-



Al Cu Mg Si Fe Mn
99.0 0.1 =~ 0.5 0.7 0.1

Both disks were made 35 mm in diameter. This meant that modes
(2,1) and (1,5) were the most convenient because (1,8), (1,9)
and (2,R) would have been rather high in frequency.

Two temperature runs were performed on each specimen, so
that any annealing effects would take place on the first run. The

furnace was set to a constant power and values of f £ d

s aiasy *0
thermocouple millivolts were taken at equal intervals of time. Each
experiment was terminated when QM became equal to QC’ for after this
point manual tuning becomes less accurate. The raw data from these
four experiments is plotted out in Figs. 3.4.5/6/7/8. After these
heating runs a further calibration run was performed for both
specimens. For this calibration, a furnace controller was used so
that isothermal conditions could be established.

Readings of f2,1' fl,S and thermocouple mV were taken so that
the disk could be regarded as its own thermometer for the previous
experiments (Bell 1968, Seth 1973).

In processing this raw data, computer least-squares curve
fitting is extensively used. (see Appendix A.3.4.)

Polynomials are fitted directly to the observed values of
f2,1’ f1,5 and mV, time being the independent variable. Where
apparent singularities appear the curve is split into sections for
the curve fitting process. The resultant polynomials are then used
f._)/f.. and mV at selected intervals of time. The

21 *15/1%15

temperature readings are cross checked by using the disk as its own

to calculate (f

thermometer via the calibration curves. To find Poisson's Ratio a

polynomial is fitted locally to the data from Table 3.4.3; in this
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case for o from 0.32 to 0.39 (a cubic curve gave a perfect fit).
Hence pairs of values for Poisson's Ratio and temperature are
obtained.

The derived - i

e derived curves of (le fls)/fl5 are shown in
Figs. 3.4.9/10/11/12, together with the resultant curves for
Poisson's Ratio against temperature.

3.5 Discussion of results

Assuming an overall accuracy of frequency measurement of
0.05% (that is T50Hz for the 35 mm disks) gives Poisson's Ratio
to an accuracy of 0.0015. However for a particular specimen the
frequency tuning sensitivity is about flOHz so changes in
Poisson's Ratio of 0.0003 can be detected (with larger disks

giving £ around 50KHz a frequency sensitivity of Tle can be

E
obtained).

After the initial annealing runs on each specimen, the second
runs can be used to give the temperature coefficient of Poisson's
Ratio. The change in Poisson's Ratio for the aluminium disk

was large and the curve permits the curvature to be detected.

3.6 Possible extension to anisotropic disks

The effect of anisotropy is to split one of the disk modes of
section 3.1 into two or more. A simulated anisotropic disk was made by
machining the faces of a steel disk to be non-parallel. On this specimen
the mode splitting was clearly observed by coupling at a series of
different positions on the circumference. A mathematical investigation
of anisotropic disks would require the derivation of new equations of
motion from first principals. It would facilitate an important
extension of the work in that anisotropic elastic constants and
elastic anisotropy could be investigated. The method would then be

applicable to disks cut at various angles from single crystals and



also to disks constructed from laminated carbon fibres.

At the present time this work has not been pursued.
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Frequencies in KHz
RE SONANT Mild Steel Disk Aluminium Disk
MODE 7.5 cm dia. g = 0229 7.5 cm dia. o0 = 0,34

measured calculated measured calculated
e 71.30 1.3 67.18 67.1
1,R 46.27 46.3 47.35 47.1
251 80.14 7957 79.66 F937
Tl 36,71 36.6 36.24 36.0
1,2 31.83 3153 30. 54 30.6
133 48.65 48.1 47.35 47.0
1,4 63.41 62.6 61.39 61.3
i, 17:35 76.2 74.33 74.8
1,6 90.98 89.5 812 87.6
) 103.27 102.5 100.62 100.3
1.8 116.25 39552 112.94 112.8
159 129.46 12732 124.55 125.2

Quartz Disk Glass Disk
5 cm dia. o =0.16 9 cm dia ¢ = 0.25

measured calculated measured calculated :
iy 124.8 124,7 | —eem- 60.8
1,R 73.53 73.4 39.82 39.0
243 13196 E2823 69.79 69.5
L 63.15 63.3 32.61 3255
2 56.48 55.9 28.40 28.5
1,3 86.78 86.6 43.45 43.6
1,4 112.09 112.0 56.51 56.7
1.5 135.40 135.9 68.75 68.8
1,86 159.80 160.2 80.59 80.7
11T 183.0 182.5 92.20 92.3
1,8 200.9 204.8 103.68 103.6
1,9 | ===-- 22750 115.06 = 1151

Table 3.2.1
This table shows the close agreement between calculated
and experimentally measured frequencies. _ The values

of o used in the calculations are recognised values
for these materials (Kaye/Laby 1958).
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Fig.3.2.2(a) The
echo for mode (1,1)
of a 1.5 inch
diameter aluminium
disk shown here is

a typical echo as
described in Section
2.4,

Fig.3.2.2(b) The echo
for mode (1,4) of the
same disk shows a
stepped envelope
suggesting that the
wave travels
circumferentially

in the disk (see
Section 2.5).

Fig.3.2.2(c) The echo
for mode (1,5) of the
same disk.
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Fig.3.3.2

The oscilloscope trace was from a mild steel -disk for the
modes (1,3) and (1,R). The computer plot was obtained

with a 10% frequency separation between the two resonant
modes . The signal frequency was equal to that of one mode
with Qc = 210. The other mode had QC =i S



Fig.3.4.1

This furnace rig was constructed by J.M. Pelmore.
The element moves up over the silica tube and is
capable of 1000° C maximum temperature. The
transmission line fits through a rubber bung at the
top, and small brackets keep the line and resonator
in place inside the tube. A thermocouple outside
the tube but inside the heater was used to supply

a signal for the furnace controller. A second
thermocouple inside the tube was used to measure
the specimen temperature. The pipes supplying the
argon can be clearly seen in the photograph.






- 4l =

T \
H\\\\\\\\\\\\\“\\k 7. I
5 \
mode (1,9)
- mode (1,8)

mode (1,7)

::::Hhhhhhﬁuhmmmmhx
\ mode (1,6)
mode (2,1)

3_
mode (1,5)
mode (1,T)
i::::::::::::::::::::::::::2::=-¢::Z:::::::::::; P

mode (1,R)
2
mode (1,3)
_*~—-_‘ﬁ-_-“‘h“““‘“““hhﬁ“““-ah‘_ mode (1,1)
| mode (1,2)
1 | 1 I |
0.0 0.1 0.2 0.3 0.4 0.5

Poissons Ratio

Fig.3.4.2

These are graphs of the data from Ambati
1973 The differing trends of the K
parameters for radial and distortional modes
are the basis for a measurment of Poissons
Ratio.



Orihe - 100(KlR ~ Kl3) 100(&21 - Kls) 100(}{2R - Kls) 100(1<2R - Klg
ons
e K13 Kis Kor Kor
0.00 -26.552 -9.568 -9.705 -21.601
0.01 -25.933 -9,197 -9.328 -21.213
0.02 -25.309 -8.876 -8.950 -20.798
0.03 -24.674 -8.545 -8.556 -20.361
0.04 -24.032 -8.203 -8.147 -19.906
0.05 -23.382 -7.851 -7.728 -19.450
0.06 ~22.724 -7.486 -7.311 -18.995
0.07 ~22.057 -7.110 -6.879 -18.522
0.08 -21.383 -6.724 -6.433 -18.015
0.09 -20.699 -6.325 -5.975 -17.505
0.10 -20.003 -5.916 -5.516 -16.995
0.11 -19.305 -5.496 -5.051 -16.484
0.12 -18.596 -5.065 -4.575 -15.968
0.13 ~17.877 -4.622 -4.083 -15.459
0.14 -17.146 -4.169 -3.589 -14.922
0.15 -16.400 -3.706 -3.086 -14.365
0.16 -15.650 =3.230 -2.583 -13.784
0.17 -14.888 -2.744 -2.064 -13.202
0.18 wih.115 -2.246 -1.531 -12.621
0.19 -13.331 -1,737 -0.998 -12.033
0.20 -12.531 -1.218 -0.452 -11.440
0.21 =11.722 -0.687 +0.096 -10.834
0.22 -10.901 -0.148 +0.652 -10.247
0.23 -10.067 0.401 1.218 - 9.633
0.24 - 9,219 0.962 1.788 - 9.003
0.25 - 8.357 1.531 2.364 - 8.356
0.26 - 7.481 2.109 2.952 - 7.689
0.27 - 6.592 2.695 3.550 - 7.033
0.28 - 5.688 3,288 4,154 - 6.368
0.29 - 4.765 3.888 4,762 - 5.700
0.30 -~ 3. 824 4,492 5.378 - 5,032
0.31 - 2.868 5.100 6.004 - 4.353
0.32 = 1,895 5.710 6.636 - 3.645
0.33 - 0.903 6.319 7.281 - 2.938
0.34 0.108 6.924 7.925 - 2,229
0.35 1.137 7523 8.578 - 1.508
0.36 2.188 8.111 9.242 - 0.774
0.37 3.261 8.686 9,918 - 0.023
0.38 4,357 9.243 10.598 0.726
0.39 5.470 9,778 11.278 1.477
0.40 6.615 10.285 11.973 2.240
0.41 7.784 10.762 12.680 3.036
0.42 8.979 11.141 13.391 3.830
0.43 10.201 11.612 14.110 4.622
0.44 11.451 11.981 14.833 5.417
0.45 12.733 12.314 15.566 6.221
0.46 14.048 12.610 16.313 7.064
0.47 15.393 12.872 17.069 7.897
0.48 16.773 13.103 17.832 - 8.740
0.49 18.190 13.304 18.599 9.583
0.50 19.644 13.480 19.375 10.434
TABLE 3.4.3

By considering these ratios the constant of proportionality between
K and frequency cancels and Poissons Ratio can be determined by
experimentally measuring two frequencies. (See Fig. 3.4.4).
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Poissons Ratio
Fig.3.4.4
These graphs indicate the sensitivity of the three
methods. If R is the ratio of two frequencies then
a measure of the sensitivity is |l dR|. Using
R do
this criterion the sensitivities for KlRIK13’ KZI/KIS’
KIS/KZR’ and K19ZK2R respectively are 1.0, Ofé' 0.65,

and 0.65 for o= 0.3.
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100(f21-f1_g/f15
7.90
7.85|
7.80 |-

17

¥ {4 Jhees

Poissons Ratio

0.358 -

0.356 [

0.354 7

0.352

i L | |
0.350 756 200 300 %00 500

Temperature(oc)

Fig. 3.4.9

Resultant curves from first test on copper. A curve of
Youngs Modulus can be derived by measuring the diameter
and density of the disk and using equation 3.1.5.
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Poissons Ratio

0.360

0.355

0.350

0.345 I I | !
150 200 300 400 500

Temperature (°c)

Fig.3.4.10

Resultant curves from second test on copper.
Defining the temperature coefficient as d ¢ /dT
(where T is temperature) gives d ¢/dT = 5.6 x 10
over the range 250° C to 500° C.

>/



Poissons Ratio

(15360 =
0.350
0.340 |_
0.330 I | .
100 200 300 >
Temperature ( C)
Fig.3.4.11

Resultant curves from first test on aluminium6
Temperature coefficient d o/dT = 11.0 x 107°/°C.
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15
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Fig.3.4.12

Resultant curves from second test on aluminium.
Temperature coefficient, d ¢/dT = 11.5 x 10-5/°c.
The temperature coefficient given is an average
over the range of the graph. However the data
was good enough here to allow the curvature to be
taken from this graph. d ¢/dT varies from

7.5 x 10°°/°C to 15.5 x 10~3/°C over the range
150 96 €0 250°C.



4. DISK/RING RESONATORS

4.1 Introduction

The vibrations of thin rings, both in the plane of the ring
and perpendicular to it are readily analysible and have been
studied by many authors (Love 1927, Timoshenko 1959). This
work deals with the inplane vibrations. Buckens (1950) takes
into account shear stresses but the resulting theory is difficult
to apply, and approximations in the theory become invalid when

the relative radial thickness is large.

A study of Hollands analysis (Appendix A.3.1) of disks
indicated that the general case of the ring, though of greatly
increased complexity as it involves a second boundary, was
soluable within the limits of algebraic effort, and computational
cost. The resulting theoretical values are applicable to rings
with rectangular cross-section where the ratio of out-of-plane

thickness to wavelength is small.

4.2 Existing Theory

The frequency equations for the thin ring are easily
derived by considering an elemental portion. Here it is
sufficient to quote the results obtained by Love 582 P The

frequency equation for the simple radial mode is,

o = B _1.2 4.2.1
P
Ay

where a; is the mean radius of the ring.

The frequency equation for other modes of vibration in the plane

of the ring is,
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e ey
2—% S i ot 5:2.2

a A n2+1

where K is the radius of gyration of the cross-sectional area,
and n = 2,3,4 etc.

The modes will be referred to by the notation used for
disks so that the simple radial mode (equation 4.2,1) is (1,R)
and the modes of equation 4.2.2 are (1,2), (1,3), (1,4) etc,
Clearly all disk modes of type (2,n), (3,n) etc. and of type
(1,T), (2,T) etc. which have nodal circules, approach infinite
frequency for the thin ring. Fig. 4.2.1 shows calculated
frequencies for a steel ring.

4.2 Analysis of Disk with Central Hole

The derivation from first principles is given in Appendix
A.3.1 obtaining the general solutions, A.3.1.28 and A.3.1.29

repeated here.

A

i

[Ean(hr) + ASYn(hr):]cosnecoswt 4.3, 1

LAan(kr) -+ AIOYn(kr)] sin nfcoswt 4.3.2

However the boundary conditions for a disk of radius a,

with a central hole radius b, are now as follows

T =0 at r = a Ge33
Ty

T

T =0 At T'= a G0N
e
T =0 at r'=Db 4356
re

The equations for the stress resultants (A.3.1.18, A.3.1.19)

repeated here are,



ot E

T | ————
2
(1-67)

T

R
0 (Ho)2

ok g &g, |
S S A ) 4.3.7
3T 2 ra
1 S 4.3.8
3 r r T apg
iﬁ-= = 2 il:gil L.3.9
e pw E Er - -
A = -pwz Ll:gil 4.3.10
E Ee - .

‘Substituting into 4.3.9 and 4.3.10 with the general solutions

4,3.1 and 4.3.2 gives the form for the solutions of £y and EB.

i aJn(hr)+ . Jn(kr)
TR e (T 14 x
3 Y (hr) Yn(kr)
+ Al5 T + nA16 cosngcosyt G.3.11
A T Jn(hr) 9 aJn(kr)
e 13 r 14 5 %
Yn(hr) 3 Yn(kr)'—
> e R : a wh L
S nAlS 7o i A16 e sin nb0 cos 4.3.12

For radial modes Eev

occurs when n=0. Equ
4.3.4 give,
[ & &
—X 40 (—+
3 r g
and
EI T
—_ 4 o(—
g r &
=

anishes and

ation 4.3.7

2 Eg)
20

H =

- T=a

r=b

is independent ofg . This

Er

and boundary conditions 4.3.3 and

%4.3.13

4.3.14
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Substituting into 4.3.13 and 4.3.14 with 4.3.11 yields,

2 2
A d°Y _ (ha) dY (ha) d“J.(ha) dJ . (ha)
113 [ 0™ Lo o J,[__o_. +éc1___9___} N

2
15 da2 a4 da a4
and
A a%Y. (hb) av-¢hb) | [e%7.- () dJ_. (hb)
13 0 i 0 0 g0
A—=-——T +a / 2 +T) a5 4.3.16
15 db db db
Equation 4.3.15 becomes,
Wi le(ha) - dJl(ha) !
KI; e + - Yl(ha) / e + E-Jl(ha) o
and equation 4.3.16 becomes
Al le(hb} dJl(hb) 2
. | i —" o (IS o
x. i e Yl(hb) / 15 e Jl(hb) 4,3.18

The radial modes frequency equation is formed by eliminating
Aja/A .

Now letting K=ha, L=hb, ® = k/h and also defining,
Mn(h) = AJn_l(ﬁ)XJn(ﬁ) and, Nn(A) =‘AYn—l‘A)/Yn(ﬂ) , equations,
4,3.17 and 4.3.18 become,

A KYO(K)—(l—g)Yl(K)

A3
As kI, (K)-(1-¢)J, (K) 4.3.19
A LY, (L)-(1-0)Y, (L)
13__ 0 1
A, LI @)-(1-0)3, (L) 4.3.20

Now if & =b/a then L=¢K, and equations 4.3.19 and 4.3.20 form a
single frequency equation, giving solutions in K for particular
values of g, and 4.

The frequency equation for compound modes becomes cumbersome,

so matrix equations will be used to simplify the presentation.



Boundary conditions 4.3.5 and 4.3.6 with equation 4.3.8 give,

and

Now substituting into equations 4.3.13, 4.3.14, 4.3.21 and 3222

'r=b

403,21

4.3.22

with the results 4.3.11 and 4.3.12 gives four equations which

can be written.

%11

91

12

22

32

42

13

23

33

43

14

24

34

A

13

14

15

16

&y = -Jn(l{) EK@ )zfz - n(n+l)+Mn(I()j[ |:2/a2 02]

ay, = 3 (Ko )nE’{n(K @)-(n+l)] E’E/az 92]

ay, = Y (K) EK 0?%/2 - u(n+1)+un(x)]|:z/a2 92]

sy, = ¥ (K e)nEvn(Ke)-(n+1)J[}/az 92]

W
I

W
]

- -Ju(L)[(L 9)2/2~n(n+1)+Mn(L)]|:2/b2 92]

2 Jn(L e)nIEqn(L 6)-(n+l):[[2/b2 92]

8, = -Yn(L)[(L@ )2f2-n(n+l)+Nn(L):[ E[bz 92]

S (1 e)nEln(Le)-(n+1)] I:Z/bz 92]

4.3. 23
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8y, = -Jn(K)Zn[ﬁn(K)-(n+1):l [1/3]

3, (K )[4, (K0 )+(k0 )220 (nt1) | [1/4%]

]
1}

a,. = —YH(K)Zn En(!()-(rﬁl)] E/az:]
a,, = Y (K o)l:;mn(m )4+(KO )2-2n(n+1):l [1/32]

a, = -Jn(L)anqn(L)-(nH)] [1/1:.2]

3_(L ©) Emn(w )+(LO )2-2n(n+1):| [1/1:2]

e -Yn(L)ZnEln(L)-(rwl):I [usz

1]
I

Y (L 0) [an (Lo )+ wo? - 2 + 1)][1/6%]

Eliminating the arbitary constants A13, Alé’ AlS and A16 the

frequency equation is formed thus,

(N A g
8. B P2 %0y
= 0 4.3.24
Qg9 ' Bqn . Bqs B3y
P T TR R T

It will be noticed that as the last factor in each of the a (g=1,2,3,4) is
q

2fa29 Y this can be taken from row one as a common factor.
Similarly the other three rows also have a common factor.

The frequency equations for radial and compound modes have
been solved. Tabulations of K values for¢ from 0.00 to 1.00 and
Poissons Ratio from 0.00 to 1.00 are available. Values are
tabulated to four decimal places so that local curve fitting can
be used to obtain intermediate points. A condensed form of these
tables is given in Appendix A.4.3 of this thesis.

As stated in section 3, Poissons Ratio is given for values

above 0.5 to facilitate the investigation of orthotropic materials.



4.4 Comparison with Experiment

The specimen was a mild steel disk with a diameter of
three inches. The central hole was machined in steps
until a radially-thin ring was formed. At each step the family
of resonances was investigated by the Echo Method of section 2.
The raw data from the experiment is given in table 4.4.1.
Theoretical values of frequency have been calculated using the

tabulated values of K and the formula,

) =K/|ja(p(1-cz)/EJ 4.4,1

The physical properties of the specimen were taken to be,

a = 1,5 inch = 0.,038] m
3 2
p = 7.9 g/ml = 7.9 x 107 kg/m
c = 0.30
Bils e qott G eat = 2.1 0 00M et

The calculated curves are shown in Fig. 4.4.2. The experimental

curves obtained from Table 4.4.1 coincide precisely with these.

4.5 Discussion

The radial mode (1,R) is an important one for the thin ring
because the stress is uniform over the whole of the ring, and is used
to investigate amplitude sensitive effects. Fig.4.4.2 shows that the

thin ring approximate frequency equation 4.2.1 is still quite

accurate as ¢ decreases. The radial mode equation 4.2.1 can be
rewritten,
iy B 4.5.1
ring a(l+9) G
where VL = V/(E/p ) and a is the outside radius. The actual

frequency, ® can be found using equation 4.4.1; rewritten here,

<l

L K

I 85,8

W =



ot

K is obtained from the tables of Appendix A.4.3, and is a function
of Tand ® . Now dividing equation 4.5.2 by equation 4.5.1,

2,1/2
o

s DS

.. %—mw MWL - 0%

ring
Equation 4.5.3 was used to investigate the departure from the thin
ring radial mode frequency equation as a function of ¢ and ¢ , and
the resultant curves are shown in Fig.4.5.1. An interesting point
is that for a Poisson's Ratio of 0.18 a disk fits the thin ring
frequency equation perfectly. Fig.4.5.2 shows a direct plot of
As ¢ increases the curves approach

2)1/2. This verifies that w is

the radial mode K values, KIR'
a curve due to the function (1 - g
independent of ¢ for very thin rings, as assumed by the simple

equation 4.5.1.

The in-plane flexural modes are examined in an exactly similar

way. Equation 4.2.2 becomes,
Vv
G e ZEA= 80 (peayyHE 405k
ring a J3 (1 4+ 4 )2
where
fa¥ = nodn 1) /s +1)
Dividing equation 4.5.2 by equation 4.5.4
2 K Gio)’ -1/2
w/wring 3 /3 Pyl 2)1/2 (1 -9 ) (Ll
g 4.5.5

Curves resulting from equation 4.5.5 are shown in Figs. 4.5.3 and
4.5.4. The error produced by using the simple equation 4.2.2 is

generally much larger than for the case of the radial mode.

Approximate methods are available for the determination of
resonant frequencies, such as that due to Rayleigh and Riﬁz (see
Bishop/Gladwell/Michaelson 1965). However, and advantage of the
high accuracy frequency equation solved in Section 4.3 is that the

effect on frequency of small changes in any parameter can be determined.
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The digital computer gives the possibility of solving many
associated boundary value problems. However obtaining a set of
solutions is as much a matter of economics as of mathematical
skill. On the I.C.L. 1900E computer, a disk program was using
5p worth of time per K value found. Solutions for ten modes with
Poisson's Ratio from 0.00 to 1.00 in 0.05 steps therefore cost £10.
The program to find K values for the disk with a central hole, used
10p worth of time per K value. For ¢ from 0.00 to 1.00 in 0.1
steps and Poisson's Ratio as for disks, the resultant cost for ten
modes was £200. Introducing damped or pinned edges to the disk
with the hole would produce problems with the same order of complexity

which could also be solved for 10p per K value.

Problems of greater complexity could also be solved. Consider,
for example, accounting for ring thickness. The cost per value with
the increased complexity would be about 20p per value. However the
cost of a comprehensive set of results would be greatly elevated by
the requirement for a number of steps in the new thickness parameter.
In this case it would probably be necessary to limit the results to
a small set applicable to a particular specimen being studied. Further

results would then be obtained as the need arose.

To summarise, from the experience gained in dealing with the ring,
it is feasible to obtain a rough estimate of the effort and cost of

solving a number of associated problems.
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120~

100

RADIAL MODE

Fig.4.2.1

A typical family of mode frequencies calculated from
the classical thin ring theory. ¢ is the ratio of
internal to external diaméters. Notice that for the
infinitely thin ring ( ® = 1.0) the in-plane flexural
modes have zero frequency but the radial mode shown
has finite frequency.



% INCH HOLH % INCH HOLE | % INCH HOLE| 1 INCH HOLE

MODE NO HOLE | . .5.0833 o=0.1667| @ =0.2500 | @ =0.3333
1,R 45,81 44,83 41.84 38.19 34. 84
3.1 36.67 36.90 37.25 38.19 38.10
2.1 79.98 81.79 85.33 | ee=== | e-=--
1.2 31.55 30.22 26.64 22.39 18.76
1.3 48.09 48.14 47.71 44,93 40.74
1,4 63.21 63.24 63.13 62.43 59.86
1.5 77.24 77.25 77.26 77.27 77.531
1,6 89.07 89.06 89.82 89.97 89.77
1,7 103.02 102.96 102.83 102.95 102.99
1,8 115.95 115.63 115.43 115.71 115.84
1,9 128.19 128.12 127.91 128.27 128.25

1% INCH HOLE|1% INCH HOLH 1% INCHHOLE |2 INCH HOLE |2% INCH HOLE
MODE

=0.4167 ©=0. 5000 ® =0.5833 | ¢ = 0.6667 |2 =0.7500

1.R 32.23 29.86 27.88 26.21 24,78
11 38.11 37.70 36.80 35.64 34.37
2,1 |  eemem | mmmmn ] emmee | mmeme | eeee-
7,2 15.68 12.68 9.97 7.46 5.25
3 35.64 30.09 24,53 19.30 14.10
1,4 55.15 48.53 41.24 33.40 25.32
1,5 72.94 66.78 58.24 48.64 38.15
1,6 88.48 84.47 75.85 64 .64 51.90
1,7 102.51 99,59 91.90 81.12 66.48
1,8 115.61 113.98 108.08 96.75 81.57
1,9 128.15 127.41 123.28 112,53 96.38

2 3/8 INCH 2 9/16 INCH| 2 5/8 INCH
e HOLE 2% INCH HOLE HOLE HOLE 2% INCH HOLE

& =0.7917 ® =0.8333 ® =0.8540 | & =0.8750 ® =0.9167
1,R 24,15 23.55 #3.33 23.05 22,53
3.1 33.67 32.99 32.68 32.35 31.70
2,1 | ssame | eesas ] emsee ] smeme | eesae
1,2 4.20 2.98 2.56 2.17 2.0
1.5 11.48 8.93 7.80 6.46 5.1
1,4 20.98 16.59 14.51 12.23 7.81
15 32.10 25.86 22.76 19.40 12.71
1,6 44 .60 36.46 32.38 27.73 18.41
1,7 57.67 47.99 43.01 37.14 25.03
1.8 71.63 60.36 54,32 47.32 32.46
1,9 86.22 73.41 66.52 58.40 40.76

TABLE 4.4.1

The observed data from the mild steel ring is shown.

can be compared with the curves of Fig.4.4.2.

the limit of experimental accuracy.

The agr
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w_.
ring

mode (1,R)

152

1ol

1.0 | | | o
0.2 0.4 0.6 0.8 1.0

Fig. 4.5.1

This shows the deviation of the frequency

predicted by the simple thin ring theory

for the radial mode (1,R) over a range of
¢ and 9.
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Fig.4.5.2

These graphs of K,_ values, show how the
frequency becomes independent of Poissons
Ratio for an infinitely thin ring. A graph

of (1 - Uz)llzagainst o is shown dotted.
Notice that K = O when o = 1.0 and the plate
modulus is infinite.
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0.8

0.7

0.4

Fig.4.5.3

The variation of the thin ring frequency equation
for mode (1,2) is shown. All modes of type (l,n) with
n > 2 will have similar dependence on o and ¢
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wring

mode (1,2)

mode (1,8)

Fig.4.5.4

The variation of the thin ring frequency equation
is shown. For the higher order modes the radial thickness
to wavelength ratio becomes larger, and hence the error
produced is larger.
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5. INTERNAL FRICTION

5.1 Introduction

The attenuation of acoustic waves was first treated by
Stokes 1845 who considered the effect of viscosity on the
transmission of sound through gases. Navier added the second
transport phenomenon term, thermal conductivity, which resulted
in the classical Navier-Stokes equation (section 2.2, equation 2:2.1)%
An enormous number of other loss mechanisms occur, particularly in
solids, and these are studied for the information they give of
molecular effects in liquids and gases and lattice and grain
boundary effects in solids, where they are classified under the
general heading of Internal Friction (see Fig. 5.1.1). The H term
in equation 2.2.1 expresses the total internal friction. This is
a volume effect and is therefore independent of the shape of the
material being studied. In general the internal friction varies
strongly with temperature and to a much smaller extent with
frequency., Considerable success has been achieved in identifying
the sources, particularly by Bordoni 1947, Snoek 1941, Granato 1956
and Powers 1959.

The measurement of internal friction over a wide range of
temperature and frequency is of current importance and a number of
methods are available, typically the torsional pendulum ( Ké 1947)
and the single pulse echo system used by Bell 1957 and Lynworth 1967.
This single pulse traverses a fixed length of specimen, held at a
fixed uniform temperature. From the attenuation of this pulse, the

internal friction shown by the specimen material can be evaluated, for

that temperature.
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The method described here is a resonance method based on an
acoustic transmission line. An advantage of this system is that
the resonator which terminates the line can, for example, be a
tuning fork, where only a physically small specimen is necessary.
The excitation and return signals are as described in section 2.4.
The echo decrement exponential is evaluated by measuring amplitude
at two points on its envelope. From this information QT can be
determined and then if QC is known QM (a measure of internal frction)

can be derived (QTQL=QM-1+OC—1

). In this way QM can be determined
as a function of temperature and for several frequencies (if the
resonator has several resonant modes of vibration). See Fig.5.1.2.
A problem common to all transmission line methods considered
so far is the evaluation of QC' This is often done by assuming
the low temperature material loss to be negligible, and QC then
becomes QT. While this is a reasonable assumption for most cases it
is to some extent unsatisfactory and the multimode method described
allows QC to be evaluated with certainty. This is an important

feature of the method of measurement and is described in detail.

5.2 Multimode Method of Measuring QC and QM

A set of resonant modes for any resonator can be utilised to
greater advantage if the coupling Q factor, QC can be calculated
for each mode. This is the case for the line resonator the
equations of which were derived in section 2.3. They are used here
to determine QM for a range of frequencies and temperatures. For
many materials QM alters little for, say, a factor of five change
in frequency. In this case the multimode method is advantageous in

that it increases redundancy in the readings taken.
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The equations for the line resonator from section 2.3,
repeated here are as follows:=

Relative steady-state echo signal amplitude,
2 2
Eo/Ey = =(B - m"a)/( g+ ma) g2
Oscillations to crossover point,
2 2
P, = [:wm!2:l:( B+ mZa)in(2B/(B - m“a)) R )

Q relationships,

Qm = “n/28 5.2.3
Quin = wmfzm%x 5.2.4
Qpyg = 9y /2( 8+ m’q) 5¢2.5

Using the Q relationships E /E0 and Pm can be expressed in terms

of QCm and QMm.

Em/EO = -(1-QCm/QMm)/(1+QCmIQMm) 5.2.6
Sl o 1n(2/(1-Q. /Q. )) 5.2.7
m n(l+QCm/QMm) Cm “Mm 2.

Let P' = P /m ; then,
m m
p' = __.._(.2.9.1_ In (2/(1-Q. /Q, )) 5.9.8
m T R, Q) cn’ Mm

because Qy = w /28 = mw, /2 8= mQ.,

From the echo observations E”/EO’ ﬂl

s and QTm can be determined

directly for any particular mode.

EmeU is in general not used numerically becausg E,
cannot be observed very accurately. This occurs because the echo
signal has maximum rate of change of envelope amplitude at the
beginning of the echo, and because of the finite bandwidth of the

magnetostrictive launcher, the true envelope amplitude takes one

or two oscillations to be established.
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However Em/E0 does serve as a direct qualitative indication
of QM (see Fig. 5.2.1). One accurate value can be obtained when
Qm!EO = () (3., QCm=QMm) because E =0 at this point and E0 need
not be measured.

Another measure of QM observed from the echo is Pm, the
number of oscillations to the crossover point for mode m. The
form of equation 5.2.8 immediately suggests a useful approach. If
m=0 then from equation 5.2.4, QMm =, Equation 5.2.8 then
becomes,

96 = (Qm/:r) In2 5.2.9

m=0 (where @ _ would be zero) is not a physically realisable

0

condition but it can be deduced by extrapolation. If a graph is
plotted from experimental ﬁ; values form=1,2,3 etc., this graph

' from which

can then be extrapolated tom=0 to give a value PO

QCl can be directly calculated.
=] n
Let mQClQMrn_ hm ; then equation 5.2.8 becomes,
p' = ﬁl——- In(2/(1-h_)) 5.2.10
m (1+hm) m i
therefore
1 In(2/(1-h_))
£ A5
gm/PO (1+hm) 1n2 LSl |

Table 5.2.2 gives pairs of values of-g;/Pé and hm; Figs 5:2.3
shows a graph of P;/Pé against h . In practice a graph of P&
against m can be extrapolated to give a value Pé and then a
subsequent graph of PéfPé agaiﬁst m can be plotted. (Fig. 5.2.4

shows a typical graph obtained from an experiment of section 5.3.)

Values of P;/P) are taken from the graph and then with table 5.2.2
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{or Fig. 5.2.3), hm can be found. From PO’QCl is found from
equation 5.2.9 then,

gives the value of QMm'

If the dependance of Q, on frequency is known (or determined
empirically), a suitable function can be chosen and plotted against
m to give a straight line graph.

The last measure of QM’ which can be observed from the
echo, is a direct evaluation of QTm' This can be accomplished by
observing two amplitudes in the echo-decrement and noting their
separation interval, from which Qﬁn can be directly calculated.

Summarising, for the line resonmator three methods to
determine QCl (QCHmeCl) have been established:-

1. By direct calculation from acoustical data.

=x m/1n(( .C.A,+p . C A )/(P

2CoAy 1P C A1)/ (P)CoA - 0)ClA)) LR

e
The graph of Fig. 2.5.2 (section 2.5) is based on the same
equation and gives P1 against the diameter ratio of resonator
i P
and line for values of pZCZI 1Cq-
2. By extrapolation of the g; against m graph as previously
described.
3, By elimination between the two equations containing P and
m
Qppy * Using QMm=QTmQCm!(QCm-QTm) to substitute in equation

5.2.7 gives

Uy = ZQTm~2exp(«ngn/an) 5.2.14

When the coupling has been determined by one or more of these

three methods, q%1 can be found from observed values of P and
m

Qrm (and E_/E, at certain points).



5.3 Experimental Work

An experiment was required that would test the multimode
method in practice. An ideal material would be one which
showed no variation of QM with frequency, and an absence of any
internal friction peaks over the temperature range used. The
QM of copper is reported (Wegel 1935) to be independent of
frequency and while having the normal fall of QM with temperature
does not have any relaxation peaks. A 99.999% pure copper rod
(supplied by Johnson Matthey Metals Ltd.) was first annealed at
a high temperature. Observations were then carried out over a
moderate temperature range.

The choice of transmission line diameter is important. A
thin wire gives a high value of B and determines QM1nore accurately
than a low value for two reasons. First, Pm can be observed more

accurately. Secondly, Q

M has a greater effect on QTm’ and hence

a greater effect on P . However the disadvantage of a high initial

value of P is that the temperature point where QMm=QC and Pm=m

m
is soon reached. Hence a given line size gives the optimum
experiment at particular values of Qy+ The graph of Fig. 2.5.2
(section 2.5) aids choosing a line diameter. For the experiment
here an initial Pl (gn for mode m=1) of 15 was convenient. The
specimen of copper was 7 mm in diapmeter, so a line 1 mm in diameter
was used. The specimen was cut to 63 mm long to give a fundamental
frequency of about 30KHz.

The furnace constructed by J.M. Pelmore and referred to in
section 3.4 of this thesis was again used for this experiment. The

specimen was gradually heated and observations were taken using the

first five modes of the resonator. The raw data from the experiment

is given in table 5.3.1.
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5.4, Discussion of Results

At room temperature P& against m gives the straight line
graph of Fig. 5.4.1. A value of P6=16.5 has been taken to
perform all subsequent calculations. The values of Q;i have
then been calculated for each mode in turn. The calculation
process for mode m=2 is given here as an example.

Equation 5.2.9 can be written,

Qg =JtP6/ln2 5.4.1

Then ZnPéfan Saliad

Qe

Equation 5.2.12 becomes,

w]
= np!
Qg hmlnzf(z PO) 5:0.3
So using P6-16.5,
Q&é = h_ x 0.00668 el

The values of Q&; are then found as shown in table 5.4.2.

The complete results from all five modes are shown in
Fig. 5.4.3

The higher order modes tend to give greater accuracy, because
of the division by m in evaluating Py. The lower order modes
however, are useful up to higher temperatures. To extend the
temperature range (lower values of QM) the line diameter would have
to be increased so that Q,, (and hence Pé) is reduced.

The results are completely consistent with the theory and
give values for copper similar to those obtained by other workers.
Further work by Pelmore 1974 in the comparison of various.methods
of measurement, has confirmed the convenience and accuracy of the

multimode technique.



Attenuation

Radiation Internal Friction Scattering
(Energy absorbtion)

Viscosity Hysteresis Relaxation

Fig.5.1.1

This shows a family tree of the terminology
of energy loss effects.
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X X © s-plane

Fig.5.1.2(a)

This displacement of the poles and zeros is due to material
losses. The echo corresponding to this diagram is shown below.

Fig.5.1.2(b)

This shows the effect of material losses in a resonator
with Q.. =60, Q. = 40, Q_ = 24, The steady-state power
dissipation by Ehe internal frietion losses leads to a
reduction of the steady-state signal and echo-decrement
amplitudes. The echo with no material loss but with
the same coupling (i.e. QM == QC = 40) is shown in
Fig. 2 kol
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This gives E »/E for seven modes of the
line resonator. © positive values of E »/E
indicate that there is no crossover point
(i.e. no phase reversal). Each curve is
for a constant value of QM indicated at the
right.
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This gives values for equation 5.2.11.P' /P!

experimentally and then h

is then calculated from tﬁé relationship Q
These tabulated values are shown graphical

Fig.5.2.3

TABLE 5.2.2

can be found.

?? in

is observed
The ‘material Q
= Qom!hm'
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Fig.5.2.3

This graph is useful for quick reference while
performing an experiment (see Fig.5.2.2).
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P /m

QM = 380

50 1?0 Frequency (kHz)
T b=y T T T
it 2 3 4 5 Mode
X Experimental curve for copper at 270° ¢.
(C] Theoretical curves.

Fig.5.2.4

A spot set of values enable Q, to be found by
extrapolation to zero frequency. Then the
absolute values of QM can be determined.
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TABLE 5.3.1

Mode Temperature| Frequency P P /m
(mV) (kHz) iy &

1 0.00 29.30 16.5 1655
2 0.00 58.49 34.0 1750
3 0.00 87.26 49.5 16.5
4 0.00 115.50 64.0 16.0
5 0.00 142.88 80.0 16.0
5 2.16 142.32 82.0 16.2
4 2.24 114.97 63.0 15,7
3 2.29 86.83 40.5 16.5
2 2.34 58.16 34,5 17.3
1 2:3% 29.14 17.0 17.0
1 4.173 28.82 17.0 17.0
2 4.73 5752 34.5 7.3
3 4.73 85.82 49.5 16.5
4 4.73 113.54 68.0 17.0
5 4.73 140.45 81.0 16.2
5 6.74 139.98 81.0 16.2
4 6.74 113.12 68.5 17.1
3 6.74 85.48 51.0 170
2 6.73 57.29 35.0 2 i
1 6.73 28.71 17.0 7.0
1 7.58 28.61 175 : e,
2 7.58 57.10 36.0 18.0
3 7.52 85.17 5205 17.5
4 14.9% 112.78 70.5 17.8
5 1253 139.42 87.0 17.4
5 8.76 138.87 101.0 20.2
4 8.79 112.21 76.0 19.0
3 8.82 84.74 35.0 18.3
2 8.84 56.79 37.0 18.5
1 8.86 28.43 17.5 17.5
1 9322 27.74 ) S des; L5
2 9.22 55.35 39.0 1925
3 9.23 82.53 59.9 19.8
4 9.23 109.14 85.0 21.2
5 9.25 134.87 115.0 23.0
5 10.12 134.88 © o

4 10.10 109.21 118.5 29.6
3 10.09 82.70 76.0 25,3
2 10.10 55.46 47.5 in23.8
i 10.10 27.80 18.5 18.5
1 10.64 28.30 22,5 22.5
2 10.64 56.52 70.0 35.0
1 11.313 28.31 24.5 24,5

This shows the observed data from the experiment on pure cOpper.
Any problems with low thickness to wavelength ratios can be

detected by observing fm/m.
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The P'm values at room temperature indicate
that Q.. = « and the extrapolation process
can be performed with a straight line.
P! Temperature p'_ /P’ h Q = x 103
2 2 0 m M2
(mV)
measured measured =P'2f16.5 Table 5.2.2 Equation
5.4.4
17.0 0.00 1.03 0.06 0.4
17.3 2.34 1.05 0= 0.7
1753 4,73 1.05 Okl Q.7
17.5 6.73 1.06 0.12 0.8
18.0 7.58 1.09 0.18 1.2
18.5 8.84 1 023 1.5
19,5 9.22 1.18 0.32 2l
23.8 10.10 1.44 0259 3.9
35.0 10.64 2.12 0.87 5.8
TABLE 5.4.2
Values of h are found from Table 5.2.2, and hence QMm_l can

be calculat®d from equation 5.4.4.
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The complete results from the copper experiment
give good agreement between the five modes.
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6. THE ELECTRONIC SYSTEMS

61 Introduction

The electronic systems will not be described in detail.
However the circuit diagrams of two simple transmitters, constructed

by the author, are given. (Figs.6.3.1 and 6.3.3).

6.2 Oscillators

Comprehensive studies were carried out on oscillators suitable
for the present electronic burst generators. The two main
requirements for these oscillators were that they should have a
T.T.L. compatible output and an adequate frequency stability for
their application. Two such free-running oscillators are shown
in Figs.6.2.1 and 6.2.2. The result of these oscillator

investigations has been published - Bell/Sharp/Wong, 1974.

The Telequipment oscilloscope type D53A gives a mains locked
output which is a convenient drive for a mains locked oscillator.

Such an oscillator is shown in Fig.6.2.3.

6.3 Burst generators

Two burst generators were constructed by the author.  The
first, a simple portable model, was used mainly for demonstrations
and is shown in Figs.6.3.1 and 6.3.2. The second burst generator
(Figs.6.3.3 and 2.7.2) featured thumbwheel switches for selecting
the number of burst oscillations. This is very helpful for measuring
P (see chapter 5). Also a more stable burst frequency oscillator
was used in order to reduce long term frequency drift.  The output

stage used in both generators is shown in Fig.6.3.4.

6.4  Automatic systems

For some applications, particularly temperature measurement

it is desirable to use an electronic system which tracks the
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frequency being studied. Two types of automatic system have been

built to date.

Y

(1) The first produces its error signal.by examining phase in

the echo-signal (Pelmore 1971).

(2) The second derives its error by measuring the frequency
of the echo-decrement, and comparing with the burst

frequency oscillator.

The analysis in chapter 2 of this thesis provides formulae which

completely describe the echo. Computer programs were written to
plot the phase of the echo. Figs.6.4.1 to 6.4.5 show plots for

various cases. Fig.6.4.6 relates steady-state phase of the

echo signal to the acoustic parameters.
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o~ OUTPUT
A Q A Q

Fig.6.2.1

The two monostable multivibrators are cross-coupled to

form a free-running oscillator. Point B can be used

to stop and start the oscillator; it is shown here
connected to a simple circuit to ensure the oscillator
starting when the supply is switched on. The components

C and R are changed to vary the frequency of the oscillator.
(Integrated circuit numbers were Texas Instruments SN74121).

/V\ﬂ 5V

./W‘—\ i
220 w <

VOLTAGE
FOLLOWER

&
OUTPUT

Fig.6.2.2

The oscillator shown here has a better frequency stability
than that of the oscillator of Fig.6.2.1. However its
frequency range is smaller, and so it is followed by a
variable dividing circuit using standard digital techniques
in order to obtain the required frequency range. (The
voltage follower and comparator were National Semiconductor
LM310 and LM306).
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From oscilloscope

From dividing chain

L P

— 470

To eight input gate

From wafer switch

Circuit (b)

Fig.6.2.3

For some applications it is desirable to have an
oscillator with its period locked to a fixed

multiple of the mains supply period. The

Telequipment D53A oscilloscope used by the author

gives a OV to -2V square wave output derived from

the 50 Hz mains supply. This was used as the

driving voltage for the circuit (a) above. The

output of the Schmitt Trigger was fed into dividing
chains constructed using J-K flip flops. These gave
frequency division factorsof 1,2,3,4,6,8,12 and 16.
Each of these divided outputs was supplied to one
input of a two input Nand gate as shown in circuit (b)
above. The desired frequency was selected by switching
+5 volts on to the appropriate Nand gate using an 8 way
wafer switch. The outputs from the eight.dual input
Nand gates were supplied to an eight input Nand gate,
which provided a single output from the mains locked
oscillator. (Components were supplied by Texas
Instruments).
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+5V
33K lK switch
g
100K
—_— - Oscillator 1
10p (Fig.6.2.1)
Qutput Schmibt Qutput to
N trigeer . 19 frequency
| meter
3*3% Sehmite Ouput for
— trigger [0 oscilloscopéd
B & triggering
100K
§ —l Oscillator 2 +5
Em (Fig.6.2.1) These
components
determine
Output
__L_, a desdhe ;ono j burst length
| stable %
On-off /P 219
switch ] 6
Gc:]*i E,
£lip +: 5V
flop
- N switch for
Q —l_ continuous
& output
Qutput 2 )
fOutput 1
Fig.6.3.1
Oscillator 1 determines the transmitted frequency; the J-K

flip flop ensures a unity mark-space ratio for the output.
Oscillator 2 is of lower frequency and determines the repetition
rate of the transmitted burst of oscillations. The D type

flip flop ensures that a whole number of oscillations are
transmitted. By using the K switch oscillator 1 can be

changed from continuous running to running only during the

burst length. Outputs 1 and 2 supply the output circuit of
Fig.6.3.4. (All integrated circuits were supplied by Texas
Instruments).
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Fls.6.3.2

This portable burst generator was built for
demonstration purposes. The transducer
tuning capacitor was included inside the box.






Fig.6.3.3

The main feature of this burst generator was the
decade thumb-wheel switches which were used to
select the number of oscillations in the burst.

Repetition Rate

- 90 -

Oscillator
Fig. 6,2.1
Q
Mono-
stable
A

: P flop

flip

Q
Burst frequency D)
Oscillator d; flip
Fig. 6.2.2 ] £lop
D
J Q
; S ' OUTPUT 1
flop g
K
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OUTPUT 2
DECADE
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| 'i gﬁgilﬂimrm 3 DECADE RESET
DECODER IEER
1
W A
L<m:3~<<::F:l__cx:j gﬁgiﬂALTO el Lol
DECODER p COUNTER
1
— 3" A
gﬁc.n. % B DECADE RESET
o C COUNTER
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-—9 +vs(+ 15 Volts)
150 |

Vi
2N2904

210 é 10(5 Watt)

1K
Q—V\/V‘—kNZZIB YAVA"A ¢ Output to launching transducer
: 30(5 Watt)
Input 1 1K
"‘ L
56 —— 033 =
39
+ 5
Volts
2N2218
10(5 watt)
2N2904
2N2218
270
150
Input 2
o —Vs(-IS Volts)
Fig.6.3.4

The output circuit for both burst generators is shown.
The inputs 1 and 2 are taken from outputs 1 and 2 of
Figs.6.3.1 and 6,3.2. The supply voltage + V_ can be
varied, but in this case it was fixed at + 15V
(Transistors were supplied by Texas Instruments).



- B0 -

———

180°

RS s XS
T IIFE

135°

90°

45°

Fig. 6.4.1

e 30. The phase

graph shows the 180° phase reversal at the cross-

The echo is shown with the transmitted frequency
over point.

tuned to resonance and with Q
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135°

180°
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45°!

During the

The steady-state phase shift

echo-signal is 12°.

30.

Ehe
echo-decrement the steady ramp of the phase graph

indicates the difference between transmitted and

The echo is shown with 0.2% frequency detuning,
resonant frequencies.

again with Q
produced in

Fig.6.4.2
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LIST OF SYMBOLS

Subscripts may be used with these symbols to refer to a particular
solution or region. A bar over a symbol indicates that its Laplace

Transformation has been taken.

a amplitude of transmitted oscillations
a outside radius

a, mean radius

A cross-sectional area

A arbitrary constant

A(p),B(p) general functions of p

3 arbitrary constant
b inside radius
C velocity of propagation
E dynamic Young's Modulus
E echo return
E force
£ frequency
H material loss coefficient
h dilatational wave number
h heavyside step function
hm (= QCm/QMm)
k (= 1n(1/r) )
k shear wave number
K radius of gyration
K frequency parameter
L frequency parameter
1 length
Mh’Nn combinations of Bessel functions as defined in the text
PN number of oscillations in transmitted burst
P number of oscillations to the crossover point
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P Laplacean operator for T

Qc coupling Q factor

QM material Q factor

QT total Q factor

R reflected signal

R' modified reflected signal

;o reflection coefficient from boundary of transmission
and resonator

T radius direction (polar co-ordinates)

S strain

s Laplacean operator for t

T duration of oscillation burst

T stress

time

U velocity

v amplitude component

v, ( =V(E/ p)) longitudinal rod velocity

X direction (Cartesian co-ordinates)

z acoustic impedance

o, B defined in chapter 2

Y transmission constant

8 angle

€] ratio of shear and dilatational wave numbers

p density

o] dynamic Poissons Ratio

T time

£ displacement

o transmitted angular frequency

® resonant angular frequency

A dilatation

w rotation



Ambati, G. :

Bell, J.F.W.

Bell, J.F.W. :

Bell, J.F.W.,
Noble, A.E.,

Seth, T.N.

Bell, J.F.W..
Sharp, J.C.K.,

Wong, Y. :

Bishop, R.E.D.,
Gladwell, G.M.L.,

Michaelson, S. :

Bordoni, P.G. :

Bozorth, R.M.

Buckens, F. :

Chladni, E.E.F. :

Granato, A.,

Lucke, K.

- 100 -

REFERENCES

Experimental and Numerical Studies of Radial and
Contour Extensional modes in elastic Disks.

M.Sc. Thesis. University of Aston, 1973.

The velocity of sound in metals at high

temperatures. Phil.Mag. Vol.2, p.1113-1120 (1957).

A solid acoustic thermometer. Ultrasonics,

Vol.6, p.11-14 (1968).

Graphical displays of acoustic properties of

solids. Ultrasonics, p.178-181 (1973).

Digital Oscillators. Int.J. Electronics,

(accepted January 1973).

The matrix analysis of vibration, Camb. U,P.,

(1965).

Nuovo Cimento, Vol.4, p.177 (1947).

Ferromagnetism. Van Nostrand (1951).

Influence of the relative radial thickness
of a ring on its natural frequencies. J.A.8.A,,

Vol.22, p.437-443 (1950).

Entdeckungen uber der theorie des klanges.

Leipzig (1787).

Theory of mechanical damping due to dislocations.

J. Appl.Phys., Vol.27, p.583-593., (1956).



Granato, A.,

Lucke, K.

Hawgood, J.

Hearmon, R.F.S.:

Holland, R.

Johnson, A.C.J.

Kaye, G.W.C.,

Laby, T.H.

Ke, T.S.

Kolsky, H.

Love, A.E.H.

Lynworth, L.C.

Meitzler, A.H.,
O0'Bryan, H.M.,

Tiersten, H.F.

Mc Mahon, G.W.

- 101 -

Application of dislocation theory to Internal
Friction Phenomena at high frequencies. J. Appl.

Phys. Vol.27, p.789 - 805 (1956).
Numerical methods in Algol. Mc Graw-Hill (1965).

The elastic constants of anisotropic materials.

Rev. Mod. Phys. Vol.18, (1946).

Numerical studies of elastic disk contour modes
lacking axial symmetry. J.A.S.A. Vol.40,

p.1051 - 1057 (1966).

An apparatus for ultrasonic measurement.

M.Sc. Thesis, University of Aston (1971).

Tables of physical and chemical constants.

Longmans (1958).

Experimental evidence of the viscous behaviour
of grain boundaries in metals. Phys. Rev.,

Vol.71, p.533 - 546 (1947).
Stress waves in solids. Dover (1963).

The Mathematical theory of elasticity.

Cambridge (1927).
N.A.S.A. report No. CR-72395 (1967).

Definition and measurement of radial mode coupling
factors in piezoelectric ceramic materials with
large variations in Poissons Ratio. IEEE Trans.
on Sonics and Ultrasonics, Vol. SU-20, p.233 - 239

(1973).

Measurement of Poissons Ratio in poledferroelectric
ceramic Disks, IEEE Trans. Ultrasonic Engineering,

p.102 - 103 (1963).



Onoe, M.

Pelmore, J.M.

Pelmore, J.M.

Powers, R.W., :

Doyle, M.V..

Ravenhall, F.W.

Salvadori, M.G.,:

Baron, M.L.

Seth, T.N. :

Snoek, J.Ls

Stephens, R.W.B.:

Bate, A.E.

Stokes, Sir George

Timoshenko, S.P.

Timoshenko, S.P.

Tzannes, N.S. @

- 102 -

Contour vibrations of isotropic circular plates,

J.A.S.A,,Vol. 28, p.1158 -~ 1162 (1956).

An instrument to measure Young's Modulus at
high temperatures. M.Sc. Thesis, University

of Aston (1971).

Internal Friction and high temperature measurement
of refractory materials. Ph.D. Thesis, University

of Aston.(1974).

Diffusion of interstitial solutes in group V
transition metals. J.Appl. Phys.,Vol.30,

p.514 - 524 (1959).

Some recent observations on Chladni's figures.

Acoustica, Vol.29, p.l4 - 21, (1973).

Numerical methods in Engineering.

Longmans (1955).

Ultrasonic pyrometer for industrial applications.

Ph.D. Thesis, University of Aston (1974).

Effect of small quantities of carbon and nitrogen
on the elastic and plastic properties of iron.
Physica, Vol.8, p.711 - 733 (1941).

Edward Arnold

Acoustics and vibrational physics.

(1966).

: Cambridge Mathematical Transactions (1845)

Theory of plates and shells. Mc Graw-Hill (1959).

Theory of Elasticity. Mc Graw-Hill (1970).

Joule and Wiedermann effects - The simultaneous
generation of Longitudinal and Torsional stress

pulses in magnetostrictive materials. 1IEEE Trans.



- 103 -

Sonics and Ultrasonics, Vol.SU-13, p.33 - 41 (1966)

Wegel, R.L., 3 Internal dissipation in solids for small cyclic
Walther, H. strains. Physics, Vol.6, p.l4l - 157 (1935).
Zepler, E.E.; : Transients in electronic engineering. Chapman

Nichols, K.G. and Hall (1971).



- 104 -

APPENDIX A.2.2

MATHEMATICAL ANALYSIS OF TRANSMISSION LINE AND LINE RESONATOR

Fig.2.2.1 shows the line and resonator in diagrammatic form.
The solution obtained here is for the first reflection (echo) only.

(For a similar electrical case see Zepler 1971, page 287).

It is convenient to define,
Impedance (Z) = Fore (F)/Displacement Velocity (U)
where

S

b d

The one dimensional general equation of Stokes 1845 can be

written in the form

2 2 3

2
—-3-—‘25 = c° 2 g + H -2 [2] L2238
3T 3 x 9x 3T

where U= U(x, T)
See also Stephens 1966.

It is also convenient to write equation A.2.2.1 in the form
of two coupled partial differential equatioms. They are written

here in their Laplace transformation.

2
(H + ¢7)
- - p g U(x,p)
F (x,p) o A = e A.2.2.2
Vi) = w2 & E(x,p) 2.2.2.3

pA p 09X
The general solution of equation A.2.2.1 is,

U(x,p) = A(p) exp(-y x) + B(p) exp( yx) AsZ.24%

where
2 2 7
Yy =p /(Hp + c7)

From equations A.2.2.2, A.2.2,3, A.2.2.4 the characteristic

impedance of an infinite line can be found,



9 1/2
z (p) = pA(Hp + ¢7) A.2.2.5

A suffix will be used to refer the general equations A.2.2.1/2/3/4

to either the transmission line region (1) or the resonator region (2).

Region (2) will be considered first in order to determine the
impedance presented as the termination of the transmission line (i.e.

F2(11,p)/U2(11,p)). The boundary conditions for region (2) where

(11<x < 11 + 12) are,
fé(ll + 1, p) =0 A.2.2.6
Fo(1,, p) = F,(1,,p) AJ2.2.0
U,(1..p) = U, (1,p) A.2.2.8

Substituting equation A.2.2.4 into A.2.2.2 and A.2,2.3 gives the

general solution for region(2),

ﬁé(x,p) = Az(p) exp(-'rzx) + Bz(p) exp('yzx) Bels2:9

fé(x,p) = Zz(p) {gz(p) exp(- Y,X) - B,(p) EKP(YZX)]

N.2.2.30
where
_ 2.1/2
zz(p) = DZAZ(Hzp + (‘.2)
Qo e 2
and YZ = D /(HZP T C2)
Using boundary condition A,2,2.6 in equation A,2.2.10 gives,
52(9)/A2(p) = exp(- 2 72(11 + 12)) A.2.2.11

Using boundary condition A.2.2.7 in equation A.2.2.10 gives,
Fl(ll’p) = Zz(p) [Az(p)'exP(- Yzll) - B,(p) exp( yzll)] A.2.2.12
and using A.2.2.8 in equation A.2,2.9 gives,

ﬁi(ll,p) - Az(p) exp(~- Yzll) + Bz(p) exp( yzll) d A 2525148
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Combining equations A.2.2.11/12/13 yields,
Zl(ll,p) = Fl(ll,p)/Ul(ll,p) = Zz(p) tanh ( yzlz) A.2.2.14
Now there is enough information to obtain a solution for region (1)
where (0 € x '<11). Suppose that at time T = 0 a forcing function

Ul(O,T ) = a siu(ms t) is applied at the end of the line, x = 0

and so a boundary condition is,
- 2 2
Ul(O,p) = amS/(p - @ ) As2.25105

The general solutions for region (1) are,

ﬁl(x,p) = Al(p) exp(~-ylx) e Efp) exp(y-lx) A,252:16

fi(x,p) = Zl(P)l}l(P) exp(- le) - Bl(P) exp( Tlxi]A.2.2.17

ﬁi(x,p) consists of two components, a forward travelling wave, Ut and a

reverse travelling wave, Ul-'
U (x,p) = A (p) exp(- ¥;x); U, (x,p) =B;(p) exp(Y ;x)
So at the junction (x = 11),

Ul(ll,p) = Fl(ll,p)/zl(ll,p) A.2.2,18

and by substituting with equations A.2.2.16/17

Zl(p) -
U1+(11;P) + Ul_(ll,p) - EITTZ?Ej{Pl+(11sP)- Ul—(ll’p)]
AG2:2;19
therefore,
U, _(1,,p) 4 z,(p) - El(ll’P) Sl
U1+(11,p) zl(p) + Zl(ll,p)

So the first reflection R(x,p) will have initial magnitude v, _(1,,p).

So substituting with equation A.2.2.14 for Zi(ll,p),
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Zl(p) - Zz(p) tanh ( Yzlz)

U
Zl(p) + Zz(p) tanh ( Yzlz) 1+

E(x,p) = (ll,p) exp‘Yl(x—Z 11)

A.2,2.21

and now using boundary condition A.2,2.15 gives,

Zl(p) - Zz(p) tanh (v ,1,) an
z,(p) + 2,(p) tanh (¥ ,1,)

R(x,p) = expy l(x - 211)

2

(p2 + 0y )

A.2.2.22

Yl and Zl have similar expressions to those for Y2 and ZZ'

By splitting the forward and reverse waves as has been done
here, a solution (A.2,2.22) for the first reflection only is formed

and hence it is of simpler form than a complete solution,
Integrating around the contour shown in Fig.A.2.2.1 gives

AB BG@ . CD DE EF FA
J + [ + e T + | =(sum of residues).

The positive square root is taken in the definition of Yy

and so Jordon's Lemma holds (i.e. E(x,p)%— 0 E@s p o &
BC FA

e e S

on the boundaries BC and FA). Therefore

Now,
1, 2
CD P= —CI/HI
(e 5 R (x,p) exp(pt)dp A.2,2,23
P=-e

Typically however Ci/H1>> 106 and so the term exp(p1) is extremely
. CD
small over the range of the integral and so f = 0.
DE EF
Similarly [ =0 and [ =0,

The Laplacean Inversion of R (x,p) can now be written,
AB
R(x,T) = I = (sum of residues) A.2,2.24
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The attenuation and time delay effects of the term exp Yl(x—211) on
these residues will be shown later, As these effects are not

important in the practical case a new function R (o,s) is defined

Z,(s8) = Z.(s) tanh (Y_1.) aw
R (0,8) = — £ e A.2.2.25
Y
Zl(s) + ZZ(S) tanh ( 212) (s™ + 0 )
s is the Laplacean operator for t, where T - t = le/cl. t =o
defines the start of the echo signal.
The expression A.2.2.25 splits into two parts; the
transfer function of the system, and the forcing function
applied to it. The poles of the transfer function are given
when,
ZI(S) + Zz(s) tanh ( Yzlz) =0 A, 2,226

Replacing tanh ('Y212) by its exponential form
~ - Y g o
(exp( Y,1,) - exp( o1p)/ Cexp( o1,) + exp( 15 )

gives,

exp(Z'Yzlz) = (zz(s) - Zl(s))/(zz(s) + Zl(s)) A2, 2,27

2 2
However, H1<<:cl : H2 <<c,, and Hl and H2 can be neglected

in the right-hand side of equation A,2.2.27. This is because
the effect of H1 and H2 on these vectors in the s-plane is
extremely small, (See Section 2.2 on limits of practical

applications), Equation A.2.2,.27 becomes

2?’212 = In(xr) A.2.2,28
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where ¥ = ( p2C2A2 - plclAl)f( pzczAz + plclAl).
Letting In(r) = - k + jO gives © =0, + 2%, + 4% etc. and k is in
general a small positive real number. Equation A.2.2.28 now
becomes
2
41% . =(-k+j€a)2
st = c2
s0 2 8 2
ot .=kt io et 12k B 2w A.2.2.29
212 2 212 2

This quadratic equation can be solved for s.

2 ZoTX
. 1 - L= 4 - :

safek tig0] 02 +_];l—-k+]9 H2+-k+19] o2

21 2 2 21, R A 2
&.2.2.30

But H2 <<02 so,
_k+ j01%2 H 1 oikupds

8 = _—Tl—] —'5 + "2- —1'—']— c2 A, 22,30

2

On expanding this expression further approximations can be made because

k <<C, and H2 <<Cy. Thus equation A.2.2.31 becomes,
92H2 kc2 <,
S=-—-—-2---i'i'-+jfg A252:32
812 2 2

The approximations involved in obtaining equation A.2.2,32 from
equation A.2.2.29 can be simply evaluated for a particular case.
However, the practical applications give extremely small errors as

stated in Section 2.2.

Let a = (H,x0)/(215); g = (ke,)/(21); w = (e,m)/1,, then

equation A.2.2.32 becomes,

L R jne, : &.2.2.34
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where n =0, + 1, + 2 etec,

In an exactly similar way the zeros of the transfer function

can be shown to occur at points where,

s = -n @ 4+ B + jnw, A.2.2.34

The poles of the forcing function are at s = + jws. These can be
moved along the imaginary axis of the s-plane by altering the
transmitted frequency. A typical s-plane diagram is shown in
Fig.2.2.2 of Section 22, and the subsequent derivation of the echo
is clearly explained in that section.

The effect on the residues of considering the term exp Yl(x~2ll)
will be determined for the simple dominant pole case ( See Fig.2.3.1l

of section 2.3 ). Now,

= = N - 202
(21, -x)p (211 x)p Hlp 3 Hip~
exp e = el (1~ 2_2+Z_4_ EERRED)
4.2.2.,35
But Cf / Hl S 106 so,
To(21,-%)p ~(21,-x)p | (21, -x)H_p? |
5 s <
exp —-—;5-- SN ep e | &P 3
(Hyp+C?) et 0 T
A.2.2.36

The term exp(-(le—x)pfcl) produces the well known time
delay of the whole function by an amount (211-x)/CI. The term

exp [3211-X)H1p2/(20%§] must be taken into the residues. For

example the residue from pole p =-g = m? o + jcum becomes,

2a Bwi Vlva

exp j(w t+0, -0) exp (-f-n’a) T
Jug NV 7 8

ALZ2.2.37
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z) o A 3
where Vg = exp I: (21, x)Hl w m/(ZCl)]

©
|

and @ = (21;-x)(B +m'a)u H/C]

and the other symbols were defined in section 2.3. Summing

the four residues the complete solution becomes,

vV, V.V w 2pV.V
RixyT ) =:a 439 sin(wst+96)+2—s——1—&
” baYy “m Va¥s
sin(w o F A B 98) exp (- 8- o) T Ac232.38
= —._ — 2 203
where Vg = exp L(21l x)H,) W S/( 1)]
Near resonance w T LAk and so Vg = Vg producing an

attenuation of the whole echo. Typically 98 is much less than
one degree of arc for normally used line materials, giving a
negligable effect on the echo. However if a particularly lossy
line material is used, its effect should be investigated.

The effect of the branch point for more general cases

than the dominant pole case, gives a similar attenuation,
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p-plane

o 0 &

O]

C @

X
<o > TR ¢

Fig.A.2.2.1 Diagram showing the branch point and some poles

of R(x,p). See equation A.2.2.22.
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APPENDIX A.3.1

DERIVATION OF FREQUENCY EQUATIONS FOR DISK

In general at any point in an elastic medium, the matrix equation

8 = sT A35d

relates the strain vector Si and the stress vector Ti'

In cartesian co-ordinates it becomes,

o1 SiL R P WBE et Sha 0 P Big i

¥2 Sl P s g L

S3 = |85 Sa9 533 a4 S35 S36 T3 A.3.1.2

54 Fak . a2 i Cus o %5 w6 o)

%5 %53, « S5p BEEs (55 By 856 Ts

S6 6L o TeralRtes T e o g5 Pgg T

e = . - =

Si are engineering strains, SI’ 82 and S3 are longitudinal
strains in the x, y, and z directions. 84, S5 and 36 are shear strains
about the x, y, and z directions. Similarly, for the engineering

stresses Ti' Sij are the 26 elastic constants of the material. By a

consideration of the Strain-Energy-Function Love 1927 shows that,

Further for an isotropic medium the elastic constants must be
unaltered by a change to a new cartesian co-ordinate system, A
consideration of this reduces the number of independent elastic constants

to only two, and so

'sl" _511 8.5 515 0 0 o | _Tl_

5, Sim | BagieiGans 0 < 2 1T,

S3 = 512 19 511 0 0 0 T3 Asdeled
S, 0 0 0 N 0 0 T,

Sg 0 0 0 0 s, 0 T

56 | 0 0 0 0 0 51 | Tg |




S e

where s, = 2 (

1 s

1 B’
For a consideration of thin disks, any interaction with the

thickness direction (z-direction) can be neglected so,

Sy 5 812 o +
s,| =5y, 51, 0 T, K3l
86 0 0 566 T6

Love's result for interchangeability of axes in this case leads to,

Se6 - 2(511 - 312) A.3.1.5

Equation A.3.1.5 holds because an isotropic material is being
considered, A cubic material would have had three elastic constants;
in that case s

8= B is the third elastic constant, and equation

46 - %55 ~ %66
A.3.1.5 becomes A866 = 2(51l - 512), where A is the elastic anistropy
of the material. A good account of the equations relating to crystal

structures is given by Hearmon 1946.

Poisson's ratio is defined as,

S2
O = EI when T2 = ‘1‘6 =50
Therefore
g = -512/511 A.3.1.6
Young's Modulus is defined,
%)
E = 3 when T2 = T6 = 0
1
Therefore
= - .1‘
E l/s11 4 A.3 7

By Kramer's Rule from equations A.3.l.4
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5y 812 0
Sy 811 - 0y 812
Be g P et Sy S E (S, + 0S,)
Tl e = e e — e — = 2
1l -0
1Tk © 811 819
Bynill 54 @ 819 11
0 0 566 R
Therefore ;
T, = I ggxx ¥ U;E%J A.3.1.8
_(l—c% Y
Similarly
T, = —E R iﬁi%] A.3.1.9
(1 -q ) 1 d X
and
S ; ;
6 E e)gx [)Ey
T = - + A.3.1.10
6 2(511 - 312) 2(1+0) [:a y 3 x

Now to derive the equations of motion consider the incremental

element of the plate in Fig. A.3.1.1.

In x direction,

DTl BT6 aZEx
(—— 6x) 6y 62 H——— O8y) $x6z2z=8=x 8y 8§zp
p5.4 0y A
8
Therefore 2
2T T ™%
SRt TR S A.S. 1.0
3% ay A abatd

Similarly in y direction,

BT6 ) T2 g £

+ = s, - A.3.1.12
~ p -
X 3y 5 2

Equations A.3.1.8 to A,3.1.12 are those with which Love 1927 commences.
(page 497).

Substituting into equation A.3.1.11 for T1 and T6 from equations

A,3.1.8 and A.3.1.10 yields,
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2 2 2 9 2

A | 3 £ 1 3 & (1 eg ). .25
= Y ot R ) S g 20

P +2(1 o) 2+2(l+°’axay P 5

ax ay ot

Similarly equation A.3.1.12 becomes,

2 2 2 2
l(l S )E} iy . 3 E y A L o }ji g g 3 (1 -0 2) d §y
2
2 e 8y2 2 X9 vy E 3t
BEX a g A 1 8 E 9 E
= _a-_..+—..4—z. = - _...J.Z_ -—2‘.-_}-(-
£ 4 99X 3y ang 2 ( ox Yy )5

then equations A.,3.1.13 and A.3.1.14 can be rewritten,

2
= 2
e -(1-0)"""80 = p (A-g) Bg’x
3 X 3y E at2
2 2
LA 4+ (1-0) 30 o (-07) iy
3y i 7 E 2
ot
In polar co-ordinates,
TOLLT TR W T S o BT TR x|
or r T A8 2|03r 5 p SO i
and the stress resultants become,
= E _agr Er 1 §£9-
Trr % 2 or il T i T ) )
(L -c™) -
T & 3 N |
41 8t Q‘*f*%“ﬁ*‘ﬂ
(L+o0)2 L 3r

If equation A.3.1.15 is differentiated with respect to x and

A.3.1.16 with respect to y, the resultant equations can be summed to

give,
2 8
G2 s (1 =) 8
E atZ
Similarly,
2 — (1ag) 2w
v w = 2P ....l&_tu_.._.
E at2

In general for a normal mode a solution p = F(r) G(8) coswt

can be assumed. Putting this solution into equation A.3.1.20

A,3.1.13

A.3.1.14

A.3.1.15

AL3.1:16

A.,3.1.17

A.3.1.18

A,3:.1.19

A.3.1.20

A.3.1.21
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gives coswt as a common factor, and then the variables r and © can

be separated., The general solution resulting from this is,

A = [}1 I, (hr) + Ay Y (hri] L§3 cosn® + A4sin an]cosmt

A.3.1.22

where h2 =g 1S 02) MZ/E.

It is convenient here to state the boundary conditions for

the disk of radius a,

T =0 at r=a As3.1523
; ot 5
T =0 atte =a 30124
re

A, W, Er and £ @ are finite A.3:1.25

for all r< a
Concentrating on the © ordinate first, it will be shown that £@
and g r are orthogonal as assumed by Love 1927, Er, E-;9, A
and ® will all be of the form £(r) coset (Ac cosne® + A_sin ne),

1

The © ordinate is chosen such that,

Er

Un(r) cos ne coswt A.3.1.26

£g

]

Vn(r) (ASCOS ne + A6 sin n®) coswt
A.3.1.27

Equation A.3.1.26 and A.3.1.27 are used to substitute for © r and
50 in equation A,3.1.18. Then applying boundary condition

A.3.1.23 gives,
or 6

Al (r) L b
cos MO [—2—+ Ly (r) + A <2 vy (p)
E n i n

- sin n® [; a8 y (ri} =0 atr = a,
L T n

Hence, 3Un(r) v, Ur) +4 2B y (r) =0
ar L M (i ﬂ
and
on

A5 e Vn (r) =0 atr = a,
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So AS = 0, and the solutions for Er and & @ are orthogonal.
Substituting these solutions into equation A.3.1.17 will show that

A and w are also orthogonal in O, So using the solutions,

A Fl(r) cos N8 coswt

® Fz(r) sin n® coswt

in equations A.3.1.20 and A.3.1.21 yields,

A = A J (hr) + A Y (hr)-] cos nO® coswt Ao3. 1,28
7 n 8 n
w = [A.J (kr) + A, Y (kr)| sin n@ coswt A.3.1.29
9°n 10" n
where
B2 =p (1-9% ¥E, k=20 (1+9) %/E
Boundary condition A.3.1.25 requires that AS = AlO =0,

Equations A.3.1.15 and A.3.1.16 when converted to their polar

forms become

- 2
3_*'3- l.n__= 2(_1_-,_QE
- (1 -¢g) mgho -p @ 5 % A.3.1.30
(1 = )i‘@.;.i...%..-:- mz.g.l_."_.ciz_) gg A 3.3
O Tap r 020 e E

Substituting into A.3.1.30 and A.3.1.31 with the general solutions

A.3.1.28 and A.3.1.29 gives the form for the solutions of g - and Eg®

. i dj_(hr) J_(kr )]
B _ﬁll e + nA12 cos nO coswt A3l 32
. A Jn(hr) dJn(kr)
M nAll S + A12 —3r | 8 n® coswt A,3.1.33

For radial modes Eg vanishes and Er is independent of ©. This
occurs when n = 0. Equation A.3.1.18 and.boundary condition A.3.1.23
give,

| dgr E‘-'r 1 dg@ -]

Ldr +0(£’ +;' —d-é—) e =0 A.3.1.34

So using solution A,.3.1.32 in A.3.1.34 yields,



(ha) = 0 A.3.1.35

as the radial modes frequency equation,

The choice of the © ordinate is arbitary so rotating 6 = o by
n/2 and putting n = 0 yields tangential modes in which Er vanishes
and %g is independent of ©. The general solution A.3.1.33 is put
iﬁto equation A.3.1.19 and applying boundary condition A.3.1.24 gives

the frequency equation for tangential modes,

dJl(ka) Jl(ka)
= A.3.1.36

da a

The remaining solutions are those for which n > 0, Two
equations are obtained by substituting A.3,1.32 and A.3.1.33 into
A.3.1.18 and A.3.1.19 with their appropriate boundary conditions.

» 1 dJn(ka) 1
e ;f Jn(ka) n(l -g )

A da
= - A.3.1.37
3 7 dJ (ha)
(1 -¢) n 2 (1 ~-¢g) 2 ']
[ a da +(h"- 2 a )Jn(ha)
a
[, a3 {ka) 2
LSS s 2y )
All a da a2 n
A—""' " - a3 (ha) A.3.l.38
ke R g R D
a da a2 n

The frequency equation for these compound modes is formed by eliminating

/ between A.3.1.37 and A.3.1.38.

M1
Equations A.3.1.35 to A.3.1.38 are the frequency equations as
given by Love 1927, The notation of Holland 1966 lends itself readily

to numerical analysis,
1/2

K =ha=ua (g (L= g)E) A.3.1.39



- 120 -

o=k/m = [2/(1 - 0 )]V? A.3.1.40

Also the expressions are simplified by introducing a modified Bessel

function

MO(A) = A, (A)/J (M)

n

Using the relations A.3.1.39 and A.3.1.40 the frequency equations

are converted to the following forms,

Radial modes frequency equation,
=l 2
M (R P =1 A.3.1.41

Tangential modes frequency equation,

Ml(KmT @ )= 2 A.3.1.42

Compound modes frequency equation; formed by eliminating A11/A12

in,
. J ( 6K ) n(M ( 6K ) - (n+l) )
ikl m,n S . m,n
A N J (K ) 7] A.3-1.43
12 nmnt Loogp 3 maln DM (R)
) m,n n m,n
2
All ) Jn( exm,n) 2Mn( GKm’n)+ (0 Km,n) - 2n(n+1) AL3.1.44
A, Jn( Km’n) 2n(Mh(Km’n)-(n + 1))

The subscripts of K refer to particular solutions,
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Sy

/e

Fig.A.3.1.1

/
i
//

An incremental element of a thin plate is
shown. Notice the directions of T, on
faces y = constant, and x = constang.
These directions are verified by taking
moments about the centre of the element.
See Love 1927 (page 77).
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APPENDIX A.3.4

CURVE FITTING

A curve fitting program was available at the University
computer centre. This used the method of least squares via
orthogonal polynomials, The output gave coefficients of
polynomials of degree up to and including the limit given. For

each result the sum of the squared deviations was also given.

The method is outlined very well in Hawgood 1965. A good
reference for Cholesky's Scheme for solving determinants is

Salvadori 1952.

The sum of the mean squares is printed out permitting the

selection of a polynomial with sufficiently high degree.
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APPENDIX A.4.3

TABLES OF K VALUES FOR RINGS

Kl,R Values

0.00 1.8412 |1.8035 |1.7051 1.5821 | 1.4618 | 1.3547 |1.2621 | 1.1824 | 1.1134| 1.0531
0.05 1.8789 |1.8372 1.7291 1.5964 | 1.4695 | 1.3582 |1.2632 | 1.1821 | 1.1124 | 1.0519
0.10 1.9154 |1.8689 1.7501 | 1.6074 | 1.4736 1.3584 |1.2612 | 1.1789 | 1.1087 | 1.0480
0.15 1.9506 |1.8988 |1,7681 1.6147 | 1,4741 1.3551 |1.2559 | 1.1727 | 1.,1021 | 1.0415
0.20 1.9845 |1.9268 |1.7828 | 1.6182 | 1.4709 1.3482 | 1.2473 | 1.1634 | 1.0927 | 1.0322
0.25 2.0172 |1.9528 1.7941 1.6176 | 1.4636 1.3377 | 1.2353 1.1509 1.0802 | 1.0202
0.30 2,0490 [1.9766 |1.8015 | 1.6126 | 1.4521 13233 |1.2197 | 1.1351 1.0647 | 1.0052
0.35 2.0796 [1.9981 |1.8046 | 1.6028 |1.4362 | 1.3047 |1.2003 | 1.1158 | 1.0460 | 0.9872
0.40 2.1091 |2.0171 |1.8028 | 1.5B878 |1.4153 | 1.2818 [1.1770 | 1.0929 | 1.0238 | 0.9659
0.45 2,1379 [2.0331 |1.7954 | 1.5669 |1.3891 | 1.2541 [1.1494 | 1.0660 | 0.9980 | 0.9412
0.50 2,1659 |2.0456 |1.7815 | 1.5395 |1.3571 1.2212 | 1.1171 1.0349 | 0.9682 | 0.9129
0.55 2,1930 |2,0539 |1.7598 | 1.5045 |1.3186 | 1.1826 |1.0797 | 0.9991 | 0.9341 | 0.8804
0.60 2,2192 |2.,0566 |1.7286 | 1.4608 |1.2726 | 1.1376 |1.0365 | 0.9580 | 0.8952 | 0.8434
0.65 2.2448 12,0518 |1.6857 | 1.4070 |1.2181 | 1.0851 |0.9868 | 0.9110 | 0.8507 | 0.8013
0.70 2.2696 2.0367 |1.6281 | 1.3410 |1.1535 | 1.0241 |0.9294 | 0.B571 | 0.7998 | 0,7531
0.75 2.2937 |2.0060 |1.5514 | 1.2598 | 1.0767 | 0.9525 |0.8628 | 0.7947 | 0.7410 | 0.6975
0.80 2,3171 |1.9505 |1.44%3 | 1.1595 |0.9843 | 0.8677 |[0.7844 | 0.7216 | 0.6725| 0.6328
0.85 2,3399 [1.8524 |1.3114 1.0329 |0,8709 | 0.7651 |0.6902 | 0.6343 | 0.5907 | 0.5556
0.%0 2.3621 |1.6734 |1.115%0 |0.8673 |0.7263 | 0.6358 |0.5724 | 0.5254 | 0.4890 | 0.4598

0.95 2,3838 [1.3177 |0.8268 |0.6305 |0.5244 | 0.4574 |0.4110 | 0.3768 | 0.3504 | 0.3294
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KL1 Values
» 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00 1.7497 | 1.7555 | 1.7683 | 1.77701 1.7701 | 1.7411| 1.6917 | 1.6285]| 1.5583 |1.4859
0.05 1.7402 | 1.7469 1.7616 | 1.7727| 1.7678 | 1.7398| 1.6906 | 1.6271| 1.5566 |1.4841
0.10 1.7258 | 1.7331 | 1.7497 | 1.7633] 1.7606 | 1.7339| 1.6851 [ 1.6216| 1.5510 |1.4786
0.15 1.7061 | 1.7142 | 1.7327 | 1.7489| 1.7486 | 1.7234| 1.6751 | L.6118| 1.5414 |1.4693
0.20 1.6816 | 1.6903 | 1,7107 | 1.7294| 1.7316 | 1.7081| 1.6607 | 1.5979| 1.5278 |1.4561
0.25 1.6520 | 1.6614 1.6835 | 1.7048| 1.7096 | 1.6880| 1.6417 | 1.5795| 1.5100 |1.4390
0.30 1.6176 | 1.6275 | 1.6512 | 1.6749 LEBZIG 1.6629] 1.6178 | 1.5565] 1.4879 |1.4178
0.35 1.5781 | 1.5885 | 1.6136 | 1.6396| 1.6498 | 1,6325| 1.5890 | 1.5288| 1.4613 |1.23923
0.40 1.5336 | 1.5444 | 1.5707 | 1.5988( 1.6116 | 1.5966| 1.5549 | 1.4961| 1.4299 |1.3622
0.45 1.4838 | 1.4949 1.5222 | 1.5521) 1.5674 | 1.5549| 1.5151 | 1.4580( 1.3934 11.3274
0.50 1.4285 |1.4398 | 1.4678 | 1.4993| 1.5169 | 1.5069] 1.4693 | 1.4141| 1.3513 |1,2872
0.55 1.3675 | 1.3789 1.4072 | 1.4399| 1.4596 | 1.4521| 1.4168 | 1.3638| 1.3033 [1.2414
0.60 1.3001 j1.3114 | 1.3399 | 1.3733| 1,3948 | 1.3897| 1.3570 | 1.3065| 1.2485 |1.1892
0.65 1.2256 |1.2367 | 1.2649 | 1.2986| 1.3215 | 1.3188| 1.2888 | 1.2411 | 1.1860 |1.1296
0.70 1.1429 [1.1537 | 1.1811 | 1.2145] 1.2384 | 1.2379| 1.2108 | 1.1664 | 1.1146 |1.0616
0.75 1.0504 |1.0606 | 1.0868 | 1.1194 | 1.1436 | 1.1451| 1.1211 | 1.0802 | 1.0324 |0.9832
0.80 0.9454 |0.9549 |0.9794 | 1.0103 | 1.0341 | 1.0373| 1.0165 | 0.9799 | 0.9365 |0.8919
0.85 0.8235 |0.8320 |0.8542 | 0.8824 |0.9050 | 0.9093 | 0.8921 | 0.8602 | 0.8222 |0.7831
0.%0 0.6761 |0.6833 |0.7020 | 0.7263 |0.7463 | 0.7512 | 0.7378 | 0.7117 | 0.6804 [0.6480
0.95 0.4806 |0.4858 |0.4995 | 0.5175 |0.5327 | 0.5372 | 0.5282 | 0.5098 | 0.4874 [0.4642
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Kl ,2 Values

4 : 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00 |1.6518 |1.5250 |1.2520 | 0.9942 | 0.7606 | 0.6003 |0.4439 | 0.3068 [0.1875 |0.085]
0.05 |1.6115 |1.4933 [1.2345 | 0.9848|0.7754 | 0.5974 [0.4424 | 0.3061 | 0.1872 10,0851
0.10 |1.5697 |1.4506 |1.2145 | 0.9732 | 0.7684 | 0.5931 [0.4398 | 0.3046 (0.1864 [0.0844
o0.15 | 1.5267 |1.4260 [1.1920 | 0.9593 | 0.7595 | 0.5873 [0.4361 | 0,3023 {0.1851 10,0841
0.20 |1.4819 |1.3863 |1.1671 | 0.9432 [ 0.7487 | 0.5801 [0.4313 | 0.2993 | 0.1834 |0.0840
0.25 |1.4356 |1.3466 |1.1398 | 0.9248 |0.7360 | 0.5713 | 0.4253 | 0.2954 |0.1812 [0.0826
0.30 |1.3877 |1.3048 [1.1100 | 0.9041 [0.7214 | 0.5609 |0.4181 | 0.2907 |0.1784 |0.0811
0.35 11.3377 |1.2607 |1.0776 | 0.8810 [ 0.7047 | 0.5489 |0.4097 | 0.2852 | 0.1751 [0.0792
0.40 |1.2858 |1.2143 |1.0426 | 0.8555 [0.6860 | 0.5353 [0.4001 | 0.2787 |0.1712 |0.0773
0.45 |1.2314 |1.1653 |1.0048 | 0.8274 |0.6650 | 0.5198 | 0.3890 | 0.2712 | 0.1668 [0.0761
0.50 |1.1745 [1.1135 |o0.9640 | 0.7964 |0.6417 | 0.5024 | 0.3765 | 0.2628 | 0.1616 [0.0741
0.55 |1.1145 |1.0585 |0.9198 | 0.7625 |0.6157 | 0.4829 | 0.3623 | 0,2531 |0.1558 [0.0711
0.60 |1.0510 l0.9999 |o0.8720 | 0.7251 |0.5869 | 0.4610 | 0.3463 | 0.2422 | 0.1492 [0.0680
0.65 |o0.9834 lo0.9369 |o0.8199 | 0.6839 |0.5547 | 0.4365 | 0.3283 | 0.2298 | 0.1416 [0.0642
0.70 |o.9106 lo.8689 |0.7628 | 0.6382 |0.5188 | 0.4089 [0.3079 | 0.2157 [0.1330 [0.0606
0.75 lo.8315 lo.7944 o.6996 |0.5869 |0.4782 | 0.3774 |0.2846 |0.1996 |0.1232 P.0564
0.80 lo.7a38 b.7116 |o.6285 |o0.5288 |o.4316 | 0.3413 |0.2576 | 0.1808 |0.1117 b.0510
0.85 |o.6443 lo.6171 lo.s466 |o0.a611 [0.3772 | o0.2987 [0.2257 | 0.1586 [0.0980 D.0451
0.90 |o.s5261 p.soas |o.4481 |0.3790 |o.3106 |o0.2463 |0.1864 | 0.1311 |0.0810 D.0373
0.95 |o.3721 b.3s572 lo.3180 |o0.2696 |0.2215 |0.1759 [0.1333 | 0.0938 [0.0580 b.0262
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1(1.3 Values
L
o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00 2,5069 2.5009 | 2.4162 2.1557 |1.8028 1.4537 |1.1251 0.8122 |0.5145
0.05 |2.4523 | 2.4468 |2.3676 | 2.1215 |1.7818 | 1.4414 |1.1182 | 0.8088 |0,5132
0.10 |2.3944 | 2.3892 |2.3152 | 2.0831 |1.7569 | 1.4257 |1.1087 | 0.8035 |0.5106
0.15 |2.3332 | 2.3283 [2.2593 | 2.0407 |1.7282 | 1.4066 |1,0964 [ 0.7962 |0,5068
0.20 |2.2688 | 2.2642 [2.2000 | 1.9944 |1.6955 | 1.3841 [1.0814 |0.7868 |0.5015
0.25 |2.2012 | 2.1970 |2.1370 | 1.9441 |1.6590 | 1.3582 |1.0636 [0.7753 |0,4950
0.30 |2.1304 | 2.1264 |2.0707 | 1.8899 |1.6185 | 1.3288 |1.0430 |0.7617 |0.4870
0.35 |2.0562 | 2.0525 |2.0008 |1.8316 [1.5741 | 1.2959 |1,0194 |0.7459 |0.4776
0.40 |1.9783 | 1.9749 |1.9270 | 1.7691 |1.5255 | 1.2593 |0.9928 |0.7278 |0.4667
0.45 1.8965 1.8933 |1.84920 1.7022 |1.4725 1.2188 |0.9629 0.7071 [0.4542
0.50 |1.8103 | 1.8074 |1.7666 |1.6304 |1.4148 | 1.1740 |0.9295 | 0.6839 |0.4398
0.55 |1.7191 |1.7165 |1.6790 |1.5534 |1.3519 | 1.1247 |0.8923 | 0.6577 |0.4237
0.60 |1.6223 | 1.6200 |1.5858 |1.4704 [1.2833 | 1.0703 |0.8509 |0.6283 |0.4053
0.65 |1.5189 |1.5167 |1.4857 |1.3806 |1.2083 | 1.0100 |0.8046 |0.5952 |0.3845
0.70 |1.4073 }1.4054 |1.3776 |1.2827 |1.1255 |0.9431 |0.7528 |0.5578 [0.3609
0.75 |1.2856 |1.2839 |1.2593 |1.1748 |1.0335 |0.8679 [0.6941 |o0.5152 [0.3338
0.80 |1.1507 |1.1492 |1.1278 |1.0540 |0.9295 |0.7823 0.6269 |0.4661 P.3024
0.85 |0.9971 |0.9959 |0.9778 |0.9155 [0.8092 |0.6826 |0.5480 |0.4081 P.2651
0.90 |o.8146 |0.8136 |0.7993 |0.7496 |0.6640 |0.5613 |0.4515 |0.3368 DP.2190
0.95 |0.5763 |0.5757 |0.5658 |0.5314 [0.4718 |0.3996 [0.3220 |0.2406 pP.1569
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Ki,ﬁ Values
. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00 3.2321 3.2318| 3.2210 |3.1225 2.8191 2.3821| 1,9163 1.4397| 0.9484
0.05 3.1689 3.1688| 3.1585 | 3.0655 2.7769 2.3550] 1.9001 1.4313| 0.9450
0.10 3.1001 3.1000| 3.0903 | 3.0028 2.7220 2.3225| 1.8794 1.4193] 0,9393
0.15 3.0261 53,0259 3.0168 | 2,9346 2.6755 2.2848] 1.8543 1.4039 | 0.9312
0.20 2,9470 2,9468| 2.9382 | 2.8613 2.6165 2.2420] 1.8247 1.3850] 0.9207
0.25 2.8629 2.8628| 2.8547 |2.7828 2.5521 2.1940| 1.7906 1.3624| 0.9077
0.30 2.7740 2.7739| 2.7664 | 2.6993 2.4824 2.1409| 1.7520 1.3364 | 0.8923
0.35 2.6801 | 2.6800| 2.6730 |2.6105 | 2.4070 2.0823| 1.7086 | 1.3064| 0.8742
0.40 2.5809 2.5808| 2.5743 | 2.5164 2.3260 2.0181| 1.6603 1.2725| 0,8533
0.45 2.4763 2.4762| 2.4701 |2.4164 2,23%0 1.9482| 1.6068 1.2344| 0,8296
0.50 2.3655 2.3654] 2.3598 |2.3103 2.1454 1.8720| 1.5478 1.1918| 0.8028
0.55 2.2480 2.2478| 2.2427 |2.1972 2.0448 1.7889| 1.4828 1.1444 | 0.7724
0.60 2.1227 2.1226| 2.1179 |2.0764 1.9362 1.6983| 1.4110 1.0914 | 0.7382
0.65 1.9885 | 1.9883| 1.9841 |1.9464 1.8185 | 1.5990| 1.3317 | 1.,0323 0.6996
0.70 1.8434 1.8432| 1.8394 [1.8055 1.6900 1.4896| 1.2434 | 0.9660 0.6561
0.75 1.6848 | 1.6847| 1.6813 |1.6512 1.5682 | 1.3678| 1.1443 | 0.8909 | 0.6063
0.80 1.5086 | 1.5045] 1.5056 |1.4794 | 1.3834 1.2302| 1.0314 | 0.8047 | 0.5450
0.85 1.3077 1.3077] 1.3053 |1.2833 1.2070 1.0710] 0.8999 | 0.7036 0.4800
0.90 1.0688 | 1.0688 | 1.0668 |1.0493 0.9884 | 0.8789| 0.7400 | 0.5797 0.3978
0.95 0.7564 | 0.7564 0.??51 0.7430 | 0,7009 0.6245| 0,5268 | 0.4136 0.2819
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K1.5 Values
¢

o 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0,00 3.9094 3.9094 | 3.9084 |3.8847 3.7250 3.3107 |2.7569 2.1431 |1.4654
0.05 3.8387 3.8386 [3.8376 [3.8150 3.6622 3.2660 |2.7283 2.1271 |1.4581
0.10 [3.7601 | 3.7601 | 3.7591 |3.7376 |3.5928 | 3,2141 [2.6934 | 2.1061 |1.4482
0.15 |3.6744 | 3.6744 |3.6734 |3,6531 |3.5164 | 3.1553 |2.6524 | 2.0799 |1.4344
0.20 3.5819 3.5819 |3.5810 [3.5619 3.4332 3.0897 |2.6052 2.0487 |1.4166
0.25 |3.4828 | 3.4828 |3.4820 P3.4640 |3.3432 | 3,0174 |2.5518 | 2.0123 |1.3952
0.30 [3.3774 | 3.3774 |3.3766 [1.3598 |3.2466 | 2.9384 |2.4922 | 1.9707 |1.3701
0.35 [3.2654 | 3.2654 |3.2646 [3.2489 |3.1432 | 2.8524 |2.4262 | 1.,9237 |1.3410
0.40 |3.1466 | 3.1466 |3.1459 P.1313 |2.0328 | 2.7593 |2.3535 | 1.8710 |1.3078
0.45 |3.0208 | 3.0208 |3.0201 P.0066 |2.9151 | 2.6587 |2.2738 | 1.B124 |1.2701
0.50 |2.8872 | 2.8871 |2.8865 PR.8740 |2.7894 | 2.5501 |2.1867 | 1.7474 |1.2279
0.55 |2.7451 | 2.7450 |2.7444 P.7329 |[2.6550 | 2.4327 |2.0913 | 1.6754 |1.1801
0.60 |2.5932 | 2.5932 |2.5927 p.5821 |2.5108 | 2.3055 |1.9869 | 1.5956 |1.,1269
0.65 |2.4302 | 2.4301 |2.4297 p.4201 |2,3553 | 2.1672 |1.8721 | 1.5071 [1.0680
0.70 |2.2537 [2.2536 |2.2532 P.2446 [2.1863 | 2.0156 |1.7453 | 1.4083 |0,9998
0.75 |2.0605 |2.0604 |2.0601 P.0524 |2.0006 | 1.8480 |1.6037 | 1.2971 [0.9237
0.8 |1.8456 |1.8456 |1.B452 Jl.B386 |1.7935 |1.6596 |1.4434 | 1.1701 |[0,8349
0.85 |1.6004 |1.6004 |1.6001 [.5945 |[1.5565 | 1.4427 |1.2575 |1.0217 [0.7308
0.90 |1.3084 |1.3083 |1.3081 }.3037 |1.2734 1.182-3 1.0326 |0.B8408 [0.6107
0.95 |0.9263 |0.9262 |0,9260 ¢.9228 [0.9021 |0,8389 |0.7341 0.5998
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K1,6 Values
¢

e 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00 |4.5657 | 4.5656 |4.5655 | 4.5608 |4.4981 | 4,1954 |3.6143 | 2.8930 |2.0464
0.05 |4a.4870 | 4.4870 |4.4869 | 4.4823 |4.4223 | 4.1326 [3.5713 | 2.8675 |2.0348
0.10 |4.3988 | 4.3988 |4.3987 | 4.3942 [4.3371 | 4.0610 |3.5202 | 2.8351 |2.0182
0.15 |4.3016 | 4.3016 [4.3015 | 4.2973 [4.2431 | 3.9809 |3.4613 | 2.7961 11.9966
0.20 |4.1961 | 4.1961 |4.1960 | 4.1920 |4.1408 | 3,8925 |3.3946 |2.7504 |1.9701
0.25 |4.0826 |4.0826 |4.0825 |4.0787 |4.0305 | 3.7960 [3.3201 |2.6980 [1.9385
0.30 |3.9611 | 3.9611 [3.9610 | 3,9574 [3.9122 | 3.6914 |[3.2378 | 2.6387 |1.9017
0.35 |3.8316 |3.8316 {3.8315 |3.8283 |3.7859 | 3.5786 |3.1475 | 2.5724 |1.8396
0.40 |3.6939 | 3.6939 |3.6938 | 3.6907 |3.6513 | 3.4573 |3.04%0 |[2.4988 |1.8115
0.45 |3.5476 | 3.s5476 |3.5475 |3.5446 |3.5079 |3.3270 |2.9417 | 2.4175 |1.7577
0.50 |3.3919 |3.3919 [3.3918 |3.3892 |3.3552 | 3.1871 |2.8252 |2.3279 |1.6971
0.55 |3.2260 |3.2260 [3.2259 |3.2235 [3.1922 |3.0368 |2.6984 |2.2293 |1.6298
0.60 |3.0486 | 3.0485 |3.0485 |3.0462 |3.0176 |2.8747 |2.5604 |2.1206 |1.5544
0.65 12.8577 | 2.8577 |2.8576 |2.8556 |2.8296 |2.6992 |2.4095 | 2.0006 [1.4701
0.70 |2.6509 [2.6508 |2.6508 |2.6489 [2.6255 |2.5077 [2,2435 |1.8673 |1.3779
0.75 |2.6242 | 2.4242 |2.4241 |2,4225 |2.4017 | 2.2968 [2.0591 |[1.7179 |1.2693
0.80 |2.1719 |z.1718 |2.1718 |2.1703 |2.1523 | 2.0606 |1.8511 |1.5480 |1.1491
0.85 |1.8838 |1.8837 |1.8837 |1.8825 |1.8672 |1.7897 |l.6109 |1.3501 |1.0290
0.90 |1.5403 |1.s5402 |1.5402 |1.5392 |1.5271 |1.4652 |1.3214 |1.1110 |0.8426
0.95 |1.0905 |1.0904 |1.0904 |1.0899 |1.0815 |1.0383 10.9369 |0.8109
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Kl,? Values
]

. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00 |5.2106 | 5.2107 [5.2107 | 5.2098 [5.1889 | 5.0095 |4.4677 | 3.6706 |2,6755
0.05 |5.1240 | 5.1240 |5.1239 | 5.1231 |5.1029 | 4.9308 |4,4091 |3.6338 |2.6578
0.10 |5.0259 | 5.0259 |5.0259 | 5.0251 [5.0057 | 4.84l4 |4.3407 | 3,5886 |2,6337
0.15 |4.9174 | 4.9174 |4.9174 | 4.9166 |4.89B81 | 4.7420 |4.2628 | 3,5350 |2.6030
0.20 |4.7990 | 4.7990 |4.7990 | 4.7982 |4.7806 | 4.6328 |4.1756 | 3.4732 |2,5659
0,25 |4.6710 | 4.6710 |4.6710 | 4.6703 |4.6537 | 4.5142 |4.0791 | 3.4031 }2,5225
0.30 |4.5337 | 4.5337 [4.5337 | 4.5330 [4.5174 | 4.3862 [3.9734 | 3.3246 |2.4722
0,35 |4.3870 | 4.3870 |4.3870 | 4.3864 |4.3717 | 4.2487 |3.8582 | 3.2375 |2.4152
0.40 |4.2308 | 4.2307 |4.2307 | 4.2301 |4.2163 | 4.1014 |3,7332 | 3.1414 (2.3509
0.45 |4.0643 | 4.0642 |4.0642 | 4.0637 |4.0509 | 3.9438 |3,5980 | 3.0359 |2,2788
0.50 |3.8870 | 3.8869 |3.8869 | 3.8864 |3.8745 | 3.7753 |3.4517 | 2.9203 |2,1987
0.55 |3.6977 | 3.6977 |3.6977 |3.6972 |3.6862 | 3,.5947 |3.2935 | 2.7937 [2.1100
0.60 |3.4951 | 3.4950 |3.4950 | 3.4946 |3.4845 | 3.4005 |3.1219 | 2.6549 |2.0110
0.65 |3.2769 |3.2769 |3.2769 |3.2765 |3.2673 | 3.1908 |2,9350 | 2.5021 |1.9018
0.70 |3.0403 [ 3.0403 |3.0403 |3.0399 [3.0316 | 2.9627 |2.7302 | 2,3332 |1.7800
0.75 |2.,780% | 2.7808 |2,7808 |2.7805 |2.7732 | 2.7118 |2.5035 | 2.1444 |1.6427
0.80 |2.4917 | 2.4918 |2.4918 | 2.4915 |2.4851 | 2.4316 |2.2486 | 1.9304 |1.4909
0.85 |2.1615 | 2.1615 |2.1615 |2.1613 |2.1559 | 2.1107 |1.9551 | l.6820

0.90 |[1.7676 |1.7676 |1.7676 |1.7676 |1.7633 |1.7271 |1.6029 | 1.3908
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KI.B Values
¢
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

o

0.00 5.8491 | 5.8491 |5.8491 |5.8489 [5.8425 |5.7512 |5.3016 64,6632 [3.3411
0.05 5.7541 | 5.7541 [5.7541 |5.7539 [5.7478 | 5.6596 [5.2272 4,4140 13.3159
0.10 5.6461 | 5.6461 |5.6461 |5.6460 |5.6399 |5.5554 |5.1412 4.3546 |3.2827
0.15 5.5261 | 5.5261 [5.5261 |5.5260 [5.5202 |5.4396 [5.0441 4.2854 |3.2418
0.20 5.3948 | 5.3948 |5.3948 |5.3946 [5.3891 |5.3126 [4.9362 4,2062 |3.1928
0.25 s 2525 | 5.2525 |5.2525 |5.2524 |5.2471 |5.1747 [4.8176 |4.1173 3.1357
0.30 5.0995 | 5.0995 |5.0995 [5.0993 |5.0943 |5.0262 |4.6884 |4.0184 3.0708
0.35 4.9357 | 4.9357 [4.9357 |4.9356 [4.9308 [4.8668 |4.5484 3.9094 ([2.9972
0.40 4.7609 | 4.7609 |4.7609 |4.7608 |4.7563 |4.6965 [4.3972 |3.7898 2.9146
0.45 4.5745 | 4.5745 |4.5745 |4.5744 [4.5703 |4.5145 [4.2342 |3.6592 2.8233
0.50 4.3758 | 4.3758 |a.3758 |4.3757 |4.3718 |4.3201 [4.0587 |3.5167 2.7221

I
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Kl.g Values
L
. 0.0 0:1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.00 6.4832] 6.4832 | 6.4832 6.4831 | 6,4812 6.4390 | 6.1041 5.2623 | 4.0338
0.05 6.3798] 6.3798 | 6.3798 | 6.3797 | 6.37B0 | 6.3368 | 6.0143 5.1997 | 4.0000
0.10 6.2618| 6.2618 | 6.2618 6.2618 | 6.2600 6.2204 | 5.9113 5.1253 | 3.9568
0.15 6.1303| 6.1303 | 6.1303 | 6.1302 | 6.1285 | 6.0905 | 5.7956 | 5.0394 |3.9041
0.20 5.9860 ] 5.9860 | 5.9860 5.9859 | 5.9842 5.9840 15.6676 64,9421 | 3.8521
0.25 5.8293] 5.8293 | 5.8293 5.8293 | 5.8277 5.7933 | 5.5275 | 4.8335 | 3.7707
0,30 5.6606 | 5.6606 | 5.6606 5.6606 | 5.6591 5.6266 | 5.3756 | 4.7135 | 3.6893
0.35 5.4798| 5.4798 | 5.4798 5.4798 | 5.4784 5.4478 | 5.2115 4,5819 | 3.5981
0.40 5.2866] 5.2866 | 5.2866 5.2866 | 5.2852 5.2566 | 5.0349 4,4382 | 3.4966
0.45 5.0805| 5.0805 | 5.0805 5.0804 | 5.0792 5.0524 | 4.8452 4,2818 |3,3843
0.50 4.8604 | 4.8604 | 4.8604 | 4.8604 |4.8592 | 4.8344 |4.6415 | 4.1119 |3.2590

pue to the limited volume of computer time available, certain
K values have been omitted from the tables,

These have been restricted
to what is considered the less useful extremes of the parameters o and
¢ . However the programs for obtaining these values do exist.




